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Theoretical study of the He—HF ¥ complex. Il. Rovibronic states
from coupled diabatic potential energy surfaces
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The bound rovibronic levels of the He—FiFeomplex were calculated for total angular momentum
J=1% % 2 I and?with the use ofab initio diabatic intermolecular potentials presented in Paper |
and the inclusion of spin—orbit coupling. The character of the rovibronic states was interpreted by
a series of calculations with the intermolecular distaRdexed at values ranging from 1.5 to 8.5 A

and by analysis of the wave functions. In this analysis we used approximate angular momentum
quantum numbers defined with respect to a dimer body-fiB&d frame with itsz axis parallel to

the intermolecular vectdR and with respect to a molecule-fix€dlF) frame with itsz axis parallel

to the HF" bond. The linear equilibrium geometry makes the HeZH®mplex a Renner—Teller
system. We found both sets of quantum numbers, BF and MF, useful to understand the
characteristics of the Renner—Teller effect in this system. In addition to the properties of a “normal”
semirigid molecule Renner—Teller system it shows typical features caused by large-amplitude
internal (bending motion. We also present spectroscopic data: stretch and bend frequencies, spin—
orbit splittings, parity splittings, and rotational constants.2@04 American Institute of Physics.
[DOI: 10.1063/1.1629672

I. INTRODUCTION Il we present and discuss the results, first of one-

The preceding papétfrom now on referred to as Paper dimensional calculations with the intermolecular distaRce
P g pap PET fixed at a range of values, then of the full calculations.

I, presents the calculation of the two asymptotically degen- : ; .

. ) : + Since the two potential surfaces computed in Paper |
erate adiabatic potential surfaces of the He*Hfomplex d i ilibri f Ho—HEi
that correlate with the degenera¥?Il ground state of correspond to a linear equilibrium geometry of FHe—~Hhis
HE" The twofold spatial degeneracy of thikstate is lifted complex is a Renner—Teller system. It is much more strongly
excé t when the co?n lex hgs a Iineér cometrv. The méthobound than the neutral Van der Waals complex He—HF, but
usedpfor this caIcuIatFi)on is a recentl 9 0 0§)édb initio onsiderably less rigid than a normal, chemically bound, lin-
method that combines the potential )énper P surface of the&" triatomic molecule where Renner—Teller coupling has

P 9y ostly been studied. Therefore, we will pay special atten-

neutral closed-shell complex, He—HF in this case, with the[ion in Sec. IlIC, to the way in which the Renner—Teller

ionization energies of the complex and of one of the mono- : Lo )
. . : effect becomes manifest in this system. We will compare our
mers (here HBP to obtain the interaction energy of the cat-

o : . . results to those of Schmelz and Rosmuweho made a simi-
ionic complex. Multiple(excited statepotential surfaces can . .

. : . .. lar study on different potential surfaces.
be efficiently generated by the computation of higher ioniza-
tion energies of the neutral species, a feature that is used in
this case to obtain simultaneously the lowest two asymptoti”' CALCULATION OF ROVIBRONIC STATES
cally degenerate potential surfaces of He-HPaper | also  Different coordinates and basis sets can be used to cal-
presents diabatic surfaces obtained from the two adiabatigulate the vibration—rotation—tunneling levels of Van der
ones and a full analytic fit of these diabatic surfaces. In thenaals dimers. In particular, one may choose a space-fixed
present paper we proceed by calculating the rovibronic statg®F) basis or various body-fixe(BF) base$;® as well as
of the complex on the diabatic potential surfaces, with thedifferent angular momentum coupling scherfieghe rovi-
inclusion of spin—orbit coupling. In Sec. Il we describe the bronic states of He—HFwere first calculated in this work in
formalism used to perform these calculations in space-fixed coupled SF basis. For the interpretation of the results and
and different body-fixed coordinates. The nonadiabatic couthe understanding of the Renner—Teller effect it turned out,
pling that is particularly important near the linear geometryhowever, that the expansion of the rovibronic states and the
of the complex where the adiabatic states become degeneragénsideration of various approximate quantum numbers with
is implicitly taken into account in these calculations. In Sec.respect to different BF frames was very useful. So, we also
performed calculations with body-fixed bases with angular
Author to whom correspondence should be addressed. Electronic maiffOMENtUM projection quantum numbers defined either BF
avda@theochem.kun.nl with respect to the vectdR that points from the HF center
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of mass to the He nucleus or molecule fix¢dF) with re-  where,=3.3353 u is the reduced mass of the dimer &nd
spect to the HF bond axisr. It is not necessary to repeat the is the angular momentum operator corresponding to the end-
computatiop of the energy Ievells in the different frames; th%ver-end rotation. The potential energy operaforgiven in
transformation from the SF basis to the BF and MF bases igyrms of diabatic states, is most conveniently expressed in
given analytically. Before we discuss the formalism to com-p4qy.fixed coordinates and will be specified below. In writ-
pute the rovibronic levels of the complex, we briefly summa-ing £ (2) we assumed implicitly that the interaction with
rize the fine structure of HFin its X *II ground state, He does not change the spin—orbit coupling term in the
~ The dominant term that splits the levels of HX“Il)  amiltonian of the HF monomer. The SF dimer basis and
s the spin—orbit coupling (coupling constant A he matrix elements of the Hamiltonian in Eq4) and (2)

— ~1 H
=—293.14 cm”). Approximate quantum numbers that ,yer this basis can be found in a recent paper on the bound
characterize these energy levels ake=*+1 and Q=A levels of the He—CCH 3IT) complex®

+3. The quantum numbek is the eigenvalue of the elec-

tronic orbital angular momentum operafgrands = — £, 1 s~ A- R embedding
the eigenvalue of,, which is the component of the spin Since He—HF(X?II) is much more strongly bound

(S=1) along the HF bond axis. The total angular momen- than He—CO# ®I1) the bound states of He—HEX *II) are

tum of the HF monomer is represented by the opergtor Most conveniently calculated and interpreted in a basis with
—T+&+R, wherel, § andR are the electronic orbital and coordinates and angular momentum quantum numbers de-
fined with respect to a BF frame with itsaxis alongR. The

