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Abstract
Generic functions are defined by induction on the structural repre­

sentation of types. As a consequence, by defining just a single generic 
operation, one acquires this operation over any particular data type.
An instance on a specific type is generated by interpretation of the 
type’s structure. A direct translation leads to extremely inefficient 
code that involves many conversions between types and their struc­
tural representations. In this paper we present an optimization tech­
nique based on compile-time symbolic evaluation. We prove that the 
optimization removes the overhead of the generated code for a con­
siderable class of generic functions. The proof uses typing to identify 
intermediate data strutures that should be eliminated. In essence, the 
output after optimization is similar to hand-written code.
AMS classification (2000): 68N18, 68Q55, 03B15.
CR classification (1998): F.3.2, D.3.1.
Keywords and phrases: symbolic evaluation, partial evaluation, 
generic functions, polytypic functions, functional programming lan­
guages, program transformation, typing, operational semantics.

1 Introduction

The role of generic programming in the development of functional programs 
is steadily becoming more important. Key point is that a single definition of 
a generic function is used to automatically generate instances of that func­
tion for arbitrarily many different types. These generic functions are defined 
by induction on a structural representation of types. Typical examples in­
clude generic equality, mapping, pretty-printing, and parsing. Adding or
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changing a type does not require modifications in a generic function; the ap­
propriate code will be generated automatically. This eradicates the burden 
of writing similar instances of one particular function for numerous different 
data types, significantly facilitating the task of programming.

Current implementations of generic programming ([AP01, CHJ+02]), 
generate code which is strikingly slow because the generic functions work 
with structural representations rather than directly with data types. The 
resulting code requires numerous conversions between representations and 
data types. Without optimization automatically generated generic code runs 
nearly 10 times slower than its hand-written counterpart.

In this paper we present a compile-time (symbolic) evaluation system, 
and prove that it is capable of reducing the overhead introduced by generic 
specialization. The emphasis lies on the proof, which uses typing to predict 
the structure of the result of a symbolic computation: we show that if an 
expression has a certain type, say a, then its symbolic normal form will 
contain no other data-constructors than those belonging to a. To the best 
of our knowledge, there is currently no detailed study in the literature of 
improving performance of generics, in particular of proving completeness of 
these improvements.

Our approach with respect to generic programming is based on the no­
tions of type-indexed values and kind-indexed types [Hin00b] as is used in 
both Generic Clean [AP01] and Generic Haskell [CHJ+02]. The main sources 
of inefficiency in the generated code are due to heavy use of higher-order 
functions, and conversions between data structures and their structural rep­
resentation. For a large class of generic functions, our optimization removes 
both of them, resulting in code containing neither parts of the structural rep­
resentation (binary sums and products) nor higher-order functions, which 
are typically introduced by the generic specialization algorithm.

The rest of the paper is organized as follows. In section 2 we introduce 
a simple language. Section 3 considers typing aspects for that language. 
Generics are introduced in section 4. These first three sections are more 
or less preliminary. Section 5 shows that generic functions are type cor­
rect. In section 6, we extend the semantics of our language to evaluation of 
open expressions, and establish some properties of this so-called symbolic 
evaluation. Section 7 comprises the main result of the paper: it treats the 
optimization algorithm of generics, in particular the termination property. 
Section 8 discusses related work. Section 9 reiterates our conclusions.
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2 Language

In the following section we present the syntax and operational semantics of 
a core functional language. Our language supports essential aspects of func­
tional programming such as pattern matching and higher-order functions. 
It does not provide sharing, since the implementation of generics does not 
make use of it.

2.1 S yn tax

D efinition 2.1 (Expressions and  Functions)
a) The set of expressions is defined by the following syntax. In the defini­

tion, x ranges over variables, C over constructors and F  over function 
symbols. E  denotes ( E \ , E k ).

E  ::= x | C E  | F  | Xx.E | E E '  | case E  of P\ — E \ .. .  Pn — En 
P  ::= Cx

b) A  function definition is an expression of the form

F =  Ep

with FV(EP) =  $. Here, FV(E) denotes the set of free variables 
occurring in E.

Expressions are composed from applications of function symbols and 
constructors. Constructors have a fixed arity, indicating the number of 
arguments to which they are applied. Partially applied constructors can be 
expressed by A-expressions. A function expression is applied by a (binary) 
application operator. Finally, there is a case-construction to indicate pattern 
matching. Functions are simply named expressions (with no free variables).

2.2 Sem antics

We will describe the evaluation of expressions in the style of natural oper­
ational semantics, e.g. see [NN92]. The underlying idea is to specify the 
result of a computation in a compositional, syntax-driven manner.

In this section we focus on evaluation to normal form  (i.e. expressions 
being built up from constructors and A-expressions only). In section 6, we 
extend this standard evaluation to so-called symbolic evaluation: evaluation 
of expressions containing free variables.
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S tan d ard  evaluation 
D efinition 2.2 (Evaluation)

a) The set of normal forms (NF) is defined by the following syntax.

N  ::= CN  | Ax.E

b) Let E, V  be expressions. Then E  is said to evaluate to V (notation 
E  ÿ V ) i f  E  ÿ V can be produced in the following derivation system.

E ÿ V
(E-cons)

CE ÿ CV

Ax.E ÿ Ax.E (E-A)

F = Ef Ef ÿ V
— (E-fun)

F ÿ V

E ÿ CiE Di[x := Ê] ÿ V 

case E o f  ... Cix — D i... ÿ V

E ÿ Ax.E" E"[x := E'] ÿ V 

E E ' ÿ V

(E-case)

(E-app)

Here E[x := E '] denotes the term that is obtained when x in E  is 
substituted by E '.

Observe that our notion of normal form does not imply that expressions 
in norm form contain no redexes: if such an expression contains As, there 
may still be redexes below these As. Furthermore, it easy to show that if 
E  ^  V  then the expression V  is in normal form.

