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Abstract
The acoustic environment in which speech is recorded 
has a strong influence on the statistical distributions of 
observed acoustic features. In order to make A SR  in
sensitive to noise it is crucial that these distributions are 
similar in the training and testing condition. Mostly, it 
is attempted to compensate for the impact of noise by 
estimating the noise characteristics from the signal. In 
this paper we explore the feasibility of a new method 
to increase noise robustness: We try to exploit a priori 
knowledge stored in clean speech models. Using Mel 
bank log-energy features, recognition is done by ignor
ing the model components for features that contained lit
tle energy during training. This strategy aims at recog
nition results that are determined more strongly by the 
match in the high-energy rather than by the mismatch in 
the low-energy model components. Application of the 
new method to clean speech data confirms that discard
ing components below a certain energy threshold does not 
deteriorate recognition performance. Experiments with 
noisy data, however, show that performance gains are rel
atively small. This paper explains why that is the case and 
why, despite the limited success, the outcomes suggest 
that the method still could prove to be a valuable addition 
to data-driven methods like (bounded) marginalisation.

1. Introduction
As long as speech is produced in an acoustic environ
ment in which only a mild and stationary background 
noise is present, the short-term spectro-temporal energy 
distributions that are associated with the speech can be 
safely considered as drawn from the same population. 
Consequently, all properties of the incoming signal are 
probably equally useful for decoding the speech signal 
by means of an A SR  engine based on hidden Markov 
models (HMMs). However, if  the type and level of the 
background noise is not known beforehand and fluctu
ates over time, HM M  based speech recognizers trained 
with speech from a quiet environment usually do not per
form well. This phenomenon is easy to understand: Most 
of the spectro-temporal regions in which the clean speech 
sounds show relatively little energy are flooded with en
ergy from the background sources. As a result, the dis
tributions of the acoustic features that had low energy in 
the absence of noise may differ substantially from those 
of noisy speech, causing the distance between competing 
hypotheses to become strongly dependent on the back

ground noise. In order to limit the number of recognition 
errors that are caused by the noise, methods must be de
ployed to diminish this training-test mismatch.

In the past decades, many different techniques have 
been developed to make A SR  less sensitive to environ
mental noise. Although the implementation details differ 
vastly, these techniques all aim for the same thing: Mak
ing the distance between the acoustic feature probabil
ity density functions (pdfs) of clean and noisy speech as 
small as possible, and as insensitive to the noise condi
tion as possible. Regardless whether one looks at meth
ods that try to compensate for the noise by adaptations at 
the feature level (e.g., time domain noise reduction [1] or 
spectral subtraction [2]), or at methods that directly try 
to affect the feature distributions themselves (e.g., his
togram normalisation [3] or model compensation [4]), all 
these methods have in common that the required com
pensation is directly and exclusively estimated from the 
noisy input. Also in missing feature approaches [5], the 
noisy input itself is taken as a starting point for selection 
of reliable and unreliable features.

Given the fact that it is the rule rather than the ex
ception that an unknown signal consists of a mixture of 
sounds, it is hardly surprising that making a distinction 
between acoustic features that are either dominated by 
the speech signal (reliable) or by the background noise 
(unreliable) helps greatly to improve recognition perfor
mance. In practice, however, the success of a missing fea
ture approach is strongly determined by the degree with 
which features can be correctly labelled as reliable or un
reliable. Using solely data-driven estimation techniques, 
it appears quite difficult to avoid labelling errors [6].

It is intuitively plausible to assume that labelling fea
tures as reliable or unreliable is easier in a domain where 
they have a straightforward physical interpretation, such 
as the spectro-temporal energy domain. At the same time, 
it is true that filter band energy features have the draw
back that they are strongly correlated, which makes it 
more difficult to build compact statistical models. Yet, we 
decided to use filter band energies throughout this paper, 
because we want to investigate whether it is possible to 
use a straightforward physical interpretation as the start
ing point for a novel technique for handling potentially 
corrupted acoustic features.