BF coordinates are defined by writing the SF components of
the vectorsR andr as

spin, and the nucleafrotation angular momenta, respec-
tively. For free HF the quantum numbgrthat corresponds

with the operatoj is an exact quantum number. The eigen-

value Q of the electronic angular momentum operator R=RR,(a)R/(B)e, 3)
+8, is also an eigenvalue gf, because the nuclear angular
momentumR has a vanishing component. As a result of r=rR(a)Ry(B)RAd)Ry(0)e, (4

spin—orbit coupling, the levels witl)=+3 are lower by
about 300 cm* than the levels wit) =+ 3, which makes  with the unit vectore, being the column vectof0,0,1 and
HF (X 2I1) a typical Hund’s coupling case] system. For the rotation matrices

j>0 Q is not an exact quantum number even for the free

monomer, because states with differéhare slightly mixed cosa —sina O

by Coriolis coupling. The effective monomer Hamiltonian

that describes the complete level structure of KI&2I1) is Ry(a)=| sina  cosa 0

0 0 1

HHF+:Bo[jz+ ASZ_Ig_Asg_AS—]—_AS+]+]+A’I\ZASza (l) COSB 0 S|nﬂ
Ry(B)= 0 1 0 |. (5

where By=17.5779 cm? is the rotational constant anél —sing 0 cosB

=-293.14 cm® the spin—orbit coupling constant of

HFE™(X 2II) in its vibrational ground statéThe components The BF coordinaté is the angle between andR which is
of the angular momentum operatoare given with respect zero for the linear He—HF geometry. The elements of the
to the MF z axis and obey anomalous commutation matrix R(«a,B,#)=R,(a)Ry(B)R,(¢#) are the direction co-
relations® The corresponding shift operators are thereforesines of thethree-angle embeddeBF frame with respect to

defined asj.=j,¥ij,, whereas the spin shift operators the SF frame.
have the normal definitioB. =S, +i8 The Hamiltonian for the rovibronic states of the complex
+ - Yy

Since the H—F vibration has a much higher frequenc;f’n the multiple diabatic potential surfaces reads in BF coor-

than the vibrations of the He—HFcomplex we froze the dinates as
HF' bond length at the equilibrium value=1.0011 A’ It . o
was shown in Paper | that the intermolecular potential de- ~ —1 &° j2-2)-3+3% .
pends strongly on the HFbond length, however. The global H= 2R JR? * 2uR? +Hies
minimum in a full three-dimensional potential, which is the
sum of the intermolecular potential and the H—pair po- + 2 |Ar>B|:VBf (R, 0)BF(A. (6)
tential, occurs at=1.0273 A. We also computed rovibronic AT A ATART
levels with r fixed at this value. The Hamiltonian of the
He—HF"(X?II) complex in SF coordinates can then be The monomer Hamiltoniai e+ is the same as in the SF
written (in atomic unit$ as representation, see E(L). The diabatic state\ )5 of the
He—HF" (X 2I1) complex, labeled by the HF monomer
. guantum numbeA = *£1, are here expressed in BF coordi-
-1 & L? nates, cf. Eq(A8). The expansion of the diabatic potentials

H=——— —SR+=——+Hye +V e
H 2uR RN 2uR? Hue £V, @ s given by
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Vi (R,0)= BF<A/|\"/|A>BF tion over @ is performed with the analytic fits of thesb initio
AnA potentials from Paper | and the use of numerical Gauss—
_2 A o Legendre quadrature.
T4 vim (R)Dgy—4.(0,6,0). (7 The BF dimer basis, as derived in Appendix A, reads

The functionsDﬁL),vm(¢,0,)_() are Wi_gner rotation functiofis INA,SQ,j,Prid,M,)
with two of the angles being zero in this case; note that only
functions withm’=0 andm=A—A’ occur in the expan- B el (2)+1)(23+ 1)]Y2
sion. We obtained the above expansion from the correspond- [MIA.S,Q) A
ing expansion in MF coordinates derived in Ref. 9 5
XD} p (@B, )", ©)

DY) 0(0,6,0*

v“A”,F'A(R,a)zZ i M(R)IDYL ., ((0,6,0)
where the total angular momentuhand its SFz component
A " 0 M ; are exact quantum numbers aRg is the projection of
—2 v (R)CLL,,(6,0) (8  bothJ and the monomer angular momentiiron the BFz
axis. The electronic wave functiop\,S,Q)5%, labeled by
with the use of the transformation of the electronic wavethe Hund's caséa) quantum numberd, S, Q of HF', and
functions in Eq.(A9). The functionsC{)(6,¢) are Racah implicitly by S=Q—A, is a diabatic wave function of the
normalized spherical harmonics. It was demonstrated in RefHe—HF" (X 2I1) complex, here expressed in BF coordinates
9 that the restriction of the expansion to functions with  [Eq.(A8)]. The symmetric rotor fUﬂCth'f:') 0(0,0,0)* de-
=A— A’ follows from the invariance of the potential energy gqrines the HE rotation with respect to the dimer BF frame
operatorV under rotations of the complex about the HF and the funct|orD(J) PR(a,B,@* the overall rotation of the
bond axis. The expansion coefficient$ " (R) can be writ-  complex. The radial basis functions) = y,(R) are Morse
ten, apart from a known normallzat|on constant, as integralgscillator type functions of the form defined in Ref. 10.
over the diabatic potentiale}; , (R, ¢) multiplied with the The matrix elements of the Hamiltonian in the BF basis
corresponding spherical harmor@é\) A(0,0). The integra- are

(n",A",S,Q",j",P&;I,M;|AIN,A,S,Q,j,Pg;I,M,)
-1 4 1
:5A',A5Q',Q5j',j5p,;,PR< |2 R IRZ —sR[n)+(n’ |_z|n>(3(3+1)+1(1+1) 2P3)+ Sn nBo(j(j+1)+S(S+1)

cl,

1 )
2 2 ’ J j
-Q0°-3 )+5n,,nAAE}—5j,'j5A,’A 59,,Q<n |2,LLR2|n>(CP|,q'PR_1CP|,q' Pr- +CP, Prt1CPL,P +1)

S j
+B05p’ PR 5n/ (CQ’Q 1C2 3= 1+CQ'Q+1 2 E+l)

+(n",A",S,Q",j",P&;I,M;|V|n,A,S,Q,j,Pr;I, M) (10)

with shift matrix elements<’ =8 m=1Vj(j+1)—m(m=1). The matrix elements of the potential energy operator are

m ,m+1""
(n",A",S,Q",j",P&;3,M;|V|n,A,S,Q,j,Pg;I,M;)
=V DEIF (-1 Y 8y X (' o MR S ) (1)
-Vl : vra 2 (0o PR 0 Pe/l—-Q' A'—-A Q)
|
The expressions in large round brackets ajesymbolst B. r embedding

The parity-adapted basis in the BF embedding is In order to recognize the characteristic features of a

Renner—Teller system it is also useful to express the rovi-

[n,|A[,S,Q,},Pr:J,Mj,p) bronic wave functions in coordinates defined with respect to
) a frame with itsz axis parallel to the HF monomer bond
=[n,A.$,Q,],Pr;J,My) axisr. We call this frame MF. The MF coordinates are de-
+p(=1)5n,—A,S,—Q,j,— Pr;J,M,) (12) fined by writing the SF components of the vectondR as
r=rR,(¢")Ry(6")e,, (13)

with p being the parity under inversion am— 1)’ S the
spectroscopic paritye or f. R=RR,(¢")Ry(8")R(a")Ry(B")e,. (14
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The MF coordinate8’, the angle between the vectd®s  given by Eq.(8) with 6= 8'. The dimer basis functions in
and r, is the same as the BF coordinate The matrix MF coordinates arécf. the Appendix
R(o",0",a")=R,(¢")Ry(6")R(a") contains the direction
cosines of the(three-angle embeddedF frame with re-  [N,A,S,Q,L,Q,P;I,M;)

spect to the SF frame. —InVIA .S .QYMFy "0
The dimer Hamiltonian in the MF representation is simi- IMIA.S.0)" 1o, (5.0

lar to the SF Hamiltonian in Eq2) except for the appear- 27+ 1112 |

ance of the HE monomer term. Since the quantum number X Dfmz,pr(d)',@',a')*, (17)

j is not defined in the MF representation, we write the'HF

monomer Hamiltonian as where(), is the projection of the end-over-end angular mo-

