
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/60573

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/60573

Chapter 1

Testing reactive systems with
GAST
Pieter Koopman and Rinus Plasmeijer 1

Abstract: G vst is a fully automatic test system. Given a logical property, stated
as a function, it is able to generate appropriate test values, to execute tests with
these values, and to evaluate the results o f these tests. Many reactive systems,
like automata and protocols, however, are specified by a model rather than in
logic. There exist tools that are able to test software described by such a model
based specification, but these tools have limited capabilities to generate test data
involving data types. Moreover, in these tools it is hard or even impossible state
properties of these values in logic. In this paper we introduce some extensions
of G vst to combine the best of logic and model based testing. The integration of
model based testing and testing based on logical properties in a single automatical
system is the contribution of this paper. The system consists just o f a small library
instead of a huge stand alone system.

1.1 INTRODUCTION

Within the fully automatic test system G vst [KATP02], properties over functions
and data types are expressed in first order logic. These properties are written as
functions in the functional programming language C le a n [PE02]. Based on the
types used in these functions, G vst automatically and systematically generates
test values, it evaluates the property for these values, and it analyses the test re
sults. This avoids the burden to design and evaluate a test suite by hand and makes
it easy to repeat the test after changing the program (regression tests). This au
tomatic and systematic generation of test data is a distinguishing feature of G vst
that even allows proofs for finite types by exhaustive testing. In [KATP02] we
mainly focused on the concepts and the implementation of Gvst.

1Nijmegen Institute for Computer and Information Science, Nijmegen University, The
Netherlands. Email: { p ie te r ,r in u s } @ c s .k u n .n l

1

It is possible to specify the behaviour of reactive systems, like the famous
coffee-vending-machines and protocols [BFVea99], in logic, as demonstrated by
Z [Spi92]. However, these reactive systems are usually specified by a model,
instead of by a property in logic. Many formalisms are used in the literature to
specify reactive systems. We use labelled transition systems (LTS), since they
have shown to be very general and effective for testing [Gog01, HFT00].

Gvst was originally designed for logic based testing, not for model based
tesing. In this paper we introduce some extensions that makes Gvst suited for
model based testing. We introduce a general format to specify labelled transition
systems as a data structure in Clea n . The specification of an LTS by a function
is shown to be more concise and it can handle an unbounded number of labels and
states.

To test conformance effectively these specifications are used as a basis for
test case generation. These test cases are much more effective for this purpose
than the systematic generation of all possible inputs, which in its turn is more
effective than random generation of inputs. For each deterministic and finite LTS
it becomes possible to prove that the implementation behaves as specified, or to
spot an error under the assumption that the implementation is an LTS that does
not contain more states than the specification [Ura92].

An advantage of extending Gvst to enable testing of products specified by an
LTS, is that the original ability to test data types is preserved and can be combined
with the new possibilities. The generation of data to test properties involving data
types is a weak point of the existing automatic model based test systems.

Unlike model checkers like SPIN [Hol03], we assume that the given specifi
cation is correct. In practise however, differences between the specification and
the actual implementation appears also to be caused by incorrect specifications.
So, testing also increases the quality and confidence in the specification.

1.2 OVERVIEW OF GVST

To make this paper self-contained we give an overview of Gvst. It is an automatic
test system embedded in the functional programming language Clean . The idea
behind Gvst is similar to the test system Quichcheck for Haskell [CH00, CH02].
Distinguishing features of Gvst are the systematic test data generation, and the
the ability to proof properties. Quickcheck generates test data randomly.

Ordinary C le a n functions are used to specify properties. As an example
we consider the rotate 13 algorithm, a simple way to encrypt texts. It is used
to hide text from casual reading, and rotates the alphabet by half its length, i.e.
13 characters. Characters not in the alphabet are not effected. For example the
encryption of The answer = 42 yields Gur nafjre = 42 [Ada79].

A nice property of this encryption method is that its own decryption: apply
ing the algorithm twice yields its the original character. In logic this is Vc e
Char.rot13(rot13(c)) = c. In G vst this is expressed as:

propRot13 :: Char -> Bool
propRot13 c = rot13 (rot13 c) == c

Notice that the arguments of the functions that specify the desired property are
treated as universal quantified variables.

1.2.1 Testing and Results

Given an implementation of rot13, the property propRot13 is tested by applying it
for a number of characters and check whether it yields True for all arguments.
This is exactly what the function test does: generate arguments of the desired
type in a systematic way, evaluate the specified property for these arguments,
and investigate whether the test cases are successful. This test is initiated by
executing Start = test propRot13. We use the following implementation of rot13
in the tests:

rot13 :: Char -> Char
rot13 c | isUpper c = toChar ((toInt(c-'A')+13) rem 26) + 'A'

| isLower c = toChar ((toInt(c-'a')+13) rem 26) + 'a'
=c

Testing this property yields: P ro o f: s u c c e s s f o r a l l a rgum en ts a f t e r
98 t e s t s . Due to the systematic generation of test data, G vst can, in this sit
uation, detect that this property holds for all possible well-defined arguments.
Hence the result qualifies as a proof rather then just a successful test result. For
the type Char G vst only generates the printable characters, this explains why there
are only 98 successful test performed. Below we show how this property is tested
for all 256 possible characters if that would be desired.

1.2.2 Evaluating Test Results

The function test has type p - > [String]|Testable p. Given a member of the class
Testable, this function yields a list o f strings containing the test report. There ex
ists instances of the class Testable for Bool and functions of type (a->b) | Testable
b & TestArg a. A type belongs to the class TestArg if Gvst knows how to generate
and show values of this type.