Whereas A SR  engines cannot deal well with fea
tures that are erroneously labelled as reliable, humans 
are extremely flexible in ignoring information that does 
not fit the pattern they are looking for. Several studies



suggest that the superior recognition performance of hu
mans can at least partly be attributed to their capability 
to rely on expectations about what is likely to be per
ceived [7] [8] [9]. In this paper, we explore to what ex
tent A SR  can be made more noise robust by using a priori 
knowledge that has been acquired during acoustic model 
training on clean speech. We apply an energy criterion 
for selecting a subset of clean speech model components 
that is deemed robust enough to be used at recognition 
time, and we set up a matching scheme that adapts the 
distance measure to the model for which the likelihood of 
the signal features is computed. In this manner, we aim at 
diminishing the impact of features whose values, accord
ing to a specific hypothesis, are corrupted by noise. In 
fact, our approach boils down to emphasizing the match 
between models and unknown signals in the high-energy 
spectro-temporal regions, rather than the mismatch in its 
low-energy regions. One of the potentially adverse con
sequences of this approach is that it also ignores matches 
in low-energy regions of the spectro-temporal plane.

The feasibility of this new approach was tested by 
means of a series digit recognition experiments. First, 
we used clean speech in order to investigate to what ex
tent information about low-energy features in the clean 
speech models can be discarded without harming recog
nition performance. The results of this experiment pro
vided insight into the relative importance of features with 
high and low energy. It also gave an upper bound esti
mate for the recognition performance one could hope for 
when the same strategy is applied to noisy speech. Next, 
we applied our technique to speech with additive bab
ble noise. The results of this experiment were somewhat 
disappointing. Therefore, we designed and conducted a 
number of follow-up experiments to establish whether the 
lack of success is due to decisions that had to be made 
in the implementation of the technique (and thus can be 
changed for the better), or whether the causes are more 
fundamental (and therefore cannot easily be remedied).

The rest of the paper is organised as follows. In Sec
tion 2 we describe our novel method for scoring local dis
tance and the general experimental set-up. More in par
ticular in Section 2.2 we describe a new distance measure 
which may differ for each and every state. In Section 3 
we present the results of the digit recognition experiment 
both for clean and noisy data and we discuss the lim i
tations of the proposed method. In Section 3 we report 
on three experiments that were conducted to investigate 
three factors that might explain the disappointing results 
for noise robustness. Finally, in Section 4 we summarize 
the most important findings and draw conclusions.

2. Method
2.1. Using expectations to ignore corrupted features
Research on human hearing has shown that spectro- 
temporal signal components with high intensity dominate 
the neural response [9]. To remain in a domain where per
ceptual relevance can be inferred directly from the mag

nitude of the features (at least to a first order approxi
mation), we use Mel filter band spectra throughout this 
paper. The output of the filter bands are expressed in 
terms of log-magnitude. By taking the logarithm, we en
sure that spectro-temporal regions with high speech en
ergy are less affected by background noise than regions 
with low speech energy 1. In other words, one may not 
only expect that the high-energy portions of clean speech 
models contain most of the relevant information, but also 
that they are more reliable for decoding purposes.

In conventional A SR  systems, decoding is done by 
evaluating the likelihood of an unknown speech vector 
using all its acoustic features for comparison with the sta
tistical distributions of the the corresponding features ob
served during training. As long as the spectro-temporal 
regions with low speech energy (that are easily polluted 
by noise) can be correctly recognized as non-reliable 
speech information, marginalization approaches can en
sure that these regions do not harm the decoding deci
sion. In practice, however, it appears very difficult to cor
rectly distinguish reliable and unreliable features with
out having information about the underlying speech sig
nal [5] [6].

In order to investigate to what extent information 
about features that exhibited low energy during training 
is useful for reducing the impact of high-energy features 
that have been erroneously associated with speech, we 
modify the distance computation in a model dependent 
way. Taking the speech models as a reference, as opposed 
to the unknown speech signal, we ensure that a high ob
servation value in a certain frequency band is not going 
to be considered as reliable information by any speech 
model for which training has learned to expect a low 
value in that band. Thus we strive to obtain a matching 
procedure that focuses on the more important and reli
able spectro-temporal regions and that is affected as little 
as possible by the presence of noise in regions that are 
known beforehand to be unimportant for the decoding of 
a specific model. In the next section we explain in detail 
how the distance computation was modified.

