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Multiple Movement Representations in the Human Brain:
An Event-Related fMRI Study

Ivan Toni1,2, Nadim J. Shah2, Gereon R. Fink2, Daniel Thoenissen2,
Richard E. Passingham3, and Karl Zilles2

Abstract

& Neurovascular correlates of response preparation have
been investigated in human neuroimaging studies. However,
conventional neuroimaging cannot distinguish, within the
same trial, between areas involved in response selection and/
or response execution and areas specifically involved in
response preparation. The specific contribution of parietal
and frontal areas to motor preparation has been explored in
electrophysiological studies in monkey. However, the asso-
ciative nature of sensorimotor tasks calls for the additional
contributions of other cortical regions. In this article, we have
investigated the functional anatomy of movement represen-
tations in the context of an associative visuomotor task with
instructed delays. Neural correlates of movement representa-
tions have been assessed by isolating preparatory activity that
is independent from the performance of an actual motor act,
or from the presence of a response’s target. Movement
instruction (specified by visual cues) and motor performance
(specified by an auditory cue) were separated by a variable

delay period. We have used whole-brain event-related fMRI to
measure human brain activity during the performance of
such a task. We have focused our analysis on specific
preparatory activity, defined as a sustained response over
variable delay periods between a transient visual instruction
cue and a brief motor response, temporally independent
from the transient events. Behavioral and electrophysiological
controls ensured that preparatory activity was not contami-
nated by overt motor responses or working memory
processes. We report suggestive evidence for multiple move-
ment representations in the human brain. Specific sustained
activity in preparation for an action was found not only in
parieto-frontal regions but also in extrastriate areas and in the
posterior portion of the superior temporal sulcus. We suggest
that goal-directed preparatory activity relies on both visuo-
motor and visuoperceptual areas. These findings point to a
functional–anatomical basis for the integration of perceptual
and executive processes. &

INTRODUCTION

Sustained patterns of neural discharge can be elicited by
the transient presentation of an instruction cue (IC) and
by the expectation of a motor response in the near
future. Under these circumstances, it is possible to
isolate neural activity that is temporally independent
from the performance of an actual motor act, or from
the presence of a response’s target (Fuster, 1973). Such
preparatory activity has been considered a neural corre-
late of the cognitive representation of movement (Jean-
nerod, 1997), since it opens a window into internal
states of an agent that are not tied to a particular sensory
or effector system (Markman & Dietrich, 2000).

This article investigates the functional anatomy of
movement representations in the context of an asso-
ciative visuomotor task with instructed delays. This
class of visuomotor transformations is not constrained

in spatial or temporal frameworks (Wise & Murray,
2000). Therefore, this particular category of stimulus–
response relationships is likely to rely on integrative
and dynamic processes occurring over a distributed
cerebral network.

Brain imaging is well suited to address the spatially
distributed nature of visuomotor transformations
(Krams, Rushworth, Deiber, Frackowiak, & Passingham,
1998; Deiber, Ibanez, Sadato, & Hallett, 1996; Stephan
et al., 1995; Kawashima, Roland, & O’Sullivan, 1994).
However, previous studies on motor preparation and
movement representation have usually relied on the
assumption of pure insertion of cognitive processes
(Friston et al., 1996; Steinberg, 1969). In the present
context, this assumption implies that preparing to
move does not affect the selection and execution
stages of the sensorimotor transformation. This as-
sumption has been shown to be invalid, at the level
of both the single unit (Crammond & Kalaska, 2000)
and the neuronal population (Zarahn, Aguirre, &
D’Esposito, 1999). Other imaging studies have directly
assessed delay-related activity, but with constant
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temporal gaps between stimulus presentation and be-
havioral response (D’Esposito, Ballard, Zarahn, &
Aguirre, 2000; Rowe, Toni, Josephs, Frackowiak, &
Passingham, 2000; Chawla, Rees, & Friston, 1999; Postle
& D’Esposito, 1999; Courtney, Petit, Maisog, Unger-
leider, & Haxby, 1998; Petit, Courtney, Ungerleider, &
Haxby, 1998). This approach is appropriate for studying
working memory or sustained attentional processes,
where a long delay is necessary to establish the
cognitive set at the basis of the phenomena under
investigation. However, in a motor context, delay un-
predictability is more important than delay itself. When
IC and TC are separated by a variable delay period
(DP), the transformation of a stimulus into a motor
response can be partitioned into temporally distinct
components, since the subject needs to be ready to
respond at any time but the timing of the response
cannot be predicted (Moody & Wise, 2000; Klemmer,
1957). Under these circumstances, selection of the
appropriate movement is likely to occur at the pre-
sentation of the IC. In contrast, the implementation of
the executive motor commands can occur only after
the trigger presentation. Accordingly, the goal of the
movement is likely to be held during the DP (Moody &
Wise, 2000; Bastian, Riehle, Erlhagen, & Schoner, 1998;
Requin, Brener, & Ring, 1991). Therefore, specific
preparatory activity (i.e., dissociable from transient
stimulus-locked responses and robust to the assump-
tion of pure insertion of cognitive processes) is not
related to the enactment of a movement, but rather to
its representation ( Jeannerod, 1997) and it is likely to
reflect higher cognitive aspects of the motor planning
process (Wise, di Pellegrino, & Boussaoud, 1996).

Here we exploit a particular application of whole-
brain, event-related fMRI that has proved effective in
dissociating between transient responses time-locked
to sensory or motor events in the context of a visuo-
motor associative task (Toni, Schluter, Josephs, Friston,
& Passingham, 1999). We focus on the neural corre-
lates of ‘‘specific preparatory activity’’ in humans dur-
ing such a task, in order to gain insights into the
functional anatomy of movement representations. Pre-
paratory activity has been defined as sustained re-
sponses over variable DPs between a transient visual
IC and a brief motor response. The specificity of
preparatory activity has been ensured by taking into
account and removing the contribution of transient
events to the overall response. Compared with the
study by Toni et al. (1999), a wider range of instructed
delays and a refined set of basis functions have allowed
us to define each task component as an independent
partition of our statistical model. Here we provide
suggestive evidence that parts of the ventral visual
stream contribute to the preparatory activity preceding
a motor response.