3 T yping

Typing systems in functional languages are used to ensure consistency of 
of function applications: the type of each function argument should match 
some specific input type. In generic programming types also serve as a basis 
for specialization. Additionally, we will use typing to predict the construc­
tors that appear in the result of a symbolic computation.
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Syntax o f kinds and types

The types we use are not restricted to kind * (E.g. see [Bar92]). A kind can 
be seen as a type of a type. Kinds are built up from the constant * (indi­
cating the kind of ordinary, first-order types), and the binary constructor 
^  (assigned to higher-order types).

D efinition 3.1 (K inds) The set of kinds is given by the following syntax.

k ::= * | k^ k'

Types are defined as usual. We use V-types to express polymorphism and 
a special A-construct to allow type variable abstraction. The A-types are 
not essential: they are not derived in our typing system (defined later on); 
their purpose is merely to facilitate the translation of generic specifications 
into functions.

D efinition 3.2 (Types)
a) The set of types is given by the following syntax. Below, a ranges 

over type variables, T over type constructors, and k over kinds.

a, r  ::= a  | T | a ^ r  | a r  | Va : K.a | Aa : K.a

b) We will sometimes use a ^ r  as a shorthand for a i ^  . . .  ~^ak ~^r. As 
usual, ^  associates to the right.

c) The set of free type variables of a is denoted by FV(a).

The main mechanism for defining new data types in functional languages 
is via algebraic types. In our system, type variables are not restricted to kind 
*. The kind of a type constructor will depend on the kinds of its arguments, 
which, in turn, are based on the use of the variables in the type specification 
of the constructors.

D efinition 3.3 (A lgebraic Types) Let A  be an algebraic type system, 
i.e. a collection of algebraic type definitions. The type specifications in A  
give both the kinds of the type constructors and the types of the algebraic 
constructors. Let

T a  =  • • • | Ci (Ti |■■ ■

be the specification of T in A. Then we write

A  h T : k^ *
A  h C i : V(a : ¡K).ai^ T  a.
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K ind and ty p e  derivation

Before treating type correctness, we introduce the notion of kind correctness. 
This notion is defined by the following derivation system.

D efinition 3.4 (K ind D erivation)
Let A  be an algebraic environment.

a) A  kind basis is a finite set of declarations of the form a  : k concerning 
distinct type variables.

b) The kind derivation system deals with statements of the form

K  h a : k.

Such a statement is valid i f  it can be produced using the following 
derivation rules.

c) A  is kind correct i f  each algebraic type is kind correct, i.e. for each T 
in A  with kind k^-* and definition

T a  =  ■ ■ ■ | Ci T

one has
a : k h aij : *.
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D efinition 3.5 (Function T ype E nvironm ent)
a) The function symbols are supplied with a type by a function type 

environment F , containing declarations of the form F  : a.

b) F  is kind correct i f  all function types are kind correct, i.e. for each 
F  : a in F  the type a is kind correct.

For the sequel, fix a function type environment F , and an algebraic type 
system A, both being kind correct.

D efinition 3.6 (Type D erivation)
a) A  type basis is a finite set of declarations of the form x  : r  concerning 

distinct variables.

b) The type system deals with typing statements of the form

B hK E  : a,

where B is a type basis, and K  a kind basis. Such a statement is valid if  
it can be produced using the following derivation rules (for readability 
reasons, we have omitted the K-subscript of the h-symbol). Below, S 
is either a function or a constructor symbol.
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c) The function type environment F  is type correct i f  each function def­
inition is type correct, i.e. for F  with type a and definition F  =  Ep 
one has h EF : a.

4 G enerics

In this section we define generics using the approach of kind-indexed types of 
Hinze [Hin00b]. First we define how data types are represented (Subsection 
4.1). Then we define kind-indexed types and kind-indexing (Subsection 4.2). 
Then generic functions (Subsection 4.3) and specialization (Subsection 4.4) 
are treated.

4.1 Structural rep resen tation  o f data  typ es

Algebraic data types are data types built out of sums of products of types. 
The idea is to represent an algebraic data type using a binary sum type (co­
product) and a binary product type [Hin99]. N-ary sums and products are 
then represented using the binary ones. The following two definitions define 
the product and the co-product, which are used for structural representation 
of data types.

D efinition 4.1 (P roduct)
a) A binary product is a data type

a x 0 =  a  x 0 

with projection functions and mapping

Outl =  Xx.case x of l x r ^  l 
Outr =  Xx.case x of l x r ^  r 
f  ® g =  Xx.case x of l x r ^  f  l x g r

b) A nullary product (unit) is a data type 1 =  1.

c) An n-ary product is a type

with a constructor
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{
x, n =  1
Outr x, i =  n

Outl n'n- 1(x) i < n

D efinition 4.2 (C o-product)
a) A binary co-product is a data type

a  +  3  =  Inl a  | Inr 3

with a destructor

l V  r =  Xx. case x of
Inl x ^  l x 
Inr x r x

and a mapping
f  © g =  Inl o f  V  Inr o g

b) An n-ary co-product is a type

v( ) =  ƒ a i, n =  1
^ (a i , . . . , an) ^  E ( a i , . . . ,  a n - i ) +  an n >  1

with injections

{
x, n =  1
Inr x, i =  n

Inl 1'n- 1  (x) i < n

and a destructor

v ( f i ’ . " ’fn) =  { ^ l f i , . . . , f n- i )  V  fn n >  1

We do not need a nullary co-product (void type) as a data type has at 
least one alternative.

D efinition 4.3 (S tru c tu ra l rep resen ta tio n  of d a ta  types) Let

T a  =  • • • | Ci ai | • • •

be a data type. The structural representation T° is defined as a synonym 
type

T° =  A<x £(. . . ,  n (a i) ,. . .)

and projections
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Exam ple 4.1 (S tru c tu ra l rep resen ta tio n  of d a ta  types) The types

List a  =  Nil | Cons a  (List a)
Tree a 3  =  Tip a | Bin 3  (Tree a 3 ) (Tree a 3 )

are represented as

List° =  Aa. 1 +  a x (List a)
Tree° =  Aa3. a  +  3 x Tree a 3 x Tree a 3

As usually, x and +  bind to the left. Note that the representation of a 
recursive type is not recursive.

