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This paper studies the nonequilibrium energetics of growth steps. It discusses the energy and free energy of 
a [100] step on a Kossel(001) crystal surface as a function of the driving force in the case that two-dimensional 
nucleation is not active. Theoretical expressions for these energies are derived and are found to agree with data 
obtained from Monte Carlo simulations of step flow. The nonequilibrium expressions allow us to propose that 
the vanishing of the step free energy beyond a critical value of the driving force defines the onset of the kinetic 
roughening regime. This is found to agree with the earlier phenomenological criteria for this transition.
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I. INTRODUCTION

The step free energy y  is the key parameter for describing 
the growth and roughening behavior of crystal surfaces.1 It 
has therefore received considerable attention in the 
literature.2-9 Much effort has been put into deriving an ex­
pression for the free energy of an infinitely long step on the 
Kossel(001) surface as a function of the step orientation at 
equilibrium conditions. This Kossel step is often referred to 
as the terrace-ledge-kink model. Some of these expressions 
were verified using Monte Carlo simulations.5,6 On the other 
hand, almost no attention has been given to the step free 
energy at nonequilibrium conditions. Such conditions are 
highly relevant for a more precise understanding of two­
dimensional (2D) nucleation growth and the phenomenon of 
kinetic roughening, which results in the disappearance of the 
nucleation barrier.10-12

In the nonequilibrium case, surfaces and steps under a 
driving force for crystallization always become rough at a 
sufficiently large time and length scale leading to a rounding 
of the roughening transition as is found explicitly in the 
Kardar-Parisi-Zhang (KPZ)13 theory. Nevertheless, growth 
experiments14,15 and Monte Carlo simulations12,16,17 show a 
qualitative difference in the growth velocity versus driving 
force characteristics as the driving force A ^  increases above 
a threshold A ^ c( T) at a temperature T below the equilibrium 
roughening temperature T c . It is this point that one refers to 
as the onset of kinetic roughening. A theoretical evaluation 
of this transition is far from trivial. Most studies use the 
dynamical renormalization group18 which extends the usual 
Kosterlitz-Thouless renormalization theory for equilibrium 
roughening. A disadvantage is that these theories use a me­
soscopic description (the sine-Gordon model) of the system 
as a starting point. Hence there is no prediction of the critical 
driving force A ^ c in terms of the microscopic parameters of 
the model.

In the present paper we want to propose a simple rule of 
thumb for such a prediction. To this end, we derive expres­
sions for the step energy and free energy of the [100] step on 
a Kossel(001) face as a function of the driving force assum­
ing that the step is in its steady state configuration. Our re­

sults are compared with Monte Carlo data of growing steps. 
In the Monte Carlo simulations the step has a finite length 
with periodic boundary conditions to reduce edge effects. 
After an equilibration period the step reaches its steady-state 
configuration in which all kink densities remain constant 
even though the step is moving across the surface at a con­
stant velocity. Both our theoretical model and the simulations 
are limited to the step and do not include the interaction 
between 2D nucleation and step flow. Also overhangs in the 
step direction are not allowed. Section II gives all details 
concerning the Monte Carlo simulations reported in this pa­
per. At some critical driving force, the step free energy is 
found to become zero. At this driving force, steps can be 
formed at zero free-energy cost and the crystal surface be­
comes rough. We propose to extend the zero step free-energy 
criterion, which is used for defining the onset of thermal 
roughening, to the nonequilibrium case, i.e., that of kinetic 
roughening.

II. MONTE CARLO METHOD

We compare the theoretical results for the step free energy 
with step free energies directly obtained from step energies 
measured in Monte Carlo simulations. A program, which 
simulates the growth of a [100] step on a Kossel(001) face, 
measures the step energies and determines the step free en­
ergies as explained in the following section. This program 
was also used in two previous papers.19,20

The n-fold way Monte Carlo algorithm21 is used to get 
acceptable simulation times and periodic boundary condi­
tions are imposed to reduce edge effects. All simulations are 
performed using the ‘‘random rain’’ probability scheme,22 
which ensures microscopic reversibility.16,23 In a previous 
paper we have shown that this scheme gives a good descrip­
tion of solution growth.20 Since diffusion along the step and 
the surface is not included in the model, only creation and 
annihilation probabilities are relevant. The annihilation 
frequency/probability for a growth unit using the random 
rain model is given by
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P '
k T

h exp ÿ
k T

exp
2 i ÿ  
~kT (1)

where i is the number of horizontal neighbors, and ÿ  and ÿ v 
are, respectively, the bond strengths of the horizontal and 
vertical bonds. kT /h  has the usual meaning. The creation 
probability is site independent and is only determined by the 
driving force A ß /kT:

P  + = P2~ e x p l-V l.
A ß
T T (2)

III. THE STEP FREE ENERGY WITHOUT THE 
PRESENCE OF 2D NUCLEATION

A. Determining the free energy of a step

The step free energy is an important parameter for the 
step and surface roughness. If the step free energy ap­
proaches zero the nucleation barrier vanishes and the surface 
becomes rough. Since the free energy contains an entropy 
term, it cannot be obtained directly from the simulations, if 
the equation of state is not known. The step free energy at 
equilibrium conditions can, however, be determined from the 
integration over a number of simulations as a function of the 
temperature via

F( T) = U(0 ) -  T
t  U( T  ) -  U( 0 )

T 2 d T (3)

as can be derived from the Gibbs-Helmholtz equation for the 
Helmholtz free energy F  of the step.24

By determining the step energy for a range of tempera­
tures at a fixed bond strength ÿ, the step free energy can be 
obtained directly from the step energies. In the literature, the 
step free energy at nonequilibrium conditions is usually ob­
tained indirectly by fitting an expression for birth-and-spread 
growth to growth rate curves14,16 or from the critical driving 
force for kinetic roughening.15

B. The step free energy at equilibrium

Theoretically, the step free energy can be obtained in two 
ways: using the partition function of the step, q , according to

y s te p = ÿ -  k T  ln( q ) (4)

or by using the integration of the step energy. In equilibrium, 
both approaches are feasible and result in the expression

1 + exp
y s te p = ÿ - k T  ln|

1 -  exp| -  k T

(5)

Bennema and Meekes25 also derived this expression for the 
equilibrium step free energy, which becomes zero at ÿ / k T  
= ln(1 + V 2 )~ 0.881. This is close to but, due to the neglect 
of step-step interactions, not equal to the critical bond

strength for thermal (equilibrium) roughening. It happens to 
be precisely the critical coupling for an Ising model as de­
rived by Onsager.26

C. The step free energy at nonequilibrium

For nonequilibrium conditions, the concept of a step free 
energy is not so well defined. We propose a rather pragmatic 
construction for y step(A ß )  satisfying (i) y steJ A ß  = 0) re­
duces to the equilibrium result [Eq. (5)], (ii) setting 
y step(A ß )  = 0 gives an estimate for the kinetic roughening 
point in reasonable agreement with growth experiments. The 
more obvious choice is y=  U -  TS(A ß ) . As it turns out, this 
choice using Shannon’s expression for calculating the 
entropy27,28

w step Tk\ 2  -  Pnln( Pn) (6)

with P n= 2Tk,|n| and P 0= 1 - 2 “=1 Tkn , where Tk,n is the 
density of kinks of height n, does (of course) satisfy criterion 
(i) but not (ii). Instead, we construct y step(A ß )  by assuming 
that Eq. (3) is still valid for nonequilibrium stationary con­
ditions provided that the driving force is kept constant. We 
use this expression to derive the step free energy from the 
step energy. In order to obtain the nonequilibrium step en­
ergy, we express it in terms of Tk according to

2  n ÿ T
n = 1 k, n ■ (7)

References 29 and 19 derive the kink density neglecting 
kink-kink correlations as a function of the driving force:

1 -  A
Tk,n= 2 An T + Ä  , (8)

with

exp -  2
k T

exp
Aß
T T

Aß
exp t t ) + exp 2 t t

(9)

This expression is derived assuming adjacent sites to be sta­
tistically independent. Appendix A briefly explains its deri­
vation and discusses the kink-kink interactions. Using Eq. 
(8), the step energy becomes

t step

for values A <  1. If A = 1, e

2 A ÿ 

1 -  A2
(10)

step= . The integral in the
equation for the step free energy according to Eq. (3),

2 A ÿ
y step ÿ  T  f  /

Jü ( 10 ( 1 -  A2) T '
-dT ', (11)

cannot be solved analytically and is therefore determined nu­
merically.

n

0
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3.5

FIG. 1. The step energy (a) and the step free energy (b) as a 
function of the temperature for six different driving forces, Aß 
= 0, 0.25, 0.5, 0.75, 1, and 1.25TT0, at a constant bond strength of 
ÿ  = TT0, where T0 is an arbitrary constant temperature. The dots 
represent the Monte Carlo measurements and the curves the theo­
retical models according to Eqs. (10) and (11), respectively.