The basic rules for evaluating a series of test results are rather simple:

1. As soon as a single counterexample is encountered the property does not hold.
The testing process terminates with an appropriate error message.

2. If no counterexamples are found and all possible test values are used, the prop
erty is proven. Such a proof is only possible for finite types, and feasible for
rather small types.

3. If no counterexamples are found within a certain upperbound of tests, the
property passes the test successfully. We gained confidence in its correctness.

1.2.3 Logical Operators in Gvst

As an additional property we might require that applying rot13 to any character
yields a different character:
propRot13b :: Char -> Bool
propRot13b c = rot13 c <> c

Testing this property yields the message: C oun terexa m p le fo u n d a f t e r 5
t e s t s : ' ; ' . As stated above, only alphabetic characters are changed. Other
characters are unaffected by rot13. Hence rot13 , ' is equal to , ' and this prop
erty does not hold for , '.

For a more precise formulation of this property we might require that applying
rot13 to a letter yields a different character:
propRot13c :: Char -> Property
propRot13c c = isAlpha c ==> rot13 c <> c

The operator ==> mimics the implication operator, ^ , from logic. It has the usual
semantics: if the left operand holds, the right-hand operand should be obeyed.
For implementation reasons this function yields an element of type Property rather
than a Boolean. Any Boolean result is transformed to such a Property by applying
the function prop. Semantically the type Property is the union of Booleans and
functions yielding a Boolean (which are just logical expressions containing a uni
versal quantifier). Evaluating this property by G vst yields: P ro o f: S u c c e s s
f o r a l l n o t r e j e c t e d a rg u m en ts , 52 t e s t s , 46 r e j e c t i o n s .

If the left-hand argument of the operator ==> yields False, the test-value is
rejected instead of counted as success. This operator is used to select test values:
if the test value is rejected, nothing is known about the property on the right-hand
side. It would be misleading to count this as a successful test.

There are several ways for the tester to control the generation of test values.
Using the infix operator For the property is tested for all values in the list on the
right-hand side of the operator. The For operator is used to test propRot13 for all
256 characters in the standard AsCII in:
Start = test (propRot13 For map toChar [0..255])

Here G vst reports P assed a f t e r 100 t e s t s . In this situation it is easy to
turn this result to a proof. We only have to increase the number of tests allowed.
Start = testn 500 (propRot13 For map toChar [0..255])

GVST reports P ro o f: s u c c e s s f o r a l l a rgum en ts a f t e r 256 t e s t s .

1.2.4 Automatic Generation of Test Values

Test data generation for predefined types like Char is rather easy. Gvst generates
all possible elements of finite and relatively small types like Bool and Char as
test value. For large types like Int and Real this is o f course not feasible. Gvst
generates by default common border types (like - 1 , 0 and 1), followed by random
values for these types.

The generation of test values for user-defined (recursive) types is interesting.
Using Clea n ’s generic programming facilities [Hin00, AP01], Gvst generates
instances of these types fully automatically. Test data are generated such that
small instances come first and larger values afterwards. Due to the systematic
generation duplicates are avoided also in this situation. This implies that Gvst is
able to detect that all instances of a finite type are generated. If a property holds
for all these values, it is proven correct.

1.3 SPECIFYING REACTIVE SYSTEMS IN GVST

A reactive system is an automaton that posseses an internal state and interacts with
its environment. In this paper we restrict ourselves to software systems with a sin
gle input and output channel. For instance, a communication channel is modelled
as a function of type [Message] -> [Message].

For some simple reactive systems we can specify aspects of their behaviour in
first order logic. For instance, a system consisting of an unreliable communication
channel supervised by an alternating bit protocol is required to yield the same list
of messages as is to be send. In Gvst this is:
propAltBit :: (Int->Bool) (Int->Bool) [Int] -> Bool
propAltBit sError rError input = input == abpSystem sError rError input

The functionabpSystem::(Int->Bool) (Int->Bool) [c] -> [c] mimics the commu
nication channel. The first two function arguments are used for the introduction
of communication errors in the sending and receiving direction of the channel re
spectively. The last argument, the list [c], is the input of the channel and the result
is the output of the alternating bit protocol to the user.

The implementation of the alternating bit protocol used in the tests is:
:: Message c = M c Bit | A Bit | Error
:: SenderState c = Send Bit | Wait Bit c

sender :: (SenderState c) [c] [Message c] -> [Message c]
sender (Send b) [] as = []
sender (Send b) [c:cs] as = [M c b: sender (Wait b c) cs as]
sender state=:(Wait b c) cs [a:as]
= case a of

A d | b==d = sender (Send (~b)) cs as
_ = [M c b: sender state cs as]

receiver :: Bit [Message c] -> ([Message c],[c])
receiver rState [] = ([],[])
receiver b [m:ms]
= case m of

M c d|b==d = ([A b :as],[c:cs]) where (as,cs) = receiver (~b) ms
_ = ([A (~b):as], cs) where (as,cs) = receiver b ms

channel :: (Int->Bool) [Message c] -> [Message c]
channel error ms = [i f (error n) Error m \ \ m <- ms & n <- [1..]]

abpSystem sError rError l i s t = received
where (acks,received) = receiver firstBit (channel sError messages)

messages = sender (Send firstBit) l is t (channel rError acks)
firstBit = O

This implementation passes any test of the property propAltBit in Gvst.

Although this works fine, the properties that can be specified in this way are
limited. For instance, it is troublesome to specify the behaviour of the sender of
the alternating bit protocol in this formalism. Often labelled transition systems
are used to specify this kind of behaviour of systems.

1.3.1 Labelled Transition Systems

A very popular way to specify a reactive systems is by means of a labelled transi
tion system (LTS). In this section we introduce labelled transition systems, show
how they can be represented in C le a n , and show how they can be used as a basis
for testing in our predicate based test system.