To express the isomorphism between two types t and a we use embedding- 
projection pairs that store conversion functions t — a and a — t [HP01].

D efinition 4.4 (E m bedding-pro jection  pairs)
a) An embedding-projection pair is a pair of functions

a  ^  3  =  EP (a — 3) (3 — a)

b) Projections:

to =  Xx.case x o f EP t f  — t 
from =  Xx.case x o f EP t f  — f

c) Composition:

a • b =  EP(to a o to b)(from b o from a)

d) Inversion:
inv =  Xx.EP (from x) (to x)

The isomorphism between a data type T a  and its representation T° a  is 
also expressed as a pair of conversion functions T a  ^  T° a .

D efinition 4.5 (Conversion) Let T a  =  • • • | C i ai | • • • be a data type 
and T° its structural representation. The conversion between the two is an 
embedding-projection pair convT =  EP tor fromT where

tor =  Xx.case x o f ••• Ci x — ik (n(x)) ••• 
fromr  =  Xx. v  (• • • ,Xx.Ci (x) . . .  n m  (x), • • •)

Here k is the number of constructors in T, 1 < i < k, and m i =
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Exam ple 4.2 (Conversion) The conversion for lists is

: List a  ^  List° a 
=  EP toList fromList

=  Xl.case l of 
Nil — Inl 1
Cons x xs — Inr (x x xs)

=  Xl.case l of
Inl u — case u of 1 — Nil 
Inr p — case p of (x x xs) — Cons x xs

4.2 K in d-in dexed  ty p es

Many functions can be defined not only for various types of the same kind 
but also for types of various kinds. For instance, there is a mapping func­
tion for functors, bi-functors and functors of other kinds. These mapping 
functions have different types depending on the kinds of the functors. Our 
goal is to handle all such cases by a single generic definition. Kind-indexed 
types facilitate this goal. They are schemes that compute a type from a 
kind. [Hin00b].

D efinition 4.6 (K ind-indexed type) A kind indexed type is generated by 
the following grammar

Y =  a | rd .Y

Variables bound by r  must be of kind *. These variables are called kind- 
indexed variables.

D efinition 4.7 (K ind-indexing) Let y  =  r a i . . .  an.a be a kind-indexed 
type. Kind indexing is the following operation

Y(*) =  A ai : * . . .  an : *.a
Y(k — K) =  Aai : K — K . . .  an : K — K .V3i : k . . .  3n : k.

y (k) 3i . . .  3n — Y(K) (a i 3i) . . .  (an 3n)

Exam ple 4.3 (K ind-indexing) Consider the following kind-indexed type 
for the mapping function Map =  T a3.a  — 3. It can be used to generate 
the type of mapping for a functor of any kind.

convList
convList
where

toList

fromList
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Map(*)
Map(* — *)

Map(* —— * —— *)

Map((* —— *) —— *)

Aa3 . a — 3  
Aa3 V a  i3 i .(a i — 3 i )
— (a a i — 3  3 i )
Aa3 V a  i3 i .(a i — 3 i )
— (V a232.( a2 — 32)

— (a « i «2 — 3 3i 32)) 
A a3.Va i3 ia 232.
( a  i — 3i) — ( a 2 — 32)
— ( a ai a 2 — 3 3i 32))
A a3.V a i3 i .
(Va i i3 i i .(a ii — 3 i i )

— (a i a ii — 3 i 3 i i ))
—— (a «i —— 3  3i)

4 .3  G eneric functions

Informally, a generic function is a template used to generate functions that 
operate on concrete data types. This template is provided by the program­
mer and consists of a kind-indexed type (see subsection 4.1) and a set of base 
case definitions on basic types and the generic structure of types (Subsec­
tion 4.2). The kind-indexed type is used to generate types of all generated 
functions.

D efinition 4.8 (G eneric function)
a) The instance environment I  is a mapping from type constructors 

T e T  to function symbols F. We treat the arrow type — as a type 
constructor of kind * *, i.e. (—) e T .

b) A generic function G is a triple (y , I , C) where y  is a kind-indexed type,
I  is an instance environment and C c T  is a set of base cases, i.e type 
constructors, for which the instances are provided by the user.

Exam ple 4.4 (G eneric m apping) Generic mapping

map =  (Map, ^map, I 1, +, x })
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is a generic function with the following base cases in I map:

mapt : 1 — 1 
mapt =  id
mapx : Va i«23i 32.(a i — 3i) — (a2 — 32)

— (ai x a 2 — 3i x 32) 
mapx =  Xfg. f  ® g
map+ : Va i«23i 32.(a i — 3i) — (a2 — 32)

— (a i +  a 2 — 3 i +  /32) 
map+ =  Xfg. f  ® g

4 .4  S p ecia lization  o f generic functions

This subsection defines how a generic function is specialized to a concrete 
function for a given type. Specialization is defined in two steps: first we 
introduce specialization by induction on the structure of types, and then 
use this notion to define specialization to algebraic data types.

The following operation is used to take a fresh instance of a type where 
each free variable is substituted by a variable with the same name and added 
index.

D efinition 4.9 (Fresh indexed type) Let t be a type. The operation of 
fresh indexed type (t )i is defined as follows

(t )i =  t [ a  := a i], Va e  F V (t)

Exam ple 4.5 (Fresh indexed type) (a)i =  a i and (A a .a 3)i =  A a .a 3i

Specialization of a generic operation to a type yields an expression that 
performs the operation on the value of the type.

D efinition 4.10 (Specialization)
a) The specialization environment E is a finite set of declarations of the 

form : k := x concerning distinct type variables and distinct term 
variables x.

b) The specialization G(E , t ) of a generic function G to a monomorphic 
type t (i.e. a type without Vs) is defined inductively on the structure 
of types:

G(E, a) =  E(a)
G(E, T) =  I ( t )
G(E , a p )  =  G(E ,a)G(E ,p)
G(E, a — p) =  I (—) G(E,a)G(E,p)
G(E, Aa.a) =  Xx.G(E[ a  := x],a)
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c) We write G(a) as an abbreviation of G($, a).

