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Abstract

In auditing practice it often occurs that a statement regarding the account­

ing error in a population consisting of several subpopulations has to be made.

Since the relative proportion of errors can differ dramatically across these sub­

populations, it is desirable to take independent fixed size dollar-unit samples 

from each of them, as this often leads to lower variability compared to dollar­

unit sampling from the whole population. It also occurs that the results of the 

separate investigations of, e.g., different branches of one company need to be 

combined to make a statement on the bookkeeping quality in general.

The problem of estimating the total accounting error is thus related to the 

problem of estimating linear combinations of the means corresponding to several 

families of identically distributed independent random variables.

In this article, we propose several confidence upper bounds for such linear 

combinations based on Hoeffding type inequalities and show how they can be 

applied in the actual auditing problems. Simulation results comparing these 

modifications to the Hoeffding-based bounds for the one-sample case are also 

provided. It must be emphasized that the technique that we propose in this 

paper is fully justified from a mathematical point of view.

Although the simulations show the proposed bounds to be highly conser­

vative, they still present great interest, since we are not aware of any other 

method for estimation of the total accounting error in the multisample setting. 

Moreover, it is shown that significant improvements are hardly possible given 

the present conditions.

Keywords—  bookkeeping quality, lower and upper confidence bounds and intervals, conser­

vativeness, auditing, Hoeffding inequalities, finite populations, multisample problems, com­

puter simulations, Stringer bound.
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1 Introduction

An important problem in the world of statistical auditing is the so-called multi-sample 

problem. In auditing practice it often occurs that the auditor has to make a state­

ment concerning the total error in a population of dollars, which consists of several 

individually sampled subpopulations. For example, it is often needed to obtain a 

combined confidence upper bound from the sample results in the individual subpop­

ulations (without using, for instance, a Bonferroni type of inequality, as the latter 

technique would generally lead to bad confidence upper bounds). It also happens 

that a company is comprised of several branches, and the results of quantitative anal­

ysis indicate that there is a significant difference in the bookkeeping quality between 

them. In this case, random sampling without accounting for this difference is going 

to result in the unwanted increase of the variability in the sample.

In this section we are going to discuss this combination problem in the two-sample 

setting.

Suppose that a population A  of N  =  K  + L monetary items is a union A  =  B  U C 

of two subpopulations B  and C  that contain respectively K  and L items with book 

values

B 1 , B 2 , . . . , B k  , and C\,C2 , . . . C l .

Let the errors which are hidden in these book values be respectively

E 1 i E 2K t . . .  E K and E<C j E 2 t . . .  E L .

We assume that only overstatement errors are present, that is

0 < E K < Bi and 0 < E f  < Cj

for all possible values of i and j .

Then the total book values of the subpopulations are respectively

B =  Bi  + B 2 + ••• + B k  and C  =  C i + C2 + ••• + Cl ,

and the total errors hidden in B  and C  are given by

E k =  EK + EK + ••• + EK and E C =  E f  + E2L + ••• + E f .

Therefore, the book value and the combined error in the total population A  can be 

written as

A =  B  + C  and E  =  E K + E C.

As usual, the taintings associated with the accounts in the subpopulations B  and C  

are defined as
K E iK C E jC

= s r  and = c ;

for all possible values of i and j .
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Finally, the relative book values of the subpopulation and the relative errors are

B C
* 1  =  J , a 2 —

A

e b E c
Mi -  -g", M2 —

~C

and

respectively. Then for the proportion of errors in the whole population defined as

E
M =

A
(1 .1)

we have

In order to derive a confidence upper bound for the total error E  or equivalently for 

M, we take independent samples from the subpopulations B  and C. Using the dollar­

unit sampling technique as described in Bickel (1992) we draw (with replacement) k 

independent taintings (relative errors) from the population B  and l taintings from 

the population C. This leads us to the total of n — k + l independent samples

Ui ,U2 , . . . ,Uk  and Vi,V2 , . . . ,V i ,

where
Bi

P (Us =  t f )  =  and P(Vt = tf)  = Q

for all possible values of s, t, i and j . 

The sample means will be written as

j j  = U1 + U2 + + Uk + V

k

For all s — 1, 2 , . . . , k  and t — 1, 2 , . . . , l  we clearly have

E b E c
E Us =  —  =  m  and EVt =  — M2 .

An important special case is the situation where the sample sizes are proportional 

to the population sizes, i.e.

k

n
ai and —

n
a 2 . (1 .2 )

Our results are based on the relationship between upper confidence bounds for a 

parameter and upper bounds for the tail probabilities depending on this parameter, 

as described in the appendix. In the nonparametric one-sample setting, the best 

known estimates for the tail probabilities come from Hoeffding inequalities. A direct 

adaptation of these results to the two-sample auditing problem is possible, and is 

described in section 2. However, the efficiency of this approach leaves much to be
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desired, requiring extensions of Hoeffding’s theorems. Despite considerable analytical 

difficulties, such an extension has been proved. It is presented in section 3, followed 

by a construction of a more efficient bound incorporating prior information.

In the end of sections 2 and 3 the applications of our results to the auditing 

problem are clarified, and computer simulation results are presented in section 4.

The appendix also contains the proof of the inequality leading to the improvement 

of Hoeffding’s results mentioned above.

