
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/60606

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16146455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/60606

Efficient Generic Functional Programming

Artem Alimarine Sjaak Smetsers
Computing Science Institute

University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

alimarin@cs.kun.nl, sjakie@cs.kun.nl

June 2, 2004

Abstract
Generic functions are defined by induction on the structural repre

sentation of types. As a consequence, by defining just a single generic
operation, one acquires this operation over any particular data type.
An instance on a specific type is generated by interpretation of the
type’s structure. A direct translation leads to extremely inefficient
code that involves many conversions between types and their struc
tural representations. In this paper we present an optimization tech
nique based on compile-time symbolic evaluation. We prove that the
optimization removes the overhead of the generated code for a con
siderable class of generic functions. The proof uses typing to identify
intermediate data strutures that should be eliminated. In essence, the
output after optimization is similar to hand-written code.
AMS classification (2000): 68N18, 68Q55, 03B15.
CR classification (1998): F.3.2, D.3.1.
Keywords and phrases: symbolic evaluation, partial evaluation,
generic functions, polytypic functions, functional programming lan
guages, program transformation, typing, operational semantics.

1 Introduction

The role of generic programming in the development of functional programs
is steadily becoming more important. Key point is that a single definition of
a generic function is used to automatically generate instances of that func
tion for arbitrarily many different types. These generic functions are defined
by induction on a structural representation of types. Typical examples in
clude generic equality, mapping, pretty-printing, and parsing. Adding or

1

mailto:alimarin@cs.kun.nl
mailto:sjakie@cs.kun.nl

changing a type does not require modifications in a generic function; the ap
propriate code will be generated automatically. This eradicates the burden
of writing similar instances of one particular function for numerous different
data types, significantly facilitating the task of programming.

Current implementations of generic programming ([AP01, CHJ+02]),
generate code which is strikingly slow because the generic functions work
with structural representations rather than directly with data types. The
resulting code requires numerous conversions between representations and
data types. Without optimization automatically generated generic code runs
nearly 10 times slower than its hand-written counterpart.

In this paper we present a compile-time (symbolic) evaluation system,
and prove that it is capable of reducing the overhead introduced by generic
specialization. The emphasis lies on the proof, which uses typing to predict
the structure of the result of a symbolic computation: we show that if an
expression has a certain type, say a, then its symbolic normal form will
contain no other data-constructors than those belonging to a. To the best
of our knowledge, there is currently no detailed study in the literature of
improving performance of generics, in particular of proving completeness of
these improvements.

Our approach with respect to generic programming is based on the no
tions of type-indexed values and kind-indexed types [Hin00b] as is used in
both Generic Clean [AP01] and Generic Haskell [CHJ+02]. The main sources
of inefficiency in the generated code are due to heavy use of higher-order
functions, and conversions between data structures and their structural rep
resentation. For a large class of generic functions, our optimization removes
both of them, resulting in code containing neither parts of the structural rep
resentation (binary sums and products) nor higher-order functions, which
are typically introduced by the generic specialization algorithm.

The rest of the paper is organized as follows. In section 2 we introduce
a simple language. Section 3 considers typing aspects for that language.
Generics are introduced in section 4. These first three sections are more
or less preliminary. Section 5 shows that generic functions are type cor
rect. In section 6, we extend the semantics of our language to evaluation of
open expressions, and establish some properties of this so-called symbolic
evaluation. Section 7 comprises the main result of the paper: it treats the
optimization algorithm of generics, in particular the termination property.
Section 8 discusses related work. Section 9 reiterates our conclusions.

2

2 Language

In the following section we present the syntax and operational semantics of
a core functional language. Our language supports essential aspects of func
tional programming such as pattern matching and higher-order functions.
It does not provide sharing, since the implementation of generics does not
make use of it.

2.1 S yn tax

D efinition 2.1 (Expressions and Functions)
a) The set of expressions is defined by the following syntax. In the defini

tion, x ranges over variables, C over constructors and F over function
symbols. E denotes (E \ , E k).

E ::= x | C E | F | Xx.E | E E ' | case E of P\ — E \ .. . Pn — En
P ::= Cx

b) A function definition is an expression of the form

F = Ep

with FV(EP) = $. Here, FV(E) denotes the set of free variables
occurring in E.

Expressions are composed from applications of function symbols and
constructors. Constructors have a fixed arity, indicating the number of
arguments to which they are applied. Partially applied constructors can be
expressed by A-expressions. A function expression is applied by a (binary)
application operator. Finally, there is a case-construction to indicate pattern
matching. Functions are simply named expressions (with no free variables).

2.2 Sem antics

We will describe the evaluation of expressions in the style of natural oper
ational semantics, e.g. see [NN92]. The underlying idea is to specify the
result of a computation in a compositional, syntax-driven manner.

In this section we focus on evaluation to normal form (i.e. expressions
being built up from constructors and A-expressions only). In section 6, we
extend this standard evaluation to so-called symbolic evaluation: evaluation
of expressions containing free variables.

3

S tan d ard evaluation
D efinition 2.2 (Evaluation)

a) The set of normal forms (NF) is defined by the following syntax.

N ::= CN | Ax.E

b) Let E, V be expressions. Then E is said to evaluate to V (notation
E ÿ V) i f E ÿ V can be produced in the following derivation system.

E ÿ V
(E-cons)

CE ÿ CV

Ax.E ÿ Ax.E (E-A)

F = Ef Ef ÿ V
— (E-fun)

F ÿ V

E ÿ CiE Di[x := Ê] ÿ V

case E o f ... Cix — D i... ÿ V

E ÿ Ax.E" E"[x := E'] ÿ V

E E ' ÿ V

(E-case)

(E-app)

Here E[x := E '] denotes the term that is obtained when x in E is
substituted by E '.