RESULTS

Task Performance

The extensive training ensured a steady-state perform-
ance during the scanning. Subjects’ performance was
almost free of errors. The mean error rate across
subjects was 1.4 ± 2.4%. The response time (RT),
averaged over each session for each subject (Figure
2A), did not show any consistent trend as a function

Figure 1. Trial timecourse.

Diagram of the time course of a

trial. One of four shapes (IC)
was presented for 300 msec.

Two shapes instructed the

subjects to flex the index finger;

the other two shapes instructed
the flexion of the middle finger.

After a variable delay (DP:

pseudorandomly varied
between 1.3 and 20.8 sec in

steps of 1.3 sec), a tone (TC)

was presented for 300 msec.

The subjects were asked to
respond as quickly as possible

after the auditory TC. The

intertrial interval, that is, the

time between two successive
presentations of

the IC, was held constant at

37.7 sec.
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of trial number, neither for the group nor for each
individual subject. Four subjects did not show any
significant effect of trial number, one subject showed
a trend to increase [RT = 13.3*Session + 295; F(1,6) =
11.87; p < .05], and another subject showed a decrease
[RT = �28.1*Session + 638; F(1,6) = 14.67; p < .05].

The unpredictable timing of the TC avoided response
anticipation and effectively triggered motor preparation.
The RT, averaged over each delay for each subject,
showed no significant trend as a function of the delay,
either for the group or for each individual subject
(Figure 2B).

EMG measurements (Figure 2C) confirmed that the
subject performed the task according to the instruc-
tions, providing an overt response only after the pre-
sentation of the trigger cue (TC). There were significant
differences in EMG amplitude [F(2,4) = 29.54; p < .05]
and variability [F(2,4) = 9.03; p < .05] between differ-
ent epochs of task performance. EMG activity recorded
at the time of response execution (Response: 1.34 ±
0.43 AV [mean amplitude ± SD]; 87.13 ± 59.64 AV
[mean variability ± SD]) was higher and more variable
(Tukey’s post hoc test, p < .05) than EMG activity rec-
orded during the other task epochs (baseline: 0.24 ±

Figure 2. Behavioral data. RT,

EMG, and eye position traces

measured during task perfor-
mance in the scanner. (A) RT

(mean ± standard deviations)

for each of the six subjects as a

function of experimental time.
(B) RT as a function of length of

delay. (C) Representative EMG

and (D) eye position recordings
from four individual trials in a

single subject. Vertical dotted

lines represent the onset of the

visual IC and the onset of the
auditory TC. The inset in (D)

shows an enlarged view of

the eye position record for

horizontal (H) and vertical (V)
movements.
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0.10 AV; 24 ± 24; delay: 0.25 ± 0.10 AV; 25 ± 24 AV).
Conversely, no significant differences emerged between
baseline and delay epochs.

Eye position measurements (Figure 2D) confirmed
that task performance did not affect the pattern of gaze
displacements across experimental epochs. In particular,
there were no differential tonic shifts of the gaze or
differential numbers of saccades between epochs (base-
line: 1.7, �0.5 ± 0.9, 2.28 [mean x coordinate, mean
y coordinate ± SDx, SDy]; 3.3, 2.5 ± 1.2, 1.38 [mean
x variability, mean y variability ± SDx, SDy]; delay: 0.7,
�0.9 ± 0.6, 1.38; 3.1, 2.1 ± 1.3, 1.28; response: 1.6,
�0.8 ± 0.4, 1.38; 3.2, 2.0 ± 1.2, 0.88).

Statistical Parametric Maps

The following section describes the SPM{F}s associated
with each of the three behavioral components of the
task (IC, DP, TC). These SPM{F}s have been obtained
from the group analyses and compared with the
SPM{F}s of single-subject analyses. The list of significant
activations is presented in Tables 1, 2, and 3 and is
illustrated in Figure 3. We also report the number of
subjects showing maxima that fell within a sphere
centered on the maxima obtained from the group
analyses, with a radius equal to the FWHM of the relative
SPM{F}. This measure (labeled as ‘‘occurrence’’ in
Tables 1–3) provides an index of the reproducibility of
the activations across subjects.

Activity time-locked to the presentation of the visual
IC (Figure 3A–B; Table 1) was observed in the occipital,
parietal, and posterior temporal cortices, as well as in
the anterior portion of the left premotor cortex. The IC
evoked responses bilaterally in the calcarine fissure,
lunate sulcus, occipito-parietal fissure and along the
intraparietal sulcus. There was also IC-related activity
in the left superior parietal lobule and in the precentral
gyrus. The responses obtained in the group analysis
were consistent with those observed in each single
subject (Table 1). The activations elicited around the
calcarine fissure fall within a variability map of Brod-
mann’s area (BA) 17 in the human brain (Amunts,
Malikovic, Mohlberg, Schormann, & Zilles, 2000).

Sustained activity occurring during the DP between
the IC and the TC (Figure 3C–D; Table 2) was found in
the extrastriate, parietal, and premotor cortices. The DP
evoked responses in the superior occipital sulcus,
superior temporal sulcus (STS), superior occipito-
parietal fissure, along the intraparietal sulcus, and in
the convexity of the superior parietal lobule, as well as
in the precentral gyrus and in the anterior cingulate
sulcus. These activities were also observed in single-
subjects analyses (Table 2), although with a smaller
degree of consistency than for sensory- or movement-
related responses.