In the following, we express all energies in units of kT 0, 
where T0 is an arbitrary constant temperature, which we use 
for normalization. Figure 1(a) shows the step energy as a 
function of the temperature according to Eq. (10) for six 
different driving forces at a constant bond strength of ÿ  
= k T 0, Fig. 1(b) presents the step free energy according to 
Eq. (11). The curves are the result of a numerical integration 
starting at T=  0 K, where estep= ÿ .  These theoretical values 
agree well with results obtained from Monte Carlo simula­
tions. In Fig. 1 (a) the dots represent the step energies mea­
sured in the simulations. The deviation of the theoretical 
curve from the Monte Carlo simulations at higher driving 
forces is due to the expression for the kink density, which 
does not describe the kink density for large kink heights very 
accurately.19 This does not cause a problem in determining 
the total kink density, since the density of kinks with large 
heights is small. For the step energy, however, these small 
values are multiplied with the kink height and cause a slight 
deviation. The step free energies obtained from the Monte 
Carlo data [dots in Fig. 1(b)] are determined by a trapezoidal 
numerical integration of the step energy using Eq. (3). At 
each point, the integration includes all measured step ener­
gies at lower temperatures as well as the value y step= ÿ  at 
T= 0 K. Since both Eq. (11) and the Monte Carlo simula­
tions use the same method to come to the step free energy,

the agreement between the curves and the Monte Carlo re­
sults only confirms the correct temperature dependence of 
the step energy in Eq. (10) and does not conform the validity 
of the method to calculate the step free energy from the step 
energy.

Because of the large contribution of the entropy, the step 
free energy becomes zero or negative at some temperature. 
For growth of a crystal surface, this would result in a transi­
tion to rough growth, since at this transition, steps can be 
formed at no free-energy cost. For our single step model, this 
is not the case, because no extra steps are allowed to be 
formed; the step can only get more and higher kinks. We can 
nevertheless use this result to derive a nonequilibrium con­
dition for roughening.

D. The step free energy as a function of the driving force

The preceding section discusses the step free energy for a 
constant, nonzero driving force, and for a constant bond 
strength as a function of the temperature. From an experi­
mental point of view, the driving force dependence of the 
step free energy is equally important in understanding 2D 
nucleation and kinetic roughening. By combining results for 
constant A ß also this dependence can be found. Figure 2(a) 
shows the step free energy as a function of A ß / k T  for 11 
different bond strengths ranging from ÿ /kT =  1.5 to 2.5. 
Each data point on the curves is obtained by an integration at 
constant ÿ  and A ß using Eq. (11).

Figure 2(b) shows, as a function of the bond strength, the 
critical driving force, A ß c, at which the step free energy 
becomes zero. This is done both using Eq. (11) (solid line) 
and using Monte Carlo data shown in Fig. 1(b) and some 
additional simulations. Again the Monte Carlo data and the­
oretical curves are in good agreement. The critical driving 
force is zero till ÿ /kT =  0.88, which is the critical bond 
strength for thermal roughening as determined earlier. Above 
this bond strength, surfaces need a threshold driving force to 
become kinetically rough. Gilmer and Bennema16 were the 
first to observe this roughening behavior by means of Monte 
Carlo simulations. They observed a transition from exponen­
tial to linear growth.

van Veenendaal et a l}2 argued that, in contrast with ther­
mal roughening, kinetic roughening is not a phase transition 
and it lacks a well-defined transition point. They proposed 
eight criteria to mark the onset of the kinetical roughening. 
Their criterion E2 b , which indicates the change in growth 
behavior from exponential to linear growth, is generally seen 
as the most reliable one. The dashed line in Fig. 2 represents 
this criterion. Our y step= 0 line is in excellent agreement 
with this macroscopic description of the kinetic roughening 
regime for high bond strengths. We therefore propose to ex­
tend the y step= 0 criterion for thermal roughening to the ki­
netic roughening regime.

Close to the critical bond strength for thermal roughening 
ÿ /kT =  0.88, our y step= 0 line deviates from the macro­
scopic description, which approaches zero more smoothly. A 
similar behavior is predicted from the dynamical renormal­
ization group analysis.18 The fact that our rather heuristic 
construction misses these finer details, is not too surprising.
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FIG. 2. (a) The step free energy as a function of Aß/ kT  for 11 
different bond strengths ranging from ÿ /kT=  1.5 to 2.5 with inter­
vals 0.1. Each curve is obtained using Eq. (11). The integration is 
performed at ÿ=  kT0 and constant Aß . (b) The critical driving 
force at which ystep= 0 as a function of the bond strength. The dots 
represent Monte Carlo results obtained from Fig. 1 (b) with some 
additional simulations, the solid line is obtained using Eq. (11) and 
the dashed line represents the transition from exponential to linear 
growth as described by van Veenendaal et al}2

To start with: even in equilibrium our Eq. (5) does not accu­
rately describe the vanishing of the step free energy as T 
approaches the roughening temperature30 due to the neglect 
of step-step interactions. Moreover, taking these interactions 
into account in a nonequilibrium situation involves an even 
deeper analysis like the dynamical renormalization group.