An LTS description is defined in terms of a set of states and labelled transi
tions between these states. To have a clear separation between input and output
labels we deviate from the usual definition of an LTS by using different types.
Moreover, we allow one input to generate a list of outputs. By introducing addi
tional intermediate states, such an LTS can be transformed to a traditional LTS.
Our representation reduces the number of transitions needed to specify a system
and makes it easier to use an LTS as basis for testing.

Given Q a non-empty countable set of states, I a non-empty countable set of
input symbols, and O a non-empty countable set of output symbols, we have a
transition relation T Ç Q x I x (O) x Q. Given some q0 e Q a labelled transition
system is give by the tuple (Q, I, O, T, q0).

For the moment we restrict ourselves to deterministic systems: the output and
new state are uniquely determined by the current state and the input. In fact
we have a Mealy finite state machine [Mea55]. That is, if (q, i, o1, q1) e T and
(q, i, o2, q2) e T we have q1 = q2 A o1 = 02. One often writes (q1, i, o, q2) e T as:

i/o
q1^q2

Where model checkers and other test systems often use a tailor-made spec
ification language (like Promela used within SPIN [Hol03] and TorX [Tre96])
to describe the labelled transition systems that serves as specification, we prefer
a specification in Clea n . This has two advantages. First, we can use the full
power of a functional programming language to write the specification or to write
functions that generate the desired specification. Second, there is no need for an
additional language.

Instead of explicit sets o f states, Q, and labels, I and O, we employ the type
system of C le a n to enforce the correct use of states and labels. A straightforward
realisation of an LTs consists o f a record containing a list of transitions and an
initial state.
:: Transition state input output :== (state,input,[output]i state)
:: LTS state input output

= { trans :: [Transition state input output]
, in itia l :: state
}

The use of type-parameters for the sets of states and labels involved gives us

maximum flexibility. We can even use various different types of transition systems
in the same program if desired.

Usually the LTs is a partial function, so we have to decide what to do when
an input is received in a state that is not covered by the LTs. Like most model
checkers we choose to ignore the input: the state does not change and the output
is empty. This is known as implicit completion of the model.

1.3.2 Example: a Conference Protocol

The conference protocol described here is a well known case study in many model
specifications and testers [CPE02]. The conference protocol is used to describe
the behaviour of a conference protocol entity (CPE). The conference protocol
allows a fixed number of entities to chat in various conferences. In order to chat
the user is able to issue the following commands to the CPE:

Join nickname conference The userjoins the named conference under the given
nickname. A user participates in at most one conference at any time.

Datarequest m essa g es All users in the conference receive this message.

Leave The user leaves the current conference.

There is a network through which the CPEs communicate. The interface from a
CPE to the network is via a User Datagram Protocol (UDP). The CPE sends Pro
tocol Data Units (PDUs) to the network. The network delivers these PDUs to the
indicated CPE and adds the identification of the sender. There are no assumptions
on the order of arriving of the messages, nor on the reliability of the connection.
A CPE can receive the following inputs from the network:

DataPDUin cpe m essa g e This CPE receives a messages from cpe.

AnswerPDUin cpe nickname conference The indicated cpe wants to join the
named conference under the given nickname.

JoinPDUin cpe nickname conference Request to join the named conference
from the indicated cpe under the supplied nickname.

LeavePDUin cpe The indicated cpe leaves the current conference.

To accomplish its task a CPE can send the following output messages. Only the
last message is send to the user, all other messages are directed to the indicated
CPE via the network.

JoinPDUout cpe nickname conference Send a request to the named cpe to
join the named conference. The network transforms this message to an An
swerPDUin input where the cpe of destination is replace by the sender. Used
to tell other CPEs that the user issues a Join.

AnswerPDUout cpe nickname conference Conformation that cpe wants to par
ticipate in the conference. This is used as an answer to JoinPDUin.

DataPDUout cpe m essa g e Send the given m essage to the indicated cpe.

LeavePDUout cpe indicate to cpe that this users leaves the conference.

Data nickname m essa g e Show a received m essage to the user.

After the definition of appropriate data types to hold CPE identifiers, mes
sages, nicknames and conferences, these messages are transformed directly to the
corresponding algebraic data types. The state o f an CPE is either Idle, or it partic
ipates in a Conference. The list of tuples consisting of a CPEid and a Nickname
records which other CPEs participate in this conference and their nicknames. This
list is sorted and each CPE occurs at most once.

:: CPEstate = Idle | Conf ConferencelD Nickname [(CPEid,Nickname)]

The number of states is finite if the conference-ids, nicknames and CPEids are
finite.

The specification for a given CPE is generated by the function in figure 1.1.
It is sufficient to grasp the idea of the specification, don’t bother about details.
The occurring nicknames, conference-ids, and messages are modelled by sim
ple algebraic datatypes. The lists of members of these types used (Nicknames,
ConferenceiDs, CPEids and Messages) are generated by the systematic generation
functions of Gvst. For instance:

:: ConferencelD = Conferencel | Conference2

ConferenceiDs :: [ConferencelD]
ConferenceIDs =: generateAll pseudoRandomInts

The list of pseudo random integers is used by generateAll to control the order of
values, see [KATP02] for details.

All possible conferences occurring as state for a given CPE are generated by
the function Conferences::CPEid -> [CPEstate]. Due to the restrictions impossed
on the list of participants (it should be ordered and each partner occurs at most
once) it is not possible to use generic generation for the conferences.

