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S O M E  R E M A R K S  O N  V A R IE T IE S  W I T H  D E G E N E R A T E  
G A U S S  I M A G E

E. MEZZETTI, O. TOMMASI

A b s t r a c t . We consider projective varieties with degenerate Gauss im­
age whose focal hypersurfaces are non-reduced schemes. Examples of 
this situation are provided by the secant varieties of Severi and Scorza 
varieties. The Severi varieties are moreover characterized by a unique­
ness property.

1. I n t r o d u c t io n

A classical theorem  on surfaces s ta tes  th a t ,  if th e  tan g en t p lane to  a ruled 
pro jective surface S  rem ains fixed along a general line of th e  ruling, th en  S  
is a developable surface, i.e., a cone or th e  tan g en t developable of a curve.

In  th e  case of h igher d im ensional varieties, th is  generalizes to  th e  problem  
of giving a s tru c tu re  theorem  for pro jective varieties w ith  degenerate  G auss 
image. M ore precisely, let X  c  P N be a pro jective variety  of dim ension n . 
T h e  G auss m ap  of X  is th e  ra tio n a l m ap 7  from  X  to  th e  G rassm annian  
G (n , N ) of n-d im ensional subspaces of P N , associating to  a sm ooth  po in t x 
of X  th e  em bedded tan g en t space T xX  to  X  a t x. T he G auss im age y ( X ) 
of X  is, by definition, th e  closure of 7 (X sm), w here X sm is th e  sm ooth  locus 
of X .

C learly  dim  y (X ) <  n , and  for “general” varieties equality  holds. Several 
term s have been used recently  to  d eno te  th e  varieties such th a t  dim  y (X ) <  
dim  X : th ey  are called varieties w ith  degenerate  G auss im age by L andsberg  
( [L2]), developable by P iontkow ski ( [P]), tangen tia lly  degenerate  by Akivis
- G oldberg  ( [AG]). We will follow L an d sb e rg ’s convention.

Several general facts are well know n for these varieties (see for instance 
th e  classical artic le  [S]). F irs t of all, general fibres of 7  are linear. T his 
m eans th a t ,  if th e  dim ension of th e  G auss im age is r  <  n , th en  th e  general 
fibre is a linear space of dim ension n  — r  along w hich th e  tan g en t space is 
co n stan t. Secondly, if X  is n o t linear, th en  it is singular and  its singular 
locus cu ts  a general fibre along a codim ension 1 subschem e.

T he th eo ry  of foci for families of linear varieties well applies to  th e  fam ily 
of fibres of 7 . T his allows us to  consider and  s tu d y  th e  focal locus on X  and
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on th e  fibre A of 7 , w hich we will deno te  by F  and  F a  respectively. B o th  
loci have a n a tu ra l scheme stru c tu re .

Several classification resu lts have recently  been estab lished  for these va­
rieties (e.g. [GH], [AGL], [M T], [P], [AG]) b u t a general s tru c tu re  theorem  
is still m issing. In  [AG] a s tru c tu re  theorem  is proved, b u t u nder ra th e r 
s trong  assum ptions on a general F a , for exam ple th a t  it is reduced or set- 
theore tically  linear. M oreover, Akivis and  G oldberg  s ta te  th e  problem  of 
co n stru c tin g  exam ples of pro jective varieties w ith  degenera te  G auss im age 
such th a t  F a is no t reduced and  (F a )red is no t linear (or proving th a t  such 
varieties d o n ’t  exist).

P iontkow ski ( [P]) proved a uniqueness theorem  for developable varieties X  
w ith  G auss im age of dim ension 2, such th a t  th e  focal locus has codim ension 
2 in X . T hose for which th e  focal conic is in tegral are precisely th e  varieties 
of secant lines of th e  Veronese surface v2 (P 2) or of cones over it. Insp ired  by 
th is  exam ple, we co n stru c t a series of exam ples w here F a  is no t reduced and 
(F a )red has a rb itra rily  large degree. T he exam ples are th e  secant varieties of 
Severi varieties of dim ension >  2 and  some n a tu ra l generalizations of them .