Flper=Bo[ 32+ 02+ &8-32-12-8—(L 3 +(, mentumL on the HF axis andP,=Q+Q, is the projec-

+) tion of the total angular momentuthon the same axis. The
~(8.3 +8.3.)+(L.5 +L 8,)]+ALS,. diabatic electronic wave functions\,S,Q)MF are defined
with respect to the MF framEEq. (A7)]. In Renner—Teller

«»

(15 systems it is customary to define also a quantum nurkher
The potential energy operator is how the projection of the electronic and nuclear orbital angular
momenta on the body-fixed axis or, in other words, the
v=> |A’>MFV"A",FYA(R,B’) MF(A (16)  eigenvalue of the total angular momentum operdtaninus
AA the eigenvalue of the spin operat8y. Here we define,
with diabatic state$A )" in MF coordinates, cf. EqA7).  =A+Q,=P,—3. The matrix elements of the Hamiltonian

The expansion of the diabatic potentia; ,(R,8') is  in the MF basis read

(n",A",S,Q",L",Q/ ,P/:J,My|H[n,A,S,Q,L,Q,P,;J,Mj)

,—1 P , L(L+1)
(n |2,LL_RWR|n>+<n |W|n>+5n’,nBO('J('J+1)+L(L+1)+S(S+l)

= 5A’,A5().’,Q‘SL’,L5QI’_ Q

L

J L J
-P2-Q2-3%)+ 5n,,nAA2}—BoéA,,AaL,ﬁn,‘n[(cpr,’P C +C Cqr 1)

—170] 0, -1 ¥R P+l

J S J S L S L S
H(Chr p—1Csrs17Cpr p +1C5r540) 7 (Cor 0 +1Cs 1517 Cop 0 -1Csr 544

+(n",A",S,Q",L",Q/ ,P;;3,M3|V[n,A,SQ,L,Q,,P,;J,M)). (18
The matrix elements of the potential are

(n",A",S,Q',L",Q/ ,P!;J,M3|V[n,A,S,Q,L,Q, ,P,;J,M;)

3 . E AT Q,(L’ | L) L’ [ L
—EUFDELF D8 300 2,3 (0ol MR ol ] (19

The parity-adapted basis in the MF embedding is construction of this matrix in the three different sets of co-
InJA|,S,Q,L,QL,P,:3,M,,p) ordinates for which thg formulas arg given a.b.c(@, BF,
MF) and used the basis transformations specified in the Ap-
=[n,A,SQ,LQL,PI,My) pendix to check our codes. Calculations were performed for
+p(=1)7"8n,—A,S,—Q,L,—Q,,—P,;J,M,). J up to  inclusive. The levels were converged to within

10 % cm™ ! with an angular basis truncatedjat,,=3 and a

(20 radial basis withn,=14. Test calculations With =%
Itis also useful to know how to transform the basis from onegaye levels that did not deviate from thga=2 results by

frame to another. This is derived in the Appendix. more than 10° cm™L. The nonlinear parameteR,, D,

and w, of the 15 radial basis functiong,(R) were opti-
C. Computational details mized by energy minimizations with smaller valuesngf,.

The bound states of the complex were obtained from & he final calculation was performed usifR}=5.3a,, De
full diagonalization of the Hamiltonian matrix. We coded the =620 cmi !, and we=140 cm *.
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TABLE |. Rovibronic states fo =§ from calculations withR fixed. Energie<sE in the first row correspond to states @fspectroscopic parityAE=E;
—E, in the second row is the parity splitting. The other entries are populatiorgercent of basis functions irR embedding with approximate quantum
numbersPg, Q.

R=2.26 A R=3.7A
E (cm™Y) -1302.3696  —1031.1954 —898.0328  —686.5220 2259358 —196.2161 —178.4279  —168.6719
AE (cm™Y) ~0.000 01 -0.07637  —0.93072 0.78191  —0.00001  —0.03264 0.032 86 0.000 22
Pr Q
3 3 0.00 79.60 20.48 2.47 0.00 0.98 0.01 0.00
1 i 0.00 0.04 1.65 37.37 0.00 0.00 0.94 0.01
3 2 0.03 20.10 77.59 1.21 0.14 98.30 0.57 0.00
1 3 0.00 0.22 0.25 57.23 0.00 0.58 97.24 1.23
3 : 0.73 0.01 0.01 0.23 0.78 0.00 0.00 0.00
-3 3 0.04 0.00 0.00 0.13 0.00 0.00 0.01 0.90
3 2 99.20 0.02 0.03 1.28 99.08 0.14 0.00 0.00
-3 3 0.00 0.00 0.00 0.09 0.00 0.00 1.23 97.86
ll. RESULTS with [Q|=3% and j=3. We did not plot the energies with

Pr==*13, J=2 because they only differ from theg= =+ 3,
. J=1 energy curves by one quantum of overall rotation and
In order to understand how the states of the’'HRono- oy, the scale of Fig. 1 would coincide with the latter curves.

mer become perturbed and mixed by the interaction with the-e corresponding eigenvectors are very similar, cf. Tables |
He atom it is interesting to start with calculations in which and Il. The lowest curve has a global minimum at

f[hg i'ntermplecula_r.di'stancla is fixed and is reduced from —1302.37 cm® for R=2.258 A and corresponds th="3,
infinity to its equilibrium value. We have performed such

fixed-R calculations for a set of distances ranging from 1.5 to

8.5 A, with a grid spacing of 0.0085 A fdR<3.3 A and 37 ;I%E;eal Srgoz\ést.::hlzt z[stéffrqm_:zr?f |:]1¥:/)a2rdi ioéb;m
0.15 A for larger distances. An analysis of the wave func->" " Symptolic fevels ot givanspiit| ) Vels

tions for R=2.26 and 3.7 A in theR embedded frame is Wit Pr=—1,—]+1.... ] by the anisotropic interaction with
presented in Table | fai=2 and Table I forJ=1. The first the He atom. Monomer states of givénthat in free HF

observation one can make is that the quantum nurfer &€ mixed only by Coriolis coupling, are now coupled also
the projection of] on the BFz axis R, is always a nearly DY the off-diagonal diabatic interaction potentials.; 1,

good quantum number. The energies are plotted as functio$- by the adiabatic “difference potential™a—Va-)/2.
of Rin Fig. 1 forPg=*3, J=%and forPr=+3, J=32 The FoOr smaller distances the interaction with He becomes stron-

picture exhibits different dissociation limits. The lowest threeger, the energy curves in Fig. 1 shaavoided crossings,
limits correspond to théQ|=32 ground state of the HF  and the monomer spin—orbit states with differff start to
monomer, the first one at 114.2138 cm to j = $, the sec-  mix. This is illustrated forR=2.26 A in Table I. Only the

ond one toj =3, and the third one tg=1. The fourth as- lowest bound state, withQ}|=3, shows negligible mixing
ymptote corresponds to the excited spin—orbit state of HF with states of Q| =3, cf. also Fig. 1.

