
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/60594

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/60594

A Functional Shell that D ynam ically
Com bines C om piled Code

Arjen van Weelden* and Rinus Plasm eijer

Com puter Science Institu te, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

a rjenw @ cs.kun .n l, r in u s@ cs.k u n .n l

A b stra c t. We present a new shell th a t provides the full basic function
ality of a strongly typed lazy functional language, including overloading.
The shell can be used for m anipulating files, applications, d a ta and pro
cesses a t the command line. The shell does type checking and only exe
cutes well-typed expressions. Files are typed, and applications are simply
files w ith a function type. The shell executes a command line by combin
ing existing code of functions on disk. We use the hybrid static/dynam ic
type system of Clean to do type checking/inference. Its dynamic linker
is used to store and retrieve any expression (b o th d a ta and code) w ith
its type on disk. O ur shell combines the advantages of interpreters (d i
rect response) and compilers (statically typed, fast code). Applications
(compiled functions) can be used, in a type safe way, in the shell, and
functions defined in the shell can be used by any compiled application.

1 I n t r o d u c t i o n

Program m ing languages, especially pure and lazy functional languages like Clean
[1] and Haskell [2], provide good support for abstraction (e.g. subroutines, over
loading, polym orphic functions), com position (e.g. application, higher-order func
tions, m odule system s), and verification (e.g. strong type checking and inference).

In contrast, com m and line languages used by operating system shells usually
have little support for abstraction, com position, and especially verification. They
do not provide higher-order subroutines, complex d a ta structures, type inference,
or even type checking at all before evaluation. Given their lim ited set of types
and the ir specific area of application, th is has not been recognized as a serious
problem in the past.

We th ink th a t com m and line languages can benefit from some of the pro
gram m ing language facilities, as th is will increase their flexibility, reusability
and security. We have previously done research on reducing run-tim e errors (e.g.
m em ory access violations, type errors) in operating system s by im plem enting a
micro kernel in Clean th a t provides type safe com m unication of any value of any
type between functional processes, called Famke [3]. This has shown th a t (mod
erate) use of dynam ic typing [4], in com bination w ith C lean’s dynam ic run-tim e

* P art of this work was supported by InterNLnet.

mailto:arjenw@cs.kun.nl
mailto:rinus@cs.kun.nl

system and dynam ic linker [5,6], enables processes to com m unicate any d a ta
(and even code) of any type in a type safe way.

During the developm ent of a shell/com m and line interface for our prototype
functional operating system it became clear th a t a norm al shell cannot really
make use (at run-tim e) of the type inform ation derived by the compiler (at
compile-time). To reduce the possibility of run-tim e errors during execution of
scripts or com m and lines, we need a shell th a t supports abstraction and verifi
cation (i.e. type checking) in the same way as the Clean compiler does. In order
to do this, we need a b e tte r in tegration of compile-time (i.e. sta tic typing) and
run-tim e (i.e. in teractiv ity) concepts.

In th is paper we present a shell for a functional language-based operating sys
tem th a t combines the best of bo th worlds: the in teractiv ity of an in terp reter and
the efficiency and type safety of a compiler. This shell is used as the user in ter
face for Famke, the above m entioned kernel of a pro to type functional operating
system in development. The shell can make use of compiled functions/program s,
w ithout losing type inform ation. Functions defined in the shell can also be used
by compiled applications.

The shell is built on top of C lean’s hybrid sta tic /dynam ic type system and
its dynam ic I /O run-tim e support. I t allows program m ers to save any Clean ex
pression, i.e. a graph th a t can contain data , references to functions, and closures,
to disk. C lean expressions can be w ritten to disk as a dynamic, which contains
a representation of their (polymorphic) sta tic type, while preserving sharing.
Clean program s can load dynam ics from disk and use run-tim e type p a tte rn
m atching to rein tegrate it into the statically typed program . In th is way, new
functionality (e.g. plug-ins) can be added to a running program in a type safe
way.

The shell is called E sther (Extensible S hell w ith T ype cH ecking E x p e r i
m ent), and is capable of:

— reading an expression from the console, using C lean’s syntax for a basic,
bu t complete, functional language. I t offers application, lam bda abstraction,
recursive let, p a tte rn m atching, function definitions, and even overloading;

— using compiled Clean program s as typed functions at the com m and line;
— defining new functions, which can be used by o ther compiled Clean program s

(w ithout using the shell or an in terpreter);
— extracting type inform ation (and indirectly, code) from dynam ics on disk;
— type checking the expression, and solving overloading, before evaluation;
— constructing a new dynam ic containing the correct type and code of the

expression.

F irst, we introduce the s ta tic /dynam ic hybrid type system of Clean in Sect. 2.
Section 3 gives a global description of how E sther uses dynam ics to type check
an expression. It also give examples of the use of dynamics. In Sect. 4 we show
how to construct a dynam ic for each kind of subexpression such th a t it has the
correct sem antics and type, and how to compose them in a type checked way.
Related work is discussed in Sect. 5 and we conclude and m ention fu ture research
in Sect. 6.

2 Dynam ics in Clean

In addition to its sta tic type system , Clean has recently been extended with
a (polym orphic) dynam ic type system [4-6]. A dynam ic in Clean is a value of
sta tic type D ynam ic , which contains an expression as well as a representation of
the (static) type of th a t expression. Dynamics can be formed (i.e. lifted from the
sta tic to the dynam ic type system) using the keyword dynam ic in com bination
w ith the value and an optional type. The compiler will infer the type if it is
o m itted1.

dynamic 42 :: I n t 2
dynamic map f s t : : A3 .a b: [(a , b)] -> [a]

Function alternatives and case p a tte rns can p a tte rn m atch on values of type
D yn a m ic (i.e. bring them from the dynam ic back into the sta tic type system).
Such a p a tte rn m atch consist of a value p a tte rn and a type pa tte rn . In the
example below, m a tc h In t re tu rns J u s t the value contained inside the dynam ic
if it has type In t; and N oth ing if it has any other type. The compiler transla tes
a p a tte rn m atch on a type into run-tim e type unification. If the unification fails,
the next alternative is tried, as in a common (value) p a tte rn m atch.