Due to the generic generation of lists o f elements of a type, like ConferenceIDs,
the generation function for the LTS, CPElts, remains correct if we add, change,
or remove members in any of the types involved. Hence, it is more powerful and
convenient to use than the definitions of the labelled transition systems used in
most existing model based test systems. For instance, TorX uses a specification
of the LTs in Promela. In the Promela specification at [CPE02] the number of
partners is hardwired into the specification. Moreover, our specification is very
concise if we compare it to all other specifications collected at [CPE02]. The
difference in size between this specification and the others is at least a factor 2.

1.3.3 Executing a Deterministic LTS

To use a given LTS as basis for testing, we must be able to execute it. That is,
given an LTS, a current state and an input we need to be able to determine the

CPElts :: CPEid -> LTS CPEstate CPEin CPEout
CPElts myld
= { in itia l = Idle

, trans
= [(Idle, Join nn confId

,[JoinPDUout cpe nn confId \ \ cpe <- CPEids | cpe<>myId]
, Conf confId nn [])

\ \ nn <- Nicknames
, confId <- ConferenceIDs
] + +
[(conf, JoinPDUin cpe nn2 id

,[AnswerPDUout cpe nn id],Conf id nn (mkset (cpe,nn2) mem))
\ \ conf=:(Conf id nn mem) <- Conferences myId
, cpe <- CPEids
, nn2 <- Nicknames
| cpe <> myId && not (isMember cpe (map fst mem))
] ++
[(conf, AnswerPDUin cpe nn2 id

,[],Conf id nn (mkset (cpe,nn2) mem))
\ \ conf=:(Conf id nn mem) <- Conferences myId
, cpe <- CPEids
, nn2 <- Nicknames
| cpe<>myId && not (isMember cpe (map fst mem))
] ++
[(conf, Leave, [LeavePDUout cpe \ \ (cpe,_) <- mem], Idle)
\ \ conf=:(Conf id nn mem) <- Conferences myId
] ++
[(conf, LeavePDUin cpe, [], Conf c nn [t\\t<-mem|fst t<>cpe])
\ \ conf=:(Conf c nn mem) <- Conferences myId
, (cpe,_) <- mem
] ++
[(conf, DataPDUin cpe mes,[Data nn2 mes], conf)
\ \ conf=:(Conf id nn mem) <- Conferences myId
, mes <- Messages
, (cpe,nn2) <- mem
] ++ / / to compensate loss of AnswerPDU
[(conf, DataPDUin cpe mes,[JoinPDUout cpe nn id], conf)
\ \ conf=:(Conf id nn mem) <- Conferences myId
, mes <- Messages
, cpe <- CPEids
| cpe <> myId && not (isMember cpe (map fst mem))
] ++
[(conf, Datareq mes,[DataPDUout cpe mes\\(cpe,_) <- mem],conf)
\ \ conf=:(Conf id nn mem) <- Conferences myId
, mes <- Messages
| not (isEmpty mem)
]

}
FIGURE 1.1. The specification of a CPE by the data structure LTS

associated output and new state. The realisation is very straightforward. Since the
LTS is currently deterministic, we have in fact a finite state machine, FSM.

Often we prefer to give a sequence of inputs and obtain a list of associated out
puts rather than giving a single input. This is achieved by the following function
to execute a deterministic LTS.
runFSM :: (LTS s i o) [i] -> [[o]] | == s & == i
runFSM {trans,initial} inputs = run in itia l inputs
where

run state [] = []
run state [i:r]
= case [(o,t) \ \

[] = [[]
[(o,t)] = [o :run t r]

(s ,j ,o ,t) <- trans | s==state && i==j] of
run state r] / / undefined: ignore input

= abort "This LTS is not deterministic!

1.3.4 The Implementation Under Test

We perform a black box test of the Implementation Under Test (IUT): we can only
observe the output of the system given an input. To show clearly that a single input
produces a sequence of outputs and a new state, we use the type:
:: IUT input output = IUT (input -> ([output],IUT input output))

It is often convenient to transform this to a function that converts a sequence of
inputs to the associates outputs. This is done by:
runIUT :: (IUT i o) [i] -> [[o]]
runIUT iut [] = []
runIUT (IUT f) [a:r] = [o:runIUT iut r] where (o,iut) = f a

Here we define just the type of the IUT, its is all we need to know. In order to
execute the test an implementation should be available.

1.3.5 Testing the Conference Protocol

After the introduction of a representation for model based specifications and the
tools to execute the specification and the IUT, we are ready to formulate properties
to be tested automatically by Gvst. We assume that an implementation of the CPE
is available as a function of type cpeImpl::CPEid -> IUT CPEin CPEout.

A desirable property for any implementation of the conference protocol is that
its outputs is equal to the outputs obtained by execution of the specification:
propCPE :: CPEid [CPEin] -> Bool
propCPE id input = runFSM (CPElts id) input == runIUT (cpeImpl id) input

This is a standard property for Gvst. Hence, it is tested like any other property in
Gvst by executing Start = test propCPE.

This model based property can be combined with an ordinary logical property.
If we have a logical predicate properState::CPEstate -> Bool to check the sanity
of states (cpe’s are ordered and not duplicated), we can combine these properties
to:
propCPEa :: CPEid [CPEin] -> Property
propCPEa id input = propCPE id input / \ (properState For (Conferences id))

When we are convinced that the protocol handles all CPEs equal, we can also
limit the test to a single CPE-id. For cpei the last property becomes:
propCPEb :: ([CPEin] -> Bool)
propCPEb = propCPEa CPE1

Testing these properties reveals some discrepancies between the initial versions of
the specification and the implementation. The differences concerned the handling
of unusual inputs, like receiving a DataPDUin from a cpe that is not member of the
conference. This lead us to improvements of the implementation as well as the
specification. Afterwards Gvst reports that these properties passes the tests.