A. One-dimensional calculations

Pr==*3, Q==*3 ande parity.

TABLE Il. Rovibronic states fold= % from calculations withR fixed. For explanations, see Table I.

R=2.26 A R=3.7A

E (cm™ %) ~1034.04481 —901.08722 —689.1133 —586.5951 —197.2510 —179.4627 —109.4178  —100.6141
AE (cm™Y) ~0.03819 ~0.465 44 040533  —0.13169  —0.01641 0.01662  —0.08587 0.085 72
Pk Q

3 i 79.56 20.62 2.52 7.56 0.99 0.00 2.15 0.03
-1 3 0.07 1.61 37.96 35.96 0.00 0.96 0.02 2.24

3 2 20.20 77.38 1.44 37.59 98.89 0.12 96.82 1.01
1 3 0.17 0.39 58.08 18.89 0.12 98.92 1.01 96.72
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FIG. 1. Energy levels from fixe& calculations, plotted as functions Bf
Closed lines foi Pg| = 3,J=3 and dashed lines fdPg|=3,J=3.

B. Full calculation

Dhont et al.

commonly used in Renner—Teller systems; the quantum
numbersS, P=P,, andK=K, were defined in Sec. Il B.

In the linear triatomic open-shell molecules in which
Renner—Teller coupling is mostly studi&dis the sum of the
electronic orbital angular momenturh and the vibrational
angular momentum, usually callédgenerated by the degen-
erate bending mode. The quantum number that corresponds
most closely tol in the He—HF complex is the quantum
number(), defined in ther embedding an& is defined in
this MF embedding aK,=A +Q =P, —2. The problem in
the BF embedding is that the electronic angular momentum
A is the projection on the HF axisr, the nuclear angular
momentum projectio), is not defined, while the total an-
gular momentum projectioRy is defined with respect to the
intermolecular vectoR. Still, we write Kg=Pr—2 also in
the BF system. This is physically meaningful because the
complex has a linear equilibrium geometry with a rather
steep well in which the lower rovibronic states are localized
and the vectorgs and R remain nearly parallel. Table V
shows a comparison of the main character of the rovibronic
states in terms of the quantum numbers for the two embed-
dings considered. In all cases except a few, in which the
character is quite mixed anyway, we find agreement between
the assignments of the two embeddings. The population of
the dominanfS" 'K, component is systematically higher in
the R embedding, which shows that this embedding yields

Tables Il and IV contain the rovibronic energy levels the better approximate quantum numbers. This seems in con-
and parity splittings from full-dimensional calculations for tradiction with our previous observation that the quantum
J=1%32 512 The first column indicates the dominant char- numberK is more strictly defined in the embedding, but

acter of the corresponding eigenstate. The 1&8&LKp is

one should realize that this was a purely formal argument,

TABLE lIl. Rovibronic energy levelgin cm™?) of parity e in r embedding. The assigment in terms8f 'K, with K=K, andP=P, and the stretch, bend
quantum numbersg, vy, is explained in the text. States witk|=0,1,2,3 are denoted By, II, A, ®.

25 K p(vs,0p) =13 =3 =32 J=1 =3
2[1,,0,0) - —1125.6274 ~1121.1001 —1114.7641 ~1106.6216
2[1,,5(0,0) —862.7696 —860.0766 —855.5705 —849.2533 —841.1274
2[T,4,,(1,0) —818.1741 —814.0112 —808.1859 —800.7009
25, ,(0,1) —750.4286 —747.9311 —743.6468 —737.5769 —729.7240
27 ,(0,1) —729.9411 —723.7550 —715.8068
2[1,,42,0) - —576.4169 —572.5001 —567.0542 —560.0688
25 (1,1) —577.1277 —574.9012 —571.0322 —565.5213 —558.3691
2[1,,40,2) —562.9230 —559.9903 —555.3150 —548.9100 —540.7956
2[1,,5(0,2) o —556.4190 —552.1326 —546.1146 —538.3456
27 (1,1) —482.6417 —477.1104 —470.0061
2[7,,,(1,0) —487.2650 —484.9705 —481.0415 —475.4763 — 468.2760
25,,,(0,3) — 4747757 —472.2898 — 467.9698 —461.8190 —453.8415
27 44(0,1) e — 454.5045 — 449.9153 — 443.4953 —435.2501
25, ,(0,1) —436.7975 —434.3995 —430.1277 —423.9965 —416.0239
2040,2) —415.0390 —407.7367
2A55(0,3) .- —391.2582 —385.9204 —379.0634
2[T,,5(3,2) —392.7682 —388.2957 —382.2816 —374.9899
2[1,,(3,0) e —388.3586 —384.6341 —379.2496 —371.9206
207, (1,4) —383.8626 —381.1165 —376.6832 —370.4884 —362.5129
2[1,,0,4) e —370.8265 —366.8738 —361.7200 —355.0022
2[7,,4(2,2) —371.9084 —369.3066 —364.0358 —356.5184 —347.2930
25,:(2,3) —361.7989 —350.1454 —354.8810 —348.9126 —341.0510
2[7,,4(1,2) e —355.9188 —351.9194 —346.3406 —339.1907
25,,,(0,5) —321.0598 —318.9936 —314.9773 —308.9983 —301.0462
2Ag(1,3) —304.2796 —298.4314 —291.0522
25, (1,3) —303.9462 —302.4868 —299.4022 —204.6780 —288.3062
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TABLE IV. Parity splitting AE=E;—E, (in cm™ ) of the levels in Table III.