2 A confidence upper bound for the total auditing 

error in two populations

Let

S i , S 2 ...,Sk and Ti,T2 ...,Ti

be independent random variables, where k and l are positive integers, k + l — n. 

We further assume that the random variables S i ,S2..., Sk are identically distributed 

according to the distribution function F * , and that the same holds for Ti ,T2 ...,Tl 

with the corresponding distribution function F2*.

In the auditing context we can assume without loss of generality that the values 

of Si and Tj are in the interval [0 , 1], hence

P(0 < S. < 1) — 1 and P(0 < T  < 1) — 1.

Denote the expectations and the variances of these random variables by 

Ai — ESj and ni — Var(Sj); A2 — ETj and ^2 — Var(Tj) 

respectively. Consider the sample means

-g _  + ... + <Sfc — _ T i  + ...+T;

and

Clearly, we have 

where

S U T  —
Si + ... + Sk + Ti + ... + Ti

ES — Ai, ET — A2 and ES U T — A,

k l  
A —  — Ai H— X2.

n n

n

Let H(a; v), 0 ^  v ^  1, be the Hoeffding function, which is defined as

( iO  for v < a ^  I
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and H (a; v ) — 1 for a ^  v; H (a; v) — 0 for a > 1. The simplest Hoeffding inequality 

can be formulated as follows.

Lem m a 1. Assuming that random variables Si and Tj satisfy the conditions given 

above, the following inequality holds for x G [0, 1]

P (,S U T  < x) < P(1 - F u T  > 1 - x) < H n { 1 - x, 1 - A). (2.1)

P roo f o f Lem m a 1. Lemma 1 is a simple corollary of Th.1 in Hoeffding (1963). □

Let us construct a confidence upper bound for A based on this inequality. For 

a  G (0,1), x G [0,1] and n G N write

6 i (x) — max j j  : 0 < j  < 1 and H (1 — x, 1 — j ) > a ^ "  j  . (2 .2 )

S tatem ent 1. The statistic bi(S U T) is a (I — a)-confidence upper bound for X, i.e.

P (A < bi(S~UT)) > l - a .

P roo f o f S tatem ent 1. This statement can be easily derived from Lemma 1 using 

the methods described in Bentkus and van Zuijlen (2003). A more general description 

of this methodology can be found in Bentkus et al. (2001) and Finkelstein et al.

(2000). Note that this bound is, in fact, the bound bi by Bentkus and van Zuijlen 

(2003), which has been rewritten for the two-sample case.

□
Going back to the auditing setup presented in the introduction, consider the ran­

dom variables

Ui ,U2 , . . . ,Uk ,  and Vi,V2 , . . . ,V i .

It is easy to see that in the case of proportional sampling as defined by (1.2) we have

k l
—¡i, i H— n 2 — t1, 
n n

and hence the statistic

AbiiTTuV)

is a (1 — a)-confidence upper bound for E .

Statement 1 can be generalized for the non-proportional case in the following way. 

Write
n n

ci = - a i ,  c2 = - a 2, c =  maxjci, c2|. (2.3)
k l

Random variables defined as

U ! = ^ U i , i = l , 2 , . . . , k ,  V!  = ^ - Vj , j  = l , 2 , . . . , l
c j c
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satisfy the probability inequalities P(0 < U' < 1) — 1 and P(0 < Vj < 1) — 1. 

According to Statement 1, the statistic bi(U ' UV')  is a (1 — a)-confidence upper 

bound for the value

/ E V 7-T, I I T r , \ k c l , 1 C2 “ 1M 1 +  « 2 M 2  M¡1 =  hj{U’ U V ) = --- ¡11 H---- ¡j,2 =  ---------- =
n c n c c c

Coro llary  1 . Let U i , . . . ,Uk  and V i , . . . ,V  be dollar-unit tainting samples taken 

from populations B  and C  respectively. Then the statistic

A . c . b t  (2E±3Z)

is a (1 — a)-confidence upper bound for the total error E.

P roo f o f Coro llary  1. By the argument above, the statistic

f  ClU + C2V\
b1 (U’ \JV’) =  b1 [ c )

is a (1 — a)-confidence upper bound for j/c .  This, together with (1.1), proves the 

corollary.

□

It is clear that, in general, larger values of c will correspond to more conservative 

upper bounds for E. Therefore, for practical applications it is advised to choose k 

and l in such a way that c is minimal.

3 A confidence upper bound for the total auditing 

error in two populations based on a modification 

of the second Hoeffding inequality

Under the assumptions made in Section 2, let us consider the case where some apriori 

information is available in the form \\ < , X2 < X ^ , ni < ni0 , ^  •

As in the previous section, we define c1 =  a 1 (n/k), c2 =  a 2 (n/l). Write

X i =  ciSi, Yi =  c2Ti. (3.1)

The mean values and the variances of X i and Yi are respectively

\ \ 2 2 2 2 2 2  
Hi =  Xici, ¡12 =  X2 c2 , a 1 =  ni ci, 02 =  n2 c2-

We also have P(0 < X i < ci ) =  1, P(0 < Yi < c2) =  1.

Let be defined by
k l  

fi — —¡j 1 H— fi 2. 
n n
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The bounds below are given for the case where j  < 1/2. Since the proportion of errors 

in the populations investigated by auditors is typically quite low, this assumption 

hardly leads to any loss of generality in the auditing context.

