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Introduction 

 
 
 
 
 
 
 
 
 
The rapid expansion of the high frequency technology commonly employed in 

everyday life (e.g. in mobile phones or in logic processor chips for PC) requires a 
tremendous scientific and manufacturing effort in achieving always cheaper, faster 
and smaller integrated devices. For decades, the worldwide semiconductor market 
has been dominated by Silicon (Si), which turns out to be a easily available and 
chemically highly stable material, onto which a unique homogeneous oxide can 
easily be made. The constant improvement of the growth technique and of the 
processing technology, with the consequent shrinkage of the dimensions and increase 
of the package density, allows building logic processor chips with more than 100 
million transistors and a clock frequency of more than 2GHz. 

The effort in achieving continuously higher frequencies and the wide application 
of integrated technology in different areas led to the investigation of new materials 
besides Si, like GaAs/AlGaAs or Si/SiGe heterostructures. Advanced growth 
techniques have been developed to produce two-dimensional structures, where the 
carriers are no longer free to move in all directions but are confined in a two-
dimensional layer, like balls on a billiard table. The opportunity to control physical 
properties by changing different layer materials on almost atomic scale provides an 
enormous scientific attraction. From the point of view of the physics, low 
dimensional systems have revealed interesting unexpected properties and have led to 
discoveries such as the quantum Hall effect, weak and strong localization, and charge 
quantization. 

This thesis focuses on the two-dimensional system in Si/SiGe heterostructures, 
which is experimentally investigated through resistivity and thermoelectric power 
measurements.  By applying an electrical field E, a system of charged carriers reacts 
by conducting a current J proportional to E, i.e. E=ρJ (with ρ the resistivity), known 

 15 



Introduction 
____________________________________________________________________ 

as Ohm’s law. If, instead of a current, a temperature gradient ∇T is applied, this 
gradient also induces an electric current which in turn leads to an electric field 
proportional to the temperature difference through a factor S called thermoelectric 
power, i.e. E=S∇T (Seebeck’s law).  

Resistivity and thermopower measurements provide complementary information 
about the properties of the two dimensional system. If the driving force is the electric 
field, the current is limited by the scattering of the carriers caused by static 
impurities, giving rise to the resistivity ρ. In thermopower, the driving force ∇T gives 
rise to a current through the phonon-carrier interaction and through the diffusive 
motion of carriers with different kinetic energy on the hot and on the cold side of the 
sample. The first contribution to thermopower is called phonon drag and arises 
because ∇T leads to a net flow of phonons from hot to cold, consequently phonon 
drag is a measure of the interaction between carriers and phonons, normally too small 
to be detected by resistivity measurements at low temperatures. The second 
contribution is the diffusion thermopower and it gives precious information about the 
carrier distribution and their intrinsic thermodynamic properties.  

In heterostructures where the phonon-carriers interaction is mediated through a 
piezoelectric potential like in AlGaAs/GaAs, phonon drag dominates until very low 
temperatures and diffusion is negligible. Si/SiGe heterostructures are expected to be 
non-piezoelectric and therefore the phonon drag is supposed to be small enough at 
low temperatures to measure the diffusion contribution. Most of the previous work 
on heterostructures has been done on piezoelectric active systems where drag 
dominates down to low temperatures. Therefore diffusion has been difficult to probe. 
In this thesis, with Si/SiGe systems, we have been able to clearly measure diffusion 
separately from phonon drag. Diffusion is an interesting physical parameter because 
it can easily be related to a thermodynamic parameter, the entropy, which is one of 
the most fundamental properties of any system. 

Two-dimensional systems show an interesting transport behavior in high 
magnetic fields, related to Landau quantization and to carrier localization: the integer 
quantum Hall effect, observed for the first time by K.von Klitzing in 1980 in Si-
MOSFET. If a magnetic field is applied perpendicular to the two-dimensional 
system, the Lorentz force causes a full quantization of the energy spectrum of the 
carriers, called Landau quantization. As a consequence the electronic density of 
states is altered to a discrete set of levels (Landau levels) equally separated by the 
cyclotron energy. This energy structure is reflected in the quantum oscillations in 
resistivity (Shubnikov-de Haas) and in thermopower. In high magnetic fields, the 
Hall resistance shows exactly quantized plateaus at integer fractions of h/e2 (where h 
is the Plank’s constant and e the electron charge), independent of any sample 
characteristics. At the same time the longitudinal resistivity vanishes. The remarkable 
accuracy of the quantization of the Hall resistance (about 10-11 precision reproducible 
among different samples) has led to a recommended value of the resistance. The 
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quantum Hall effect is generally explained with the localization-delocalization of the 
carriers but the remarkable precision is still astonishing.  

The system investigated in this thesis is a Si/SiGe two-dimensional hole gas, i.e. 
missing electrons in the valence band behaving as carriers with a positive charge. 
This system is known to exhibit peculiar phenomena related to localization of 
carriers: i) a metal insulator transition as a function of carrier density at zero 
magnetic field, ii) a field induced metal-insulator transition between the first two 
Landau levels, and iii) a strongly insulating phase at very high fields, where the 
carriers are in the low energy tail of the lowest Landau level. The field driven 
insulating state between two (integer or fractional) Hall states has also been observed 
in other two-dimensional systems (AlGaAs/GaAs, Si-MOSFET) but its origin has 
been not understood yet. In this thesis, the transition to the insulating state between 
the first two Landau levels has been studied with two different experimental 
techniques, resistivity and thermopower in a wide range of temperatures and for 
different carrier densities. The thermoelectric power probes the energy distribution of 
the carriers and therefore it is capable of clarifying whether the insulating state is due 
to a discontinuity in the density of states or is induced by the disorder. 

This thesis is structured as follows. Chapter 1 describes the p-type Si/SiGe 
heterostructure investigated in Chapter 3, 4, and 5 and it gives an introduction to 
transport measurements in zero and in magnetic field. The mechanisms responsible 
for thermopower will be explained in detail as well as the quantum oscillations in the 
resistivity and thermopower at low magnetic fields (Mott theory for diffusion 
thermopower and the Shubnikov-den Haas oscillations) and higher fields (quantum 
Hall effect and the effect of Landau levels on thermopower).  

Chapter 2 describes the experimental setup used for the measurements in 
Chapters 3, 4, and 5. 

Chapter 3 presents the thermopower measurements at zero fields and low 
magnetic field for a p-type Si/SiGe heterostructure. The diffusion component is well 
described by the theory, including quantum oscillations at low fields. Surprisingly, 
the temperature dependence of phonon drag is different than expected from theory 
and suggests that the carrier-phonon coupling is mediated either by an unscreened 
deformation potential or by a screened piezoelectric scattering.  

Chapter 4 and 5 focus on the resistivity and thermopower measurements in the 
metal-insulator transition between the first two Landau levels. A scaling analysis 
shows that the metal insulator transition and the insulating transition at higher field 
belong to the same universality class, supporting the idea that the two metal-insulator 
transitions are driven by the same mechanism. In contrast to resistivity, the diffusion 
thermoelectric power probes the energy distribution of the carriers and it is therefore 
able to answer the question whether the transition is the result of a discontinuity in 
the carrier density of states or if it is due to the presence of a disorder-induced 
mobility gap. The thermopower measurements suggest the latter hypothesis. 

The last Chapter is dedicated to the description of the technique for pulsed 
thermopower experiments. The goal is to probe how local is the electron-phonon 
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interaction by detecting time-resolved the response of the carriers to short non-
equilibrium heat pulses. The Chapter gives a description of the solutions to some 
cryogenic and electrical problems, points out the issues which still need to solve in 
order to be able to detect time-resolved the response of the two dimensional system 
to pulsed heat excitations. 
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Chapter 1 

The p-type Si/SiGe heterostructure 

 

 
A two-dimensional hole (or electron) gas can exist at the interface between 
different materials, in systems called “heterostructures” (e.g. 
GaAs/AlGaAs, Si/SiGe are heterostructures). Because of the two-
dimensional nature of these systems, they exhibit new quantum 
phenomena, such as the quantum Hall effect. In this thesis, we study the p-
type Si/SiGe heterostructure. 

 

  

 

1.1 The band structure 

The sample used in this thesis is a strained, asymmetrically doped p-type 
Si/Si0.88Ge0.12 heterostructure. The carriers are holes (positive electric charge) 
confined in a triangular potential well. Fig. (1.1) shows a schematic picture of the 
valence band in a p-type Si/SiGe heterostructure with a confining potential V(z) in 
the z direction.  

Band structure calculations on strained p-type Si/SiGe heterostructures show that 
the strain and the confinement in the z direction lift the heavy hole band, and 
therefore remove the degeneracy with the light-hole band at the zone center [1]. For 
moderate carrier density, the holes occupy only the heavy hole subband (׀MJ3/2 = ׀), 
which is well above the light hole band and therefore is strongly decoupled. In these 
circumstances, the transport properties of the system are found to be well described 
by a single band picture. 

In such a simplified picture, we can assume that the two-dimensional hole gas 
consists of carriers with positive charge +e and with an effective mass m* = 0.3me, 
with me the free electron mass. 
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Figure 1.1: Schematic of the valence band in a Si/SiGe heterostructure. 

 

1.2  Classical transport properties 

1.2.1  Classical magnetoresistance 

By applying an electrical field E, a conductor reacts by conducting a current J 
proportional to E, i.e. E=ρJ where ρ is the resistivity which depends on the properties 
of the material. In the presence of a magnetic field perpendicular to the conductor, ρ 
becomes a tensor where ρxx=ρyy and ρxy= -ρyx. The conductivity tensor σ is defined as 
the inverse of the resistivity tensor and, in a two-dimensional system, they are related 
to the elements of the resistivity tensor by: 

2
xy

2
xx

xx
xx

σσ

σ
ρ

+
=     (1.1a) 

2
xy

2
xx

xy
xy

σσ

σ
ρ

+
=    (1.1b) 

In zero magnetic field, ρ is given by ρ = ρxx(B=0) = 1/(eµtn), where µt and n are 
the transport mobility and the density of the carriers, respectively. 
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1.2.2 Thermoelectric power and Nernst-Ettingshausen effect 

When a temperature gradient ∇T is applied to a conductor, the electric and the 
thermal currents J and U are related to the field E and the temperature gradient ∇T by 
two basic transport equations: 

 
J=σE-ε∇T    (1.2) 
U=πE-λ∇T 
 

where the coefficients are the conductivity tensor σ, the thermoelectric tensor ε, the 
Peltier tensor π, and the thermal conductivity λ. All the coefficients are scalars at zero 
magnetic field and become tensors in presence of magnetic field. 

Because the TEP is measured with zero total current (J=0), it follows (Eq. (1.2)) 
that E=ρε∇T, which shows the fundamental relation S=ρε with S the Seebeck 
coefficient defined by E = S∇T. 

When a magnetic field B is applied in the direction perpendicular to the two-
dimensional carrier system, two independent components of the thermopower tensor 
S are found: 

 
Sxx=ρxxεxx+ ρxyεyx 
Syx=ρxxεyx+ ρyxεxx 
 
Sxx is the longitudinal thermopower, or thermopower, and Syx is the Nernst-

Ettingshausen coefficient, or transverse thermopower. Sxx and Syx can be measured by 
the thermal voltage appearing in the direction of ∇T (Sxx) and perpendicular to∇T 
(Sxy). 

 
 
 

1.3  Two-dimensional electron system in a magnetic field 

The energy levels of a two-dimensional system in a magnetic field are given by 

iB
*

cis,n, EBµsg
2
1nωE +−⎟

⎠
⎞

⎜
⎝
⎛ += h  

which corresponds to the well known spin-split Landau levels originating from each 
confined subband Eis. ωc is the cyclotron frequency (ωc=eB/m*). 

Hence, in a magnetic field B the density of states (DOS) of the two-dimensional 
system becomes a discrete set of δ-like functions, separated by hωc: 

)Eδ(Eg(E)
sn,

sn,∑ −= G  
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The degeneracy of each Landau level for a given magnetic field B is G=eB/h.  
For a fixed concentration of carrier density ph, the levels are filled up to the 

Fermi energy, which becomes dependent on magnetic field. The number of filled 
Landau levels, called filling factor, is defined as ν= phh/eB. 

In a non-ideal system, the carriers have a finite lifetime τq and the DOS has a 
finite width Γ~h/τq, as a result of lifetime broadening due to impurity scattering or 
potential fluctuations, as shown in Figure (1.2). 
 

 

 

1 3 420 6 
filling factor

 5

2Γ
hωc

g*µBDOS  

 

 

  
 

 

 

Figure 1.2: Broadened Landau levels in a two-dimensional system. 

 
The behavior of resistivity and thermopower in a magnetic field depends on the 

ratio between the Landau level splitting (hωc) and the Landau level broadening Γ. 
When hωc<< Γ, the system can be described in the classical limit. At intermediate 
fields (hωc≥ Γ), Shubnikov-de Haas quantum oscillations become observable in the 
resistance. In the extreme quantum limit (ν<1 and hωc>>kBT and hωc>>Γ), only the 
lowest Landau level is occupied and new phenomena (which are discussed later) may 
occur. 
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1.4 Magnetoresistivity of a two-dimensional system 

1.4.1 Shubnikov-de Haas effect 

When kBT << hωc and hωc ≤ Γ (or µqB ≤ 1, with µq = eτq/m* the quantum 
mobility), the Landau levels are not completely separated and the DOS can be 
approximated as an oscillatory function of the energy. For an isotropic two-
dimensional hole system, the oscillatory longitudinal resistivity ρxx is given by [2,3] 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−

∑ sπ
ω
Es2π

coseD(sX)ρ4(B)ρ~
c

FBqµ
πs

sxxxx
h

   (1.3) 

where ρ̃ and ρ  are the oscillatory and non-oscillatory resistivity, respectively, EF is 
the Fermi energy, and D(sX)=(sX)/sinh(sX) is the thermal damping factor for the 
oscillations with X=(2πkB

2T/hωc) and s is an integer number indicating the index of 
the harmonic component. 

The oscillatory part describes the Shubnikov-de Haas oscillations; the first term 
includes the temperature dependence of the Shubnikov-de Haas oscillations, and the 
second term is an exponential envelope, which decays rapidly with the harmonic 
index s. 

 
 
 
 

1.4.2 The Integer Quantum Hall effect 

When hωc>>kBT, at magnetic fields where µqB>>1, the Integer Quantum Hall 
Effect (IQHE) becomes visible. This effect was observed for the first time by von 
Klitzing in 1980 [4] in Si-MOSFET, and it is characterized by the appearance of Hall 
resistivity plateaus at a integer filling factors ν=i, with quantized values h/ie2. This 
value is independent on the characteristics of the sample. At filling factor ν=1, the 
Hall resistance is equal to 25813Ω, measured with an accuracy of 10-11, and it is 
independent on the sample. The quantization of the Hall resistance is so precise that 
it is used as the recommended value of the resistance standard nowadays, since no 
standard resistor gives better accuracy than the measured 10-11 quantized values. 

In a real system, impurities and crystal defects lead to potential fluctuations, 
which localize states at the tails of the Landau levels. These tail states do not 
contribute to the conductivity of the two-dimensional system, which forms the basis 
of the explanation of the IQHE. Because of the broadening of the Landau levels and 
the existence of insulating states at the tails, the Fermi energy changes smoothly by 
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increasing the magnetic field, whereas in a δ-shaped DOS, it would jump from one 
Landau level to the next one. A crucial point in the explanation of the IQHE is that 
only the extended states can carry current at T=0. If the magnetic field increases 
continuously, the localized states are filled up without any change in the occupation 
of the extended states, and therefore ρxx will be zero (or minimum at finite low 
temperature) and the Hall resistivity ρxy will remain constant (ρxy=h/e2ν). Only when 
the Fermi level passes through extended states in the center of a Landau level, ρxx 
becomes appreciable and the Hall resistance makes a transition from one plateau to 
the next.  

Alternatively, also edge states are invoked as an explanation of the IQHE. 
Carriers close to the physical edge of the sample will be reflected by the edge of the 
device resulting in a net drift velocity that becomes higher the closer the carrier gets 
to the edge. These “edge states” behave as a one-dimensional conducting channel. In 
the frame of this thesis, we will restrict to the description of the behavior of the two-
dimensional system in terms of localized and extended states. The two models can be 
reconciled by considering the sample edges as the ultimate potential fluctuation 
present even in ideal samples, and thus the edge state as the ultimate extended state. 

To illustrate the behavior described above, we show in Fig.(1.3) typical 
magnetoresistivity curves of the Si/SiGe heterostructure. At high magnetic fields 
(low filling factors) ρxy shows plateaus at integer filling factor ν=i with values 
ρxy=h/ie2, and at the same time the longitudinal resistivity ρxx tends to zero. At lower 
fields the Shubnikov-de Haas oscillations are visible.  

