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Theoretical study of the He–HF ¿ complex. II. Rovibronic states
from coupled diabatic potential energy surfaces

G. Dhont
Groupe de Chimie The´orique, Universite´ de Marne-la-Valle´e, F-77454 Champs sur Marne, France
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Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

~Received 26 August 2003; accepted 6 October 2003!

The bound rovibronic levels of the He–HF1 complex were calculated for total angular momentum
J5 1

2,
3
2,

5
2,

7
2, and 9

2 with the use ofab initio diabatic intermolecular potentials presented in Paper I
and the inclusion of spin–orbit coupling. The character of the rovibronic states was interpreted by
a series of calculations with the intermolecular distanceR fixed at values ranging from 1.5 to 8.5 Å
and by analysis of the wave functions. In this analysis we used approximate angular momentum
quantum numbers defined with respect to a dimer body-fixed~BF! frame with itsz axis parallel to
the intermolecular vectorR and with respect to a molecule-fixed~MF! frame with itsz axis parallel
to the HF1 bond. The linear equilibrium geometry makes the He–HF1 complex a Renner–Teller
system. We found both sets of quantum numbers, BF and MF, useful to understand the
characteristics of the Renner–Teller effect in this system. In addition to the properties of a ‘‘normal’’
semirigid molecule Renner–Teller system it shows typical features caused by large-amplitude
internal~bending! motion. We also present spectroscopic data: stretch and bend frequencies, spin–
orbit splittings, parity splittings, and rotational constants. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1629672#

I. INTRODUCTION

The preceding paper,1 from now on referred to as Paper
I, presents the calculation of the two asymptotically degen-
erate adiabatic potential surfaces of the He–HF1 complex
that correlate with the degenerateX 2 P ground state of
HF1. The twofold spatial degeneracy of thisP state is lifted,
except when the complex has a linear geometry. The method
used for this calculation is a recently proposed2 ab initio
method that combines the potential energy surface of the
neutral closed-shell complex, He–HF in this case, with the
ionization energies of the complex and of one of the mono-
mers ~here HF! to obtain the interaction energy of the cat-
ionic complex. Multiple~excited state! potential surfaces can
be efficiently generated by the computation of higher ioniza-
tion energies of the neutral species, a feature that is used in
this case to obtain simultaneously the lowest two asymptoti-
cally degenerate potential surfaces of He–HF1. Paper I also
presents diabatic surfaces obtained from the two adiabatic
ones and a full analytic fit of these diabatic surfaces. In the
present paper we proceed by calculating the rovibronic states
of the complex on the diabatic potential surfaces, with the
inclusion of spin–orbit coupling. In Sec. II we describe the
formalism used to perform these calculations in space-fixed
and different body-fixed coordinates. The nonadiabatic cou-
pling that is particularly important near the linear geometry
of the complex where the adiabatic states become degenerate
is implicitly taken into account in these calculations. In Sec.

III we present and discuss the results, first of one-
dimensional calculations with the intermolecular distanceR
fixed at a range of values, then of the full calculations.

Since the two potential surfaces computed in Paper I
correspond to a linear equilibrium geometry of He–HF1 this
complex is a Renner–Teller system. It is much more strongly
bound than the neutral Van der Waals complex He–HF, but
considerably less rigid than a normal, chemically bound, lin-
ear triatomic molecule where Renner–Teller coupling has
mostly been studied. Therefore, we will pay special atten-
tion, in Sec. III C, to the way in which the Renner–Teller
effect becomes manifest in this system. We will compare our
results to those of Schmelz and Rosmus,3 who made a simi-
lar study on different potential surfaces.

II. CALCULATION OF ROVIBRONIC STATES

Different coordinates and basis sets can be used to cal-
culate the vibration–rotation–tunneling levels of Van der
Waals dimers. In particular, one may choose a space-fixed
~SF! basis or various body-fixed~BF! bases,4,5 as well as
different angular momentum coupling schemes.6 The rovi-
bronic states of He–HF1 were first calculated in this work in
a coupled SF basis. For the interpretation of the results and
the understanding of the Renner–Teller effect it turned out,
however, that the expansion of the rovibronic states and the
consideration of various approximate quantum numbers with
respect to different BF frames was very useful. So, we also
performed calculations with body-fixed bases with angular
momentum projection quantum numbers defined either BF
with respect to the vectorR that points from the HF1 center

a!Author to whom correspondence should be addressed. Electronic mail:
avda@theochem.kun.nl

JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 1 1 JANUARY 2004

1030021-9606/2004/120(1)/103/14/$22.00 © 2004 American Institute of Physics

Downloaded 25 May 2012 to 131.174.17.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1629672


of mass to the He nucleus or molecule fixed~MF! with re-
spect to the HF1 bond axisr . It is not necessary to repeat the
computation of the energy levels in the different frames; the
transformation from the SF basis to the BF and MF bases is
given analytically. Before we discuss the formalism to com-
pute the rovibronic levels of the complex, we briefly summa-
rize the fine structure of HF1 in its X 2P ground state.

The dominant term that splits the levels of HF1(X 2P)
is the spin–orbit coupling ~coupling constant A
52293.14 cm21). Approximate quantum numbers that
characterize these energy levels areL561 and V5L
1S. The quantum numberL is the eigenvalue of the elec-
tronic orbital angular momentum operatorl̂ z andS52 1

2,
1
2 is

the eigenvalue ofŜz , which is the component of the spin
(S5 1

2) along the HF1 bond axis. The total angular momen-
tum of the HF1 monomer is represented by the operatorĵ
5 l̂1Ŝ1R̂, where l̂ , Ŝ, andR̂ are the electronic orbital and
spin, and the nuclear~rotation! angular momenta, respec-
tively. For free HF1 the quantum numberj that corresponds
with the operatorĵ is an exact quantum number. The eigen-
value V of the electronic angular momentum operatorl̂ z

1Ŝz is also an eigenvalue ofĵ z , because the nuclear angular
momentumR̂ has a vanishingz component. As a result of
spin–orbit coupling, the levels withV56 3

2 are lower by
about 300 cm21 than the levels withV56 1

2, which makes
HF1(X 2P) a typical Hund’s coupling case (a) system. For
j .0 V is not an exact quantum number even for the free
monomer, because states with differentV are slightly mixed
by Coriolis coupling. The effective monomer Hamiltonian
that describes the complete level structure of HF1(X 2P) is

ĤHF15B0@ ĵ 21Ŝ22 ĵ z
22Ŝz

22Ŝ2 ĵ 22Ŝ1 ĵ 1#1A l̂zŜz , ~1!

where B0517.5779 cm21 is the rotational constant andA
52293.14 cm21 the spin–orbit coupling constant of
HF1(X 2P) in its vibrational ground state.7 The components
of the angular momentum operatorĵ are given with respect
to the MF z axis and obey anomalous commutation
relations.8 The corresponding shift operators are therefore
defined as ĵ 65 ĵ x7 i ĵ y , whereas the spin shift operators
have the normal definitionŜ65Ŝx6 iŜy .