: : 4 Maybe a = Nothing | J u s t a

m atchIn t : : Dynamic -> Maybe I n t
m atchIn t (x :: I n t) = J u s t x
m atchIn t o th e r = Nothing

A type p a tte rn can contain type variables which, provided th a t run-tim e
unification is successful, are bound to the offered type. In the example below,
dynam icApply tests if the argum ent type of the function f inside its first argu
m ent can be unified w ith the type of the value x inside the second argum ent. If
this is the case then dynam icApply can safely apply f to x. The type variables
a and b will be in stan tia ted by the run-tim e unification. At compile tim e it is
generally unknown w hat type a and b will be, bu t if the type p a tte rn m atch
succeeds, the compiler can safely apply f to x. This yields a value w ith the type
th a t is bound to b by unification, which is w rapped in a dynam ic.

dynamicApply :: Dynamic Dynamic -> Dynamic5
dynamicApply (f : : a -> b) (x :: a) = dynamic f x :: b6
dynamicApply df dx = dynamic "E rro r: cannot apply"

Type variables in dynam ic p a tte rn s can also relate to a type variable in the
sta tic type of a function. Such functions are called type dependent functions [7].
A caret (") behind a variable in a p a tte rn associates it w ith the type variable w ith

1 Types containing universally quantified variables are currently not inferred by the
compiler. We will not always write these types for ease of presentation.

2 Numerical denotations are not overloaded in Clean.
3 Clean’s syntax for Haskell’s f o r a l l .
4 Defines a new d ata type in Clean, Haskell uses the d a ta keyword.
5 Clean separates argum ent types by whitespace, instead of ->.
6 The type b is also inferred by the compiler.

the same nam e in the sta tic type of the function. The sta tic type variable then
becomes overloaded in the predefined TC (or type code) class. The TC class is used
to ‘carry ’ the type representation. In the exam ple below, the sta tic type variable
t will be determ ined by the (static) context in which it is used, and will impose
a restriction on the actual type th a t is accepted a t run-tim e by matchDynamic.
It yields J u s t the value inside the dynam ic (if the dynam ic contains a value of
the required context dependent type) or N oth ing (if it does not).

matchDynamic :: Dynamic -> Maybe t | TC t 7
matchDynamic (x :: t*) = Ju s t x
matchDynamic o th e r = Nothing

The dynam ic run-tim e system of C lean supports w riting dynam ics to disk
and reading them back again, possibly in another program or during another
execution of the same program . The dynam ic will be read in lazily after a suc
cessful run-tim e unification (triggered by a p a tte rn m atch on the dynam ic). The
am ount of d a ta and code th a t the dynam ic linker will link, is therefore deter
m ined by the am ount of evaluation of the value inside the dynam ic. Dynamics
w ritten by a program can be safely read by any other program , providing a
simple form of persistence and some rudim entary m eans of comm unication.

writeDynamic :: S tr in g Dynamic *8World -> (Bool, *World)
readDynamic :: S tr in g *World -> (Bool, Dynamic, *World)

Running p ro g l and p rog2 in the exam ple below will w rite a function and a
value to dynam ics on disk. Running p rog3 will create a new dynam ic on disk th a t
contains the result of ‘applying’ (using the dynam icApply function) the dynam ic
w ith the nam e “function” to the dynam ic w ith the nam e “value” . The closure
40 + 2 will not be evaluated until the * operator needs it. In this case, because
the ‘dynam ic application’ of d f to dx is lazy, the closure will not be evaluated
until the value of the dynam ic on disk nam ed “resu lt” is needed. Running p rog4
tries to m atch the dynam ic d r, from the file nam ed “resu lt” , w ith the type In t .
After th is succeeds, it displays the value by evaluating the expression, which is
sem antically equal to l e t x = 40 + 2 in x * x, yielding 1764.

p ro g l w orld = writeDynamic " fu n c tio n " (dynamic * :: I n t I n t -> In t) world

prog2 w orld = writeDynamic "value" (dynamic 40 + 2) world

prog3 w orld = l e t (o k l, d f , w o rld l) = readDynamic " fu n c tio n " world
(ok2, dx, world2) = readDynamic "va lue" w orld l

in writeDynamic " r e s u l t " (dynamicApply d f dx) world2

prog4 w orld = l e t (ok, d r , w orld l) = readDynamic " r e s u l t" world
in (case d r o f (x :: I n t) -> x , w orld l)

7 Clean uses | to denote overloading. In Haskell this would be w rit
ten as (TC t) => Dynamic -> Maybe t .

8 This is a uniqueness attribu te, indicating th a t the world environ
m ent is passed around in a single threaded way. Unique values allow safe de
structive updates and are used for I /O in Clean. The value of type World corre
sponds w ith the hidden sta te of the IO monad in Haskell.

The last example of the previous section shows how one can store and retrieve
values, expressions, and functions of any type to and from the file system . It
also shows th a t the dynam icApply function can be used to type check an appli
cation at run-tim e using the sta tic types stored in dynam ics. Combining bo th
in an interactive ‘read expression - apply dynam ics - evaluate and show resu lt’
loop gives a very simple shell th a t already supports the type checked run-tim e
application of program s to docum ents.