An evident feature in Fig. (1.3) is the predominance of odd filling factor for 
Si/SiGe heterostructures. It is commonly accepted that this peculiar behavior is due 
to the large value of the g-factor in this system [5]. In fact, the large value of the g-
factor (g*>2) induces a Zeeman splitting ∆Es=g*µBB comparable with the Landau 
level spacing hωc (see Fig. (1.2)). Therefore the state in the Landau level nL and spin 
up (nL)↑ and the state in the next Landau level and spin down (nL+1)↓ are almost 
degenerate and not resolved even at very low temperatures. A more detailed analysis 
of Si/SiGe in magnetic field is the central issue of this thesis and it is reported in 
Chapters 3-5. 

 

 24



 The p-type Si/SiGe heterostructure 
____________________________________________________________________ 

 

0 1 2 3 4 5
0

1

2

3

4

5

6

h/2e2

ν=5

ν=2

ν=3

ρ
yx (kΩ

)
ρ xx

(k
Ω

)

B(T)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

 

 

Figure 1.3: The resistivity (ρxx) and the Hall resistance (ρyx) as a function of magnetic field in 
the Si/SiGe heterostructure used in Chapters 3-5. 

 

1.5  Thermoelectric power 

1.5.1  Thermoelectric power at zero magnetic field 

A temperature gradient ∇T applied across a conductor induces a thermally driven 
electric current jth. If there is no net current flowing in the system, jth has to be 
compensated by an electrical current je due to an electrical field E. The ratio between 
the electrical field and the temperature gradient is the thermoelectric power S, i.e. 
E=S∇T. Since both the thermal and the compensation current are proportional to the 
impurity relaxation time momentum τimp, the thermopower results to be independent 
of τimp. In this respect, the thermoelectric power is very different from resistivity, 
which is almost completely dominated by impurities at low temperatures. 
Thermopower provides information on thermodynamic properties of the carriers and 
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on the carrier-phonon scattering, which is almost negligible in resistivity 
measurements at low temperatures. 

The thermoelectric power is the result of two different mechanisms: diffusion 
(Sd), due to the diffusive motion of carriers in a temperature gradient, and phonon 
drag (Sg), due to the momentum transfer from phonons to carriers. In the limit of 
weak coupling between carriers and phonons, these two contributions are additive 
and the total thermopower is given by S= Sd+ Sg.  

In zero magnetic field, in the limit of weak interaction between the phonon of the 
three-dimensional substrate and the two-dimensional hole gas, the diffusion 
contribution to thermopower Sd is given by the “Mott formula” 

FE

d

E
lnσ

e3

TBk2π
S

∂
∂

=      (1.4) 

where kB is the Boltzmann constant. If FEt lnE)/lnτ(p ∂∂=  is the energy dependence 
of the relaxation time, then 

p)(1
FEe3

TBk2π
Sd +=      (1.5) 

Sd is linear in temperature and consists of two additive contributions: the average 
entropy per unit of charge and the term proportional to p, related to scattering. The 
value and the sign of the scattering parameter p depends on the dominant scattering 
mechanism for diffusion. Sd is negative if p<-1.  

The phonon drag contribution Sg to thermopower is due to hole-phonon 
scattering. The momentum transferred from phonons to carriers induces a thermal 
current jth=-ε∇T. By following the simple idea of the compensation between thermal 
and electrical current, it can be shown that at low temperatures and low densities, 
when the phonon scattering is limited by boundary scattering in the substrate, the 
phonon drag is given by [16] 

Tµ
ΛvS
ph

g =        (1.6) 

where Λ is phonon mean free path and µph is the phonon-scattering limited electron 
mobility.  

A more formal theory of phonon drag was developed by Cantrell and Butcher 
[6]. In this model the phonons are considered bulk phonons traveling in a 3D 
substrate, whereas the electrons are confined in the confining potential. The model 
assumes that the main scattering mechanism for phonons is boundary scattering, 
which determines the phonon mean free path Λ. Originally, the electron-phonon 
coupling was considered to be only due to unscreened deformation potential. 
Afterwards, Smith and Butcher [7] evaluated the influence of both deformation and 
piezoelectric potential coupling in the model. The calculations gave a good 
agreement with experimental data in systems, like Si-MOSFETs, characterized by 
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the presence of only deformation potential coupling [8], and in piezoelectric 
structures like GaAs/AlGaAs [9].  

In a two-dimensional hole gas, assuming that the carriers with wave vector 
k=(kx,ky) are quasi-elastically scattered by the three-dimensional acoustic phonons 
with wave vector Q=(q, qz), where q is the component in the plane of the two-
dimensional system and qz is perpendicular to it, the phonon drag for a 2DHG is 
given by [8] 
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where ρm is the mass density of silicon, gv is the valley degeneracy, Λ is the phonon 
mean free path, and the subscript i refers to phonon polarization. Ξ(Q) denotes the 
effective acoustic potential scattering. When the energy spectrum of the carriers is 
isotropic, Ξ(Q) is given by the deformation potential constant ΞDP. In case the 
electron-phonon coupling is complicated by the anisotropy of the energy spectrum, 
like in Si-MOSFET [8], Ξ(Q) contains the deformation potential for both 
longitudinal and transverse modes. For materials like GaAs, Ξ(Q) accounts for both 
deformation and piezoelectric coupling: Ξ2(Q)= ΞDP

2+(eh14)2A(q,qz)/Q2, where h14 is 
the piezoelectric constant, A is the anisotropy factor which is different for 
longitudinal and acoustic phonons [10,11]. The factor C(Q) contains the phonon and 
electron distribution and the momentum transfer from phonons to the electrons [8]. 
ε(q) is the static dielectric screening function and it is [9] 1 + (Qs/q)ξ(q)Fs(q) where 
Qs is the screening wave vector, ξ(q) is unity for q ≤ 2kF and 1-[1 - (2kF/q)2]1/2 for q 
> 2kF (kF is the Fermi wave number) and Fs(q) is the screening form factor that 
accounts for the finite thickness of the 2DHG [9].  

At low temperatures, by allowing several approximation in equation (1.7) and 
assuming that the mean free path Λ is constant in temperature, it can been shown [8] 
that for screened deformation potential coupling Sg~T6 and that for screened 
piezoelectric potential coupling Sg~T4. Experimental data agree with the calculated 
temperature dependence in Si-MOSFET [8] and in AlGaAs/GaAs heterostructures 
[9, 12] 

 
1.5.2 Thermoelectric power in magnetic field 

As with magnetoresistivity, also for thermoelectric power we distinguish 
between low and high field behavior. 

In high magnetic fields, in the limit of µtrB>>1, where µtr=eτt/m* is the transport 
mobility, electronic scattering can be ignored and Sd

xx can be simply estimated as the 
entropy per unit of charge. The entropy, and therefore Sd

xx, is expected to be zero 
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when the Landau levels are completely full and to reach its maximum value when the 
Fermi energy EF lies at the center of the Landau level, which is then half filled. In the 
latter case, the thermopower for a 2DHG is given by [13]: 

 

K
µV

ν
60

νe
ln2k

S Bd
maxxx, ==     (1.8)   

where ν is the Landau level filling factor. 
This model predicts that Sxx has an oscillatory behavior in phase with the 

longitudinal resistivity.  
At lower magnetic fields, the Landau levels are not resolved and the overlap 

between them results in a non-oscillatory background in TEP, on which are 
superimposed the quantum oscillations due to the magnetic quantization of the 
electrons. In this case, it is possible to calculate the oscillatory and the non-
oscillatory part of thermoelectric power [14,15] by extending the Mott formula 
(equation (1.4)) to the case of a low magnetic field perpendicular to the 2DHG. The 
two non-oscillatory part components of thermopower ( ijS ) are [15]: 
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where L0=π2kB

2/3e2, β=ωcτtr=µtB with µt the transport mobility and p is the exponent 
of the energy dependence of the relaxation time. We observe that the equations (1.9a) 
reduce to the zero field relation eq. (1.5) for β=0. 

The quantum oscillations of diffusion thermopower  can be calculated from 
the Fourier components of the resistivity oscillations (

ijS~

ijρ~ ) and from the non-
oscillatory part of the resistivity ( ijρ ) [15]: 
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where α=i(πkB/e)(D’(X)/D(X)), X=2πkBT/hωc, and D’(X) is the derivative of the 
damping factor for the resistivity oscillations D(X): D’(X)=dD(X)/dX. D’(X) is the 
damping factor for diffusion oscillations. The presence of the factor i=√-1 shows that 
the oscillations of ijS~  and ijρ~  have a phase difference of π/2. This feature is a 
peculiarity of thermopower in the diffusive regime at low fields and can be explained 

 28



 The p-type Si/SiGe heterostructure 
____________________________________________________________________ 

 
from eq.(1.1), where the TEP is related to the derivative of conductivity respect to 
the energy. Noting that D’(X) is a negative quantity, if we write xx  ∝ cos((2πrf/B)+ 
φ

ρ~
r), then xxSd~  ∝ sin((2πrf/B)+ φr), where f is the frequency of the fundamental 

component and φr a constant phase factor of the rth harmonic.  
A complete theory of phonon drag in magnetic fields is not yet available. 

Semiclassical theory [16] shows that the thermoelectric power Sg
ij is a diagonal 

tensor independent of the magnetic field: the longitudinal thermopower g
xx should be 

independent of the magnetic field and the phonon drag Nernst-Ettingshausen 
component 

S

g
yx should be zero. Any finite SS yx is therefore expected to be purely due 

to diffusion, although experiments in two-dimensional systems show that Syx seems 
to be dominated by phonon drag as well [15]. There is no theory for phonon drag 
quantum oscillations in low fields, however experiments show that the oscillations of 

g
xxS~ are in phase with the resistivity xxρ~ [17]. 

At low magnetic fields, it is therefore possible to distinguish between phonon 
drag and diffusion thermopower only by looking at the phase difference between 

xxS~ and xxρ~ : a phase difference of π/2 implies diffusion, whereas no phase difference 
means that phonon drag is dominant. However, at higher fields, both diffusion and 
phonon drag oscillations are in phase with the resistivity oscillations and the phase is 
not a good criterium to distinguish between the two mechanisms anymore. 
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Chapter 2 

Experimental Techniques 
 

 

2.1 The sample 

The sample used in Chapters 3-5 is a strained p-type Si/Si0.88Ge0.12  
heterostructure grown by ultra high vacuum/chemical vapor deposition (UHV/CVD) 
system at the Institute of Microelectronical Sciences of the National Research 
Council in Ottawa, Ontario, Canada. The sample consists of a n--type Si substrate, a 
300nm Si buffer layer, a 40nm Si0.88Ge0.12  quantum well, followed by a 12nm spacer 
layer and a 30nm layer of Si doped with Boron on top. The growth sequence and 
further details are described by the growers of the sample in P.T.Coleridge et al. [1].  
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Figure 2.1: Valence band scheme and substrate bias (Vg) in SiGe. 
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The sample has a hole density around 2.4-2.7⋅1015m-2, and at 1K a mobility of 
around 1.5m2/Vs which is strongly dependent on temperature as described in Chapter 
3. We observed that different cooling procedures lead to different densities with the 
same sample: in the data presented in Chapter 4, the density could be changed about 
30% in two different cooling runs. In order to change the density in a more controlled 
way, the sample was backgated, i.e. the bandstructure and therefore the carrier 
density was changed by applying a potential difference between the Si substrate and 
the 2DHG, as shown in Figure (2.1).  

By applying a substrate bias (Vg), the carriers of the 2DHG were depleted: Figure 
(2.2) shows the hole density as a function of the external voltage Vg applied for the 
sample used. 
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Figure 2.2: Carrier density of the 2DHG measured as a function of the bias voltage Vg. 

It was not possible to reach the critical density phc=1.0⋅1015m-2 because this 
would require too high voltages. For densities ph<phc the sample is known to become 
an insulator at zero magnetic field [1]. All the samples used in this thesis exhibit a 
metallic behavior at B=0. 

The carrier density was found to drift at temperatures above 4K. For that reason, 
each set of measurements was taken in the same run, keeping the temperature T<4K. 
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Each time the sample was cooled below 4K, the sample density was measured. No 
shift of density was observed below 4K. 

 

2.2 Sample design and electrical connections 

The sample was etched in a 200 µm wide Hall bar with ten Al contacts alloyed 
(Figure (2.3)). Electrical connections to the sample were done by bonding 10 µm 
gold wire, successively fixed to the contact pads with EPOTEK, a silver filled epoxy 
which makes the bonded contacts mechanically stronger and ensures a good 
electrical contact between the gold wires and the sample. The other end of the gold 
wires were soldered to 100 µm twisted pairs manganin wires. The manganin was 
chosen because of its low thermal conductivity, which minimizes the heat transfer to 
the sample. 
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Figure 2.3: Schematic of the Hall bar and contacts in resistivity measurements (above) and 
thermopower measurements (below) 
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By applying a current between the source (S) and drain (D) in the geometry 
shown in Figure (2.3) (top), the voltage drop in the x direction (Vxx) gives the 
resistivity ρxx, while the voltage Vxy measures ρyx in presence of a magnetic field. 

In thermoelectric power measurements, the excitation is given by a temperature 
gradient ∇T in the longitudinal direction, which thermally creates the measured 
voltages Vxx and Vxy, related to the thermopower Sxx and the Nerst-Ettingshausen Syx 
coefficients. While the resistivity depends on the ratio between the voltage contact 
distance and the width of the mesa, the magnitude of the measured thermopower 
voltage depends only on the separation between the contacts, since in thermopower 
no current is flowing through the sample, but a balancing potential distribution is 
setup across the sample. Therefore the length of the Hall bar has to be maximized (in 
our samples it was 2.8mm) and the thermopower is preferably measured between 
source and drain.  

 
 

2.3 Thermopower measurements in metallic and insulating 
samples 

The thermopower measurements were performed with a 3He system in a 
superconducting magnet (B ≤ 8T). The sample was mounted in vacuum with one end 
soldered with indium to a cold finger. The indium provides a good thermal contact, 
allowing a fast dissipation of the heat. In order to establish a temperature gradient, a 
heater was glued on the “warm” end of the sample with STYCAST epoxy. Figure 
(2.4) shows a scheme of the sample holder.  

The heater is a strain gauge of 350Ω, consisting of a small grid of constantan on 
a polyamide support and its resistivity is almost temperature and magnetic field 
independent. The resistance of the heater was measured at low temperatures and 
therefore the power dissipated on the sample was determined. A second heater was 
glued with STYCAST on the cold finger to change the base temperature of the 
sample. 

The applied voltage across the heater generates a temperature gradient across the 
sample and, therefore a thermopower voltage. The temperature was measured with 
two matched pairs of Philips RuO resistors on the warm and the cold side, with 
resistances RH and RC. The resistors were glued on the back of the sample with a drop 
of STYCAST, which ensure a good thermal contact with the substrate. Both the 
resistors have been calibrated in the temperature range of interest by using a Ge 
thermometer (Lakeshore). In magnetic field, the magnetoresistance of the 
thermometer was measured and corrected in the data processing. After applying a 
heating power, the values of the thermometers RC and ∆R= RC-RH were measured 
with a resistance bridge. A bridge working at 33Hz was used as a null-detector 
measuring directly the resistance RC of the cold thermometer and ∆R, gives a higher 
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precision of the temperature difference ∆T than a separate measurement of RH and RC 
[2], in particular when the temperature gradient is small. 
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Figure 2.4: Scheme of the thermopower setup. 

To verify the thermometry, the thermal conductivity λ of the sample was always 
calculated from the measurement of the temperature gradient, the temperature, the 
applied heating power and the dimension of the sample. The results in Figure (2.5) 
for λ at zero magnetic field and at high magnetic field are identical. Since λ does not 
depend on the magnetic field, this result shows that the temperature measurement 
technique is reliable using the appropriate magnetoresistance corrections. 
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Figure 2.5: Thermal conductivity λ as a function of temperature measured in zero field (■) 
and in high magnetic field (□). 

 
Thermoelectric power was measured using both AC and DC technique. DC 

measurements use an analogue EM nanovoltmeter  (EM Electronics) or a Keithley 
182 nanovoltmeter, both with a resolution of 1nV. Since the signal to noise ratio of 
the EM nanovoltmeter is poor for input impedance higher than 100kΩ, the analogue 
EM nanovoltmeter can only be used for measurements of the sample in the metallic 
state, when the two terminal resistance between the contacts is a few kΩ. For higher 
sample resistance (which can occur in the metal-insulator transition), the 
measurements were performed with the nanovoltmeter K182, which has an input 
impedance in the GΩ range.  