Observe that our notion of normal form does not imply that expressions
in norm form contain no redexes: if such an expression contains As, there
may still be redexes below these As. Furthermore, it easy to show that if
E ^ V then the expression V is in normal form.

3 T yping

Typing systems in functional languages are used to ensure consistency of
of function applications: the type of each function argument should match
some specific input type. In generic programming types also serve as a basis
for specialization. Additionally, we will use typing to predict the construc
tors that appear in the result of a symbolic computation.

4

Syntax o f kinds and types

The types we use are not restricted to kind * (E.g. see [Bar92]). A kind can
be seen as a type of a type. Kinds are built up from the constant * (indi
cating the kind of ordinary, first-order types), and the binary constructor
^ (assigned to higher-order types).

D efinition 3.1 (K inds) The set of kinds is given by the following syntax.

k ::= * | k^ k'

Types are defined as usual. We use V-types to express polymorphism and
a special A-construct to allow type variable abstraction. The A-types are
not essential: they are not derived in our typing system (defined later on);
their purpose is merely to facilitate the translation of generic specifications
into functions.

D efinition 3.2 (Types)
a) The set of types is given by the following syntax. Below, a ranges

over type variables, T over type constructors, and k over kinds.

a, r ::= a | T | a ^ r | a r | Va : K.a | Aa : K.a

b) We will sometimes use a ^ r as a shorthand for a i ^ . . . ~^ak ~^r. As
usual, ^ associates to the right.

c) The set of free type variables of a is denoted by FV(a).

The main mechanism for defining new data types in functional languages
is via algebraic types. In our system, type variables are not restricted to kind
*. The kind of a type constructor will depend on the kinds of its arguments,
which, in turn, are based on the use of the variables in the type specification
of the constructors.

D efinition 3.3 (A lgebraic Types) Let A be an algebraic type system,
i.e. a collection of algebraic type definitions. The type specifications in A
give both the kinds of the type constructors and the types of the algebraic
constructors. Let

T a = • • • | Ci (Ti |■■ ■

be the specification of T in A. Then we write

A h T : k^ *
A h C i : V(a : ¡K).ai^ T a.

5

K ind and ty p e derivation

Before treating type correctness, we introduce the notion of kind correctness.
This notion is defined by the following derivation system.

D efinition 3.4 (K ind D erivation)
Let A be an algebraic environment.

a) A kind basis is a finite set of declarations of the form a : k concerning
distinct type variables.

b) The kind derivation system deals with statements of the form

K h a : k.

Such a statement is valid i f it can be produced using the following
derivation rules.

c) A is kind correct i f each algebraic type is kind correct, i.e. for each T
in A with kind k^-* and definition

T a = ■ ■ ■ | Ci T

one has
a : k h aij : *.

6

D efinition 3.5 (Function T ype E nvironm ent)
a) The function symbols are supplied with a type by a function type

environment F , containing declarations of the form F : a.

b) F is kind correct i f all function types are kind correct, i.e. for each
F : a in F the type a is kind correct.

For the sequel, fix a function type environment F , and an algebraic type
system A, both being kind correct.

D efinition 3.6 (Type D erivation)
a) A type basis is a finite set of declarations of the form x : r concerning

distinct variables.

b) The type system deals with typing statements of the form

B hK E : a,

where B is a type basis, and K a kind basis. Such a statement is valid if
it can be produced using the following derivation rules (for readability
reasons, we have omitted the K-subscript of the h-symbol). Below, S
is either a function or a constructor symbol.

7

c) The function type environment F is type correct i f each function def
inition is type correct, i.e. for F with type a and definition F = Ep
one has h EF : a.

4 G enerics

In this section we define generics using the approach of kind-indexed types of
Hinze [Hin00b]. First we define how data types are represented (Subsection
4.1). Then we define kind-indexed types and kind-indexing (Subsection 4.2).
Then generic functions (Subsection 4.3) and specialization (Subsection 4.4)
are treated.

4.1 Structural rep resen tation o f data typ es

Algebraic data types are data types built out of sums of products of types.
The idea is to represent an algebraic data type using a binary sum type (co
product) and a binary product type [Hin99]. N-ary sums and products are
then represented using the binary ones. The following two definitions define
the product and the co-product, which are used for structural representation
of data types.

D efinition 4.1 (P roduct)
a) A binary product is a data type

a x 0 = a x 0

with projection functions and mapping

Outl = Xx.case x of l x r ^ l
Outr = Xx.case x of l x r ^ r
f ® g = Xx.case x of l x r ^ f l x g r

b) A nullary product (unit) is a data type 1 = 1.

c) An n-ary product is a type

with a constructor

8

{
x, n = 1
Outr x, i = n

Outl n'n- 1(x) i < n

D efinition 4.2 (C o-product)
a) A binary co-product is a data type

a + 3 = Inl a | Inr 3

with a destructor

l V r = Xx. case x of
Inl x ^ l x
Inr x r x

and a mapping
f © g = Inl o f V Inr o g

b) An n-ary co-product is a type

v() = ƒ a i, n = 1
^ (a i , . . . , an) ^ E (a i , . . . , a n - i) + an n > 1

with injections

{
x, n = 1
Inr x, i = n

Inl 1'n- 1 (x) i < n

and a destructor

v (f i ’ . " ’fn) = { ^ l f i , . . . , f n- i) V fn n > 1

We do not need a nullary co-product (void type) as a data type has at
least one alternative.

D efinition 4.3 (S tru c tu ra l rep resen ta tio n of d a ta types) Let

T a = • • • | Ci ai | • • •

be a data type. The structural representation T° is defined as a synonym
type

T° = A<x £(. . . , n (a i) ,. . .)

and projections

9

Exam ple 4.1 (S tru c tu ra l rep resen ta tio n of d a ta types) The types

List a = Nil | Cons a (List a)
Tree a 3 = Tip a | Bin 3 (Tree a 3) (Tree a 3)

are represented as

List° = Aa. 1 + a x (List a)
Tree° = Aa3. a + 3 x Tree a 3 x Tree a 3

As usually, x and + bind to the left. Note that the representation of a
recursive type is not recursive.