2.2. State dependent feature selection
In analogy to the missing feature approach [6], we split 
the components of each acoustic observation vector (X) in 
two subsets. The first subset consists of features that must 
fit the model pdf as closely as possible because this infor
mation is considered mandatory for a reliable recognition 
(XR). The other subset w ill not be considered at all during 
the match assuming that these components have too big 
a chance to represent noise (XN). Note that in contrast 
to the standard missing feature approach, the subsets are 
chosen differently for different HM M  states. This means 
that both x R and XN are functions of the hypothesized 
state s j : XR(s.) and XN(s.). The posterior probability for

1 Denoting the energy of the desired signal by E x  and the energy 
of the (uncorrelated) noise by E n  one can write: lo g (E x  +  E n  ) =  
lo g (E x ) +  log(1 +  E n / E x  ) ~  lo g (E x ) if E n  <  E x  ).



a given state sj can be written as:

P (sj |x)
= P  (sj |xR(Sj ) (sj ) )
= P ( x R(s3) , xN(s3)\sj) - P (s j)  

P { x r {Sj ) , x n {S j))
=  P ( x R ( s 3) \ S j ) ' P ( x N { S j ) \ x R{S j ) , S j ) - P ( S j )  

P ( x r (s3)) ■ P ( x N (s3)\x R (s3))

P (s j  |xR(Sj ))
P ( xN(s3) \x R ( s 3 ) i sj )  

P (x N(s3 ) |xR(sj ))
( 1)

We assume that the relevant parts XR and the non
relevant parts XN of the feature vector are mutually exclu
sive. The term p(XN(s .) |XR(Sj), s j ) represents the feature 
distributions for all vector components that are assumed 
unimportant for encoding the target speech information in 
state s j . This pdf describes the distributions of features 
that represent the valleys in the spectrum, i.e., for clean 
speech the characteristics of silence and for noisy speech 
the spectral characteristics of the background noise. The 
term in the denominator p(XN (sj) |XR(Sj)) represents a 
similar distribution, i.e. the distribution of features that 
are considered unimportant for the current state, but av
eraged over all possible states. Thus, this pdf includes 
both speech and non-speech related features. As a first 
approximation we w ill assume that the quotient in Eq. (1) 
only contains disinformation and may better be ignored. 
Thus, only feature vector components that are marked as 
relevant w ill be used for decoding, by using

P (s j |x)
P ( x R(S3)\sj )  ■ P (sj )  

P (* R ( s3))
(2)

Note that evaluation of this probability only requires a 
priori knowledge. The identity of the vector components 
is entirely determined by the models. No processing of 
the unknown signal is involved to determine which fea
tures are expected to represent reliable speech informa
tion or not.

Findingthe optimal {frame,state}-pathcanbe done in 
the usual way with dynamic programming. With D t,j de
noting the cumulative distance, representing the minimal 
cost associated with ending in state s j at time t (assuming 
that state si was visited at time t - 1), having observed the 
series of acoustic vectors x (1), x (2)...x (t), we can write:

D t,j
= m in{D t-i,i -  log[p(sj(t)|s*(t -  1)] } +i

"P  (xR(s j ) (t)|sj ) ■ P  (sj )-  log
P (xR(sj ) (t))

(3)

Since calculation of P  (XR(Sj )|sj) and P  (XR(Sj)) only in
volves a subset of the features, the components in these 
terms may be different for each hypothesis to be evalu
ated. As a consequence, the denominator term P (X R(Sj)) 
cannot be factored out in the usual way when compar
ing different alternatives and needs to be explicitly esti
mated for each individual state. Interpreting this term as

the prior probability of an observation, it canbe estimated 
by calculating the overall feature distribution of all avail
able training data and making the desired selection.

2.3. Digit recognition experiments
2.3.1. Speech m aterial
The speech material for our experiments consisted of 
connected digit strings and was taken from the Dutch 
PO LY PHO NE corpus [10]. From this corpus, comprising 
speech that has been recorded over the public switched 
telephone network in the Netherlands, we selected con
nected digit strings with 3 to 16 digits per string. For 
training we used a set of 1997 strings (16,582 digits). 
Care was taken to balance the training material with re
spect to ( 1) an equal number of male and female speak
ers, (2 ) an equal number of speakers from each of the 
12 provinces in the Netherlands and (3) an equal number 
of tokens per digit. For cross-validation during training 
(cf. [11]) we used 504 digit strings (4300 digits). A ll the 
models were evaluated with an independent set of 1008 
test utterances (8300 digits). The cross-validation test set 
and the independent test set were balanced according to 
the same criteria as the training material. None of the 
original utterances used for training or testing had a high 
background noise level.

For recognition experiments with noisy data, NOI- 
SEX  babble noise was added to the clean speech signals 
resulting in signal-to-noise ratios (SNRs) of 15, 10, and 5 
dBA. Care was taken that the amplitude of the speech was 
not changed when adding the noise. More details about 
the speech material canbe found in [12].

