
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/60458

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16146307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/60458

Fusing G eneric Functions

A rtem Alim arine and Sjaak Smetsers

Computing Science Institute
University of Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
alim arin@ cs.kun.nl, sjakie@ cs.kun.nl

A b s tr a c t . Generic programming is accepted by the functional program
ming community as a valuable tool for program development. Several
functional languages have adopted the generic scheme of type-indexed
values. This scheme works by specialization of a generic function to a
concrete type. However, the generated code is extremely inefficient com
pared to its hand-written counterpart. The performance penalty is so big
that the practical usefulness of generic programming is compromised. In
this paper we present an optimization algorithm that is able to com
pletely eliminate the overhead introduced by the specialization scheme
for a large class of generic functions. The presented technique is based on
consumer-producer elimination as exploited by fusion, a standard gen
eral purpose optimization method. We show that our algorithm is able
to optimize many practical examples of generic functions.
A M S c la s s if ic a tio n (2 0 0 0): 68N18, 68N19, 68Q55.
C R c la s s if ic a tio n (1 9 9 8): B.3.4, D.1.1, D.3.3, I.2.2.
K e y w o r d s an d p h ra ses: symbolic evaluation, fusion, generic functions,
polytypic functions, functional programming languages, program trans
formation, typing, operational semantics.

1 In trodu ction

Generic program m ing is recognized as an im portan t tool for minimizing boil
erplate code th a t results from defining the same operation on different types.
One of the m ost w ide-spread generic program m ing techniques is the approach of
type-indexed values [Hin00]. In this approach, a generic operation is defined once
for all d a ta types. For each concrete d a ta type an instance of this operation is
generated. T his instance is an ordinary function th a t im plem ents the operation
on the d a ta type. We say th a t the generic operation is specialized to the d a ta
type.

The generic specialization scheme uses a stru c tu ra l view on a d a ta type.
In essence, an algebraic type is represented as a sum of products of types. The
structu ra l representation uses binary sums and products. Generic operations are
defined on these stru c tu ra l representations. Before applying a generic operation
the argum ents are converted to the structu ra l representation, then the operation
is applied to the converted argum ents and then the result of the operation is
converted back to its original form.

mailto:alimarin@cs.kun.nl
mailto:sjakie@cs.kun.nl

2 Artem Alimarine and Sjaak Smetsers

A program m ing language's feature is only useful in practice, if its perfor
m ance is adequate. D irectly following the generic scheme leads to very inefficient
code, involving num erous conversions between values and their s truc tu ra l rep
resentations. The generated code additionally uses m any higher-order functions
(representing dictionaries corresponding to the type argum ents). The inefficiency
of generated code severely compromises the u tility of generic program m ing.

In the previous work [AS04] we used a p artia l evaluation technique to elim
inate generic overhead introduced by the generic specialization scheme. We
proved th a t the described technique com pletely removes the generic overhead.
However, the proposed optim ization technique lacks term ination analysis, and
therefore works only for non-recursive functions. To make the technique work for
instances on recursive types we abstracted the recursion w ith a Y-com binator
and optim ized the non-recursive p art. This technique is lim ited to generic func
tions th a t do not contain recursion in their types, though the instance types can
be recursive. A nother disadvantage of the proposed technique is th a t it is tailored
specifically to optim ize generics, because it perform s the recursion abstraction
of generic instances.

The present paper describes a general purpose optim ization technique th a t
is able to optim ize a significantly larger class of generic instances. In fact, the
proposed technique elim inates the generic overhead in nearly all practical generic
examples. W hen it is not able to remove the overhead completely, it still improves
the code considerably. The presented optim ization algorithm is based on fusion
[AGS03,Chi94]. In its tu rn , fusion is based on the consum er-producer model:
a producer produces d a ta which are consum ed by the consumer. In term ediate
d a ta are elim inated by combining (fusing) consum er-producer pairs.

The contributions of the present paper are:

— The original fusion algorithm is improved by refining b o th consum er and pro
ducer analyses. O ur m ain goal is to achieve good fusion results for generics,
bu t the im provem ents also appear to pay off for non-generic examples.

— We describe the class of generic program s for which the generic overhead
is com pletely removed. This class includes nearly all practical generic pro
grams.

In the next section we introduce the code generated by the generic specializa
tion. This code is subject to the optim ization described further in the paper. The
generated code is represented in a simple functional language defined in section
3. Section 4 defines the sem antics of fusion w ith no term ination analysis. Basic
properties of this fusion algorithm are discussed in section 5. S tandard fusion
w ith term ination analysis [AGS03] is described in section 6. Sections 7 and 8
introduce our extensions to the consum er and the producer analyses. Fusion of
generic program s is described in 9. The perform ance results for generic program s
are presented in section 10. Section 11 discusses related work. Conclusions are
presented and future work is discussed in section 12.

Fusing Generic Functions 3

In th is section we give a brief overview of the generic specialization scheme which
is based on the approach by Hinze [Hin00]. Generic functions exploit the fact
th a t any d a ta type can be represented in term s of sums, pairs and unit, called
the base types. These base types can be specified by the following Haskell-like
d a ta type definitions.

d a t a 1 = Unit
d a t a a x b = Pair a b
d a t a a + b = Inl a | Inr b

A generic (type-indexed) function g is specified by m eans of instances for these
base types. The structu ra l representation of a concrete d a ta type, say T , is used
to generate an instance of g for T . The idea is to convert an object of type T first
to its s truc tu ra l representation, apply the generic operation g to it, and convert
the resulting object back from its s truc tu ra l to its original representation.

Suppose th a t the generic function g has generic (kind-indexed) type G. Then
the instance gT of g for the concrete type T has the following form.

gT f = adap tG ,T) (gT◦ f)

where T° denotes the stru c tu ra l representation of T , gT ◦ represents the instance
of g on T °, and the adap ter adapt^G T) takes care of conversion between T and
T ° . We will illustra te this generic specialization scheme w ith a few examples,
s ta rting w ith the stru c tu ra l representations of some fam iliar d a ta types:

d a t a List a = Nil | Cons a (List a)
d a t a Tree a = Leaf a | Branch (Tree a) (Tree a)
d a t a Rose a = Rose a (List (Rose a))

These types are represented as

ty p e List° a = 1 + a x List a
t y p e Tree° a = a + Tree a x Tree a
t y p e Rose° a = a x List (Rose a)

Observe th a t only the top-level of the d a ta definitions is converted to the struc
tu ra l form.

A type and its s tru c tu ra l representation are isomorphic. The isom orphism is
w itnessed by a pair of conversion functions. For instance, for lists these functions
are

convToust :: List a ^ List° a
convToust l = case l of Nil ^ Inl Unit

Cons x x s ^ Inr (Pair x xs)
convFromi_ist :: List° a ^ List a
convFromi_ist l = case l of Inl Unit ^ Nil

Inr (Pair x xs) ^ Cons x xs

2 G enerics

4 Artem Alimarine and Sjaak Smetsers

To define a generic function g the program m er has to provide the generic
type G, and the instances on the base types. For example, the generic m apping
is given by the type

ty p e Map a b = a ^ b

and the base cases

m apj = case u of Unit ^ Unit
m apx l r p = case p of Pair x y ^ Pair (l x) (r y)
map+ l r e = case e of Inl x ^ Inl (l x)

Inr y ^ Inr (r y)

This is all th a t is needed for the generic specializer to build an instance of
map for any concrete d a ta type T . As said before, such an instance is gener
ated by in terpreting the structu ra l representation T ° of T , and by creating an
appropriate adapter. For instance, the generated m apping for List° is

mapListo :: Map a b ^ Map (List° a) (List° b)
mapList° f = map+ m apj (m apx f (m apList f))

Note how the structu re of mapUst° d irectly reflects the s truc tu re of List°. The
adap to r converts the instance on the s truc tu ra l representation into an instance
on the concrete type itself. E.g., the adap ter converting mapUst° into mapUst (i.e.
the m apping function for List), has type

adapt^Map List) :: Map (List° a) (List° b) ^ Map (List a) (List b)