To express the isomorphism between two types t and a we use embedding-
projection pairs that store conversion functions t — a and a — t [HP01].

D efinition 4.4 (E m bedding-pro jection pairs)
a) An embedding-projection pair is a pair of functions

a ^ 3 = EP (a — 3) (3 — a)

b) Projections:

to = Xx.case x o f EP t f — t
from = Xx.case x o f EP t f — f

c) Composition:

a • b = EP(to a o to b)(from b o from a)

d) Inversion:
inv = Xx.EP (from x) (to x)

The isomorphism between a data type T a and its representation T° a is
also expressed as a pair of conversion functions T a ^ T° a .

D efinition 4.5 (Conversion) Let T a = • • • | C i ai | • • • be a data type
and T° its structural representation. The conversion between the two is an
embedding-projection pair convT = EP tor fromT where

tor = Xx.case x o f ••• Ci x — ik (n(x)) •••
fromr = Xx. v (• • • ,Xx.Ci (x) . . . n m (x), • • •)

Here k is the number of constructors in T, 1 < i < k, and m i =

10

Exam ple 4.2 (Conversion) The conversion for lists is

: List a ^ List° a
= EP toList fromList

= Xl.case l of
Nil — Inl 1
Cons x xs — Inr (x x xs)

= Xl.case l of
Inl u — case u of 1 — Nil
Inr p — case p of (x x xs) — Cons x xs

4.2 K in d-in dexed ty p es

Many functions can be defined not only for various types of the same kind
but also for types of various kinds. For instance, there is a mapping func
tion for functors, bi-functors and functors of other kinds. These mapping
functions have different types depending on the kinds of the functors. Our
goal is to handle all such cases by a single generic definition. Kind-indexed
types facilitate this goal. They are schemes that compute a type from a
kind. [Hin00b].

D efinition 4.6 (K ind-indexed type) A kind indexed type is generated by
the following grammar

Y = a | rd .Y

Variables bound by r must be of kind *. These variables are called kind-
indexed variables.

D efinition 4.7 (K ind-indexing) Let y = r a i . . . an.a be a kind-indexed
type. Kind indexing is the following operation

Y(*) = A ai : * . . . an : *.a
Y(k — K) = Aai : K — K . . . an : K — K .V3i : k . . . 3n : k.

y (k) 3i . . . 3n — Y(K) (a i 3i) . . . (an 3n)

Exam ple 4.3 (K ind-indexing) Consider the following kind-indexed type
for the mapping function Map = T a3.a — 3. It can be used to generate
the type of mapping for a functor of any kind.

convList
convList
where

toList

fromList

11

Map(*)
Map(* — *)

Map(* —— * —— *)

Map((* —— *) —— *)

Aa3 . a — 3
Aa3 V a i3 i .(a i — 3 i)
— (a a i — 3 3 i)
Aa3 V a i3 i .(a i — 3 i)
— (V a232.(a2 — 32)

— (a « i «2 — 3 3i 32))
A a3.Va i3 ia 232.
(a i — 3i) — (a 2 — 32)
— (a ai a 2 — 3 3i 32))
A a3.V a i3 i .
(Va i i3 i i .(a ii — 3 i i)

— (a i a ii — 3 i 3 i i))
—— (a «i —— 3 3i)

4 .3 G eneric functions

Informally, a generic function is a template used to generate functions that
operate on concrete data types. This template is provided by the program
mer and consists of a kind-indexed type (see subsection 4.1) and a set of base
case definitions on basic types and the generic structure of types (Subsec
tion 4.2). The kind-indexed type is used to generate types of all generated
functions.

D efinition 4.8 (G eneric function)
a) The instance environment I is a mapping from type constructors

T e T to function symbols F. We treat the arrow type — as a type
constructor of kind * *, i.e. (—) e T .

b) A generic function G is a triple (y , I , C) where y is a kind-indexed type,
I is an instance environment and C c T is a set of base cases, i.e type
constructors, for which the instances are provided by the user.

Exam ple 4.4 (G eneric m apping) Generic mapping

map = (Map, ^map, I 1, +, x })

12

is a generic function with the following base cases in I map:

mapt : 1 — 1
mapt = id
mapx : Va i«23i 32.(a i — 3i) — (a2 — 32)

— (ai x a 2 — 3i x 32)
mapx = Xfg. f ® g
map+ : Va i«23i 32.(a i — 3i) — (a2 — 32)

— (a i + a 2 — 3 i + /32)
map+ = Xfg. f ® g

4 .4 S p ecia lization o f generic functions

This subsection defines how a generic function is specialized to a concrete
function for a given type. Specialization is defined in two steps: first we
introduce specialization by induction on the structure of types, and then
use this notion to define specialization to algebraic data types.

The following operation is used to take a fresh instance of a type where
each free variable is substituted by a variable with the same name and added
index.

D efinition 4.9 (Fresh indexed type) Let t be a type. The operation of
fresh indexed type (t)i is defined as follows

(t)i = t [a := a i], Va e F V (t)

Exam ple 4.5 (Fresh indexed type) (a)i = a i and (A a .a 3)i = A a .a 3i

Specialization of a generic operation to a type yields an expression that
performs the operation on the value of the type.