2SHIK L(vg,vp) =% =3 =3 =1 =2

2[1,,,(0,0) - 0.0000 0.0000 0.0001 0.0002
211,,,(0,0) 0.0567 0.1134 0.1701 0.2267 0.2833
2[T,4,,(1,0) e 0.0000 0.0000 0.0001 0.0002
25,,(0,1) 0.3675 0.7337 1.0971 1.4565 1.8105
27 (0,1) - o 0.0000 0.0000 0.0000
[14(2,0) - 0.0006 0.0016 0.0023 0.0030
25, (1,1) 0.4719 0.9376 1.3917 1.8301 2.2484
2[1,,5(0,2) —0.6069 —1.2053 —1.7859 —2.3363 —2.8391
2[7,,5(0,2) —0.0004 —0.0031 —0.0133 —0.0426

27 (1,1) o o 0.0000 0.0000 0.0000
217,,,(1,0) 0.2976 0.5844 0.8510 1.0909 1.3006
25,,,(0,3) 0.5355 1.0680 1.5937 2.1068 2.6000
2A4(0,1) —-0.0022 —0.0086 -0.0213 —0.0420
25,,,(0,1) 0.8638 1.7357 2.6226 3.5299 4.4601
2050,2) p - .- 0.0000 0.0000
27 .,(0,3) ~0.0023 —0.0065 —0.0070
2[T,44(3,2) —0.0006 0.0030 0.0156 0.0283
2I14,(3,0) ‘e 0.0022 0.0079 0.0184 0.0490
207,,5(1,4) ~0.6516 —1.2274 —1.6942 —2.0432 —2.2524
2[1,,,(0,4) 0.2764 0.2233 0.8807 1.3386 1.6524
207,,4(2,2) 0.2969 —0.1394 —0.3734 —0.6122
25, ,:(2,3) ~0.6501 —~1.3329 —2.0817 —2.9202 —3.7046
2[T,4(1,2) o 0.0014 0.0061 0.0158 0.0266
25,,5(0,5) 1.6586 3.2800 4.8236 6.2406 7.4659
2Ag(1,3) e o 0.0014 0.0091 0.0367
25,,:(1,3) 1.8674 3.6779 2.6978 2.9431 3.0847

while the assignment of approximate quantum numbers is ofequency of about 350 cit. From the energy differences
more physical nature. between théTly, levels withv¢=0,1,2 andv,=0 we find

The binding energyD, of the complex is 1125.6 cit 308 cr? for the stretch fundamental frequency and
for J=3, |P,|=3, and spectroscopic parity Note, for com- 549 cm! for the first overtone, indicative of strong anhar-
parison, that the global minimum in this potential at the lin- monicity. This anharmonicity made it difficult to recognize
ear geometry with R;=2.24 A has well depthDe  other stretch progressions. Figure 4 shows an overview of
=1631 cm ', The analysis of the wave functions using the he calculated rovibronic levels with their successivg
(BF) R embedding shows that the well is sufficiently deep to— 1 2 3 stretch excited statéas far as they could be identi-
considerably hinder the rotation of FIEbasis functions with fied) separated into different columns. Two of the higher di-
different are strongly mixed. agonal arrows that refer to stretch excitations do not connect

Table 11l also lists stretch and bend quantum nUMBErS  giates of the same quantum numbégsand P, but one
and Vb The assignment of these quantum numbe_rs Wa8hould realize that these approximate quantum numbers are
made with the help of the wave functions, some of which arg,; ajways well defined. The states concerned are of mixed

plotted'in Figs. 2 anq 3. The stretch quantum n.umbse'rs character and the character may change upon stretch excita-
determined by counting the number of nodes in the wavei,,

function along the radial coordinate. The bend quantum
numberv, is also determined from the number of nodes, bu
in a slightly more complicated manner. The bending mode ot
a semirigid triatomic molecule is denoted by, wherel
takes only the valuesvy,,—v,+2,...v,. Here, the vibra-
tional angular momenturhis equal toP— 3 — A. The eigen-
functions of a two-dimensional isotropic harmonic oscillator
can be written a§, ;(q)exp(la), whereq is the amplitude

The parity splittings of the levels with= % up to 3 pre-
ented in Table IV are in reasonable agreement with the re-
ults of the fixedR calculation at 2.26 A in Tables | and II.
The largest splittings occur for the levels witR|=3 and
these splittings are nicely proportional d& 3. This simple
linear dependence a3 is well known for\ doubling in
linear molecule$? Here it can be understood by considering
. L DA . the Hamiltonian in Eq(15) and the parity-adapted basis in
of the bending vibration and is the phase, andl,, (q) has Eq. (20). From the latter it follows that the energy difference

(v—|1|)/2 nodes. Becaudeis known, we can count the num- . ) L
) . .between functions wittke and f parity is caused by a cou-
ber of nodes in the wave function along the angular coordi-

nate and deduce the value . pling between the basis components,>,Q,Q, ,P,) and

Comparison of therg, v,=0,0 energy levels from the |-A,~%,~Q,~0, ,—Py). The J-dependent coupling op-

full calculation in Table 1l with the lower levels from the ?raAtors in the Hamiltonian of E415) are the shift operators

fixed-R calculation in Tables | and Il shows that the stretchJ+L = an‘_”tst- The latter operator indeed gives alfirst-
zero-point energy of the complex is about 175¢min the ~ order splitting between the components withP, =+ 3,

harmonic approximation this would correspond to a stretch+ 3 that is proportional to\/[J(J+ 1)+13] \/[S(S+ 1)+13]
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TABLE V. Comparison of the main charactén percent of the levels in Table Il irR vsr embedding. Quantum numbePsK are eithePg K or P, K, ;
the label?>* 1K s corresponds to the latter.

Energy (cm't) P K K—A R-emb r-emb
~1125.6274 2 1 2[14,(0,0) 99.2 93.2
—862.7696 1 1 2[1,,,(0,0) 71.4 70.8
~818.1741 3 1 2[1,,(1,0) 99.1 91.9
—750.4286 : 0 -1 25, ,(0,1) 69.2 68.4
—729.9411 2 2 27 ,(0,1) 97.9 75.4
~576.4169 2 1 2[14,(2,0) 96.7 82.2
—577.1277 i 0 -1 25 A(1,1) 50.9 45.0
: 1 0 35.7 345

—562.9230 1 -1 -2 ?[1,,(0,2) 61.7 55.2
—556.4190 3 1 0 ?[1,,(0,2) 89.0 66.9
—482.6417 2 2 1 2Ag(1,1) 97.9 69.5
—487.2650 i 1 0 2[1,,(1,0) 50.3 47.0
3 0 -1 46.5 46.5

—474.7757 i 0 -1 25,,/0,3) 63.2 41.4
1 0 -1 23.6 15.7

1 -1 -2 5.2 27.0

: 1 0 8.0 15.0

—454.5045 3 2 1 27,,(0,1) 68.6 30.9
—436.7975 -3 0 -1 25.(0,1) 42.2 45.2
-1 -1 -2 38.8 10.8

i 0 -1 10.2 38.1

—415.0390 U 3 2 29,,/(0,2) 93.0 45.1
—391.2582 3 2 1 2744(0,3) 64.8 31.4
—392.7682 -3 -2 -3 ?M14(3,2) 38.1 10.8
2 1 0 36.9 30.8

—388.3586 3 1 0 2[1,,(3,0) 74.4 63.6
—383.8626 -1 -1 -2 °T1,,(1,4) 61.0 62.1
—370.8265 2 1 0 2[14,,(0,4) 47.4 19.1
i 0 -1 17.3 29.3