2.3.2. Acoustic pre-processing
From the 8 kHz sampled speech signal 16 Mel-frequency 
log-energy coefficients (M FLECs) were computed us
ing a 25 ms Hamming window shifted with 10 ms 
steps and a pre-emphasis factor of 0.98. Based on a 
Fast Fourier Transform, the 16 filter band energy val
ues were calculated, with the filter bands triangularly 
shaped and uniformly distributed on a Mel-frequency 
scale (covering 122.0-2143.6 Mel; this corresponds to 
the linear range of 80-4000 Hz). In addition to the 
16 M FLECs, we also computed the total log-energy for 
each frame. These signal processing steps were per
formed using H TK [13]. The 17 static coefficients were 
augmented with (smoothed) first-and second-order time 
derivatives (delta- and delta-delta-coefficients) to arrive 
at 51-dimensional feature vectors.

2.3.3. HM M s
The ten Dutch digits were represented as 10 whole- 
word models. The number of states in each model 
was chosen proportional to the number of phones in 
the word. Furthermore, we used three additional three- 
state models for silence, background noises and out-of
vocabulary speech. Each unit was represented as a left- 
to-right HMM. For these models the total number of 
states was 108 (99 for the words plus 9 for the silence



and noise models). We used H TK for training and test
ing HMMs [13]. To determine the optimal number of 
Baum-Welch iterations, we followed the cross-validation 
scheme described in [11]. The initial single-Gaussian 
models were split up to four times, resulting in recog
nition systems with 2, 4, 8, and 16 Gaussians per state. 
Thus, the most complex model set contained 1728 Gaus- 
sians (with diagonal covariance matrices) in total. The 
models were trained using clean speech only. The recog
nition syntax used during cross-validation and testing was 
defined so that connected digit strings of 3 to 16 digits 
could be recognized.

Gaussian mixture HMMs are computationally incon
venient if one desires to identify and modify the contri
bution of a specific vector component to the total cost of 
a {frame,state}-path. Therefore we used a work-around 
by reshaping each N-Gaussian mixture state into a set of 
N  parallel single-Gaussian states. The transition prob
abilities to separate parallel states were determined by 
the original mixture weights. Using a maximum likeli
hood decoding, this conversion ensures that each vector 
component makes an independent contribution to the lo
cal distance because its likelihood is always evaluated 
against a single-Gaussian pdf. After conversion to a 
topology with parallel states, the original model sets of 
108 states with 8 and 16 Gaussians per state, respectively, 
were converted into model sets with 864 and 1728 single- 
Gaussian states. Experiments indicated that the recogni
tion performances of the original and converted model 
sets did not differ significantly.

For computation of the denominator term in Eq. (2), 
a single-Gaussian single-state HM M  was trained using 
only the speech portions in the recordings of the entire 
training set.

2.3.4. State dependent component selection 
The following procedure was used to select the compo
nents in each single-Gaussian HM M  state, which, ac
cording to the expected energy value, was judged robust 
enough to be included in the distance computation. First, 
an absolute energy level was chosen (in the linear fre
quency domain) above which an observation was con
sidered to represent relevant speech energy. Because the 
first 16 static coefficients in our acoustic vectors represent 
log-energy values computed on a Mel-scale, the chosen 
absolute energy level was converted to a corresponding 
Mel-energy threshold value for each Mel-frequency band 
used. For the total log-energy, the 17-th static coefficient 
in our acoustic vectors, a similar procedure was followed. 
Next, whenever sj was hypothesized during decoding, a 
component in a single Gaussian density was assigned to 
xN(Sj) (i.e., being irrelevant) when 95% of the trained 
probability density mass fell below the threshold. Oth
erwise, that particular component was assigned to xR(s.) 
(i.e., being relevant for decoding purposes)2. A  gradual

60 80 100 120 140

energy (dB) energy (dB) energy (dB)

2Note that this procedure differs from the one used in [14]. We 
prefer the current one, because the use of an absolute energy level allows 
us to maintain a closer link to the physics ofthe recorded signals.

Figure 1: Thin lines: Original pdfs of 8-Gaussian mix
tures for energy bands 1, 4, and 9; Thick lines: Effective 
pdf (the sum of 8 parallel single-Gaussians) after discard
ing all low-energy components of which 95% of the pdf 
probability mass lies below a pdf threshold of 100 dB.

increase of the chosen absolute energy level allowed us 
to control the number of low-energy model components 
that were excluded from the distance computation.