D efinition 4.10 (Specialization)
a) The specialization environment E is a finite set of declarations of the

form : k := x concerning distinct type variables and distinct term
variables x.

b) The specialization G(E , t) of a generic function G to a monomorphic
type t (i.e. a type without Vs) is defined inductively on the structure
of types:

G(E, a) = E(a)
G(E, T) = I (t)
G(E , a p) = G(E ,a)G(E ,p)
G(E, a — p) = I (—) G(E,a)G(E,p)
G(E, Aa.a) = Xx.G(E[a := x],a)

13

c) We write G(a) as an abbreviation of G($, a).

Exam ple 4.6 (Specialization) Specialization of map to List0 = A a. 1 +
a x (List a):

mapList° = Xx.map+ mapt (mapx x (mapList x))

So far we defined how to specialize a generic function for the representation
type T0. However, we have to generate an instance for the real type T.
Before looking at it we introduce a generic function for embedding-projection
pairs, which is used to convert generated functions on structural types T0 a
into the functions on the types T a . This function is similar to generic map
introduced in the examples above except that it operates on pairs of arrows
instead of a single arrow.

D efinition 4.11 (G eneric em bedding-pro jections) The generic func
tion

EP = (r a ¡ .a ^ ¡ , I ep, {1, +, x, ^-, ^ })

where the instance environment I ep contains the following base cases:

ep1 = EP id id
ep+ = Xa.Xb.EP (to a © to b) (from a © from b)

p X = Xa.Xb.EP (to a ® to b) (from a ® from b)
ep^ = Xa.Xb.EP (Xf.to b o f o from a)

(Xf.from b o f o to a)
ep^ = Xa.Xb.EP (Xe.b • e • inv a)

(Xe.inv b • e • a)

Unlike in map, here we have additional base cases on arrows ep^ and
embedding-projection pairs ep^. The case for arrows ep^ is needed to con
vert functions on T0 a into functions on T a . The base case for embedding-
projection pairs ep^ is needed to prevent non-termination of the specializa
tion of EP , which requires specialization of EP to

Finally, we define how to generate a function for a data type T using
specialization for T0.

D efinition 4.12 (Specialization to a d a ta type) Let G = (ra .a , I , C)
be a generic function and T ¡3 be a data type such that T ^ C U (^) . Let
n = \a | and m = \3\- The instance G T = I (T) is generated as follows:

G t = from (EP(Aa.a) convT .. . convT) om G(T0)
n times

14

where f ok g = Xxi . . . Xxk. f (g xi .. . x k)

Exam ple 4.7 (Specialization to a d a ta type) Instance of mapping for
List:

mapList = from (ep^ convList convList) o mapList°

This generated mapping function is equivalent to the standard mapping
function for lists.

5 T yping of G enerics

In this section we show that the code generated by the generic specialization
is well-typed. The proofs are based on Hinze [Hin00a].

Lem m a 5.1 (Typing conversion) convt : T a ^ T° a

D efinition 5.1 (Type correct generic function)
a) The instance environment I is type correct iff Vt £ T l (t) : y (k) t . . . t

where k is the kind of t.

b) The generic function is type correct iff its instance environment is type
correct.

D efinition 5.2 (Type correct specialization environm ent)
a) The specialization environment E for the generic function G = (y, I , C)

is type correct iff Va : k £ E.E(a) : y(k) a 1 . . . an.

b) The specialization basis \E\ is a set of entries of the form x : y (k) a 1 . . . an.

The following key property states that the specialization process yields a
well-typed expression of the desired type.

P roposition 5.2 (Typing specialization) Let

a) G be a type-correct generic function of type y,

b) t : k be a monomorphic type,

c) E be a type-correct environment for G such that F V (t) C E.

Then \E\'rG(E, t) : y (k) (t)i . . . (t)n.

P roof: By induction on the structure of monomorphic types.

15

• Case t = a : k. By type-correctness of E.

• Case t = T : k. By type-correctness of the generic function.

• Case t = a p. Let a : k — k' and p : k. By IH for a:

\E\ r G(E, a) : y (k — k') (a)i . . . (a)n

By the definition of kind-indexing:

Y(k — k') (a)i . . . (a)n
= V^i . . . ¡n.y(K) 3i . . . 3n — Y (k') (a 3)i . . . (a f3)n
= V3i . . . 3n.y(K) 3i . . . 3n — Y (k') ((a)i 3i) . . . ((a)n 3n)

By IH for p:
\E\ r G(E,p) : Y(k) (p)i . . . (p)n

By (a-V-elim) and (a-app):

\E\rG(E,a)G(E,p) : y (k') (a)i (p)i . . . (a)n (p)n
\E\rG(E,a)G(E,p) : y (k') (a p)i . . . (a p)n

• Case t = a — p. Similar to the previous case.

• Case t = Aa.a. Let a : k and a : k' . Let E' = E ,a := x where
x : y(k) a i . . . a n. Let E = G(E', a)
By IH:

\E'\ r E : y (k') (a)i . . . (a)n

By (a-A-intro) and (a-app):

\E'\ r E : Y(k') ((A a.(a)i) a) . . . ((Aa.(a)n) a)

By the definition of type indexing

\E'\ r E : y (k') ((Aa.a) a) i . . . ((Aa.a) a)n

By (a-A-intro):

\E\ r Xx.E : y(k) a i . . . an
— y (k') ((A a .a) a) i . . . ((Aa .a) a)n

16

By (a-V-intro):

\E\ r Xx.E : Vai . . . an .y(K) a i . . . an
— Y (k') ((A a .a) a) i . . . ((Aa .a) a)n

By kind-indexing 4.7:

\E\ r Xx.E : y (k — k') (A a.a)i . . . (Aa.a)n

The following property states that a function generated for a data type
is well-typed.

P roposition 5.3 (Typing generated instances) Let G = (y, I , C) be a
generic function and T : k be a data type. Then G T = I (T) : y(k) T . . . T.

