
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a postprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/60357

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/60357

D ynam ic C onstruction of G eneric Functions

Ronny W ichers Schreur and Rinus Plasm eijer

Institute for Computing and Information Sciences
Radboud University Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
{ronny,rinus}@ cs.ru.nl

h ttp ://w w w .cs.ru .n l/{~ ronny ,~ rinus}

A b s tra c t.. This paper presents a library for the run-time construction
and specialisation of generic or polytypic functions. This library utilises
the type information that is available in dynamics to implement generic
functions on their values. The library closely follows the static generic
framework, both in its use and in its implementation. It can dynamically
construct generic operations ranging from equality, m ap and parsers to
pretty printers and generic graphical editors. A special feature of the
library is that it can also be used to derive meaningful specialisations of
generic functions that operate on the type representation of the dynamic.

1 Introduction

This paper is about constructing generic functions for dynam ically typed values
(or shortly, dynam ics). Let us first explain w hat we m ean by generic functions
and dynamics.

In Generic Haskell [13] as well as in Clean [15] it is possible to define generic
fu n c tio n s [4,8]. A generic function is an u ltim ate reusable function th a t allows
reflection on the structu re of d a ta in a type-safe way.

Once defined, a generic function can be applied on any value of any given
concrete sta tic type. Generic functions can be used to define work th a t is of a
general nature . The technique has successfully been applied to define functions
like equality, m a p , fo ld , to construct parsers and p re tty printers, to create GUI

applications [3] and to generate test d a ta [10].
A generic function is actually not a single function, bu t ra th e r a special kind

of overloaded function. To define a generic function, instances for the generic
function are defined for a finite num ber of type constructors. Given these base
instances, the compiler can fully autom atically derive an instance for the generic
function for any given concrete sta tic type.

B oth in Haskell as well as in Clean one can use dynam ics. Dynamics allow the
program m er to associate a run-tim e value w ith its type. The are some differences
between dynam ics in Haskell and in Clean. In Clean dynam ics are incorporated
in the language while in Haskell dynam ics are m ade available via a lib rary fa­
cility. Dynamics in Clean can be of polym orphic type, and one can do run-tim e
type unification using type p a tte rn variables [14]. Furtherm ore, dynam ics (even

C. Greick et al. (Eds.): IFL 2004, LNCS 3474, pp. 160-176, 2005.
© Springer-Verlag Berlin Heidelberg 2005

http://www.cs.ru.nl/%7b~ronny,~rinus%7d

Dynamic Construction of Generic Functions 161

functions) can be serialised , stored to disk and read it in by some other running
application. In th is way one can easily create persistency, type-safe plug-ins, and
mobile code [17]. The facility has been used to create a type safe functional op­
erating system [16] th a t uses a typed file system in which all files are dynam ics
stored on disk.

Dynamics enable the type safe com m unication of d a ta and code between
independently program m ed d istribu ted applications. I t would therefore be very
nice if we would also be able to apply generic functions to a dynam ic, in particu lar
to a “foreign” dynam ic. In theory it should be possible to construct such a generic
function, since a dynam ic contains inform ation about its type.

The ability to construct such a generic function th a t can be applied on any
value of any type stored in a dynam ic would give us new possibilities. For in­
stance, in our functional operating system we will be able to test the equality
of two (unknown) dynam ics. I t also means th a t if we receive a dynam ic from
somewhere, we can autom atically create a parser or p re tty prin ter for it. From
th a t m om ent on, the operating system shell is able to recognise expressions of
the types involved.

Figure 1 gives an im pression of w hat we want to achieve . The program at
the top writes a tree value in a dynam ic to disk. This dynam ic value is read
by the bo ttom application. N ote th a t the Tree type is not available a t compile
tim e in the bo ttom application. By using the library it is still possible to create
a graphical editor for the tree in the dynam ic value.

d a ta Tree a = L e a f | Node a (Tree a) (Tree a)
dyn = d y n a m ic Node 1 Leaf Leaf :: Tree In t
m ain = writeDynamic ” d ” dyn

do
dyn — readDynamic ” d”
doIO (edit ” Editor for any Dynamic” dyn)

Fig. 1. A dynamically constructed generic editor

In practice th is m eans th a t all the conversions and constructions th a t are
currently done by the compiler a t compile-time now somehow have to be ac­
complished a t run-tim e. This is not so easy. A compiler can do full reflection
on the representation of types and term s, bu t a running application (Clean uses
compiled code) can only do some lim ited reflection on the representation of the

162 R. Wichers Schreur and R. Plasmeijer

types. Furtherm ore one has to be able to construct new functions a t run-tim e.
The research question is: is it nevertheless possible to create generic functions
for dynam ics? In th is paper we explain how one can do it, and explain w hat
language facilities are needed to realise it.