For the statistic

X  \ j Y  =  +  +  +  +  +  ^  
n

we have E (X  U Y) =  + ^¡i,2 =  Note that this is essentially a reduction of the 

problem to the case of proportional sampling as defined by (1 .2 ).

In order to prove an analogue of the second Hoeffding inequality for the two-sample 

case, we are going to need the following result.

L em m a 2. Let s be a real number, and let

b2

Then for all positive real numbers bi, b2, o i, 02 and h the inequality

o s  , 9 s ( kbi + lb2 k 9 l 9 s + 1 k l , , 9
k f  ( 6 1 , cru h) + lf(b 2 , a2l h) < n f  ------- , - a 1 + - a 2 -|------------ -- ------------------( 6 1  - b 2) ,h

\ n n n 2 n n

(3.2)

holds for s > 0 , and for any real s < 0 there exists a combination of parameters bi, 

b2, o i, 0 2 , h such that the opposite inequality holds.

Rem ark . The heuristic considerations presented later in this article quickly led to 

the formulation of (3.2) with s — 1 as a conjecture, which was subsequently confirmed 

by computer simulations. However, an analytical proof, which can be found in the 

appendix, was not at all easy to obtain due to the complex form of the underlying 

function. Also, it must be noted that Lemmas 2 and 3, as well as the corresponding 

upper confidence bound, allow for a natural extension to the general multisample 

case.

Lem m a 3. Let random variables X i and Yj be defined by (3.1). The following 

inequality holds for t > 0 /

^  ^  — ( l  +  b t / a 2 ) a 2 /  ( b 2 +  a 2 ) ^  ^  ^  — (1  — t / b ) b 2 /  ( b 2 + < r2 )

(3.3)

p ( x u y < M +  t) <  { ( i  +  -  ) ( i - -

where

bi — ci — j i , b2 — c2 — j 2 , b — (k/n)(ci — j i )  + (l/n)(c2 — J 2)

and

cr2 =  —a\ + - a l + - - ( 6 1  - b2)2. (3.4)
n n n n
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P roo f o f L em m a 3. Consider the random variables X i — j i and Yj — j 2. Their ex­

pectations are equal to 0 , and they are bounded from above by bi and b2 respectively. 

By applying (1.7), (1.8) and Lemma 2 from Hoeffding (1963), we obtain for h > 0

P (X U T  < n + t) < e-hnt+kf(biy i ,h)+™.f(b2,<j22,h) (3 .5 )

Then, by Lemma 2,

P (X U T  < fj, + t) < e-toi+«/(fci>1t mi>2 . i CT?+ iCT2 + ii(i>i-i>2)2,/i) (3 .6 )

The right-hand side of (3.6) attains its minimum at

b f  1 + tb/o2
u — - in 1

b2 + o 2 1 — t/b

By inserting this value in (3.6) we obtain (3.3). □

R em ark . The modifications in the right hand side of (3.2) compared to inequality

(2.8) in Hoeffding (1963) originate from the following intuitive argument.

Let X i , i — 1,2 , . . . , n  and Yj , j  — 1, 2 , . . . , n  be independent random variables 

such that all X[i and 'Yj are distributed identically to S i and Ti respectively. Let 

, k — 1, 2, . . . , n ,  be i.i.d. random Bernoulli variables such that P(£k — 1) — a i, 

P(£fc — 0 ) — a 2 — 1 — a i and let the random variables in the set

{X i , i  — 1, 2 , . . . , n \U{Yj, j  — 1, 2 , . . . , n \U{£k,k — 1, 2 , . . . ,n} 

be independent.

Write Z i — £̂i X i + (1 — £i )Yri , i — 1, 2 , . . . , n .  These Z i are i.i.d. random variables, 

with the expected value E (Z i ) — j  and the variance equal to Var(Zi ) — a i o 2 + 

a 2o2 + a i a 2 ( j i — j 2)2. This corresponds to a sampling procedure from Xi and Y  

where a random number of items from each population is included in the sample, 

following a binomial distribution with parameters n, a i and a 2. Let H B i ( j)  be the 

Hoeffding-based upper estimate for the corresponding tail probability, i.e.

v ( Zl  + '" + Zn > ^  + t )  K H B i i n ) ,

where t is greater than zero. For t > 0 one would expect H B i ( j )  to be also an upper 

estimate for the tail probability in the case of fixed size sampling, i.e.

P f x-t + ■■■Xk + Y1 + . . .Yi > M + A

since this corresponds to a sampling procedure which is intuitively less random and 

also gives a lower variance for the relevant statistic when =  ¡i2.
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Lemma 2 is a generalization of theorem 3 in Hoeffding (1963). However, it doesn’t 

improve the corresponding inequalities for all possible combinations of the parameters 

bi , b2, o i, o2 and t. Instead, it is necessary to take the minimum over all valid 

combinations of bi and b2 as given below.

Coro llary  2. Let random variables X i and Yj be defined by (3.1). Let bi — ci — j i ,  

b2 — C2 — j 2 . Without loss of generality we can assume that bi < b2 . The following 

inequality holds for t > 0 /

P (X  U Y  < u + t) < min
b1<b[<b2

bt
1 H--n

— ( 1 +  fct /  <7 ) a  
fc2^2 - I - ( 1  - t / b ) b z  

fc2+<72
(3.7)

where b =  (k/n)b[ + (l/n)b2 and

k k l
— —<Ti H--o2 H---- (b[ — b2)

P roo f o f Coro llary  2. Taking Ci — b[ + j [  we have that Ci > ci and therefore

< < c[) =  1 .