P ro o f : Let y = r 3 .a and y* = Y(*) = A a.a. By the definition of kind
indexed types all a : *. Thus, y* : k' where * — ... — * — * and n = \a\.

v
n times

By typing specialization 5.2

EP(y*) : (r33 '.3 ^ 3 ')(k') (y*)i (y*)2

Since y* is a closed type

EP(y*) : (r33 '.3 ^ 13') (k') y* y*

By the definition of kind-indexing 4.7

EP(y*) : Vpip'i. . . 3n3n.
(3 i ^ 3 i) — . . . — (3n ^ 3n)
— (y* 3i . . . 3n ^ Y* 3'l . . . 3n)

By definition convT : T a i . . . am ^ T0 a i . . . am where m is the arity of
type T. Thus

EP(y*) convT .. . convT :
Y* (T a ii . . . a im) . . . (T a ni . . . a nm)

^ y* (T a ii . . . a im) . . . (T a ni . . . anm)

Then
from (EP(y*) convT .. . convT) :

y* (T0 a)i . . . (T0 a)n — y* (T a)i . . . (T a)r
By typing specialization 5.2

G(T0) : y (k) T0 .. . T0

17

Since T0 = A a i . . . am.T, k = ki — .. . — km — *. By kind indexing 4.7

y(k) T0 . . . T0 = Vai i . . . anm.
y(Ki) a i i . . . ani — .. . — y(Km) a im . . . anm

— Y(*) (T0 a ii . . . a im) . . . (T0 a ni . . . anm)

By typing for composition the type of the right-hand-side of the generated
function is

GT : Vaii . . . anm.
y(ki) a i i . . . ani — .. . — y (Km) a im . . . anm

— Y(*) (T a ii . . . a im) . . . (T a ni . . . a nm) ,

which by kind indexing is y (k) T . . . T

6 Sym bolic evaluation

The purpose of symbolic evaluation is to reduce expressions at compile-time.
For instance, we want to simplify the generated mapping function for lists
(see example 4.7).

If we want to evaluate expressions containing free variables, evaluation
cannot proceed if the result of such a variable is needed. This happens for
instance if a pattern match on such a free variable takes place. In that case
the corresponding case-expression cannot be evaluated fully. The most we
can do is to evaluate all alternatives of such an expression. Since none of
the pattern variables will be bound, the evaluation of these alternatives is
likely to get stuck on the occurrences of variables again.

Symbolic evaluation gives rise to a new (extended) notion of normal form,
where in addition to constructors and X-expressions, also variables, cases and
higher-order applications can occur. This explains the large number of rules
required to define the semantics. Further in this paper we are only interested
in symbolic evaluation, so there is no need to introduce a different notation
to distinguish it from standard evaluation.

D efinition 6.1 (Sym bolic Evaluation) We adjust definition 2.2 of eval
uation by replacing the E-X rule, and by adding rules for dealing with new

18

combinations of expressions.

E ^ case D o f ■ ■ ■ P. — D. ■ ■ ■ case D. o f ■ ■ ■ Qj — Ej ■ ■ ■ ^ V.
(E-case-case)

case E o f ■ ■ ■ Qj — Ej ■ ■ ■ ^ case D o f ■ ■ ■ Pi — Vi

E ^ x Ei ^ Vi

case E o f ■ ■ ■ Pi — Ei ■ ■ ■ ^ case x o f ■ ■ ■ Pi —— Vi ■ ■

E ^ E' E '' Ei ^ Vi

case E o f ■ ■ ■ Pi — Ei ■ ■ ■ ^ case E' E '' o f ■ ■ ■ Pi — V.

E ^ case D o f ■ ■ ■ P. — Di ■ ■ ■ Di E' ^ V

(E-case-var)

— (E-case-app)

E E ' ^ case D o f ■ ■ ■ P. — V. ■ ■ ■
(E-app-case)

E ^ x E ' ^ V E ^ D D' E' ^ V
-------------------- (E-app-var) ------------------------- (E-app-app)

E E ' ^ x V E E ' ^ D D' V

The following definition characterizes the results of symbolic evaluation.

D efinition 6.2 (Sym bolic N orm al Form s) The set of symbolic normal
forms (indicated by N s) is defined by the following syntax.

N s ::= cN s \ Xx.Ns \ Nh \ case Nh of ■■■ P% — Ns ■■■
Nh ::= x \ Nh Ns

Next, we prove that our characterization is correct.

P roposition 6.1
E ^ V ^ V £ Ns

P ro o f: By induction on the derivation of E ^ V . We show a characteristic
example case.

• Rule (E-case-case). Suppose

case E of ■ ■ ■ Qj — Ej ■ ■ ■ ^ case D of ■ ■ ■ Pi — Vi ■ ■ ■

since
E ^ case D of ■ ■ ■ Pi — Di ■ ■ ■

19

case D of • • • Pi ^ Vi ■ ■ ■ G Ns. □

6.1 Sym bolic evaluation and typ ing

In the remainder of this section we will show that the type of an expression
(or the type of a function) can be used to determine the constructors that
appear (or will appear after reduction) in the symbolic normal form of that
expression. Note that this is not trivial because an expression in symbolic
normal might still contain potential redexes that can only be determined
and reduced during actual evaluation. Recall that the motivation for in
troducing symbolic evaluation is to use it as a kind of partial evaluator in
order to get rid of auxiliary data structures that are introduced if one uses
a straightforward implementation of generic functions. Of course, such a
partial evaluator will in general not be able to reduce an expression fully.

The connection between evaluation and typing is usually given by the so-
called subject reduction property indicating that typing is preserved during
reduction. In order to prove this property we need two technical lemmas
relating typing and substitution to each other.

Lem m a 6.2 (Type S u b stitu tio n Lem m a)

B h E : a ^ B[a := p] h E : a[a := p]

b)
B h E[x := E'] : a

B K E ' : t

P roposition 6.4 (S ubject R eduction P ro p erty)

20

P ro o f : By induction on the derivation of E ^ V . Again, we will not
treat all cases, but pick out some interesting ones.