Since the H–F vibration has a much higher frequency
than the vibrations of the He–HF1 complex we froze the
HF1 bond length at the equilibrium valuer e51.0011 Å.7 It
was shown in Paper I that the intermolecular potential de-
pends strongly on the HF1 bond length, however. The global
minimum in a full three-dimensional potential, which is the
sum of the intermolecular potential and the H–F1 pair po-
tential, occurs atr 51.0273 Å. We also computed rovibronic
levels with r fixed at this value. The Hamiltonian of the
He–HF1(X 2P) complex in SF coordinates can then be
written ~in atomic units! as

Ĥ5
21

2mR

]2

]R2 R1
L̂2

2mR2 1ĤHF11V̂, ~2!

wherem53.3353 u is the reduced mass of the dimer andL̂
is the angular momentum operator corresponding to the end-
over-end rotation. The potential energy operatorV̂, given in
terms of diabatic states, is most conveniently expressed in
body-fixed coordinates and will be specified below. In writ-
ing Eq. ~2! we assumed implicitly that the interaction with
He does not change the spin–orbit coupling term in the
Hamiltonian of the HF1 monomer. The SF dimer basis and
the matrix elements of the Hamiltonian in Eqs.~1! and ~2!
over this basis can be found in a recent paper on the bound
levels of the He–CO(a 3P) complex.9

A. R embedding

Since He–HF1(X 2P) is much more strongly bound
than He–CO(a 3P) the bound states of He–HF1(X 2P) are
most conveniently calculated and interpreted in a basis with
coordinates and angular momentum quantum numbers de-
fined with respect to a BF frame with itsz axis alongR. The
BF coordinates are defined by writing the SF components of
the vectorsR and r as

R5RRz~a!Ry~b!ez , ~3!

r5rRz~a!Ry~b!Rz~f!Ry~u!ez ~4!

with the unit vectorez being the column vector~0,0,1! and
the rotation matrices

Rz~a!5S cosa 2sina 0

sina cosa 0

0 0 1
D ,

Ry~b!5S cosb 0 sinb

0 1 0

2sinb 0 cosb
D . ~5!

The BF coordinateu is the angle betweenr andR which is
zero for the linear He–HF1 geometry. The elements of the
matrix R(a,b,f)5Rz(a)Ry(b)Rz(f) are the direction co-
sines of the~three-angle embedded! BF frame with respect to
the SF frame.

The Hamiltonian for the rovibronic states of the complex
on the multiple diabatic potential surfaces reads in BF coor-
dinates as

Ĥ5
21

2mR

]2

]R2 R1
ĵ 222ĵ• Ĵ1 Ĵ2

2mR2 1ĤHF1

1 (
L8,L

uL8&BFVL8,L
BF

~R,u!BF^Lu. ~6!

The monomer HamiltonianĤHF1 is the same as in the SF
representation, see Eq.~1!. The diabatic statesuL&BF of the
He–HF1(X 2P) complex, labeled by the HF1 monomer
quantum numberL561, are here expressed in BF coordi-
nates, cf. Eq.~A8!. The expansion of the diabatic potentials
is given by
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VL8,L
BF

~R,u!5BF^L8uV̂uL&BF

5(
l

v l
L8,L~R!D0,L2L8

( l )
~0,u,0!. ~7!

The functionsDm8,m
( l ) (f,u,x) are Wigner rotation functions8

with two of the angles being zero in this case; note that only
functions withm850 andm5L2L8 occur in the expan-
sion. We obtained the above expansion from the correspond-
ing expansion in MF coordinates derived in Ref. 9

VL8,L
MF

~R,u!5(
l

v l
L8,L~R!DL2L8,0

( l )
~0,u,0!

5(
l

v l
L8,L~R!CL2L8

( l )
~u,0! ~8!

with the use of the transformation of the electronic wave
functions in Eq.~A9!. The functionsCm

( l )(u,f) are Racah
normalized spherical harmonics. It was demonstrated in Ref.
9 that the restriction of the expansion to functions withm
5L2L8 follows from the invariance of the potential energy
operatorV̂ under rotations of the complex about the HF1

bond axis. The expansion coefficientsv l
L8,L(R) can be writ-

ten, apart from a known normalization constant, as integrals
over the diabatic potentialsVL8,L

MF (R,u) multiplied with the
corresponding spherical harmonicCL2L8

( l ) (u,0). The integra-

tion overu is performed with the analytic fits of theab initio
potentials from Paper I and the use of numerical Gauss–
Legendre quadrature.

The BF dimer basis, as derived in Appendix A, reads

un,L,S,V, j ,PR ;J,MJ&

5un&uL,S,V&BF
@~2 j 11!~2J11!#1/2

4p
DPR ,V

( j ) ~0,u,0!*

3DMJ ,PR

(J) ~a,b,f!* , ~9!

where the total angular momentumJ and its SFz component
MJ are exact quantum numbers andPR is the projection of
both J and the monomer angular momentumj on the BFz
axis. The electronic wave functionuL,S,V&BF, labeled by
the Hund’s case~a! quantum numbersL, S, V of HF1, and
implicitly by S5V2L, is a diabatic wave function of the
He–HF1(X 2P) complex, here expressed in BF coordinates
@Eq. ~A8!#. The symmetric rotor functionDPR ,V

( j ) (0,u,0)* de-

scribes the HF1 rotation with respect to the dimer BF frame
and the functionDMJ ,PR

(J) (a,b,f)* the overall rotation of the

complex. The radial basis functionsun&5xn(R) are Morse
oscillator type functions of the form defined in Ref. 10.

The matrix elements of the Hamiltonian in the BF basis
are

^n8,L8,S,V8, j 8,PR8 ;J,MJuĤun,L,S,V, j ,PR ;J,MJ&

5dL8,LdV8,Vd j 8, jdP
R8 ,PRF ^n8u

21

2mR

]2

]R2 Run&1^n8u
1

2mR2 un&~J~J11!1 j ~ j 11!22PR
2 !1dn8,nB0~ j ~ j 11!1S~S11!

2V22S2!1dn8,nALSG2d j 8, jdL8,LFdV8,V^n8u
1

2mR2 un&~CP
R8 ,PR21

J
CP

R8 ,PR21
j

1CP
R8 ,PR11

J
CP

R8 ,PR11
j

!

1B0dP
R8 ,PR

dn8,n~CV8,V21
j CS8,S21

S
1CV8,V11

j CS8,S11
S

!G1^n8,L8,S,V8, j 8,PR8 ;J,MJuV̂un,L,S,V, j ,PR ;J,MJ& ~10!

with shift matrix elementsCm8,m61
j

5dm8,m61Aj ( j 11)2m(m61). The matrix elements of the potential energy operator are

^n8,L8,S,V8, j 8,PR8 ;J,MJuV̂un,L,S,V, j ,PR ;J,MJ&

5A~2 j 811!~2 j 11!~21!PR82V8dS8,S(
l

^n8uv l
L8,L~R!un&S j 8 l j

2PR8 0 PR
D S j 8 l j

2V8 L82L V
D . ~11!

The expressions in large round brackets are 3j symbols.11

The parity-adapted basis in the BF embedding is

un,uLu,S,V, j ,PR ;J,MJ ,p&

5un,L,S,V, j ,PR ;J,MJ&

1p~21!J2Sun,2L,S,2V, j ,2PR ;J,MJ& ~12!

with p being the parity under inversion andp(21)J2S the
spectroscopic parity,e or f .

B. r embedding

In order to recognize the characteristic features of a
Renner–Teller system it is also useful to express the rovi-
bronic wave functions in coordinates defined with respect to
a frame with itsz axis parallel to the HF1 monomer bond
axis r . We call this frame MF. The MF coordinates are de-
fined by writing the SF components of the vectorsr andR as

r5rRz~f8!Ry~u8!ez , ~13!