IV. CONCLUSIONS

The present paper discusses the step energy and free en­
ergy of an infinitely long [100] step on the Kossel(001) sur­
face as a function of the driving force without the presence 
of 2D nucleation. Analytical expressions for both quantities 
are derived and compared with step free energies determined 
in Monte Carlo simulations. The expression for the step en­
ergy is obtained using the nonequilibrium expression for the 
kink density. This gives a good agreement with the Monte 
Carlo simulations especially in the low driving force regime. 
The expression for the nonequilibrium step free energy is 
obtained via the Gibbs-Helmholtz equation using the step 
energy as a starting point. Again a nice agreement with the 
Monte Carlo simulations is found. The critical driving force,

FIG. 3. Elementary events leading to an increase (1-4) or de­
crease (5-8) of the kink density of single height kinks. Only kinks 
up are considered here. For the total kink density also kinks down 
should be included.

at which the step free energy becomes zero, is used to find a 
new criterion for the transition from smooth growth to the 
kinetically rough regime. This is in good agreement with the 
kinetic roughening behavior as observed macroscopically.

Our determinations of the nonequilibrium free energy, 
both theoretically and in the Monte Carlo simulations, are 
based on the assumption that Eq. (3) is still valid at nonequi­
librium conditions. This approach is able to describe the ki­
netic roughening behavior as observed macroscopically and 
therefore appears to be a good description for this applica­
tion.
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APPENDIX: KINK DENSITY

This expression for the kink density is obtained by con­
structing dynamical equations for all possible kink configu­
rations using the frequencies of elementary events at differ­
ent step sites and assuming adjacent sites to be statistically 
independent. This gives a change in the density of single 
height kinks of

a d t T t,1 2 ( 1 a T a) exp
Aß
T T 1 -  a  T k I exp ( -  Tt

a 

2 T k,2 exp
Aß
T T

a 2 ÿ
2  r  *exp( t t

a
-2 l 2 Tk,1

a 

2 T

Aß
2exp| t t

a 2 ÿ
2  r  T T

with

n= 1

(A1)

(A2)

Equation (A1) can be understood as follows: the first term 
represents the increase in kink density due to the adding and 
removal of growth units at sites without a kink as drawn in 
Fig. 3 as events 1 and 2. The second term indicates the cre­
ation of single kinks from kinks of height 2 (events 3 and 4)

1

1 1

k n
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and the last term represents the decrease in kink density due 
to the vanishing of single kinks (events 5-8). Figure 3 only 
gives the change in kink density due to changes in kink 
density of kinks up. Equation (A1) accounts for both kinks 
up and kinks down by the factor 2 in each term.

Analogous to the change in the density of single kinks the 
change in kink density of height n  with n #  1, a d /d tT k,n , 
can be determined. If a steady state for all kink densities is 
assumed

a~r~ i kd t  kr  kn = 0 (A3)

for all n, solving these equations results in Eq. (8).
Neglecting the kink-kink interactions was proven to be 

justified for growth conditions within the random rain
model. Figure 4 shows two correlation factors, and
a vac, as a function of the driving force at a bond strength of 
4>/kT= 2 obtained using Monte Carlo simulations. These 
factors represent the correlation between a kink up followed 
by a kink down and a kink down followed by a kink up, 
respectively, and are obtained as follows:

and

5 —1
2  2  Punc( n , m  )
n = 1 m=—5

a ad 5 —1

2  2  P( n , m)n= 1 m=—5

—1 5

2 2 Punc(n,m)n=—5 m=1
= —1 5 ■

2  2  P ( n , m )
n=—5 m= 1

(A4)

(A5)

P unc(n , m ) is the probability of finding two adjacent kinks of 
height n  and m  if they are not correlated,

FIG. 4. The two a  factors describing the kink-kink correlation 
obtained by Monte Carlo simulations for a bond strength of $ /kT  
= 2; a value of a=  1 corresponds to the absence of a correlation.

P unc( n, m ) 4 a r k,|n|a r k,|m (A6)

and P( n , m ) is the actual probability of finding a kink com­
bination (n , m ). A positive value of n  and m  indicates a kink 
up and a negative value a kink down. The factors are, for 
simplicity, assumed to be independent of the height of the 
adatom and the depth of the vacancy and are limited to kink 
densities with heights up to 5, since these forms are by far 
the largest contribution. If both a  factors are one, the kinks 
are not correlated. Since the factors presented in Fig. 4 are 
approximately one, the kink density as derived above is as­
sumed to be a good description for a large range of driving 
forces including the kinetic roughening regime.

vac
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