The m ain contributions of th is paper are:

— We show th a t th a t our library enables the construction of generic functions
a t run-tim e in the same spirit as the well-known sta tic generic translation
scheme (section 6 and 4);

— We show th a t our generic functions cannot only be used on the value p art
bu t also on the type p a rt of a dynam ic (section 4) .

The code and examples in this paper are presented in Haskell, because it is
more widely known. In any case, the differences are insignificant. The library
is im plem ented in Clean and available from the web-page th a t accompanies this
paper (h t tp : / /w w w .c s .ru .n l /~ ro n n y /D y n G e n /).

The rem ainder of the paper is organised as follows. In section 2 we briefly
recap the dynam ic machinery. In section 3 we describe how a generic function
is statically defined in the language. Then we explain in section 4 how, w ith
help of our library, a generic function for dynam ics can be constructed in a
very sim ilar way as in the sta tic case. The transla tion scheme for generics as
im plem ented in the compiler is illustrated in section 5 . In section 6 we explain
how we m anage to realise this transla tion scheme at run-tim e. In section 7 we
show some extensions, present example applications, and discuss the efficiency
of the library. After discussing related work in section 8, we end in section 9 w ith
conclusions and future work.

2 D ynam ics

Dynam ically typed values, or dynam ics for short, combine a value w ith a repre­
sentation of its type [1 ,15]. Here are some examples of dynamics.

tw oD ynam ics :: (D y n a m ic , D ynam ic)
tw oD ynam ics = (d y n a m ic 3 :: I n t , d y n a m ic id :: V a .a ^ a)

dynA pp ly :: D yn a m ic ^ D yn a m ic ^ D ynam ic
dynA pp ly (d y n a m ic f :: a ^ b) (d y n a m ic x :: a) = dynam ic f x :: b
dynA pp ly __ = error “dynA pp ly : type error”

The first alternative of dynA pp ly only m atches if the first dynam ic argum ent
contains a function value and the second dynam ic argum ent a value of a type th a t
m atches the argum ent type of the function. This exam ple shows how m atching
on dynam ic values involves dynam ic unification of types. This guarantees th a t
the application f x is safe.

The type p a tte rn variable in a dynam ic can also arise from a type variable in
the signature of the function. Such a type variable is postfixed w ith an upw ard
arrow, as in the following two functions.

http://www.cs.ru.nl/~ronny/DynGen/

to D yn :: Va.Typeable a ^ a ^ D ynam ic
to D yn x = d ynam ic x :: a \

fro m D yn :: Va.Typeable a ^ D yn a m ic ^ a
fro m D yn (d yn a m ic x :: a \) = x
fro m D yn _ = error “type m ism a tc h ”

These so called type dependen t fu n c tio n s [14] are overloaded in the type repre­
sentation of th a t type variable, indicated by the Typeable class. For example in
fro m D yn the type of a is determ ined by the context in which the function is
used.

The dynam ic system in Clean has more features th a t are not used in this
paper, bu t th a t do greatly enhance the applicability of dynam ics. One can seri­
alise any dynam ic (even functions) and store its value to disk or send it over to
another running application. Any o ther Clean application can read in or receive
such a dynam ic. Clean uses compiled code which means th a t a dynam ic linker is
required th a t is able to link in code to a running application [17].

2 .1 O b ta in in g A d d it io n a l In f o r m a t io n A b o u t D y n a m ic T y p e s

In Haskell access to the representations of types and d a ta type definitions is avail­
able in the D ata.G enerics lib rary th a t was developed to support the techniques
in the “Scrap your boilerplate articles” [11,12].

In Clean, dynam ics, pa tte rns m atch on dynam ics, as well as dynam ic unifi­
cation are p a rt of the language. Access to the representation of types and the
type definitions is therefore less im portan t to the average Clean user. To realise
our library, we do need access to this type of inform ation. The representation
contains all the inform ation needed to construct the generic representation for
dynam ic types at run-tim e. The actual representations of types and d a ta types
in bo th Haskell and Clean differ from the one presented in th is paper. We have
simplified it a bit to increase readability.

The following library functions are used to obtain additional inform ation
about types. The ty p eO f function re tu rns the representation of a type.

ty p eO f :: V a. Typeable a ^ a ^ TypeRep
d a ta TypeRep

= T yC on T yC on | T yA pp TypeRep TypeRep
| T yF orA ll VarId TypeRep | T yV ar VarId

The function typ eD efO f re tu rns a representation of the d a ta type.

typ eD efO f :: T yC on ^ T yD ef
d a ta T yD ef = A lgType {a r ity :: I n t , conses :: [(C onstr , [Type]]} | N oT ype

The C onstr d a ta type represents a d a ta constructor from an algebraic type. It
supports the following operations.