R5RRz~f8!Ry~u8!Rz~a8!Ry~b8!ez . ~14!
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The MF coordinateb8, the angle between the vectorsR
and r , is the same as the BF coordinateu. The matrix
R(f8,u8,a8)5Rz(f8)Ry(u8)Rz(a8) contains the direction
cosines of the~three-angle embedded! MF frame with re-
spect to the SF frame.

The dimer Hamiltonian in the MF representation is simi-
lar to the SF Hamiltonian in Eq.~2! except for the appear-
ance of the HF1 monomer term. Since the quantum number
j is not defined in the MF representation, we write the HF1

monomer Hamiltonian as

ĤHF15B0@ Ĵ21L̂21Ŝ22 Ĵz
22L̂z

22Ŝz
22~ L̂2Ĵ21L̂1Ĵ1!

2~Ŝ2Ĵ21Ŝ1Ĵ1!1~ L̂1Ŝ21L̂2Ŝ1!#1A l̂zŜz .

~15!

The potential energy operator is now

V̂5 (
L8,L

uL8&MF VL8,L
MF

~R,b8! MF^Lu ~16!

with diabatic statesuL&MF in MF coordinates, cf. Eq.~A7!.
The expansion of the diabatic potentialsVL8,L

MF (R,b8) is

given by Eq.~8! with u5b8. The dimer basis functions in
MF coordinates are~cf. the Appendix!

un,L,S,V,L,VL ,Pr ;J,MJ&

5un&uL,S,V&MFYLVL
~b8,0!

3F2J11

4p G1/2

DMJ ,Pr

(J) ~f8,u8,a8!* , ~17!

whereVL is the projection of the end-over-end angular mo-
mentumL on the HF1 axis andPr5V1VL is the projec-
tion of the total angular momentumJ on the same axis. The
diabatic electronic wave functionsuL,S,V&MF are defined
with respect to the MF frame@Eq. ~A7!#. In Renner–Teller
systems it is customary to define also a quantum numberK,
the projection of the electronic and nuclear orbital angular
momenta on the body-fixedz axis or, in other words, the
eigenvalue of the total angular momentum operatorĴz minus
the eigenvalue of the spin operatorŜz . Here we defineKr

5L1VL5Pr2S. The matrix elements of the Hamiltonian
in the MF basis read

^n8,L8,S,V8,L8,VL8 ,Pr8 ;J,MJuĤun,L,S,V,L,VL ,Pr ;J,MJ&

5dL8,LdV8,VdL8,LdV
L8 ,VLF ^n8u

21

2mR

]2

]R2 Run&1^n8u
L~L11!

2mR2 un&1dn8,nB0~J~J11!1L~L11!1S~S11!

2Pr
22VL

22S2!1dn8,nALSG2B0dL8,LdL8,Ldn8,n@~CP
r8 ,Pr21

J
C

V
L8 ,VL21

L
1CP

r8 ,Pr11
J

C
V

L8 ,VL11
L

!

1~CP
r8 ,Pr21

J
CS8,S21

S
1CP

r8 ,Pr11
J

CS8,S11
S

!2~C
V

L8 ,VL11
L

CS8,S21
S

1C
V

L8 ,VL21
L

CS8,S11
S

!#

1^n8,L8,S,V8,L8,VL8 ,Pr8 ;J,MJuV̂un,L,S,V,L,VL ,Pr ;J,MJ&. ~18!

The matrix elements of the potential are

^n8,L8,S,V8,L8,VL8 ,Pr8 ;J,MJuV̂un,L,S,V,L,VL ,Pr ;J,MJ&

5A~2L811!~2L11!dS8,SdP
r8 ,Pr(l

^n8uv l
L8,L~R!un&~21!VL8S L8 l L

0 0 0D S L8 l L

2VL8 L2L8 VL
D . ~19!

The parity-adapted basis in the MF embedding is

un,uLu,S,V,L,VL ,Pr ;J,MJ ,p&

5un,L,S,V,L,VL ,Pr ;J,MJ&

1p~21!J2Sun,2L,S,2V,L,2VL ,2Pr ;J,MJ&.

~20!

It is also useful to know how to transform the basis from one
frame to another. This is derived in the Appendix.

C. Computational details

The bound states of the complex were obtained from a
full diagonalization of the Hamiltonian matrix. We coded the

construction of this matrix in the three different sets of co-
ordinates for which the formulas are given above~SF, BF,
MF! and used the basis transformations specified in the Ap-
pendix to check our codes. Calculations were performed for
J up to 9

2 inclusive. The levels were converged to within
1024 cm21 with an angular basis truncated atj max5

35
2 and a

radial basis withnmax514. Test calculations withj max5
41
2

gave levels that did not deviate from thej max5
35
2 results by

more than 1025 cm21. The nonlinear parametersRe , De ,
and ve of the 15 radial basis functionsxn(R) were opti-
mized by energy minimizations with smaller values ofnmax.
The final calculation was performed usingRe55.3 a0 , De

5620 cm21, andve5140 cm21.
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III. RESULTS

A. One-dimensional calculations

In order to understand how the states of the HF1 mono-
mer become perturbed and mixed by the interaction with the
He atom it is interesting to start with calculations in which
the intermolecular distanceR is fixed and is reduced from
infinity to its equilibrium value. We have performed such
fixed-R calculations for a set of distances ranging from 1.5 to
8.5 Å, with a grid spacing of 0.0085 Å forR,3.3 Å and
0.15 Å for larger distances. An analysis of the wave func-
tions for R52.26 and 3.7 Å in theR embedded frame is
presented in Table I forJ5 3

2 and Table II forJ5 1
2. The first

observation one can make is that the quantum numberPR ,
the projection ofJ on the BFz axis R, is always a nearly
good quantum number. The energies are plotted as functions
of R in Fig. 1 for PR56 1

2, J5 1
2 and forPR56 3

2, J5 3
2. The

picture exhibits different dissociation limits. The lowest three
limits correspond to theuVu5 3

2 ground state of the HF1

monomer, the first one at2114.2138 cm21 to j 5 3
2, the sec-

ond one toj 5 5
2, and the third one toj 5 7

2. The fourth as-
ymptote corresponds to the excited spin–orbit state of HF1

with uVu5 1
2 and j 5 1

2. We did not plot the energies with
PR56 1

2, J5 3
2 because they only differ from thePR56 1

2,
J5 1

2 energy curves by one quantum of overall rotation and
on the scale of Fig. 1 would coincide with the latter curves.
The corresponding eigenvectors are very similar, cf. Tables I
and II. The lowest curve has a global minimum at
21302.37 cm21 for R52.258 Å and corresponds toJ5 3

2,
PR56 3

2, V56 3
2, ande parity.

Figure 1 shows that first, from largeR inwards to about
3.7 Å, the asymptotic levels of givenj split into 2j 11 levels
with PR52 j ,2 j 11,...,j by the anisotropic interaction with
the He atom. Monomer states of givenV that in free HF1

are mixed only by Coriolis coupling, are now coupled also
by the off-diagonal diabatic interaction potentialsV61,71 ,
i.e., by the adiabatic ‘‘difference potential’’ (VA92VA8)/2.
For smaller distances the interaction with He becomes stron-
ger, the energy curves in Fig. 1 show~avoided! crossings,
and the monomer spin–orbit states with differentuVu start to
mix. This is illustrated forR52.26 Å in Table I. Only the
lowest bound state, withuVu5 3

2, shows negligible mixing
with states ofuVu5 1

2, cf. also Fig. 1.