The code for th is adap ter function is described below. We can now easily combine
adapt^Map List) w ith mapList° to ob tain a m apping function for the original List
type.

mapUst :: Map a b ^ Map (List a) (List b)
mapList f adapt(Map,List) (m apList° f)

The way the adap to r works depends on the type of the generic function as
well as on the concrete d a ta type for which an instance is created. So called
embedding projections are used to devise the autom atic conversion. In essence
such an em bedding projection d istribu tes the original conversion functions (the
isom orphism between the type and its s truc tu ra l representation) over the type
of the generic function. In general, the type of a generic function can contain
a rb itra ry type constructors, including arrows. These arrows m ay also appear in
the definition of the type for which an instance is derived. To handle such types in
a uniform way, conversion functions are packed into embedding-projection pairs,
EPs (e.g. see [HP01]), which are defined as follows.

d a t a a ^ b = EP (a ^ b) (b ^ a)

For instance, packing the List conversion functions into an EP leads to:

convList :: List a ^ List° a
convList = EP convToList convFromList

Fusing Generic Functions 5

Now the adap ter for G and T can be specified in term s of em bedding pro
jections using the EP th a t corresponds to the isom orphism between T and T °
as a basis. Actually, em bedding projections are represented as a generic func
tion themselves. This has the advantage th a t we can use the same specialization
scheme for em bedding projections th a t is used for o ther generic functions. More
concretely, an em bedding projection is a generic function ep w ith the generic
type a ^ b, and the base cases:

epj = EP m apj mapj
epx f g = EP (mapx (to f) (to g)) (mapx (from f) (from g))
ep+ f g = EP (map+ (to f) (to g)) (map+ (from f) (from g))
e p ^ f g = EP (mapAR (from f) (to g)) (mapAR (to f) (from g))
e p ^ f g = EP (mapEP (to f) (from f)(to g) (from g))

(mapEP (from f) (to f)(from g) (to g))

where

to e = case e of EP t f ^ t
from e = case e o fE P t f ^ f
mapAR a r f = r o f o a
mapEP ta fa tr fr e = E P (tr o to e o fa) (ta o from e o f r)

These instances are based on the basic instances of the previously defined
function map.

A part from the usual instances for sum, pair and unit, we have included the
instances on ^ and ^ . In particu lar the la tte r m ight look som ewhat mysterious.
The reason for specifying th is instance is ra th e r technical: it appears in the
adap ter of the specialized version of ep for a concrete type T , e.g. see section 9.1

The generic specializer generates the instance of ep specific to a generic func
tion, again by interpreting its generic type. E.g. for m apping (w ith the generic
type Map a b) we get:

epMap :: (a i ^ a 2) ^ (bi ^ b^) ^ (Map a i bi ^ Map a 2 h)
epMap a b = ep ^ a b

Now the adaptor adapt^Map List) is the from-component of th is em bedding projec
tion applied to convList twice.

adapt{Map,List) = from (epMap convList convList)

To com pare the generated version of map w ith its handw ritten counterpart, e.g.

map f l = case l of N il ^ N il
Cons x x s ^ Cons (f x) (map f xs)

we have inlined the adap ter and the instance for the s truc tu ra l representation
in the definition of mapUst resulting in

mapList f = from (epMap convList convList)
(map+ m apj (mapx f (mapList f)))

6 Artem Alimarine and Sjaak Smetsers

Clearly, the generated version is much more com plicated th an the handw ritten
one, not only in term s of readability bu t also in term s of efficiency. The la tte r
is the m ain concern of th is paper. The reasons for inefficiency are the interm e
diate d a ta structures for the struc tu ra l representation and the extensive usage
of higher-order functions. In the rest of the paper we present an optim ization
technique for generic functions which is based on fusion, and show th a t this
technique is capable of removing all generic overhead, for a large class of generic
functions.

3 Language

In this section we present the syntax of a simple core functional language th a t
supports essential aspects of functional program m ing such as p a tte rn m atch
ing and higher-order functions. The fusion sem antics of th is core language is
described in the next section. F irs t we introduce some more or less common
term inology and notation.

N o ta t io n 3 .1 (V e c to rs) .

— We will use the vector V for (V i,. . . ,V n). The length of a vector V is indi
cated by \V I

— If V is a vector then Vi denotes the ith elem ent of V , and Vi..j the (sub)vector
(V i , . . . ,V j). If i > j then Vi..j = ().

— Let V, W be vectors. V * W denotes the concatenation of V and W .

We define the syntax in two steps: expressions and functions.

D e f in it io n 3 .2 (E x p re s s io n s) .

— The set o f expressions is defined as

E ::= x I C E | F E | x @ E\

Here x ranges over variables, C over data constructors and F over function
symbols.

— B y E Ç E ' we denote that E is a subexpression o f E ' , and by E C E ' we
indicate proper subexpressions (i.e. E = E ').

— Each (function or constructor) symbol has an a rity : a natural number that
indicates the m axim um number o f arguments to which the symbol can be
applied. A n expression E is well-formed i f the actual arity o f applications
occurring in E never exceeds the form al arity o f the applied symbols. From
now on we will only consider well-formed expressions.

P a tte rn m atching is allowed only a t the top level of a function definition.
Moreover, only one p a tte rn m atch per function is perm itted and the p a tte rns
themselves have to be simple (free of nesting).

D e f in itio n 3 .3 (F u n c tio n s) .

Fusing Generic Functions 7

— The set o f function bodies is defined as follows.

B ::= E | case x o f P i —— E i • • • Pn —— En
P ::= C x

Variables in a pattern P are called p a tte rn variables
— The set o f free variables in B is indicated by F V (B).
— A function definition has the fo rm F x = B p with FV(B p) Ç x . The arity

o f f is
— F is called a case function i f it starts w ith a pattern m atch F x = case x i o f

We also say that F is a case function in i to indicate that the pattern match
occurs on the i th parameter.

— A com ponent is a set o f m utually dependent functions. Let F be a function.
B y F we denote the component to which F belongs.

D ata constructors are in troduced via an algebraic type definition. Such a type
definition not only specifies the type of each d a ta constructor bu t also its arity.
For readability reasons in th is paper we will use a Haskell-like syntax in the
examples.

4 Sem antics o f Fusion

Most program transform ation m ethods use the so-called unfold/fo ld m echanism
to convert expressions and functions. During an unfold step, a call to a function
is replaced by the corresponding function body in which appropriate param eter
substitu tions have been perform ed. During a fold step , an expression is replaced
by a call to a function of which the body m atches th a t expression.

In the present paper we will use a slightly different way of b o th unfolding
and folding. F irst of all, we do not unfold all possible function applications bu t
restric t ourselves to so called consumer-producer pairs. In a function applica
tion F (. . . , S (. . .) , . . .) the function F is called a consum er and the function or
constructor S a producer. The intu ition behind th is term inology is th a t F con
sumes the result produced by S. Suppose we have localized a consum er-producer
pair in an expression E . More precisely, E contains a subexpression F EV, with
E i = S D . Say k = E ^ and l = D |. The idea of fu sion is to replace th is pair
consisting of two calls by a single call to the combined function FiS l resulting in
the application FiS l E i ..(i_ i ') * DD* E (i+ i)..k. Moreover, if this combined function
is used the first tim e, a new function definition is generated th a t contains the
body of the consum er F in which S (y i , . . . ,y i) is substitu ted for x i . Note th a t
this fusion m echanism does not require any explicit folding steps anymore. As
an example consider the following definition of app, and the auxiliary function
foo.

