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Abstract

We describe a prototype extension of the Uppaal real-time model checking tool
with symmetry reduction. The symmetric data type scalarset, which is also used
in the Murϕ model checker, was added to Uppaal’s system description language
to support the easy static detection of symmetries. Our prototype tool uses state
swaps, described and proven sound earlier by Hendriks, to reduce the space and
memory consumption of Uppaal. Moreover, under certain assumptions the reduc-
tion strategy is canonical, which means that the symmetries are optimally used. For
all examples that we experimented with (both academic toy examples and indus-
trial cases), we obtained a drastic reduction of both computation time and memory
usage, exponential in the size of the scalar sets used.
Keywords: real-time, timed automata, symmetry, model checking.
AMS subject classification: 68Q60.
CR subject classification: D.2.4, F.3.1.

1 Introduction

Model checking is a semi-automated technique for the validation and verification of all
kinds of systems [9]. The approach requires the construction of a model of the system
and the definition of a specification for the system. A model checking tool then computes
whether the model satisfies its specification. Nowadays, model checkers are available for
many application areas, e.g., hardware systems [12, 24], finite-state distributed systems
[19], and timed and hybrid systems [23, 30, 27, 18].

Despite the fact that model checkers are relatively easy to use compared to man-
ual verification techniques or theorem provers, they are not being applied on a large

∗This work has been supported by the European Community Project IST-2001-35304 (AMETIST),
http://ametist.cs.utwente.nl/. An extended abstract of this paper appeared as [17].
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scale. An important reason for this is that they must cope with the state space ex-
plosion problem, which is the problem of the exponential growth of the state space as
models become larger. This growth often renders the mechanical verification of realis-
tic systems practically impossible: there just is not enough time or memory available.
As a consequence, much research has been directed at finding techniques to fight the
state space explosion. One such a technique is the exploitation of behavioral symme-
tries [20, 25, 22, 21, 14, 10]. The exploitation of full symmetries can be particularly
profitable, since its gain can approach a factorial magnitude.

There are many timed systems which clearly exhibit full symmetry, e.g., Fischer’s
mutual exclusion protocol [1], the CSMA/CD protocol [26, 30], industrial audio/video
protocols [15], and distributed algorithms, for instance [5]. Motivated by these examples,
the work presented in [16] describes how Uppaal, a model checker for networks of timed
automata [23, 4, 3], can be enhanced with symmetry reduction. The present paper
puts this work to practice: a prototype of Uppaal with symmetry reduction has been
implemented. The symmetric data type scalarset, which was introduced in the Murϕ
model checker [12], was added to Uppaal’s system description language to support the
easy static detection of symmetries. Furthermore, the state swaps described and proven
sound in [16] are used to reduce the space and time consumption of the model checking
algorithm. The reduction strategy is optimal under certain assumptions that essentially
concern the discrete part of the state only. Thus, the dense time domain does not add
extra complexity to the symmetry reduction technique. Run-time data is reported for
the examples mentioned above, showing that symmetry reduction in a timed setting can
be very effective.

Related work. Symmetry reduction is a well-known technique to reduce the resource
requirements for model checking algorithms, and it has been successfully implemented
in model checkers such as Murϕ [12, 21], Smv [24], and Spin [19, 8]. As far as we know,
the only model checker for timed systems that exploits symmetry is Red [27, 28]. The
symmetry reduction technique used in Red, however, gives an over approximation of
the reachable state space (this is called the anomaly of image false reachability by the
authors). Therefore, Red can only be used to ensure that a state is not reachable when
it is run with symmetry reduction, whereas symmetry enhanced Uppaal can be used
to ensure that a state is reachable, or that it is not reachable.

Contribution. We have added symmetry reduction as used within Murϕ, a well-
established technique to combat the state space explosion problem, to the real-time
model checking tool Uppaal. For researchers familiar with model checking it will come
as no surprise that this combination can be made and indeed leads to a significant gain
in performance. Still, the effort required to actually add symmetry reduction to Uppaal
turned out to be substantial. The soundness of the symmetry reduction technique that
we previously developed for Uppaal does not follow trivially from the work of Ip and Dill
[21] since the description languages of Uppaal and Murϕ, from which symmetries are
extracted automatically, are quite different. In fact, the proof that symmetry reduction
for Uppaal is sound takes up more than 20 pages in [16]. The main technical contribu-
tion of the present work is an efficient algorithm for the computation of a representative
that – under certain assumptions – is optimal. This is not trivial due to Uppaal’s sym-
bolic representation of sets of clock valuations. Many timed systems exhibit symmetries
that can be exploited by our methods. For all examples that we experimented with, we
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obtained a drastic reduction of both computation time and memory usage, exponential
in the size of the scalar sets used.