• Rule (E-app). Suppose E E ' ^ V , since (1) E ^ Xx.E'' and (2) E''[x :=
E'] ^ V . Suppose B r E E ' : a, since B r E : t —a, and B r E' : t .
By IH for (1) one has B r Xx.E'' : t —a. From typing rule a-X it
follows that B , x : t r E : a. Now, by substitution lemma 6.3 (a)
one has B r E''[x := E'] : a. Using IH for (2) one can conclude that
B r V : a.

• Rule (E-case-case). Suppose

case E of ■ ■ ■ C jyj — Ej ■ ■ ■ ^ case D of ■ ■ ■ A z — Vi ■ ■ ■

since (1) E ^ case D of ■ ■ ■ A izi — Di ■ ■ ■ and (2) case Di of ■ ■ ■ Cj yj —
Ej ■ ■ ■ ^ Vi. Suppose

B r case E of ■ ■ ■ Cj yj — Ej ■ ■ ■ : a

because B r E : t , B r Cj : p ^ T , and B,yj : p r Ej : a. By
IH for (1), B r case D of ■ ■ ■ A izi — Di ■ ■ ■ : t . Hence B r D : n,
B r A i : e ^ n , and B , z i : 9 r Di : t . By lemma 6.3 B,yj : a r
case Di of ■ ■ ■ Cj yj — Ej ■ ■ ■ : a. Now we can apply IH for (2), so
B ,a j : p r Vi : a. Finally, the typing rule a — case can be applied,
yielding B r case D of ■ ■ ■ A a — Vi ■ ■ ■ : a. □

There are two ways to determine constructors that are created during the
evaluation of an expression, namely, (1, directly) by analyzing the expression
itself or (2, indirectly) by examining the type of that expression.

In the remainder of this section we will show that (2) includes all the
constructors of (1) provided that (1) is determined after the expression is
evaluated symbolically. The following two definitions make the distinction
between the different ways of indicating constructors precise.

D efinition 6.3 (C onstruc to rs of norm al form s) Let N be an expres
sion in symbolic normal form. The set of constructors appearing in N
(denoted as CN(N)) is inductively defined as follows.

Cn (C V) = {C}U Cn (N)
Cn (Xx.N) = Cn (N)
Cn (x) = 0
Cn (n N ') = Cn (N) U Cn (N ')
Cn (case N of ■■■ Pi — N ■ ■ ■) = Cn (N) U (uC n (N))

Here CN (N) should be read as UiCN(Ni).

21

D efinition 6.4 (C onstruc to rs of types)
• Let a be a type. The set of constructors in a (denoted as CT(a)) is

inductively defined as follows.

C t (a) = 0
Ct (T) = Ui[{Ci}U Ct (ai)],

where T = ■ ■ ■ \ C iai \ ■ ■ ■
Ct (t ——a) = Ct (t) U Ct (a)
Ct (t a) = Ct (t) U Ct (a)
CT (Va .a) = CT (a)
Ct (A a .a) = Ct (a)

• Let B be a basis. By CT (B) we denote the set UCT (a) for each x : a
appearing in B .

Exam ple 6.1 For the types

List a = Nil \ Cons a (List a)
Tree a = Node a(List (Tree a))

we have
CT (List) = {Nil, Cons}
CT (Tree) = {Node, Nil, Cons}

As a first step towards a proof of the main result of this section we
concentrate on expressions that are already in symbol normal form. To
prepare for this result we need two auxiliary lemmas.

Lem m a 6.5
a) Let a,T be types such that FV(a) C F V (t). Then

CT (a) C CT(t) ^ CT (a[a := p]) C CT(t [a := p]).

b) For any basis B :

B r C : r ^ a ^ {C} U Ct (a) C Ct (a)

Lem m a 6.6 Let N £ Ns. Then

B x Na : a a B.

22

P ro o f : This property follows directly from the rules (a-var) and (a-
app). □

If an expression is already in symbolic normal form, then its typing gives
a safe approximation of the constructors that are possibly generated by that
expression. This is stated by the following proposition.

P roposition 6.7 Let N £ Ns. Then

B r N : a ^ Cn (N) C Ct (B) U Ct (a).

P ro o f : By induction on the structure of Ns .

• Case N = x. Trivial, since CN(x) = 0.

• Case N = C N . Then Cn (N) = {C} U Cn (N). Suppose B r C N : a,
since B r C : r ^ a and B r N : r. By IH CN(N) C CT (B) U CT (a).
By lemma 6.5 (a and b) {C} U CT (V) C CT (a), so CN(N) C CT (B) U
CT (a).

• Case N = case N ' of ■ ■ ■ Ciyi — Ni ■■■. Then CN(N) = CN(N') U
CNN i . Suppose B r case N of ■ ■ ■ Ciyi — Ni ■ ■ ■ : a, since B r N ' : t ,
B r Ci : p ^ T , and B , f i : p r Ni : a. By IH Cn (N') C Ct (B) U
CT(t). By lemma 6.6 t £ B, and hence CT(t) C CT (B). Again by
IH CN(N{) C CT (B) U CT(33) U CT (a). Now by lemma 6.5 (a and b)
one has that CT(p) C CT(t), so CN(Ni) C CT (B) U CT(a).

All other cases are treated in the same way. □
The main result of this section shows that symbolic evaluation is ade

quate to remove constructors that are not contained in the typing statement
of an expression. For traditional reasons we call this the deforestation prop
erty.