Obviously, we could have im plem ented type checking ourselves using one of
the common algorithm s involving building and solving a list of type equations.
Instead, we decided to use C lean’s dynam ic run-tim e unification, for th is has
several advantages: 1) C lean’s dynam ics allow us to do type safe and lazy I /O of
expressions; 2) we do not need to convert between the (hidden) type represen
ta tio n used by dynam ics and the type representation used by our type checking
algorithm ; 3) it shows w hether C lean’s current dynam ics interface is powerful
enough to im plem ent basic type inference and type checking; 4) we get future
im provem ents of C lean’s dynam ics interface for free (e.g. uniqueness a ttribu tes
or overloading).

Unlike common com m and in terpreters or shells, our shell E sther does not
work on untyped files th a t consist of executables and stream s of characters.
Instead, all functions/program s are stored as dynam ics, forming a rudim entary
typed file system.

Moreover, instead of evaluating the expression by in terp re ta tion of the source
code, E sther generates a new dynam ic th a t contains a closure th a t refers to the
compiled code of o ther program s. The shell, therefore, is a hybrid in terpreter
th a t generates compiled code. The resulting dynam ic can be used by any other
compiled Clean program w ithout using an in terp reter or the shell. Dynamics
can contain closures, which refer to code and d a ta belonging to o ther compiled
Clean program s. W hen needed for evaluation, the code is autom atically linked
to the running program by C lean’s dynam ic linker. This approach results in less
overhead during evaluation of the expression th an using a conventional source
code in terpreter.

E sther perform s the following steps in a loop:

— it reads a string from the console and parses it like a C lean expression. It
supports denotations of C lean’s basic and predefined types, application, infix
operators, lam bda abstraction , overloading, let(rec), and case expressions;

— identifiers th a t are not bound by a lam bda abstraction , a let(rec), or a case
p a tte rn are assum ed to be nam es of dynam ics on disk, and they are read
from disk;

— type checks the expression using dynam ic run-tim e unification and type p a t
te rn m atching, which also infers types;

— if the com m and expression does not contain type errors, E sther displays
the result of the expression and the inferred type. E sther will autom atically
be extended w ith any code necessary to display the result (which requires
evaluation) by the dynam ic linker.

3 An Overview of Esther

| Q D:\Hilde filesystem\boot bat .|nl;xj|
l : /h o n e > 4 0 + 2
42 : : I nt _____________________B
2:/hone> f s t
\ :: (a , b> - > a c a D:\Hlde FilesystemNboot bat
3 : /h o n e > nap f s t l : /h o n e> cd " /p rograns /S tdE nv"
nap \ : : [(a , b)] - > [a] UNIT : : UNIT
4:/hone> 10 + "1" 2 : /p rograns /S tdE nv> I s " "

Cannot app ly + 10 :: In t - > In t
to "1" : : (t tChari *** i f

5:/hone> inc in s tan c e one In t
\ id id : : a - > a ! + a & one a in s tan c e one Real
6:/hone> < \f x - > f (f x}) > > (tw ic e) i n f i x l 9 not
S' B I <C' B I I) : : (a - > a) - > a - > a < +) i n f i x l 6
7:/hone> inc tu ic e 1.14 in s tan c e + I n t
3.14 : : Real < = =) i n f i x 4
B:/hone> head l i s t = case l i s t of [x : x s l - > x in s tan c e = = In t
B‘ (S (B K I)> n i s n a tc h I : : [a] - > a nap
9:/hone> head [1 leng th
* * * P a t te rn n i s n a tc h in case * * » Fst
L0:/hone> fac n = i f <n < = 1> 1 <n * fac <n - 1>> snd
Esthers <C‘ IF (C‘ (B‘ .+. .+. . + .) I 1) 1) (S ‘ » I < & & > i n f i x r 3

. + . .♦.>:>> :: In t -> In t sun
L I : /h o n e> fac 10 <!!) in f i x r 2
3628800 :: In t f i l t e r
L2:/hone> fankeNewProcess " lo c a l h o s t " E s th e r re u erse
(Fankeld "131 .174 .32 .205" 2> :: Fankeld zero
13:/h o n e> in s tan c e zero In t

Fig. 1. A combined screenshot of two incarnations of Esther

3.1 E xam p le: a S essio n w ith E sth er

To illustra te the expressive power of E sther, we show an E sther session in Fig.
1 (the left window w ith the w hite title bar) and explain w hat happens:

1. ‘Sim ple’ arithm etic. The shell looks in the current search-path to find the
infix function +. The + is overloaded, and the shell searches again for an
instance for + for type In t . Finally, it responds w ith the value and inferred
type of the result.

2. Typing the nam e of a dynam ic a t the prom pt shows its contents, which can
contain unnam ed lam bda functions (\) , and its type.

3. The dynam ic map is applied to the dynam ic f s t yielding the expected type.
4. The infix operator + cannot be applied to an integer and a string.
5. The overloaded function in c is revealed to be overloaded in + and one. The

\ id id is caused by the way E sther handles overloading (see Sect. 4.6.).
6. The lam bda expression \ f x -> f (f x) is w ritten to disk, using the >>

operator, and nam ed tw ic e . I t is defined as a left associative infix operator
w ith prio rity 9. E sther shows the in ternal code and type of the lam bda
expression, exposing the fact th a t it uses com binators (see Sect. 4.2).

7. The dynam ic in c is applied to 1 .14 via the previously defined operator
tw ice .

8. Defines a function nam ed head th a t selects the first argum ent of a list using
a case expression.

9. Applies head to an em pty list yielding a p a tte rn m ism atch exception.

10. Defines a function nam ed f a c th a t yields the factorial of its argum ent.
11. f a c 10 is evaluated to 3628800.
12. famkeNewProcess is used to s ta r t E sther (which is also stored as a dynamic)

as new process, on the same com puter (right window w ith black title bar):
1 Evaluates cd "/p ro g ram s/S td E n v " to ‘change d irectory’ to the direc

to ry th a t provides C lean’s standard library to E sther, by storing the
functions as dynam ics in the file system. Because cd has type S tr in g
eW o rld ^ eW o rld and therefore no result, E sther shows UNIT (i.e. void).