Dynamic Construction of Generic Functions 163

164 R. Wichers Schreur and R. Plasmeijer

d a t a C onstr = — abstrac t type
in stance show C onstr
build :: C onstr ^ D ynam ic
m atch :: C onstr ^ D ynam ic

The function build re tu rns a dynam ic th a t contains the constructor. The
function m atch re tu rns a dynam ic w ith a function th a t m atches on the con­
structor. For example for the Cons constructor in the L is t type these dynam ics
have the following values.

buildcons = d y n a m ic Cons
m atchcons = d y n a m ic A l f x ^ c a se l o f Cons h t ^ f h t ; _ ^ x

3 G eneric Program m ing

This section describes the basics of generic or po ly typ ic program m ing à la Hinze
[9]. Generic functions are defined on the sum -of-products s truc tu re of algebraic
d a ta types. The following code shows the generic constructors from which the
generic struc tu re is build and presents the generic s truc tu re for a user defined
list type.

d a t a 1 = 1 — unit
d a t a a x ß = a x ß — product
d a t a a + ß = In L a | In R ß — sum

d a ta L is t a = N il | Cons a (L is t a) — user defined algebraic type
ty p e L ist° a = 1 + (a x (L is t a)) — and its generic struc tu re

In the full blown generic framework the generic s truc tu re is much richer w ith
inform ation about d a ta constructors and record fields (their name, arity, and so
on). This inform ation is necessary for generic parsers and pretty -prin ters, bu t
we do not consider it further for clarity ’s sake.

The rem ainder of th is section illustrates how a program m er defines and uses
a generic function in the sta tic generic framework. The running example is a
generic equality function th a t is used to com pare two integer lists.

3 .1 D e fin e t h e T y p e S ig n a tu re o f t h e G e n e r ic F u n c t io n

The generic equality function is defined as follows.

ty p e Eq a = a ^ a ^ Bool
g e n e r ic eq a :: Eq a

In th is example there is only one generic variable before the double colon (a),
bu t in general there can be several. The type after the double colon can also be
polym orphic in o ther type variables. We do not consider higher-ranked types in
this paper, so all polym orphic variables m ust be quantified at the top level.

Dynamic Construction of Generic Functions 165

3.2 P r o v id e t h e B a s e I n s ta n c e s

The program m er provides each base instance by defining a function w ith the
nam e of the generic function subscripted w ith the nam e of the type constructor.

The num ber of argum ents of a base instance depends on the arity of the type
constructor. For example, eqx receives equality functions for the first and second
elements of the pairs.

3 .3 S p e c ia lise t h e G e n e r ic F u n c t io n fo r a P a r t i c u la r T y p e

A specialisation is denoted by pu ttin g the type between braces after the name
of the generic function.

m a in = p r in t (e q {L is t I n t} (C ons 1 N il) (C ons 2 N il))

Here eq {L is t In t} is the specialisation of the generic equality function for lists
of integers. I t is also possible to specialise for types of higher kind such as L is t
(kind * ^ *). In this paper the type for which a generic function is specialised
is assum ed to be monomorphic.

4 D ynam ic G eneric Library

In the previous section 3 we showed how to statically define and use a generic
equality function. Here we show how to do the same dynamically. For th is pur­
pose the library offers a num ber of functions to construct a generic function
at run-tim e. Basically, we do the same steps as before. For each step a library
function is offered (d e fin eG en eric , baseInstance , specialise). All definitions of the
dynam ic generic function given so far are collected in an abstrac t type (G en F u n).

d a t a G enF un — abstrac t d a ta type
defineG eneric :: In t ^ Type ^ G enFun
baseInstance :: T yC on ^ D yn a m ic ^ G enF un ^ G enFun
specialise :: G enF un ^ Type ^ D ynam ic

We will dem onstrate the use of each library function for the equality exam ­
ple from section 2. Because several base instances have to be provided for any
generic function, we make the no tation a little lighter w ith an infix variant of
the baseInstance function. It is defined as follows:

eqint a b
eqi 1 1

a = = b
True
eq1 a,1 b1 && eq2 a2 b2eqx eq 1 eq2 (a 1xa a) (b1 xb 2)

eq+ eqi eqr (In L a) (In L b)
eq+ eqi eqr (In R a) (In R a)
eq+ eqi eqr _ _

eqi a b
eqr a b
False

166 R. Wichers Schreur and R. Plasmeijer

(:+ :) in fix l 4
(:+ :) :: G enF un ^ (T y C o n , D yn a m ic) ^ G enFun
genF un :+: (ty C o n , d y n) = baseInstance tyC o n dyn genF un

Below we use the no tation \a] as a short-cut for the representation of the
type a . For example \L is t In t] denotes ty p eO f (± :: L is t I n t). The same notation
is also overloaded to denote the representation of a type constructor. For exam ­
ple \L is t] denotes the representation of the L is t type constructor. The context
always indicates which of the two variants is m eant.

4 .1 D e fin e t h e T y p e S ig n a tu re o f t h e G e n e r ic F u n c t io n

The first step is to provide the signature of the generic function. For the generic
equality it is:

defEq :: G enFun
defEq = defineG eneric 1 \Va. Eq a]

The generic type variables and any other type variables are all bound by one
quantifier in the second argum ent of defineG ereric. By convention, the generic
type variables are given first, and the integer argum ent indicates how m any
generic type variables the function takes. In the example the first variable (a) is
the generic type variable.