P roposition 6.8 (D eforestation P ro p erty)

BE E N a } ^ Cn (N) C Ct (B) U Ct (a)

P ro o f : By proposition 6.1, 6.7, and 6.4. □

23

7 O ptim ising G enerics

Before we can apply a generic operation to a concrete object we have to
convert this object into its generic representation. This conversion as well
as the presence of many higher-order functions introduces a great amount of
overhead during real execution. In fact, this makes the translation scheme
for generics presented in the previous section unsuited as a basis for a real
implementation. In this section we will show that, by using symbolic eval
uation, one can implement a compiler that for a generic operation yields
code as efficient as a dedicated hand coded version of this operation. The
following lemma prepares for the main result of this section.

Lem m a 7.1 Let G be a generic function of type y, T a data-type, and let
G t be the instance of G on T. Suppose G T ^ NT. Then for any data type
S one has

S £ y , T ^ Ct (S) n Cn (N t) = 0.

P ro o f: By proposition 6.8, 6.4, and 5.2

P roposition 7.2 (Efficiency of generics) Non-recursive generics can be
implemented efficiently.

P ro o f: First we create a generic instance according to definition 4.12. Then,
the symbolic normal form of this instance is computed via symbolic eval
uation. From the previous lemma it follows that none of the (internal)
basic data types {1, +, x, —, ^ } will occur in this symbolic normal form
(provided that these data types are indeed internal, i.e. are not part of the
generic type or of the instance type). Hence if such an optimized generic
operation is used inside a program, the evaluation of this program will not
lead to the creation of any of these internal constructors.

7.1 On term ination o f sym bolic evaluation

Until now we have avoided the problem that occurs when dealing with pro
grams that do not terminate when evaluated symbolically. In general, this
termination problem is undecidable, so precautions have to be taken if we
want to use the symbolic evaluator at compile-time. It should be clear that
non-termination can only occur if some of the involved functions are recur
sive. In this case such a function might be unfolded infinitely many times
(by applying the rule (E-fun)).

The problem arises when we deal with generic instances on recursive
data types. A specialization of a generic function to such a type will lead

24

to a recursive function. For instance, the specialization of map to List con
tains a call to mapList° which, in turn, calls recursively mapList. We can
circumvent this problem by breaking up the definition into a non-recursive
part and to reintroduce recursion via the standard fixed point combinator
Y = Xf . f (Y f). Then we can apply symbolic evaluation to the non-recursive
part to obtain an optimized version of our generic function. The standard
way to remove recursion is to add an extra parameter to a recursive function,
and to replace the call to the function itself by a call to that parameter.

Exam ple 7.1 (N on-recursive specialization) The specialization of Map
to List without recursion:

map|_ist = Xm.from (ep^ convList convList) ◦
(Xf.map+ map! (mapx f (m f)))

mapList = Y mapList

After evaluating mapjjst symbolically we get

map|_ist = Xm.Xf.Xx. case x of
List Nil — Nil

Cons y y s — Cons (f y) (m f ys)

showing that all intermediate data structures are eliminated.

Suppose the generic instance has type a . Then the non-recursive variant
(with the extra recursion parameter) will have type a —a which means that
proposition 7.2 is still valid.

However, this manner of handling recursion will not work if the kind-
indexed type y contains recursive data types. Consider for example the
monadic mapping function for the list monad Mmap = r aj3. a — List 3 . The
specialization of Mmap to any data type will use the embedding-projection
specialized to Aa3.a — List 3 (see definition 4.11). This embedding-
projection will contain a call to the (recursive) embedding-projection for
the List-type. Now we cannot get rid of recursion (using the Y -combinator)
because it is not possible to replace the call to £V(y) in the specialization
of Mmap by a call to a non-recursive variant of £V(y) and to reintroduce
recursion afterwards.

In practice, our approach will handle many generic functions as most of
them do not contain recursive types in their poly-kinded type specifications,
and hence, do not require recursive embedding-projections. For instance, all
generic functions in the generic Clean library fulfill this requirement.

25

O nline non-term ination d etection

A way to solve the problem of non-termination is to extend symbolic eval
uation with a mechanism for so-called online non-termination detection. A
promising method is based on the notion of homeomorphic embedding (HE)
[Leu98]: a (partial) ordering on expressions used to identify ‘infinitely grow
ing expressions’ leading to non-terminating evaluation sequences. Clearly, in
order to be safe, this technique will sometimes indicate unjustly expressions
as dangerous. We have done some experiments with a prototype implemen
tation of a symbolic evaluator extended with termination detection based
on HEs. It appeared that in many cases we get the best possible results.
However, guaranteeing success when transforming arbitrary generics seems
to be difficult. The technique requires careful fine-tuning in order not to pass
the border between termination and non-termination. This will be subject
to further research.

8 R elated W ork

The generic programming scheme that we use in the present paper is based
on the approach by Hinze[Hin00a]. In particular, our proof of type correct
ness of the specialized instances is adopted from this thesis.

In [HP01] Peyton Jones and Hinze show by example that inlining and
standard transformation techniques can get rid of the overhead of conver
sions between the types and their representations. The example presented
does not involve embedding-projections and only treats non-recursive con
versions from a data type to its generic representation. In contrast, our
paper gives a formal treatment of generic optimization.

Initially, we have tried to optimize generics by using deforestation [Wad88]
and fusion [Chi94, AGS02]. Deforestation is not very successful because of
its demand that functions have to be in treeless form. Too many generic
functions do not meet this requirement. But even with a more liberal classi
fication of functions we did not reach an optimal result. We have extended
the original fusion algorithm with so-called depth analysis [CK96], but this
does not work because of the producer classification: recursive embedding-
projections are no proper producers. We also have experimented with alter
native producer classifications but without success.