The inequality (3.7) follows directly from (3.3) with ci substituted by ci. □
Now, by using the methods described in Bentkus and van Zuijlen (2003) it is 

possible to introduce a confidence upper bound for i  based on the inequality (3.7) that 

utilizes the available apriori information and also depends on the sample variances.

Let bi =  c\ —1 \, b2 =  c2 —1 2. Let <r2 be the sample variance of X i ,..., X k. Given 

below are auxiliary functions needed to construct a certain confidence upper bound 

for a variance. For a detailed description of this bound refer to Bentkus and van 

Zuijlen (2003). Let

t f  (i i )
min j t : H ( r ( n ) + 2t ; r (p i)) ^  , if ( r (p i)) ^  3

i i  — i 2, otherwise,

1/[k/2] ; 
1 ;

tB =  t f  ( a (0)

tB =  t

3 VAi

min •! t : H i  k

(o)
ni

2

(n (0)) + 2t; k  (n(0)) ^ ^  3 {/[k/2]j , if k  (n^  ^  3 {/[k/2];

otherwise,

where t (x) — 1 — 2x + 2x2, k(x) — 1 — 2x2 and ¡3i lies in the interval (0 , 1). 

Finally, write

tf  (Ai) =  min | , i i  — i i ,  à "2 + min {tf  , t f  ( i i  ) ,t f  }j .

n

à

2 2à
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It is shown in Bentkus and van Zuijlen, (2003) that the bound tB (Ai ) is a confi­

dence upper bound for the variance n2 with risk 3i given that ni < n i^ . It is possible 

to define a bound tC for the variance n2 with risk 3 2 in the same way.

Write

t{A 1 , A2) =  ( — c\tB (Ai) H c2t f  (A2)^ .
\n n J

It is a confidence upper bound for the value + -<r2 with risk [3\ + /?2.

For a given function z : [0,1/2) x [0,1/2) ^  R, consider the functional

( k 1
B(x, z(-)) =  max < p =  —C1A1 H— c2A2 : 

n n

H 2 f l  — p ' , x  — p ' , z (Ai, A2) + ----(c i(l — A^) — c2( l — A2)) 'j > (a —/?i—/32)1/" 1,
2 n n

(3.8)

where

bt \ -(i+bt/a )a /(b +& ) / t\ -(i—t/b)b /(b +a ) 

H 2 (b,t,a) =  ( 1 + ^  J  ( l - ^ J  :

and Ai <  X[ <  max{Ai, A2}, A2 <  A2 <  max{Ai, A2}, p' =  f  ciAi +  ¿ c 2A2.

Statem ent 3. The statistic 52(X  U Y) defined by

b*2 ( X u Y )  =  B (X u Y , t (- ) )  (3.9)

is a confidence upper bound for p with risk a.

P roo f o f S tatem ent 3. The proof can be easily obtained by using corollary 2 and 

applying the methods described in Bentkus and van Zuijlen (2003) for the bound b6.

□

Returning to the original auditing problem, we can prove the following corollary.

Coro llary  3. Assume that the auditor has been able to translate his judgement of 

the bookkeeping quality (which is based on his previous experience) into apriori upper 

estimates for the proportion of errors in each population, namely p ^  and , as well

S°)V  j  L x2as for the variances of the taintings, namely and Çn2° ^  ■ I f  no information

of that kind is available, take p f^  =  p2°° =  1/2 and =  ^n i^ ) =  1/4. Let

U i , . . . ,Uk  and V i , . . . ,V i  be the dollar-unit tainting samples taken from populations 

B  and C  respectively■
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Then the statistic

A ■ b*2(ClU + c2V)

is a (1 — a)-confidence upper bound for the total error E .

P ro o f o f Coro llary  3. This follows directly from (1.1) and statement 3. □

As in the previous section, we can say that in general, bigger values of c — 

max(ci ,c2) will result in more conservative bounds for E. Therefore, it is advised 

to choose k and l so that c is minimal.

4 Simulation results

In order to evaluate the performance of the new bounds presented in the sections 

2 and 3 in auditing applications, computer simulations were used. The simulation 

design followed Grimlund and Felix (1987).

First, two test population B  and C  were generated. Since the proposed bounds 

only depend on the taintings, and not on the actual account sizes and error values, 

the simulated population consisted of the taintings corresponding to the individual 

dollars. Thus, instead of the accounts B i , B 2, . . . ,  Bk  and the corresponding errors 

E 2 , E 2 ,. . . , E b  we consider the taintings T (i) — \tf , t 2 , . . . ,t2 }, where, assuming 

that the *-th dollar was taken from the j-th account,

B j

It is easy to see that sampling with replacement from T (i) results in the same distri­

bution of samples as dollar-unit sampling from the population B. The same is true 

for C  and the combined population A . The monetary values of both populations 

were taken to be equal to 10000 dollars, i.e. B  — C  — 10000.