4 .2 P ro v id e t h e B a s e I n s ta n c e s

After defining the type of the dynam ic generic equality function, we extend it
by providing the base instances.

baseEq :: G enFun
baseEq = defEq :+: (\ I n t], d y n a m ic eqIn t)

:+: (\ 1], d y n a m ic eq1)
:+: (\ x], d y n a m ic eqx)
:+: (\ +], d y n a m ic eq+)

Assuming th a t we already have a sta tic generic function for equality defined,
the definition is ra th e r straightforw ard. The instances of the sta tic generic func­
tion eq can directly serve as the base instances for the dynam ic generic equality.

This code shows th a t it can be tiresom e to populate the generic function w ith
the base instances for all base and prim itive types (we should also have provided
base instances for F lo a t, C har , B o o l). I t m ay be useful to have some language
support to make it easier to add all available sta tic base instances.

4 .3 S p e c ia lise t h e G e n e r ic F u n c t io n fo r a P a r t i c u la r T y p e

Finally we can apply our dynam ic generic function to check if two dynam ics are
equal.

genEq :: TypeRep ^ D ynam ic
genEq = specialise baseEq
m a in = p r in t (genEq \L is t I n t]

' d yn A p p ly ' (d y n a m ic Cons 1 N il)
' d yn A p p ly ' (d y n a m ic Cons 2 N il))

The example shows th a t using the dynam ic generic library is very sim ilar to
using the sta tic generic framework. In the example above we m ade good use of
the sta tic instances of the generic equality function to serve as the base instances
of the dynam ic generic equality. However, it is also possible to use the dynam ic
generic lib rary w ithout using the sta tic generic framework.

5 G eneric T ranslation

Before we explain how generic functions are constructed dynam ically we first
review the sta tic transla tion scheme as originated from Hinze [8].

We present the transla tion scheme by studying the code th a t the compiler
generates for our running example. The purpose of this exposition is to point
out the inform ation th a t is needed to perform the transla tion and to get an idea
of the language features th a t are used in the generated code. In the next section
we will then see how th is corresponds to the dynam ic setting.

5 .1 O v e rv ie w

The compiler uses the following inform ation for the transla tion scheme (readily
available from the com piler’s syntax tree):

— the signature of the generic function;
— the base instances for this generic function;
— the type for which the generic function has to be specialised;
— the type definitions of all types th a t appear in this type.

The rem ainder of th is section describes the different p arts of the translation:
the specialisation of the generic function for a type expression, the conversion
between values and the ir generic representation, and the derivation of the generic
function for an algebraic type.

5 .2 S p e c ia l is a t io n

The specialisation of a generic function for a specific type is an easy transfor­
m ation. It is nothing more th an replacing type constructors w ith the instance of
the generic function for th a t type, and replacing type application by term appli­
cation. For the specialisation of the generic equality function for list of integers
the compiler perform s the following transform ation.

eq { L is t I n t } = ^ eqLlst eqint

The eqInt function was provided by the program m er (In t is a prim itive type),
bu t the compiler m ust derive the eqList function. The rem ainder of the section
describes how th is is accomplished.

Dynamic Construction of Generic Functions 167

5.3 E q u a l i ty o n t h e G e n e r ic R e p r e s e n ta t io n

The first step is to specialise the generic equality function for the generic repre­
sentation type L is t° , again by replacing each type constructor w ith the generic
instance for th a t type.

eqLis t◦ :: V a. Eq a ^ Eq (L is t° a)
eqList◦ a = eq1 ‘eq+ ‘ (a leqx ‘ eqList a)

5 .4 E m b e d d in g P r o je c t io n

We now have an equality function on the generic representation of lists, bu t we
need an equality function on lists. We can adap t one to the o ther by using a
so called embedding projection. Conveniently enough th is em bedding projection
itself can be im plem ented as a generic function. It has the following definition.

d a t a a ^ ß = E P { fro m :: a ^ ß , to :: ß ^ a }
g e n e r ic ep a b = a ^ b

For the generic equality function only the conversion in one direction is needed
because the generic type variable occurs on negative positions (to the left of an
arrow), bu t to cover the general case we combine the conversions bo th ways.

The em bedding projection for the equality function is the specialisation of
the generic function ep on the s tructu re of signature of the generic function, in
our example the equality type a ^ a ^ B o o l.

epeq :: V a ß . (a ^ ß) ^ (Eq a ^ Eq ß)
ep eq a = a ‘e p ^ ‘ (a ' e p ^ L eptd)

This specialisation deviates from the stan d ard scheme in one place. The type
constructor B ool is replaced by epid (defined as { fro m = id , to = id }) instead
of epBooi . In fact, the em bedding projection for any type th a t does not involve a
generic type variable is the identity projection. W ith th is observation the num ber
of em bedding projections can be reduced.