Outline. Section 2 presents a very brief summary of model checking and symme-
try reduction in general, while Sections 3 and 4 introduce symmetry reduction for the
Uppaal model checker in particular. In Section 5, we present run-time data of Up-
paal’s performance with and without symmetry reduction, and Section 6 summarizes
and draws conclusions.

2 Model Checking and Symmetry Reduction

This section briefly summarizes the theory of symmetry presented in [21], which we
reuse in a timed setting since (i) it has proven to be quite successful, and (ii) it is
designed for reachability analysis, which is the main purpose of the Uppaal model
checker. We simplify (and in fact generalize) the presentation of [21] using the concept
of bisimulations.

In general, a transition system is a tuple (Q,Q0,∆), where Q is a set of states,
Q0 ⊆ Q is a set of initial states, and ∆ ∈ Q×Q is a transition relation between states.
Figure 1 depicts a general forward reachability algorithm which, under the assumption
that Q is finite, computes whether there exists a reachable state q that satisfies some
given property φ (denoted by q |= φ).

(1) passed := ∅
(2) waiting := Q0

(3) while waiting 6= ∅ do
(4) get q from waiting
(5) if q |= φ then return YES
(6) else if q /∈ passed then
(7) add q to passed
(8) waiting := waiting ∪ { q′ ∈ Q | (q, q′) ∈ ∆ }
(9) fi
(10) od
(11) return NO

Figure 1: A general forward reachability analysis algorithm.

Due to the state space explosion problem, the number of states of a transition system
frequently gets too big for the above algorithm to be practical. We would like to exploit
structural properties of transition systems (in particular symmetries) to improve its
performance. Here the well-known notion of bisimulation comes in naturally:

Definition 2.1 (Bisimulation) A bisimulation on a transition system (Q,Q0,∆) is a
relation R ⊆ Q×Q such that for all (q, q′) ∈ R,

1. q ∈ Q0 if and only if q′ ∈ Q0,

2. if (q, r) ∈ ∆ then there is an r′ such that (q′, r′) ∈ ∆ and (r, r′) ∈ R,

3. if (q′, r′) ∈ ∆ then there exists an r such that (q, r) ∈ ∆ and (r, r′) ∈ R.
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Suppose that, before starting the reachability analysis of a transition system, we
know that a certain equivalence relation ≈ is a bisimulation and respects the predicate
φ in the sense that either all states in an equivalence class satisfy φ or none of them
do. Then, when doing reachability analysis, it suffices to store and explore only a
single element of each equivalence class. To implement the state space exploration, a
representative function θ may be used that converts a state to a representative of the
equivalence class of that state:

∀q∈Q (q ≈ θ(q)) (1)

Using θ, we may improve the algorithm in Figure 1 by replacing lines 2 and 8,
respectively, by:

(2) waiting := { θ(q) | q ∈ Q0 }

(8) waiting := waiting ∪ { θ(q′) | (q, q′) ∈ ∆ }

It can easily be shown that the adjusted algorithm remains correct: for all (finite)
transition systems the outcomes of the original and the adjusted algorithm are equal.
If the representative function is “good”, which means that many equivalent states are
projected onto the same representative, then the number of states to explore, and con-
sequently the size of the passed set, may decrease dramatically. However, in order to
apply the approach, the following two problems need to be solved:

• A suitable bisimulation equivalence ≈ that respects φ needs to be statically derived
from the system description.

• An appropriate representative function θ needs to be constructed that satisfies
equation (1), and that can be computed efficiently. Ideally, θ satisfies q ≈ q′ ⇒
θ(q) = θ(q′), in which case it is called canonical.

In this paper, we use symmetries to solve these problems. As in [21], the notion
of automorphism is used to characterize symmetry within a transition system. This is
a bijection on the set of states that (viewed as a relation) is a bisimulation. Phrased
alternatively:

Definition 2.2 (Automorphism) An automorphism on some transition system, say
(Q,Q0,∆), is a bijection h : Q → Q such that

1. q ∈ Q0 if and only if h(q) ∈ Q0 for all q ∈ Q, and

2. (q, q′) ∈ ∆ if and only if (h(q), h(q′)) ∈ ∆ for all q, q′ ∈ Q.