2 Evaluates the application of l s to the em pty string, showing all files in
the current directory: the functions in the standard library.

Fig. 2. A combined screenshot of the calculator in action and Esther

3.2 E xam p le: a C a lcu la tor th a t U ses a S h ell F u n ctio n

Figure 2 shows a sequence of screenshots of a calculator program w ritten in
Clean. Initially, the calculator has no function bu ttons. Instead, it has bu ttons
to add and remove function bu ttons. These will be loaded dynam ically after
adding dynam ics th a t contain tuples of S tr in g and R eal R eal ^ Real.

The lower half of Fig. 2 shows a com m and line in the E sther shell th a t writes
such a tuple as a dynam ic nam ed “2a-b2.u.dyn” to disk. The extension “.dyn”
is added by Clean dynam ic linker, the “.u” before the extension is used to store
the file fixity a ttrib u tes (“u” m eans prefix). E sther p re tty prin ts these attribu tes,
bu t the Microsoft W indows file selector shows the file nam e in a raw form.

Its b u tto n nam e is 2 * a-b"2 and the function is \ a b -> 2 .0 * a - b * b.
Pressing the Add b u tto n on the calculator opens a file selection dialog, shown
at the bo ttom of Fig. 2. After selecting the dynam ic nam ed “2a-2b.u.dyn” , it
becomes available in the calculator as the b u tto n 2*a-b"2 , and it is applied to
8 and 3 yielding 7.

The calculator itself is a separately compiled Clean executable th a t runs
w ithout using E sther. A lternatively, one can w rite the calculator, which has
type [(String, R eal R eal ^ Real)] eW o rld ^ eW orld , to disk as a dynamic.
The calculator can then be s ta rted from E sther, either in the current shell or as
a separate process.

4 T y p e C h e c k i n g w i t h D y n a m i c s

In th is section, we show how one can use the type unification of C lean’s dynam ic
run-tim e system to type check a common syntax tree, and how to construct the
corresponding Clean expression. The parsing is trivial and we will assume th a t
the string has already been successfully parsed. In order to support a basic, bu t
complete, functional language in our shell we need to support function defini
tions, lam bda, let(rec), and case expressions.

We will introduce the syntax tree piecewise and show for each kind of ex
pression how to construct a dynam ic th a t contains the corresponding Clean
expression and the type for th a t expression. Names occurring free in the com
m and line are read from disk as dynam ics before type checking. The expression
can contain references to o ther dynamics, and therefore to the compiled code of
functions, which will be autom atically linked by C lean’s run-tim e system.

4 .1 A p p lica tio n

Suppose we have a syntax tree for constant values and function applications th a t
looks like:

:: Expr = (@) i n f i x l 99 Expr Expr / / 10 A p p lic a tio n
| Value Dynamic / / C onstan t o r dynamic value from d isk

We introduce a function compose, which constructs the dynam ic containing
a value w ith the correct type th a t, when evaluated, will yield the result of the
given expression.

compose :: Expr -> Dynamic
compose (Value d) = d
compose (f @ x) = case (compose f , compose x) of

(f :: a -> b , x :: a) -> dynamic f x : : b
(d f , dx) -> r a i s e 11("Cannot apply " +++ typeOf df

+++ " to " +++ typeOf dx)

9 This defines an infix constructor w ith priority 9 th a t is left associative.
10 This a Clean comment to end-of-line, like Haskell’s — .
11 For easier error reporting, we implemented imprecise user-defined excep

tions a la Haskell [8]. We used dynamics to make the set of exceptions extensible.

typeOf :: Dynamic -> S tr in g
typeOf dyn = to S tr in g (typecodeOfDynamic dyn) / / p r e t t y p r in t type

Composing a constant value, contained in a dynam ic, is trivial. Composing an
application of one expression to another is a lot like the dynam icApply function
of Sect. 2. M ost im portantly , we added error reporting using the typeO f function
for p re tty printing the type of a value inside a dynam ic.

4 .2 L am b d a E x p ressio n s

Next, we extend the syntax tree w ith lam bda expressions and variables.

:: Expr = . . . / / P rev ious d ef .
| (—>) in f ix r 0 Expr Expr / / Lambda a b s t r a c t io n : \ . . -> . .
| Var S tr in g / / V ariab le
| S | K | I / / Com binators

At first sight, it looks as if we could sim ply replace a Lambda constructor in
the syntax tree w ith a dynam ic containing a lam bda expression in Clean:

compose (Var x —> e) = dynamic (\y -> composeLambda x y e : : ?)

The problem w ith th is approach is th a t we have to specify the type of
the lam bda expression before the evaluation of composeLambda. Furtherm ore,
composeLambda will not be evaluated until the lam bda expression is applied to
an argum ent. This problem is unavoidable because we cannot get ‘around’ the
lam bda. Fortunately, bracket abstraction [9] solves bo th problems.

Applications and constan t values are composed to dynam ics in the usual way.
We transla te each lam bda expression (— >) to a sequence of com binators (S, K,
and I) and applications, w ith the help of the function s k i .

compose . . . / / P rev ious d e f .
compose (x —> e) = compose (s k i x e)
compose I = dynamic \x -> x
compose K = dynamic \x y -> x
compose S = dynamic \ f g x -> f x (g x)

sk i : : Expr Expr -> Expr / / common b ra c k e t a b s tr a c t io n
sk i x (y —> e) = s k i x (sk i y e)
sk i (Var x) (Var y) | 12 x == y = I
sk i x (f @ y) = S @ s k i x f @ s k i x y
sk i x e = K @ e

Composing lam bda expressions uses s k i to elim inate the Lambda and Var
iable syntax constructors, leaving only applications, dynam ic values, and combi-
nators. Composing a com binator sim ply w raps its corresponding definition and
type as a lam bda expression into a dynamic.