Exam ple 4.6 (Specialization) Specialization of map to List0 =  A a. 1 + 
a x (List a):

mapList° =  Xx.map+ mapt (mapx x  (mapList x))

So far we defined how to specialize a generic function for the representation 
type T0. However, we have to generate an instance for the real type T. 
Before looking at it we introduce a generic function for embedding-projection 
pairs, which is used to convert generated functions on structural types T0 a 
into the functions on the types T a . This function is similar to generic map 
introduced in the examples above except that it operates on pairs of arrows 
instead of a single arrow.

D efinition 4.11 (G eneric em bedding-pro jections) The generic func­
tion

EP =  ( r a ¡ .a  ^  ¡ , I ep, {1, +, x, ^-, ^ } )  

where the instance environment I ep contains the following base cases:

ep1 = EP id id
ep+ = Xa.Xb.EP (to a © to b) (from a © from b)

p X = Xa.Xb.EP (to a ® to b) (from a ® from b)
ep^ = Xa.Xb.EP (Xf.to b o f  o from a)

(Xf.from b o f  o to a)
ep^ = Xa.Xb.EP (Xe.b • e • inv a)

(Xe.inv b • e • a)

Unlike in map, here we have additional base cases on arrows ep^ and 
embedding-projection pairs ep^. The case for arrows ep^ is needed to con­
vert functions on T0 a  into functions on T a . The base case for embedding- 
projection pairs ep^ is needed to prevent non-termination of the specializa­
tion of EP , which requires specialization of EP to

Finally, we define how to generate a function for a data type T using 
specialization for T0.

D efinition 4.12 (Specialization to  a d a ta  type) Let G =  (ra .a , I , C) 
be a generic function and T ¡3 be a data type such that T ^ C U ( ^ ) . Let 
n =  \a | and m  =  \3\- The instance G T =  I (T) is generated as follows:

G t  =  from (EP(Aa.a) convT .. .  convT)  om G(T0)
n times

14



where f  ok g =  Xxi . . .  Xxk. f  (g xi .. .  x k)

Exam ple 4.7 (Specialization to  a d a ta  type) Instance of mapping for 
List:

mapList =  from (ep^ convList convList) o mapList°

This generated mapping function is equivalent to the standard mapping 
function for lists.

5 T yping of G enerics

In this section we show that the code generated by the generic specialization 
is well-typed. The proofs are based on Hinze [Hin00a].

Lem m a 5.1 (Typing conversion) convt  : T a  ^  T° a

D efinition 5.1 (Type correct generic function)
a) The instance environment I  is type correct iff Vt £ T l (t) : y (k) t . . .  t 

where k is the kind of t.

b) The generic function is type correct iff its instance environment is type 
correct.

D efinition 5.2 (Type correct specialization environm ent)
a) The specialization environment E for the generic function G =  (y, I , C) 

is type correct iff Va : k £ E.E(a) : y(k) a 1 . . .  an.

b) The specialization basis \E\ is a set of entries of the form x  : y (k) a 1 . . .  an.

The following key property states that the specialization process yields a 
well-typed expression of the desired type.

P roposition  5.2 (Typing specialization) Let

a) G be a type-correct generic function of type y,

b) t : k be a monomorphic type,

c) E be a type-correct environment for G such that F V (t) C E.

Then \E\'rG(E, t ) : y (k) (t )i . . .  (t)n.

P roof: By induction on the structure of monomorphic types.
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• Case t = a  : k. By type-correctness of E.

• Case t = T : k. By type-correctness of the generic function.

• Case t = a p. Let a : k — k' and p : k. By IH for a:

\E\ r  G(E, a) : y (k — k') (a)i . . .  (a)n 

By the definition of kind-indexing:

Y(k — k') (a)i . . .  (a)n
= V^i . . .  ¡n.y(K) 3i . . .  3n — Y (k') (a 3  )i . . .  (a f3)n 
=  V3i . . .  3n.y(K) 3i . . .  3n — Y (k') ((a)i 3i) . . .  ((a)n 3n)

By IH for p:
\E\ r  G(E,p) : Y(k) (p)i . . .  (p)n

By (a-V-elim) and (a-app):

\E\rG(E,a)G(E,p)  : y (k') (a)i (p)i . . .  (a)n (p)n 
\E\rG(E,a)G(E,p)  : y (k') (a p)i . . .  (a p)n

• Case t = a — p. Similar to the previous case.

• Case t = Aa.a. Let a  : k and a : k' . Let E' =  E ,a  := x  where 
x : y(k) a i . . .  a n. Let E  =  G(E', a)
By IH:

\E'\ r  E  : y (k') (a)i . . .  (a)n 

By (a-A-intro) and (a-app):

\E'\ r  E  : Y(k') ((A a.(a)i) a) . . .  ((Aa.(a)n) a)

By the definition of type indexing

\E'\ r  E  : y (k') ((Aa.a) a ) i . . .  ((Aa.a) a )n

By (a-A-intro):

\E\ r  Xx.E : y(k) a i . . .  an
— y (k') ((A a .a) a ) i . . .  ((Aa .a) a )n
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By (a-V-intro):

\E\ r  Xx.E : Vai . . .  an .y(K) a i . . .  an
— Y (k') ((A a .a) a ) i . . .  ((Aa .a) a )n

By kind-indexing 4.7:

\E\ r  Xx.E : y (k — k' ) (A a.a)i . . .  (Aa.a)n

The following property states that a function generated for a data type 
is well-typed.

P roposition  5.3 (Typing generated  instances) Let G =  (y, I , C) be a
generic function and T : k be a data type. Then G T =  I (T) : y( k) T . . .  T.