Moreover from a theoretical point of view, the adequacy of these methods
is hard to prove. [Wad88] shows that with deforestation a composition of
functions can be transformed to a single function without loss of efficiency.
But the result we are aiming at is much stronger, namely, all overhead due

26

to the generic conversion should be eliminated.
Our approach based on symbolic evaluation resembles the work that has

been done on the field of compiler generation by partial evaluation. E.g.,
both [ST96] and [J092] start with an interpreter for a functional language
and use partial evaluation to transform this interpreter into a more or less
efficient compiler or optimizer. This appears to be a much more general goal.
In our case, we are very specific in the kind of results we want to achieve.
To the best of our knowledge, nobody else uses typing to approximate the
results of a computation and relates this to an operational semantics.

9 C onclusions and future work

In the present paper we defined a symbolic evaluation algorithm and proved
that it is able to optimize code generated by the generic specialization pro
cedure. The optimized code is close to what the hand-written code would
be. Problems arise when generic function types are involved that contain
recursive type constructors. These type constructors give rise to recursive
embedding projections which can lead no non-termination of symbolic eval
uation. We could use fusion to deal with this situation but then we have to
be satisfied with a method that sometimes produces less optimal code. It
seems to be more promising to extend symbolic evaluation with on online
non-termination detection, most likely based on the homeomorphic projec
tions [Leu98]. We already did some research in this area but this has not
yet led to the desired results.

We plan to study other optimization techniques in application to generic
programming, such as program transformation in computational form [TM95]
Generic specialization has to be adopted to generate code in computational
form, i.e. it has to yield hylomorphisms for recursive types.

Generics are implemented in Clean 2.0. Currently, the fusion algorithm
of the Clean compiler is used to optimize the generated instances. As stated
above, for many generic functions this algorithm does not yield efficient
code. For this reason we plan to use the described technique to improve
performance of generics.

R eferences

[AGS02] Diederik van Arkel, John van Groningen, and Sjaak Smetsers.
Fusion in practice. In Ricardo Pena and Thomas Arts, editors,

27

[AP01]

[Bar92]

[Chi94]

[CHJ+02]

[CK96]

[Hin99]

[Hin00a]

[Hin00b]

Proceedings of the 14th International Workshop on the Implemen
tation of Functional Languages, IF L’02, volume 2670 of LNCS.
Departamento de Sistemas Informa ticos y Programación, Uni
versidad Complutense de Madrid, Springer, September 2002.

Artem Alimarine and Rinus Plasmijer. A generic programming
extension for clean. In Thomas Arts and Markus Mohnen, editors,
Proceedings of the 13th International workshop on the Implemen
tation of Functional Languages, IF L’01, pages 168-186. Alvsjö,
Sweden, September 2001.

Henk Barendregt. Lambda calculi with types. In S Abramsky,
D.M. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in
Computer Science, Volumes 1 (Background: Mathematical Struc
tures) and 2 (Background: Computational Structures), volume II.
1992.

Wei-Ngan Chin. Safe fusion of functional expressions II: further
improvements. Journal of Functional Programming, 4(4):515-
555, October 1994.

Dave Clarke, Ralf Hinze, Johan Jeuring, Andres Löh, and Jan de
Wit. The generic haskell user’s guide. Technical report, uu-cs-
2002-047, Utrecht University, 2002.

Wei-Ngan Chin and Siau-Cheng Khoo. Better consumers for pro
gram specializations. Journal of Functional and Logic Program
ming, 1996(4), November 1996.

Ralf Hinze. A generic programming extension for Haskell. In Erik
Meijer, editor, Proceedings of the 3rd Haskell Workshop. Paris,
France, September 1999. The proceedings appeared as a technical
report of Universiteit Utrecht, UU-CS-1999-28.

Ralf Hinze. Generic programs and proofs. Habilitationsschrift,
Universitöat Bonn, October 2000.

Ralf Hinze. Polytypic values possess polykinded types. In Roland
Backhouse and J.N. Oliveira, editors, Proceedings of the Fifth In
ternational Conference on Mathematics of Program Construction
(MPC 2000), volume 1837, pages 2-27, July 2000.

28

[HP01]

[J092]

[Leu98]

[NN92]

[ST96]

[TM95]

[Wad88]

Ralf Hinze and Simon Peyton Jones. Derivable type classes. In
Graham Hutton, editor, Proceedings of the 2000 ACM SIGPLAN
Haskell Workshop, volume 41.1 of Electronic Notes in Theoretical
Computer Science. Elsevier Science, August 2001. The prelimi
nary proceedings appeared as a University of Nottingham tech
nical report.

Jesper J0rgensen. Generating a compiler for a lazy language by
partial evaluation. In Nineteenth ACM Symposium on Principles
of Programming Languages, pages 258-268. Albuquerque, New
Mexico, ACM Press, January 1992.

Michael Leuschel. Homeomorphic embedding for online termi
nation. Technical Report DSSE-TR-98-11, Department of Elec
tronics and Computer Science, University of Southampton, UK,
October 1998.

Hanne Riis Nielson and Flemming Nielson. Semantics with Appli
cations: A Formal Introduction. Wiley Professional Computing,
1992. ISBN 0 471 92980 8.

Michael Sperber and Peter Thiemann. Realistic compilation by
partial evaluation. In Proceedings of the ACM SIGPLAN ’96
Conference on Programming Language Design and Implementa
tion, pages 206-214, May 1996.

Akihiko Takano and Erik Meijer. Shortcut deforestation in calcu-
lational form. In Conf. Record 7th ACM SIGPLAN/SIGARCH
Int. Conf. on Functional Programming Languages and Computer
Architecture, FPCA’95, pages 306-313, New York, June 1995. La
Jolla, San Diego, CA, USA, ACM Press.

Phil Wadler. Deforestation: transforming programs to eliminate
trees. In Proceedings of the European Symposium on Program
ming, number 300 in LNCS, pages 344-358, Berlin, Germany,
March 1988. Springer-Verlag.

29