Special com binators and com binator optim ization rules are often used to im
prove the speed of the generated com binator code by reducing the num ber of

12 If this guard fails, we end up in the last function alternative.

com binators [10]. One has to be careful not to optim ize the generated combina-
to r expressions in such a way th a t the resulting type becomes too general. In
an un typed world th is is allowed because they preserve the intended sem antics
when generating untyped (abstract) code. However, our generated code is con
tained w ithin a dynam ic and is therefore typed. This makes it essential th a t we
preserve the principal type of the expression during bracket abstraction . Adding
common ^-conversion, for example, results in a too general type for Var " f" — >
Var "x" — > f x: Va.a ^ a, instead of yah.(a ^ b) ^ a ^ b. Such optim iza
tions m ight prevent us from getting the principal type for an expression. Simple
bracket abstraction using S, K, and I, as perform ed by s k i , does preserves the
principal type [11].

Code combined by E sther in th is way is not as fast as code generated by the
Clean compiler. C om binators in troduced by bracket abstraction are the m ain rea
son for th is slowdown. Additionally, all applications are lazy and not specialized
for basic types. However, these disadvantages only hold for the small (lam bda)
functions w ritten a t the com m and line, which are m ostly used for plum bing. If
faster execution is required, one can always copy-paste the com m and line into a
Clean m odule th a t w rites a dynam ic to disk and running the compiler.

In order to reduce the num ber of com binators in the generated expression,
our current im plem entation uses D iller’s algorithm C [12] w ithout ^-conversion
in order to preserve the principal type, while reducing the num ber of generated
com binators from exponential to quadratic. O ur current im plem entation seems
to be fast enough, so we did not explore further optim izations by other bracket
abstraction algorithms.

4 .3 Irre fu ta b le P a tte r n s

Here we introduce irrefutable patterns, e.g. (nested) tuples, in lam bda expres
sions. This is a p reparation for the upcom ing let(rec) expressions.

:: Expr = . . . / / P rev ious d e f .
| Tuple I n t / / Tuple c o n s tru c to r

compose . . . / / P rev ious d e f .
compose (Tuple n) = tu p le C o n s tr n

tu p le C o n s tr :: I n t -> Dynamic
tu p le C o n s tr 2 = dynamic \x y -> (x , y)
tu p le C o n s tr 3 = dynamic \x y z -> (x , y , z)
tu p le C o n s tr . . . / / and so o n . . . 13

sk i : : Expr Expr -> Expr
sk i (f @ x) e = s k i f (x —> e)
sk i (Tuple n) e = Value (matchTuple n) @ e
sk i . . . / / p rev io u s d e f .

13 ...until 32. Clean does not support functions or d a ta types w ith arity above 32.

matchTuple :: I n t -> Dynamic
matchTuple 2 = dynamic \ f t -> f (f s t t) (snd t)
matchTuple 3 = dynamic \ f t -> f (f s t3 t) (snd3 t) (thd3 t)
matchTuple . . . / / and so o n . . .

We extend the syntax tree w ith T uple n constructors (where n is the num
ber of elements in the tuple). This makes expressions like T uple 3 @ Var "x"
@ Var "y" @ Var "z" — > T uple 2 @ Var "x" @ Var "z" valid expressions.
This exam ple corresponds w ith the C lean lam bda expression \ (x , y , z) ->
(x , z) .

W hen the s k i function reaches an application in the left-hand side of the
lam bda abstraction , it processes b o th sub-patterns recursively. W hen the s k i
function reaches a T uple constructor it replaces it w ith a call to the m atchTuple
function. Note th a t the right-hand side of the lam bda expression has already been
transform ed into lam bda abstractions, which expect each com ponent of the tuple
as a separate argum ent. We then use the m atchT uple function to ex trac t each
com ponent of the tuple separately. I t uses lazy tuple selections (using f s t and
snd, because Clean tuple p a tte rn s are always eager) to prevent non-term ination
of recursive let(rec)s in the next section.

4 .4 L e t(rec) E xp ressio n s

Now we are ready to add irrefutable let(rec) expressions. R efutable let(rec) ex
pressions m ust be w ritten as cases, which will be in troduced in next section.

:: Expr = . . . f f P rev ious d e f .
I L e tre c [Def] Expr f f l e t (r e c) . . in . .
I Y f f Combinator

:: Def = (: :=) in f ix 0 Expr Expr / / . . = . .

compose . . . / / P rev ious d e f .
compose (L e trec ds e) = compose (letRecToLambda ds e)
compose Y = dynamic y where y f = f (y f)

letRecToLambda :: [Def] Expr -> Expr
letRecToLambda ds e = l e t (p ::= d) = combine ds

in s k i p e @ (Y @ s k i p d)

combine :: [Def] -> Def
combine [p ::= e] = p ::= e
combine [p1 ::= e1 :d s] = l e t (p2 ::= e2) = combine ds

in Tuple 2 @ p i @ p2 ::= Tuple 2 @ e l @ e2

W hen compose encounters a let(rec) expression it uses letRecToLam bda to
convert it in to a lam bda expression. The letRecToLam bda function combines
all (possibly m utually recursive) definitions by pairing definitions into a single
(possibly recursive) irrefutable tuple p a tte rn . This leaves us w ith ju s t a single
definition th a t letRecToLam bda converts to a lam bda expression in the usual
way [13].