When the implementation passes some significant number of tests it is tempt
ing to believe that the implementation conforms to the specification. However,

analysis o f the generated inputs showed that only a few conferences were estab
lished during the tests. Although the inputs are generated systematically, only
a small fraction of the generated inputs correspond to actually entering a con
ference and sending messages. Typically, only one single data transfer within a
conference is established in the first 100 tests that are generated.

Tests with systematically generated inputs appear to be very valuable to verify
that the specification and the implementation ignore the same inputs, even if the
sequence of messages is completely meaningless. This only tests that the IUT
shows the specified behaviour: robustness testing.

1.3.6 Implementations with other Types

The type of the IUT used above suits our tests very well. However, not every
implementation we want to test has such a type. An alternative custom type for the
implementation is cpeImpl2 ::CPEid [CPEin] -> [[CPEout]]. Even when the IUT
produces a single stream of output tokens, cpeImpl3::CPEid [CPEin] -> [CPEout],
rather than a sequence of output per event, we can still test these implementations
in G vst by adapting the property slightly:

propCPE' :: [CPEin] CPEid -> Bool
propCPE' input id = runFSM (CPElts id) input == cpeImpl2 id input

propCPE'' :: [CPEin] CPEid -> Bool
propCPE'' input id = flatten (runFSM (CPElts id) input) == cpeImpl3 id input

For propCPE ' we only have lost the ability to check whether a particular output
element is generated as response to the correct input. A particular element of
the output might be generated too late or too early. Such a synchronization can
cause serious troubles in the communication with a reactive system. In order
to be able to detect these synchronization problems we prefer the somewhat more
complicated type of output, [[out]], above the plain list of output elements, [out].

1.4 BETTER TEST DATA GENERATION FROM THE LTS

To check the correct behaviour for meaningful sequences of messages, confor
mance, we use the LTs as a source of information to produce meaningful input
sequences. For instance, each meaningful sequence of inputs starts with an input
corresponding to a transition from the initial state. We can use the existing know
ledge of testing a FSM [Ura92, LY96]. An input sequence is usually called a path
in the world of FSM-testing. If one assumes that the IUT is also deterministic,
we do not learn anything new from executing a path which is a prefix of another
tested path. If we furthermore assume that the IUT does not have more states than
the specification, it is useless to test the same transition twice. Both assumptions
are standard in FSM testing. We use this knowledge to construct a finite amount
of longer and meaningful inputs. This implies that we are now able to prove things
by exhaustive testing, instead of just executing successful tests. We discuss some
test generation algorithms inspired by [TB02] and [Ura92].

nick confer mes # trans paths generated
CPEs names ences sages states itions A1 A2 A3 A4

1 1 1 1 2 2 ¥ 1 1 1
2 1 1 1 3 9 ¥ 118 4 3
3 1 1 1 5 28 ¥ >10,000 11 6
2 2 1 1 7 30 ¥ >10,000 14 8
2 1 2 1 5 18 ¥ 27,848 7 6
2 1 1 2 3 12 ¥ 7,827 4 3
2 2 2 2 13 80 ¥ >10,000 26 16
3 3 3 3 145 2070 ¥ >10,000 567 282

TABLE 1.1. Number of paths generated for various size of types.

A1 From each state in the specification we only test the transitions from that state.
To terminate each input sequence we randomly choose to end the path here,
or to use one of the possible transitions at each point. This is basically the
algorithm for test-data generation used by TorX.

A 2 Since it is useless to test the same transition twice, we terminate a path when
there is no untested transition from the current state.

A 3 The paths generated by the previous algorithm do not verify the final state at
the end of the path. Since the IUT is a black box we cannot check this final
state directly. The state can only be identified via the observed response to
inputs. This algorithm checks the final state by performing additional transi
tions: we require that each transition occurs twice in the test suite. in a path.

A 4 In this algorithm we use a function of type state -> [input], to determine
the inputs used to test the final state. Ideally, we use a unique input output
sequence, UIO, or a distinguishing sequence, DS, to identify the final state
[ADLU98]. Using a UIO we can verify whether we are in a given state by
observing the output corresponding to the input sequence associated to that
state. Using a DS we can identify the state by observing the output corre
sponding to an input sequence associated to the entire LTS. If the UIO and
DS are unknown or do not exist, we can use a short sequence of inputs as an
approximation.

Finding the shortest set o f paths that achieve the goals of A3 and A4 is yet an
other variant of the travelling salesman problem. We use a simple algorithm that
chooses the first transition available. An input sequence is terminated when we
cannot extend it without taking a transition too often. Until all transitions are used
enough we extend a prefix of one of the used inputs with transitions that still need
to be done.

In the table 1.1 we list the number of states, the number of transitions in the
LTS, and the generated number of input sequences according to algorithms above
for various numbers of CPE’s, nicknames, conferences and messages. By its
nature A1 always generate infinitely many paths. For a particular test we choose
some number of these paths. This table shows that the number of input sequences

generated by A2 is rather big, even for specifications of modest size. In practice,
it is too large for a quick and complete automatic test.

Algorithm A4 produces less paths and is more accurate, but requires known
paths to verify the final state. For testing the conference protocol we used:
CPEtestSeq :: CPEstate -> [CPEin]
CPEtestSeq state = [Datareq mess, Join nn confId]
where mess = hd Messages; nn = hd Nicknames; confId = hd ConferenceIDs

By using the generic definitions for Messages, Nicknames and ConferenceIDs again,
this definition is completely independent of the actual contents of these types.

Algorithms A3 is used, when an appropriate test sequence for final states is
not at hand. It usually gives good results.