P ro o f : Let y  =  r 3 .a  and y* =  Y(*) =  A a.a. By the definition of kind 
indexed types all a  : *. Thus, y* : k' where * — ...  — * — * and n =  \a\.

v
n times

By typing specialization 5.2

EP(y*) : (r33 '.3  ^  3 ')(k') (y*)i (y*)2

Since y* is a closed type

EP(y*) : (r33 '.3  ^  13') (k') y* y*

By the definition of kind-indexing 4.7

EP(y*) : Vpip'i. . .  3n3n.
(3 i ^ 3 i ) — . . .  — (3n ^  3n)
— (y* 3i . . .  3n ^  Y* 3'l . . .  3n)

By definition convT : T a i . . .  am ^  T0 a i . . .  am where m  is the arity of 
type T. Thus

EP(y*) convT .. .  convT :
Y* (T a ii . . . a im) . . .  (T a ni . . . a nm)

^  y* (T a ii . . . a im) . . . (T a ni . . . anm)

Then
from (EP(y*) convT .. .  convT) :

y* (T0 a )i . . .  (T0 a)n — y* (T a )i . . .  (T a)r
By typing specialization 5.2

G(T0) : y (k) T0 .. .  T0
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Since T0 =  A a i . . .  am.T, k =  ki — .. .  — km — *. By kind indexing 4.7 

y( k) T0 . . .  T0 =  Vai i . . .  anm.
y(Ki) a i i  . . .  ani — .. .  — y( Km) a im . . . anm

— Y(*) (T0 a ii . . . a im) . . . (T0 a ni . . . anm)

By typing for composition the type of the right-hand-side of the generated 
function is

GT : Vaii . . . anm.
y( ki ) a i i  . . .  ani — .. .  — y ( Km) a im . . . anm

— Y(*) (T a ii . . . a im) . . .  (T a ni . . . a nm) ,

which by kind indexing is y (k) T . . .  T

6 Sym bolic evaluation

The purpose of symbolic evaluation is to reduce expressions at compile-time. 
For instance, we want to simplify the generated mapping function for lists 
(see example 4.7).

If we want to evaluate expressions containing free variables, evaluation 
cannot proceed if the result of such a variable is needed. This happens for 
instance if a pattern match on such a free variable takes place. In that case 
the corresponding case-expression cannot be evaluated fully. The most we 
can do is to evaluate all alternatives of such an expression. Since none of 
the pattern variables will be bound, the evaluation of these alternatives is 
likely to get stuck on the occurrences of variables again.

Symbolic evaluation gives rise to a new (extended) notion of normal form, 
where in addition to constructors and X-expressions, also variables, cases and 
higher-order applications can occur. This explains the large number of rules 
required to define the semantics. Further in this paper we are only interested 
in symbolic evaluation, so there is no need to introduce a different notation 
to distinguish it from standard evaluation.

D efinition 6.1 (Sym bolic Evaluation) We adjust definition 2.2 of eval­
uation by replacing the E-X rule, and by adding rules for dealing with new
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combinations of expressions.

E ^ case D o f  ■ ■ ■ P. — D. ■ ■ ■ case D. o f  ■ ■ ■ Qj — Ej ■ ■ ■ ^ V.
(E-case-case)

case E o f  ■ ■ ■ Qj — Ej ■ ■ ■ ^ case D o f  ■ ■ ■ Pi — Vi

E ^ x Ei ^ Vi 

case E o f  ■ ■ ■ Pi — Ei ■ ■ ■ ^ case x o f  ■ ■ ■ Pi —— Vi ■ ■

E ^ E' E '' Ei ^ Vi

case E o f  ■ ■ ■ Pi — Ei ■ ■ ■ ^ case E' E '' o f  ■ ■ ■ Pi — V. 

E ^ case D o f  ■ ■ ■ P. — Di ■ ■ ■ Di E' ^ V

(E-case-var)

— (E-case-app)

E E ' ^  case D o f  ■ ■ ■ P. — V. ■ ■ ■
(E-app-case)

E ^ x E ' ^ V E ^ D D' E' ^ V
--------------------  (E-app-var) -------------------------  (E-app-app)

E E '  ^ x V E E '  ^ D D' V

The following definition characterizes the results of symbolic evaluation.

D efinition 6.2 (Sym bolic N orm al Form s) The set of symbolic normal 
forms (indicated by N s) is defined by the following syntax.

N s ::= cN s \ Xx.Ns \ Nh \ case Nh of ■■■ P% — Ns ■■■
Nh ::= x \ Nh Ns

Next, we prove that our characterization is correct.

P roposition  6.1
E  ^  V ^  V £ Ns

P ro o f: By induction on the derivation of E  ^  V . We show a characteristic 
example case.

• Rule (E-case-case). Suppose

case E  of ■ ■ ■ Qj — Ej ■ ■ ■ ^  case D of ■ ■ ■ Pi — Vi ■ ■ ■

since
E  ^  case D of ■ ■ ■ Pi — Di ■ ■ ■
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case D of • • • Pi ^  Vi ■ ■ ■ G Ns. □

6.1 Sym bolic evaluation  and typ ing

In the remainder of this section we will show that the type of an expression 
(or the type of a function) can be used to determine the constructors that 
appear (or will appear after reduction) in the symbolic normal form of that 
expression. Note that this is not trivial because an expression in symbolic 
normal might still contain potential redexes that can only be determined 
and reduced during actual evaluation. Recall that the motivation for in­
troducing symbolic evaluation is to use it as a kind of partial evaluator in 
order to get rid of auxiliary data structures that are introduced if one uses 
a straightforward implementation of generic functions. Of course, such a 
partial evaluator will in general not be able to reduce an expression fully.

The connection between evaluation and typing is usually given by the so- 
called subject reduction property indicating that typing is preserved during 
reduction. In order to prove this property we need two technical lemmas 
relating typing and substitution to each other.

Lem m a 6.2 (Type S u b stitu tio n  Lem m a)

B h E  : a ^  B[a := p] h E  : a[a := p]

b)
B h E[x := E'] : a 

B K E  ' : t

P roposition  6.4 (S ubject R eduction  P ro p erty )
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P ro o f : By induction on the derivation of E  ^  V . Again, we will not 
treat all cases, but pick out some interesting ones.