The distribution of taintings in each population was derived from the error model 

described in Grimlund and Felix (1987), which is commonly used in the simulations 

related to auditing problems. This model uses four parameters: r - the proportion 

of accounts that are in error relative to all accounts, p i - proportion of non-100% 

overstatement errors among all erroneous items, p 2 — 1 — p i - proportion of 100% 

overstatement errors and vi - mean value of the chi-squared distribution used to 

generate non-100% overstatement errors. The actual values of the parameters used 

in our computations, as well as the mean value j  and the standard deviation o of the 

taintings in each population as well as the union B  U C  are presented in Table 1.
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Table 1. G enera ting  param eters and  descriptive statistics o f the  two test 

popu la tions.

B C B U C

r 0.05 0.3 -

Pi 0.95 0.8 -

P2 0.05 0.2 -

Vl 0.05 0.4 -

0.00502 0.11680 0.06091

a 0.05337 0.27378 0.20501

Thus, each test population consisted of (1 — r) • 10000 zero taintings, r • p2 • 10000 

taintings equal to 1 and r • p i • 10000 randomly generated taintings that followed 

chi-squared distribution with 1 d.f. scaled by vi and truncated at 1 .

The proposed upper confidence bound b* has been compared with the bound 

b6 from Bentkus and van Zuijlen (2003). Confidence level was taken to be 95% 

(a =  0.05). It must be noted that a direct comparison with the well-known Stringer 

bound, as described in Bickel (1992), is not possible, since this bound does not allow 

an extension to the two-sample case.

The sample sizes n =  30, 60, 120 and 240 were chosen for the simulation, and each 

round was performed in the following way.

First, the desired number of samples was drawn randomly from the test popula­

tions. For the bound b*, n/2 taintings were randomly drawn from each populations 

(since the monetary values of the populations are the same, a i =  a 2 =  1/2 and taking 

k =  l =  n/2 means sampling proportionally to the monetary value). For the bound 

b6, n taintings were drawn from the union B  U C. The corresponding bounds were 

calculated and compared with the actual mean value of the items in the test popu­

lation. Since the samples evaluated in each case were different and random, in order 

to obtain reliable results this procedure was repeated 10000 times for each sample 

size. Finally, average values, coverages and variabilities for the analyzed bounds were 

calculated. Here coverage is the percentage of rounds where the calculated bound was 

greater than or equal to the actual mean value, and the variability is the variance of 

the calculated bounds. In order to guarantee the absence of correlation in the data, 

a cryptographic pseudo-random number generator by Kelsey et al. (2000) was used 

to create the test populations and to draw the samples.

The following table presents the simulation results.

Table 2. S im u la tio n  results.

Sample size b*2 be Cov\ Cove V ar 2 V are Var^/V  are

30 0.21981 0.21915 100 100 0.003437 0.003710 0.926

60 0.16374 0.163287 99.97 99.86 0.001440 0.001542 0.934

120 0.12881 0.12874 99.90 99.80 0.000600 0.000665 0.901

240 0.10537 0.10541 99.76 99.81 0.000268 0.000290 0.922
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Here b\ and be are the mean values; Cov\ and Cove are the coverage statistics; 

Var2 and Var6 are the variabilities for the bounds b2 and b6 respectively. In order 

to measure the relative advantage of sampling proportionally and using the bound b2, 
compared to random sampling with b6, the ratio Var2/V  ar6 was calculated.

Simulation results can be summarized as follows.

• The proposed bounds with proportional subsample sizes offer lower variability 

compared to the case of random sampling from the combined population B  U C.

• The coverage is approximately the same in both cases.

• The tightness of both bounds used in the simulations is also approximately the 

same.

Therefore, proportional sampling and the bound b2 are more effective than random 

sampling with the bound b6.

It must be emphasized that the relation between confidence bounds for a param­

eter and bounds for tail probabilities (which is established by Statement 4 in the 

appendix) implies that, although very conservative, the presented bounds are in a 

certain sense the best possible, since they originate in the most accurate provable 

bounds for tail probabilities in a nonparametric setting. It is natural to expect that 

significant improvements in the tightness of these bounds can only be obtained by 

certain restrictions on the class of the possible tainting distributions.

5 Appendix A: Proof of Lemma 2

Lemma 2 follows directly from a more general statement that uses positive real num­

bers a  and ¡3, a  + ¡3 =  1, in place of k/n and k/n.

We are going to use the following notation. Let e be a Bernoulli random variable 

(that is, a random variable which assumes at most two different values) such that

P{e =  a} =  p, P{e =  b} =  q, Ee =  0, Ee2 =  a 2,

for some b > 0, a < 0, a 2 > 0 and 0 ^  p ,q ^  1. Using the conditions

p + q = 1 , Ee =  ap + bq =  0, Ee2 =  a2p + b2q =  a 2

we can write
b2 (T2 2 n

r = W J ^ ’ a = ~ ‘r /b

For h ^  0, introduce the generating function

A =  A(x) =  E ehe =  p eha +q ehb, 

where for brevity we write x =  (b,a2). Write

f  (x) =  ln A(x).
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We shall prove that, for any h ^  0, the function f  satisfies the following convexity 

type inequality.

Lem m a 4. Let 0 ^  a  ^  1 and 3 = 1  — a. Write

x =  (5, <t) with b =  f3bo + o.b\ and a 1 =  ¡3a2 + a.o\ + -—^ —-af3(bo — &i)2, 

and

xo =  x

with some

o
=  (bo, a0), xi =  x =  (bi, a 2), (5.1)

a=i

bo, bi, a 0, a 1, h ^  0 .