E x a m p le 4 .1 .

app l t = case l of Nil — t
Cons x x s — Cons x (app x s t)

foo x y z = app (app x y) z

8 Artem Alimarine and Sjaak Smetsers

The first fusion step leads to the creation of a new function, say app_app,
and replaces the nested applications of app by a single application of th is new
function. The result is shown below.

foo x y z = app_app x y z
app_app x y z = case x of Nil — app y z

Cons x x s — Cons x (app (app x s y) z)

The description of how the body of the new function app_app is created is
given a t the end of th is section. foo itself does not contain consum er-producer
pairs anymore; the only pair appears in the body of app_app, nam ely app (app x s y) z.
Again these nested calls are replaced by app_app, and since app_app has already
been created, no further steps are necessary.

app_app x y z = case x of Nil — app y z
Cons x x s — Cons x (app_app x s y z)

This exam ple shows th a t we need to determ ine w hether a function - app_app
in the exam ple - has already been generated. To facilitate this, w ith each newly
created function we associate a special unique name, a so called symbol tree.
These symbol trees contain all the necessary inform ation to determ ine w hether
a new function is equal to an existing one.

D e f in itio n 4 .2 (S y m b o l T re e s) .

— The set o f symbol trees is defined by the following syntax. In this definition,
S ranges over func tion and constructor symbols. The speciaal symbol □ is
used to denote anonym ous variables.

T ::= S T
T ' ::= □ | T

— The root o f a tree T = S T ' (denoted by r T n) is the symbol S . The arity of
a tree T (indicated by ar(T)) is the number o f □ symbols in T .

— B y T [i ^ V] we denote the term that is obtained from T by substituting V fo r
the i th occurrence o f □ , in a depth-first, left-to-right numbering o f □ symbols.

□ [1^V] = V
S T [i ^ V] = S (. . . , Tj [i - a{- i ^ V] , . . .) ,

fo r j such that 0 < i — ai i < aj
where ai = ar(Ti) and a j i = j_ i a¡

— B y □* we denote the vector. (□ ,. . . , □).

k
— We have two auxiliary operations on trees fo r respectively increasing and

decreasing the arity:

Fusing Generic Functions 9

1. S T ffl k = S T * □
2. S T B k is the tree obtained by removing the last k occurrences o f □ (using

the same numbering as above). Formally:

S TV B 0 = S TV
S T B k + 1 = S (VB) B k
where
(T i , . . . , T i f = (T i , . . . , T i - i) , i f T t = □

= (T i , . . . , T l - i , S ' (V B)), i f Ti = S ' V and ar(Tl) > 0
= (T i , . . . , Ti- i) B * (Ti), otherwise

— Let S be a symbol, and T a tree. T is called cyclic in S i f T contains a
path on which S occurs more than once, i.e. i f fo r some tree T ' one has
S (.. . , T ' , . . .) Ç T and S (. . .) Ç T

A symbol tree can easily be converted to a function th a t corresponds to the
original expression from which this tree has been created.

D e f in it io n 4 .3 (C o n v e r t in g S y m b o l T re e s) . Let T be a symbol tree o f arity
k. The operation [T J yields a function Ft (x i , . .. ,xk) = E , o f which the body
E results from T after substituting x i fo r the i th occurrence o f □ , fo r all i < k.
Substitutions are performed in parallel.

As said before, the evaluation of a function application possibly leads to
the creation of new functions. The nam e (symbol tree) of th a t new function is
created from the symbol tree corresponding to the consumer and the symbol
tree or d a ta constructor of the producer.

D e f in it io n 4 .4 (B u ild in g S y m b o l T re e s) .

— B a s ic trees: W ith each initial function F , say with arity n , we associate
the tree F □ n

— N e w trees: Let F be a func tion with symbol tree T p , and arity n.
There are two ways to introduce new functions in which F is involved, and
hence to introduce new symbol trees: (1) when F appears as a consumer
in a consumer-producer pair (definition 4.9) or (2) when the arity o f F is
increased (definition 4.5).
1. Let S be a function or data constructor, say with arity m . Suppose we

are using S with k actual arguments, k < m . The result o f combining F
with S at argument position i, i < n , is a new symbol tree FiS1 k defined
as follows

• S is a function: Let T s be the symbol tree o f S . Then

FiS k = Tp [i ^ T S B (m — k)].

• S is a constructor:
F iS k = Tp [i ^ S □].

10 Artem Alimarine and Sjaak Smetsers

2. The result o f increasing the arity o f Tp by k is a symbol tree

F ®k = Tp ffl k.

The above construction of symbol trees is order independent. For instance,
there are two ways to evaluate an application F (G (H (. . .)) , nam ely one can s ta rt
w ith the G -H pair and combine the result w ith F , or one can s ta r t w ith F -G
and combine the result w ith H . B oth ways, however, will lead to the same tree.
The same holds for an application like F (G (...), H (. . .)) .

Unfolding (which stands in our system for the creation of new function bod
ies) is based on a notion of substitu tion for expressions. However, due to the
restriction on our syntax w ith respect to higher-order expressions (recall th a t a
higher-order expression should s ta r t w ith a variable) we cannot use a stra igh t
forward definition of substitu tion . Suppose we try to substitu te an expression
D = F D ' for x in x @ E . This becomes problem atic if a rity (F) < D ^ + E |,
because in the resulting application F D ' * E is not well-formed. To solve this
problem we introduce a new function built from the definition of F by supplying
it w ith additional argum ents th a t increase its formal arity. This is m ade precise
below.

D e f in itio n 4 .5 (R a is e d F u n c tio n s) . The operations R [^ and F ®' are de
fined by simultaneous induction:

— Let B be a function body, E a list o f expressions. The result o f applying B
to E , denoted as R [B J E is given by

— Let F be a function F x = B p , with arity n . The result o f raising the arity
of F w ith k is a function given by:

R e m a rk 4 .6 . Observe th a t th is operation can trigger the creation of more
raised functions if the new argum ents Vy are added to an application th a t re
quires fewer th an k argum ents to become fully applied.

R [x jE x @ E
C DV * EV
G D * E , i f S < 0
G®sD * E , otherwise
where S = D | + E | — arity(G)
x @ D * E
case x o f • • • Pi — R [D ij E • • •

R [C D JE
R [g D JE

R [x @ D j E
R[case x o f . . . P i — D i .. . \E

F ®k x * (y i , . . . , y k) = R [B p J (y i , . . . , y k)

Now, the definition of substitu tion becomes straightforw ard.

Fusing Generic Functions 11

D e f in it io n 4 .7 (S u b s t i tu t io n) . A substitution p is a function that assigns
expressions to variables. This induces the following operation on expressions

E [xJp = p (x)
E [F E j p = F E [E Jp
E [C EJp = C E [E J p
E [x @ E Jp = R [p (x)J (E [E Jp)

If a substitu tion is applied to a function body B we have to be careful when
B s ta rts w ith a p a tte rn m atch. For, the result of such a substitu tion does not
lead to a valid expression if it substitu tes a non-variable expression for the se
lector. We solve this problem by combining consumers and producers in a more
sophisticated way. This has been done below. B ut first we introduce an auxiliary
operation to perform p a tte rn m atching.

D e f in it io n 4 .8 (P a t t e r n M a tc h in g) . Let F x = E p be a case func tion in i
with arity k, and B be a function body. The result o f substituting B fo r x i in
F , denoted as M i [BJ(F x = E p), is defined by induction on B in the following
way.

M i [yJ (F x = case x i o f . . .) = case y o f . . .
M i [G E j (F x = . . .) = F x i . . i - i * (G E) *xi+ i..k
M i [y @ E J (F x = . . .) = F x i . . i - ^ * (y @ E) *xi+ i..k
M i [C j E j (F x = case x i o f . . . Cj Ej — A j . . .) = E [A j J[E /y j]
M i [case yk o f . . . Pj — Ej . . . J (F x = E p)

= case yk o f . . . Pj — M i [Ej J (F x = E p) . . .

Here [E /x] denotes the substitution o f E fo r x.

D e f in itio n 4 .9 (F u se d F u n c tio n s) . Let F be a function , and let S be a fu n c
tion or constructor symbol. A ssum e that the arities o f F, S are m , n respectively,
and that S is applied to k arguments, k < n . The result o f fusing F with such a
k-ary version o f S at argument position i, i < m is a function FiS k defined as
follows.