TABLE I. Rovibronic states forJ5
3
2 from calculations withR fixed. EnergiesE in the first row correspond to states ofe spectroscopic parity,DE5Ef

2Ee in the second row is the parity splitting. The other entries are populations~in percent! of basis functions inR embedding with approximate quantum
numbersPR , V.

R52.26 Å R53.7 Å

E (cm21) 21302.3696 21031.1954 2898.0328 2686.5220 2225.9358 2196.2161 2178.4279 2168.6719

DE (cm21) 20.000 01 20.076 37 20.930 72 0.781 91 20.000 01 20.032 64 0.032 86 0.000 22

PR V
1
2

1
2 0.00 79.60 20.48 2.47 0.00 0.98 0.01 0.00

2
1
2

1
2 0.00 0.04 1.65 37.37 0.00 0.00 0.94 0.01

1
2

3
2 0.03 20.10 77.59 1.21 0.14 98.30 0.57 0.00

2
1
2

3
2 0.00 0.22 0.25 57.23 0.00 0.58 97.24 1.23

3
2

1
2 0.73 0.01 0.01 0.23 0.78 0.00 0.00 0.00

2
3
2

1
2 0.04 0.00 0.00 0.13 0.00 0.00 0.01 0.90

3
2

3
2 99.20 0.02 0.03 1.28 99.08 0.14 0.00 0.00

2
3
2

3
2 0.00 0.00 0.00 0.09 0.00 0.00 1.23 97.86

TABLE II. Rovibronic states forJ5
1
2 from calculations withR fixed. For explanations, see Table I.

R52.26 Å R53.7 Å

E (cm21) 21034.044 81 2901.087 22 2689.1133 2586.5951 2197.2510 2179.4627 2109.4178 2100.6141

DE (cm21) 20.038 19 20.465 44 0.405 33 20.131 69 20.016 41 0.016 62 20.085 87 0.085 72

PR V
1
2

1
2 79.56 20.62 2.52 7.56 0.99 0.00 2.15 0.03

2
1
2

1
2 0.07 1.61 37.96 35.96 0.00 0.96 0.02 2.24

1
2

3
2 20.20 77.38 1.44 37.59 98.89 0.12 96.82 1.01

2
1
2

3
2 0.17 0.39 58.08 18.89 0.12 98.92 1.01 96.72
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B. Full calculation

Tables III and IV contain the rovibronic energy levels
and parity splittings from full-dimensional calculations for
J5 1

2,
3
2,

5
2,

7
2,

9
2. The first column indicates the dominant char-

acter of the corresponding eigenstate. The label2S11KP is

commonly used in Renner–Teller systems; the quantum
numbersS, P5Pr , andK5Kr were defined in Sec. II B.

In the linear triatomic open-shell molecules in which
Renner–Teller coupling is mostly studiedK is the sum of the
electronic orbital angular momentumL and the vibrational
angular momentum, usually calledl , generated by the degen-
erate bending mode. The quantum number that corresponds
most closely tol in the He–HF1 complex is the quantum
numberVL defined in ther embedding andK is defined in
this MF embedding asKr5L1VL5Pr2S. The problem in
the BF embedding is that the electronic angular momentum
L is the projection on the HF1 axis r , the nuclear angular
momentum projectionVL is not defined, while the total an-
gular momentum projectionPR is defined with respect to the
intermolecular vectorR. Still, we write KR5PR2S also in
the BF system. This is physically meaningful because the
complex has a linear equilibrium geometry with a rather
steep well in which the lower rovibronic states are localized
and the vectorsr and R remain nearly parallel. Table V
shows a comparison of the main character of the rovibronic
states in terms of the quantum numbers for the two embed-
dings considered. In all cases except a few, in which the
character is quite mixed anyway, we find agreement between
the assignments of the two embeddings. The population of
the dominant2S11KP component is systematically higher in
the R embedding, which shows that this embedding yields
the better approximate quantum numbers. This seems in con-
tradiction with our previous observation that the quantum
numberK is more strictly defined in ther embedding, but
one should realize that this was a purely formal argument,

FIG. 1. Energy levels from fixed-R calculations, plotted as functions ofR.

Closed lines foruPRu5 1
2,J5

1
2 and dashed lines foruPRu5 3

2,J5
3
2.

TABLE III. Rovibronic energy levels~in cm21) of parity e in r embedding. The assigment in terms of2S11KP with K5Kr andP5Pr and the stretch, bend
quantum numbersvs , vb is explained in the text. States withuKu50,1,2,3 are denoted byS, P, D, F.

2S11KP(vs ,vb) J5
1
2 J5

3
2 J5

5
2 J5

7
2 J5

9
2

2P3/2(0,0) ¯ 21125.6274 21121.1001 21114.7641 21106.6216
2P1/2(0,0) 2862.7696 2860.0766 2855.5705 2849.2533 2841.1274
2P3/2(1,0) ¯ 2818.1741 2814.0112 2808.1859 2800.7009
2S1/2(0,1) 2750.4286 2747.9311 2743.6468 2737.5769 2729.7240
2D5/2(0,1) ¯ ¯ 2729.9411 2723.7550 2715.8068
2P3/2(2,0) ¯ 2576.4169 2572.5091 2567.0542 2560.0688
2S1/2(1,1) 2577.1277 2574.9012 2571.0322 2565.5213 2558.3691
2P1/2(0,2) 2562.9230 2559.9903 2555.3150 2548.9100 2540.7956
2P3/2(0,2) ¯ 2556.4190 2552.1326 2546.1146 2538.3456
2D5/2(1,1) ¯ ¯ 2482.6417 2477.1104 2470.0061
2P1/2(1,0) 2487.2650 2484.9705 2481.0415 2475.4763 2468.2760
2S1/2(0,3) 2474.7757 2472.2898 2467.9698 2461.8190 2453.8415
2D3/2(0,1) ¯ 2454.5045 2449.9153 2443.4953 2435.2501
2S1/2(0,1) 2436.7975 2434.3995 2430.1277 2423.9965 2416.0239
2F7/2(0,2) ¯ ¯ ¯ 2415.0390 2407.7367
2D5/2(0,3) ¯ ¯ 2391.2582 2385.9204 2379.0634
2P3/2(3,2) ¯ 2392.7682 2388.2957 2382.2816 2374.9899
2P3/2(3,0) ¯ 2388.3586 2384.6341 2379.2496 2371.9206
2P1/2(1,4) 2383.8626 2381.1165 2376.6832 2370.4884 2362.5129
2P3/2(0,4) ¯ 2370.8265 2366.8738 2361.7200 2355.0922
2P1/2(2,2) 2371.9084 2369.3066 2364.0358 2356.5184 2347.2930
2S1/2(2,3) 2361.7989 2359.1454 2354.8810 2348.9126 2341.0510
2P3/2(1,2) ¯ 2355.9188 2351.9194 2346.3406 2339.1907
2S1/2(0,5) 2321.0598 2318.9936 2314.9773 2308.9983 2301.0462
2D5/2(1,3) ¯ ¯ 2304.2796 2298.4314 2291.0522
2S1/2(1,3) 2303.9462 2302.4868 2299.4022 2294.6780 2288.3062
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while the assignment of approximate quantum numbers is of
more physical nature.