The function e p ^ composes the em bedding projections for the argum ent type
and the result type.

ep^ arg res = E P (from arg o fro m resu lt) (to result o to arg))

5 .5 C o n v e rs io n F u n c tio n s

The im plem entation of the conversion functions from a list to its generic rep­
resentation and the o ther way around is a simple exercise in case distinction,
based on the algebraic struc tu re of the type definition.

from,List :: V a .L is t a ^ L is t° a toList :: V a .L ist° a ^ L is t a
from,LiSt N il = In L 1 toList (In L 1) = N il
from,List (C ons a b) = In R (a x b) toList (In R (a x b)) = Cons a b

168 R. Wichers Schreur and R. Plasmeijer

Dynamic Construction of Generic Functions 169

The two conversion functions are grouped by convertList.

convertLiSt :: V a. L is t a ^ List°° a
convertList = E P from List toList

5 .6 D e r iv e d F u n c t io n

The last step in the derivation is to combine the specialisation on the generic
representation, the conversion function and the em bedded projection for the
generic function.

adaptList :: Va. Eq (L is t a) ^ Eq (L is t° a)
adapt List = epfrom (epeq convertList)

eqList :: Va. Eq a ^ Eq (L is t a)
eqList a — adaptList (eqList◦ a)

Note th a t eqList is a recursive function (indirectly through eqList◦).

6 D ynam ic G eneric T ranslation

In th is section we im plem ent the dynam ic generic library functions from section
4 by adapting the sta tic generic transform ations from section 5 .

6.1 B a s ic I m p le m e n ta t io n

As can be seen from the type signatures in section 4, a G enF un value is passed
between the library functions. I t contains inform ation about the generic function
th a t was stored in the com piler’s syntax tree in the sta tic transla tion scheme.
The abstrac t type is defined as a record w ith the following fields.

d a t a G enF un = G enF un { arity :: In t
, signature :: TypeRep
, instances :: F in iteM ap T yC on D ynam ic
, ep :: D yn a m ic }

This record is created by the defineG eneric function th a t stores the arity and
the type signature, creates an em pty m ap of instances and constructs the em­
bedding projection for the type signature. The specialiseE P function performs
the specialisation for the em bedding projection of the generic type signature as
described in section 5.4.

defineG eneric :: I n t ^ Type ^ G enFun
defineG eneric a s = G enF un { a rity = a

, signature = s
, in stances = em p tyF M
, ep = specialiseEP a s }

170 R. Wichers Schreur and R. Plasmeijer

The baseInstance function adds an instance to the m ap of instances.

baseInstance :: T yC on ^ D ynam ic ^ G enF un ^ G enFun
baseInstance tc dyn g f = g f { in stances = addT oF M (instances g f) tc d y n }

Finally, specialise replaces all type constructors in the (monomorphic) type by
the corresponding instance and all type applications by dynA pp ly (see section
2). This corresponds to section 5.2.

specialise :: G enF un ^ Type ^ D ynam ic
specialise g f (T y A p p t a) = dynA pp ly (specialise g f t) (specialise g f a)
specialise g f (T yC on tc) = ca se lookupF M (instances g f) tc o f

N oth ing ^ derive g f tc
J u s t in s t ^ in s t

This is a slight sim plification of the actual library function th a t operates on a
S ta te m onad, adding newly derived instances to the finite m ap of instances in
the G enF un record.

Now all th a t is left to do is im plem ent the derive function. We will do so in
the next section.

6 .2 F u n c tio n s

The dynam ic function th a t derive has to construct corresponds to eqList in sec­
tion 5.6. Here we see the first problem: The sta tic transla tion introduces new
function definitions. In the dynam ic setting the dynam ics can contain function
values and we can apply dynam ics to o ther dynam ics, bu t we cannot create new
function definitions.

To solve th is problem we enrich the term language w ith lam bda expressions
and variables.

d a t a D ynam icx = T erm D yn a m ic | A p p D y n a m ic \ D yn a m ic \
| Lambda In t D ynam icx | Var In t

In th is language we can construct the derived function (the A subscripts indicate
th a t we are working in D yn a m icx).

derivex :: G enF un ^ T yC on ^ D ynam icx
derivex g f tc = fo ld r Lam bda (adap t ' A pp ' derived) varIds

w h e re
typ eD ef = typ e D e fO f tc
varIds = [1 ..a rity ty p eD e f]
adapt = T e rm (adaptorx g f typ eD ef)
derived = fo ld l A pp derivex g f typ eD ef) (m ap Var va rId s)

The function derivex° constructs the derived function for the generic representa­
tion of the type definition. As we have seen in section 5.2 th is is sim ply a m atte r
of specialising the generic struc tu re of the type definition. The function adaptorx
is more difficult and we postpone its im plem entation to the next subsection.