1. F x = case x i o f • • •. Then we distinguish the following two cases.
(a) S is a function, say with definition S V = B s . Then

F iS k x i..(i- i) * z * x (i +i)..m = M i [B s J(F x = case x i o f • • •)

(b) S is a constructor. Then

F iS k x i..(i- i) * y * x (i +i)..m = M i [S y J (F x = case x i o f •• •) (E = k)

2. F x = E . I n that case

FiSk x i..(i-i) * y * x (i+i)..m = E [E J [S y / x i] M = k)

12 Artem Alimarine and Sjaak Smetsers

Observe th a t the body of F in the la tte r case m ight s ta rt w ith a p a tte rn
m atch. B u t th is p a tte rn m atch is not on the variable x i for which S is substitu ted ,
and hence this substitu tion will not produce an illegal function body.

E x a m p le 4 .1 0 . The body of the function app_app of example 4.1 results from
applying rule 1a of definition 4.9:

M i [case l of • • • J (app(l, t) = case l of • • •)

As a result, the case of the consum er is pushed into the alternatives of the
producer where it is elim inated, leading to:

app_app x y z = case x of Nil — app y z
Cons x x s — Cons x (app (app xs y) z)

During fusion (parts of) the user defined functions are exam ined for consum er
producer pairs th a t can be fused. If such a fusion introduces a new function this
new function itself also becomes a source for new consum er-producer pairs. This
leads to the following algorithm .

D e f in it io n 4 .1 1 (F u s io n) . Let F be a set o f functions. Evaluation o f F con
sists o f repeatedly performing the following three steps until no more consumer
producer pairs can be found (step 1 is no longer successful).

1. Look fo r a function body B in F that contains a consum er-producer pair

R = F E i..(i- i) * (S D) * E (i+i)..\E\

2. Let FiS k be the symbol tree that corresponds to that consumer-producer pair.
Replace R by the expression

F iS E i..(i- i) * D * E (i+i)..\E\

3. Se t F = F U { F S k z = B '} .
Here B ' is given by the definitions 4.9. To determ ine whether FiS k is already
present in F we use the equality on symbol trees; not on expressions, i.e. we
do not compare function bodies.

R e m a rk 4 .1 2 . We do not impose any evaluation order, since this order is ir
relevant for the outcom e. (See also property 5.2.)

E x a m p le 4 .1 3 .

plusOrMin s m n = s (Pair Plus Min) m n
First p = case p of Pair x y — x
foo m n = plusOrMin First m n

The only consum er-producer pair occurs in foo. It will lead to the creation of
a new function, plusOrMini First0. In the new body of th is new function the appli
cation of First will have 3 argum ents, so the arity of First has to be increased by

Fusing Generic Functions 13

2 in order to ob tain a well-formed expression. Hence, the following two functions
are generated.

plusOrMini First0 m n = First®2(Pair Plus Min) m n
First®2 p m n = case p of Pair x y — x m n

During the next step First®2 is fused w ith Pair resulting in a new function
First®2 Pair2 (in which the p a tte rn m atch has been elim inated), and a replacem ent
of the original pair in plusOrMini First0

plusOrMini First0 m n = First®2Pair2 Plus Min m n
First®2Pair2 x y m n = x m n

During the last two steps First®2Pair2 first consumes Plus followed by Min.
The Plus will be applied to m ,n whereas Min will disappear.

5 B asic properties o f fusion

In th is section we will briefly discuss some basic properties of fusion.
Soundness of fusion can be proved by first defining a sem antics for our lan

guage, and then by showing th a t a fusion step of an expression leads to an
expression th a t is sem antically equivalent to its original.

As an example we will use a so called natural operational (or big step) sem an
tics, specifying the result of a com putation by m eans of syntax-driven derivation
system. (See also [NN92,AJ02])

D e f in it io n 5 .1 (E q u iv a le n c e) . Let E ,V be expressions, and let E ^ V denote
that E evaluates to V (according to the underlying sem antics). We say that
two functions F ,F ' are sem antically equivalent (notation F ~ F ') i f fo r all
expressions EE

F E ^ V & F ' E ^ V

The following property shows th a t fusion preserves semantics. I t can be used,
e.g. for proving fusion is confluent (the order in which expressions are combined
is not relevant).

P r o p e r ty 5 .2 . Let R = F (. . . , S (. . .) , . . .) be a consumer-producer pair, where
S is used with arity k at argument position i o f F . Let FiS k be the function
obtained when F and S are fused. Then

[F iS kJ - F iS k,

where the symbol tree and the function definition o f FiS k are given by definition
4.2 and 4.9 respectively.

Evaluation by fusion leads to a subset of expressions, so called expressions
in fu sion norm al form , or briefly fu sion norm al form s. Also functions bodies are
subject to fusion, leading to more or less the same kind of results. These results
are characterized by the following syntax.

14 Artem Alimarine and Sjaak Smetsers

D e f in it io n 5 .3 (F u s io n N o rm a l F o rm).

— The set o f expressions in fusion norm al form (F N F) is defined as follows.

N ::= N ' | FIN' | C N
N ' ::= v | v @ N

— Function bodies in F N F have the following shape.

N b ::= N | case x o f P i — N i • • • P k — N k
P ::= C x

— A function is in F N F i f its body is, and a collection o f functions is in F N F
i f all functions are.

R e m a rk 5 .4 . Observe th a t, in this form, functions are only applied to variables
and higher-order applications, and never to constructors or functions.

In [AS04] a relation is established between the typing of an expression and the
d a ta constructors it contains after symbolic evaluation: an expression in symbolic
norm al form does not contain any d a ta constructors th a t is not included in a
typing for th a t expression. In case of fusion norm al forms (F N F s), we can derive
a sim ilar property, although F N F s m ay still contain function applications. More
specifically, let C E (N) denote the collection of d a ta constructors of the (body)
expression N , and CT(a) denote the d a ta constructors belonging to the type a .
(For a precise definition of CE(), CT(), see [AS04]). T hen we have the following
property.

P r o p e r ty 5 .5 (T y p in g F N F) .

— Let N be an expression in FNF. Suppose N is typable, i.e. fo r some basis B
and type a we have B h N : a. Then C E (N) Ç CT(B) U CT(a) .

— Let F be a collection o f functions in FNF. Suppose F G F has type a — t .
Then C E (F) Ç CT(a) U CT(t).

We can use th is p roperty in the following way. Let F be a set of functions.
The first step is to apply fusion to the body of each function F x = E p G F .

T hen (standard) evaluation of any application of F will only involve objects
using d a ta constructors th a t are contained in the typing for F . More specifically,
if F is an instance of a generic function on a user defined d a ta type, then fusion
will remove all d a ta constructors of the base types { ^ , 1, x , + } , provided th a t
neither the generic type of the function nor the instance type itself contains any
of these base types.

6 G uaranteeing term in ation

W ithou t any precautions the process of repeatedly elim inating consum er pro
ducer pairs m ight not term inate, or in our setting, will generate an infinite
num ber of new functions.

Fusing Generic Functions 15

S ta n d a r d fu s io n

To avoid non-term ination we will not reduce all possible pairs bu t restric t re
duction to pairs in which only proper consumers and producers are involved. In
[AGS03] a separate analysis phase is used to determ ine proper consumers and
producers. The following definitions are more or less directly taken from [AGS03]

D e f in it io n 6 .1 (A c tiv e P a r a m e te r) . The notions o f active occurrence and
active param eter are defined by simultaneous induction.

— We say that a variable x occurs actively in a (body) expression B i f there
exists a subexpression E Ç B such that

• E = case x o f . . . , or
• E = x @ . .., or
• E = F D i ..(i - i) * (x) * D(i+i). k, such that act(F)i and a rity (F) = k.

— A function F x = B p is active in x i (notation act(F)i) i f x i occurs actively
in B p .

— Let F x = B p be a function , E C B p . E is active (in F) i f either E contains
variables in w hich F is active, or (i f F is a case function) E contains pattern
variables.