-1 -1 -2 11.7 22.0

—371.9084 : 0 -1 2M1,,,(2,2) 51.4 38.5
-1 -1 -2 30.3 43.2

—361.7989 -1 -1 -2 25.,42,3) 50.0 36.3
: 0 -1 34.2 48.0

—355.9188 3 1 0 2[14(1,2) 83.5 52.0
—321.0598 : 0 -1 25,,,(0,5) 73.7 58.6
—304.2796 -3 -3 -4 2Agp(1,3) 56.6 6.2
3 2 1 27.1 14.0

—303.9462 : 0 -1 25,(1,3) 74.0 67.6

=(J+3)(S+3)=(JI+3). The magnitude of the actual split- tional constants of the complex. First, we averaged the ener-
tings in Table 1V is on the order of the end-over-end rota-gies of thee and f states to remove the effect of the parity

tional constant of the completsee below rather than the splitting. We note that th@ dependence of the energy levels
size of the monomer rotational constdy that appears in . A . a ) .

o - originates from the terniJ2—2j-J]/(2xR?) in the Hamil-
Eqg. (15). This is a consequence of the quenching of thé HF
monomer rotations in the complex. tonian of Eq.(6). After removal of the parity splitting caused

From the levels withi=%, 2 3 Z 2 we extracted rota- by theJ-dependent shift operators the energy contribution of
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FIG. 2. Density distributions of the lowest four levels from full calculations. The closed and dashed contours |ﬂb:tl%eand \Q|:% contributions,
respectively. These distributions are the squares of the rovibronic wave functiongwjf|, integrated over all coordinates excetand 6. For the
corresponding energy levels and quantum numbers we refer to Table IIl.

this term is [J(Jfl)—P2]<[2MR2]’1>- The expectation  spin—orbit splitting®I1;,,(0,0)—"I14,(0,0) is 319.6 cm",
value([21R?]~1) is the end-over-end rotational constant of whereas ours is 265.6 cth. Their stretch frequency
the complex. The band origing,, end-over-end rotational 2[145(1,0)=?T14,(0,0) is 311.0 cm?, ours is 307.5 cmt.
constantd, and centrifugal distortion constarilspresented The most striking difference occurs for the bend frequency

in Table VI were obtained by a fit of the levels with . _
=1to § for each internal state)cvith the formula 23 12(0,1)*T13,(0,0) that they find to be 223.2 ¢, sub-
2 stantially lower than our value of 377.7 cth

_ ) 92 Since the intermolecular potential depends strongly on

E(J,P)=Eo+BJJ+1)=PT=DLIU+D =P~ @D e yr pond length, we also computed rovibronic levels

with r fixed at the value of 1.0273 A that corresponds to the

We observe that a substantial decrease of the end-over-egghpal minimum of a full three-dimensional potential surface
rotational constanB is caused by one or two quanta of (see Paper)l The dissociation energP, of the complex

stretch excitation, as might be expected, but that also thﬁ/ith respect to He and the HFmonomer at its equilibrium

combination of one stretch and one bend quantum gives 8eometry is increased by 72.3 chby this relaxation of .

strong reduction oB. . . .
The intermolecular zero-point energy increases by

A similar study of the He—HF complex was made ear- 554 el f 505.7 to 561 1 cmt KinaD. |
lier by Schmelz and Rosmtisn the basis of intermolecular A cme, 7r10m 110 - ¢, ma 'n_g o INCrease
16.9cm . The actual increase oD, in full three-

potentials computed by the coupled electron pair approximab_y X _ )
tion. It was already mentioned in Paper | that our potentialglimensional calculations is probably larger, however, be-
are somewhat different from theirs and, in particular, that oufause the vibrational zero-point energy of Hfay be lower
binding energyD, is larger. The rovibronic energy level pat- in the complex. The characteristic excitation energies,
tern that they obtain from their potentials is different from 273.1 cm* for the spin—orbit splitting, 329.4 cnt for the
ours. The character of the ground state is the same, but ttséretch, and 415.5 cnt for the bend, are higher than the
order of the excited states is considerably different. Theivalues calculated for=r.
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FIG. 3. Density distributions of the next four levels from full calculations. For explanations, see Fig. 2.

C. Renner-Teller effect

2
The Renner—Teller effect is taken into account in our 400 i%;ggg *222283
calculations, because our intermolecular potentials refer to 371V NS
coupled diabatic electronic states and we include all of the - 21/2(3)7F2nf,’§§o§ 1881
relevant electronic and nuclear angular momentum couplings 2, m
in our Hamiltonian. Our basis can accurately describe the = M4 21 p (1) == 2TT32(0)
internal (stretch and bendmotions and overall rotation of 6007 w3/ S S
the He—HF complex, even when these internal motions
have large amplitudes. Let us now consider explicitly how .~ S 0 :{f;{fx
the Renner—Teller effect becomes manifest in our results. § a3 7 1Y ’
Figure 5 shows the levels calculated for stretch quantum § 800 yé
numberv =0, i.e., the leftmost column of Fig. 4. This pic- & —— 2
ture may be directly compared with the energy level diagram ——ip© /
of a 2II triatomic linear molecule shown in Herzberg’s
book!® Fig. 8 of Sec. I.2. This diagram correlates the energy
levels obtained from a full calculation with the levels ob-  _jp00] 2629 3075
tained when either the Renner—Teller interaction or the spin—
orbit coupling are set to zero. Herzberg's “full” treatment
includes the bending mode only and it defines the Renner— S
Teller interaction parameter as the ratio of the harmonic
vs=0 vs=1 vs=2 vs=3

force constants of the coupling or difference potential _1200

Vi _1=(Var—Vas)/2 and the diagonal or sum potential . _ _

C . FIG. 4. Rovibronic levels from full calculations. The levels are labeled with
2V111—\./A,+.VA,,. The. corresponding set of Ievelg from our the approximate quantum numb&& K (vy), and [K|=0,1,2,3 is de-
calculation is shown in the second column of Fig. 5. Notengted by, I1,A,®. The overall angular momentudhis always taken equal
that the bend quantum numbey in our notation is given in  to|P|.
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TABLE VI. Band originsE,, rotational constant8, and distortion con-

L 13579
stantsD extracted from energy levels with=3,5,5,3, 5.

Eo B D
2[1,,4(0,0) —1126.9858 0.9057 0.000 0261
2[1,,4(0,0) —863.1948 0.9072 0.000 0307
2[1,,/(1,0) —819.4233 0.8328 0.000 0323
25,1,5(0,1) —750.6916 0.8936 0.000 0358
27 4,(0,1) —732.1512 0.8842 0.000 0363
2[1,,4(2,0) —577.5910 0.7832 0.000 1951
25 1:(1,1) —577.3014 0.8198 0.000 0480
211,,4(0,2) —563.6658 0.8784 0.000 1176
2[1,4,4(0,2) —557.7031 0.8557 —0.000 1637
27 5(1,1) —484.6184 0.7908 0.000 0515

parentheses, while Herzberg'’s figure shawgson the left-
hand side. In Herzberg’s figure the levels of the sdip

Theoretical study of the He—HF* complex. I 113

the levels in the third column of Fig. 5 that are very similar
to the levels in the third column of Herzberg’s picture, except
that theA levels withv,=1 are not centered between the
levels, but nearly coincide with the uppErlevel. When we
switch off bothV; _; andA we produce—cf. the fourth col-
umn of Fig. 5—some further degeneracies, but szhkevels
with v,=1 remain higher than thE levels, and so do thé
levels withv,=2 relative to thdl levels. These differences
in the first and third columns indicate a fundamental devia-
tion from Herzberg’s model, which we will now show to be
due to the bending motion being treated as a hindered rota-
tion rather than a harmonic vibration.