It is impossible to apply a separate amplitude crite
rion to mark delta and delta-delta components as having 
a higher or lower a priori likelihood to be relevant: Values 
for deltas and delta-deltas can both be positive and nega
tive, and, in contrast to the static energy values, there is no 
law from physics that allows to predict their vulnerability 
to noise. Therefore, we decided to mark a delta compo
nent in a Gaussian distribution as (ir)relevant whenever 
the corresponding static component was marked as such. 
This rule was also applied to the delta-deltas.

The effect of our strategy to mark model components 
as relevant or irrelevant is illustrated in Fig. 1. The origi
nal pdf of three different feature components in the same 
multi-variate 8-Gaussian mixture HM M  state is shown 
as a thin line. The estimated effective pdf after selec
tion (obtained by summing only those components that 
were retained in the corresponding 8 parallel states) is 
shown as a thick line. The energy threshold applied for 
selection was 100 dB for each static component. In the 
rest of this paper we w ill refer to this threshold as pdf 
threshold. As can be observed from Fig. 1, the degree to 
which components are marked as relevant (i.e., the degree 
to which they should be effectively used during recog
nition) is different for each component. Above the pdf 
threshold (in this example 100 dB) the original and the 
new pdf overlap completely. In the left-most panel, corre
sponding to energy band 1, more components are retained 
than in the middle panel, corresponding to energy band 
5. For energy band 9 (right-most panel) none of the orig
inal model components are retained in the distribution, 
meaning that observation values of band 9 are ignored al
together during the distance computation whenever this 
particular state is hypothesized.

As becomes obvious from Fig. 1, the degree of con
trol over how the low-end tails of the pdfs are effected, 
is rather limited: The order in which different compo
nents are discarded is determined by the accidental com
bination of mean and standard deviations of the Gaussian 
components in the original models. Furthermore, one



should be aware that masking out model components be
low the pdf threshold in one or more of the parallel single- 
Gaussian states does not imply that the set of N  parallel 
states replacing the original N-Gaussian mixture model 
cannot ’feel’ observation data at all. As a consequence, 
the competition between different models may change in 
a rather random fashion for different pdf thresholds, es
pecially when an observation vector contains a large pro
portion of low-energy values.

3. Results and discussion
3.1. Discarding low-energy model components
In a first series of experiments, recognition performance 
was studied for clean and noisy data as a function of the 
pdf threshold. A ll states in all models were treated sim
ilarly: Whenever a component occurred of which 95% 
of the probability mass was lying below the chosen pdf 
threshold, it was discarded (cf. Section 2.3.4). The recog
nition accuracies obtained are shown in Fig. 2 for model 
sets with 864 and 1728 Gaussians, respectively. The hor
izontal dashed lines in this, as well as in all subsequent 
figures, indicate the recognition accuracy for the conven
tional A SR  system in which all model components were 
retained.

Figure 2 shows that, for clean speech, increasing 
the pdf threshold causes the recognition accuracy to de
crease. For pdf threshold values up to 100 dB the de
crease is so gradual that the sub-threshold model com
ponents can be discarded without seriously falling below 
baseline recognition performance. For the model set with 
864 Gaussians, 24.9% of the model components are dis
carded when the pdf threshold is set to 100 dB. For the 
model with 1728 Gaussians, 27.3% of the model compo
nents are discarded using a pdf threshold of 100 dB.

For noisy speech, the recognition performance im
proves slightly for pdf thresholds up to 100 dB. Above 
this value, recognition accuracy starts to deteriorate again 
and soon drops well below the baseline performance. For 
example, for 10 dBA noisy speech, the accuracy at a pdf 
threshold value of 100 dB improves from 65.7% to 69.7% 
for models with 864 Gaussians and from 67.6% to 70.2% 
for models with 1728 Gaussians.

The results in Fig. 2 indicate that the effectiveness of 
the state dependent component selection method is rather 
limited. Apparently, ignoring the training-test mismatch 
caused by those features that appeared irrelevant for the 
decoding of clean speech only helps slightly to achieve a 
better recognition in noisy conditions. The fact that the 
improvement is so little, suggests that there is still a huge 
amount training-test mismatch left in the features that are 
not ignored. In order to obtain a clearer view on this mat
ter, a series of follow-up experiments was conducted.