It is important to realize that these tests only check if the IUT behaves as
specified by the LTS, this is known as conformance testing. Testing with the
generated input sequences does not show whether the IUT shows any unspecified
behaviour. For this purpose we need exhaustive tests o f all inputs in all states.
The default generation algorithm of G vst for input sequences, appears to test this
effectively.

The algorithms A2..A4 are superior to a system where the test function decides
dynamically whether it is useful to apply a given input. We do not have to wait
until a suited input occurs. Moreover, we can decide easily when all states and
transitions are visited and the testing is finished. This allows proofs of confor
mance, instead of just successful tests.

1.5 FUNCTIONAL AND NONDETERMINISTIC SPECIFICATIONS

The lts type straightforwardly represents labelled transition systems. However, it
suffers from the following drawbacks:

1. It allows nondeterminism, but a thorough examination of the data structure is
necessary to see whether the specification is deterministic or not.

2. It is limited to a finite number of transitions. Each and every state and input
that can occur should be listed explicitly in the LTS. This makes it even impos
sible to specify a system that echoes a given integer or string. It is desirable to
use variables in states and functions.

3. It is impossible to use typical functional language features, like guards and
pattern matching, in the specification.

All these problems are solved by using functions of type
:: Spec state input output :== state -> input -> [(state,[output])]

as specification. Just like above, we use implicit completion when we use this
specification: inputs for states not specified do not change the state and produce
no output. Consider the following system that returns the absolute value of every
second negative integer. This small definition covers the transition for all integer
lists.

cpeSpec myId Idle (Join nn conf)
= [(Conf conf nn [],[JoinPDUout cpe nn conf \ \ cpe<-CPEids| cpe<>myId])]

cpeSpec myId state=:(Conf conf nn mem) input
memberCPEs = map fst mem
= case input of

Datareq mes = [(state,[DataPDUout cpe mes \ \ (cpe,_) <- mem])]
Leave = [(Idle,[LeavePDUout cpe \ \ (cpe,_) <- mem])]
DataPDUin id mes

| isMember id memberCPEs
= [(state,[Data nn mes\\(cpe,nn) <- mem | cpe == id])]

| id<>myId
= [(state,[JoinPDUout id nn conf])] / / handle lost join

AnswerPDUin id nn2 conf2
| conf == conf2 && not (isMember id [myId: memberCPEs])

= [(Conf conf nn (mkset (id,nn2) mem),[])]
JoinPDUin id nn2 conf2

| conf == conf2 && not (isMember id [myId: memberCPEs])
= [(Conf conf nn (mkset (id,nn2) mem),[AnswerPDUout id nn conf])]

LeavePDUin id = [(Conf conf nn [t \ \ t=:(m,_) <- mem | m <> id],[])]
_ = [] / / to make the specification total

cpeSpec _ _ _ = [] / / to make the specification total

FIGURE 1.2. The specification of a CPE by a function.

absoluteValue :: Spec Bool Int Int
absoluteValue b n

| n<0
| b = [(False, [~n])]

= [(True , [])]
= [] / / other transitions are not allowed

To compare the new specification with the specification by a data structure
in figure 1.1 we list the specification of the conference protocol by a function in
figure 1.2. The second version is clearly more compact than the previous version
using a data structure instead of a function. Since all lists yielded have at most
length one, it is obvious that this specification is deterministic. In contrast to the
specification by a data structure, listed in figure 1.1, this version also works if
we use large (or infinite) domains like Int for cpe-ids and String for messages
and nicknames. Using an infinite domain for a specification as used in figure 1.1
would result in an infinite representation of the specification, an specification by
a function as in figure 1.2 can handle this without problems. This makes this kind
of specifications really more powerful.

The test sequence generation algorithms, A1..A4, in section 1.4 operate on
data structures. To uses these algorithms with functions as specifications we need
to generate transitions from the specification by a function. For ordinary testing
this is not needed. All transitions from a given state are produced by:

generateTrans :: (Spec s i o) s [i] -> [Transition s i o]
generateTrans spec s inputs = [(s,i,o ,s2)\\i< -in puts, (s2,o)<-spec s i]

To obtain the entire transition relation, we just have to construct these transitions
for every reachable state. For finite types we can use generic generation for the
list of inputs to be tested. For infinite and extremely large types, like Int, the tester
has to supply a list of inputs to be used.

1.6 TESTING NONDETERMINISTIC SYSTEMS

Until here we have assumed that each LTS is deterministic. Now we will drop this
assumption. An LTS is nondeterministic if there can occur several transitions for
a given state and input. These transitions can differ in output and/or target state.
Many real life systems contain some form of nondeterminism.

Consider a simple vending machine spcified by the nondeterministic LTS:

t-,. . Coin/\Tea\ ^ Button/ [] T „ Button/[] ̂ Coin/\Coffee\
Finalr -*---- Stea ^ I d l e ----------------^ Sœffee------------- '+■ Finale

Initially the system is in the state Idle. If the button is pressed the machine decides
to produce either tea or coffee, but nothing happens until a coin is inserted. A
better vending machine returns to Id le after producing coffee or tea. From the
input/ouput one cannot decide in which state the machine is after pressing the
button. It is also impossible to guarantee that this machine is in state Stea by
supplying inputs, it is always possible for the machine to take the other branch.
This machine is specified in G vst as:
vendingSpec Idle Button = [(Stea,[]),(Scoffee,[])]
vendingSpec Stea Coin = [(FinalT,[Tea])]
vendingSpec Scoffee Coin = [(FinalC,[Coffee])]
vendingSpec state input = []

To cope with this situation we use the ioco-test [Tre96, Tre99, BRT03]. The
name ioco stands for input/output conformance. The idea is that when an input
belonging to the specification is supplied to the IUT, the observed output must
be allowed by the specification. It is not required that all specified behaviour
is implemented. When the specification contains a nondeterministic choice at
some state for a given input, it is sufficient that at least one of these branches is
implemented. This implies that an implementation with behaviour

t „ Button/W ^ Coin/\Coffee\
Id le ------- Scoffee------------------ V FinalC

is ioco-correct with respect to the specification above: any behaviour shown by
this implementation is allowed by the specification.