4 .5 C ase E x p ressio n s

Composing a case expression is done by transform ing each alternative into a
lam bda expression th a t takes the expression to m atch as an argum ent. If the
expression m atches the pa tte rn , the right-hand side of the alternative is taken.
W hen it does not m atch, the lam bda expression corresponding to the next alter
native is applied to the expression, forming a cascade of if-then -e lse constructs.
This results in a single lam bda expression th a t im plem ents the case construct,
and we apply it to the expression th a t we w anted to m atch against.

:: Expr = . . . / / P rev ious d e f .
| Case Expr [A lt] / / case . . o f . .

:: A lt = (==>) in f ix 0 Expr Expr / / . . -> . .

compose . . . / / P rev ious d e f .
compose (Case e as) = compose (altsToLambda as @ e)

We transla te the alternatives into lam bda expressions below using the fol
lowing rules. If the p a tte rn consists of an application we do bracket abstraction
for each argum ent, ju s t as we did for lam bda expressions, in order to deal w ith
each su bpatte rn recursively. M atching against an irrefutable pattern , such as
variables of tuples, always succeeds and we reuse the code of s k i th a t does the
m atching for lam bda expressions. M atching basic values is done using ifE q u a l
th a t uses C lean’s built-in equalities for each basic type. We always add a default
alternative, using the m ism atch function, th a t informs the user th a t none of the
p a tte rn s m atched the expression.

altsToLambda :: [A lt] -> Expr
altsToLambda [] = Value mismatch
altsToLambda [f @ x ==> e :a s] = altsToLambda [f ==> s k i x e :a s]
altsToLambda [Var x ==> e :_] = Var x —> e
altsToLambda [Tuple n ==> e :_] = Tuple n —> e
altsToLambda [Value dyn ==> th :a s] = l e t e l = altsToLambda as

in case dyn of
(i : : I n t) -> Value (ifE q u a l i) @ th @ e l
(c : : Char) -> Value (ifE q u a l c) @ th @ e l
. . . / / f o r a l l b a s ic ty p e s

ifE q u a l : : a -> Dynamic | TC a & Eq a
ifE q u a l x = dynamic \ t h e l y -> i f (x == y) th (e l y)

:: A.b: b (a “ -> b) a “ -> b

mismatch = dynamic r a i s e " P a t te rn mismatch" :: A .a: a

M atching against a constructor contained in a dynam ic takes more work.
For example, if we pu t C lean’s list constructor [:] in a dynam ic we find th a t
it has type Va.a ^ [a] ^ [a], which is a function type. In Clean, one cannot
m atch closures or functions against constructors. Therefore, using the function
makeNode below, we construct a node th a t contains the right constructor by
adding dum m y argum ents until it has no function type anymore. The function

ifM atch uses some low-level code to m atch two nodes to see if the constructor of
the p a tte rn m atches the outerm ost constructor of the expression. If it m atches,
we need to ex trac t the argum ents from the node. This is done by the applyTo
function, which decides how m any argum ents need to be ex tracted (and w hat
their types are) by inspection of the type of the curried constructor. Again,
we use some low-level auxiliary code to ex trac t each argum ent while preserving
laziness.

altsToLambda [Value dyn ==> th :a s] = l e t e l = altsToLambda as
in case dyn of

. . . / / p rev io u s d e f in i t io n fo r b a s ic ty p es
c o n s tr -> Value (ifM atch (makeNode c o n s tr))

@ (Value (applyTo dyn) @ th) @ e l

ifM atch :: Dynamic -> Dynamic
ifM atch (x :: a) = dynamic \ t h e l y -> i f (matchNode x y) (th y) (e l y)

:: A.b: (a -> b) (a -> b) a -> b

makeNode :: Dynamic -> Dynamic
makeNode (f :: a -> b) = makeNode (dynamic f undef : : b)
makeNode (x :: a) = dynamic x :: a

applyTo :: Dynamic -> Dynamic
applyTo . . . / / and so on, most s p e c i f ic type f i r s t . . .
applyTo (_ :: a b -> c) = dynamic \ f x -> f (a rg io f2 x) (arg2of2 x)

:: A.d: (a b -> d) c -> d
applyTo (_ :: a -> b) = dynamic \ f x -> f (a r g lo f l x)

:: A .c: (a -> c) b -> c
applyTo (_ :: a) = dynamic \ f x -> f : : A.b: b a -> b

matchNode :: a a -> Bool / / lo w -le v e l code; compares two nodes.

a r g i o fn :: a -> b / / lo w -le v e l code; s e le c t s i t h argument o f n -a ry node

P a tte rn m atching against user defined constructors requires th a t the con
structors are available from (i.e. stored in) the file system. E sther currently does
not support type definitions a t the com m and line, and the Clean compiler m ust
be used to introduce new types and constructors into the file system . The ex
ample below shows how one can w rite the constructors C, D, and E of the type
T to the file system . Once the constructors are available in the file system , one
can w rite com m and lines like \x -> case x o f C y -> y; D z -> z ; E -> 0
(for which type (T I n t) ^ I n t is inferred).

:: T a = C a | D I n t | E

S ta r t w orld =
l e t (_ , wl) = writeDynamic "C" (dynamic C :: A .a: a -> T a) world

(_ , w2) = writeDynamic "D" (dynamic D :: A .a: I n t -> T a) wl
(_ , w3) = writeDynamic "E" (dynamic E :: A .a: T a) w2

in w3

4 .6 O verload in g

Support for overloaded expressions w ithin dynam ics in Clean is not yet im
plem ented (e.g. one cannot w rite dynam ic (==) : : A .a: a a -> Bool | Eq
a). Even when a future dynam ics im plem entation supports overloading, it can
not be used in a way th a t suits E sther. We w ant to solve overloading using
instances/dictionaries from the file system , which m ay change over tim e, and
which is som ething we cannot expect from C lean’s dynam ic run-tim e system
out of the box.