3.2. Using additional information from the signal
As already discussed at the end of section 2.3.4, the man
ner in which the component selection takes place causes 
the shapes of the low-end tails of the effective pdfs to

864 Gaussians 1728 Gaussians

Figure 2: Recognition accuracy as a function of the pdf 
threshold used to discard model components. From top 
to bottom the curves represent clean speech, and speech 
with babble noise at SNRs of 15, 10, and 5 dBA. Left 
panel: model set with 864 Gaussians; Right panel: model 
set with 1728 Gaussians. Dashed lines indicate recogni
tion performance with all model components retained.

change quite coarsely. These changes are likely to af
fect the competition between hypothesized models in a 
rather uncontrolled way. We conjectured that this effect 
might be one of the factors limiting the effectiveness of 
the state dependent component selection method. There
fore, we modified our decoding scheme in such a way 
that we had better control over the extent to which obser
vations falling in the tail left of the pdf threshold affected 
the recognition result. We let an observation contribute 
to the posterior probability in Eq. 2 only when both the 
model component for the hypothesized state was consid
ered relevant (according to the pdf threshold criterion) 
and the corresponding feature in the observation vector 
was lying above a second pre-defined energy threshold 
(that we w ill from now on denote by observation thresh
old). Note that using an observation threshold (as long as 
no pdf-threshold is used) is equivalent to a conventional 
observation-driven marginalisation approach [6] with a 
rather crude criterion to establish the reliability of a fea
ture.

Using only the model set with 864 Gaussians, tests 
with this modified approach were run for clean and 10 
dBA noisy speech. The results of these experiments are 
shown in Fig. 3 for two conditions: (1) when no state de
pendent component selection was applied (left panel) and 
(2) for a pdf threshold of 100 dB (right panel). We shall 
first focus on the results for noisy speech. The results for 
clean speech w ill be discussed later.

As can be inferred from Fig. 3, application of an ad
ditional observation threshold does not improve recogni
tion performance in the noisy condition. This holds re
gardless whether state dependent component selection is 
used or not. The difference between the accuracy levels



Figure 3: Recognition accuracy as a function of obser
vation threshold. Left panel: No model component se
lection. Right panel: Model components selected using a 
100 dB pdf threshold. Upper curves: Clean speech; lower 
curves: 10 dBA noisy speech. Dashed lines: Accuracy 
with all model components retained.

in the left and right panel for observations thresholds be
low 90 dB, is the same as observed in Figure 2. The fact 
that observation thresholds up to 90 dB do not give rise 
to any changes in recognition accuracy suggests that the 
majority of the noisy test observations have values larger 
than 90 dB. This was confirmed by looking at the feature 
distributions of the noisy test data. Because hardly any 
observations lie in the range where the left tails of the 
effective pdfs may play a role, it is not surprising that a 
possible adverse effect due to an uncontrolled behaviour 
of these slopes, does not become manifest in the noisy 
data experiments.

Note that the curves in both panels are virtually iden
tical above 95 dB. O f course, this must be expected since 
in that regions no feature values < 95 dB occur and be
cause the effective pdfs above 100 dB are indistinguish
able from the original pdfs. In other words, the recogniz
ers in the left and right panel are virtually identical. In
spection of the recognition results revealed that the first 
part of the dip (observation thresholds of 90-105 dB) cor
responds with a decrease of deletion errors and an accom
panying (larger) increase of substitution and insertion er
rors. For observation threshold larger than 105 dB, the 
balance reverses: deletions start to increase, and substitu
tions and insertions decrease. We interpret this changed 
balance as the combined result of a positive effect due to 
the removal of noise energy, which is counteracted by the 
negative effect of removing speech energy. The net effect 
being negative, is a clear indication that using a single, 
fixed energy threshold in the linear frequency domain for 
deriving data-dependent reliability masks is too crude a 
method. Obviously, a change in observation threshold 
does affect which model wins the competition. However, 
it can not ensure that the correct model wins more often.

Figure 4: Similar results as in Fig. 3, but with observa
tion thresholds chosen with respect to the average noise 
spectrum.