The binding energyD0 of the complex is 1125.6 cm21

for J5 3
2, uPr u5

3
2, and spectroscopic paritye. Note, for com-

parison, that the global minimum in this potential at the lin-
ear geometry with Re52.24 Å has well depth De

51631 cm21. The analysis of the wave functions using the
~BF! R embedding shows that the well is sufficiently deep to
considerably hinder the rotation of HF1: basis functions with
different j are strongly mixed.

Table III also lists stretch and bend quantum numbersvs

and vb . The assignment of these quantum numbers was
made with the help of the wave functions, some of which are
plotted in Figs. 2 and 3. The stretch quantum numbervs is
determined by counting the number of nodes in the wave
function along the radial coordinate. The bend quantum
numbervb is also determined from the number of nodes, but
in a slightly more complicated manner. The bending mode of
a semirigid triatomic molecule is denoted byvb

l , where l
takes only the values2vb ,2vb12,...,vb . Here, the vibra-
tional angular momentuml is equal toP2S2L. The eigen-
functions of a two-dimensional isotropic harmonic oscillator
can be written asFv,l(q)exp(ila), whereq is the amplitude
of the bending vibration anda is the phase, andFv,l(q) has
(v2u l u)/2 nodes. Becausel is known, we can count the num-
ber of nodes in the wave function along the angular coordi-
nate and deduce the value ofvb .

Comparison of thevs , vb50,0 energy levels from the
full calculation in Table III with the lower levels from the
fixed-R calculation in Tables I and II shows that the stretch
zero-point energy of the complex is about 175 cm21. In the
harmonic approximation this would correspond to a stretch

frequency of about 350 cm21. From the energy differences
between the2P3/2 levels withvs50,1,2 andvb50 we find
308 cm21 for the stretch fundamental frequency and
549 cm21 for the first overtone, indicative of strong anhar-
monicity. This anharmonicity made it difficult to recognize
other stretch progressions. Figure 4 shows an overview of
the calculated rovibronic levels with their successivevs

51,2,3 stretch excited states~as far as they could be identi-
fied! separated into different columns. Two of the higher di-
agonal arrows that refer to stretch excitations do not connect
states of the same quantum numbersK and P, but one
should realize that these approximate quantum numbers are
not always well defined. The states concerned are of mixed
character and the character may change upon stretch excita-
tion.

The parity splittings of the levels withJ5 1
2 up to 9

2 pre-
sented in Table IV are in reasonable agreement with the re-
sults of the fixed-R calculation at 2.26 Å in Tables I and II.
The largest splittings occur for the levels withuPu5 1

2 and
these splittings are nicely proportional toJ1 1

2. This simple
linear dependence onJ1 1

2 is well known forl doubling in
linear molecules.12 Here it can be understood by considering
the Hamiltonian in Eq.~15! and the parity-adapted basis in
Eq. ~20!. From the latter it follows that the energy difference
between functions withe and f parity is caused by a cou-
pling between the basis componentsuL,S,V,VL ,Pr& and
u2L,2S,2V,2VL ,2Pr&. The J-dependent coupling op-
erators in the Hamiltonian of Eq.~15! are the shift operators

Ĵ6L̂6 and Ĵ6Ŝ6 . The latter operator indeed gives a first-
order splitting between the components withS,Pr56 1

2,

6 1
2 that is proportional toA@J(J11)1 1

4#A@S(S11)1 1
4#

TABLE IV. Parity splitting DE5Ef2Ee ~in cm21) of the levels in Table III.

2S11KP(vs ,vb) J5
1
2 J5

3
2 J5

5
2 J5

7
2 J5

9
2

2P3/2(0,0) ¯ 0.0000 0.0000 0.0001 0.0002
2P1/2(0,0) 0.0567 0.1134 0.1701 0.2267 0.2833
2P3/2(1,0) ¯ 0.0000 0.0000 0.0001 0.0002
2S1/2(0,1) 0.3675 0.7337 1.0971 1.4565 1.8105
2D5/2(0,1) ¯ ¯ 0.0000 0.0000 0.0000
2P3/2(2,0) ¯ 0.0006 0.0016 0.0023 0.0030
2S1/2(1,1) 0.4719 0.9376 1.3917 1.8301 2.2484
2P1/2(0,2) 20.6069 21.2053 21.7859 22.3363 22.8391
2P3/2(0,2) ¯ 20.0004 20.0031 20.0133 20.0426
2D5/2(1,1) ¯ ¯ 0.0000 0.0000 0.0000
2P1/2(1,0) 0.2976 0.5844 0.8510 1.0909 1.3006
2S1/2(0,3) 0.5355 1.0680 1.5937 2.1068 2.6000
2D3/2(0,1) ¯ 20.0022 20.0086 20.0213 20.0420
2S1/2(0,1) 0.8638 1.7357 2.6226 3.5299 4.4601
2F7/2(0,2) ¯ ¯ ¯ 0.0000 0.0000
2D5/2(0,3) ¯ ¯ 20.0023 20.0065 20.0070
2P3/2(3,2) ¯ 20.0006 0.0030 0.0156 0.0283
2P3/2(3,0) ¯ 0.0022 0.0079 0.0184 0.0490
2P1/2(1,4) 20.6516 21.2274 21.6942 22.0432 22.2524
2P3/2(0,4) 0.2764 0.2233 0.8807 1.3386 1.6524
2P1/2(2,2) ¯ 0.2969 20.1394 20.3734 20.6122
2S1/2(2,3) 20.6501 21.3329 22.0817 22.9202 23.7046
2P3/2(1,2) ¯ 0.0014 0.0061 0.0158 0.0266
2S1/2(0,5) 1.6586 3.2800 4.8236 6.2406 7.4659
2D5/2(1,3) ¯ ¯ 0.0014 0.0091 0.0367
2S1/2(1,3) 1.8674 3.6779 2.6978 2.9431 3.0847
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5(J1 1
2)(S1 1

2)5(J1 1
2). The magnitude of the actual split-

tings in Table IV is on the order of the end-over-end rota-
tional constant of the complex~see below!, rather than the
size of the monomer rotational constantB0 that appears in
Eq. ~15!. This is a consequence of the quenching of the HF1

monomer rotations in the complex.
From the levels withJ5 1

2,
3
2,

5
2,

7
2,

9
2 we extracted rota-

tional constants of the complex. First, we averaged the ener-

gies of thee and f states to remove the effect of the parity

splitting. We note that theJ dependence of the energy levels

originates from the term@ Ĵ222ĵ "Ĵ#/(2mR2) in the Hamil-

tonian of Eq.~6!. After removal of the parity splitting caused
by theJ-dependent shift operators the energy contribution of

TABLE V. Comparison of the main character~in percent! of the levels in Table III inR vs r embedding. Quantum numbersP,K are eitherPR ,KR or Pr ,Kr ;
the label2S11KP corresponds to the latter.