Dynamic Construction of Generic Functions 171

The enriched dynam ics can be transla ted to regular dynam ics by the well-
known bracket abstraction algorithm th a t removes all lam bdas and variables
w ith the use of the S , K , and I com binators. These com binators can be defined
in our te rm language, because dynam ics can contain polym orphic functions.

derive :: G enFun ^ T yC on ^ D ynam ic
derive g f tc = bracketA bstract (derivex g f tc)

6 .3 P a t t e r n M a tc h in g

The function adaptorx constructs the conversion function between values and
their s truc tu ra l representation. It corresponds to convertList in section 5.5. Here
the next problem appears.

The conversion function perform s p a tte rn m atches. In the dynam ic library
the constructors on which we have to m atch are not know until run-tim e. In the
previous function we showed how to dynam ically introduce lam bda expressions,
bu t our term language does not contain p a tte rn m atching or case distinction.

Instead we use the m atch functions (see 2.1) th a t can be applied to the
constructor info. This m atch function takes a value (a list in th is example) and
a function th a t should replace the constructor. If the value m atches, this function
is applied to the argum ents of the constructor, otherwise it re tu rns nothing. By
chaining the m atch functions for all the constructors in a d a ta type we can build
the required conversion function.

6 .4 R e c u rs iv e F u n c tio n s

There is one more hurdle to take. Recursive types lead to recursive functions in
the translation . This m eans th a t to derive an instance for a recursive type we
need the instance for th is type. To escape from th is loop we construct recursive
functions w ith the use of a fix-point com binator. We could also have introduced
the fix-points a t the type level, th is am ounts to the same thing. The dynam ic
fix-point operator has the following definition.

f ix f = le t x = f x in x
d ynF ix :: D ynam ic
d ynF ix = d y n a m ic f ix :: V a .(a ^ a) ^ a

U nfortunately, th is fix-point com binator can only express lim ited forms of recur­
sion. The type of f ix shows th a t the recursive calls should all have the same type
as the function itself. On the type level this m eans th a t th is m ethod does not
work for non-uniform types, such as

d a t a N ested a = One | Tw o (N ested (a , a))

In the sta tic scenario instances for non-uniform types can only be expressed
because Haskell supports polym orphic recursion.

Perhaps these non-uniform types can be handled w ith more advanced fix­
point com binators, bu t the details have not been worked out.

172 R. Wichers Schreur and R. Plasmeijer

7 A p p lications and E xtensions

We present some examples of the use of the library, describe some extensions
and discuss the efficiency of our solution.

7.1 D e fin in g th e I n s ta n c e fo r D y n a m ic

In section 4 we saw how to derive an equality function to com pare two dynamics.
In the example below th is example is extended to define a base instance of the
sta tic generic equality function for the type D y n a m ic .

eqDynamic x @ (dynam ic _ :: a) y @ (d y n am ic _ :: a) = eqD yn [a] x y
w h e re

convertDyn :: Va. Typeable a ^ a ^ D ynam ic
convertDyn = E P to D yn fro m D yn

eqD yn type = liftD ynE q (genEq typ e)

liftD ynE q :: D ynam ic ^ Eq D ynam ic
liftD ynE q = A (d yn a m ic eq :: Eq a) ^ epfrom (e p { E q } convertDyn) eq

eqDynamic — = False

The first alternative of eqDynamic only applies if the two dynam ics have a
m atching type. In th a t case the representation of th is type is used to specialise
the dynam ic generic equality (w ith the function genEq from section 4 .3). The
liftD ynE q function transform s the equality function in the dynam ic (type Eq a)
to an equality function on two values of type D ynam ic . Such a lift function can
be defined for any generic function in a sim ilar way.

7 .2 D e r iv in g a G e n e r ic F u n c t io n fo r t h e T y p e s

So far we have only looked a t how the generic function can operate on the values
in the dynamics. B ut we also have to consider the type in the dynam ic. A generic
p re tty prin ter for dynam ics should not only prin t the value in the dynam ic, bu t
also its type.

g e n e r ic p p r in t t :: t — > String
p p r in t (d y n a m ic Cons 1 N il :: L is t I n t)

^ “dynam ic Cons 1 N il :: L i s t I n t ”

A naive specialisation of the p re tty p rin ter for the representation of the type
gives the ra ther unsatisfactory result "TyApp (TyCon L i s t) (TyCon I n t) " .

The library provides a function th a t helps in th is situation .

specialiseForType :: [TypCon] ^ G enF un ^ D ynam ic

In the case of the p re tty prin ter the dynam ic constructed specialiseForType
contains a p re tty prin ter of type TypeRep ^ S tr in g , bu t it behaves as if it were
defined on the type universe th a t is formed by the list of type constructors.