Z ak’s theorem  on linear norm ality  ( [Z1]) s ta tes  th a t  a sm ooth  nondege­
n era te  m -dim ensional subvariety  of P N , w ith  N  <  3 m /2  +  2, canno t be 
isom orphically  p ro jec ted  to  P N -1 . Zak also classified in [Z2] th e  varieties 
which are bo rd er cases in his theorem , and  called th em  Severi varieties. He 
proved th a t  th e re  are only 4 sm ooth  exam ples: th e  Veronese surface v2 (P 2) 
in P 5, P 2 x P 2, G (1, 5) and  th e  non-classical varie ty  E  of dim ension 16. For 
any of these varieties F , its secant varie ty  X  =  S F  is a cubic hypersurface 
in P N w ith  G auss im age isom orphic to  X .

We prove in E xam ple 2 th a t  on a general fibre of th e  G auss m ap for th e  
secant varie ty  of a Severi variety, th e  focal scheme is a quadric  of m axim al 
ran k  w ith  m ultip licity  1, 2, 4, 8  respectively.

In  Section 4 we show th a t  these exam ples can  be generalized in tw o ways, 
tak in g  instead  of th e  Severi varieties th e  following th ree  series of varieties Y : 
v2 (Pm), Pm x  P m and  G (1 ,2 m  +  1), of dim ensions m , 2m , 4m  respectively 
(they  are Scorza varieties according to  Zak [Z3]). If  we consider th e ir higher 
secant variety  S m - 1  Y  of m -secant (m  — 1)-planes, it tu rn s  ou t th a t  th ey  are 
hypersurfaces of degree m  +  1, whose du al is Y  and  whose singular locus 
is S m -2 Y : it ap p ears  in each fibre w ith  m ultip licity  resp. 1, 2, 4. If we 
consider S Y  instead , we get on each fibre a focal quadric  w ith  an  arb itra rily  
high m ultiplicity, m ore precisely, m  — 1, 2(m  — 1), 4(m  — 1) respectively.

I t is in teresting  to  observe th a t  th e  fo u rth  Severi varie ty  does not gener­
alize to  give a com plete class of exam ples ( [L1]).

We observe also th a t  th e re  is an  u p p er bound  on th e  codim ension of th e  
focal scheme and  th a t  th e re  are restric tions on th e  set of possible codim en­
sions if we require  th a t  F  is no t reduced (see T heorem  3 .1 ). For “h igh” 
codim ension we prove in T heorem  3.3 some uniqueness resu lts, in th e  case 
in w hich th e  general focal hypersurface is a quadric  of m axim al ran k  w ith  
m ultip licity  2. We ex tend  in th is  way th e  resu lt found by P iontkow ski in
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th e  case of th e  secant variety  of th e  Veronese surface. O ur resu lts rely on 
th e  fact, s ta ted  by Zak in [Z4], th a t  if F  is a varie ty  whose general linear 
section is a Severi variety, th en  F  is a cone over a Severi variety.

T h e  p lan  of th e  artic le  is as follows. In  §2 we recall th e  language of focal 
schemes for families of linear spaces, as in troduced  in [M T]. We also prove 
P ro p o sitio n  2 .2 , giving a lower bound , based on th e  codim ension of th e  focal 
scheme, for th e  m ultip licity  of th e  focal scheme. In  §3 we prove T heorem s
3.1 and  3 .3 . F ina lly  in §4, we give two series of exam ples, showing th a t  th e  
focal hypersurfaces can  have a rb itra rily  high degree and  m ultiplicity.

1.1. A c k n o w le d g m e n t .  We would like to  th a n k  Prof. F yodor Zak for some 
useful suggestions and  th e  referees for in teresting  rem arks and  criticism .