An offset in the DC measurements was observed which was dependent on 
temperature and was related to the bias current of the input of the K182. Normally, 
the nanovoltmeter input amplifier is biased with a current Ib, which in combination 
with the resistance of the sample Rs gives rise to a spurious voltage Vs=RsIb. This 
voltage is added to the measured TEP voltage and can be the same order of 
magnitude or bigger than the TEP voltage [3,4]. The bias current Ib depends on the 
source resistance and, in some nanovoltmeters, it can be as high as 50pA. In the 
Keithley 182 used for thermopower measurements, Ib=15pA for sources with Rs up 
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to 1MΩ and increases to 30pA at higher source impedances. In order to eliminate the 
spurious voltage, at each temperature the signal was measured with and without 
temperature gradient, keeping the average temperature constant: the difference 
between these two values is the TEP signal. This procedure was completely 
automated and the data were acquired by setting the hot and the cold heaters 
alternatively on and off, by averaging at least five times and by increasing the 
number of averages when the TEP voltage was as small as a few nanovolts.  

The spurious voltage arising from the input amplifier bias current can be 
eliminated by measuring the thermopower in AC, providing that the amplifier is AC 
coupled. Here, the AC phase sensitive Lock-in technique has been used in the TEP 
field sweeps. The technique relies on the fact that the thermal response of the sample 
is fast enough to establish a temperature difference when the heater is excited with a 
signal of few Hertz. The voltage is applied to the heater on the hot side with 
alternating sign, avoiding voltage pick-up effects in the thermopower detection. The 
excitation waveform is therefore no sinusoidal [5]. At the same time, the dummy 
heater on the cold finger is excited with the same signal but 90 degrees shifted [5]. 
This procedure prevents the sample from cooling down too much during the period 
that the hot heater is off. However the 90-degree shifted voltage applied to the 
dummy heater contributes only for minor corrections to the thermopower. Since the 
thermometers could not follow a few Hertz signal, the temperature was measured in 
DC conditions before and after each AC magnetic field sweep. 

The thermopower voltage measured in AC is always smaller than the one 
measured in DC. This reduction is due to the detection of only the fundamental 
Fourier component in the applied excitation, the frequency excitation which cannot 
be completely followed by the temperature gradient, and the rms-value measured by 
the Lock-in, which is √2 lower than the real signal. The conversion factor between 
AC and the absolute thermopower has been experimentally determined as a function 
of temperature by comparing AC and DC TEP measurements at zero field. The factor 
has almost no dependence on temperature and in our case is 2.8 at 4Hz. 
 

2.4 Resistivity measurements 

During the thermoelectric power measurements (Chapter 3 and 5), the resistivity 
was always measured with the four terminal technique. The measurements as a 
function of temperature were performed in DC using a battery-powered current 
source and the Keithley K182 nanovoltmeter. The current was set to 10nA for the 
sample in the metallic state and 2nA in the insulating state, to prevent heating. The 
base temperature was changed by using the dummy heater on the cold finger. 

In the resistivity measurements described in Chapter 4, the experiments were 
carried out both in a Bitter magnet (B≤20T) using a home-built plastic dilution 
refrigerator and in a superconducting magnet (B≤8T) using a commercial 

 37 



Chapter 2 
____________________________________________________________________ 

refrigerator. The sample was mounted on a brass support in thermal contact with the 
cold finger. The measurements were performed with a standard Lock-in technique 
with a frequency of 12Hz and a current of 2nA. Preliminary checks verified that the 
carriers were not heated by the applied excitation current. In the experiment 
described in Chapter 4, the carrier density changed with different cooling procedures. 
With this method the density can be changed in a non-controlled way and measured 
at low temperatures, in our case we could perform the experiment at two different 
carrier densities: ph=1.8⋅1015m-2 and 2.4⋅1015m-2. 
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Chapter 3 

 

Thermopower of a p-type Si/Si1-xGex 

heterostructure  

 

 

 

 
Thermopower measurements in zero and low magnetic fields for a p-type 
Si/SiGe heterostructure show that both the longitudinal and transverse 
components of the diffusion thermopower are well described by the Mott 
approach. The zero field measurements deviate from the expected linear 
temperature dependence for a degenerate system, probably as a result of 
the nearby metal-insulator transition. Phonon drag does not show the 
expected approximate T6 dependence at low temperatures appropriate for 
screened, hole-phonon, deformation-potential scattering, but instead an 
approximate T4 dependence is observed. The experimental data on drag 
are in good agreement with numerical calculations by assuming either 
hole-phonon scattering mediated by an unscreened deformation-potential 
interaction, or by assuming a screened piezoelectric plus screened 
deformation-potential coupling. Similar conclusions have been previously 
drawn from the energy loss rates experiments in SiGe hole systems. 
 
 

3.1 Introduction 

 
In general the thermopower of two-dimensional (2D) systems is now well 

understood in terms of phonon drag and diffusion of the carriers. When the system is 
degenerate, the diffusion component, Sd, has a simple linear temperature dependence 
at low temperatures, which partly reflects the entropy of the 2D gas, and partly is 
related to the elastic scattering mechanisms of the electrons [1].  
__________________________ 
Part of this work is published in Phys. Rev. B, 2004 (in press). 
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The phonon drag component, Sg, has a stronger temperature dependence with a 
different power law for different mechanism of electron-phonon (e-p) scattering. 
Systems with screened, piezoelectric e-p scattering of the carriers, e.g. GaAs based 
structures, have been shown to give a T4dependence of drag [2, 3], whereas those 
with only screened deformation-potential (DP) scattering show a T6 dependence [4]. 
In the former case, Sg dominates Sd down to temperatures of the order of 0.3K. 
However, in the latter case Sg becomes small as the temperature is reduced below 
about 1K and this allows the examination of the diffusion component. In previous 
work [4] the only system without piezoelectric scattering for which the thermopower 
has been studied in detail is the electron inversion layer in Si-MOSFETs, which did 
show the expected behavior of both diffusion and drag.  

SiGe hole or electron systems are expected to behave in a similar fashion to Si-
MOSFETs because of the absence of piezoelectricity. However, there are no data on 
electron systems, and because previous thermopower work on a hole system was 
performed at relatively high temperatures (1.5-15K) where it is difficult to 
distinguish the various hole-phonons (h-p) scattering mechanisms, it was 
inconclusive [5].  

The e-p (or h-p) interaction can also be probed by carrier energy loss. The energy 
loss rate depends on the carrier-phonon energy relaxation time, whereas phonon drag 
thermopower reflects the carrier-phonon momentum relaxation time [6, 7]. Thus the 
two types of measurement provide different but complementary ways to investigate 
carrier-phonon scattering. Previous measurements on the energy loss rates in SiGe 
electron systems agree with expectations and are explained theoretically assuming 
screened DP e-p coupling [8]. However, similar work on SiGe hole systems gave 
loss rates inconsistent with this mechanism. Early measurements [9] were analyzed 
in terms of a screened, piezoelectric h-p coupling, but more recent work [10, 11, 12] 

leaned towards unscreened DP coupling (these two mechanisms are difficult to 
distinguish because both give the same power law dependence on T at low 
temperatures), with a small unscreened piezoelectric term contributing at 
temperatures T< 0.5K. The present thermopower measurements throw new light on 
this problem. The measured Sg is consistent with results found from energy loss 
measurements, confirming the same anomalous scattering mechanism.  

The diffusion thermopower has a (semi-classical) magnetic-field dependence 
arising from the Lorentz force on the electrons [1], while phonon drag, like 
resistivity, has essentially no field dependence [6]. When the spacing of the Landau 
levels becomes comparable to the level broadening, both drag and diffusion 
components show an oscillatory behavior. Previous experimental work [13] on a 
system where drag was completely dominant showed that drag oscillations are in 
phase with oscillations in the electrical resistivity, but there is, as yet, no quantitative 
theory. Because most previous work has been done on piezoelectrically active 
systems where drag has been dominant down to low temperatures, diffusion has been 
difficult to probe. However, it has been predicted [1, 14] that at relatively low fields 
diffusion oscillations should be independent of the electron scattering mechanisms 
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and should exhibit a π/2 phase shift compared to drag or resistivity oscillations. This 
effect has only been clearly seen in the 2D electron inversion [15] layer in Si-
MOSFETs which exhibits only DP coupling. Despite the presence of drag in the 
investigated hole system, at sufficiently low temperatures it becomes small enough to 
investigate the behavior of diffusion in detail and the predicted phase difference is 
clearly seen.  

The Si-SiGe is also known to undergo an apparent metal-insulator transition 
(MIT) at low densities in zero magnetic field. Although this latter transition is not 
observable in the present work, our sample is relatively close to the transition on the 
metallic side and showed a strong temperature dependence of the resistivity as a 
result [9]. Fig. (3.1) shows the temperature dependence of the zero field resistivity at 
two different densities (ph=1.9 x 1015m-2 and 2.7 x 1015 m-2) for T < 4K. The 
measurements show a strong increase of the resistivity with temperature, which is 
more pronounced at lower densities.  
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Figure 3.1. The resistivity at zero magnetic field of the p-type Si/SiGe shows a strong 
dependence of temperature at lower densities. The full square indicates the resistivity for a 
density ph=2.7 x 1015 m-2 and the open circles for a lower density ph=1.9 x 1015m-2. 
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In Ref. [9], where the zero field resistivity has been measured over a wider 
temperature range and at six different densities, the appearance of an insulating state 
is observed for densities lower than 1.0 x 1015m-2. The resistivity behavior in the 
metallic state is the result of the competition between the insulating behavior, which 
develops at lower densities, and the strong conductivity increase that dominates at 
lower temperatures [9]. It is interesting to determine whether this system shows any 
other unusual behavior of the zero or low magnetic field thermopower which 
deviates from the expected linear dependence on temperature.  

 
 
 

3.2 Theory 

 
Thermopower of a hole system differs from the one in an electron system mainly 

because of the positive sign of the electric charge. In the limit of weak coupling 
between carriers and phonons, the contributions due to diffusion and drag are 
additive and the total thermopower S is given by S = Sd + Sg.  

The diffusion component Sd of thermopower for degenerate 2DHGs is given by 
Mott's expression (Chapter 1)  

 

p)(1
FEe3

TBk2πdS +=      (1.5)  

 
The first term in Eq.(1.5) is the entropy per unit of charge of the 2DHG and the 

second term reflects the scattering mechanisms.  
The phonon-drag component Sg of thermopower is given by equation (1.7) 

(Chapter 1). By assuming Λ independent of T, it can be shown (see Chapter 1) that Sg 
∝ T6 for screened DP coupling [4] and Sg ∝ T4 for screened piezoelectric coupling 
[2,3]. At low temperatures the screening dielectric function is approximated by the 
expression ε(q) ≈ Qs/q ∝ Qs/T . Consequently (Eq.(1.7)), when screening effects are 
neglected (e.g., ε(q) = 1), the temperature dependence of Sg is T4 for DP coupling and 
T2 for piezoelectric coupling.  

In a magnetic field, the thermoelectric power is given by a non-oscillatory 
background (Eqs (1.9) in Chapter 1): 
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When the Landau level separation hωc exceeds the level broadening ~ h/τq, i.e. at 

ωcτq ~ 1, (where ωc is the cyclotron frequency and τq is the quantum lifetime) an 
oscillatory component appears When the Landau levels are not completely resolved 
and localized states play no role, the oscillations in Sd

ij , say ij
~ , can be evaluated 

using relations based on the Mott approach [1]. The result is given by equations 
(1.10)  (see Chapter 1): 

dS
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where α = i(πkB/e)(D’(rX)/D(rX)) with D(X) being the thermal damping factor for 
resistivity oscillations (D(X) = X/sinhX with X = 2π2kBT/hωc), and D’(X) = dD(X)/dX 
is the thermal damping factor for diffusion thermopower oscillations. As in Chapter 
1, we use the tilde to denote an oscillatory component and a bar to denote the smooth 
background in all quantities.   

Notice that when β = ωcτt ≥ 1, the thermopower oscillations are reduced in 
amplitude by the factor (1 + β2) that appears in the denominators of Eqs. (1.10a) and 
(1.10b). Because the oscillations only begin to appear when ωcτq ~ 1, and given that 
τt≥ τq, then the approximate equivalence of τt and τq that is found in the present 
system [16] is the most favorable case for producing the largest possible oscillations. 
This is in contrast to systems where low-angle electron scattering dominates and τt » 
τq, e.g. most GaAs heterostructures. 

As explained in Chapter 1, there are no theoretical results for the quantum 
oscillations in Sg in low fields, but experiments where drag was dominant13 showed 
that the oscillations in Sg

xx are in phase with those in ρxx. Thus, in principle it is 
possible to distinguish which mechanism is responsible for the thermopower 
oscillations from any phase difference between them and the resistivity oscillations; a 
phase difference of π/2 implies diffusion thermopower, and no phase difference 
means that phonon drag oscillations are dominant. However, at high fields both the 
diffusion and drag oscillations are in phase with the resistivity oscillations and an 
unambiguous identification is not possible by this method. 
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3.3 Experimental technique 

 
As explained in Chapter 2, measurements at two different densities (ph = 1.9 x 

1015m-2 and 2.7 x 1015 m-2) could be performed by applying a substrate bias, but 
unless specifically noted otherwise, we will present data only for the higher density 
sample. At 1K, the mobilities were 1.3m2/Vs and 1.5m2/Vs respectively and had a 
strong temperature dependence [16]. Using an effective mass [16] of 0.3me, the 
Fermi temperatures are estimated to be 18K and 25K for the two samples. Under 
normal conditions we would not have anticipated such a strong mobility variation at 
such low temperatures. This feature has also been observed previously in Si-
MOSFETs [17] and in both cases has been ascribed to the effects of a MIT at a 
somewhat lower density of about ~ 1.0 x 1015m-2.  

Measurements were made in high vacuum in a 3He cryostat which covered the 
range 0.3-4.2K. Zero field data were obtained using DC techniques. With 
thermopower it was necessary to eliminate small temperature-dependent offset 
voltages in the signal [18]. This was done by measuring the voltage across the 
sample with and without establishing a temperature gradient, keeping the average 
temperature of the sample constant. The temperature difference across the sample 
thermometers varied from about 15mK at 0.3K to 150mK at 4K. The source and 
drain contacts, separated by 2.8mm, were used for this purpose. For the 
measurements in magnetic field, a standard ac lock-in technique was used [2] with a 
detection frequency of 4Hz. The ac signal sensitivity under these conditions was 
calibrated by using the dc thermopower at zero field. Sweep data were made for both 
±B and the appropriate combinations of data were used to calculate the required 
coefficients. There was relatively little admixture of the coefficients.  

In order to check the thermometry, the thermal conductivity λ of the n-type Si 
substrate was measured as a function of temperature (Fig. (3.2)). It was found that λ 
= 1.8T2.75±0.02 W/mK provided an excellent fit over the whole temperature range, 
0.27-4.2K, as shown in Fig. (3.2). The deviation of the exponent from the expected 
T3 result for boundary scattering may be due to (weak) phonon scattering from 
impurities. Using the low temperature theoretical limit of λ [2], we estimate the mean 
free path of the phonons, Λ, in the substrate to be ~1.6mm at 1K, assuming 
longitudinal and transverse sound velocities of νl = 8861m/s and νt = 5331m/s, 
respectively.  
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Figure 3.2. Thermal conductivity of the Si substrate as a function of temperature. The line 
represents the fit of the data with the temperature dependence T 2.75. 
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Figure 3.3: The circles are the measured thermopower at ph=2.7 1015m-2 (open square) and 
ph=1.0 1015m-2 (solid circles). The lines correspond to the fit of the TEP for each density 
according with S=aT+bT4 (see text). 
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3.4 Results and discussion 

3.4.1 Thermopower data at zero field 

Thermoelectric power measurements at zero field were performed at two carrier 
densities: ph=1.9·1015m-2 and ph=2.7·1015m-2 and they are reported in Fig. (3.3). 