3.3. Using average noise characteristics
To find out whether using a less crude criterion for esti
mating the data-dependent reliability mask would change 
the results in a qualitative way, we subsequently applied 
observation thresholds that were chosen relative to the 
mean energy level of the noise in each band. Because we 
used the same fixed observation thresholds for each test 
utterance, this procedure might still be far from optimal. 
Nevertheless, it ensures that a larger proportion of the fea
tures that are dominated by speech (c.q. noise) energy are 
marked correctly as reliable (c.q. unreliable). The results 
for clean and 10 dBA noisy speech are shown in Fig. 4 
for a condition in which no state dependent component 
selection is applied (left panel) and for a pdf threshold of 
100 dB (right panel). As expected, this noise-dependent 
reliability mask does a better job than the previous one: 
At an observation threshold level between 6-9 dB relative 
to the mean noise energy (i.e. where the major part of the 
noisy features has been ignored in the distance computa
tion) a maximum accuracy of 71.0% is obtained. This is 
slightly better than the performance for state dependent 
component selection alone (68.6% ), but still far off from 
clean speech performance at that point (79.5%). No ad
ditional accuracy gain is observed when state dependent 
component selection is combined with data-driven fea
ture selection. This suggests that, just like in section 3.2, 
for observation thresholds > 3 dB the recognition is fully 
determined by data-driven feature selection process.

3.4. Clean speech results
Now, let us return to the discussion of the recognition 
results for clean speech. A ll results for the clean data 
obtained in the experiments discussed so far, show that 
increasing energy thresholds (pdf threshold, observation 
threshold, or both) above 100 dB always leads to loss of 
recognition performance. Inspection of the feature dis-



pdf threshold in dB

Figure 5: Recognition performance as a function of the 
energy level used to select model components for the 
model set with 864 Gaussians. Component selection was 
applied to all HM M  units, except those representing si
lence and non-speech noise. Upper curve: clean speech; 
lower curve: 10 dBA babble noise. Dashed lines indi
cate recognition performance with all model components 
retained.

tributions of the speech parts of the clean training data 
showed that the modes of the distributions lie in the range 
of approximately 125 dB forthe first five energy bands, to 
about 100 dB for energy bands 6-16. Our finding that the 
full dynamic range above 100 dB is required to maintain 
recognition accuracy thus implies that information from 
all filter banks must be used. The improved results for 
the noise related observation thresholds (cf. section 3.3) 
can be interpreted that some sort of local SNR criterion is 
able to preserve more of the high frequency features. This 
suggests that it might be better to base the model compo
nent selection on the mean speech energy per band in the 
training database instead of an absolute energy criterion 
as in section 3.1.

A  number of peculiarities with respect to the recogni
tion results of clean speech have not been discussed yet. 
First, in Fig. 2 the accuracy for clean speech degrades 
steadily, while for the noisy conditions the recognition 
performance either does not change or improves slightly. 
Second, both in Figures 3 and 4, it can be observed that 
the combination of a pdf threshold of 100 dB and a vari
able observation threshold gives rise to a performance 
drop for very low values of the observation threshold. We 
hypothesized that the latter effect is due to an extra, un
intended model-data mismatch. Since some models con
tain more low-energy components than others, the effec
tive pdfs of different models are affected to a different 
degree when the lowest energy components are ignored. 
This is likely to disturb the competition between models, 
particularly because we treated all models similarly. The 
rationale behind ignoring spectral components with low 
energy was that these were unimportant for conveying in

formation about the identity of speech sounds. Of course, 
this reasoning does not apply to silence and background 
noise, while especially the effective pdf of these models 
are likely to change drastically as a function of the pdf 
threshold. We therefore conducted an additional experi
ment in which state dependent component selection was 
applied to the speech models only and not to the silence 
and noise model. The results are shown in Fig. 5.

First, Fig. 5 shows that the recognition performance 
in the clean condition does no longer degrade (as in 
Fig. 2), but remains above the baseline level up to a pdf 
threshold of about 105 dB. For the noisy condition, the 
improvements are primarily found at pdf threshold levels 
greater than 110 dB. As expected, considering all non
speech model components as informative instead of dis
carding the ones with low-energy reduces the mismatch.

4. Summary and conclusions
Acoustic models trained with clean speech, contain in
formation about how much energy must be expected in 
different frequency bands for each HM M  state. Since 
the valleys in log-magnitude speech spectra are more eas
ily dominated by non-speech energy than the peaks, one 
might expect that low-energy bands are relatively unim
portant for recognition. We hypothesized that it might 
be profitable to use a priori knowledge about low-energy 
areas to decide for each model independently which com
ponents are likely to be unreliable and should better be ig
nored. To be able to test this hypothesis, we implemented 
a state dependent component selection method: During 
recognition the contributions to the local distance of the 
low-energy components from the clean speech models 
are ignored irrespective of the observed feature value. 
Thus, we obtained a matching procedure that emphasizes 
the match in the high-energy regions and ignores mis
match in the regions that, according to the clean speech 
models, are expected to have low energy.