Energy (cm21) P K K2L R-emb r -emb

21125.6274
3
2 1 0 2P3/2(0,0) 99.2 93.2

2862.7696
1
2 1 0 2P1/2(0,0) 71.4 70.8

2818.1741
3
2 1 0 2P3/2(1,0) 99.1 91.9

2750.4286
1
2 0 21 2S1/2(0,1) 69.2 68.4

2729.9411
5
2 2 1 2D5/2(0,1) 97.9 75.4

2576.4169
3
2 1 0 2P3/2(2,0) 96.7 82.2

2577.1277
1
2 0 21 2S1/2(1,1) 50.9 45.0
1
2 1 0 35.7 34.5

2562.9230 2
1
2

21 22 2P1/2(0,2) 61.7 55.2

2556.4190
3
2 1 0 2P3/2(0,2) 89.0 66.9

2482.6417
5
2 2 1 2D5/2(1,1) 97.9 69.5

2487.2650
1
2 1 0 2P1/2(1,0) 50.3 47.0
1
2 0 21 46.5 46.5

2474.7757
1
2 0 21 2S1/2(0,3) 63.2 41.4

2
1
2

0 21 23.6 15.7

2
1
2

21 22 5.2 27.0
1
2 1 0 8.0 15.0

2454.5045
3
2 2 1 2D3/2(0,1) 68.6 30.9

2436.7975 2
1
2

0 21 2S1/2(0,1) 42.2 45.2

2
1
2

21 22 38.8 10.8
1
2 0 21 10.2 38.1

2415.0390
7
2 3 2 2F7/2(0,2) 93.0 45.1

2391.2582
5
2 2 1 2D5/2(0,3) 64.8 31.4

2392.7682 2
3
2

22 23 2P3/2(3,2) 38.1 10.8
3
2 1 0 36.9 30.8

2388.3586
3
2 1 0 2P3/2(3,0) 74.4 63.6

2383.8626 2
1
2

21 22 2P1/2(1,4) 61.0 62.1

2370.8265
3
2 1 0 2P3/2(0,4) 47.4 19.1
1
2 0 21 17.3 29.3

2
1
2

21 22 11.7 22.0

2371.9084
1
2 0 21 2P1/2(2,2) 51.4 38.5

2
1
2

21 22 30.3 43.2

2361.7989 2
1
2

21 22 2S1/2(2,3) 50.0 36.3
1
2 0 21 34.2 48.0

2355.9188
3
2 1 0 2P3/2(1,2) 83.5 52.0

2321.0598
1
2 0 21 2S1/2(0,5) 73.7 58.6

2304.2796 2
5
2

23 24 2D5/2(1,3) 56.6 6.2
5
2 2 1 27.1 14.0

2303.9462
1
2 0 21 2S1/2(1,3) 74.0 67.6
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this term is @J(J11)2P2#^@2mR2#21&. The expectation
value^@2mR2#21& is the end-over-end rotational constant of
the complex. The band originsE0 , end-over-end rotational
constantsB, and centrifugal distortion constantsD presented
in Table VI were obtained by a fit of the levels withJ
51

2 to 9
2 for each internal state with the formula

E~J,P!5E01B@J~J11!2P2#2D@J~J11!2P2#2. ~21!

We observe that a substantial decrease of the end-over-end
rotational constantB is caused by one or two quanta of
stretch excitation, as might be expected, but that also the
combination of one stretch and one bend quantum gives a
strong reduction ofB.

A similar study of the He–HF1 complex was made ear-
lier by Schmelz and Rosmus3 on the basis of intermolecular
potentials computed by the coupled electron pair approxima-
tion. It was already mentioned in Paper I that our potentials
are somewhat different from theirs and, in particular, that our
binding energyDe is larger. The rovibronic energy level pat-
tern that they obtain from their potentials is different from
ours. The character of the ground state is the same, but the
order of the excited states is considerably different. Their

spin–orbit splitting2P1/2(0,0) –2P3/2(0,0) is 319.6 cm21,

whereas ours is 265.6 cm21. Their stretch frequency
2P3/2(1,0) –2P3/2(0,0) is 311.0 cm21, ours is 307.5 cm21.
The most striking difference occurs for the bend frequency
2S1/2(0,1) –2P3/2(0,0) that they find to be 223.2 cm21, sub-
stantially lower than our value of 377.7 cm21.

Since the intermolecular potential depends strongly on
the HF1 bond length, we also computed rovibronic levels
with r fixed at the value of 1.0273 Å that corresponds to the
global minimum of a full three-dimensional potential surface
~see Paper I!. The dissociation energyDe of the complex
with respect to He and the HF1 monomer at its equilibrium
geometry is increased by 72.3 cm21 by this relaxation ofr .
The intermolecular zero-point energy increases by
55.4 cm21, from 505.7 to 561.1 cm21, makingD0 increase
by 16.9 cm21. The actual increase ofD0 in full three-
dimensional calculations is probably larger, however, be-
cause the vibrational zero-point energy of HF1 may be lower
in the complex. The characteristic excitation energies,
273.1 cm21 for the spin–orbit splitting, 329.4 cm21 for the
stretch, and 415.5 cm21 for the bend, are higher than the
values calculated forr 5r e .

FIG. 2. Density distributions of the lowest four levels from full calculations. The closed and dashed contours are theuVu5 1
2 and uVu5 3

2 contributions,
respectively. These distributions are the squares of the rovibronic wave functions withJ5uPu, integrated over all coordinates exceptR and u. For the
corresponding energy levels and quantum numbers we refer to Table III.
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C. Renner–Teller effect

The Renner–Teller effect is taken into account in our
calculations, because our intermolecular potentials refer to
coupled diabatic electronic states and we include all of the
relevant electronic and nuclear angular momentum couplings
in our Hamiltonian. Our basis can accurately describe the
internal ~stretch and bend! motions and overall rotation of
the He–HF1 complex, even when these internal motions
have large amplitudes. Let us now consider explicitly how
the Renner–Teller effect becomes manifest in our results.
Figure 5 shows the levels calculated for stretch quantum
numbervs50, i.e., the leftmost column of Fig. 4. This pic-
ture may be directly compared with the energy level diagram
of a 2P triatomic linear molecule shown in Herzberg’s
book,13 Fig. 8 of Sec. I.2. This diagram correlates the energy
levels obtained from a full calculation with the levels ob-
tained when either the Renner–Teller interaction or the spin–
orbit coupling are set to zero. Herzberg’s ‘‘full’’ treatment
includes the bending mode only and it defines the Renner–
Teller interaction parametere as the ratio of the harmonic
force constants of the coupling or difference potential
V1,215(VA92VA8)/2 and the diagonal or sum potential
2V1,15VA81VA9 . The corresponding set of levels from our
calculation is shown in the second column of Fig. 5. Note
that the bend quantum numbervb in our notation is given in

FIG. 4. Rovibronic levels from full calculations. The levels are labeled with
the approximate quantum numbers2S11KP (vb), and uKu50,1,2,3 is de-
noted byS,P,D,F. The overall angular momentumJ is always taken equal
to uPu.

FIG. 3. Density distributions of the next four levels from full calculations. For explanations, see Fig. 2.
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parentheses, while Herzberg’s figure showsv2 on the left-
hand side. In Herzberg’s figure the levels of the sameuKu
with the largeruPu are higher than the levels with smaller
uPu, whereas in our figure the levels with the largeruPu are
lower. The reason for this reversed order is that our spin–
orbit constantA has a negative value, while Herzberg’s is
positive. Otherwise, the levels from our calculations follow
nicely the pattern of the levels in Herzberg’s picture. The
gaps between levels with differentvb are smaller in our case,
so differentvb manifolds overlap in energy. When we switch
off the coupling potentialV1,21 we obtain the levels in the
first column of Fig. 5. They differ from the levels withe
50 in the first column of Herzberg’s picture in that the lower
S andD levels withvb51 do not become degenerate in our
case, and neither do theP and F levels with vb52. When
we set the spin–orbit coupling constantA to zero we produce

the levels in the third column of Fig. 5 that are very similar
to the levels in the third column of Herzberg’s picture, except
that theD levels withvb51 are not centered between theS
levels, but nearly coincide with the upperS level. When we
switch off bothV1,21 andA we produce—cf. the fourth col-
umn of Fig. 5—some further degeneracies, but theD levels
with vb51 remain higher than theS levels, and so do theF
levels withvb52 relative to theP levels. These differences
in the first and third columns indicate a fundamental devia-
tion from Herzberg’s model, which we will now show to be
due to the bending motion being treated as a hindered rota-
tion rather than a harmonic vibration.