 Below 1K the thermopower is found to be negative and rapidly increases at 
higher temperatures. This rapid increase is caused by the strong temperature 
dependence of the phonon drag contribution. The negative thermopower is explained 
by the dominating influence of the diffusion contribution, which is negative when the 
scattering term in Eq. (1.4), proportional to p, becomes larger than the value of the 
entropy term (p<-1 in Eq. (1.4)). The thermopower S was fitted using an expression 
of the form S = aT + bTn at low temperatures, with a, b and n parameters to be found. 
The value of n was found to depend on the temperature range of fit, but it was always 
near 4 even with the upper temperature limit as high as 1.5K. In addition, in both 
samples the coefficient a has a relatively small spread of values. The best estimates 
of the coefficient a for the higher and lower density samples are a = -13.0µV/K2 and 
–18.5µV/K2, respectively. Using Eq. (1.4) and the values of EF quoted in Section 3.3, 
we find the scattering parameter p = -2.15±0.10 in both samples. The value of p 
depends on the electron-impurity scattering mechanisms (e.g., impurity and interface 
roughness scattering) and has been calculated for GaAs heterostructures and Si- 
MOSFETs [19], but not yet for SiGe heterostructures. The dependence on p of zero 
field thermopower (equation (1.4)) arises from the power law temperature 
dependence of the hole energy relaxation time τi≈Tp. This commonly assumed 
dependence is usually adequate for a description of transport phenomena. However, 
it is very well possible that near the MIT the hole energy relaxation time has a 
different dependence on temperature. Measurements in magnetic field show that p is 
dependent on temperature (see next Paragraph) and the consequences on the 
temperature behavior of Sg and Sd are analyzed in Paragraph 3.4.3, where also the 
possible mechanisms associated to the T4 behavior of Sg are explained. 
 

 

3.4.2 Thermopower in a magnetic field 
 

Fig. (3.4) and (3.5) show the longitudinal and Hall resistivities, ρxx and ρyx, as a 
function of magnetic field at four different temperatures. 
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Figure 3.4: Measured longitudinal resistivity at four different temperatures: 0.4K, 0.5K, 0.7K, 
and 0.9K. 
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Figure 3.5: Measured Hall resistivity at four different temperatures: 0.4K, 0.5K, 0.7K, and 
0.9K. 
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Figure 3.6: Experimental data on ρxx and ρyx at 0.41K. The bottom curve is yxρ , obtained by 
subtracting the part linear in B from the measured ρyx. The next lowest curve is the measured 
ρxx, including the non-oscillatory background. The two superimposed curves at the top are the 
fundamental harmonic components of the two bottom curves, the larger amplitude curve 
being xx  and the smaller amplitude curve being ρ yx . These two curves are offset vertically 
by +4.5kΩ. Note the upper two curves are in antiphase at low fields, but there is π/2 
difference at high fields. 
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Figure 3.7: Measured longitudinal thermopower, Sxx, (upper panel) and calculated diffusion 
component, Sd

xx, (lower panel) as a function of magnetic field at various temperatures. The 
dashed lines in the lower panel are the semi-classical components, d

xxS
~ . For clarity all but the 

lowest temperature curves in both panels have been shifted by a vertical offset (as given in 
brackets in the upper panel). 
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Figure 3.8: Measured Nernst-Ettingshausen coefficient, Syx, (upper panel) and calculated 
diffusion component, Sd

yx, (lower panel) as a function of magnetic field at various 
temperatures. The dashed lines in the lower panel are the semi-classical components, yx

dS
~ . For 

clarity all but the lowest temperature curves in both panels have been shifted by a vertical 
offset (as given in brackets in the upper panel). 

 50



Thermopower of a p-type Si/Si1-xGex heterostructure 
____________________________________________________________________ 

Both ρxx and ρyx are needed in the analysis of (Equations (1.10)), shown in 
Fig. (3.6). If we examine only the oscillatory components at the fundamental 
frequency, also shown in Fig. (3.6), the oscillations in ρ

d
ijS~

yx are found to be accurately 
π out of phase with those in ρxx at low fields, but there is a gradual shift in phase 
above about 1T such that by 3T there is a phase difference approaching π/2. This 
behavior has been observed previously in GaAs heterostructures and the phase shift 
has been ascribed to the appearance of localized states between the Landau levels 
[20], which primarily affects ρyx. 

The measured longitudinal and transverse thermopower, Sxx and Syx, are shown in 
Figs. (3.7) and (3.8) (upper panels). As we anticipated, the oscillations in Sij at lower 
fields, which we identify with  (see below), are superimposed on a changing non-
oscillatory background due to

d
ijS~

d
ijS , implying τt ~ τq. Notice that d

xxS~  changes sign from 
negative to positive as the field increases showing that at this temperature p< -1 in 
Eq. (1.9a). Close examination of the data also shows that the oscillations in Sxx and 
Syx are in phase with each other, and that both are about π/2 out of phase with the 
oscillations in ρxx, particularly at lower fields. These features are in agreement with 
Eqs. (1.10a) and (1.10b). The π/2 phase difference between xx  and ij  is 
particularly clear when one examines only the fundamental oscillatory components 
of the measured data. 

ρ~ S~

Classical results [6] predict g
yxS  = 0 and g

xxS  to be independent of field. Thus, in 
principle, one needs only calculate d

ijS (B), using Eqs. (1.9a) and (1.9b) to obtain the 
semi-classical backgrounds. Previous experience with a similar calculation for Si-
MOSFETs [15] has shown that the best value of µt to describe ijS  is not necessarily 
the same as for the resistivity and here was left as a free parameter. Therefore each 
data set on xxS  was fitted to Eq. (1.9a) but with an additive constant to take into 
account Sg (T). The relevant equation can be written S = c + d/[1 + (µtB)2] where µt, 
c and d (d= pL0eT/EF where L0=πk2

B/3e2 ) are free parameters with c + d being just 
the zero field value of Sxx.  

The results on µt from this procedure are shown in Fig. (3.9), and those for p are 
shown in Fig. (3.10). They are both temperature dependent. Also shown in Fig. (3.9) 
are data on µt taken from the zero-field mobility and these are also temperature 
dependent. As mentioned above, this latter dependence arises from the MIT in this 
system at somewhat lower hole density [16] which is known to have a significant 
effect on the temperature dependence of the resistance (and hence mobility) on the 
metallic side of the transition to rather high densities. Within the experimental error it 
is possible that the two sets of data on µt coincide as T→0, though the relative 
difference at higher temperatures is becoming larger than we would expect for 
experimental error. A similar behavior has been previously observed in a Si-
MOSFET [15], though in that case the zero field mobility was essentially constant 
because the sample was well away from the MIT. 
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Figure 3.9: The open circles are the transport mobility, µt, obtained from the magnetic field 
dependence of the classical background, xxS , as a function of temperature. The closed 
symbols are also µt but obtained from the resistivity at B = 0. 
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Figure 3.10: The circles are the measured coefficient p = (∂lnτ/∂lnE)EF obtained as a fit 
parameter of the monotonic background of Sxx as a function of temperature. The solid line is a 
phenomenological fit to the experimental data as discussed in the text. 

 
 
There is no theory for g

xxS~ , but since Sg
xx is small at low temperatures and Sg

yx 
should always be zero,  is expected to be small. We ignore it in the first instance 
and compare the measured oscillatory data only with calculations of .  

g
ijS~

d
ijS~

The calculation of  using Eqs. (1.10a) and (1.10b) was done as follows. Data 
on ρ

d
ijS~

ij were available at nominally the same temperatures as Sij. After removing most 
of the non-oscillatory backgrounds, ρxx and ρyx were Fourier transformed and the 
frequency spectra separated into sections, each containing a single harmonic 
component (retaining 3 harmonics at lower temperatures and 2 at higher 
temperatures). Taking the inverse Fourier transforms of each section then produced 
waveforms for the individual harmonics. Using these waveforms and Eqs. (1.10a) 
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and (1.10b) the harmonic components of  were calculated. The phase difference 
of π/2 was introduced by shifting the value of B at each point by the appropriate 
amount; therefore D(X) and D’(X) were calculated at somewhat different fields, and 
in fact usually at somewhat different temperatures because the experimental ρ

d
ijS~

ij and 
Sij were usually not at exactly the same temperature. Finally the harmonics were 
summed and added to d

ijS . The results are shown in Fig. (3.7) and (3.8) (lower 
panels).  

The overall agreement of experiment data on Sxx and the calculations for Sd
xx is 

very good, and somewhat less so for Syx and Sd
yx. Perhaps not surprisingly the 

calculated d
xxS  accurately fit the experimental data. We recall that fits to xxS  were 

used to evaluate p and µt used here (Figs. (3.9), (3.10)), but if we use the values taken 
from the zero field Sd and resistivity, the calculated d

ijS  are not noticeably different. 
The same features are also observed for the available data on the low density sample 
(not shown here). The calculations for  are less convincing. With Si-MOSFETs a 
large, temperature-dependent, anomalous component was observed for 

d
yxS~

yxS , which 
does not seem present here, though the magnitude of yxS  is not well reproduced by 
the present calculations.  

At low temperatures the phases of the calculated oscillations in both components 
are in excellent agreement with the experimental oscillations. The phase difference of 
π/2 between xx  and  is maintained reasonably accurately over the whole field 
range, and is particularly clear when one plots only the fundamental oscillatory 
components of the measured data (Fig. (3.11)). Therefore both 

ρ~ d
ijS~

d
xxS~  and must be 

almost purely diffusive at these low temperatures, which justifies a posteriori the 
neglect of .  

d
yxS~

g
ijS~
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Figure 3.11: Calculated fundamental harmonic component of thermopower is plotted on the 
top with dashed line superimposed to the measured thermopower (solid line, top curve). The 
bottom curve is the resistivity at the same temperature (0.4K). The phase difference of π/2 
predicted by Mott theory is maintained over the whole field range. 

 
 
 
In both components, the calculations predict too much harmonic content at 

higher fields and lower temperatures, which might be due to localized states 
beginning to appear between the Landau levels which would invalidate the model. 
Such effects are not included in the model and the explanation is consistent with the 
phase shift noticed in the oscillations in ρyx at higher fields. The magnitudes of the 
calculated xxS~  are in reasonable agreement with the observations up till 3T where 
the longitudinal resistivity oscillations have an amplitude close to the background 
value. On the other hand, the calculated magnitudes for yx  tend to be too large, by 
about a factor of 2 at lower temperatures and higher fields, probably reflecting the 
appearance of localized states again.  

S~
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3.4.3 Explanation of the temperature behavior of thermopower at zero 

field 

Measurements in magnetic fields show that in Equation (1.5) the coefficient p is 
not a constant (as assumed in in paragraph 3.2, Fig. (3.3)), but it is temperature 
dependent above 0.7K (Fig. (3.10)). If p is constant, the diffusion thermopower is 
expected to be linear (Eq.(1.4)) and the deviation of thermopower from linearity at 
higher temperatures is therefore mainly due to phonon drag thermopower Sg. In the 
present situation, the temperature dependence of p has to be taken into account to 
determine the exact temperature dependence of phonon drag, which is unknown. In 
fact, at temperatures between 0.7K and 1.5K diffusion and phonon drag are 
comparable and only a more detailed analysis of the data allows a separation of the 
two contributions. 

The data in Fig. (3.10) show that p becomes independent of T below 0.7K and 
therefore Sd ∝ T in this limit, as assumed in Paragraph 3.2. Lacking a theory of p as a 
function of T for SiGe heterostructures, we proceeded by fitting to the values of p in 
Fig.(3.10) the phenomenological expression  

 
)CT(1

ppp m
1

0
+

+=      (3.8) 

with p0 + p1 = -2.15 at vanishing T as determined previously (Paragraph 3.2) and p1, 
C and m free parameters. The fit with C = 0.139K-m, m = 3.75 and p1 = -0.66 (shown 
in Fig. (3.10)), gave a good description. Using this expression, Sd was calculated 
from Eq. (1.4) and is plotted in Fig. (3.12). Fig. (3.12) shows that the deviations of S 
from linearity are actually not caused by the non-linearity of Sd but are in fact due to 
Sg. By subtracting the calculated values of Sd from the measured S, we obtained Sg 
over the full temperature range as shown in Fig. (3.13). The observed dependence of 
Sg is approximately T4.  

The drag component of both samples from Eq. (1.7) and the standard material 
parameters for Si were calculated [21]. By assuming only screened DP h-p coupling 
we find Sg ∝ T6.3 (this is the nominal T6 dependence noted in paragraph 3.2) for 0.25 
< T < 1.5 K. The results with Ξ = 4.0eV are shown in Figs. (3.12) and (3.13). The 
calculated Sg is approximately correct at 4.2K, but below 0.5K they are at least two 
orders of magnitude too low to explain the experimental values. This behavior 
deviates from that exhibited by a 2D electron gas in a Si-MOSFET where an 
approximate T6 dependence was seen for Sg and the calculated magnitude was in 
good agreement with experiment [4]. 
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Figure 3.12: The circles are the measured thermopower. The symbol -·- gives Sd assuming p 
is constant at -2.21; -··- gives Sd with p taken from the smooth curve in Figure  (3.10). The 
other curves are Sd + Sg with Sd calculated using the smooth curve in Fig. (3.10) and Sg 
calculated as follows: unscreened DP coupling; ········ screened DP coupling; ----- screened 
piezoelectric plus a screened DP coupling.  
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Figure 3.13: The circles symbols are the phonon drag thermopower. The various curves are 
calculations of Sg: unscreened DP coupling; ········ screened DP coupling; ----- screened 
piezoelectric plus a screened DP coupling.  
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There are two mechanisms that would result in Sg ∝ T4 (approximately) both of 
which have previously been invoked to explain the anomalous behavior of the 
energy-loss rate [9,11,12]. 

Early data by Xie et al. [9] invoked a screened piezoelectric contribution, perhaps 
arising from the partial ordering of the SiGe alloy (see Ref. 10 for a discussion of this 
possibility), while others have suggested that the screening of the DP is ineffective in 
this system [11, 12] which leads to a change in temperature dependence from T6 to T4 
for Sg (Paragraph 3.2). We examine both of these possibilities in detail. 

Using an unscreened DP interaction, with coupling constant of ΞDP = 2.7 eV 
chosen to give the best agreement with experiment, detailed calculations of Sg have 
been made over the whole temperature range. The results are shown in Figs. (3.12) 
and (3.13) for comparison with experiment. The agreement is excellent over the 
whole temperature range.  

Ansaripour et al. [11] have found good agreement with experimental energy-loss 
rate data using an unscreened DP interaction with a coupling constant of ΞDP=3.0 eV. 
Leturcq et al.12 have reported that their energy-loss rate data are best represented by 
the same mechanism with ΞDP =2.8 eV, together with a small unscreened 
piezoelectric contribution, this latter appearing only below about 0.5 K. In our case 
this would correspond to a small term Sg ∝ T2 at low temperatures. We do not see 
such an extra term in the present data, though our precision is relatively low below 
0.5 K because of the dominance of Sd in this region. Clearly the agreement between 
phonon-drag and energy-loss rate results is excellent.  

We have also carried out theoretical calculations using a screened piezoelectric 
h-p coupling with a magnitude varied to give a reasonable fit to the low temperature 
data. The value chosen was h14 = 0.6 x 109 V/m which is 50% the value of that for 
GaAs. We have also included a screened DP h-p interaction (with ΞDP = 4.0 eV) so 
that the high temperature data could also be reproduced. Again Figs. (3.12) and 
(3.13) show the results. In general this model also provides very good agreement 
with the experiments, though perhaps not quite as good as the unscreened DP at low 
temperatures.  

Neither of the above theoretical models is easily understood from a physical 
point of view. In the latter, the values used for the piezoelectric coupling constant, h14 
is uncomfortably high [12]. In the former, it is not at all clear why screening should 
be so ineffective in the SiGe hole system. It is interesting to compare this with Si-
MOSFETs. Previous experimental work on Si-MOSFETs at low temperatures has 
been somewhat contradictory. Phonon drag is consistent with screened DP scattering 
and no observable piezoelectric component. Energy-relaxation measurements by 
Fletcher et al. [4, 22] were inconsistent with a screened DP below ~ 1K, the observed 
loss rate being considerably larger than predicted. More recent energy-loss rate data 
[23] have been analyzed by the combination of unscreened DP and unscreened 
piezoelectric scattering, but the coupling constants were not evaluated. Because 
phonon-drag thermopower and energy-loss rate measure different relaxation rates, 
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momentum in the former case and energy in the latter, the observed discrepancy 
between the well-behaved drag and the anomalous energy-loss rate in Si-MOSFETs 
could imply that they are caused by different physical mechanisms. For example, 
energy-loss rates involving localized excitations would not necessarily be visible in 
phonon drag. With the SiGe system the two relaxation rates are very consistent, 
indicating that the same mechanism is responsible for both and is connected with 
scattering by delocalized excitations, presumably phonons, in both cases.  