1.2. N o t a t i o n s  a n d  c o n v e n tio n s .  In  th is p ap e r a variety  will be an  in te­
gral closed subschem e of a pro jective space over an  algebraically  closed field 
K, c h a r  K  =  0.
If A c  P N is a p ro jective linear subspace, A c  K  will deno te  th e  linear sub­
space associated  to  A such th a t  A =  P(A ). TxX  will deno te  th e  Zariski ta n ­
gent space to  th e  variety  X  a t its po in t x, while we will deno te  by T xX  c  P N 
th e  em bedded tan g en t space to  X  a t x.
W e will always use th e  sam e sym bol to  deno te  th e  po in ts of a G rassm annian  
and  th e  corresponding  linear subspaces.

2. T h e  f o c a l  s c h e m e  and  it s  m u l t ip l ic it y

L et X  c  P N be a pro jective variety  of dim ension n  <  N . Let us assum e 
th a t  X  is covered by an  r-d im ensional fam ily of linear spaces of d im en­
sion k :=  n  — r . Let B  be th e  subvariety  of th e  G rassm annian  G ( k ,N ) 
param etriz ing  th a t  family.

L et us deno te  by I  th e  incidence correspondence of B , w ith  th e  n a tu ra l 
projections:

B  < p1 B  x PN - —— P N
( 1 ) U .
V '  E> g T- f  VB  <--------  I  -------- ► X .

We will associate to  th e  fam ily B  its focal subschem e $  c  I  and  its focal 
locus F  c  X . For th e ir  definitions and  for th e  p roof of resu lts cited  in th is 
section, we refer to  [M T].

We recall m oreover th a t  th e  characteristic map  of th e  fam ily B  is th e  m ap 
X :=  P ◦  a ,

(P l (TB )) |I  N I |£ xPn ,

w here a  comes from  th e  exact sequence expressing th e  tan g en t sheaf to  th e  
p ro d u c t variety  B  x P N as a p ro d u c t of tan g en t sheaves, and  P  from  th a t  
defining th e  norm al sheaf to  I  inside B  x P N .
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For every sm ooth  po in t A of B , th e  restric tion  of x  to  g - 1 (A) is called 
th e  characteristic map o f  B  relative to A.

F ina lly  th e  focal schem e on  A, deno ted  F a , is th e  schem e-theoretic in te r­
section of th e  C artie r divisor $  c I  w ith  {A} x A c I .

L et y : X  G ( n ,N ) be th e  (rational) G auss m ap of X , regular on 
X sm. I t is a consequence of b iduality  ( [K]) th a t  its fibres are linear spaces, 
i.e. th a t  a general em bedded tan g en t space is tan g en t to  X  along a linear 
space. In  th e  following, we will app ly  th e  above con truc tion  to  th e  fam ily of 
th e  fibres of y , assum ing th a t  th ey  are of positive dim ension.

D e f in i t io n  2 .1 . T h e  Gauss rank  of a varie ty  X  is th e  num ber r  =  dim  y (X ). 
If r  <  n, th en  X  is called a variety w ith degenerate Gauss image.

V arieties w ith  degenera te  G auss im age are characterized  by th e  fact th a t  
th e  focal scheme on a general A €  B  is a hypersurface of degree r . A nother 
im p o rtan t p ro p e rty  is th a t  th e  focal locus of B  is always contained  in th e  
singular locus of X .

L et us d eno te  by g (respectively, ƒ) th e  restric tion  of g (resp., ƒ) to  $  c  I . 
N ote th a t  th e  fibre g - 1  (A) coincide w ith  F a , w hich has in general dim ension 
n  — r  — 1 , hence every irreducible com ponent of $  has dim ension n  — 1 .

P r o p o s i t i o n  2 .2 . Let X  be a variety o f d im ension  n  with Gauss image o f 
dim ension  r  <  n . Let $  be an irreducible com ponent o f the focal schem e  
o f the fa m ily  B  considered as a reduced variety. L et F  c  X  be its schem e- 
theoretic image and let c be the codim ension o f F  in  X . For a general 
poin t P  =  (A ,x ) €  $ ,  the C artier divisor $  c  I  has Sam uel m ultip licity
M P  $ ) >  c — 1 .

C o r o l la r y  2 .3 . For a general elem ent (A, x) €  $ ,  either  F a  =  {A} x A, or 
the C artier divisor  F a  c  {A} x A has Sam uel m ultip licity  ^ (x , F a ) >  c — 1.