This can be understood from an analysis of the matrix
elements of the potentiafy ; in Eq. (11), but it is easier to
consider the example of the FiIFmolecule in a homoge-
neous electric field of strength parallel to the SFZ axis.
For simplicity we omit the spin, i.e., we p8=23=0 and

with the larger|P| are higher than the levels with smaller Q=A==1. When is the dipole moment of HF the po-

|P|, whereas in our figure the levels with the largBt are

tential energy can be written asV=— uF cosé

lower. The reason for this reversed order is that our spin—— yFP,(cosé), with (6,¢) being the SF polar angles of the
orbit constantA has a negative value, while Herzberg’s is diatom axisr and P,(cosé) the Legendre polynomiaP,
positive. Otherwise, the levels from our calculations follow with | = 1. The basis to describe the hindered rotation of HF
nicely the pattern of the levels in Herzberg's picture. Thein this example is obtained from E{9) by omitting the

gaps between levels with differeng are smaller in our case,

overall rotation functions with quantum numberdV ; and

so differentv, manifolds overlap in energy. When we switch depending on the polar anglé8,«) of R. This is equivalent

off the coupling potentiaV, _; we obtain the levels in the
first column of Fig. 5. They differ from the levels with

to consideringR (i.e., the direction of the He atomo be
fixed along the SKZ axis (i.e., the field direction Further-

=0 in the first column of Herzberg's picture in that the lower more, we replac®y by K because® =0 and get the basis

3, andA levels withv,=1 do not become degenerate in our

case, and neither do tHé and ® levels withv,=2. When
we set the spin—orbit coupling constakto zero we produce

—200
%g 5/2(2)
2
205000 . _ 712(2)
ey Mip@
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2 —
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FIG. 5. Correlation diagram showing the dependence obthe0 levels on
the Renner—Teller interaction potenti4l _; and on the spin—orbit coupling
constantA. Labeling of the levels as in Fig. 4.

. 2j+1 J. .
(A, K)=1A) \[ =3 —Dia(¢,6,0". (22)
The matrix elements of the potential read
(i, KA VLK, A)
= - uFV(2] + D)(2j+1)
P A S L A R
_1\K'-A
X(=1) (_K, 0 K)(_A, 0 A), (23

which is a simplified version of the potential matrix elements
with A’—=A =0 in Eq. (11). The kinetic energy operator is
given by T=B[]—1]%, where] is the total angular momen-
tum operator, and the electronic angular momentum. Only
the projection\, the eigenvalue df, with z being the diatom
axisr, is a good quantum number and we may therefore omit
all of the shift terms with .. from the kinetic energy opera-
tor. The remaining operatdf=B,[j2+12—21,j,] is diago-
nal in the basis of Eq(22), with eigenvalueBy[j(j+1)

— A?]. Diagonalization of this simple Hamiltoniah+V in

a basis withj=|A|,...,j max @and plotting the eigenvalues as a
function of the field strengtlir gives the energy level corre-
lation diagram in Fig. 6. Note, in the first place that for
sufficiently strong fields the energy levels are very similar to
the levels in the rightmost column of Fig. 5. It is clear that
theX (K=0) andA (|K|=2) levels that belong to the first
excited “bending” state withv,=1 andl==*1 are not de-
generate, and neither are the (|[K|=1) and® (|K|=3)
levels of the second excited “bending” state with=2 and
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allel to the HF bond axisr. We interpreted the character of
the rovibronic states by a series of calculations with the
He—HF" distanceR fixed at values ranging from 1.5 to 8.5

A and by analysis of the wave functions. The approximate
quantum numbers corresponding to the various angular mo-
mentum components with respect to the BF and MF frames
were very useful in this analysis.

The intermolecular potential has a rather deep well at the
linear He—HF geometry, which makes this complex a
Renner—Teller system. Renner—Teller effects have mostly
been studied for semirigid triatomic and polyatomic linear
molecules. Although the He—HFcomplex is much more
strongly bound than the neutral He—HF Van der Waals com-
sl Cinl ki plex, it is considerably less rigid than a “normal” molecule

10 10 10° 10° 10% held together by covalent bonds. It was, therefore, interesting

uF (em™) to analyze the effects of the Renner—Teller coupling in this

FIG. 6. Energy levels of model HF(with A=+ 1 andS=0) in an elecric _system and fco look for characteristics due to I_arge am_plitude
field F as function of the coupling strenggbF. The3, IT1,A,® labels denote internal motions. We made such an anaIySIS and, indeed,
levels with |K|=0,1,2,3, whilev,, is the “bending” quantum number. The found such features. Finally, we extracted from our results
labelsK refer to theA=+1 component. The energies are divided by the SOme quantitative data that determine the spectroscopy of
fundamental “bending” vibration energy defined fEs(v,=1)+Ea(vs  this complex: stretch and bend frequencies, spin—orbit split-
=1))2=En(v,=0). tings, parity splittings, rotational constants, and we compare
some of these with the results of a previous theoretical study.

Energy (reduced)

| =0,%=2. This is related to the finite amplitude of the “bend-
ing” motion or, in other words, to the fact that the electronic
angular momentum\ and the total angular momentuka We thank Professor Gilberte Chambaud, Professor Pavel
refer to different axes. When the fiell becomes stronger, Rosmus, and Dr. Paul E. S. Wormer for valuable discussions
the level pattern becomes more and more similar to that of and the latter also for critically reading the manuscript. This
harmonic oscillator and the splittings become relativelyresearch has been financially supported by the Council for
smaller. In the strong field limit the rotating molecule can Chemical Sciences of the Netherlands Organization for Sci-
hardly bend away from the SE axis, the axe&Z and z entific ResearcfCW-NWO) and by the EU(Theonet II,
become parallel, and the splitting pattern is similar toGrant No. HPRN-CT-1999-00005
Herzberg'’s.