Then the smallest constant s such that the inequality

3 f  (xo) + a f  (xi) ^  f  (x)

holds for all xo, x i and 0 ^  a  ^  1 , is equal to 0. Moreover, (5.1) holds for all s ^  0. 

Inequality (5.1) extends Hoeffding’s (1963) Lemma 3 which is a particular case of

(5.1) with bo =  bi .

P roo f o f Lem m a 4. We start by showing that it suffices to prove (or disprove)

(5.1) for h =  1. Indeed, if h =  0 then (5.1) becomes the equality 0 =  0. If h > 0, we 

can replace

hbo, hbi, hao, hai

by new variables

bo, bi ,ao,ai .

Therefore we assume henceforth that h =  1.

Consider the function

g(a) =  lnA(x) — 3 lnA(xo) — a ln A (xi), 0 ^  a  ^  1. (5.2)

This function satisfies

g(0 ) =  g(1) =  0 .

Therefore, in order to prove (5.1) it suffices to show that g is a concave function of a , 

that is, that

g"(a) ^  0. (5.3)

In order to show that (5.1) does not hold for s < 0, it suffices for such s to find 

bo,bi ,a;^,a'^ ^  0 such that g is a strictly convex function of a, that is, that

g"(a) > 0, for all 0 ^  a  ^  1. (5.4)

To simplify formulas, we introduce additional notation. Write

B =  p e-^ +q, $ =  b — a, go(a) =  ln B.

a-

14



Then A =  eb B  and

g(a) =  C  + go(a), C  =  b — 3 ln A(xo) — a  ln A (x i).

Since C  is a linear function of a, we have C '' =  0. Therefore g" and g'Q have the same 

sign. Furthermore, B 2g'Q =  B "B  — B '2. Hence, instead of (5.3) (respectively (5.4)) 

it suffices to check that

B '2 — B ''B  ^  0, (5.5)

and respectively

B '2 — B ''B  < 0. (5.6)

We have

B ' =  (p' — p$ ')e-* +q'

and

B '' =  (p'' — 2p'$' — p&'' + p$ '2) e-* +q''.

Furthermore

B '2 =  (p'2 — 2pp'$' + p2$ '2) e-2* +(2p'q' — 2pq'$') e-* +q'2,

B ''B  =  (pp'' — 2pp'$' — p2$'' + p2$ '2) e-2*

+ (p'' q — 2p'q$' — pq&” + pq&’2 + p q ') e-* +qq''.

Hence

B '2 — B ''B  =  m i e-2* +m2 e-* +m3

with

m i =  p '2 — pp'' + p2$ '',

m 2 =  2p'q' — pq'' — qp'' — 2pq'$' + 2p'q$' + pq$'' — pq$'2,

2
m 3 =  q — qq .

We have q' =  —p' and q'' =  —p'', since p + q =  1. Replacing q' and q'' by —p' and 

—p'' respectively, we obtain

m i =  p '2 — pp'' + p2$ '',

m 2 =  —2p'2 + pp'' — qp'' + 2p'$' + pq$'' — pq$'2, (5.7)

'2 '' 
m 3 =  p + qp .

Introducing

u($) =  m i + m 2 e* +m3 e2*, 

inequality (5.5) (respectively (5.6)) is equivalent to

u($) ^  0 (5.8)
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u($) < 0. (5.9)

To simplify forthcoming calculations, we introduce a new parametrization. Write

a 2

¿ - 52'

Then

P = Y ^ t ’ q = Y+~V p' =  ~p2t' ’ p" =  2p3t '2 - p2t " . (5.10)

We introduce a new variable

S =  bi — bo > 0.

The assumption that S > 0 does not restrict generality. Indeed, if S =  0 then the 

inequality to prove reduces to the Hoeffding’s (1963) Lemma 3. Or one can derive 

the result by continuity arguments using the inequality for S =  0. 0 If S < 0, then we 

can exchange roles of bo and b1 . Introduce new variables

ao ,a i, bo

by

ao =  Sao, a i =  Sa i, bo =  Sbo.

Note that the variable

<Tq + ag + (s + l)ct/3<52/ 2 a 2 + ag + (s + l)a/3/2 

(b0 + aS)2 (So + a )2

with g =  a “2 — aQ2 and £ =  &2 — &Q is independent of S. Writing

f c
c =  b0 + a, 7  =  -, 

p

and respectively

we have
a0 + ag + (s + 1)a3/2

v =  0 7

since $ =  b + a 2/b =  b/p =  cS/p. Furthermore, we have

<r = s r  = ±l , r  = w  = t i l .
Y Y

Using the notation, we can rewrite (5.7) as

/ 2  // , P2Y" n 
m i  =  p  —  p p  H--------- v ,

Y
2

0 /2 , // // , 2P Y  0 : PVY 0 Y 0 2  
m 2 =  — ¿p +pp — qp H----- 17 H----- 17 — pq—ttv ,

Y Y Y 2
'2 '' 

m 3 =  p + qp .
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Y2m i =  co + ci$,

Y2m 2 =  d0 + di $ + d2 $ 2, 

Y2'm3 =  eo.

with some c0,ci ,d0,di ,d2 ,e0 independent of $ such that

2 2
co =  Y (p — pp ),

ci =  yp2y'' ,

do =  Y2 (—2p ' 2 + pp'' — qp''),

di =  2p'yy' + pqYY'',
'2

d2 =  —pqY , 

eo =  Y2(p' 2 + qp'').