Activity time-locked to the presentation of the acous-
tic TC and to the subsequent movement (Figure 3E–F;

Table 3) is evident in the temporal, anterior parietal,
and motor cortices. The TC evoked responses bilat-
erally in the transverse gyrus and the perisylvian
temporal cortex, contralaterally in the left superior
temporal gyrus, superior parietal lobule, postcentral
and precentral gyri. These responses were highly con-
sistent across subjects (Table 3). The stereotactic co-
ordinates of the activations elicited around the

Table 1. Coordinates of Local Maxima Associated with the
Instruction Cue

Anatomical Region
Stereotactic
Coordinates F Value Occurrence

Calcarine fissure 6, �74, 18 3.71 6/6

�6, �70, 18 3.13 6/6

Lunate sulcus 36,�92, 20 2.89 4/6

Occipito-temporal
fissure

�48, �60,�24 2.15 5/6

Superior temporal sulcus

Posterior segment 50, �42, 22 2.86 5/6

62, �42, 28 2.61 4/6

Occipito-parietal fissure

Rostral bank 10, �74, 46 3.51 5/6

20, �72, 26 2.55 6/6

Intraparietal sulcus

Anterior third �26, �56, 62 4.67 6/6

36, �54, 54 3.75 5/6

Middle third �30, �68, 52 3.17 6/6

40, �50, 44 2.87 5/6

Posterior third �18, �70, 52 3.14 6/6

Superior parietal lobule

Dorsal convexity �16, �48, 74 2.85 5/6

�12, �58, 70 2.66 5/6

Precentral gyrus

Anterior bank �26, �2, 54 3.16 5/6

�48, 4, 40 3.16 5/6

Dorsal convexity �38, �14, 56 3.11 5/6

�26,�20, 68 2.99 6/6

Medial convexity �4, 0, 52 2.58 5/6

�14, 8, 70 2.58 3/6

Coordinates of local maxima for specific event-related activations. The
voxels presented here are significantly ( p < .05 corrected for multiple
comparisons) associated with the IC only. The components of the fMRI
signal associated with the other task components have been removed
as covariates of no-interest (see Methods). ‘‘Occurrence’’ refers to the
number of subjects showing maxima that fell within a sphere centered
on the local maximum obtained from the group analysis, with a radius
equal to the FWHM (7.9, 8.0, 7.1) of the relative SPM{F}.
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transverse gyrus fall on the border of human BA 21
(Rademacher et al., 2001).

Evoked Hemodynamic Responses (EHRs)

This section characterizes the EHRs of some relevant
areas to each of the three behavioral components of the
task (IC, DP, TC). The EHRs have been plotted as
estimated from Analysis 1 (activity time-locked to the

IC), Analysis 2 (activity time-locked to the DP), and
Analysis 3 (activity time-locked to the TC).

EHRs Associated with the IC

Figure 4A illustrates the EHRs for a local maximum in the
occipito-temporal fissure. This area shows a significant
hemodynamic response to the IC, but not to the DP or
to the TC (see Tables 1–3). The IC-related activity shows
a sharp increase of the EHR, although delayed with
respect to the occurrence of the visual IC. This result
closely resembles that obtained in a previous study from
the same anatomical region (Toni et al., 1999).

Figure 4B displays the EHRs for a local maximum in
the left superior parietal lobule. This area shows a
significant hemodynamic response to the IC. There is
a remarkable prepeak undershoot of the EHR not
observed on this scale in other maxima. This area
also shows a response time-locked to the TC,
although just below the significance threshold. As it
will be seen for another cluster in the posterior parietal
cortex (Figure 5B), the TC-related response is delayed
with respect to the onset of the acoustic TC.

Figure 4C shows the EHRs for a local maximum on the
dorsal convexity of the left precentral gyrus. In this area,
there are significant hemodynamic responses to both

Table 2. Coordinates of Local Maxima Associated with the
Delay Period

Anatomical Region
Stereotactic
Coordinates F Value Occurrence

Superior occipital sulcus �4, �74, 48 1.82 4/6

30, �92, 24 1.87 2/6

Superior temporal sulcus

Posterior segment 62, �40, 24 1.76 5/6

Lateral convexity 68, �26, 8 1.74 4/6

Occipito-parietal fissure

Rostral bank 8, �74, 48 1.88 3/6

Superior parietal lobule

Marginal sulcus 16, �40, 60 2.03 2/6

Dorsal convexity �18, �46, 74 1.71 4/6

Intraparietal sulcus

Anterior third �26, �56, 62 2.39 6/6

�52, �34, 56 2.00 6/6

Middle third �30, �62, 46 2.07 6/6

�38, �50 58 1.98 6/6

Posterior third �8, �76, 56 1.95 3/6

�18, �70, 52 1.82 6/6

Parietal operculum 44, �8, 12 1.78 2/6

Precentral gyrus

Anterior bank �38, �14, 64 2.11 6/6

Dorsal convexity �26, �22, 72 2.02 6/6

�42, �8, 54 1.78 5/6

Lateral convexity 64, �2, 8 1.72 2/6

�48, 4, 42 1.71 5/6

Posterior bank 44, �12, 62 2.33 3/6

50, �24, 58 2.03 3/6

Cingulate sulcus 0, �8, 48 1.90 3/6

�6, 2, 46 1.77 5/6

Coordinates of local maxima for specific event-related activations.
Voxels significantly associated with the DP only. Other conventions as
in Table 1.