In a more phenomenological approach, Sg can be expressed in terms of the 
momentum relaxation time of the carriers, which is directly related to the hole 
mobility due to phonon scattering, µhp by [6]  

 

Tµ
vΛ

S
ihp,

ii=g
i       (3.9) 

 
where v is the sound velocity and the subscript i refers to phonon polarization. 
Assuming all 3 modes contribute equally to h-p scattering and using an average 
sound velocity of ~ 5600m/s, we estimate µhp /µt to be about 10-3 for our samples at 
4.2K, and it decreases to about 10-6 at 1K. The total mobility µt is unaffected by 
phonons. The values are not significantly changed for other h-p scattering 
mechanisms. Clearly, the strong resistivity variation with temperature that is 
observed in these and similar samples is not related to phonon scattering. 
Nevertheless, the fact that the fundamental mechanism responsible for the 
unexpected temperature variation of resistivity is not known leaves open the 
possibility that h-p scattering might also be affected in some way.  

 
 

 

3.5 Conclusions 

The results show that the magnetic field dependence of both the longitudinal and 
transverse thermopower are well understood. The low-field dependence of both the 
oscillatory and non-oscillatory parts are well described by the Mott model and all the 
data agree with the predictions that drag plays no significant role in either 
component.  

On the other hand the zero field thermopower exhibits various features that are 
not understood. The data in a magnetic field prove that the diffusion component at 
zero field deviates from the expected linear temperature dependence. We believe that 
this observation is connected with the nearby metal-insulator transition, though the 
detailed mechanism is not known.  
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The temperature dependence of the phonon drag contribution at zero field is also 
not understood. The dependence does not fully agree with screened deformation-
potential scattering of holes by phonons. Two possible models can explain the data, 
but it is impossible to decide which is correct. The first model used an unscreened 
deformation-potential, hole-phonon interaction and yielded excellent agreement with 
experiment. However, it is not clear why screening should be so ineffective in this 
system. The second model using screened piezoelectric and screened deformation-
potential contributions also provides a reasonable representation of the data. 
However in this model a large piezoelectric interaction is required, and the 
deformation potential coupling constant must be larger than expected. Both models 
are consistent with recent work on energy relaxation of holes in a similar system. 
Possibly the nearby metal-insulator transition plays a role, though this cannot be 
substantiated.  
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Chapter 4 

 

 

Metal-insulator transitions in a Si/SiGe two-

dimensional hole gas in high magnetic fields 

 

 

Si/SiGe heterostructures show several localization phenomena both at zero 
and non-zero magnetic field, which are not fully understood. The next two 
Chapters are dedicated to the analysis of localization phenomena in high 
magnetic fields. 
In Paragraph 4.1, we briefly review experiments and theoretical models 
for the metal and insulator behavior in two dimensions. This section can 
be considered as an introduction to Paragraph 4.2, where we investigate 
the field driven metal-insulator transitions in terms of scaling, and to 
Chapter 5, dealing with thermoelectric power experiments. 
 

 
 

4.1 The metal insulator transition in 2D 

4.1.1 The metallic and the insulating states in a Si/SiGe two dimensional 

hole gas 

By definition at T=0 a system is metallic if the resistivity is finite, whereas it is 
an insulator if the resistivity is infinite. Therefore, a metal-insulator transition 
distinguishes two completely different ground states. At temperatures that are 
experimentally accessible (T>0K), thermal excitations allow even an insulator to 
carry current, therefore the former definition is no longer applicable. In practice, an 
insulator or a metal are distinguished on the basis of the temperature dependence of 

___________________________ 
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the resistivity coefficient ρ: in the metallic state ∂ρ/∂T>0, whereas in the insulating 
phase ∂ρ/∂T<0. 

The zero-field resistivity of a Si/SiGe 2DHG shows ∂ρ/∂T>0 at carrier densities 
ph above a certain critical value phc, and ∂ρ/∂T<0 at densities below phc [1, 2]. 
Qualitatively similar features have been observed in other systems, like p-
GaAs/AlGaAs [3, 4] and Si-MOSFET [5, 6].  

In magnetic field, in addition to the normal integer quantum Hall effect, two new 
but possibly related insulating phases are observed. Namely, in the extreme quantum 
limit (ν<1), when the energy of the lowest Landau level exceeds the Fermi energy, 
and between filling factors ν=1 and ν=2.  

Although there is not a clear understanding of the mechanisms responsible for 
the appearance of an insulating state between two integer quantum states, many 
experimental observations indicate that they are related to the degeneracy and 
crossing of Landau levels [7, 8, 9]. The particular energy level structure at ν=1 with 
the quasi-degeneracy of the NL=0↓ and NL=1↑ [10] can be varied by tilting the 
sample with respect to the magnetic field. Experimental observations show that by 
increasing the degeneracy of these two levels the resistivity of the insulating state 
increases [7, 9]. The origin of the insulating state is attributed to many-body 
interactions in combination with this peculiar energy level structure [7, 9]. At high 
tilt angles or magnetic fields, the Zeeman splitting may exceed the cyclotron spacing, 
as shown in Fig.(4.1) and a ferromagnetically polarized state at ν=2 may occur. 
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Figure 4.1: On the left the cyclotron splitting hωc is larger than the Zeeman splitting ∆Es; the 
scheme on the right represents the situation when ∆Es>hωc
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4.1.2 Two mechanisms for electron localization 

Carrier localization can be explained by the electron-electron (hole-hole) 
interaction and/or the disorder. The first effect has been introduced by Mott, the 
second by Anderson. Mott demonstrated that the repulsion between electrons can 
induce the opening of a gap and lead to an insulating state. Anderson discovered that 
disorder in the electrostatic potential, given by a random impurity distribution, can 
also lead to an insulating state even in a system of non-interacting electrons. In the 
presence of strong disorder, the electronic wave function is exponentially localized 
over a characteristic length ξ. The transition between localized and extended states is 
determined by the level of disorder, or equivalently by a critical value of the energy 
Ec, called mobility edge.  

In the Anderson transition the conductivity in the insulating state vanishes at 
T=0, although the density of states is finite, contrary to the Mott transition where a 
gap appears at the Fermi energy EF. A metal-insulator transition can occur in the 
Anderson model by changing the Fermi energy with respect to Ec.  

It is nowadays clear that the integer quantum Hall effect is an example of 
quantum Hall phase transition in two dimensions and can be described in terms of 
Anderson transition. The scaling theory (see 4.1.3) provides a good framework to 
describe quantum critical phenomena.  

 
 

4.1.3 One-parameter scaling theory 

Scaling theory was formulated originally for a system of non-interacting 
electrons in the presence of disorder. The scaling theory [11] explains the behavior of 
the conductivity as a function of the system size L. The conductivity properties of the 
system are described in terms of a dimensionless conductance G. If the system is 
large (L>lm, where lm is the electron mean free path) the system is in the metallic state 
and G=Ld-2σ, with σ constant. If the system is in the insulating state, σ and G have to 
be exponentially small and G(L)~e-L/ξ. The transition in the intermediate state from 
the metal to the insulating phase is described by the equation for the renormalization 
group: 

 

 β(G)
dlnL

dlnG(L)
=  

 
where β(G) is an unknown function independent on L. The asymptotic limits of this 
equation are 

G→∞: in this case the system behaves as a metal, the disorder has a weak 
influence on the electronic states and β(G)=d-2 
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G→0: the electrons are localized (insulating phase) and the conductance 
decreases exponentially with the size L: G=G0e-L/ξ. 

The flux diagram of the renormalization group equation is shown in Fig. (4.2).  
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Figure 4.2: Flux diagram for the renormalization group equation. 

Important conclusion can be drawn from Fig. (4.2): 
For d≤2 the system evolves always to an insulator (β<0), whatever is the level of 

the disorder (G(L→∞)=0) 
For d>2, the states with G0>Gc (β>0) evolve towards a metallic behavior 

(G(L→∞)=∞), whereas the states with G0<Gc (β<0) evolve towards an insulating 
behavior (G(L→∞)=0). 

Experimentally, the temperature sets the scale of the system. The theory predicts 
that there can be no metallic state in 2D. Subsequently, experimental observation 
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have supported that in fact two-dimensional systems remain metallic in the limit 
T→0 [5]. Finkelstein [12] and Castellani [13] consider the combined role of disorder 
and interaction and showed that a metallic state can be achieved in agreement with 
experiments [5]. As mentioned above, experimental observations in different systems 
confirm indeed the existence of a metal-insulator transition at B=0 for different 
densities. 

 
 

4.1.4 Scaling in the quantum Hall regime: the two parameter theory 

The one-parameter theory of renormalization is not sufficient to explain the 
quantum Hall effect, which is also characterized by the presence of extended states 
and two-parameter scaling is needed, namely σxx and σxy. Most of the experimental 
work on the transitions in quantum Hall effect can be understood in terms of 
quantum critical phenomena. The localization length ξ is a function of magnetic field 
and diverges as the magnetic field B approaches the critical field Bc. The divergence 
is described by the power law: 

χ
cBBξ(B) −−=     (4.1) 

where χ is the localization critical exponent. 
The scaling theory predicts that the resistivity is a function of the ratio L/ξ: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ξ
Lfρ ijij     (4.2) 

At finite temperature, the effective length is given by the inelastic scattering size 
lin, which is determined by the temperature according to lin∝T-1/z, where z is the 
“dynamical exponent”. The scaling exponent is κ=(χz)-1, which is a combination 
between the localization exponent and the dynamical exponent. 

Combining the equations (4.1) and (4.2), we obtain that the resistivity σij(B,T) 
behaves in two dimensions as 

))TB((BgT)(B,ρ κ
cijij

−−=   
where κ=(χz)-1

The scaling theory for the transitions between integer quantum Hall plateaus 
predicts that the half-width for ρxx ∆B=│B-Bc│vanishes upon decreasing the 
temperature like Tκ, whereas the maximum slope of the Hall resistivity between 
neighboring Hall plateaus (∂ρxy(T)/∂B)max diverges with the power law  T-κ. It has 
been shown [14] that at B=Bc if the nth order derivative of the resistivity ρ has 
extrema in Bc, the magnitude of the extrema in all spin-split Landau levels diverges 
like T-nκ. Similar behavior has been experimentally observed in InGaAs/InP 
heterostructures [14] and in the p-type Si/SiGe heterostructures [15] studied here. 
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4.1.5 An overview of the experiments and issues in the scaling in 

quantum Hall regime 

The most complete analysis of the temperature scaling in the quantum Hall 
plateau has been carried out in a fairly low mobility (µ=3.4 m2V-1s-1) InGaAs/InP 
two-dimensional electron gas (the electrons are in InGaAs) [16]. The low mobility 
assures that scattering on short-range potential fluctuations dominates transport 
properties and therefore only IQHE is observed in this structure. The InGaAs/InP 
shows scaling for different resolved Landau levels (0↓, 1↓, and 1↑) in the very wide 
temperature range 0.1K-4.2K with a critical exponent κ=0.42±0.04 [16]. It was also 
shown that the first and the second order derivative of the resistivity ρij scale with the 
same exponent κ=0.42±0.04 [14], confirming the theoretical prediction. One of the 
predictions of scaling theory is that the transition between two adjacent quantum Hall 
plateaus (PP transition) and the transition between the lowest Landau level and the 
insulator at ν<1 (PI transition) can be all described as quantum critical phenomena 
[17]. Experimental observations show that for the conductivity of InGaAs/InP 2DEG 
in the PI transition ∆B∝Tκ with a critical exponent κ=0.46±0.05, and in the PP 
transition (∂σxy(T)/∂B)min∝T-κ with κ=0.43±0.05 and the half-width ∆B∝Tκ has a 
critical exponent κ=0.42±0.05 [18]. The resulting exponents for the conductivity are 
therefore all the same within the experimental error indicating that the PP and PI 
transitions belong to the same universality class [18] 

In order to observe scaling behavior over a wide range of temperatures it is 
essential to have low mobility structures with short-range potential scattering. In this 
respect, the InGaAs/InP is a perfect material for scaling analysis. In fact, despite the 
theoretical predictions of the universality of the scaling behavior, such a behavior has 
been observed only in a few experiments, in InGaAs/InP. However the Si/SiGe is 
also low mobility structure with a short-range potential scattering and it is expected 
to exhibit scaling behavior over a wide range of temperatures, which would 
generalize the experimental observation of scaling beyond a single material.  

Scaling theory predicts a universal value of the temperature exponent κ. 
InGaAs/InP low mobility samples give indeed a universal exponent independent on 
the Landau level index. However, in corresponding low-mobility GaAs/AlGaAs, the 
scaling is much poorer with values of κ, which clearly depend on Landau level index 
at temperatures above 200mK [19]. The difference in the temperature scaling 
behavior has been attributed to the different scattering processes of the 
AlGaAs/GaAs, characterized by long range scattering arising from the remote 
ionized impurities, compared to alloy scattering in InGaAs/InP. The value of κ at 
finite temperatures depends on the temperature dependence of inelastic scattering 
lin∝T-p/2. The universal critical exponent κ is the ratio between two exponents: 
κ=p/2χ, where χ is a universal value, but the value on the inelastic scattering is 
sample dependent, according to the dominant inelastic scattering process. For 
instance, in GaAs/AlGaAs, it was found that κ increases as the mobility of the 
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sample decreases [20]. Other experiments [21] tried to measure directly the 
localization length exponent χ using samples of different sizes.  

A great deal of experimental work carried out to prove the validity of the scaling 
theory shows that, despite the theoretical predictions of the universality of the scaling 
behavior, such a behavior has been observed only in a few experiments. 

In this chapter, we report magnetotransport measurements of a low mobility 
strained p-type Si0.88Ge0.12/Si heterostructure [4], which has the same short range 
scattering potential as In0.53Ga0.47As/InP, but a completely different energy level 
structure. This sample shows not only a Hall-insulator transition in the quantum limit 
(ν<1) but also an insulating phase around ν=1.5, not seen in In0.53Ga0.47As/InP. The 
scaling theory is used to understand if the transition at ν=1.5 is driven by similar 
mechanism as the transition at ν<1. 

 

4.2 Scaling of the magnetic field induced metal-insulator 

transitions 

 
     Si/SiGe two-dimensional hole gases exhibit a re-entrant metal-insulator 

transition at ν=1.5, where an insulating phase appears between two integer quantum 
hall states. In Fig. (4.3a) the longitudinal magnetoresistivity is plotted at different 
temperatures. There are three values of the field (Bc', Bc, and Bc") where the 
resistivity does not depend on temperature: these three fields, called critical fields, 
separate the Hall states (B< Bc', Bc<B< Bc") from the insulating phases (Bc'<B<Bc, 
B>Bc"). In order to study the temperature scaling of the two insulating transitions, we 
converted the ρxx and ρxy into the longitudinal (σxx) and the Hall (σxy) conductivity, 
through inversion of the transport matrix. Fig. (4.3b) shows σxx calculated for 
ph=2.42⋅1015m-2 between filling factors 2 and 1: σxx vanishes in both the insulating 
and in the Hall states and reaches its maximum value at the critical field Bc and Bc'. 
The analysis of the conductivity, which is always finite in the metal-insulator 
transition, proves to be more accurate than the analysis of the resistance, which 
diverges in the insulating state. This fact might explain the different values of the 
exponents reported in earlier scaling analysis [22, 23], obtained by overlapping the 
resistance curves. In this paper, we analyze the conductivity measurements over a 
wide temperature range for both the longitudinal and the Hall conductivity in terms 
of scaling and we obtain the same critical exponent for the two Hall insulating 
transitions. 
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Figure 4.3.(a) Longitudinal magnetoresistivity at different temperatures (0.3K<T<1.2K) for a 
carrier density ph=1.76⋅1015m-2. The inset shows σxx as a function of σxy and demonstrates 
how the conductivity enters and leaves the insulating state at v=1.5 for different temperatures. 
(b) The longitudinal conductivity σxx for the insulator transition at filling v=1.5 in the 
temperature range 70mK-850mK (ph=2.42⋅1015m-2). 

 
 
In our measurements, different cooling procedures allow experiments at different 

carrier density (ph=1.76⋅1015m-2 and ph=2.42⋅1015m-2) with the same sample. Fig.(1a) 
shows the magnetoresistance curves for ph=1.76⋅1015m-2 in magnetic field up to 12T 
and in the temperature range 300mK-1.2K. The flow diagram in the inset of Fig.(1a) 
shows the transition from ν=2 to insulating state where σxx→0 (as the field 
increases), the insulating state goes to a Hall state at ν=1 at higher fields, and, in the 
end, there is the insulating transition in the quantum limit (ν<1).  