The notion of accumulating param eter is used to detect potentially growing
recursion.

D e f in it io n 6 .2 (A c c u m u la t in g P a r a m e te r) . Let F i , . . . ,F n be a set o f m utu
ally recursive functions with respective right-hand sides B i , . . . , B n . The function
Fj is accum ulating in its i th param eter (notation acc(Fj) i) i f either

— there exists a right-hand side Bk such that FjDD Ç B k ,and D i is active1 in
Fk but not ju s t a variable (i.e. z C D i fo r some active or pattern variable

z). E
— there exists a subexpression Fk D Ç B j such that Fk is accumulating in l,

and Di = x i .

Observe th a t the active as well as the accum ulating predicate are defined
recursively. This will am ount to solving a least fixed point equation w ith respect
to the ordering ’false’ < ’tru e ’.

D e f in itio n 6 .3 (P r o p e r C o n s u m e r) . A function F is a proper consum er in
its i th param eter (notation con(F)i) i f act(F)i and —acc(F)i .

D e f in itio n 6 .4 (P r o p e r P r o d u c e r) . Let F i , . . . ,F n be a set o f m utually re
cursive functions with respective right-hand sides B i , . .. B n .

— A body Bk is called unsafe i f i t contains a subexpression G E , such that
con(G)i and E i = F j (• • •), fo r some G , j . In words: Bk contains a call to Fj
on a consuming position.

1 Here we deviate form the original definition as given in [AGS03] or [Chi94] which
required that the accumulating expression should be open i.s.o. active.

16 Artem Alimarine and Sjaak Smetsers

— A ll functions Fk are proper producers i f none o f their right-hand sides is
unsafe. Hence, i f one o f the bodies is unsafe, the complete set becomes im
proper.

R e m a rk 6 .5 . I t is im portan t to note th a t non-recursive functions are always
proper producers.

E x a m p le 6 .6 . The well-know function for reversing the elem ents of a list can
be defined in two different ways. In the first definition an auxiliary function rev2
is used.

rev l = rev2 l Nil
rev2 l a = case l of Nil — a

Cons x x s — rev2 x s (Cons x a)

B oth rev and rev2 are proper producers. The second definition uses app.

rev l = case l of Nil — Nil
Cons x x s — app (rev xs) (Cons x Nil)

Now rev is no longer a proper producer: the recursive call to rev appears on a
consuming position, since app is consum ing in its first argum ent. Consequently
a function like foo l = len (rev l) w ith

len l = case l of Nil — 0
Cons x x s — 1 + len xs

will only be transform ed if rev is defined in the first way. By the way, the effect
of the transform ation w .r.t. the gain in efficiency is alm ost negligible.

7 Im proved C onsum er A nalysis

If functions are not too complex, s tandard fusion will produce good results. In
particular, th is also holds for m any generic functions. However, in some cases
the fusion algorithm fails due to bo th consum er and producer lim itations. We
will first examine w hat can go wrong w ith the current consum er analysis. For
this reason we have adjusted the definition of app slightly.

E x a m p le 7 .1 .

app l t = case l of Nil — t
Cons x x s — app2 (Pair x xs) t

app2 p t = case p of Pair x x s — Cons x (app x s t)

Due to the interm ediate Pair constructor the function app is no longer a
proper consumer. (The (indirect) recursive call has this active pair as an argu
m ent and the non-accum ulating requirem ent prohibits this.)

It is hard to imagine th a t a norm al program m er will w rite such a function
directly. However, keep in m ind th a t the optim ization algorithm , when applied

Fusing Generic Functions 17

to a generic function, introduces m any in term ediate functions th a t com m unicate
w ith each o ther via basic sum and product constructors. For exactly th is reason
m any relatively simple generic functions cannot be optim ized fully.

One m ight th ink th a t a simple inlining m echanism should be capable of re
moving the Pair constructor. In general, such ’append-like’ functions will appear
as an in term ediate result of the fusion process. Hence, th is inlining should be
combined w ith fusion itself which makes it much more problem atic. Experi
m ents w ith very simple inlining show th a t it is practically impossible to avoid
non-term ination for the combined algorithm .

To solve the problem illustrated above, we extend fusion w ith depth analy
sis. D epth analysis is a refinement of the accum ulation check (definition 6.2).
The original accum ulation check is based on a purely syntactic criterion. The
improved accum ulation check takes into account how the size of the result of a
function application increases or decreases w ith respect to each argum ent. The
idea is to count how m any tim es constructors and destructors (pa tte rn matches)
are applied to each argum ent of a function. If th is does not lead to an ‘infinite’
dep th (an infinite dep th is obtained if a recursive call extends the argum ent w ith
one or more constructors) accum ulation is still harmless.

D e f in itio n 7 .2 (D e p th) . The functions occ and dep are specified below by si
multaneous induction.

occ(v, x) = 0,
= L ,

o c c (v , CE) = m axi (1 + occ(v,Ei))
occ(v, F E) = m axi (dep(F)i + occ(v, E i))
occ(v, x @ E) = max(occ(v, x), m axi (occ(v, E i)))
occ(v, case x o f . . . CiE — E i . . .)

= m a x (- œ , m axi (m ax(occ(v ,E i),
m axk (occ(yk, Ei)) — 1))),

= m axi (occ(v, E i)),

Moreover, fo r each func tion F x = B p

dep(F)i = occ(xi ,B p)

using L + x = L , m ax() = L , and (—œ) + (+ œ) = + œ .

R e m a rk 7 .3 . These two functions are defined as a fixed point equation on
L U Z U { + œ , —œ }, w ith L < —œ < z < for all z G Z. An im plem entation
of this fixed point construction has to lim it the dom ain to a finite subset of Z,
extended w ith L . The boundaries of th is subset can be determ ined on basis of
the struc tu re of the function bodies.

E x a m p le 7 .4 . The depths of the two functions appearing in example 7.1 are
dep(app) = dep(app2) = (0, + œ) .

The following definition gives an improved version of the consum ing property
(definition 6.3).

i f v = x
otherwise

, i f v = x
otherwise

18 Artem Alimarine and Sjaak Smetsers

D e f in it io n 7 .5 (C o n s u m in g W i th D e p th A n a ly s is) . A function F x = B p
is a proper consum er in its i th argument (notation con(F)i) i f

act(F)i A (—acc(F)i V dep(F) i < + œ) .

8 Im proved P rodu cer A nalysis

In some cases not the consum er bu t the producer classification (definition 6.4) is
responsible for not getting optim al transform ation results. The problem occurs,
for instance, when the type of a generic function contains recursive type con
structors. Take, for example, the monadic m apping function for the list m onad
mapl. The base type of mapl is

ty p e M apL a b = a — List b

Recall th a t the specialization of mapl to any d a ta type, e.g. Tree, will use
the em bedding-projection specialized to M apL (see section 2). This em bedding
projection is based on epUst: the generic em bedding projection specialized to
lists. Since List is recursive, epUst is recursive as well. Moreover, one can easily
show the recursive call to epUst appears on a consum ing position, and hence epUst
is not a proper producer. As a consequence, the transform ation of a specialized
version of mapl gets stuck when it h its on epUst appearing as a producer. We
illustrate the essence of the problem w ith a much sim pler example based on the
d a ta type:

d a t a Id a = Id a

E x a m p le 8 .1 .
unId i = case i of Id x — x
foo = Id (unId foo)
bar = unId foo

Obviously, the function unId is consum ing in its argum ent. Since the recursive
call to foo appears as an argum ent of unId, th is function foo is an im proper
producer. Consequently, the right-hand side of bar cannot be optim ized. On
the o ther hand, it seems to be harm less to ignore the producer requirem ent in
this case and to perform a fusion step. As long as we do not evaluate too far
term ination is not a problem . B ut how do we prevent of getting into a non
term inating reduction sequence, in case we are dealing w ith a situation th a t is
less clear?