Table 3. Coordinates of Local Maxima Associated with the
Trigger Cue

Anatomical Region
Stereotactic
Coordinates F Value Occurrence

Transverse gyrus 66, �14, 4 3.93 6/6

�56, �14, 8 2.66 6/6

Superior temporal gyrus

Medial bank �42, �28, 6 2.57 5/6

Superior parietal lobule

Dorsal convexity �18, �32, 76 2.60 4/6

Postcentral gyrus

Anterior bank �46, �20, 56 3.00 6/6

�50, �30, 38 2.71 6/6

Precentral gyrus

Dorsal convexity �26, �22, 66 3.00 6/6

Posterior bank �58, �12, 22 3.53 6/6

�36,�18, 68 3.17 6/6

Inferior frontal gyrus 48, 24, �12 2.33 5/6

Parietal operculum �46, �36, 26 3.15 5/6

Coordinates of local maxima for specific event-related activations.
Voxels significantly associated with the TC. Other conventions as in
Table 1.
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the IC and the TC, but not to the DP (Tables 1 and 3).
The IC-related activity increases shortly after the pre-
sentation of the visual IC, followed by a prolonged
postpeak undershoot. The TC-related signal also shows
a well-timed response to the movement, followed by a
slow return to baseline.

EHRs Associated with Sustained Activity

Figure 5A shows the EHRs measured in a local max-
imum in the right STS. There are significant hemody-

namic responses to the IC and the DP, but not to the
TC (Tables 1 and 2). The DP-related activity shows a
slow and gradual increase from the presentation of
the IC until the mean occurrence of the TC, followed
by an equally slow and gradual decrease towards
baseline. The IC-related signal shows an unusual pat-
tern, with a sustained response appearing just after
the IC presentation, followed by a slow drift towards
baseline.

Figure 5B illustrates the EHRs for a local maximum
in the dorsal bank of the left intraparietal sulcus.

Figure 3. Anatomical render-

ing of the significant activations.

SPM{F}s projected onto a
representative brain from the

MNI series. Left column:

posterior view; right column:

top view. (A, B) Activity
associated with the visual IC.

(C, D) Activity associated with

the DP. (E, F) Activity associated
with the auditory TC and the

subsequent motor response.

Significant clusters are

displayed as the integral of all
transformed F values, exponen-

tially decayed according to

their depth with respect to the

cortical surface. Voxels that are
10 mm behind the surface have

half the intensity of those at the

surface.
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This area shows hemodynamic responses to all three
behavioral events of the task, although only the IC- and
DP-related activities were above statistical significance.
The DP-related activity raises above baseline just after
the peak of the IC-related response and it shows a
sustained signal for most of the DP. The onset of the
TC-related response shows a substantial temporal offset
that is absent in the IC-related response. This result
closely resembles that obtained in a previous study
from the same anatomical region, in a different group
of subjects (Toni et al., 1999).

Figure 5C presents the EHRs for a local maximum in
the caudal bank of the left superior precentral sulcus, at
the convergence with the superior frontal sulcus. This
area shows hemodynamic responses to all three behav-
ioral events, although only the DP- and TC-related activ-
ities were above statistical significance. The DP-related
activity increases above baseline just after the presenta-
tion of the IC. However, the signal increases at a lower
rate than the IC-related hemodynamic response and it
shows a prolonged sustained phase that extends until
the end of the trial.

Figure 4. Time course and

anatomical localization of the

EHRs associated with the IC.
Left: Plots representing the

mean (± standard error) of the

adjusted group data obtained

from Analysis 1 (red circles),
Analysis 2 (blue squares), and

Analysis 3 (green triangles). The

three analyses test models
representing responses time-

locked to the IC, the DP, or the

TC (see Methods—statistical

model and inference).
Responses above or below

the significance threshold are

displayed with continuous or

dotted lines, respectively. The
curves are obtained from the

cubic spline interpolation of

the means at each time point.

mTC = mean stimulus onset
asynchrony (11.7 sec). Signal

from local maxima in (A) left

occipito-temporal fissure
(�48, �60, �24); (B) left

superior parietal lobule

(�12, �58, 70); (C) left pre-

central gyrus (�26, �20, 68).
Right: Anatomical rendering of

significant voxels. The SPM{F}

relative to responses time-

locked to the IC has been
superimposed on normalized

structural images of the

subjects.
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EHRs Associated with the TC

Figure 6A shows the EHRs for a local maximum in the
transverse gyrus of the right temporal lobe. In this
area, there was a significant hemodynamic response to
the TC, but not to the IC or the DP (Tables 1–3). The
TC-related activity sharply increases in synchrony with
the occurrence of the acoustic TC. The EHR for this
maximum shows a conspicuous postpeak undershoot,
differing in this respect from other EHRs.

Figure 6B illustrates the EHRs for a local maximum in
the dorsal convexity of the superior parietal lobule, just
posterior to the postcentral sulcus. This area shows a
significant hemodynamic response to the TC, but not
to the IC or the DP (Tables 1–3). The TC-related
activity increases relatively slowly, in synchrony with
the occurrence of the motor response, and it is fol-
lowed by a postpeak undershoot. This response can be
compared with the EHR of Figure 4B. Although both
EHRs arise from the same anatomical region, they

Figure 5. Time course and

anatomical localization of the

EHRs associated with the DP.
Left: Plots representing the

mean (± standard error) of the

adjusted group data. Other

conventions as in Figure 4.
Signal from local maxima in (A)

right superior temporal sulcus

(62, �40, 24); (B) left intrapar-
ietal sulcus (�38, �50, 58); (C)

left precentral gyrus (�38, �14,

64). Right: Anatomical render-

ing of significant voxels. The
SPM{F} relative to responses

occurring during the DP has

been superimposed on

normalized structural images
of the subjects.
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reveal drastically different properties, both in terms of
event specificity and response time course. The short
delay of the TC-related EHR obtained in this area
provides evidence that the delayed responses detected
in other parietal maxima are not a generalized phe-
nomenon or a sampling artifact.