Let H be a set of automorphisms, let id be the identity function on states, and let
G(H) be the closure of H ∪ {id} under inverse and composition. It can be shown that
G(H) is a group, and it induces a bisimulation equivalence relation ≈ on the set of states
as follows:

q ≈ q′ ⇐⇒ ∃h∈G(H) (h(q) = q′) (2)
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We introduce a symmetric data type to let the user explicitly point out the symme-
tries in the model. Simple static checks can ensure that the symmetry that is pointed
out is not broken. Our approach to the second problem of coming up with good repre-
sentative functions consists of “sorting the state” w.r.t. some ordering relation on states
using the automorphisms. For instance, given a state q and a set of automorphisms, find
the smallest state q′ that can be obtained by repeatedly applying automorphisms and
their inverses to q. It is clear that such a θ satisfies Equation 1, since it is constructed
from the automorphisms only.

3 Adding Scalarsets to Uppaal

The tool Uppaal is a model checker for networks of timed automata extended with
discrete variables (bounded integers, arrays) and blocking, binary synchronization as
well as non-blocking broadcast communication (see for instance [23]). In the remainder
of this section we illustrate by an example Uppaal’s description language extended with
a scalarset type constructor allowing symmetric data types to be syntactically defined.
Our extension is based on the notion of scalarset first introduced by Ip and Dill in the
finite-state model checking tool Murϕ [12, 21]. Also our extension is based on the C-like
syntax to be introduced in the forthcoming version 4.0 of Uppaal.

To illustrate our symmetry extension of Uppaal we consider Fischer’s mutual exclu-
sion protocol. This protocol consists of n processes, identical up to their unique process
identifiers. The purpose of the protocol is to ensure mutual exclusion on the critical sec-
tions of the processes. This is accomplished by letting each process write its identifier
(pid) in a global variable (id) before entering its critical section. If after some given
lower time bound (say 2) id still contains the pid of the process, then it may enter its
critical section.

A scalarset of size n may be considered as the subrange {0, 1, . . . , n − 1} of the
natural numbers. Thus, the n process identifiers in the protocol can be modeled using a
scalarset with size n. In addition to the global variable id, we use the array active to
keep track of all active locations of the processes1. Global declarations are the following:

typedef scalarset[3] proc_id; // a scalarset type with size 3
proc_id id; // declaration of a proc_id

// variable
bool set; // declaration of a boolean
int active[proc_id]; // declaration of an array

// indexed by proc_id

The first line defines proc id to be a scalarset type of size 3, and the second line
declares id to be a variable over this type. Thus scalarset is viewed as a type con-
structor. In the last line we show a declaration of an array indexed by elements of the
scalarset proc id.

At this point the only thing missing is the declaration of the actual processes in the
system. In the description language of Uppaal, processes are obtained as instances of

1This array is actually redundant and not present in the standard formulations of the protocol. It
is, however, useful for showing important aspects of our extension.
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parameterized process templates. In general, templates may contain several different
parameters (e.g. bounded integers, clocks, and channels). In our extension we allow
in addition the use of scalarsets as parameters. In the case of Fischer’s protocol the
processes of the system are given as instances of the template depicted in Figure 2.

process Fischer (const proc id pid)

wait

req
x<=2idle

cs

set==0
active[pid]:=1,
x:=0

x:=0,
id:=pid,
set:=1,
active[pid]:=2

set==0
active[pid]:=1,
x:=0

x>2,
id==pid
active[pid]:=3

set:=0,
active[pid]:=0

Figure 2: The template for Fischer’s protocol.

The template has one local clock, x, and no local variables. Note that the header of
the template defines a (constant) scalarset parameter pid of type proc id. Access to
the critical section cs is governed by suitable updates and tests of the global scalarset
variable id together with upper and lower bound time constraints on when to proceed
from requesting access (req) respectively proceed from waiting for access (wait). Note
that all transitions update the array active to reflect the current active location of the
process. The instantiation of this template and declaration of all three process in the
system can be done as follows:

FischerProcs = forall i in proc_id : Fischer(i);
system FischerProcs;

The forall construct iterates over all elements of a declared scalarset type. In this
case the iteration is over proc id and a set of instances of the template Fischer is
constructed and bound to FischerProcs. In the second line the final system is defined
to be precisely this set.