This can be understood from an analysis of the matrix
elements of the potentialV1,1 in Eq. ~11!, but it is easier to
consider the example of the HF1 molecule in a homoge-
neous electric field of strengthF parallel to the SFZ axis.
For simplicity we omit the spin, i.e., we putS5S50 and
V5L561. Whenm is the dipole moment of HF1 the po-
tential energy can be written asV̂52mF cosu
52mFP1(cosu), with ~u,f! being the SF polar angles of the
diatom axisr and P1(cosu) the Legendre polynomialPl

with l 51. The basis to describe the hindered rotation of HF1

in this example is obtained from Eq.~9! by omitting the
overall rotation functions with quantum numbersJ,MJ and
depending on the polar angles~b,a! of R. This is equivalent
to consideringR ~i.e., the direction of the He atom! to be
fixed along the SFZ axis ~i.e., the field direction!. Further-
more, we replacePR by K becauseS50 and get the basis

uL, j ,K&5uL&A2 j 11

4p
DK,L

j ~f,u,0!* . ~22!

The matrix elements of the potential read

^ j 8,K8,L8uV̂u j ,K,L&

52mFA~2 j 811!~2 j 11!

3~21!K82L8S j 8 1 j

2K8 0 K D S j 8 1 j

2L8 0 L
D , ~23!

which is a simplified version of the potential matrix elements
with L82L50 in Eq. ~11!. The kinetic energy operator is
given byT̂5B0@ ĵ2 l̂#2, whereĵ is the total angular momen-
tum operator, andl̂ the electronic angular momentum. Only
the projectionL, the eigenvalue ofl̂ z with z being the diatom
axisr , is a good quantum number and we may therefore omit
all of the shift terms withl̂ 6 from the kinetic energy opera-
tor. The remaining operatorT̂5B0@ ĵ 21 l̂ z

222 l̂ zĵ z# is diago-
nal in the basis of Eq.~22!, with eigenvalueB0@ j ( j 11)
2L2#. Diagonalization of this simple HamiltonianT̂1V̂ in
a basis withj 5uLu,...,j max and plotting the eigenvalues as a
function of the field strengthF gives the energy level corre-
lation diagram in Fig. 6. Note, in the first place that for
sufficiently strong fields the energy levels are very similar to
the levels in the rightmost column of Fig. 5. It is clear that
the S (K50) andD (uKu52) levels that belong to the first
excited ‘‘bending’’ state withvb51 and l 561 are not de-
generate, and neither are theP (uKu51) and F (uKu53)
levels of the second excited ‘‘bending’’ state withvb52 and

TABLE VI. Band origins E0 , rotational constantsB, and distortion con-

stantsD extracted from energy levels withJ5
1
2,

3
2,

5
2,

7
2,

9
2.

E0 B D

2P3/2(0,0) 21126.9858 0.9057 0.000 0261
2P1/2(0,0) 2863.1948 0.9072 0.000 0307
2P3/2(1,0) 2819.4233 0.8328 0.000 0323
2S1/2(0,1) 2750.6916 0.8936 0.000 0358
2D5/2(0,1) 2732.1512 0.8842 0.000 0363
2P3/2(2,0) 2577.5910 0.7832 0.000 1951
2S1/2(1,1) 2577.3014 0.8198 0.000 0480
2P1/2(0,2) 2563.6658 0.8784 0.000 1176
2P3/2(0,2) 2557.7031 0.8557 20.000 1637
2D5/2(1,1) 2484.6184 0.7908 0.000 0515

FIG. 5. Correlation diagram showing the dependence of thevs50 levels on
the Renner–Teller interaction potentialV1,21 and on the spin–orbit coupling
constantA. Labeling of the levels as in Fig. 4.
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l 50,62. This is related to the finite amplitude of the ‘‘bend-
ing’’ motion or, in other words, to the fact that the electronic
angular momentumL and the total angular momentumK
refer to different axes. When the fieldF becomes stronger,
the level pattern becomes more and more similar to that of a
harmonic oscillator and the splittings become relatively
smaller. In the strong field limit the rotating molecule can
hardly bend away from the SFZ axis, the axesZ and z
become parallel, and the splitting pattern is similar to
Herzberg’s.

Also in our calculations on He–HF1 the energy differ-
ences between theD and S levels with vb51 and between
theF andP levels withvb52 did not disappear, even when
we switched off bothV1,21 and the spin–orbit coupling.
When increasing the steepness of the well at the linear ge-
ometry in V1,1 we found, also in the full calculations, that
these energy differences became relatively small in compari-
son with the~vibrational! splitting between levels with dif-
ferentvb . So, in that sense, our results agree with Herzberg’s
model for the Renner–Teller coupling in a2P triatomic lin-
ear molecule.

IV. CONCLUSION

Without consideration of the spin–orbit coupling the
He–HF1 complex has two asymptotically degenerate elec-
tronic states that correlate with theX 2P ground state of free
HF1. We calculated the bound rovibronic levels of this com-
plex for J5 1

2,
3
2,

5
2,

7
2,

9
2 with the use of diabatic intermolecular

potentials that couple these states and the inclusion of spin–
orbit coupling. Theab initio diabatic potential surfaces and
their analytic fits are described in Paper I.1 The calculation of
rovibronic levels was performed with basis sets defined in
different coordinate frames: a BF frame with thez axis par-
allel to the vectorR that points from the center of mass of
HF1 to the He atom, and an MF frame with thez axis par-

allel to the HF1 bond axisr . We interpreted the character of
the rovibronic states by a series of calculations with the
He–HF1 distanceR fixed at values ranging from 1.5 to 8.5
Å and by analysis of the wave functions. The approximate
quantum numbers corresponding to the various angular mo-
mentum components with respect to the BF and MF frames
were very useful in this analysis.

The intermolecular potential has a rather deep well at the
linear He–HF1 geometry, which makes this complex a
Renner–Teller system. Renner–Teller effects have mostly
been studied for semirigid triatomic and polyatomic linear
molecules. Although the He–HF1 complex is much more
strongly bound than the neutral He–HF Van der Waals com-
plex, it is considerably less rigid than a ‘‘normal’’ molecule
held together by covalent bonds. It was, therefore, interesting
to analyze the effects of the Renner–Teller coupling in this
system and to look for characteristics due to large amplitude
internal motions. We made such an analysis and, indeed,
found such features. Finally, we extracted from our results
some quantitative data that determine the spectroscopy of
this complex: stretch and bend frequencies, spin–orbit split-
tings, parity splittings, rotational constants, and we compare
some of these with the results of a previous theoretical study.
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APPENDIX: BASIS TRANSFORMATIONS

Before we discuss the transformation of the different
bases, we must derive a relation between the BF and MF
frames. For this purpose it is most convenient to take the
definition of the BF frame@R~a,b,f!# from Sec. II A and to
definethe MF rotation angles by

R~f8,u8,a8![R~a,b,f!R~0,u,p!. ~A1!