The solution to th is problem is simple: allow im proper producers to be un
folded once. B ut how do we detect w hether we have already perform ed such
an unfold step? Actually, th is is not as easy as it seems. The transform ation
algorithm could be param eterized w ith some kind of evaluation history of the
im proper producers th a t were unfolded in order to obtain the current expression.
However, such a h istory will make the outcom e of the transform ation sensible
to the evaluation order, which makes reasoning about the transform ation much
more difficult.

Fusing Generic Functions 19

In our transform ation algorithm , however, we can use our special tree rep
resentation of new function symbols as a substitu te for the evaluation history.
Rem em ber th a t a symbol tree contains the inform ation of how the corresponding
function was created in term s of the initial set functions and d a ta constructors.
Suppose we have a fusion pair consisting of a function F consum ing in its i th
argum ent and an im proper producer G , say w ith arity k . The idea is to detect
possible non-term ination by exam ining the symbol tree FiG k. If th is tree con
tains a cyclic occurrence of some im proper producer, we don’t fuse; otherwise a
fusion step is perform ed. This leads to the following improved fusion algorithm .

D e f in it io n 8 .2 (Im p ro v e d p r o d u c e r a n a ly s is) . Let F be a set o f functions.

— Let T be a symbol tree. Such a tree is called unsafe i f there exists an improper
producer, say with symbol tree G, such that T is cyclic in r G 1. Otherwise
the tree is called safe.

— Let F x = B p G F . A safe consum er-producer pair in F is an expression
R Ç B p o f the form

R = G E i..(i- i) * S D * E (i+ i)..iE|

such that con(G)i , and fo r S one o f the following properties holds:

• S is a constructor, or
• S is partially applied function (i.e. arity(S) < D D, or
• S is a proper producer, or
• S G F and FiS lD 1 is safe.

— Only safe consumer-producer pairs are fused.

R e m a rk 8 .3 . We can further improve fusion by replacing unused argum ents of
functions w ith L . More precisely, let G E be an expression such th a t E i is not
ju s t a variable. If dep(G)i = L it is safe to replace this expression by

G E i..(i-i) * L * E (i+i)..lEl

R e m a rk 8 .4 . The last requirem ent in the definition of redex is th a t the ap
plication of an im proper producer S occurs outside the com ponent to which S
belongs. (S G F) This requirem ent is not essential for guaranteeing term ination,
bu t it leads to b e tte r results for fusing generics.

To illustra te the effect of our refinem ent we go back to exam ple 8.1. Now,
the application in the body of bar is a redex. It will be replaced by unIdi foo0,
and a new function for th is symbol is generated. Following the rules for the
introduction of new functions (definition 4.9) the initial body of th is function is
unId foo, indeed, identical to the expression from which it descended. Again the
expression will be recognized as a redex and replaced by unIdi foo0, finishing the
fusion process.

20 Artem Alimarine and Sjaak Smetsers

P r o p e r t ie s

Since we no longer fuse all consum er-producers pairs bu t restric t ourselves to
proper consumers and producers we cannot expect th a t the result of a fused
expression will always be in F N F (as defined in definition 5.3). Consequently, such
a result m ight still contain d a ta constructors th a t we were try ing to elim inate.
Assume th a t initially all functions are consum ing in all their argum ents, and th a t
all functions appearing on a consum ing position are proper producers. Even
then it is still not guaranteed th a t fusion leads to F N F . During fusion new
functions are in troduced which do not necessarily fulfill these requirem ents or
the properties of existing functions m ight change. Take for instance the function
foo from the previous example. An alternative (and equivalent) definition for this
function using the Y-com binator Y (f) = f @ (Y (f)) is foo = Y(Id o unId). Now,
the example does not contain any im proper producers anymore. However, fusing
the body of foo will introduce an auxiliary function identical to the original
version of foo. And, as we have seen, this function is not a proper producer.
Observe th a t the body of an im proper producer is not in FN F , even after is has
been optim ized. Hence, the characterization of fusion norm al forms is no longer
correct.

We solve th is problem by first giving a more liberal classification of the fusion
results. Rem em ber th a t our m ain concern is not to elim inate all consum er
producer pairs, bu t only those com m unicating in term ediate objects caused by
the stru c tu ra l representation of d a ta types. The new notion of fusion norm al
forms is based on the types of functions and d a ta constructors.

D e f in it io n 8 .5 (T -F re e F o rm s) . Let T be a type constructor.

— Let S be a function or data constructor, say with arity n , and type a — t ,
where \a\ = n. We say that a k-ary version o f S excludes T , k < n , (notation
S i k T) i f

C T (a k + i , . . . , a n ,T) n C T (T) = 0

We abbreviate S i n T to S i T .
— The set N t o f expressions in T-free fo rm is defined as:

N t ::= N T \ F NÍT \ C N t
N T ::= v \ v @ N t \ S NTT

with the additional restriction that fo r each application o f S N T it holds that

S M , T ■
— A function is in T -F F i f its body is.

In the next section we show why th is new notion of T -F F is sufficient to
ob tain the desired result in case of generic functions. This notion enables us to
reason about fusion in a more abstrac t way. For instance, we can now investigate
how an im proper producer is combined w ith its surrounding context, and th a t
this com bination again will be in the required form.

For functions in T -F F we have a p roperty com parable to property 5.5 of
functions in F N F .

Fusing Generic Functions 21

P r o p e r ty 8 .6 . Let T be type constructor, and F be a collection o f functions in
T -FF. Then, fo r any F G F we have

F i T ^ C E (F) n C T (T) = 0

9 Fusion o f G eneric Instances

In th is section we deal w ith the optim ization of instances generated by the
generic specializer. An instance is considered to be optim ized if the resulting
code does not contain constructors belonging to the basic types { ^ , 1, x , +}.
O ur goal is to show th a t under some conditions on the generic base cases, the
generic function types, and the instance types the presented fusion algorithm
com pletely removes generic overhead.

Let g be a generic function of type G, and let T be a type constructor.
Consider the specialization of g to T . As m entioned in section 2, a generated
instance consists of an adaptor and the code for the struc tu ra l representation
and has the shape

gTf = adap tG ,t) (gT◦ f)

The generic constructors th a t we want to elim inate are EP, Pair, Inl, Inr and
Unit. EP can be found in the adap to r only, whereas the o ther constructors appear
in bo th adap to r and gT ◦ .

In practice, optim izing gT can only be successful if there are no EPs left in
the adaptor adapt^G T) . Therefore, we s ta r t w ith exam ining how the adap to r is
optimized.

9.1 F u s in g a d a p to r s

We can split the adap to r in two p arts corresponding to G and T respectively.
The adap to r has the general shape

adapt^G t) ^ adapt^G) adapter) .. . adapter)

where adaptT is repeated for each (generic) argum ent of G.

adapt^G) :: (a ^ b) — . . . — (a ^ b) — (G a . . . a) — (G b .. .b)
adapt^G) x = from (epG x)
adapter) :: T a ^ T ° a
adapter) = convr

Here epG is the specialization of ep to G, see section 2. Note th a t ^ is the
only basic type appearing in adapt^G) . This m eans th a t if we are able to show
th a t adapt^G) is fused to ^ - F F we have elim inated all o ther basic constructors,
because of p roperty 8.6. The instance epG is built from the base cases for the
generic function ep, and instances of the form epP , where P is a type constructor
appearing in G. We will first focus on the structu re of epP Note th a t if the type

22 Artem Alimarine and Sjaak Smetsers

P is recursive, the generic instance epP will be recursive as well. Since epP is a
generic instance, it can be w ritten as

epP f = a d a p t) (epP◦ f)

where the adap to r has the form

a dap tt^ p) = a d a p t^) convP convP
adaptt^) a b = from (ep ^ a b)

It is easy to show th a t the function adapt^ P) can be w ritten as

a dap tt^ P) = E P (ep to^ P)(epfrom ^ P)

where
e p to ^ P e = mapAR convToP convFromP (to e)
epfrom ^ P e = mapAR convToP convFromP (from e)

Fusion of the original a d a p t^ P) leads to a more or less sim ilar result.
In this subsection our goal is to show th a t the resulting code for adaptors

is E P free, i.e in ^ - F F . We illustra te how fusion elim inates in term ediate EPs
by m eans of examples. The general case can be trea ted similarly, bu t is om itted
because it does not help the explanation. The adaptor is built from the combi
nation of E P projections (to and from) and E P instances (e.g. epUst). The first
example shows how the to projection of E P is fused w ith a recursive instance.
The second example shows two recursive instances of E P are fused together. And
the th ird example shows how to is fused w ith the com binations of two recursive
instances. This should convince the reader, th a t the transform ation leads to the
adaptors th a t are free from EPs.