• Rule (E-app). Suppose E E ' ^  V , since (1) E  ^  Xx.E'' and (2) E''[x := 
E'] ^  V . Suppose B r  E E ' : a, since B r  E  : t —a, and B r  E' : t . 
By IH for (1) one has B r  Xx.E'' : t —a. From typing rule a-X it 
follows that B , x  : t r  E  : a. Now, by substitution lemma 6.3 (a) 
one has B r  E''[x := E'] : a. Using IH for (2) one can conclude that 
B r  V : a.

• Rule (E-case-case). Suppose

case E  of ■ ■ ■ C jyj — Ej ■ ■ ■ ^  case D of ■ ■ ■ A z  — Vi ■ ■ ■

since (1) E  ^  case D of ■ ■ ■ A izi — Di ■ ■ ■ and (2) case Di of ■ ■ ■ Cj yj — 
Ej ■ ■ ■ ^  Vi. Suppose

B r  case E  of ■ ■ ■ Cj yj — Ej ■ ■ ■ : a

because B r  E  : t , B r  Cj : p ^ T , and B,yj  : p r  Ej  : a. By 
IH for (1), B r  case D of ■ ■ ■ A izi — Di ■ ■ ■ : t . Hence B r  D : n, 
B r  A i : e ^ n ,  and B , z i : 9 r  Di : t . By lemma 6.3 B,yj  : a r  
case Di of ■ ■ ■ Cj yj — Ej ■ ■ ■ : a. Now we can apply IH for (2), so 
B ,a j : p r  Vi : a. Finally, the typing rule a — case can be applied, 
yielding B r  case D of ■ ■ ■ A a  — Vi ■ ■ ■ : a. □

There are two ways to determine constructors that are created during the 
evaluation of an expression, namely, (1, directly) by analyzing the expression 
itself or (2, indirectly) by examining the type of that expression.

In the remainder of this section we will show that (2) includes all the 
constructors of (1) provided that (1) is determined after the expression is 
evaluated symbolically. The following two definitions make the distinction 
between the different ways of indicating constructors precise.

D efinition 6.3 (C onstruc to rs  of norm al form s) Let N  be an expres­
sion in symbolic normal form. The set of constructors appearing in N  
(denoted as CN(N)) is inductively defined as follows.

Cn (C V ) =  {C}U Cn (N )
Cn  (Xx.N) =  Cn  (N)
Cn  (x) =  0
Cn  ( n  N ') =  Cn  (N ) U Cn  (N ')
Cn  (case N  of ■■■ Pi — N  ■ ■ ■) =  Cn  (N) U (uC n  (N))

Here CN (N ) should be read as UiCN(Ni).
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D efinition 6.4 (C onstruc to rs  of types)
• Let a be a type. The set of constructors in a (denoted as CT(a)) is 

inductively defined as follows.

C t (a) =  0
Ct (T) =  Ui[{Ci}U Ct (ai)],

where T =  ■ ■ ■ \ C iai \ ■ ■ ■ 
Ct  (t ——a) =  Ct  (t ) U Ct  (a) 
Ct  (t a) =  Ct  (t ) U Ct  (a)
CT (Va .a) =  CT (a)
Ct  (A a .a) =  Ct  (a)

• Let B  be a basis. By CT (B) we denote the set UCT (a) for each x  : a 
appearing in B .

Exam ple 6.1 For the types

List a  =  Nil \ Cons a  (List a)
Tree a  =  Node a(List (Tree a))

we have
CT (List) =  {Nil, Cons}
CT (Tree) =  {Node, Nil, Cons}

As a first step towards a proof of the main result of this section we 
concentrate on expressions that are already in symbol normal form. To 
prepare for this result we need two auxiliary lemmas.

Lem m a 6.5
a) Let a,T be types such that FV(a) C F V (t). Then

CT (a) C CT(t) ^  CT (a[a := p]) C CT(t [a := p]).

b) For any basis B :

B r  C : r ^ a  ^  {C} U Ct  (a) C Ct  (a)

Lem m a 6.6 Let N  £ Ns. Then

B x Na  : a a B.
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P ro o f : This property follows directly from the rules (a-var) and (a- 
app). □

If an expression is already in symbolic normal form, then its typing gives 
a safe approximation of the constructors that are possibly generated by that 
expression. This is stated by the following proposition.

P roposition  6.7 Let N  £ Ns. Then

B r  N  : a ^  Cn (N) C Ct (B) U Ct (a).

P ro o f : By induction on the structure of Ns .

• Case N  = x. Trivial, since CN(x) =  0.

• Case N  = C N . Then Cn ( N ) =  {C} U Cn (N).  Suppose B r  C N  : a, 
since B r  C : r ^ a  and B r  N  : r. By IH CN(N ) C CT (B) U CT (a). 
By lemma 6.5 (a and b) {C} U CT (V) C CT (a), so CN( N ) C CT (B) U
CT (a).

• Case N  = case N ' of ■ ■ ■ Ciyi — Ni ■■■. Then CN( N ) =  CN(N') U  
CNN i . Suppose B r  case N  of ■ ■ ■ Ciyi — Ni ■ ■ ■ : a, since B r  N ' : t , 
B r  Ci : p ^ T , and B , f i  : p r  Ni : a. By IH Cn (N') C Ct (B) U 
CT(t ). By lemma 6.6 t £ B, and hence CT(t ) C CT (B). Again by 
IH CN(N{) C CT (B) U CT(33) U CT (a). Now by lemma 6.5 (a and b) 
one has that CT(p) C CT(t ), so CN(Ni) C CT (B) U CT(a).

All other cases are treated in the same way. □
The main result of this section shows that symbolic evaluation is ade­

quate to remove constructors that are not contained in the typing statement 
of an expression. For traditional reasons we call this the deforestation prop­
erty.