Hence

We introduce the notation 

Let us show that

y =  y '-

pet' =  py — 1 , 

pc2t" =  2 — 4py + (1 — s)p,

p'' =

y ” =

1 - py

Y ’

to 1 1 + s

Y2
1 - s - 2 y

pY

Let us prove (5.13). Since y =  c/p and c' =  1, we have

' 1 cp' 
y =  Y = ---- j ­p p 2

Using p' =  —p 2t' (cf. (5.10)), we derive (5.13).

Let us prove (5.14). We have 

u
t =  u =  do + ag + (s + l)af3/2.c2

Hence
u' 2u u ' 

t =  — —r-, ct =  — —21
c 2 c3 c

and, using u '' =  — s — 1 ,

p

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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Inserting =  ct' + 2t and using pet' =  py — I (cf. (5.13)), we have

c2t '' 4u'
s — 1 ----- 1- 6t =  — s — 1 — 4ct1 — 2t =  1 — s — 2(1 + t) — 4y + 4/p.

c

Multiplying by p =  1/(1 + t), we derive (5.14).

Let us prove (5.15). We have p' =  —p 2t' (cf. (5.10)), and an application of (5.13) 

together with Y =  c/p yields (5.15).

Let us prove (5.16). By (5.10) we have p'' =  2pst ' 2 — p 2t ' ' . Now an application of 

(5.13), (5.14) and y =  c/p yields (5.16).

To prove (5.17) we note that py  =  c. Differentiating twice, using c'' =  0, y ' =  y 

and (5.15), (5.16), we easily derive (5.17).

Inserting in (5.12) y ' =  y and the values (5.13)-(5.17), we obtain

Now we can start the proof of the positive part of the statement of the lemma

s ^  w(s) is a linear increasing function of s, that is, dsw ^  0 (here ds stands for the 

partial derivative with respect to s). Indeed, using (5.18) and (5.20), we have

co =  1 — 2py — p 2y2 + p — ps, 

ci =  —2py + p — ps, 

do =  4py — 2qpy2 — 2 + q — p + ps — qs, 

di =  2py — 2py2 + q — qs,

d2 =  —qpy2,

eo =  (1 — py)2 + 2 qpy2 — q + qs.

(5.18)

w($) ^  0 , for $ ^  0 , (5.19)

with

w($) =  ni  + n 2 e^ +n3 e2̂ ,

where

n i =  co + ci$,

n 2 =  do + d i$  + d2$2,

ns =  eo.

(5.20)

It suffices to prove (5.8) for s =  0. It is clear (cf. (5.18) and (5.20)) that the function

dsw =  —p — p$ + (p — q — q$) e^ +q eM . 

Using eM ^  e^(1 + $) and e^ ^  1 + $ we get
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Letting s =  0 in (5.18) yields

co =  1 — 2py — p 2y2 + p, 

ci =  —2py + p,

do =  4py — 2qpy2 — 2 + q — p,
2 (5.21)

di =  2py — 2py + q,

d2 =  —qpy2,

eo =  (1 — py)2 + 2qpy2 — q.

Let us show that the function p ^  w is a concave function of 0 ^  p ^  1, that is, 

have

h($) =  dpw =  —2y2 + (4y2 + 2y2$2) e* —2y2 e22

that d2pw ^  0. We have

and

d*h($) =  (4y2 + 4y2$ + 2y2$ 2) e* —4y2 e22 .

Using e22 ^  e*(1+$+$2/2), we obtain d*h($) ^  0. Therefore the function $ ^  h($) 

is decreasing and

d2°w =  h($) ^  h(0 ) =  0 , for $ ^  0 .

Since the function p ^  w is a concave function of 0 ^  p ^  1, in order to prove w ^  0 

it suffices to check that

^  0 and w
p=0

^  0. (5.22)
p=i

Using (5.21) we can rewrite (5.22) as

h0($) =  1 + ($ — 1) e* ^  0 (5.23)

and

h i ( $ )= 2  — 2y — y2 + (1 — 2y)$ +(4y — 3+(2y — 2y2)$)e* +(y — 1)2 e22 ^  0. (5.24)

To prove (5.23) it suffices to note that h0 (0) =  0 and d*h0($) =  $ e* ^  0, for 

$ ^  0 .

To conclude the proof of (5.8) we have to check (5.24). It suffices to show that 

hi (0 ) =  d*hi (0 ) =  0 , d* h i ($) ^  0 , for $ ^  0 .

We have

d*hi($) =  1 — 2y + (6y — 2y2 — 3+ (2y — 2y2)$) e* +2(y — 1)2 e22 (5.25)

and

d*hi($) =  (8y — 4y2 — 3+ (2y — 2y2)$) e2 +4(y — 1)2 e22 . (5.26)
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Now (5.25) and (5.26) clearly imply hi (0) =  h[(0) =  0. Hence it remains to show 

that d*h($) ^  0 , which is equivalent to

8y — 4y2 — 3+ (2y — 2y2)$ + 4(y — 1)2 e* ^  0. (5.27)

We apply e* ^  1 + $ + $2/2. Then (5.27) is implied by

g(y, $) =  1 + 2(y — 1)(y — 2)$ + 2(y — 1)2$ 2 ^  0. (5.28)

If (y — 1)(y — 2) ^  0 then (5.28) obviously holds. If (y — 1)(y — 2) < 0, that is, if

1 < y < 2, then a unique minimizer of the quadratic function $ ^  g(y, $) in (5.28) is 

$o =  (2 — y )/(2 (y — 1)) and we get

inf g(y,$) ^  inf g iy ,^o) =  inf f l  — ---- =  - > 0 ,
<y<2  ̂ l<y<2  ̂ l<y<2 \ 2 J 2 ’

which concludes the proof of (5.28) and of (5.8).