Figure 6C displays the EHRs for a local maximum in
the opercular convexity of the inferior frontal gyrus,
just posterior to the precentral sulcus. This area shows
a significant hemodynamic response to the TC, but
not to the IC or the DP (Tables 1–3). The TC-related
activity sharply increases in synchrony with the occur-

rence of the acoustic TC and the subsequent motor
response, and is followed by a slow drift towards
baseline. This is reminiscent of the pattern observed
for the IC-related response in Figure 5A. Note that the
IC-related response, although below significance, is
not entirely absent.

DISCUSSION

In this experiment, we have imaged a distributed net-
work underlying movement preparation in the context

Figure 6. Time course of the

EHRs associated with the TC.

Left: Plots representing the
mean (± standard error) of the

adjusted group data. Other

conventions as in Figure 4.

Signal from local maxima in (A)
right transverse gyrus (66, �14,

4); (B) superior parietal lobule

(�18, �32, 76); (C) inferior
frontal gyrus (48, 24, �12).

Right: Anatomical rendering of

significant voxels. The SPM{F}

relative to responses time-
locked to the TC has been

superimposed on normalized

structural images of the

subjects.
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of an associative visuomotor task with instructed de-
lays. Our results suggest that, apart from the estab-
lished contribution of the dorsal visuomotor stream
(Milner & Goodale, 1995), portions of the ventral visual
stream also take part in the goal-related activity that
precedes a motor response. These results raise the
possibility that preparing an action involves multiple
cerebral representations, centered not only on parieto-
frontal circuitry (Snyder, Batista, & Andersen, 1997;
Riehle, Kornblum, & Requin, 1994), but also in ventral
occipito-temporal regions.

In the following sections, we discuss the behavioral
and neural correlates of preparatory activity isolated in
this experiment, and their relationship with stimulus-
and response-related activities. Finally, we interpret
these findings in the context of integration between
perceptual and executive processes.

Behavioral Performance

This experiment concerns motor preparation in the
context of arbitrary visuomotor associations. The exper-
imental task required speeded performance of precued
responses following the presentation of an auditory TC.
The error-free performance indicates that the informa-
tion on the movement to be performed was carried
over the DP interposed between the IC and the TC. It
might be argued that the process of carrying an item
over a short delay might represent a basic form of
working memory, independently from the nature of
the item, the presence of distractors, the need to
update the memory content, or the manipulations to
be performed on such item. However, temporary stor-
age of sensory information for prospective behavior
(‘‘working memory’’; Fuster, 1997; Baddeley, 1992)
and motor preparation are usually seen as complemen-
tary, rather than functionally overlapping, processes
(Constantinidis, Franowicz, & Goldman-Rakic, 2001;
Quintana & Fuster, 1999; Goldman-Rakic, 1998; Rush-
worth, Nixon, Eacott, & Passingham, 1997).

The absence of effects of delay on the mean RT
(Figure 2B) suggests that the motor preparation process
was homogenous across the whole range of DPs. It
might be argued that such delay-independent perform-
ance (Figure 2B) is a floor-effect reflecting the minimal
load of the task. However, we have previously shown
that holding in memory sensory items (the visual ICs)
induces a delay-dependent performance, whereas pre-
paring to move is independent from the length of the
delay (Toni, Thoenissen, Zilles, & Niedeggen, 2001).
While the generality of those results needs to be as-
sessed, they suffice to infer that, under the present
circumstances, the responses measured during the DP
are likely to reflect motor preparatory activity rather
than working memory processes. However, the present
study cannot exclude that other incidental cognitive
processes, although unrelated to task performance,

might have occurred in individual brain regions and
might have contributed to the delay-related activities.
As suggested by one reviewer, selective attention to the
upcoming acoustic TC or idle imaging of the visual
stimuli might have played a role in the sustained activ-
ities observed in posterior regions. Further experiments
are under way to assess the significance of these poten-
tial confounds. However, we would like to emphasize
that the TC was an abrupt, isolated sensory transient
event, with an intensity well above the attenuated back-
ground noise of the MR scanner and a different spectral
distribution. Under these conditions, transient stimulus-
driven attentional capture is likely to dominate over
goal-directed sustained attention, in particular, over
posterior areas (Schubo, Meinecke, & Schroger, 2001;
Egeth & Yantis, 1997).

Finally, motor preparatory activity might have been
affected by overt movements. Subjects’ responses re-
quired the displacement of a button press, and the task
was performed in free vision. However, electrophysio-
logical and behavioral controls allowed us to exclude
that delay-related activity was contaminated by overt
finger or eye movements.

Fronto-Parietal Interactions

Figure 3A–B reveals a distributed system activated by
the brief presentation of a visual stimulus instructing
subjects to simply flex a finger. Activity temporally
associated with the IC spreads from the primary visual
cortex towards the ventral extrastriate areas and, dor-
sally, towards the posterior parietal and premotor areas.
A similar fronto-parietal network was also responsive
during the DP interposed between the IC and the TC
(Figures 3C–D, 5B–C). These sustained activities are
specific since the transient components of the response
(i.e., IC- or TC-related activities) have been taken into
account and removed. Therefore, these neurovascular
activities reflect the selection and the preparation of the
movement independently from sensory afference and
motor output, even though triggered by an IC and in
expectation of a movement in the near future.