E x a m p le 9 .1 (F u s in g p r o je c t io n w i th a n in s ta n c e) . We assume th a t the
instance on lists epUst is already fused and is in {+ , x , 1}-FF .

epList f = EP (epto List f (epList f)) (epfromList f (epList f))
eptoUst f r l = case l of Nil — Nil

Cons h t — Cons (to f h) (to r t)
epfromUst f r l = case l of Nil — Nil

Cons h t — Cons (from f h) (from r t)

Consider the application to (epUst f). Fusion will introduce a function to epUst
(we indicate new symbols by underlining the corresponding consum er and pro
ducer, and also leave out the argum ent num ber and the actual a rity of the
producer). The body of th is function is optim ized as follows:

to epList f l
•W to (EP (eptoList f (epList f)) (. . .)) l unfolding epUst
^ epto List f (epList f) l unfolding to
w case l of Nil — Nil unfold eptoList

Cons h t — Cons (to f h) (to (epUst f) t)
w case l of Nil — Nil folding to, epList

Cons h t — Cons (to f h) (to epUst f t)

Fusing Generic Functions 23

It can easily be seen th a t the only E P involved in the resulting code is the formal
argum ent f . This E P is im m ediately consumed by the to selector.

E x a m p le 9 .2 (F u s in g tw o in s ta n c e s) . We assume fusion of the instance for
the list and tree types. The instance for tree after fusion is

epTree f = EP (eptoTree f (epTree f)) (epfromTree f (epTree f))
eptoTree f r t = case t of Leaf x — Leaf (to f x)

Branch x y — Branch (to r x) (to r y)
epfromTree f r t = case t of Leaf x — Leaf (from f x)

Branch x y — Branch (from r x) (from r y)

Fusion of epTree (epList f) proceeds as follows.

epTree epList f
w EP (eptoTree (epList f) (epTree (epList f))) (. . .)) unfolding ePTree
w EP (eptoTree (epList f) (epTree epList f)) (. . .)) folding ePT̂ ePUst
w EP (eptoTree epList f (epTree epList f)) (. . .)) fusing ePtoTreei ePList

where fusion of eptoTree (epUst f) proceeds as

eptoTree epList f r l
w case t of Leaf x — Leaf (to (epTree f) x) unfolding ePtorree

Branch x y — Branch (to r x) (to r y)
w case t of Leaf x — Leaf (to epUst f x) folding to, ePUst

Branch x y — Branch (to r x) (to r y)

Fusion has elim inated an in term ediate E P produced by epUst and consumed by
epTree from the original expression epTree (epList f).

E x a m p le 9 .3 (P r o je c t io n o f fu se d in s ta n c e s) . Fusion of to w ith epTree epUst
is sim ilar to the first example. I t yields

to epTree epUst f t = case t of Leaf x — Leaf (to epUst f x)
Branch l r — Branch (to epTree epUst f l)

(to epTree epList f r)

These examples illustra te th a t fusion of adaptors leads to ^ - F F . Provided
th a t the generic and the instance types do not involve EPs, the adap to r is the
only p a rt of a generated instance th a t originally contains EPs. Therefore, fusion
transform s instances into ^ - F F .

9.2 R e q u ir e m e n ts

As said before, not all adaptors can be fused to ^ - F F . In fact, when certain
type constructors are involved in a generic type, th a t generic type results in an
adap to r th a t cannot be optim ized to ^ - F F . Namely, (1) nested and (2) contra-
variantly recursive types lead to such adaptors. We explain bo th kinds w ith an
example.

24 Artem Alimarine and Sjaak Smetsers

— Nested types are types like

d a t a Nest a = NNil \ NCons a (Nest (a, a))

i.e. recursive types in which the argum ents of the recursive occurrence(s) are
not ju s t variables. The ep th a t is generated for Nest is

epNest a = from (epEp c o n v ^ t c o n v ^ t) (ep+ epj (epx a (epNest(ep(,) a a))))

This function is accum ulating, and hence not a proper consumer. Fusion will
therefore not be able to elim inate all EPs in a te rm like epNest convT .

— Contra-variantly recursive types are types like

d a t a Contra = Contra (Contra — Int)

i.e. recursive types in which one or more of the recursive occurrence(s) appear
on a contra-variant position (the first argum ent of the —-constructor). We
will not go into further details to explain why instance of ep for these types
are not of the right form.

It is im portan t th a t these requirem ents are on type constructors th a t occur
in the generic type, bu t not on the instance types. We believe th a t all the above
requirem ents on type constructors are not very restrictive in practice.

A part from these type constructor requirem ents, we have the additional re
striction th a t the type G of the generic function itself if free of self-application.
Self application of types m eans applying a type constructor to itself, e.g. List (List a).
Self application of types will lead to self-application of functions, in particu lar of
em bedding projections. The problem is th a t m ost eps are im proper producers,
and hence a nested application of such functions will im m ediately create a cyclic
symbol tree of the corresponding consum er-producer pair. I t will therefore not be
accepted as a proper redex. Consider, for instance, a generic non-determ inistic
parser. This parser could have the following type.

ty p e Parser a = (List Char) — List (a, List Char)

This leads to the following em bedding projection

epParser a = ^ (epList epChar) (epList (ep(,) a (epList epChar)))

After a few steps this function will lead to a self application of epList, which
obstructs further fusion. This problem can be avoided by choosing different types
for different purposes. For instance, the parser’s type can be changed into

ty p e Parser a = (List Char) — List' (a, List Char)

where List' is ju s t another list

d a t a List' a = Nil' \ Cons' a (List' a)

A nother useful trick to overcome th is problem is to autom atically replace closed
EP term s like (epUst epChar) w ith the identity epid = EP id id. This is possible
because m apping for types of kind * is identity. Then the instance becomes

epparser a = e p ^ epid (epList (ep(,) a epid))

Fusing Generic Functions 25

9 .3 F u s in g g e n e r ic in s ta n c e s

So far we have shown th a t the adap to r is free from EPs. A daptor is the only
p a rt of a generated instance th a t contains EPs. Now our goal is to show th a t a
generated instance is free from sums, p roducts and units. A generated instance
can be w ritten in the following form

g r f = adap ttG t) (g s n . . . (gr f) . . .)

where g ^ n is a com bination of the base cases and gT-s are free from the base
cases and the base types. For instance, consider m apping for the rose trees.

mapRose f adapttMap,Rose) (m apx f (mapList (mapRose f)))

Here g%n is m a ^ and gT-s are f and mapList (m apRose f)). Sums, products
and units appear only in the adap to r and in the g%n part. They do not appear
in the gT part. The type of the expression adapt^G T) (gsn: x) does not contain
the base types. For instance,

X x.X y.adap ttMap,Rose) (m apx x y)
:: (a — b) — (List (Rose a) — List (Rose b)) — (Rose a — Rose b)

Therefore, it is enough to show th a t under some conditions fusion of the
adap to r w ith the g ^ n p a rt will lead to elim ination of the basic constructors, i.e.
to {+ , x , 1}-FF . The idea is th a t the functions used in the base cases should not
prevent the basic constructors coming close to the corresponding destructors.
Consider, for example, the base case for p roducts of the m onadic m apping for
lists (section 8).

maplx l r p = case p of
Pair x y — l x ^ = Ax' .r y ^ = Ay' .return (Pair x ' y ')

The Pair produced in th is instance is consumed in the adaptor. Fusion brings the
constructor and the destructor close together, so th a t they are elim inated. The
monadic operations (for lists) th a t surround the pair constructor do not con
s titu te a problem, because they are "sufficiently consum ing and producing” . So
far, we have not found a way to precisely s ta te w hat "sufficiently consum ing and
producing” is. However, all the examples we tried had the base cases am enable
for optim ization. In practice the restriction is not severe.