Next we verify that this definition is equivalent to the defi-
nition of the MF frame given in Sec. II B. Substituting Eq.
~A1! into Eq.~13! and usingRz(x)ez5ez for any anglex we
find

rR~f8,u8,a8!ez5rR~a,b,f!Ry~u!ez5r , ~A2!

where we used Eq.~4! in the last step. To verify Eq.~14! we
again substitute Eq.~A1! which gives

RR~f8,u8,a8!Ry~b8!ez

5RR~a,b,f!R~0,u,p!Ry~b8!ez5R, ~A3!

where we usedb85u, the relation

Ry~u!Rz~p!5Rz~p!Ry~2u!, ~A4!

and Eq.~3!.
We define electronic basis functions by applying rotation

operators of the formR̂(a,b,g)5R̂z(a)R̂y(b)R̂z(g) to the

FIG. 6. Energy levels of model HF1 ~with L561 andS50) in an electric
field F as function of the coupling strengthmF. TheS,P,D,F labels denote
levels with uKu50,1,2,3, whilevb is the ‘‘bending’’ quantum number. The
labelsK refer to theL511 component. The energies are divided by the
fundamental ‘‘bending’’ vibration energy defined as@ES(vb51)1ED(vb

51)#/22EP(vb50).
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wave functionsuL,S,V& with angular momentum projection
quantum numbers defined with respect to the SFz axis. This
method is particularly convenient for giving a precise defi-
nition of open-shell electronic wave functions, also in the
case of half-integral spin. In the Appendix of Ref. 14 it was
used to define Hund’s case~a! basis functions for open-shell
diatoms and more details can be found there. Here we extend
the technique to define basis functions for open-shell com-
plexes and to derive the transformations between different
basis sets. For this purpose we require the rotation operator
analogue of Eq.~A1!

R̂~f8,u8,a8!5R̂~a,b,f!R̂~0,u,p!. ~A5!

This relation holds for both integral and half-integral angular
momentum cases.

Two- and three-angle embedded MF electronic wave
functions are defined by

uL,S,V&MF,2[R̂~f8,u8,0!uL,S,V& ~A6!

and

uL,S,V&MF[R̂~f8,u8,a8!uL,S,V&

5exp~2 iVa8!uL,S,V&MF,2. ~A7!

Electronic wave functions defined with respect to the~three-
angle embedded! BF frame are given by

uL,S,V&BF[R̂~a,b,f!R̂~0,u,0!uL,S,V&, ~A8!

where we use the BF label, even though these functions are
quantized with respect to the HF1 axis, just as the MF func-
tions. This can be readily verified since the operator relation
in Eq. ~A5! yields

uL,S,V&BF5exp~ iVp!uL,S,V&MF. ~A9!

In Ref. 9 a basis for the He–HF1(X 2P) complex in SF
coordinates

un,L,S,V, j ,L;J,MJ&

5un&uL,S,V&MF,2F2 j 11

4p G1/2

(
m,ML

Dm,V
( j ) ~f8,u8,0!*

3YL,ML
~b,a!^ j ,m;L,MLuJ,MJ& ~A10!

was obtained by coupling the HF1 monomer functions with
total angular momentumj and the spherical harmonics
YL,ML

(b,a) by means of the Clebsch–Gordan coefficients

^ j ,m;L,MLuJ,MJ&.
11 The two-angle embedded electronic

wave function may be replaced byuL,S,V&MF if simulta-
neously the third argument~0! of the functionDm,V

( j ) is set to
a8. By a straightforward extension of the definition of the
case~a! basis in Ref. 14 we define a MF basis for the com-
plex as

un,L,S,V,L,VL ,Pr ;J,MJ&

5un&F2J11

4p G1/2

DMJ ,Pr

(J) ~f8,u8,0!*

3R̂~f8,u8,0!@YL,VL
~b,a!uL,S,V&], ~A11!

where the rotation operator acts on the electronic coordi-
nates, as well as on~b,a!. With the use of Eq.~A7! and the
relationPr5V1VL we obtain the MF basis in Eq.~17!.

Analogously we define theR embedded~BF! basis

un,L,S,V, j ,PR ;J,MJ&

5un&
@~2J11!~2 j 11!#1/2

4p
DMJ ,PR

(J) ~a,b,0!*

3R̂~a,b,0!@DPR ,V
( j ) ~f8,u8,0!*

3R̂~f8,u8,0!uL,S,V&]. ~A12!

Acting with the rotation operators on the electronic and
nuclear coordinates and using the BF electronic wave func-
tions from Eq.~A8! we obtain Eq.~9!.

The elements of the unitary matrix that transforms the
coupled SF basis into the MF basis are the overlap integrals

TVL , j
(V,L,J)

5^n,L,S,V,L,VL ,Pr ;J,MJun,L,S,V, j ,L;J,MJ&

~A13!

that can be evaluated by integration over nuclear and elec-
tronic coordinates after substitution of Eqs.~17! and ~A10!.
Upon switching to the three-angle MF electronic wave func-
tions introduced in Eq.~A7! the electronic integral becomes
simply MF^L,S,VuL,S,V&MF51. The integration over the
nuclear coordinates is performed most easily in the MF co-
ordinatesu8, f8, b8, anda8. We substitute

YL,ML
~b,a!5R̂21~f8,u8,0!YL,ML

~b8,a8! ~A14!

5(
ML8

YL,M
L8
~b8,a8!DML ,M

L8
L

~f8,u8,0!* . ~A15!

After integration overa8 only the term withML85VL sur-
vives, which allows us to integrate overb8. Upon introduc-
tion of a dummy third anglex via 1/2p *0

2pdx exp@i(Pr2V
2VL)x#51 the remaining integral of the product of threeD
matrices overf8 and u8 becomes a standard integral.8 The
result is a product of two Clebsch–Gordan coefficients. Fi-
nally the summation overm and ML may be performed by
using the orthogonality relation of Clebsch–Gordan
coefficients11 and we obtain

TVL , j
(V,L,J)5F 2 j 11

2J11G1/2

^ j ,V,L,VLuJ,Pr&. ~A16!

The elements of the matrix that transforms the SF basis
into the BF basis can be evaluated similarly

TPR ,L
( j ,J) 5^n,L,S,V, j ,PR ;J,MJun,L,S,V, j ,L;J,MJ&. ~A17!

Here the electronic integral yieldsBF^L,S,VuL,S,V&MF

5exp(2iVp). The nuclear integral is most easily evaluated
in BF coordinates, which requires the substitution

Dm,V
( j ) ~f8,u8,a8!*

5(
V8

Dm,V8
( j )

~a,b,f!* DV8,V
( j )

~0,u,p!* . ~A18!
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This relation is simply a representation of the operator rela-
tion in Eq. ~A5!. After integration overf we find that only
the term withV85PR survives. The argumentp in the last
D-matrix cancels the factor from the electronic integral and
the remaining integrals are readily performed using expres-
sions from Ref. 8. Again using the orthogonality of the
Clebsch–Gordan coefficients in the last step, we find

TPR ,L
( j ,J) 5F2L11

2J11G1/2

^ j ,PR ,L,0uJ,PR&. ~A19!
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