Proof. Let P  =  (A, x) €  $  be a po in t th a t  p ro jec ts to  x. C onsidering th e  
d ifferentials of th e  m aps ƒ and  ƒ a t P , we get th e  diagram :

W e consider also th e  charac teris tic  m ap  x(A ) of th e  fam ily B  relative to  A. 
A t th e  po in t P ,  it gives rise to  a linear m ap

L et K p  deno te  th e  com m on kernel of b o th  dp  ƒ and  x (A ,x ) . B y generic 
sm oothness dP ƒ is surjective, hence

B u t ker dp  ƒ  =  K p  n  T p  $ ,  w here T p  $  has dim ension n  — 1, so e ith e r K p  c  
T p $ , th e  two kernels coincide and  dim  K p  =  c — 1, or th ey  are different and

(2 ) U_ 
Tp  $

Tp I

x(A , x) : TaB  ^  T x X /A .

dim  ker dp  ƒ =  (n  — 1 ) — (n  — c) =  c — 1 .
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dim  K p  =  c. Since th e  s tru c tu re  of scheme on $  is given by th e  m inors of 
th e  charac teristic  m ap, th is  proves th a t  ^ (P , $ )  is a t least c — 1 in th e  form er 
case, and  a t least c in th e  la tte r. □

E x a m p le  1. T h e  m ultip licity  ^ ( x ,F a ) can be s tric tly  g rea te r th a n  c. We 
see now an exam ple of such a situa tion , in w hich th e  fibres of th e  G auss 
m ap have special p roperties  of tangency  to  th e  focal locus.

L et us consider a b ira tio n a l m ap f  : F  - -*  S  betw een tw o surfaces F, S  c  
P 6. T hen

^  : F  --+  G (3 ,6 ) 
x  ^  (Tx F , f ( x ) )

defines a ra tio n a l m ap  on F , and  X  is defined by th e  closure of th e  variety  
sw ept by th e  3-planes in P 6 belonging to  th e  im age of ^ .  If th e  choice of F , S  
and  f  is general, th en  X  is a varie ty  of dim ension 5 whose G auss im age has 
d im ension 4, and  its focal locus is F ,  w ith  codim ension 3. If  x  is a general 
po in t of F , th en  any line passing th ro u g h  x  and  contained in (TxF, f  (x)) is 
a fibre of th e  G auss m ap.

L et P  =  (A, x) p ro jec t to  a general po in t of F . B y a d irect com putation , 
x  resu lts to  be th e  only focus on A, w ith  m ultip licity  4 =  c +  1.

I t  is nonetheless tru e  th a t  dim  K p  =  2 =  c — 1: th e  kernels of dp  ƒ and 
dp  ƒ indeed coincide and  are generated  by th e  d irections of th e  curves in I  of 
th e  form  (A (t), x ), w here A (t) varies in th e  s ta r  of lines of cen tre  x  contained 
in ^ (x ) .

T h e  ju s t  co n stru c ted  exam ple belongs to  th e  class of hyperbands of [AGL]. 
I t can be generalized to  a whole series of analogous exam ples w ith  larger 
dim ensions and  increasing difference betw een th e  m ultip licity  of th e  focal 
locus and  th e  codim ension c.

E x a m p le  2. The Severi varieties.
L et F  deno te  one of th e  four Severi varieties (see th e  In tro d u c tio n ). Let 

X  =  S F  be  its  secant variety, i.e. th e  closure of th e  union of lines jo in ing  
two d is tin c t po in ts of F .  T here  are  several know n facts ab o u t F .

P r o p o s i t i o n  2 .4  ( [Z2]). L et F  c  P N be a Severi variety. Then  the follow ing  
hold:

- F  has d im ension  m  €  { 2 ,4 ,8 ,1 6 } ;
- F  is embedded in  a projective space o f d im ension  N  =  3 m /2  +  2;
- the secant variety  X  o f  F  is a norm al cubic hypersurface in  P N ;
- X  is isom orphic to the dual variety o f  F ;
- the singular locus o f  X  coincides w ith  F .