It might be argued that the sustained activities de-
tailed in Figure 5 are related to the expectation of the
auditory TC. Clearly, fMRI studies cannot distinguish
between the expectation of a sensory event and the
preparation of a movement on the basis of the neurons’
discriminatory abilities for stimuli or responses (Snyder
et al., 1997; Kalaska & Crammond, 1995). However, the
subthreshold TC-related activities found at the parietal
and occipito-temporal sites suggest that the sustained
activity of these regions are not primarily related to a
sensory event like the auditory TC (Figure 5A–B).
Finally, although the premotor cluster showed both
DP- and TC-related activities (Figure 5C), it is parsimo-
nious to interpret this pattern of activity in terms of
preparation and execution of a motor response, rather
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than in terms of expectation of an auditory event.
Nevertheless, the sustained activity evoked in different
cerebral regions might reflect different combinations
of preparatory processes with other cognitive phe-
nomena. For instance, motor planning might dominate
premotor signals, while encoding potential targets of
movement might be the main drive behind parietal
responses (Toni, Thoenissen, & Zilles, 2002; Kalaska &
Crammond, 1995).

Temporo-Prefrontal Interactions

The present study confirms and extends our previous
findings regarding the involvement of ventral visual
areas in the performance of visuomotor associative tasks
(Toni & Passingham, 1999; Toni et al., 1999; Toni,
Ramnani, Josephs, Ashburner, & Passingham, 2001).
Neurovascular activity associated with the presentation
of the visual IC was not limited to striate and peristriate
areas (Table 1, Figure 3A–B), but it extended towards
the occipito-temporal sulcus and the posterior segment
of the STS (Table 1, Figures 4A, 5A). This latter region
also showed sustained activity during motor prepara-
tion. Anatomically, much of the cortex in the caudal STS
of the macaque has visual functions (Yaginuma, Osawa,
Yamaguchi, & Iwai, 1993; Desimone & Ungerleider,
1986), and it receives convergent input from areas of
both the dorsal and the ventral visual stream (Distler,
Boussaoud, Desimone, & Ungerleider, 1993; Baizer,
Ungerleider, & Desimone, 1991; Morel & Bullier,
1990). Our results suggest a functional role for this
anatomical bridge between inferotemporal visuopercep-
tual areas and fronto-parietal visuomotor areas. Behav-
ioral analyses have shown subtle perceptual effects on
motor output in normals (Jackson & Shaw, 2000). These
effects become particularly evident after lesions of the
posterior parietal region (Jeannerod, Decety, & Michel,
1994) and in the absence of on-line access to the target
of the action (Fischer, 2001; Gentilucci, Chieffi, Departi,
Saetti, & Toni, 1996). Here we have shown a possible
functional–anatomical basis for the integration of per-
ceptual and executive processes in the context of de-
layed performance of visuomotor associations.

This hypothesis does not contradict our previous
suggestions on the involvement of the ventral prefrontal
cortex in establishing the appropriate association
between a particular sensory cue and an arbitrary motor
response (Passingham, Toni, & Rushworth, 2000; Pas-
singham & Toni, 2001; Toni & Passingham, 1999; Toni,
Rushworth, & Passingham, 2001). Figure 6C not only
confirms the involvement of a caudal portion of the
inferior frontal gyrus in the control of finger movements
(Ehrsson et al., 2000; Ehrsson, Fagergren, & Forssberg,
2001; Iacoboni et al., 1999; Krams et al., 1998), but it also
reveals that IC-related responses are not completely
absent in this region. On the basis of a related study
(Toni, Ramnani, et al., 2001), it is tempting to speculate

that the involvement of the ventral prefrontal cortex in
the initial stages of the sensorimotor transformation
might decrease in favor of other areas as the visuomotor
associations become automatic.

Sustained Activity in Sensory Areas

It might appear surprising that specific preparatory
activity was found in occipital visual areas (Table 2).
However, a series of neuroimaging and electrophysio-
logical studies have reported attentional (or contextual)
modulation of activity in primary visual areas (Gilbert,
Ito, Kapadia, & Westheimer, 2000; Kastner, Pinsk, De
Weerd, Desimone, & Ungerleider, 1999; Kosslyn et al.,
1999; Watanabe et al., 1998; Fuster, 1990). More specif-
ically, the occipital area involved in the current study
(30, �92, 24) has been implicated, in humans, in the
perception of kinetic boundaries (Dupont et al., 1997;
Van Oostende, Sunaert, Van Hecke, Marchal, & Orban,
1997) (34, �88, 0)1 and of biological motion (Grezes,
Costes, & Decety, 1999) (24, �84, 28). Our results
confirm that the visual cortex can show sustained res-
ponses even in the absence of visual stimulation. Fur-
thermore, such contextual modulation can be observed
not only during the expectation of visual stimulation
(Kastner et al., 1999), but also during the expectation of
a visually instructed movement. As suggested by one
reviewer, it is possible to speculate that these posterior
sustained activities might represent a way of anticipating
the sensory consequences of an intended action. It
remains to be seen if these extrastriate activities are
necessary to the preparatory process.

Conclusions

We have exploited neuroimaging to gain access to
human cerebral activity underlying cognitive represen-
tations of movement, independently from overt behav-
ior. We have confirmed that in humans, as in other
primates, portions of the parietal and premotor areas
contribute to holding the goal of the movement during
a DP, that is, they are involved in implementing a rule
guiding behavior. Furthermore, we have provided sug-
gestive evidence for the involvement of the ventral
visuo-associative areas in movement representation.
These results might indicate that visually instructed
actions rely not only on visuomotor guidance and
spatial reference frames (impinging on the fronto-
parietal circuitry), but also on representations stored
in the occipito-temporal regions.

METHODS

Experimental and Imaging Set-Up

We studied 6 neurologically normal, right-handed, male
volunteers (20–34 years of age) after obtaining informed
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consent. The subjects lay supine in the scanner. Head
movements were minimized by an adjustable padded
head-holder. Visual stimuli were projected onto a screen
above the subjects’ heads. The visual stimuli (white
shapes on a black background, centrally presented)
subtended an angle of about 208 on the retina. The
acoustic stimuli (300 Hz tones) were presented binau-
rally via MRI-compatible piezoelectric headphones,
which also protected the subjects from the scanner
noise. Motor responses were monitored via a keypad
with two buttons positioned on the subject’s abdomen.
Stimulus presentation and response collection were
controlled by and synchronized with the scanner
through a second computer.