The scaling theory predicts that the width of the conductivity ∆B (defined as in 
Fig.(4.3b)) vanishes with temperature with a power law Tκ. Moreover, the same 
theory predicts that the slope of the Hall conductivity (∂σxy/∂B)B=Bc diverges at T=0 
with the same critical exponent. In our measurements, the analysis of the longitudinal 
conductivity σxx allows to calculate the high field halfwidth of the conductivity 
(∆B/2) for the IP transition centered around the critical field Bc, which is not 
influenced by the proximity of the critical field Bc' of the PI transition (Fig.(4.3b)).  
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Figure 4.4. The temperature scaling of 1/∆B, (∂σxy/∂B)B=Bc, and square root of (∂2σxx/∂B2)B=Bc 

in a Si0.88Ge0.12/Si heterostructure for both the high field plateau-insulator (PI) at ν<1 and the 
reentrant insulator-plateau (IP) transitions at ν=1.5. The solid symbols are data taken for a 
hole density ph=1.76⋅1015m-2, while the open symbols are measurements at ph=2.42⋅1015m-2. 
The slope of the straight line gives critical exponent: κ=0.45±0.05. 

 
 
 
 
The temperature dependence of the width of the conductivity ∆B is the same for 

IP and PI transitions and the critical exponent κ in both the cases κ=0.45±0.05 
(Fig.(4.4)). The value of the critical exponent κ in the IP transition is κ=0.45±0.05 for 
both the densities. The analysis of the slope of the Hall conductivity (∂σxy/∂B)B=Bc for 
ph=2.42⋅1015m-2 (Fig.(2)) shows that (∂σxy/∂B)B=Bc∝T-κ, with κ=0.45±0.05. 

 According to the scaling theory, if the width of the conductivity ∆B exhibits 
a scaling behavior in temperature with an exponent κ, the second derivative 
calculated at the critical field should diverge approaching T=0 with the power law   
T-2κ. In our measurements, the calculation of the second derivative of the longitudinal 
conductivity (∂2σxx/∂B2)B=Bc∝T-2κfor both the PI and IP transitions confirms the value 
of the critical exponent already found for ∆B: κ=0.45±0.05. Fig. (4.4) summarizes all 
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the results for the exponents of different transitions and densities, obtained by the 
analysis of experimental curves at different temperatures. It can be seen that the 
transition to the insulating state and the reentrant insulating phase transition all 
exhibit the same scaling behavior, with the same critical exponent: κ =0.45±0.05. 
The critical exponents of the σxx width, the slope of σxy and the second derivative of 
σxx are the same and, within the experimental error, in agreement with the critical 
exponents previously observed in InGaAs/InP heterostructures [14, 16, 18]. 

 In summary, through an accurate scaling analysis over a wide temperature 
region, we observed scaling properties for both the reentrant Hall insulator transition 
at ν=1.5 and the high field insulating phase transition, at two different densities.  Our 
analysis is based not only on the value of σxx width but also on the first and second 
derivatives of the conductivity. Since the two transitions show the same scaling 
behavior, with the same critical exponent, they belong to the same universality class. 
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Chapter 5 
 

Diffusion thermopower of a two-dimensional hole 
gas in SiGe in a quantum Hall insulating state 
 
 

 

 
 

The origin of the insulating state occurring between the first two Landau 
levels and investigated in Chapter 4 is still controversial. In this Chapter, 
we measure resistivity and thermoelectric power of the insulating state at 
filling factor ν=1.5. Both show a re-entrant metal-insulator transition at 
filling factor ν = 1.5, but with strikingly different behavior of the two 
coefficients. As the temperature is decreased in the insulating state, the 
resistivity diverges exponentially while the thermopower decreases 
rapidly, suggesting that the insulating state is due to the presence of a 
mobility edge rather than a gap at the Fermi energy. 
 
 
 
 
 
 

5.1 Introduction 

 
In a perpendicular magnetic field, two-dimensional systems characterized by 

short-range carrier scattering frequently exhibit a re-entrant metal-insulator transition 
(MIT) where an insulating phase appears between two integer quantum Hall states 
[1–3]. Such insulating states have been observed in p-type Si/SiGe heterostructures 
[1] and in Si metal-oxide semiconductor field-effect transistors (Si-MOSFETs) [4], 
while in GaAs heterostructures, characterized by long-range scattering, an insulating 
phase appears only between fractional Hall states [5]. 

____________________________ 
Part of this work is published in: Phys. Rev. Lett. 90, 176601 (2003). 
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In p-type Si/SiGe, this re-entrant MIT at a filling factor ν = 1.5 is followed at 
higher field by a second MIT, which occurs in the quantum Hall limit (ν < 1) where 
the Fermi energy, EF, lies within the lowest Landau level [1–3, 6, 7]. The origin of 
the MIT at ν = 1.5, i.e., an insulating phase in the presence of extended states below 
EF, is not understood. Recently, a scaling analysis of the magnetoconductivity 
measurements [1, 2, 6] demonstrated that the MITs at ν = 1.5 and in the quantum 
limit both scale with the same critical exponent (see also Chapter 4), supporting the 
idea that both MITs are driven by the same mechanism. However, although scaling is 
a signature of a phase transition, it does not reveal the origin of the insulating state at 
ν = 1.5.  

In this chapter, we report thermoelectric power (TEP) measurements on a two-
dimensional hole gas in a Si/SiGe heterostructure as a function of temperature and 
magnetic field near the field-induced insulating state at ν = 1.5. At low temperatures, 
TEP is mainly due to diffusion which probes the energy distribution of the carriers. 
Diffusion TEP is expected to provide more information on the behavior of the 
density of states around EF. In particular, TEP is expected to answer the question 
whether the field-driven insulating phase is the result of an opening of an energy gap 
at EF or if it is due to the presence of a disorder-induced mobility gap. In both cases, 
on decreasing the temperature the resistivity diverges in the insulating state, while 
the TEP is expected to diverge in the former [8] and to vanish or approach a constant 
value in the latter [9]. Therefore TEP can distinguish between the two possibilities. 
In our measurements, TEP does not diverge but tends to a constant at ν = 1.5 
showing that the insulating phase is due to a mobility gap. This observation may be 
related to the peculiar many-level structure of a p-type Si/SiGe heterostructure in a 
magnetic field, when the Zeeman splitting may exceed the cyclotron energy and the 
state at ν = 2 therefore becomes ferromagnetically polarized. The degeneracy and 
crossing of Landau levels has been indicated as one of the reasons for the appearance 
of the insulating state at ν = 1.5 [1, 3, 10]. The present experiments were performed 
on a strained, asymmetrically-doped Si/Si0.88Ge0.12 quantum well in which the carriers 
were confined in a triangular potential well (the sample used in this chapter was 
fabricated from the same wafer as CVD191 in Ref.[11]). By applying a substrate 
bias, measurements could be made at two different densities: p = 1.9 x 1015m-2 and 
p= 2.4 x 1015 m-2. The mobilities were strongly temperature dependent [12] and at 1K 
they were 1.3 and 1.5 m2/Vs, respectively. Conductivity and TEP measurements at 
zero field show that at the sample densities used here there is no sign of localization 
(seen for p < 1.0 x 1015 m-2 [11]) and metallic conductivity prevails down to the 
lowest temperature.  
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Figure 5.1: The thermopower, Sxx, as a function of magnetic field at temperatures of 0.32, 
0.43, 0.50, 0.63, 0.76, 0.89, 1.07 and 1.23 K. The dashed line is Sxx at the highest temperature 
(1.23K). The insert shows resistivity measurements (solid line) at 0.3, 0.4, 0.5, 0.6 and 0.8 K, 
and thermopower (dotted line which is a smoothed version of the curve of Sxx at 0.3K shown 
in the main panel) as a function of magnetic field around ν = 1.5. The sample density is p = 
1.9 x 1015 m-2. 

 

5.2 Experimental setup 

 
The TEP was measured between two contacts diffused into the ends of the Hall 

bar which also served as current contacts for resistivity measurements. 
Measurements of TEP in the insulating state as a function of temperature were made 
with a Keithley 182 dc voltmeter which provides a good compromise between input 
impedance, input bias current and noise. In order to eliminate any spurious voltage 
caused by the bias current, the signal was measured both with and without 
temperature gradient, keeping the average temperature of the sample constant [13, 
14]. Data in swept magnetic fields were obtained with an ac lock-in technique 
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detecting at 4 Hz [15]. The factor used to convert the ac data to absolute 
thermopower was determined by comparing ac and dc measurements at zero field. 
An analysis of both the temperature dependence of TEP at zero field and the 
temperature and field dependence of the quantum oscillations in the TEP at low 
fields [12] shows that phonon drag becomes negligible below 0.7K leaving diffusion 
as the dominant driving mechanism at low temperatures. In this chapter we focus on 
the behavior at higher fields, especially in the field-induced insulating phase around 
ν= 1.5.     

 

 

5.3 Magnetothermopower measurements     

 
Figure (5.1) shows the TEP, Sxx, as a function of magnetic field at various fixed 

temperatures. In general, previous work on the TEP of many systems in the integer 
quantum Hall regime leads us to expect that Sxx will vanish at integer filling factors 
and show maxima at half-integer filling factors, analogous to the resistivity [16]. This 
pattern is followed in the present sample except around ν = 1.5. Here Sxx shows a 
double peak structure at low temperatures and, at ν = 1.5, its magnitude decreases to 
very small values at the lowest temperatures. For comparison, at the same point the 
resistivity, ρxx, increases as the temperature decreases indicating an insulating phase.  

Figure (5.2) shows the detailed temperature dependences of Sxx and ρxx at ν = 1.5 
for two different densities: p = 1.9 x 1015 m-2 and p = 2.4 x 1015 m-2. The graph 
clearly shows that in the insulating state the resistivity diverges at low temperatures, 
while the TEP appears to vanish. The low temperature peaks in Sxx around ν = 1.5 
shown in Fig. (1) at approximately 4.7T and 6.2T occur at ν = 1.25 and 1.75 and 
correspond to the “critical magnetic fields”, where ρxx is temperature-independent. 
They separate the metallic phases (ν < 1.25 and ν > 1.75) from the insulating phase 
(1.25 < ν < 1.75) [6]. In the resistivity shown in the inset to Fig. (5.1), this is 
particularly clear at ν = 1.25, but at ν = 1.75 it is blurred by the proximity of a 
separate integer quantum Hall effect transition [1, 6] and a sharp crossing point can 
be resolved only at lower temperatures. Thus, the transition from the metal to the 
insulating state is directly seen in Sxx, but in a completely different manner from ρxx.  
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Figure 5.2: The temperature dependence of the resistivity (open symbols) and thermopower 
(solid symbols) at ν = 1.5 for two different densities: p = 1.9 x 1015 m-2 (ٱ) and p = 2.4 x 1015 
m-2 (○). 

 

To illustrate the difference in behavior between TEP in the various states, in Fig. 
(5.3) we plot Sxx as a function of temperature for four different filling factors, ν = 2.5 
(metallic), ν = 1.25 and 1.75 (critical), and ν = 1.5 (insulating). At low temperatures 
Sxx clearly decreases more rapidly in the insulating state than in the other states. At 
higher temperatures the rise of Sxx is undoubtedly due to phonon drag, Sg

xx. However, 
here we concentrate on the behavior of Sxx at low temperatures where diffusion 
dominates.  

For metallic samples, when the cyclotron energy hωc exceeds the broadening of 
the Landau level Γ (low disorder), Sd

xx is directly related to the entropy of the 
partially filled Landau levels. When the spin splitting is resolved, Sd

xx is determined 
by the entropy S = kBlnW where W = N!/(fN)!(N - fN)! with N the number of states in 
a spin-resolved level and f the fractional filling of the last level. The total charge is 
Nνe and, e.g., at half filling where kBlnW = kBN ln2, the TEP is maximum and is 
given by the entropy per unit of charge, i.e., Sd

xx = kBln2/νe [17].  
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Figure 5.3: Temperature dependence of Sxx in the insulating phase at ν = 1.5 (■), in the critical 
states at ν = 1.75 (∆) and ν = 1.25 (○), and in the metal state at ν = 2.5 (◊). The dashed line is 
the theoretical entropy limit at ν = 2.5. 

 

When kBT < Γ the expected values become a function of kBT/Γ and decrease with 
decreasing temperature [18]. The measured quantum mobility of this sample at low 
magnetic fields is found to be 1.4 m2/Vs at 2.4 x 1015 m-2 [11], giving kBT = Γ at T ≈ 
1.65 K, and reducing the calculated values of the maxima of Sxx by a factor of about 
0.7 at 0.3 K. However, Γ is known to increase as B1/2 at high fields so that this 
reduction factor will be an underestimate. On the basis of these arguments we 
estimate Sxx at ν = 1.25, 1.75 and 2.5 to be 27, 19 and 17 µV/K respectively, which 
are consistent with the observed values in Fig. (5.3) of about 10 µV/K at 0.3K. The 
previous argument is not appropriate for the insulating phase at ν = 1.5, and indeed 
the experimental value of Sxx at low temperature is 2-3 µV/K, an order of magnitude 
smaller than the estimated value of Sxx = 28 µV/K based on the entropy result.  
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Figure 5.4: The thermopower measured at ν = 1.5 as a function of temperature for two 
different densities: p = 1.9x1015m-2 (■) and p = 2.4 x 1015m-2 (○). The dotted line is the fit   
Sxx = αT1/3 + ηT4 (Mott VRH), and the solid line is the fit Sxx = γ + ηT4 (Efros-Shklovskii 
VRH). Resistivity measurements are shown for the same two densities (same symbols as for 
TEP) in the insert. The solid line is the fit to the Efros- Shklovskii model and the dotted line 
the fit to the Mott model. 

5.4 The TEP in the insulating state 

Previous work has been inconclusive about whether the MIT at ν = 1.5 should be 
attributed to an opening of a many body gap at EF, or to EF being located in localized 
states below a mobility edge. At zero magnetic field it is known that Sd can 
distinguish these two cases, and we believe that the results remain valid in arbitrary 
fields as long as ρxx » ρyx as here [1]. When EF is located in a gap, Sd ~ T -1 and Sd 
should therefore diverge at low temperatures. Such behavior has previously been 
seen in p-type GaAs heterostructures [19, 20] and in Pd and Pd-Au films [9]. 
However, our experimental results clearly show that Sxx becomes very small as T→0, 
contrary to the expected behavior due to the opening of a gap.  

 81  



Chapter 5 
____________________________________________________________________ 

On the other hand, a finite Sd at low temperatures is expected when carriers 
conduct by hopping between localized states below a mobility edge. For variable 
range hopping (VRH) theory predicts an activated behavior of the resistivity ρxx (T) = 
ρc exp(T0/T )n, where n = 1/3 if the density of states is finite at EF (Mott VRH) and n 
= 1/2 if a soft Coulomb gap opens up at EF (Efros- Shklovskii VRH) [21]. The 
corresponding results for TEP are Sd ~ T1/3 for the Mott model and Sd becomes 
constant with a Coulomb gap [9,22].  

We now focus on a more detailed analysis of our data in the insulating state. In 
Fig. (4) we show Sxx as a function of temperature at ν = 1.5 for the same two densities 
as in Fig. (3). The temperature dependence can be described by either Sxx = αT1/3 + 
ηT4 (Mott VRH shown as the dotted line in Fig. (4)) or Sxx = γ +ηT4 (Efros-Shklovskii 
VRH, solid line in Fig. (5.4)), with α = 18 µV/K4/3 and γ = 2.5 µV/K.  

The term T4, with η = 35 µV/K5, describes the residual contribution of the 
phonon drag, dominant at higher temperatures (T > 0.6 K). At low temperatures 
when carriers are localized, theory predicts Sg to be zero because drag requires the 
conservation of crystal momentum which cannot hold for electron scattering by 
phonons between localized states [19, 22]. Andreev et al. [23] recently reported that 
Sg vanished in a bulk doped Ge sample at zero field in the hopping regime. 
Therefore, regardless of the particular model for the MIT in the present case, we 
might have anticipated a rapid drop in Sg

xx in the insulating phase as the temperature 
decreases. Drag would still be possible via carriers excited above the mobility gap 
but this would presumably show activated behavior. We see no strong evidence for 
this, the weaker T4 dependence apparently being followed to the lowest temperatures.  

In the localization regime, the calculated magnitudes of Sd [9] for both the Efros-
Shklovskii (γ) and Mott (α) VRH models depend linearly on the asymmetry of the 
density of states, D(E) at EF, i.e., on the factor [∂lnD(E)/∂E]EF. Using Γ as the energy 
scale, we have [∂lnD(E)/∂E]EF ~ 1/Γ which leads to the estimates α=32µV/K4/3 and γ 
= 2.2 µV/K in keeping with the experimental values of 18 µV/K4/3 and 2.5 µV/K, 
respectively.  

In conclusion, we have measured the thermopower of a p-type Si/SiGe 
heterostructure as a function of magnetic field and temperature. The thermopower 
reflects the metal-insulator transition previously probed by magnetoresistance 
measurements [1–3, 5–7] but in a totally different manner. The combined data on the 
resistivity and thermopower at ν = 1.5 suggest that the insulating state is not due to 
an opening of an energy gap at the Fermi energy, but it is caused by a mobility gap.  