Also in our calculations on He—HFthe energy differ- APPENDIX: BASIS TRANSFORMATIONS
ences between tha fandE Ievgls W'th’,)bzl and between Before we discuss the transformation of the different
the ® andIl levels withv, =2 did not disappear, even when p,qeq \ve must derive a relation between the BF and MF

we switched off bothV, _, and the spin—orbit coupling. fames For this purpose it is most convenient to take the

When increasing the steepness of the well at the linear 9%efinition of the BE framd R(a,B,¢)] from Sec. Il A and to
ometry inV, ; we found, also in the full calculations, that definethe MF rotation angles by

these energy differences became relatively small in compari-

son with the(vibrationa) splitting between levels with dif- R(¢',0",a")=R(a,B,¢)R(0,0,). (A1)

ferentv,, . So, in that sense, our results agree with Herzberg'ext we verify that this definition is equivalent to the defi-

model for the Renner—Teller coupling in”8l triatomic lin-  pition of the MF frame given in Sec. Il B. Substituting Eq.

ear molecule. (A1) into Eq.(13) and usingR,(x)e,= e, for any angley we
find

rR(¢',0",a’)e,=rR(a,B,9)Ry(0)e,=T, (A2)

where we used Ed4) in the last step. To verify Eq14) we
‘again substitute EqA1) which gives
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IV. CONCLUSION

Without consideration of the spin—orbit coupling the
He—HF" complex has two asymptotically degenerate elec
tronic states that correlate with the?Il1 ground state of free
HF*. We calculated the bound rovibronic levels of this com-RR(¢',6",a")Ry(B')e,

plex forJ=3,2,2 £ 3 with the use of diabatic intermolecular _ ‘ e

potentials that couple these states and the inclusion of spin— RE(a,B,$)R(0,0,m)Ry(B")€=R, (A3)
orbit coupling. Theab initio diabatic potential surfaces and where we use@’= 6, the relation

their analytic fits are described in PapérThe calculation of R 6)Ro( 1) =Ruf )R — 6 A4
rovibronic levels was performed with basis sets defined in y(O)Tt(m) =Ro(m) Ry (—6), (Ad)
different coordinate frames: a BF frame with thexis par- and Eq.(3).

allel to the vectorR that points from the center of mass of ~ We define electronic basis functions by applying rotation
HF" to the He atom, and an MF frame with tkeaxis par-  operators of the fornR(«,3,y) =R,(«) Ry(B)R,(y) to the
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wave functiongA,S,Q) with angular momentum projection where the rotation operator acts on the electronic coordi-
guantum numbers defined with respect to thez&is. This  nates, as well as ofB,a). With the use of Eq(A7) and the
method is particularly convenient for giving a precise defi-relationP,=Q+ ), we obtain the MF basis in E417).

nition of open-shell electronic wave functions, also in the  Analogously we define thR embeddedBF) basis

case of half-integral spin. In the Appendix of Ref. 14 it Was|n A,S,0,i,PridM,)

used to define Hund’s casa) basis functions for open-shell ' = 71T R
diatoms and more details can be found there. Here we extend [(2J+1)(2j+1)]*2 5 .
the technique to define basis functions for open-shell com- =[n 4o DMJ,pR(ayﬂ,O)
plexes and to derive the transformations between different

basis sets. For this purpose we require the rotation operator ><ﬁ(a,B,O)[D(FJ;,Q(W,H’,O)*
analogue of Eq(Al)

XR(¢',6',0|A,S,Q)]. (A12)
) _ ) _ Acting with the rotation operators on the electronic and
This relation holds for both integral and half-integral angularyyclear coordinates and using the BF electronic wave func-

momentum cases. . tions from Eq.(A8) we obtain Eq(9).
Two- and three-angle embedded MF electronic wave  The elements of the unitary matrix that transforms the

functions are defined by coupled SF basis into the MF basis are the overlap integrals

R(¢',0",a')=R(a,B,¢)R(0,0,7). (A5)

A, SQMF2=R(4',0",0)|A,S.Q) (A6)  THM
and =(n,A,S,Q,L,Q P, ;J,Myn,A,S.Q.j,L;J M)
IA,SSOMF=R(¢’,60",a")|A,S,Q) (A13)
=exp(—iQa’)|A,S,Q)MF2, (A7)  that can be evaluated by integration over nuclear and elec-

) _ ) _ tronic coordinates after substitution of Eq&7) and (A10).
Electronic wave functions defined with respect to ttieee-  ypon switching to the three-angle MF electronic wave func-
angle embeddedBF frame are given by tions introduced in Eq(A7) the electronic integral becomes
simply MF(A,S,Q|A,S,Q)MF=1. The integration over the
nuclear coordinates is performed most easily in the MF co-
where we use the BF label, even though these functions a@rdinatesd’, ¢', B’, anda’. We substitute
quantized with respect to the FiFaxis, just as the MF func-

|A,S,Q)BF=R(a,B,$)R(0,0,0)|A,S,Q), (A8)

—_D-1/ 41 g ro
tions. This can be readily verified since the operator reIatiorYL’ML('B’“)_ R™(¢",0 'O)YL'ML(B a’) (A4)
in Eq. (A5) yields
j— ! ! L ! ! *
|A,S,Q>BF:eX[XiQ’ZT)|A,S,Q>MF. (Ag) _g YL,MI'_(B & )DML'M(_(¢ ,0 10) . (A15)
L

In Ref. 9 a basis for the He—HFEX 2IT) complex in SF

_ After integration overa’ only the term withM| =0 sur-
coordinates

vives, which allows us to integrate ovgf. Upon introduc-

In,A,S,Q,j,L;3,M,;) tion of a dummy third anglee via 1/2m [37dx exi(P,—Q
) 1 —Q,)x]=1 the remaining integral of the product of thrBe
—n)|A,S,Q)MF2 2j+1 2 DU (4.6 0)* matrices overs’ and #’ becomes a standard integfalhe

. v, T result is a product of two Clebsch—Gordan coefficients. Fi-

nally the summation ovem and M, may be performed by
using the orthogonality relation of Clebsch—Gordan
coefficientd* and we obtain

2j+1]¥2
2371 UL

XYL, (B,a)(i,mL,M[J,M;) (A10)

was obtained by coupling the HFmonomer functions with
total angular momentunj and the spherical harmonics QL)
Y (B,@) by means of the Clebsch—Gordan coefficients To 7=
{(j,m;L,M_|3,M;).** The two-angle embedded electronic
wave function may be replaced Bhp,S,Q)MF if simulta-
neously the third argumei®) of the functionDY),, is set to
a'. By a straightforward extension of the definition of the TQ!J)L=<n,A,S,Q,j,PR;J,MJln’A,S,Q,j,L;\],MJ>. (A17)
case(a) basis in Ref. 14 we define a MF basis for the com- '

plex as Here the electronic integral yield§7(A,S,Q[A,S,Q)MF
=exp(=iQdm). The nuclear integral is most easily evaluated
in BF coordinates, which requires the substitution

J,P). (A16)

The elements of the matrix that transforms the SF basis
into the BF basis can be evaluated similarly

In,A,S,Q.,L,Q, P, ;J,M;)

112 o
=Im 231;1} DD 5 (.0 0)* Dfa(',0" )
= — (i *n3) .
XR(¢',0"0[YL 0, (B a)|A,SQ)], (A11) % Dplo(a@.B,4)* D) ((0,0,m)*. (A18)
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