As X  is a hypersurface, its G auss im age is th e  sam e as its dual variety, 
which is F .  T hen  X  has G auss ran k  m  and  th e  fibres of th e  G auss m ap
Y of X  are linear subspaces of dim ension m /2  +  1. As shown in [Z2], th e  
in tersection  w ith  F  of th e  secant lines of F  passing th ro u g h  a general po int 
x  €  X  is a quadric  generating  a space of dim ension m /2  +  1. T his space is
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precisely th e  fibre of th e  G auss m ap  passing th ro u g h  x, and  B  is ju s t  th e  
fam ily of such spaces. As th e  quadric  depends on th e  fibre A to  which x 
belongs and  not on x, we will deno te  it by Q a .

T h e  degree of th e  focal scheme on A m ust equal th e  G auss rank , so it is 
m , i.e. 2, 4, 8  or 16 respectively. B u t th e  focal locus of B  on A has to  be 
Q a , of degree 2 , because it has to  be contained  in th e  singular locus of X . 
T his shows th a t  F a  coincides w ith  Q a  set-theoretically , b u t, as a scheme, 
ap p ears  w ith  m ultip licity  1, 2, 4, 8  respectively in th e  four cases. T his fact 
is confirm ed by P ro p o sitio n  2 .2, because in th is  case c =  m /2  +  1 and  th e  
m ultip licity  ^ ( x ,F )  is equal to  m / 2  =  c — 1 .

3. G a ps  o n  t h e  c o d im e n s io n  an d  u n iq u e n e s s  o f  S e v e r i e x a m pl e s

T h e resu lts of th e  previous section allow us to  s ta te  som e bounds on th e  
possible codim ension of th e  focal locus for th e  fam ily of th e  fibres of th e  
G auss m ap  and  some uniqueness results.

T h e o r e m  3 .1 . L et X  be a variety o f d im ension  n  with degenerate Gauss 
image y ( X ) o f d im ension  r  with  r  >  2. L et c denote the codim ension o f the 
focal locus F  in  X . Then:

(i) c <  r  +  1 ;
(ii) i f  c =  r + 1 , then  X  is a cone o f vertex a space o f d im ension  ( n —r  — 1) 

over a variety o f d im ension  r ;
(iii) i f  c <  r  and the reduced focal hypersurfaces are no t linear, then  

c <  r / 2  +  1 ;
(iv) i f  c =  r / 2 + 1 , then  either the m ultip licity  o f the focal hypersurfaces in  

the fibres o f  y  is at least c and they are set-theoretically linear, or the 
m ultip licity  is r / 2  and the reduced focal hypersurfaces are quadrics.

Proof. (i) Let F a  be th e  focal scheme on a general fibre A of th e  G auss 
m ap. T hen  F a  is a hypersurface of degree r , and  from  C orollary  2 .3 , it has 
m ultip licity  ^ (x , F a ) >  c —1 a t a general po in t x. Hence c—1 <  ^ (x , F a ) <  r, 
which im plies (i).

(ii) If c =  r  + 1 , th en  a general F a is a hyperp lane in A w ith  m ultip licity  r. 
O n th e  o th er hand  dim  F  =  n  — r  + 1  =  dim  F a , so F a is a fixed (n  — r  +  1)- 
p lane and  X  is a cone over it.

(iii) and  (iv) A ssum e r / 2  +  1 <  c <  r: th en  ^ ( x ,F a ) >  c — 1 >  r / 2 . So 
th e  degree of th e  reduced focal locus on A is r /u (x ,F A )  <  2. If ^ ( x ,F a )  >  
c, th en  th e  hypothesis im plies th a t  ^ (x , F a ) =  r , so (FA)red is linear. If 
^ ( x ,F a ) =  c — 1 , th en  our hypothesis im plies c =  r / 2  +  1 and  ^ ( x ,F a ) =  
r / 2 . □

R em a rk  3 .2 . T he descrip tion  of varieties w ith  G auss ran k  r  =  1 is classical 
(see [FP] for a m odern  account), th e  descrip tion  of varieties w ith  r  =  2 has 
been accom plished recently  by P iontkow ski ( [P]). His uniqueness theorem  
for th e  case in w hich th e  focal locus has codim ension 2  can be ex tended  as 
follows.