The ioco-relation allows partial specifications: the implementation is allowed
to respond to inputs not occurring in the specification. Due to the restriction that
inputs should belong to the specification, this additional behaviour is not con
sidered in the ioco-correctness. For instance the vending machine that produces
drinking chocolate after being hit, the input Bang, and the insertion of a coin is an
ioco-correct implementation of the specification above.

Finale *Coin/\Cacao] Scacao + ang,{] Idle Butftm/\j S f Coin/\Coffe\ FinalC

An implementation that can offer cacao after pushing the button and inserting
a coin, however, is incorrect.

Finale e°in/\Cacao] Scacao Idle Button/\{ SCoffee ——————V- Finale

The output Cacao after inputs belonging to the specification, Button and Coin, is
not allowed by the specification. This error is discovered during testing as soon
as the implementation produces cacao for the first time.

During the test we do not know always in which state of the specification we
are currently. For instance, after applying the input button and observing that
there is no output, the implementation might be in a state corresponding to Stea or
to Smffee. To deal with this nondeterminism we maintain a list of possible current
states, instead of a single current state. After the input Button in the state Idle the
list o f possible states is [Stea,Scoffee] .

This is implemented by testIoco. Similar to test this function yields a report
encoded in a list of strings. For clarity we use a separate function testIoco rather
than a new operator for test.

testIOCO :: (Spec s i o) [s] (IUT i o) [[i]] -> [String] | == o
testIOCO spec states iut paths = test 1 paths
where

test n [] = ["All tests successful”]
test n [p:paths] = [toString n: ioco iut states p (test (n+1) paths)]
ioco iut [] path cont = ["Error!"]
ioco iut states [] cont = ["OK\n":cont]
ioco (IUT iut) states [i:path] cont = ioco iut2 states2 path cont
where (iutout,iut2) = iut i

states2 = [t\\s<-states, (t,specout)<-spec s i | specout==iutout]

This test does not require that the system is really nondeterministic. It can, for
instance, be used to test the conference protocol where the input is generated by
one of the algorithms discussed above. Paths can be generated by the algorithms
A1..A4, introduced in section 1.4. The needed start function is: start = testIOCO
(cpeSpec CPE1) [Idle] (cpeImpl CPE1) (A4 (CPElts CPE1) CPEtestSeq).

A more sophisticated ioco-test algorithm might generate the input on basis of
the observed behaviour. This on the fly testing [FJJV96] remains future work.

Note that this ioco-test is done by a small function inside the Gvst framework.
All other test systems for model based specifications (like TorX) are huge stand
alone systems. These systems lacks the abilities to generate data types Gvst has
and have troubles with properties of these data types.

1.7 RELATED WORK

The closest related test system for logical properties (i.e. the original Gvst) is
QuickCheck [CH00, CH02]. The discriminating difference between QuickCheck
and Gvst is the systematic test data generation in Gvst. Test data generation in
QuickCheck is based on a class, the user has to supply an instance for each new
type, and random data generation. In Gvst the test data generation for a new
type comes for free since it is based on generics [AP01, Hin00]. Moreover, the
generation of test data is systematic from small to large without duplicates. When
a property holds for all values in a type, it is proven.

With the extension of Gvst introduced in this paper makes it a model based
test system [BT01] like TorX [Tre96, TB02], Autolink [SEGHK98, KJG99], TGV
[FJJV96], and UIO Test [FJJV96]. Basically these systems generate inputs for the

system to be tested based on the LTS-specification. Currently these systems have
difficulties with conditions on values and the generation of these values. In Gvst
however, such conditions can easily be expressed in first order logic. We are
aware of a number of running projects to extend model based test systems with
capabilities to handle restrictions on types. No results have been reported yet.
The model based specifications in Clean appear to be clearer, shorter and more
general than the example specifications collected at [CPE02].

In [CH02] it is shown how Quickcheck can handle systems with a state. These
systems are monad based, and specified in logic instead of an LTS. We expect
that those extensions can be incorporated into Gvst, and that Quickcheck can be
extended with the capabilities of Gvst.

1.8 CONCLUSION

In this paper we extended Gvst with the ability to test software described by
model-based specifications. We used labelled transition systems for these specifi
cations, and shown that such an LTS can be better specified by a function than data
type. The well-know ioco-relation for nondeterministic systems can be tested by
a small extension to the test library Gvst, instead of a huge stand alone test sys
tem.

By representing a labelled transition system as a data type and enabling the
execution of such an LTS, we are able to test systems specified by an LTS in Gvst.
This is a significant improvement since many interesting systems are specified by
a model instead of a property in first order logic.

Moreover, such an LTS is used as a basis for test data generation. These
input sequences test that the system behaves correct for inputs that are part of
the specification. The default data generation of Gvst is used to verify that the
system does not show undesired behaviour for other inputs.

The use of functions instead of a data type to specify an LTS has two signif
icant advantages. The specification becomes even more concise and it is able to
handle infinite data types for labels and states.

The model based testing is well integrated with the automatic testing of logical
properties. This makes Gvst with this extension stronger than existing model
based testers. These systems are known to be weak at testing data types. There
are several projects running to extend model based test systems with the ability to
generate data values, no results have been reported yet.