Accum ulation in the base cases can prevent elim ination of the basic con
structors. The base cases are essentially accum ulating only when the generic
function’s type refers to a nested type, such as Nest above. However, we have
already excluded nested type constructor from generic types in the previous
subsection.

10 Perform ance E valuation

We have im plem ented the improved fusion algorithm as a source-to-source tran s
la tor for the core language presented in 3. The inpu t language has been extended

26 Artem Alimarine and Sjaak Smetsers

w ith syntactical constructs for specifying generic functions. A part from the usual
checks for sta tica l sem antics, the tran sla to r is also able to infer types. We used
the Clean compiler [PvE01] to evaluate the perform ance of the optim ized and
unoptim ized code.

Of course, we have investigated m any example program s, bu t in th is section
we will only present the result of two examples th a t are realistic a n d /o r illustra
tive: simple m apping and non-determ inistic parsing. The types of these generic
function are:

t y p e Map a b = a — b
t y p e Parser a = (List Char) — List' (a, List Char)

w ith List' as defined in section 9.2.
The generic m ap function was used to apply the increm ent function to a

list of 2.7 108 integers. We have com puted the overhead due to the creation of
the list and the evaluation of the applied function and sub trac ted th is from the
m easured execution times. The language used for the non-determ inistic parser
was extrem ely ambiguous leading to more th an 200.000 different parses for an
input consisting of a list of only 12 characters separated by spaces.

program unoptim ized (sec) optimized (sec) speedup (tim es)
map 66.78 8.42 7.9
parser 45.65 0.51 89.5

The parser example shows a gain in efficiency by a factor of 90. Not m entioned
in tab le is the fact th a t the optim ized version also uses considerably less memory:
we had to increase the heap size of the unoptim ized version to 128 MB, whereas
the optim ized version could easily run w ithin in a few MB. The execution tim e
of 45.65 sec can be split up into real execution tim e (12.0 sec) and garbage
collection tim e (33.65 sec). These figures m ight appear too optim istic, bu t other
experim ents w ith a com plete X M L-parser defined generically confirm th a t these
results are certainly not exaggerated.

Finally, for people who w ant to experim ent themselves w ith the presented
optim ization technique, the sources of p ro to type compiler are available and can
be obtained by sending an email to one of the authors.

11 R elated W ork

The present work is based on the earlier work [AS04] th a t used p artia l evaluation
to optim ize generic program s. To avoid non-term ination we used fix-point ab
straction of recursion in generic instances. This algorithm was, therefore, specifi
cally tailored for optim ization of generic program s. The algorithm presented here
has also been designed w ith optim ization of generic program s in m ind. However
it is a general-purpose algorithm th a t can improve o ther program s. The present
algorithm com pletely removes generic overhead from a considerably larger class
of generic program s th an [AS04].

Fusing Generic Functions 27

The present optim ization algorithm is an im provem ent of fusion algorithm
[AGS03], which is in tu rn based on C hin ’s fusion [Chi94] and W adler’s defor
estation [Wad88]. We have improved b o th consumer and producer analyses to
be more sem antically th an syntactically based.

Chin and Khoo [CK96] improve the consum er analysis using the depth of
a variable in a term . In their algorithm , depth is only defined for constructor
term s, i.e. term s th a t are only built from variables and constructor applications.
This approach is lim ited to first order functions. Moreover, the functions m ust be
represented in a special constructor-based form. In contrast, our depth is defined
for a rb itra ry term s of our language. O ur algorithm does not require functions in
to be represented in a special form, and it can handle higher order functions.

The present paper uses a generic scheme based on type-indexed values [Hin00].
However, we believe th a t our algorithm will also improve code generated by other
generic schemes, e.g P olyP [JJ97].

12 C onclusions and Future W ork

In th is paper we have presented an improved fusion algorithm , in which bo th
producer and consumer analyses have been refined. We have shown how this
algorithm completely elim inates generic overhead for a large class of program s.
This class is described; it covers m any practical examples. Presented perform ance
figures show th a t the optim ization leads to a huge im provem ent in b o th speed
and m em ory usage.

In this paper we have ignored the aspect of d a ta sharing. Generic specializa
tion does not generate code th a t involves sharing, although sharing can occur
in the base cases provided by the program m er. A general purpose optim ization
algorithm should take sharing into account to avoid duplication of work and
code bloat. In the future we would like to extend the algorithm to take care of
sharing. We believe th a t it will not affect the results for optim ization of generic
programs.

Additionally, we w ant to investigate o ther applications of th is algorithm than
generic program s. For instance, m any program s are w ritten in a com binatorial
style using m onadic or arrow com binators. Such com binators norm ally store
functions in simple d a ta types, i.e. w rap functions. To actually apply a function
they need to unw rap it. I t is w orth looking a t elim ination of the overhead of
wrapping-unw rapping.

R eferences

[AGS03] Diederik van Arkel, John van Groningen, and Sjaak Smetsers. Fusion in
practice. In Ricardo Pena and Thomas Arts, editors, The 14th International
Workshop on the Implem entation o f Functional Languages, IF L ’02, Selected
Papers, volume 2670 of LNCS, pages 51-67. Departamento de Sistemas In-
formaticos y Programación, Universidad Complutense de Madrid, Springer,
2003.

28 Artem Alimarine and Sjaak Smetsers

[AJ02] Klaus Aehlig and Felix Joachimski. Operational aspects of normalization by
evaluation. In Julian Bradfield, editor, Proceedings of CSL02, volume 2471 of
LNCS, pages 59-73. Springer-Verlag, 2002.

[AS04] Artem Alimarine and Sjaak Smetsers. Optimizing generic functions. In Dexted
Kozen, editor, M athematics o f Programm Construction, number 3125 in LNCS,
pages 16-31, Stirling, Scotland, UK, July 2004. Springer.

[Chi94] Wei-Ngan Chin. Safe fusion of functional expressions II: further improvements.
Journal of Functional Programming, 4(4):515-555, October 1994.

[CK96] Wei-Ngan Chin and Siau-Cheng Khoo. Better consumers for program special
izations. Journal of Functional and Logic Programming, 1996(4), November
1996.

[Hin00] Ralf Hinze. Generic programs and proofs. Habilitationsschrift, Universitat
Bonn, October 2000.

[HP01] Ralf Hinze and Simon Peyton Jones. Derivable type classes. In Graham
Hutton, editor, Proceedings of the 2000 A C M SIG P L A N Haskell Workshop,
volume 41.1 of Electronic Notes in Theoretical Computer Science. Elsevier
Science, August 2001. The preliminary proceedings appeared as a University
of Nottingham technical report.

[JJ97] P. Jansson and J. Jeuring. Polyp - a polytypic programming language exten
sion. In The 24th A C M Symposium on Principles o f Programming Languages,
POPL ’97, pages 470-482. ACM Press, 1997.

[NN92] Hanne Riis Nielson and Flemming Nielson. Sem antics with Applications: A
Formal Introduction. Wiley Professional Computing, 1992. ISBN 0 471 92980
8.

[PvE01] M.J. Plasmeijer and M. van Eekelen. Clean Language Report Version 2.0.
University of Nijmegen, The Netherlands, 2001. draft.

[Wad88] Phil Wadler. Deforestation: transforming programs to eliminate trees. In Pro
ceedings o f the European Symposium on Programming, number 300 in LNCS,
pages 344-358, Berlin, Germany, March 1988. Springer-Verlag.