Dynamic Construction of Generic Functions 173

For exam ple for the types I n t , B ool and L is t th is universe can be presented
by the following algebraic type.

d a t a Type = In t | B ool | L is t Type

Note th a t I n t , B ool and L is t are d a ta constructors in this type.
The library function specialiseForType can be used for m any other generic

functions. A parser for dynam ics can first apply the parser generated w ith
specialiseForType to parse the type string. This parser delivers a representation
of the type which is then used to construct the parser for the value string. In test
d a ta generation first a type can be generated and then a value of th is type. The
graphical editor for dynam ic values from the in troduction can also be extended
so th a t the user can also edit the type as well as the values for th a t type.

7 .3 E r r o r H a n d lin g

So far we have ignored the errors th a t can occur during the dynam ic construction
of generic functions. Com pile-tim e errors from the sta tic framework have become
run-tim e errors in our library and this means th a t all the library functions we
have used so far are inherently partial.

The defineG eneric function can fail if there is no em bedding projection de­
fined for one of the type constructors in the signature of the dynam ic function.
The baseInstance function can fail if the type of the function in the dynam ic
does not correspond to the type signature of the dynam ic function. The specialise
function can fail if the instance for a type cannot be derived, for example because
it is an abstrac t type.

The library provide versions of all the functions th a t re tu rn proper error
codes in case som ething goes wrong. Because of the explicit m anner in which
the generic functions are constructed in the library, the application program m er
can use the error codes to recover from the situation .

7 .4 E ffic ien cy

The efficiency of the dynam ically constructed generic functions is in the same
order as the efficiency of unoptim ised sta tic generic functions. The construc­
tion of functions w ith com binators m ay seem costly, b u t under graph rew riting
sem antics each in troduced com binator is only evaluated once.

A compiler does have more optim isation opportunities. Fusion for example
has proved to be powerful enough to com pletely remove the overhead of the
construction of the generic representation of values for m ost generic functions
[5, 6]. This optim isation is not possible in our dynam ic setting. The library cannot
analyse the base instances th a t are provided by the program m er, because these
dynam ics contain compiled code.

174 R. Wichers Schreur and R. Plasmeijer

8 R ela ted W ork

Earlier work by one of the authors [2] can be seen as a prequel to the present
paper. In th a t paper the representation of types is also used im plem ent generic
function on dynam ics, bu t it assum ed compiler support to generate m any of the
functions th a t are constructed at run-tim e in the current approach. The system
was lim ited to generics function w ith one generic variable.

Cheney and Hinze [7] combined dynam ics and generics from the outset. Their
im plem entation is lightweight in the num ber of language features th a t are used.
The dynam ics already contain values w ith the generic s truc tu re and the pro­
gram m er has to w rite the conversions functions between values and their generic
representation. The dynam ics in the current paper contain the actual values w ith
sharing fully preserved, which makes them more efficient.

The “B oilerplate” articles [11,12] use the same run-tim e inform ation about
types and type definitions to build generic traversal schemes. Because th is infor­
m ation is present in dynam ics the traversal schemes can also be applied to the
values in dynam ics. The library presented in the current paper makes the ap­
proach from Generic Haskell or Clean available for dynam ic values, bu t the library
does require a more powerful dynam ic typing system (dynamics w ith polym or­
phic types and run-tim e unification). M any functions can be im plem ented w ith
either system and experience will have to show which approach is more conve­
nient in w hat situation.

9 C onclusions and Future W ork

We have developed a library in Clean th a t enables a program m er to create an in­
stance for a generic function for values of type Dynamic. A dynam ic can contain any
value of any type which can bo th be inspected a t run-tim e using a p a tte rn m atch.
Dynamics can be stored on disk or send to another application over the internet.

Using our new library, one is now able at run-tim e to apply generic functions
on dynam ics of any value and (almost) any type. Such a dynam ic m ight even have
been created by o ther applications. One cannot only apply “consum ing” generic
functions like equality and p re tty printing, bu t also typical “producing” generic
functions like parsers. Furtherm ore, one cannot only define generic functions on
values bu t one can define generic functions on the ir types as well. I t is possible,
for example, to create a generic editor to edit a type stored in a dynam ic. It can
be used to compose a new type using the available ones. Now one can create
another generic editor to construct a value of th is newly constructed type.

The library is very easy to use for someone familiar w ith the sta tic generic
approach. The definition of a dynam ic generic function can be given in a very
m echanical way. It is even im aginable th a t the dynam ic definition can be created
autom atically by a compiler from the sta tic description.

The library is im plem ented in Clean. The im plem entation actually provides a
run-tim e variant of the sta tic generic transform ation scheme as im plem ented in
the Clean compiler. To realise this, one among others has to be able to construct

Dynamic Construction of Generic Functions 175

new functions a t run-tim e. We have accomplished th is by using bracket abstrac­
tion. For dealing w ith recursive types one has to be able to construct recursive
functions for which we have used a fix-point com binator. C urrently we can only
deal w ith uniform recursive types.

In principle it should be possible to adopt our lib rary for Haskell if the dy­
nam ic typing system would be more powerfull. O ur solution needs dynam ics th a t
contain polym orphic types and run-tim e unification.