Below is the Clean version of the overloaded functions == and one. We will
use these two functions as a running example.

c la s s Eq a where (==) in f ix 4 :: a a -> Bool
c la s s one a where one :: a

in s ta n c e Eq I n t where (==) x y = / / lo w -le v e l code to compare in te g e r s
in s ta n c e one I n t where one = l

To mimic C lean’s overloading, we introduce the type O to differentiate be
tween ‘overloaded’ dynam ics and ‘norm al’ dynam ics. The type O, shown below,
has four type variables which represent: the variable the expression is overloaded
in (v), the d ictionary type (d), the ‘original’ type of the expression (t) , and the
type of the nam e of the overloaded function (n). Values of the type O consists
of a constructor O followed by the overloaded expression (of type d ^ t) , and
the nam e of the overloaded function (of type n). We m otivate the design of this
type la ter on in th is section.

:: O v d t n = O (d -> t) n / / Overloaded ex p re ss io n

== = dynamic O id "Eq" :: A .a: O a (a a -> Bool) (a a -> Bool) S tr in g
one = dynamic O id "one" :: A .a: O a a a S tr in g

in stan ce_ E q _ In t = dynamic \x y -> x == y :: I n t I n t -> Bool
in stan c e_ o n e_ In t = dynamic l : : I n t

The dynam ic ==, in the example above, is E sth e r’s representation of C lean’s
overloaded function ==. The overloaded expression itself is the iden tity function
because the result of the expression is the d ictionary of ==. The nam e of the
class is Eq. The dynam ic == is overloaded in a single variable a , the type of the
d ictionary is a ^ a ^ Bool as expected, the ‘original’ type is the same, and the
type of the nam e is S tr in g . Likewise, the dynam ic one is E sth e r’s representation
of C lean’s overloaded function one.

By separating the different p arts of the overloaded type, we obtain direct
access to the variable in which the expression is overloaded. This makes it easy to
detect if the overloading has been resolved (i.e. the variable no longer unifies w ith
Va.a). By separating the d ictionary type and the ‘original’ type of the expression,
it becomes easier to check if the application of one overloaded dynam ic to another
is allowed (i.e. can a value of type O _ _ (a ^ b) _ be applied to a value of type
O _ _ a _).

To apply one overloaded dynam ic to another, we combine the overloading
inform ation using the P (pair) type as shown below in the function applyO.

: : P a b = P a b / / J u s t a p a i r

applyO :: Dynamic Dynamic -> Dynamic
applyO ((O f n f) :: O vf d f (a -> b) s f) ((O x nx) : : O vx dx a sx)

= dynamic O (\d _ f d_x -> f d_f (x d_x)) (P n f nx)
:: O (P v f vx) (P df dx) b (P s f sx)

We use the (private) d a ta type P instead of tuples because this allows us to
differentiate between a pair of two variables and a single variable th a t has been
unified w ith a tuple. Applying applyO to == and one yields an expression se
m antically equal to isO ne below. isO ne is overloaded in a pair of two variables,
which are the same. The overloaded expression needs a pair of dictionaries to
build the expression (==) one. The ‘original’ type is a ^ Bool, and it is over
loaded in Eq and one. E sther will p re tty p rin t this as: isO ne : : a -> Bool |
Eq a & one a.

isOne = dynamic O (\ (P d_Eq d_one) -> id d_Eq (id d_one)) (P "Eq" "one")
: : A .a: O (P a a) (P (a a -> Bool) a) (a -> Bool) (P S tr in g S tr in g)

Applying isO ne to the integer 42 will bind the variable a to In t . E sther is
now able to choose the right instance for bo th Eq and one. I t searches the file
system for the files nam ed “instance E q In t” and “instance one In t” , and applies
the code of isO ne to the dictionaries after applying the overloaded expression to
42. The result will look like isO ne10 in the example below, where all overloading
has been removed.

isOne42 = dynamic (\ (P d_Eq d_one) -> id d_Eq (id d_one) 42)
(P d_Eq_Int d_one_In t) :: Bool

Although overloading is resolved in the example above, the p lum bing /d ict
ionary passing code is still present. This will increase evaluation time, and it is
not clear yet how th is can be prevented.

5 R e l a t e d W o r k

We have not yet seen an in terpreter or shell th a t equals E sth e r’s ability to use
pre-compiled code, and to store expressions as compiled code, which can be used
in o ther already compiled program s, in a type safe way.

Es [14] is a shell th a t supports higher-order functions and allows the user
to construct new functions a t the com m and line. A UNIX shell in Haskell [15]
by Jim M attson is an interactive program th a t also launches executables, and
provides pipelining and redirections. Tcl [16] is a popular tool to combine pro
grams, and to provide com m unications between them . None of these program s
provides a way to read and w rite typed objects, o ther th an strings, from and to
disk. Therefore, they cannot provide our level of type safety.

A functional in terp reter w ith a file system m anipulation library can also
provide functional expressiveness and either sta tic or dynam ic type checking of

p a rt of the com m and line. For example, the Scheme Shell (ScSh) [17] integrates
common shell operations w ith the Scheme language to enable the user to use
the full expressiveness of Scheme a t the com m and line. In terpreters for statically
typed functional languages, such as Hugs [18], even provide sta tic type checking
in advance. A lthough they do type check source code, they cannot type check
the application of b inary executables to do cu m en ts/d a ta structu res because they
work on untyped executables.

The BeanShell [19] is an em beddable Java source in terpreter w ith object
scripting language features, w ritten in Java. It is able of type inference for vari
ables and to combine shell scripts w ith existing Java program s. W hile Esther
generates compiled code via dynam ics, the BeanShell in terp reter is invoked each
tim e a script is called from a norm al Java program .