We tested our approach for a digit recognition task. 
Using a fixed energy threshold (in the linear frequency 
domain), we first selected the pdf-components in each 
state of all our models that were below this threshold and 
discarded their contribution to the local distance compu
tation. In addition, we experimented with a marginali
sation approach in which we discarded the distance con
tributions of all observations that were below a certain 
threshold. For clean speech, we found that recognition 
accuracy could be maintained only if  we allowed the fea
tures to span a dynamic range of at least 30 dB.

Using models containing only those components that 
appeared to be indispensable for recognition of clean 
speech, we found that recognition performance for noisy 
speech was improved, but only slightly (for speech with 
babble noise at an SNR of 10 dBA recognition accu
racy improved by approximately 3%, i.e., from 65.3% 
to 68.6% ). Just like with clean speech, we found that 
attempts to reduce the impact of the noise further by ig
noring more of the low-energy features were counterpro
ductive. Simply discarding information of features with



an energy in the low end of the 30 dB dynamic range has 
an adverse effect: Together with the noise, also important 
speech information is discarded at the same time.

This finding severely limits the applicability of the 
idea to use an absolute energy criterion in combination 
with filter bank features to select robust features on a pri
ori grounds alone. The state dependent component selec
tion method is helpful in ignoring features of which it is 
clear beforehand that they are unimportant for the recog
nition of clean speech. Unfortunately, however, these fea
tures appeared to be responsible for only a minor part of 
the recognition errors in our tests. The fact that a rela
tively large proportion of the model components that are 
indispensable for maintaining recognition accuracy have 
relatively low energy, makes that even at very moderate 
noise levels the majority of the features are affected so 
that training-test mismatch is hardly reduced. Within the 
decoding scheme we used, our silent assumption that fea
tures that are robust against noise would probably also 
be the most important ones from an information coding 
point of view is obviously wrong.

Since marginalisation techniques use the unknown in 
put data to estimate which features are reliable or not, 
while our state dependent component selection uses a p ri
ori knowledge from clean speech models, the two meth
ods are to some extent complementary. This suggests 
that state dependent component selection constitutes a 
method that might have potential value, but only if  it used 
in combination with other methods to improve noise ro
bustness, e.g., (bounded) marginalisation techniques [5] 
[6]. We expect that in combination with more sophis
ticated data-driven approaches like in [6], a state de
pendent component selection approach allows to recover 
from part of the errors that blind estimation techniques 
are bound to make. After all, it is likely that at least part 
of the features that are erroneously labelled as reliable 
w ill be ignored by a state dependent component selection 
mechanism. The current study does not give any clear in
dications whether such an added value really exists and 
more research would be needed to verify this.

Another important conclusion concerns our finding 
that speech and non-speech models should be treated dif
ferently. It was shown that discarding the lowest en
ergy components affects the left slope of the effective 
pdf that replaces the original N-Gaussian mixture pdf of 
a state. As expected, altering these slopes has a strong 
effect on the competition between the models that are 
hypothesized during the search. Many extra recogni
tion errors may result from favouring the wrong mod
els. For non-speech models we concluded that it is bet
ter to refrain from state dependent component selection 
and to use all available features. Using the state depen
dent component selection mechanism for speech mod
els only, we found that, both for clean speech and noisy 
speech, higher energy thresholds could be used (discard
ing more model components) without decreasing recog
nition performance. This is an interesting finding to pur
sue. The more more components can be discarded, the

more promising the mechanism of state dependent com
ponent selection becomes as a potentially valuable ad
dition to traditional marginalisation methods. For simi
lar reasons, it is also interesting to speculate about what 
w ill happen to the sparsity of the state representations if 
one changes the criterion for discarding model compo
nents. For instance, we would expect that using thresh
olds derived from the mean speech energy per filter band 
as seen during training, rather than using absolute thresh
olds, w ill also allow to discard more components with
out lowering the recognition accuracy. Additional exper
iments are needed to show the true potential of state de
pendent component selection.
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