T h e o r e m  3 .3 . L et X  be a variety o f d im ension  n  with degenerate Gauss 
image y (X ) o f d im ension  r  >  2 and let F  be the focal locus o f the fa m ily  o f 
fibres o f  7 . A ssu m e tha t the codim ension o f  F  in  X  is c =  r / 2  +  1 and that 
the focal hypersurfaces are quadrics counted with m ultip licity  r / 2 .

(i) I f  F  is irreducible, then  X  coincides w ith  S F , the secant variety o f  
F , and  n  >  3 r /2  +  1;

(ii) i f  m oreover n  =  3 r /2  +  1 and a general quadric F a  is smooth, then  
F  is a Severi variety;

(iii) i f  n  >  3 r /2  +  1, then  the rank o f the quadrics F a  is at m ost r / 2  +  1, 
and, i f  equality generically holds, then  F  is (a cone over) a Severi 
variety o f d im ension  r .

Proof, (i) Since th e  focal hypersurfaces have set-theoretically  degree 2 , th en  
th e  lines w hich are contained in th e  fibres of 7  are all secant lines of F . 
H ence X  C S F . O n th e  o th er hand , th e  fam ily of lines ob ta ined  in th is  way 
has dim ension r  +  dim  G (1 ,n  — r) , w hich is equal to  2  d im  F . T his proves 
th a t  X  =  S F . A s tan d a rd  count of p aram eters  shows th a t  th e  fam ily of 
quadrics passing th ro u g h  a general po in t of F  has dim ension r / 2  and  th a t  
th e  in tersection  of tw o focal quadrics is always non-em pty.

L et us d eno te  by B  as usual th e  fam ily of fibres of 7 . Let £  C B  x 
B  x F  be  th e  set of trip les (A, M, P ) such th a t  P  €  Fa  n  F M. C onsidering 
th e  pro jections from  £  to  B  x B  and  to  F , one gets easily th a t  a general 
in tersection  F a  n  F M has dim ension n  — 3 r /2  — 1. T his proves (i).

(ii) We can assum e w ith o u t loss of generality  th a t  X  is non-degenerate  
(otherw ise, we can re s tric t to  th e  p ro jective subspace of m inim al dim ension 
in w hich X  is contained). Suppose first th a t  X  is a hypersurface. We have 
th a t  F  is a varie ty  of dim ension r  covered by a r/2 -d im en sio n a l fam ily of 
non-singular quadrics of dim ension r / 2 , such th a t  a general pair of such 
quadrics m eet a t a po in t. T his p ro p e rty  of th e  fam ily of quadrics allows us 
to  argue as in [Z2, Lem m a 5], and  deduce, as there , th a t  F  is sm ooth , so it 
is a Severi variety  by definition.

Suppose now th a t  X  C P N , N  =  3 /2 r  +  2 +  k, k  >  0. T he im age of X  in a 
p ro jec tion  w ith  centre  a general (k — 1)-plane of P N is a hypersurface, which 
is th e  secant varie ty  of a Severi varie ty  F ' by th e  previous argum ent. Since 
th e  focal locus of X  p ro jec t to  F ', we have th a t  th e  general section of F  by 
a linear subspace of dim ension 3 /2 r  +  2 is a Severi variety. B y C orollary 1 
of [Z4] Severi varieties are unex tendab le, hence F  m ust be a cone over F ',  
w hich is im possible because in th a t  case th e  quadrics F a  w ould be singular.