 
 

 

 82



Diffusion thermopower of a 2DHG in SiGe in a quantum Hall insulating state 
____________________________________________________________________  

5.5 References 

[1] P.T. Coleridge, A.S. Sachrajda, P. Zawadski, R.L. Williams, and H. Lafointaine, 
Solid State Commun. 102, 755 (1997); P.T. Coleridge, P. Zawadski, A.S. Sachrajda, 
R.L. Williams, Y. Feng, Physica 6E, 268 (2000).  
[2] R.B. Dunford et al., J.Phys.: Condens. Matter 9, 1565 (1997); R.B. Dunford, N. 
Griffin, M. Pepper, C.J. Emeleus, P.J. Phillips, and T.E. Whall, Physica (Amsterdam) 
6E, 297 (2000). 
[3] M.R. Sakr, M. Rahimi, S.V. Kravchenko, P.T. Coleridge, R.L. Williams, and J. 
Lapointe, Phys. Rev. B 64, 161308(R) (2001). 
[4] S.V. Kravchenko, J.A.A.J. Perenboom, and V.M. Pudalov, Phys. Rev. B 44, 
13513 (1985).  
[5] T. Sajoto, Y.P. Li, L.W. Engel, D.C. Tsui, and M. Shayegan, Phys. Rev. Lett. 70, 
2321 (1993). 
[6] C. Possanzini, L. Ponomarenko, D. de Lang, A. de Visser, S.M. Olsthoorn, R. 
Fletcher, Y. Feng, P.T. Coleridge, R.L. Williams and J.C. Maan, Physica 12E, 600 
(2002). 
[7] M. Hilke, D. Shahar, S.H. Song, D.C. Tsui, Y.H. Xie, and D. Monroe, Nature 
395, 675 (1998). 
[8] B.L. Gallagher and P.N. Butcher, in Handbook on Semiconductors, edited by P.T. 
Landsberg (Elsevier, Amsterdam, 1992), vol.1, p.817. 
[9] M.J. Burns and P.M. Chaikin, Phys. Rev. B 27, 5924 (1983); M.J. Burns, Phys. 
Rev. B 40, 5473 (1989). 
[10] F.F. Fang, P.J. Wang, B.S. Meyerson, J.J. Nocera, and K.E. Ismail, Surf. Sci. 
263, 175 (1992). 
[11] P.T. Coleridge, R.L. Williams, Y. Feng and P. Zawadzki, Phys. Rev. B 56, 
R12764 (1997). 
[12] C. Possanzini, R. Fletcher, M. Tsaousidou, P.T. Coleridge, R.L. Williams, Y. 
Feng,  and J.C. Maan, conditionally accepted for publication in Phys. Rev. B. 
[13] R. Fletcher, V.M. Pudalov, A.D.B. Radcliffe, and C. Possanzini, Semicond. Sci. 
and Technol. 16, 386 (2001). 
[14] R. Fletcher, P.T. Coleridge, and Y. Feng, Phys. Rev. B 52, 2823 (1995). 
[15] B. Tieke, R. Fletcher, U. Zeitler, M. Henini, J.C. Maan, Phys. Rev. B 58, 2017 
(1998). 
[16] In general EF is always located in localized states at integer filling factors. 
However, although Sd and Sg do appear to go to zero at these points, because ρxx » ρyx 
the situation is not the same as in the usual case at zero magnetic field or in the 
present case. 
[17] H. Oji, Phy. Rev. B 29, 3148 (1984). 
[18] W. Zawadski and R. Lassnig, Surf. Sci. 142, 225 (1984). 
[19] V. Bayot, X. Ying, M.B. Santos, and M. Shayegan, Europhys. Lett. 25, 613 
(1994). 

 83  



Chapter 5 
____________________________________________________________________ 

[20] V. Bayot, E. Grivei, H.C. Manoharan, X. Ying, and M. Shayegan, Phy.Rev.B 
52, R8621 (1995). 
[21] D.G. Polyakov and B.I. Shklovskii, Phys. Rev. B 48, 11167 (1993); Phys. Rev. 
Lett. 70, 3796 (1993). 
[22] I.P. Zvyagin in Hopping transport in Solids edited by M. Pollak and B. 
Shklovskii (North-Holland, Amsterdam, 1991). 
[23] A.G. Andreev, A.G. Zabrodskii, S.V. Egorov, I.P. Zvyagin, Sov. Phys. 
Semiconductors, 31, 1008 (1997). 
 

 84



 

Chapter 6 

 

Probing the two-dimensional gas with short non-
equilibrium phonon pulses 
 

 

Thermoelectric power measurements provide information about the 
thermodynamic of the electron system (diffusion thermopower) and about 
the electron-phonon interactions (phonon drag), which are impossible to 
detect with resistivity measurements characterized by impurity scattering. 
In thermopower experiments, a constant heating is applied at one side of 
the sample and the response of the carriers in this fixed thermal gradient is 
measured as a function of temperature and magnetic field. In this Chapter, 
we explore the possibility to extend the thermopower technique to probe 
the response of the two-dimensional electron gas (2DEG) to a short-pulsed 
heat excitation.  

 

6.1 Introduction 

The scope of this experiment is to detect how local is the electron-phonon 
coupling and, in the fractional quantum Hall regime, the phonon-“Composite 
Fermions” interaction. Previous experiments on our GaAs/GaAlAs heterostructure 
demonstrate that the sample shows fractional quantum Hall effect [1] and that the 
phonon mean free path is limited by sample boundary scattering [1], which means 
that phonons propagate ballistically through the substrate.  

When a heat pulse is produced by a source (heater), the heat propagates in the 
solid along preferential channels [2]. This effect is called “phonon focusing” and has 
been studied in the past in different substrates [2, 3]. The generation of a short burst 
of non-equilibrium phonons at one surface of the substrate, the propagation along the 
crystal and the detection on the other surface of the substrate has been observed in 
the past in different substrates, such as quartz, Ge, LiF, and GaAs (a good review is 
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given in Ref. [2] and [3] and references therein). In these experiments, the phonons 
were detected with a bolometer (typically a superconductive film) on the surface 
opposite to the generator. Fig. (6.1) (modified from Ref. [2]) shows a typical setup 
for pulsed phonon excitation. Heat pulses are generated by exciting with a focused 
laser beam a metal film deposited on the surface. On the opposite side of the crystal a 
strip of aluminum (detector) is evaporated. The phonon pulses, created by the heater, 
are transmitted in the medium and propagate with a velocity, which in an anisotropic 
solid is different for each of the three phonon polarizations (longitudinal, fast and 
slow transversal). The phonon modes can be resolved on basis of their different 
“time-of-flight”, if the detector has a small heat capacitance and therefore a fast 
response-time (Fig. 6.1). Phonons that do not propagate ballistically but are scattered 
in the bulk of the substrate are expected to arrive after the “time-of-flight” to the 
detector giving a long diffusive tail in the signal. 

 

 

Figure 6.1: Sample geometry used in the first phonon imaging experiment (left) and 
bolometer signal (right) showing the arrival of longitudinal (L), fast (FT) and slow (ST) 
transversal phonons. Picture adapted from Ref. [2]. 

 
Beams of non-equilibrium phonons have been used to study the absorption of 

ballistic phonons in two-dimensional electron systems in fractional and integer 
quantum Hall regime [4,5]. In these experiments the interaction between phonons 
and the 2DEG has been deduced by the changes in resistivity of the 2DEG due to the 
absorption of phonons by the 2DEG: 

 In this chapter, we explore the possibility of detecting the response of a 2DEG to 
a pulsed non-equilibrium phonon excitation. In order to detect time resolved the 
response of the electrons, the phonon wave should not warm up the entire 2DEG 
(like in Ref. [4, 5]), it has to propagate as a single wave along the sample and its 
width should be less than the smallest contact distance available (1mm which 
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corresponds in GaAs to around 200ns). In these conditions, it is possible to measure 
the electronic response between two longitudinal contacts with time resolved 
measurements before, during, and after the passage of the pulse (Fig. (6.2)).  

In order to be able to probe the local interaction between the electrons of the 
2DEG and the phonons of the three-dimensional substrate by time resolved 
measurements, the signal between two contacts has to be measured. Therefore the 
spatial width of the pulse has to be much less than the separation between two 
adjacent contacts, which is 1mm (Fig. (6.2)). Considering the longitudinal sound 
velocity in GaAs (5000m/s), the phonon pulse should be shorter than 200ns.   
 

6.2 Experimental technique 

6.2.1 The sample 

The 2DEG-sample was a GaAs/Ga1-xAlxAs heterostructure MBE-grown at the 
University of Nottingham and etched in a mesa on a semi-insulating GaAs substrate. 
The length and the width of the 2DEG channel are 4mm and 300µm, respectively. 
The substrate is 4mm wide and 0.4mm thick. The distance between two adjacent 
contacts of the mesa is 1mm and the distance between the two more far apart 
contacts is 4mm. Figure (6.2) shows a schematic view of the sample and the mesa. 

 
 

 

 

 

 

 

Silver paint 

Heater 
(Constantan) 

Mesa  Heater contact pads 
(Au) 
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Heat pulse 

4 mm 
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Figure 6.2: Schematic representation of the sample for pulsed thermopower experiments 
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In order to be able to transfer a short pulse from the heater to the substrate, it is 
necessary to have a very good contact between them. For this reason a thin heater of 
constantan was evaporated on the edge of the sample (Fig. (6.2)). During the 
evaporation, the thickness of the evaporated layer was measured as well as the 
resistance of the film. The evaporation was stopped when the constantan film had a 
resistance of 55Ω, corresponding to a nominal resistance of 50Ω at low temperatures, 
which provides a good impedance matching to the electrical circuit (pulse generator 
and coaxial cables) with 50Ω characteristic impedance. In order to avoid diffusion of 
constantan into the GaAs with the consequent increase of its resistance and mismatch 
with the electronics, a layer of 30Ǻ of titanium was evaporated between the substrate 
and the constantan. The contacts on the heater were realized by evaporating 
chromium and gold on the sample. Special masks were developed in order to protect 
the 2DEG during the evaporations.  

Typical parameters for the evaporated materials are reported in table I. An 
important parameter is the deposition rate, which was controlled mainly to prevent 
the excessive heating of the sample during the evaporation: 

 
Table I. 
Material Thickness 

(Ǻ) 
Deposition rate 

(Ǻ/s) 
Evaporation pressure 

(mbar) 
Au ~1000 10-15 2 10-6

Cr 100 0.5-1.0 2 10-6

Constantan ~700 0.5-1.0 1 10-6

Ti 30 0.4-0.5 2 10-6

 
 
To increase the mean free path of the phonons, which have to propagate 

ballistically in the substrate, the back surface of the substrate was optically polished. 
The sample was glued with silver paint on a printplate, which was soldered to the 

cold finger of the cryostat. Aluminum wires were bonded from the contact pads of 
the sample to the printplate. Between the printplate and the top of the cryostat, the 
RF pulses were generated and detected by using 50Ω miniaturized non-magnetic 
semi-rigid cryogenic coaxial cables [6]. 

The electron density of the sample could be varied between ne=1.0·1015 m-2 and 
1.5·1015m-2 by illuminating with an infrared emitting diode. The mobility was 
between 60 and 100 m2/Vs. The sample is known to exhibit integer and fractional 
quantum Hall effect at low temperatures and high magnetic fields [1], as shown in 
Fig. (6.3) were the longitudinal resistance of the sample is reported as a function of 
magnetic field at T=0.3K.  
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Figure 6.3: Longitudinal resistance of our 2DEG as a function of magnetic field at the base 
3He temperature (T=300mK). 

 

6.2.2 Electronic system for pulse generation and detection 

The voltage pulses were supplied to the constantan heater by a pulse generator 
[7], which could generate pulses in the range 1ms-1ns with a delay time td with 
respect to the trigger. The repetition rate was either 100Hz or 1kHz, depending on the 
length of the pulse and the allowed energy dissipation. The pulse amplitudes were 
between 0.1V and 1.0V over a 50Ω heater, connected to the electronic equipment 
with a 50Ω miniature cryogenic coaxial cable.  

The signal between the 2DEG contacts was amplified with a low noise, wide 
band, RF-preamplifier [8] and acquired with a fast digital oscilloscope [9], able to 
average up to 256 traces.  

Since at high magnetic fields the resistance of the GaAs/AlGaAs heterostructure 
may become very high (20-30kΩ, as shown in Fig. (6.3)), it was necessary to 
transform the impedance in situ to 50Ω. A cryogenic impedance transformer working 
down to 300mK was therefore built ad hoc. The scheme of the transformer circuit is 
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shown in Figure 6.4. The first stage of the transformer, placed close to the sample, in 
the cold, works as a transconductance amplifier, which outputs a current proportional 
to the input voltage. It uses as active device a GaAs metal-semiconductor field-effect 
transistor (MESFET), which operates at He temperature without carrier freeze-out 
[10]. The cryogenic stage of the transformer was connected in cascade to a FET 
operating at room temperatures through a 50Ω coaxial line. This second stage works 
as a transimpedance amplifier, which converts the output current of the first stage 
into voltage and provides a 10 times amplification of the signal. With a typical bias 
of 0.5mA (the lower possible for a correct functioning of the FET) the drain source 
voltage of 2V, the power dissipation was around 1mW. To prevent the warming up 
of the sample and the evaporation of 3He, we thermally disconnected the transformer 
from the 3He connecting it directly to the 4He bath (see next section, Fig. (6.6)), and 
we reduced the operational time of the transformer to 1‰ of the duty cycle. The 
MESFET was therefore active only for tFET=10µs every duty cycle (of 10ms).  
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Figure 6.4. Impedance transformer schematic. 
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The signals of the pulse generator and the detection system were coordinated as 
described in Fig. (6.5). 
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Figure 6.5: Time scheme for the generation and detection system in pulse experiments. The 
figure is not in scale. The duty cycle was typically 10ms (100Hz) and the cryogenic FET was 
active only for tFET=10µs (see text). The delay time of the pulse is indicated with td, the 
duration of the pulse with tp, and the measuring time with tg. 

 
 
 
Since the heat pulse propagated with the sound velocity of GaAs (5000m/s) 

through the substrate, the response of the 2DEG is expected between 200ns and 
400ns after the beginning of the pulse. Any spurious electronic signal had to be 
eliminated during the detection time of the pulse. The delay time td allowed to shift 
the beginning of the pulse in the region where the FET was stable, typically td=2µs. 
The duration of the pulse is limited by two conditions. The pulse should be a local 
excitation and therefore should not heat up the entire sample. Moreover, in order to 
perform time resolved measurements, the heat pulse should be not be broader than 
the most distant contacts (4mm), which determines the maximum duration of the 
pulse being tp≤800ns. 
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Since the pick-up depends on the sign of the voltage on the heater while the 
thermal response of the sample does not, the effect of the cross-talk of the generated 
pulse on the detected signal has been minimized by inverting the sign of the pulse 
every cycle and averaging the detected signal up to 64 times with the oscilloscope 
[9].  

 
 
 
 
 

6.2.3 Cryogenic system 

Since the sample has to be mounted adiabatically in vacuum, a 3He system was 
designed and home-built. In this system the mixture is condensed in a “3He chamber” 
above the space where the sample is placed. The sample is therefore situated in 
vacuum, and thermally connected to the 3He through a cold finger. Fig. (6.6) gives a 
schematic drawing of the sample chamber in the 3He system, and it shows the 
position of the sample and the MESFET. 
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Figure 6.6: Schematic drawing of the 3He system (not in scale). The position of the sample 
and of the cryogenic transformer (MESFET) is indicated. In the real setup the sample is 
mounted on a printplate, but for clarity the printplate was not drawn. 
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6.3 Measurements 

The good thermal contact between the heater and the sample was checked by 
sending pulses and recording with a standard AC Lock-in technique the 
magnetoresistance curves. The resistivity measurements reported in Fig. (6.7) show 
an increase of the average temperature of the sample. 
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Fig. 6.7: The longitudinal resistivity measurements show that the Constantan heater transfers 
the heat to the substrate and increase its temperature from 0.4K (solid line), to 0.8K (dashed 
line) and 1.5K (dot line). 

 
During these measurements the cryogenic transformer was not present and the 

sample was connected directly to a Lock-in. 
 The present configuration with the sample mounted on a printplate is suitable for 

short pulses, but not for low frequency thermopower (longer pulses), which is 
thermally equivalent to DC thermopower. The sample was cooled down only by the 
thermal contact with the printplate realized with silver paint. The effect of a DC 
signal on the heater was therefore translated into an average increase of temperature 
of the sample rather than in a temperature gradient. For this reason, low frequency or 
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DC thermopower could not be measured on the sample and in the magnetoresistance 
curves (Fig. (6.7)), there is not any thermopower voltage superimposed to the 
resistance. 