P roposition  6.8 (D eforestation  P ro p erty )

BE E N  a } ^  Cn  (N) C Ct  (B) U Ct  (a)

P ro o f : By proposition 6.1, 6.7, and 6.4. □
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7 O ptim ising G enerics

Before we can apply a generic operation to a concrete object we have to 
convert this object into its generic representation. This conversion as well 
as the presence of many higher-order functions introduces a great amount of 
overhead during real execution. In fact, this makes the translation scheme 
for generics presented in the previous section unsuited as a basis for a real 
implementation. In this section we will show that, by using symbolic eval­
uation, one can implement a compiler that for a generic operation yields 
code as efficient as a dedicated hand coded version of this operation. The 
following lemma prepares for the main result of this section.

Lem m a 7.1 Let G be a generic function of type y, T a data-type, and let 
G t  be the instance of G on T. Suppose G T ^ NT. Then for any data type 
S one has

S £ y ,  T ^  Ct (S) n Cn (N t) =  0.

P ro o f: By proposition 6.8, 6.4, and 5.2

P roposition  7.2 (Efficiency of generics) Non-recursive generics can be 
implemented efficiently.

P ro o f: First we create a generic instance according to definition 4.12. Then, 
the symbolic normal form of this instance is computed via symbolic eval­
uation. From the previous lemma it follows that none of the (internal) 
basic data types {1, +, x, —, ^ }  will occur in this symbolic normal form 
(provided that these data types are indeed internal, i.e. are not part of the 
generic type or of the instance type). Hence if such an optimized generic 
operation is used inside a program, the evaluation of this program will not 
lead to the creation of any of these internal constructors.

7.1 On term ination  o f sym bolic  evaluation

Until now we have avoided the problem that occurs when dealing with pro­
grams that do not terminate when evaluated symbolically. In general, this 
termination problem is undecidable, so precautions have to be taken if we 
want to use the symbolic evaluator at compile-time. It should be clear that 
non-termination can only occur if some of the involved functions are recur­
sive. In this case such a function might be unfolded infinitely many times 
(by applying the rule (E-fun)).

The problem arises when we deal with generic instances on recursive 
data types. A specialization of a generic function to such a type will lead
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to a recursive function. For instance, the specialization of map to List con­
tains a call to mapList° which, in turn, calls recursively mapList. We can 
circumvent this problem by breaking up the definition into a non-recursive 
part and to reintroduce recursion via the standard fixed point combinator
Y  = Xf . f  ( Y f ). Then we can apply symbolic evaluation to the non-recursive 
part to obtain an optimized version of our generic function. The standard 
way to remove recursion is to add an extra parameter to a recursive function, 
and to replace the call to the function itself by a call to that parameter.

Exam ple 7.1 (N on-recursive specialization) The specialization of Map 
to List without recursion:

map|_ist =  Xm.from (ep^ convList convList) ◦
(Xf.map+ map! (mapx f  (m f)))

mapList =  Y mapList

After evaluating mapjjst symbolically we get

map|_ist =  Xm.Xf.Xx. case x of 
List Nil — Nil

Cons y y s  — Cons ( f  y) (m f  ys) 

showing that all intermediate data structures are eliminated.

Suppose the generic instance has type a . Then the non-recursive variant 
(with the extra recursion parameter) will have type a —a which means that 
proposition 7.2 is still valid.

However, this manner of handling recursion will not work if the kind- 
indexed type y contains recursive data types. Consider for example the 
monadic mapping function for the list monad Mmap =  r aj3. a — List 3 . The 
specialization of Mmap to any data type will use the embedding-projection 
specialized to Aa3.a — List 3  (see definition 4.11). This embedding- 
projection will contain a call to the (recursive) embedding-projection for 
the List-type. Now we cannot get rid of recursion (using the Y -combinator) 
because it is not possible to replace the call to £V(y)  in the specialization 
of Mmap by a call to a non-recursive variant of £V(y)  and to reintroduce 
recursion afterwards.

In practice, our approach will handle many generic functions as most of 
them do not contain recursive types in their poly-kinded type specifications, 
and hence, do not require recursive embedding-projections. For instance, all 
generic functions in the generic Clean library fulfill this requirement.
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O nline non-term ination  d etection

A way to solve the problem of non-termination is to extend symbolic eval­
uation with a mechanism for so-called online non-termination detection. A 
promising method is based on the notion of homeomorphic embedding (HE) 
[Leu98]: a (partial) ordering on expressions used to identify ‘infinitely grow­
ing expressions’ leading to non-terminating evaluation sequences. Clearly, in 
order to be safe, this technique will sometimes indicate unjustly expressions 
as dangerous. We have done some experiments with a prototype implemen­
tation of a symbolic evaluator extended with termination detection based 
on HEs. It appeared that in many cases we get the best possible results. 
However, guaranteeing success when transforming arbitrary generics seems 
to be difficult. The technique requires careful fine-tuning in order not to pass 
the border between termination and non-termination. This will be subject 
to further research.

8 R elated  W ork

The generic programming scheme that we use in the present paper is based 
on the approach by Hinze[Hin00a]. In particular, our proof of type correct­
ness of the specialized instances is adopted from this thesis.

In [HP01] Peyton Jones and Hinze show by example that inlining and 
standard transformation techniques can get rid of the overhead of conver­
sions between the types and their representations. The example presented 
does not involve embedding-projections and only treats non-recursive con­
versions from a data type to its generic representation. In contrast, our 
paper gives a formal treatment of generic optimization.

Initially, we have tried to optimize generics by using deforestation [Wad88] 
and fusion [Chi94, AGS02]. Deforestation is not very successful because of 
its demand that functions have to be in treeless form. Too many generic 
functions do not meet this requirement. But even with a more liberal classi­
fication of functions we did not reach an optimal result. We have extended 
the original fusion algorithm with so-called depth analysis [CK96], but this 
does not work because of the producer classification: recursive embedding- 
projections are no proper producers. We also have experimented with alter­
native producer classifications but without success.