Let us prove the negative part of the statement of the lemma, that is, inequality

(5.9). We assume that s < 0. Below Ck, k =  0,1, 2 , . . .  stand for positive constants 

which can depend only on s. We have to choose b0, bi , a 1, a 2 > 0 such that (5.9) holds. 

Instead of these parameters we can choose b0,5, Oq, a 2 > 0. Let n be a sufficiently 

large natural number. Choose

bo =  1, aQ =  n, a 2 =  2 n.

Then, writing d =  ^4^-a(3, we have

-2 . i , n + an  + d
c = 1  + a, a =  n + an  + d, t

(1 + a )2

It is clear that t ^  to, p ^  0, q ^  1, as n ^ t o .  Using p' =  —p 2t' (cf. (5.10)) and 

1/p =  1 + 1, for y =  y' =  (c/p)' we have

y = - - %  =  l + t  + ct'. (5.29)
p p2

It is clear that ct' =  —2t + (n  + d')/c and t =  (n + an  + d)/c2. Hence, using c =  1 + a, 

relation (5.29) yields

y =  1 — t + (n + d')/c =  1 + (cd' — d,)/c2.

Therefore \y\ ^  Co. It is clear that

s + 1

2

We have

-a/3^ -C i.

20



\co\ + \ci\ + \do\ + \di\ + \do\ ^  Cq. (5.30)

In the case of eo we obtain

eo =  p(1 — y)2 + pqy2 + qs ^  pCs + s/2 ^  s/4 (5.31)

provided that n is so large that pC3 ^  — s/4 and q ^  1/2 (recall that p ^  0, as 

n ^  to). We have

Y2u($) ^  e*(\mi \ + \mo\ + m 3 e2).

Hence, it suffices to show that \mi \ + \m2 \ + m 3 e2 < 0. Using (5.30), (5.31) and 

m 3 =  eo, we derive

|m1| + |m2|+m 3 e'? ^  C3(l + i92) + ^  e* < 0 (5.32)

provided that we choose a sufficiently large $ > C5 (or, equivalently, S > C6). Of 

course, while proving (5.32) we used that s < 0.

□

6 Appendix B: The relationship between confidence 

bounds for a parameter and bounds for tail prob­

abilities

In order to prove the validity of our confidence bounds we have used the relation 

between upper bounds for the tail probabilities and confidence upper bounds for a 

parameter as described in Bentkus et al (2001). Let us establish the inverse relation, 

that is, show how to translate confidence upper bounds for a certain parameter into 

bounds for tail probabilities.

Let © C R  be a parameter space, and consider T  =  | J 0  Tq, where Tq is a family 

of random variables with a characteristic 0, where 0 =  0(T) depends only on the 

distribution of T . Suppose that there exists a (1 — a)-confidence upper bound for the 

parameter 0 , i.e. a function

b : R  x (0,1) ^  R,

which is increasing in the first argument, decreasing in the second argument and

inf P (0 < b(T, a)) > 1 — a, Va  G (0,1), V0 G ©. (6.1)
T ETg

Furthermore, we assume that this function is right-continuous with respect to a. 

S tatem ent 4. Let V : R  x © ^  [0,1] be defined as

V(x, 9) =  inf {a G (0,1) | 5(x, a) < 0} , (6-2)

Using p ^  1 and \y\ ^  C0, for the coefficients given by (5.18) we have

21



sup P (T < x) < V(x, 0), Vx G R, V0 G ©. (6.3)
T ETe

where x is real and 0 G ©. Then V(x, 0) is increasing in x, decreasing in 0 and

P roo f of S tatem ent 4. Monotonicity properties follow from the monotonicity 

of b and the definition of V(x, 0). In order to prove (6.3) let us substitute a  in

(6.1) by V(x, 0). If it is necessary, substitute b(x, 1) by inf{0 G ©} and b(x, 0) by 

sup{0 G ©} + S with an arbitrarily small S > 0. We have

P (0 < b(T, V(x, 0))) > 1 — V(x, 0),

or equivalently

P (0 > b(T,V(x, 0))) < V(x, 0). (6.4)

From (6.2) and the monotonicity of b in the second argument it follows that for any 

e > 0 we have b(x, V(x, 0)+  e) < 0. Since the function b is also right-continuous, we 

can write that

b(x,V(x, 0 )) =  lim b(x,V(x,0)+e) ,
£ ^  + 0

and therefore

b(x,V(x,0)) < 0. (6.5)

Looking at the left-hand side of (6.4), we can write

P (0 > b{T, V(x, 0))) =  P (T G {t | b(t, V(x, 0)) < 0}).

Since b is increasing in its first argument, from (6.5) we can conclude that

{t 11 < x} C {t | b(t, V(x, 0)) < 0} ,

and therefore

P (T < x) < P (0 > b(T, V(x, 0))) < V(x, 0).

□
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