In the future we would like to investigate if it is possible to remove the current
restriction th a t dynam ic generic functions cannot be applied to non-uniform
recursive types. Furtherm ore we want to create some larger applications to test
the library. Feedback from our users is highly appreciated.

A cknow ledgem ent

M any thanks to A rtem Alimarine for valuable discussions and the anonymous
referees for num erous suggestions for improvement.

R eferences

1. M. Abadi, L. Cardelli, B. Pierce, G. Plotkin, and D. Remy. Dynamic typing in
polymorphic languages. In Proceedings of the A C M SIG P L A N Workshop on ML
and its Applications, San Francisco, June 1992.

2. P. Achten, A. Alimarine, and R. Plasmeijer. When generic functions use dynamic
values. In R. Pena, editor, The 14th International workshop on the Implementation
o f Functional Languages, IFL ’02, Selected Papers, volume 2670 of LNCS, pages
17-33. Madrid, Spain, Springer, Sept. 2002.

3. Achten, Peter, van Eekelen, Marko and Plasmeijer, Rinus. Generic Graphical User
Interfaces. In Greg Michaelson and Phil Trinder, editors, Selected Papers of the 15th
Int. Workshop on the Implem entation o f Functional Languages, IFL03, volume
3145 of LNCS. Edinburgh, UK, Springer, 2003.

4. A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean.
In T. Arts and M. Mohnen, editors, The 13th International workshop on the Im ­
plementation of Functional Languages, IF L ’01, Selected Papers, volume 2312 of
LNCS, pages 168-186. Älvsjö, Sweden, Springer, Sept. 2002.

5. A. Alimarine and S. Smetsers. Optimizing generic functions. In D. Kozen, editor,
The 7th International Conference, M athematics o f Programm Construction, number
3125 in LNCS, pages 16 - 31. Stirling, Scotland, UK, Springer, July 2004.

6. A. Alimarine and S. Smetsers. Improved fusion for optimizing generics. In
M. Hermenegildo and D. Cabeza, editors, Proceedings o f Seventh International
Symposium on Practical Aspects o f Declarative Languages, number 3350 in LNCS,
pages 203 - 218. Long Beach, CA, USA, Springer, Jan. 2005.

7. J. Cheney and R. Hinze. A lightweight implementation of generics and dynamics,
2002.

8. R. Hinze. A new approach to generic functional programming. In The 27th Annual
A C M SIG P L A N -SIG A C T Symposium on Principles o f Programming Languages,
pages 119-132. Boston, Massachusetts, January 2000.

176 R. Wichers Schreur and R. Plasmeijer

9. R. Hinze and S. Peyton Jones. Derivable Type Classes. In G. Hutton, editor, 2000
A C M SIG P L A N Haskell Workshop, volume 41(1) of ENTCS. Montreal, Canada,
Elsevier Science, 2001.

10. P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic auto­
mated software testing. In R. Pena and T. Arts, editors, The 14th International
Workshop on the Im plem entation of Functional Languages, IFL'02, Selected Pa­
pers, volume 2670 of LNCS, pages 84-100. Springer, 2003.

11. R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern
for generic programming. A C M SIG P L A N Notices, 38(3):26-37, Mar. 2003. Proc.
of the ACM SIGPLAN Workshop on Types in Language Design and Implementa­
tion (TLDI 2003).

12. R. Lammel and S. Peyton Jones. Scrap more boilerplate: reflection, zips, and gener­
alised casts. In Proceedings; International Conference on Functional Programming
(ICFP 2004). ACM Press, Sept. 2004. 12 pages; To appear.

13. S. Peyton Jones and Hughes J. et al. Report on the programming language Haskell
98. University of Yale, 1999. http://www.haskell.org/definition/.

14. M. Pil. Dynamic types and type dependent functions. In K. Hammond, T. Davie,
and C. Clack, editors, Im plem entation o f Functional Languages (IFL ’98), LNCS,
pages 169-185. Springer Verlag, 1999.

15. R. Plasmeijer and M. van Eekelen. Concurrent C LE A N Language Report (version
2.0), December 2001. http://www.cs.kun.nl/~clean/contents/contents.htm l.

16. A. van Weelden and R. Plasmeijer. Towards a strongly typed functional operating
system. In R. Penna and T. Arts, editors, The 14th International Workshop on the
Implem entation of Functional Languages, IFL'02, Selected Papers, volume 2670 of
L N C S , pages 215-231. Springer, Sept. 2003.

17. M. Vervoort and R. Plasmeijer. Lazy dynamic input/output in the lazy functional
language Clean. In R. Pena and T. Arts, editors, The 14th International Workshop
on the Im plem entation of Functional Languages, IF L ’02, Selected Papers, volume
2670 of LNCS, pages 101-117. Springer, Sept. 2003.

http://www.haskell.org/definition/
http://www.cs.kun.nl/~clean/contents/contents.html