Moreover from a theoretical point of view, the adequacy of these methods 
is hard to prove. [Wad88] shows that with deforestation a composition of 
functions can be transformed to a single function without loss of efficiency. 
But the result we are aiming at is much stronger, namely, all overhead due
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to the generic conversion should be eliminated.
Our approach based on symbolic evaluation resembles the work that has 

been done on the field of compiler generation by partial evaluation. E.g., 
both [ST96] and [J092] start with an interpreter for a functional language 
and use partial evaluation to transform this interpreter into a more or less 
efficient compiler or optimizer. This appears to be a much more general goal. 
In our case, we are very specific in the kind of results we want to achieve. 
To the best of our knowledge, nobody else uses typing to approximate the 
results of a computation and relates this to an operational semantics.

9 C onclusions and future work

In the present paper we defined a symbolic evaluation algorithm and proved 
that it is able to optimize code generated by the generic specialization pro­
cedure. The optimized code is close to what the hand-written code would 
be. Problems arise when generic function types are involved that contain 
recursive type constructors. These type constructors give rise to recursive 
embedding projections which can lead no non-termination of symbolic eval­
uation. We could use fusion to deal with this situation but then we have to 
be satisfied with a method that sometimes produces less optimal code. It 
seems to be more promising to extend symbolic evaluation with on online 
non-termination detection, most likely based on the homeomorphic projec­
tions [Leu98]. We already did some research in this area but this has not 
yet led to the desired results.

We plan to study other optimization techniques in application to generic 
programming, such as program transformation in computational form [TM95] 
Generic specialization has to be adopted to generate code in computational 
form, i.e. it has to yield hylomorphisms for recursive types.

Generics are implemented in Clean 2.0. Currently, the fusion algorithm 
of the Clean compiler is used to optimize the generated instances. As stated 
above, for many generic functions this algorithm does not yield efficient 
code. For this reason we plan to use the described technique to improve 
performance of generics.

R eferences

[AGS02] Diederik van Arkel, John van Groningen, and Sjaak Smetsers.
Fusion in practice. In Ricardo Pena and Thomas Arts, editors,

27



[AP01]

[Bar92]

[Chi94] 

[CHJ+02] 

[CK96] 

[Hin99]

[Hin00a]

[Hin00b]

Proceedings of the 14th International Workshop on the Implemen­
tation of Functional Languages, IF L’02, volume 2670 of LNCS. 
Departamento de Sistemas Informa ticos y Programación, Uni­
versidad Complutense de Madrid, Springer, September 2002.

Artem Alimarine and Rinus Plasmijer. A generic programming 
extension for clean. In Thomas Arts and Markus Mohnen, editors, 
Proceedings of the 13th International workshop on the Implemen­
tation of Functional Languages, IF L’01, pages 168-186. Alvsjö, 
Sweden, September 2001.

Henk Barendregt. Lambda calculi with types. In S Abramsky, 
D.M. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in 
Computer Science, Volumes 1 (Background: Mathematical Struc­
tures) and 2 (Background: Computational Structures), volume II. 
1992.

Wei-Ngan Chin. Safe fusion of functional expressions II: further 
improvements. Journal of Functional Programming, 4(4):515- 
555, October 1994.

Dave Clarke, Ralf Hinze, Johan Jeuring, Andres Löh, and Jan de 
Wit. The generic haskell user’s guide. Technical report, uu-cs- 
2002-047, Utrecht University, 2002.

Wei-Ngan Chin and Siau-Cheng Khoo. Better consumers for pro­
gram specializations. Journal of Functional and Logic Program­
ming, 1996(4), November 1996.

Ralf Hinze. A generic programming extension for Haskell. In Erik 
Meijer, editor, Proceedings of the 3rd Haskell Workshop. Paris, 
France, September 1999. The proceedings appeared as a technical 
report of Universiteit Utrecht, UU-CS-1999-28.

Ralf Hinze. Generic programs and proofs. Habilitationsschrift, 
Universitöat Bonn, October 2000.

Ralf Hinze. Polytypic values possess polykinded types. In Roland 
Backhouse and J.N. Oliveira, editors, Proceedings of the Fifth In­
ternational Conference on Mathematics of Program Construction 
(MPC 2000), volume 1837, pages 2-27, July 2000.

28



[HP01]

[J092]

[Leu98]

[NN92]

[ST96]

[TM95]

[Wad88]

Ralf Hinze and Simon Peyton Jones. Derivable type classes. In 
Graham Hutton, editor, Proceedings of the 2000 ACM SIGPLAN  
Haskell Workshop, volume 41.1 of Electronic Notes in Theoretical 
Computer Science. Elsevier Science, August 2001. The prelimi­
nary proceedings appeared as a University of Nottingham tech­
nical report.

Jesper J0rgensen. Generating a compiler for a lazy language by 
partial evaluation. In Nineteenth ACM Symposium on Principles 
of Programming Languages, pages 258-268. Albuquerque, New 
Mexico, ACM Press, January 1992.

Michael Leuschel. Homeomorphic embedding for online termi­
nation. Technical Report DSSE-TR-98-11, Department of Elec­
tronics and Computer Science, University of Southampton, UK, 
October 1998.

Hanne Riis Nielson and Flemming Nielson. Semantics with Appli­
cations: A Formal Introduction. Wiley Professional Computing, 
1992. ISBN 0 471 92980 8.

Michael Sperber and Peter Thiemann. Realistic compilation by 
partial evaluation. In Proceedings of the ACM SIGPLAN ’96 
Conference on Programming Language Design and Implementa­
tion, pages 206-214, May 1996.

Akihiko Takano and Erik Meijer. Shortcut deforestation in calcu- 
lational form. In Conf. Record 7th ACM SIGPLAN/SIGARCH  
Int. Conf. on Functional Programming Languages and Computer 
Architecture, FPCA’95, pages 306-313, New York, June 1995. La 
Jolla, San Diego, CA, USA, ACM Press.

Phil Wadler. Deforestation: transforming programs to eliminate 
trees. In Proceedings of the European Symposium on Program­
ming, number 300 in LNCS, pages 344-358, Berlin, Germany, 
March 1988. Springer-Verlag.

29