Anatomical (i) MP-RAGE; TE/TR = 4.5/11.4 msec;
voxel size = 0.9 � 0.9 � 1.2 mm; and (ii) Turbo Spin-
Echo; TE/TR = 90/7000 msec; voxel size = 0.9 � 0.9 �
2.2 mm) and BOLD-sensitive functional images (T2*-
weighted EPI; TE/TR = 66 msec/5.2 sec; FOV = 200 �
200 mm; voxel size = 3.1 � 3.1 � 3.3 mm; 30 slices; 960
images in eight consecutive sessions) were acquired
using a VISION scanner operating at 1.5 T (Siemens,
Erlangen, Germany). These imaging parameters en-
sured full brain coverage, apart from the inferior part
of the cerebellum.

On a separate occasion, three subjects underwent a
further scanning session in order to assess skeleto- and
oculomotor activities during task performance. Bipolar
surface EMGs were recorded (1 kHz) from the flexor
digitorum superficialis of the right forearm (band-pass
filter 1–200 Hz, notch filter 50 Hz). Eye position was
recorded (60 Hz) with an infrared video-oculographic
system (http://www.a-s-l.com/; Gitelman, Parrish, LaBar,
& Mesulam, 2000). In order to collect meaningful EMG
data, the MR gradients were turned off during the
EMG measurements.

Task

The subjects were trained to perform a visuomotor
conditional task with instructed delays (Figure 1). One
of four shapes (IC) was presented for 300 msec. Two
shapes instructed the subjects to flex the right index
finger; the other two shapes instructed the flexion of
the right middle finger. After a variable DP (1.3–20.8 sec
in steps of 1.3 sec), a tone (TC) was presented for
300 msec. The subjects were asked to prepare the
response during the delay, but not to tense or move
their right hand until the TC. The movement was to be
performed as quickly as possible after the TC.

The task rules were learned by trial and error by the
subjects during a prescanning training session, during
which they practiced the task for 360 trials. The task
was the same as that used in the scanning session, apart
for the presence of feedback on performance (a green
tick for correct responses, a red cross for wrong
responses), the range of delays (0.1–1.0 sec in steps

of 0.1 sec), and the presence of a reaction time cutoff
(0.7 sec). The feedback allowed the subjects to learn
the task. The different range of delays allowed the
subjects to complete the training phase in a short time.
The reaction time cutoff was introduced to stress the
speed of the responses.

The subjects were given 10 further training trials in
the scanner, just before the beginning of the scanning
session. This allowed them to experience the range of
delays and the experimental set-up used during the
scanning procedure.

The subjects were allowed free vision during the
whole scanning procedure and task performance. The
visual IC was centrally presented and it covered a
conspicuous portion of the subjects’ visual field. Special
care was taken in order to position the central portion
of the screen into the resting line of gaze of each
subject. These procedures minimized potential interac-
tion between the neural systems controlling eye and
finger movements.

Experimental Timing

The intertrial interval (ITI, 37.7 sec) was chosen so that
successive trials started progressively later (1.3 sec, i.e.,
TR/4) in the scanning sequence. This mismatch between
trial occurrence and volume acquisition allowed a char-
acterization of the EHRs at a finer temporal resolution
than the actual TR, while preserving coverage of the
whole brain (Josephs, Turner, & Friston, 1997). The
long ITI allowed the estimation of the whole time course
of the EHR to each experimental event and not only the
differential component of the responses to each event
( Josephs & Henson, 1999).

The delays between the IC and the TC were selected
from a uniform distribution of intervals (1.3–20.8 sec in
steps of 1.3 sec). This range of delays allowed us to
partition the EHR model into three independent com-
ponents; one aligned with the IC, one aligned with the
TC, and one extending over the DP. The pseudorandom
variation in the DP between the IC and the TC ensured
that the subjects could not anticipate the occurrence of
the TC. The extensive range of delays ensured that the
subjects were ready to respond at any time after the
presentation of the IC.

Image Analysis

The data were analyzed with SPM97 (www.fil.ion.ucl.ac.
uk/spm; Friston, Holmes, Worsley, et al., 1995). After
standard preprocessing procedures (Toni, Krams, Turn-
er, & Passingham, 1998; Toni et al., 1999), functional
images smoothed with an isotropic Gaussian kernel of
4 mm were submitted to statistical analysis. Note that
this spatial filter preserved the native anatomical reso-
lution, emphasizing cerebral structures of comparable
spatial extent (cortical mantle), but penalizing structures
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with a different spatial organization (basal ganglia, cere-
bellum; Hopfinger, Buchel, Holmes, & Friston, 2000).

One hundred and twenty-eight trials were analyzed
for each subject. The EHRs to each of the 3 behavioral
components of the task (IC, DP, TC) were modeled
independently in the same model with different sets of
temporal basis functions. The sustained EHRs (i.e., DP
component) were modeled with a set of Fourier series
temporal basis functions (up to the sixth harmonic),
having the DP at each trial (plus a decay time of 6 sec)
as the fundamental period. Furthermore, these tempo-
ral basis functions were smoothed at the extremes of
the fundamental period. The assumption embodied by
this model is that the neural activity occurring during
the DP is sustained and the rise and fall of the hemody-
namic response is smooth. DP-related activity is thus
defined by a time interval, rather than by a specific time
point. Fourier series temporal basis functions allowed us
to characterize EHRs without specifying their exact form
or timing, that is the phase and amplitude of the basis
functions. We consider it important to use a very flexible
model for this component of the response, since sus-
tained responses represent cognitive processes of un-
known timing and intensity that are not necessarily
time-locked to a particular time point.