(iii) Assum e th a t  th e  ran k  of F a  is >  r / 2  + 1 . Let h  :=  (n  — r / 2  — 1 ) — ( r  +  
1) =  n  — 3 /2 r  — 2, h  >  —1. C u ttin g  F  w ith  L, th e  in tersection  of h + 1  general 
hyperp lanes, we get F ' :=  F  n  L, of dim ension r , contain ing  a r-d im ensional 
fam ily of quadrics of dim ension r / 2  and  generically of m axim al ran k  r / 2  + 1 . 
M oreover th e  variety  of secant lines of F ' coincides w ith  S F  n  L, so it has 
dim ension 3 r /2  +  1. B y (ii) we o b ta in  th a t  F ' is a Severi variety. A gain 
since Severi varieties are unex tendab le, we can conclude th a t  F  is a cone
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over F ' w ith  vertex  a linear space of dim ension h. In  particu la r, th e  ran k  of 
F a  is r / 2  +  1. □

R em ark  3.4. Sm ooth  varieties F  such th a t  X  =  S F  satisfies th e  assum ptions 
of T heorem  3.3 are precisely th e  varieties s tud ied  by O hno in [O].

4. E x a m pl e s  o f  f o c a l  h y p e r s u r f a c e s  o f  a n y  d e g r e e  o r  w it h  
a r b it r a r il y  h ig h  m u l t ip l ic it y

In  th is  section we give tw o series of exam ples: th e  form er show th a t  
th e  focal hypersurfaces in th e  fibres of th e  G auss m ap can  ap p ear w ith  
a rb itra rily  high m ultiplicity, th e  la tte r  have focal hypersurfaces of a rb itra ry  
degree. N ote th a t  in E xam ple 3 th e  variety  X  is no t a hypersurface if m  >  3.

E x a m p le  3. Secant varieties o f Scorza varieties. L et F  be  one of th e  
following varieties: v2 (Pm), P m x P m , G (1 ,2 m  +  1). T hey  are contained 
in th e  pro jective spaces of dim ension (m+ 2) — 1 , (m  +  1 ) 2 — 1 , (2”2+2) — 1 

respectively, and  have dim ensions m , 2m, 4m. In  all cases F  is defined by 
su itab le  m inors of a m a trix  of variables, and  precisely by 2  x 2  m inors of a 
sym m etric (m  +  1 ) x (m  +  1 ) m a trix  in th e  first case, by 2  x 2  m inors of a 
generic (m  +  1) x (m  +  1) m atrix  in th e  second case, by Pfaffians of 4 x 4 
m inors of a skew -sym m etric m a trix  of o rder 2m  +  2 in th e  th ird  one. These 
varieties are  considered by Zak in [Z3], and  nam ed by him  Scorza varieties.

L et X  be th e  secant variety  of F :  it is defined by m inors of th e  sam e 
m a trix  as F  of o rder one m ore. T hen  th e  fibres of th e  G auss m ap  of X  
have respectively dim ension 2, 3, 5, th e  focal hypersurfaces are quadrics of 
dim ensions 1, 2, 4, which ap p ear w ith  m ultip licity  m  — 1, 2m  — 2, 4m  — 4 
respectively.

E x a m p le  4. H igher secant varieties o f Scorza varieties. Let X  =  S m -1F  
be th e  variety  of m -secant (m  — 1)-planes of F , w here F  is one of th e  varieties 
ap p earin g  in th e  previous exam ple. X  is th e  m axim al p ro p e r secant variety  
of F  and  it is th e  hypersurface defined by th e  d e te rm in an t (or th e  Pfaffian) 
of th e  m a trix  considered in previous exam ple. T h e  varieties X  and  F  resu lt 
to  be m utually  dual, so r  =  m , 2m , 4m  respectively. T h e  focal locus of 
th e  G auss m ap is S m -2F . T h e  focal hypersurfaces are th e  m axim al secant 
varieties of v2 (Pm -1), P m - 1  x P m -1 , G (1 ,2 m  — 1) respectively. T hey  have 
degree m  and  ap p ea r w ith  m ultip licity  respectively 1, 2, 4.

R em ark  4.1. T he class of Scorza varieties includes also P m x P m - 1  and 
G ( 1 , 2 m ), for all m  >  3. Also th e ir secant varieties have p roperties  sim ilar 
to  above. T hey  are defined by m inors of m atrices of ty p e  (m  +  1) x (m  +  2) 
and  of skew -sym m etric square m atrices of ty p e  2 m  +  1 respectively.
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