As shown in Fig. (6.7), the resistivity at ν=1 depends strongly on temperature, 
i.e. it is zero at 0.4K and 1 kΩ at 0.8K. Therefore heat pulses were generated with the 
pulse generator at filling factor ν~1. The changes in resistance of the 2DEG could be 
detected by applying a DC current and detecting the change in resistance of the 
2DEG with a Lock-In, where the integration time constant was comparable with the 
duration of the pulse tp. The shortest pulses we could detect in this way were 50µs 
long. Fig. (6.8) shows a pulse of 500µs (the integration time constant of the Lock-In 
was 1ms in order to follow the rise and decay of the pulse) and a repetition rate of 
20Hz.  
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Figure 6.8: Response in the resistivity of the 2DEG to a pulsed heat excitation of 500µs (see 
text). 

Fig. (6.9) and (6.10) show the change in resistance of the 2DEG at filling factor 
ν=1 at different values of the repetition rate (Fig. (6.9)) for a fixed pulse excitation 
(100µs), and of the heat pulse duration (Fig. (6.10)) at a fixed repetition frequency 
(20Hz). These measurements show that with a repetition rate of 100Hz the system 
can still get rid of the heat pumped by the heater into the sample. 
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Figure 6.9: Change in resistivity of the sample with a pulsed excitation of 100µs at the 
frequency of 20Hz (solid line) and 100Hz (dot line).  

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0
 

R
xx

(k
Ω

) 

t(ms)  

Figure 6.10: Detected resistivity changes in the 2DEG by applying heat pulses with a 
frequency of 20Hz and duration tp=500µs, 100µs, and 50µs. 
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The shortest detected pulse was around 20µs, which corresponds to a width of 
1cm. In this regime, the phonon pulse is longer in length than the sample. With 
shorter pulses (<1µs), high intensity phonons can be generated locally resulting in a 
lower thermal load and therefore a shorter thermal time constant for the detected heat 
pulse. At these frequencies, the signal has to be properly matched to the electronics. 
For this reason, we used the impedance transformer described in Section 6.3.2.  

Even if the cryogenic transformer works properly at He temperatures, and the 
crosstalk was clearly removed in the detected signal by averaging 64 times with 
positive and negative excitation pulses on the heater, we could not detect any 
response neither in resistivity nor in thermopower of the 2DEG to a shorter pulse 
excitation. This is due to the high level of pickup, comparable with the expected 
amplitude of the pulses. Fig. (6.8) and (6.9) show that the amplitude of resistivity 
pulses is maximum 1kΩ. The expected pulse voltage with a current in the range of 
10-100nA is therefore 10-100µV. As regards the thermopower pulses, the applied 
voltages on the heater should correspond to a temperature increase of the heater of 
the order of 1-4K. A local temperature gradient of 1-4K/mm corresponds to a 
thermopower voltage of the order of 100-500µV if it is measured in magnetic field 
between integer filling factors [1], where the TEP has the strongest dependence on 
temperature [1]. A voltage amplitude of 100µV amplified 10 times in the order of the 
measured pickup voltage of the detection line, which is 5mV. Therefore the signal is 
overwhelmed by the pickup noise of the detection system.  

Unfortunately, we could not understand the origin of this high pickup voltage, 
which is far above the voltage noise of 10-100µV expected for the cryogenic 
preamplifier [10]. The elimination of the pick-up signal is a conditio sine qua non to 
measure the pulses, at least in resistivity. In order to detect thermopower pulses, and 
therefore to probe the local phonon-electron interaction, another condition has to be 
satisfied: the heat pulse must propagate coherently as a wave along the substrate in 
the longitudinal direction. If this condition is not accomplished, the phonon pulse 
spreads out, giving rise to an average increase of temperature in a large part of the 
system rather than a local non-equilibrium heat excitation. 

 

6.4 Conclusions 

 This Chapter was devoted to the description of the experimental setup for 
pulsed thermopower measurements. The response of the 2DEG to heat pulses has 
been detected for pulse duration above 20µs, which still warms up the entire sample. 
Shorter pulses (<1µs) need the use of an impedance transformer between the sample 
(with a resistivity of 20kΩ) and the electronics (50Ω). The transformer built for the 
purpose and working at He temperatures exhibits a pickup voltage of 10mV, which is 
much higher than the expected noise figure of such a device and well above the 
expected pulsed thermopower or resistivity amplitude of the 2DEG. The origin of 
such a voltage has not yet been understood. In this case, it should be possible to 
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detect the change in the resistivity of the 2DEG caused by short phonon pulses. 
However, a time resolved response of the 2DEG to a non-equilibrium phonon 
excitation will only be detected if the pulse does not broaden during its propagation 
in the substrate and it is able to propagate coherently along the substrate in the 
longitudinal direction. 
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The two-dimensional hole gas in a strained Si0.88Ge0.12 channel is an unusual 

system, characterized by the confinement of the holes in a simple parabolic heavy 
hole valence band, a high effective mass, a large effective g-factor and a short-ranged 
scattering potential. This system is therefore interesting to study new localization 
phenomena in both conduction and thermoelectric power. This thesis focuses on the 
transport properties of a Si/SiGe two dimensional hole gas at low temperatures 
(T<4K) and high magnetic field. In particular, we measured resistivity and 
thermoelectric power. 

The thermoelectric power consists of two additive contributions: phonon drag, 
related to the carrier-phonon interactions, and diffusion, related to the thermodynamic 
properties of the system. Previous experiments on AlGaAs/GaAs heterostructures 
showed that phonon drag is dominant down to very low temperatures, making 
diffusion difficult to probe. As explained in detail in Chapter 3, the predominance of 
phonon drag is due to the presence of a piezoelectric potential scattering besides the 
deformation potential scattering. A Si/SiGe heterostructure is expected to be a non-
piezoelectrically active material and therefore a very good candidate to measure 
diffusion thermopower at low temperatures. Chapter 3 shows the thermopower 
measurements at zero field and at low magnetic fields. Although phonon drag is 
found to be anomalous, it is small enough to enable us to study the diffusion in 
details. In magnetic field, the transverse and longitudinal components of the diffusion 
thermopower are well described by the Mott theory, including the quantum 
oscillations which show, as expected, a phase shift of π/2 in respect to the 
Shubnikov-de Haas oscillations of the resistivity. However the diffusion shows 
deviations from the linear behavior expected at zero field, probably connected to the 
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nearby metal-insulator transition at low fields. Surprisingly, the phonon drag data 
suggest either the presence of a piezoelectric coupling or an unscreened deformation 
potential. Although it is not clear why the piezoelectric potential should be so large 
or the screening so ineffective in this system, the data are consistent with other recent 
work on energy relaxation of holes in similar structures. 

Besides the integer quantum Hall effect, Si/SiGe systems exhibit other 
interesting localization phenomena: in zero magnetic field, a metal-insulator 
transition is observed by decreasing the carrier density, in high magnetic field two 
consecutive metal insulator transition are observed, one at ν=1.5 and the other in the 
extreme quantum limit. Although similar localization effects have been observed in 
other systems, the mechanisms that lead to an insulating state in between two integer 
quantum Hall states are not understood yet. Many experimental observations suggest 
that the appearance of an insulating phase at ν=1.5 is related to the peculiar energy 
level distribution (due a large g-factor) which leads in high magnetic field to the 
degeneracy and the crossing of Landau levels.  

In Chapter 4 we analyzed the metal-insulator transition at ν=1.5 and at ν<1 as 
quantum critical phenomena. According to the scaling theory, in samples 
characterized by a short range scattering potential, the transitions between two 
adjacent plateaus (PP transitions) and between the lowest Landau level and the 
insulating state in the extreme quantum limit (PI transition) can be described as 
quantum critical phenomena. The comparison between the critical behavior of the 
metal-insulator transition at ν=1.5, which arises from the peculiar energy level 
structure of Si/SiGe, and the metal insulator transition in the extreme quantum limit 
(ν<1) shows that the two transitions belong to the same universality class. They are 
therefore driven by similar mechanisms. 

Although scaling behavior is a signature of a phase transition, it does not reveal 
the origin of the insulating state at ν=1.5. In Chapter 5, we measure the resistivity 
and the thermoelectric power of the insulating state at filling factor ν=1.5. Diffusion 
thermopower gives information about the carrier distribution and therefore it can 
answer the question whether the field-driven insulating phase is the result of an 
opening of an energy gap at EF or if it is due to the presence of a disorder-induced 
mobility gap. In both cases, on decreasing the temperature the resistivity diverges in 
the insulating state, whereas the TEP is expected to diverge in the former and to 
vanish or approach a constant value in the latter. Therefore TEP can distinguish 
between the two possibilities. In our measurements, the temperature dependence of 
both resistivity and thermopower of a two-dimensional hole gas in SiGe show a re-
entrant metal-insulator transition at filling factor ν = 1.5, but with strikingly different 
behavior of the two coefficients. As the temperature is decreased in the insulating 
state, the resistivity diverges exponentially while the thermopower decreases rapidly, 
suggesting that the insulating state is due to the presence of a mobility edge rather 
than a gap at the Fermi energy. 
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 Chapter 6 describes the experimental setup for pulsed thermopower 
measurements, which would enable to probe how local is the electron-phonon 
interaction. The basic idea is to produce a pulsed phonon excitation in the heater, and 
to detect the response of the carriers to a non-equilibrium heat excitation. The 
Chapter describes the technical issues that have been solved and those that still need 
to be addressed to perform pulsed time resolved measurements.  
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Het twee-dimensionele gaten gas in een onder mechanische spanning staand 

Si0.88Ge0.12 kanaal is een ongebruikelijk systeem, dat wordt gekarakteriseerd door de 
uitsluitende aanwezigheid van gaten in de valentieband, een hoge effectieve massa, 
een grote effectieve g-factor en een kort-reikende verstrooiingspotentiaal. Dit maakt 
het een interessant systeem om nieuwe lokalisatiefenomenen, zowel in de geleiding 
als het thermoelectrische effect, te bestuderen. Dit proefschrift concentreert zich op 
de transport eigenschappen van een Si/SiGe twee-dimensioneel gaten gas bij lage 
temperaturen (T<4K) en hoog magneet veld. Met name de weerstand en 
thermospanning  hebben we gemeten.  

 De thermospanning bestaat uit twee bijdragen:  phonon drag, gerelateerd aan 
de ladingsdrager-phonon interacties, en diffusie, geassocieerd met de 
thermodynamische eigenschappen van het systeem. Eerdere experimenten aan 
AlGaAs/GaAs heterostructuren toonden aan dat tot erg lage temperaturen phonon 
drag dominant is, waardoor het erg moeilijk is om diffusie te onderzoeken. Zoals in 
detail uitgelegd in Hoofdstuk 3, is de dominantie van phonon drag boven diffusie het 
gevolg van de aanwezigheid van een piezoelectrische verstrooiing naast de 
vervormingspotentiaal verstrooiing. Omdat van een Si/SiGe heterostructuur wordt 
gedacht dat het een niet-piezoelectrisch actief materiaal is, vormt het een erg goede 
kandidaat voor het meten van diffusie thermospanning bij lage temperaturen. 
Hoofdstuk 3 toont de thermospanningsmetingen zonder magneetveld en bij een laag 
magneetveld. Ofschoon de gevonden phonon drag afwijkend is, is deze klein genoeg 
om ons in staat te stellen de diffusie in detail te bestuderen. De transversale en 
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longitudinale componenten van de diffusie thermospanning in een magneetveld 
worden goed beschreven door de Mott theorie, evenals de quantum oscillaties die, 
zoals verwacht, een fase verschuiving van een π/2 vertonen ten opzichte van de 
Shubnikov-de Haas oscillaties in de weerstand. Echter, de diffusie vertoont 
afwijkingen van het verwachte lineaire gedrag bij de afwezigheid van een 
magneetveld. Waarschijnlijk houdt dit verband met de nabijheid van een metaal-
isolator overgang bij laag magneetveld. Verrassenderwijs suggereren de phonon drag 
data de aanwezigheid van of een piezoelectrische koppeling dan wel een niet-
afgeschermde vervormingspotentiaal. Ofschoon het niet geheel duidelijk is waarom 
de piezoelectrische potentiaal zo groot, of de afscherming zo ineffectief zou zijn in 
dit systeem, komen de data overeen met andere recente studies aan energie relaxatie 
van gaten in vergelijkbare structuren. 

 Naast het integer quantum Hall effect vertonen Si/SiGe systemen ook andere 
interessante lokalisatie fenomenen: in de afwezigheid van een magneetveld wordt 
een metaal-isolator overgang gezien door het verlagen van de 
ladingsdragersdichtheid, terwijl in een magneetveld twee opeenvolgende metaal-
isolator overgangen worden waargenomen, één bij ν=1.5 en de ander in de extreme 
quantum limiet. Ofschoon vergelijkbare lokalisatie effecten zijn gevonden in andere 
systemen, zijn de mechanismen die ten grondslag liggen aan een isolerende toestand 
tussen twee integer quantum Hall states nog onbekend. Veel experimentele 
waarnemingen suggereren dat het verschijnen van een isolerende fase bij ν=1.5 
samenhangt met de vreemde energie niveau structuur (als het gevolg van een grote g-
factor), die in hoge magneetvelden leidt tot de bijna ontaarding en het kruisen van 
Landau niveau’s. 

 In hoofdstuk 4 hebben we de metaal-isolator overgang bij ν=1.5 en bij ν<1 
als quantum kritische fenomenen geanalyseerd. In monsters met een kort-reikende 
verstrooiingspotentiaal kunnen de overgangen tussen twee opeenvolgende niveau’s 
(PP-overgangen) en tussen het laagste Landau niveau en de isolerende toestand in het 
extreme quantum limiet (PI-overgang), volgens de schaling theorie, worden 
beschreven als quantum kritische fenomenen. De vergelijking tussen het kritische 
gedrag van de metaal-isolator overgang bij ν=1.5, die ontstaat uit de vreemde energie 
niveau structuur van Si/SiGe en de metaal-isolator overgang in de extreme quantum 
limiet (ν<1), laat zien dat beide overgangen tot dezelfde universele klasse behoren. 
Ze worden dan ook veroorzaakt door vergelijkbare mechanismen. 

 Ofschoon het schalingsgedrag een kenmerk is van een fase overgang, kan het 
niet de oorsprong van de isolerende fase bij ν=1.5 verklaren. In hoofdstuk 5, hebben 
we de weerstand en de thermospanning van de isolerende toestand bij vulfactor ν=1.5 
bestudeerd. Diffusie thermospanning geeft informatie over de 
ladingsdragersverdeling en kan daarom de vraag beantwoorden of de veld-
geïnduceerde isolerende toestand het resultaat is van de opening van een 
energiekloof bij the Fermi energie EF, of dat dit het gevolg is van de aanwezigheid 
van een door verstrooiing-geïnduceerde mobiliteits bandafstand. In beide 
bovenstaande gevallen, gaat de weerstand naar oneindig in de isolerende fase bij 
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verlaging van de temperatuur, terwijl verwacht wordt dat de thermospanning in het 
eerste geval naar oneindig gaat, en verdwijnt of constant wordt in het laatste geval. 
Daarom kan de thermospanning deze twee mogelijkheden onderscheiden. In onze 
metingen vertonen de temperatuur afhankelijkheid van zowel weerstand als 
thermospanning een herintredende metaal-isolator overgang bij vulfactor ν=1.5, maar 
met een opmerkelijk verschillend gedrag van de twee coëfficiënten. Als de 
temperatuur verlaagd wordt in de isolerende toestand neemt de weerstand 
exponentieel toe, terwijl de thermospanning snel afneemt. Dit suggereert dat de 
isolerende toestand het gevolg is van de aanwezigheid van een mobiliteits 
bandafstand in plaats van een energiekloof bij de Fermi energie. 

 Hoofdstuk 6 beschrijft de experimentele opzet voor gepulseerde 
thermospanning metingen, die het mogelijk zou moeten maken lokaal de elektron-
phonon interactie te onderzoeken. De grondgedachte is om in de stoker een gepulste 
phonon excitatie te creëren en vervolgens de reactie van de ladingsdragers op deze 
locale temperatuurgradient te meten. Het hoofdstuk beschrijft de technische 
problemen die zijn opgelost en de kwesties die nog aandacht verdienen om 
gepulseerde tijdsopgeloste metingen mogelijk te maken. 
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