The transient EHRs (i.e., IC and TC components)
were modeled with a set of gamma functions and their
temporal derivative (Friston, Josephs, Rees, & Turner,
1998), time-locked to the occurrence of the IC and the
TC. These temporal basis functions allowed uncon-
strained characterization of the transient responses
while avoiding collinearity with the partition of the
model representing the sustained responses. Residual
correlations between these two partitions of the stat-
istical model (representing transient and sustained
components of the response) were removed by ortho-
gonalizing the gamma functions with respect to the
smoothed Fourier set.

The 3 partitions of the model, representing transient
responses time-locked to the IC, the TC, or sustained
responses during the DP, were considered alternately as
effects of interest and no-interest (or confounds), in
order to distinguish the EHRs associated with each
behavioral component of the task. In Analysis 1, we
tested for the presence of transient responses time-
locked to the IC, having accounted for and removed
the contribution of the DP and TC components. In
Analysis 2, we tested for the presence of sustained
responses occurring during the DP, having accounted
for and removed the contribution of IC and TC compo-
nents. Finally, in Analysis 3, we tested for the presence of
transient responses time-locked to the TC, having ac-
counted for and removed the contribution of the IC and
DP components.

Low-frequency drifts over time, residual head move-
ment-related effects, changes in mean signal over the
whole brain, and overall differences across runs were

considered as effects of no-interest. Low-frequency
changes in signal were modeled with a set of discrete
cosine basis functions. The highest frequency modeled
was twice the longest experimental period (two trials),
that is, 75.4 sec; the lowest frequency modeled was a
whole scanning run. Head movement-related effects
were modeled using the first-, second-, and third-order
polynomial expansions of the movement estimates ob-
tained from the realignment procedure.

The statistical significance of the estimated EHRs was
assessed using F statistics in the context of a multiple
regression analysis. The null hypothesis was that the
variance explained by the effects of interest was consis-
tent with the residual error, once the variance explained
by the effects of no-interest was removed. F ratios for
each voxel in the image were computed. SPM{F}s were
generated to indicate the spatial distribution of signifi-
cant event-related activations associated with either IC
(Analysis 1), DP (Analysis 2), or TC (Analysis 3). Gaussian
field theory allowed us to make inferences corrected for
the number of nonindependent comparisons (Friston,
Holmes, Worsley, et al., 1995). The effective degrees of
freedom of the error term took into account the tem-
poral autocorrelation of the data (Friston, Holmes, &
Poline, et al., 1995).

We report the results of single-subject analyses and of
a fixed-effect group analysis. This approach allowed us
to preserve the advantages of both single-subject anal-
yses (precise identification of the anatomical location of
the activation foci, evaluation of the consistency of the
results across subjects) and of fixed-effect group analy-
ses (high signal-to-noise ratio, concise overview of the
activation patterns). The limitation of this approach is
that the inferences are about the presence of an effect
in these subjects during these scanning sessions and
not about the average size of the effect in the popula-
tion from which the subjects were drawn (Friston,
Holmes, Price, Buchel, & Worsley, 1999; Friston,
Holmes, & Worsley, 1999). In order to appropriately
estimate intersubject variability and thus extend the
inferences to the population, it would be necessary to
collapse the data over replications within subjects.
However, the analyses used in the present paper make
use of multiple regressors to describe each event and
they cannot be handled by the univariate statistics
available in SPM97.

The statistical thresholds used in the single-subject
analysis were F(48.0,591.7) > 2.56 (for Analyses 1 and 3),
and F(56.0,591.7) > 2.43 (for Analysis 2), corresponding
to p < .05 (corrected for multiple comparisons). The
corrected F thresholds used in the group analyses
were 1.77 and 1.61, respectively. These thresholds
ensured a low incidence of Type I errors, at the
expenses of decreased sensitivity (increased Type II
errors). This implies that regions with robust prepar-
atory activity (e.g., cerebellum, basal ganglia, cingulate
motor areas, presupplementary motor area, SMA
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proper) might nevertheless have failed to reach our
statistical threshold. Due to computational limitations
(see www.mailbase.ac.uk/lists/spm/1998-12/0000.html
for a discussion of this issue), the group analyses
were performed on three of the six subjects. Note
that this procedure is statistically conservative, since it
decreases the subject pool, and hence, the degrees of
freedom of the analyses.

Anatomical details of significant signal changes were
obtained by superimposing the SPM{F}s on both the
structural and the mean functional images of each
subject. The atlas of Duvernoy, Cabanis, & Vannson
(1991) was used to identify relevant anatomical land-
marks. The time course of the EHRs is shown for some
significant areas of activation. The signal estimated from
each slice has been reordered according to its latency
with respect to either IC or TC. Note that this allows one
to take into account the delay occurring between the
beginning of the acquisition of each volume and the
actual time of acquisition of each slice.

Behavioral Analysis

The mean RT and the number of errors were measured.
The RT data were linearly regressed over two different
explanatory variables: trial number (Sessions 1–8) and
length of the DP (1.3–20.8 sec in 20 steps of 1.3 sec).
Each of these regressions was performed for the whole
group (n = 6) and for each subject individually.
Analysis of regression assessed the significance of the
slope ( p < .05).

EMG and eye position recordings were examined off-
line. Means and standard deviations of 16 artifact-free
trials were measured for each subject across three
epochs (baseline: 3 sec immediately preceding the onset
of the visual IC; delay: time interval between the onset of
the visual IC and the onset of the auditory TC; response:
3 sec immediately following the onset of the auditory
TC). Analysis of variance (ANOVA) assessed the signifi-
cance of the experimental manipulation ( p < .05; one-
way ANOVA for repeated measures with one factor
[epoch] over three levels [baseline, delay, response]).
Tukey’s t test was used for post hoc pairwise compar-
isons ( p < .05).
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