Acknowledgement

We thank Peter Achten, Marko van Eekelen, Jan Tretmans, Rene de Vries, Arjen
van Weelden and Ronny Wichers Schreur for their contributions to this paper.

REFERENCES

[Ada79] Douglas Adams. The Hitch Hiker's Guide to the Galaxy, ISBN 345391802, 1979.

[ADLU98] A. Aho, A. Dahbura, D. Lee, and M. Uyari An optimization technique for pro
tocol conformance test generation based on UIO sequences and rural chinese post
man tours In Protocol Specification, Testing and Verification VIII, volume 8, 1998.

[AP01] A. Alimarine, R. Plasmeijer. A Generic Programming Extension for Clean.
IFL2001, LNCS 2312, pp.168-185, 2001.

[BRT03] M. van der Bijl, A. Rensink, and J. Tretmans Component Based Testing with
IOCO, CTIT Technical Report TRCTIT0334, University of Twente, 2003.

[BFVea99] A. Belinfante, J. Feenstra, R. Vries, J. Tretmans,N. Goga, L. Feijs, S. Mauw, L.
Heerink Formal Test Automation: A Simple Experiment, in Int. Workshop on Testing
of Communicating Systems 12 pp 179-196, 1999.

[BT01] E. Brinksma, J. Tretmans Testing Transition Systems: An Annotated Bibliogra
phy’, in Modeling and Verification of Parallel Processes-4th Summer School MOVEP
2000 LNCS 2067, pp 186-195, 2001.

[CH00] K. Claessen, J. Hughes. QuickCheck: A lightweight Tool for Random Testing of
Hasskell Programs. International Conference on Functional Programming, ACM, pp
268-279, 2000. See also www.cs.chalmers.se/^rjmh/QuickCheck.

[CH02] K. Claessen, J. Hughes. Testing Monadic Code with QuickCheck, Proceedings of
the ACM SIGPLAN workshop on Haskell 2002, Pittsburgh, pp 65-77, 2002.

[FJJV96] J. Fernandez, C. Jard, T. Jéron, C. Viho Using On-the-Fly Verification Techniques
for the generation of test suites, LNCS 1102, 1996.

[FJJV96] J. Fernandez, C. Jard, T. Jeron, C. Viho. Using on the fly verification techniques
for the generation of test suites, Conference on Computer Aided Verification, 1996.

[HFT00] L. Heerink, J. Feenstra, and J. Tretmans Formal Test Automation: The Conference
Protocol with PHACT In H. Ural et al Testing of Communicating Systems - Procs. of
TestCom 2000, Kluwer, pp 211-220,2000.

[Hin00] R. Hinze, Polytypic values possess polykinded types, Fifth International Confer
ence on Mathematics of Program Construction, LNCS 1837, pp 2-27,2000.

[Hol03] Gerard J. Holzmann SPIN Model Checker, The: Primer and Reference Manual
Addison Wesley, isbn 0-321-22862-6, 2003.

[Gog01] N. Goga Comparing TorX, Autolink, TGV and UIO Test Algorithms, SDL 2001:
Meeting UML: 10th International SDL Forum Copenhagen, Denmark, June 27-29,
2001, Proceedings. LNCS 2078, pp 379-402, 2001.

[KJG99] A. Kerbrat, T. Jeron, R. Groz Automated Test Generation from SDL Specifica
tions,^ The Next Millennium-Proceedings of the 9th SDL Forum, pp 135-152, 1999.

[KATP02] Pieter Koopman, Artem Alimarine, Jan Tretmans and Rinus Plasmeijer: Gast:
Generic Automated Software Testing, in Ricardo Peña: IFL 2002, Implementation of
Functional Programming Languages, LNCS 2670, pp 84-100, 2002.

[LY96] D. Lee, and M. Yannakakis, M Principles and Methods for Testing Finite State
Machines- A Survey, The Proceedings of the IEEE, 84(8), pp 1090-1123, 1996.

[Mea55] George Mealy A method for synthesizing sequential circuits, Bell System Tech
nical Journal, 34(5):1045-1079, 1955

[PE02] Rinus Plasmeijer and Marko van Eekelen: Concurrent Clean Language Report
(version 2.0), 2002. www.cs.kun.nl/~clean.

http://www.cs.chalmers.se/%5erjmh/QuickCheck
http://www.cs.kun.nl/~clean

[SEGHK98] M. Schmitt, A. Ek, J. Grabowski, D. Hogrefe, and B. Kock Autolink - putting
SDL-based test generation into practise Proceedings of the 11th International Work
shop on Testing Communication Systems, pp 227-243, Kluwer Academic, 1998.

[Spi92] Mike Spivey The ZNotation: A Reference Manual, 2nd ed, Prentice Hall, 1992.
[TB02] J. Tretmans, E. Brinksma Côte de Resyste - Automated model-based Testing, in

Progress 2002 - 3rd Workshop on Embedded Systems, pp 246-255, 2002.
[Tre96] J. Tretmans Test generation with inputs, outputs and repetive quiscence. Software-

Concepts and Tools, 17(3):103-120, 1996.
[Tre99] J. Tretmans Testing concurrent systems: A fromal approach. In J. Baeten and S.

Mauw Concur '99LNCS 1664, pp 46-65, 1999.
[CPE02] Various formal specifications of the conference protocol. http://fmt

.cs.utwente.nl/ConfCase/v1.00/specifications/specs.html
[Ura92] H. Ural, Formal methods for test sequence generation, Computer Communica

tions Journal, 15(5), pp 311-325, 1992

http://fmt