Run-tim e code generation in order to specialize code at run-tim e to certain
param eters is not related to E sther, which only combines existing code.

6 C o n c l u s i o n s a n d F u t u r e W o r k

We have shown how to build a shell th a t provides a simple, bu t powerful strongly
typed functional program m ing language. We were able to do th is using only
C lean’s support for run-tim e type unification and dynam ic linking, albeit syntax
transform ations and a few low-level functions were necessary. The shell nam ed
E sther supports type checking and inference before evaluation. I t offers applica
tion, lam bda abstraction, recursive let, p a tte rn m atching, and function defini
tions: the basics of any functional language.

Additionally, infix operators and support for overloading make the shell easy
to use. The support for infix operators and overloading required the storage of
additional inform ation in the file system . We have chosen to use file a ttribu tes
to store the infix inform ation, and instances for an overloaded function f are
stored as files nam ed “instance f T ype” .

By combining compiled code, E sther allows the use of any pre-compiled pro
gram as a function in the shell. Because E sther stores functions/expressions
constructed a t the com m and line as a dynam ic, it supports w riting compiled
program s a t the com m and line. Furtherm ore, these expressions w ritten a t the
com m and line can be used in any pre-compiled Clean program . The evaluation
of expressions using recombined compiled code is not as fast as using the Clean
compiler. Speed can be improved by introducing less com binators during bracket
abstraction, bu t it seams unfeasible to make E sther perform the same optim iza
tions as the Clean compiler. In practice, we find E sther responsive enough, and
more optim izations do not appear w orth the effort at th is stage. One can al
ways construct a C lean module using the same syntax and use the compiler to
generate a dynam ic th a t contains more efficient code.

F urther research will be done on a more elaborate typed file system , and
support for types and type definitions at the com m and line. E sther will be in
corporated into our ongoing research on the developm ent of a strongly typed
functional operating system.

R e f e r e n c e s

1. Rinus Plasm eijer and Marko van Eekelen. Concurrent Clean Language Report
version 2.1. University of Nijmegen, November 2002. h ttp ://c s .k u n .n l/~ c lea n .

2. Simon Peyton Jones and John Hughes et al. Report on the programming language
Haskell 98. University of Yale, 1999. h ttp ://w w w .haskell.o rg /defin ition /.

3. Arjen van Weelden and Rinus Plasmeijer. Towards a Strongly Typed Functional
O perating System. In R. Pena and T. A rts, editors, 14th International Workshop
on the Implementation of Functional Languages, IF L ’02, pages 215-231. Springer,
September 2002. LNCS 2670.

4. M artin Abadi, Luca Cardelli, Benjam in Pierce, and Gordon Plotkin. Dynamic
Typing in a Statically Typed Language. A CM Transactions on Programming Lan
guages and Systems, 13(2):237-268, April 1991.

5. Marco Pil. Dynamic Types and Type Dependent Functions. In K. Hammond,
T. Davie, and C. Clack, editors, 10th International Workshop on the Implemen
tation of Functional Languages, IFL ’98, volume 1595 of LNCS, pages 169-185,
London, 1999. Springer.

6. M artijn Vervoort and Rinus Plasmeijer. Lazy Dynamic In p u t/O u tp u t in the Lazy
Functional Language Clean. In R. Pena and T. A rts, editors, 14th International
Workshop on the Implementation of Functional Languages, IF L ’02, pages 101-117.
Springer, September 2002. LNCS 2670.

7. M. Abadi, L. Cardelli, B. Pierce, G. P lotkin, and D. Remy. Dynamic Typing in
Polymorphic Languages. In Proceedings of the ACM SIGPLAN Workshop on ML
and its Applications, San Francisco, June 1992.

8. Simon L. Peyton Jones, A lastair Reid, Fergus Henderson, C. A. R. Hoare, and
Simon Marlow. A Semantics for Imprecise Exceptions. In SIGPLAN Conference
on Programming Language Design and Implementation, pages 25-36, 1999.

9. M. Schonfinkel. Uber die Bausteine der m athem atischen Logik. In Mathematische
Annalen, volume 92, pages 305-316. 1924.

10. Haskell B. Curry and Robert Feys. Combinatory Logic, volume 1. North-Holland,
Am sterdam , 1958.

11. J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and \ -
Calculus. Cambridge University Press, 1986. ISBN 0521268966.

12. Antoni Diller. Compiling Functional Languages. John Wiley and Feys Sons Ltd,
1988.

13. Simon L. Peyton Jones. The Implementation of Functional Programming Lan
guages. Prentice-Hall, 1987.

14. Paul H aahr and Byron Rakitzis. Es: A Shell w ith Higher-order Functions. In
Proceedings of the USENIX Winter 1993 Technical Conference, pages 51-60, 1993.

15. Jim M attson. The Haskell Shell. h ttp ://w w w .in fo rm atik .un i-bonn .de /~ ra lf/so ft-
w are/exam ples/H sh.htm l.

16. J. K. O usterhout. Tcl: An Em beddable Command Language. In Proceedings of the
USENIX Winter 1990 Technical Conference, pages 133-146, Berkeley, CA, 1990.
USENIX Association.

17. O. Shivers. A Scheme Shell. Technical Report M IT /LC S/TR -635, 1994.
18. M ark P Jones, A lastair Reid, the Yale Haskell Group, the OGI School of

Science, and Engineering at OHSU. The Hugs 98 User Manual, 1994-2002.
h ttp ://cvs.haskell.o rg /H ugs/.

19. P a t Niemeyer. Beanshell 2.0. http://w w w .beanshell.org .

http://cs.kun.nl/~clean
http://www.haskell.org/definition/
http://www.informatik.uni-bonn.de/~ralf/soft-
http://cvs.haskell.org/Hugs/
http://www.beanshell.org