4 Using Scalarsets for Symmetry Reduction

This section first presents a method to extract automorphisms from a Uppaal system
description using the new scalarset type. These automorphisms can be used for compu-
tation of the representative of a state as described in Section 2. Second, a total preorder
is introduced on the individual clocks of zones that are generated during the exploration
of the state space. Third, a representative function is defined that uses this preorder on
clocks. The main technical result is a proof that this function is canonical under cer-
tain assumptions. The representative function may not be canonical without all these
assumptions, but it certainly is sound.
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4.1 Extraction of Automorphisms

The extended syntax as described in the previous section enables us to derive the fol-
lowing information from a system description:

1. A set Ω of scalarset types.

2. For each α ∈ Ω: (i) a set Vα of regular variables of type α2, and (ii) a set Dα of
pairs (a, n), where a is an integer variable or clock array and n is a dimension of
a that is to be indexed by α elements such that α 6= β ⇒ Dα ∩Dβ = ∅.

3. A partial mapping γ : P × Ω ↪→ N that gives for each process p and scalarset
α the element of α with which p is instantiated. This mapping is defined by
quantification over scalarsets in the process definition section.

A Uppaal state is a tuple (~l, v, Z), where ~l is the location vector, v is the integer
variable valuation, and Z is a zone. A zone is a set of clock valuations, i.e., functions
ν : X → R+ where X is the set of clocks and R+ denotes the set of non-negative real
numbers. Zones are represented in Uppaal by difference bounded matrices (DBMs)
[7, 11]. Concretely, the location vector and variable valuation are implemented by arrays
of integers, and the DBM is implemented by a matrix of integers. The Uppaal state
representation assumes that every process has a fixed index in the location vector, every
regular integer variable and every entry of an integer array variable has a fixed index in
the variable valuation, and that every clock has a fixed index in the DBM. Thus, there
are three injections, all denoted by ρ, that map processes, integer variables, and clocks
to indices.

Next, we introduce the notion of substate for every scalarset element. Informally, the
substate of element i of the scalarset α is a triple containing (i) indices of processes that
have been instantiated with element i of α, (ii) indices of variables (or array entries)
that are associated with element i of α, and (iii) indices of clocks that are associated
with element i of α. These substates can statically be derived, and do not change during
the state space exploration.

Definition 4.1 (Substate) Let i be an element of the scalarset α. The substate of this
element, denoted by substate(α, i), is a tuple (~l, ~v,~c), where

• ~l is the ordered sequence of indices of all processes in {p | γ(p, α) = i}.

• ~v is the ordered sequence of indices of

– the local integer variables of all processes p that satisfy γ(p, α) = i.

– integer array entries that are associated with the i-th element of α, i.e., the
entry b[j1] · · · [jk] · · · [jn] is associated with the i-th element of α if and only if
(b, k) ∈ Dα and jk = i.

2The soundness proof in [16] uses the so-called usedα set for this set. Moreover, it is assumed that
arrays of integer variables cannot be part of this usedα set, which is needed for the soundness proof of
the state swaps. Since this soundness proof is reused in the present paper, the assumption that Vα only
consists of regular variables should be made. This assumption, however, can probably be dropped.
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• ~c is the ordered sequence of indices of

– local clocks of all processes p that satisfy γ(p, α) = i.

– clock array entries that are associated with the i-th element of α, i.e., the
entry c[j1] · · · [jk] · · · [jn] is associated with the i-th element of α if and only if
(c, k) ∈ Dα and jk = i.

We use these substates to define the automorphisms, and to this end we need the next
assumptions. We note that the definition of automorphisms that appears in [16] does not
need the assumptions below and therefore is more general, but also more complicated.
Moreover, these assumptions are also needed in the proof that the representative function
is canonical.

Assumption 4.2 (Basic assumptions)

(1) Local arrays are not indexed by scalarsets and Vα only contains global variables.

(2) At most one dimension of an array can be indexed by a scalarset, i.e.,
|{(b, n) ∈ Dα |α ∈ Ω ∧ n ∈ N}| ≤ 1 for all arrays of integer and clock variables b.

(3) A process can be associated with at most one scalarset element, i.e.,
|{(α, i) | γ(p, α) = i ∧ α ∈ Ω}| ≤ 1 for all processes p.

The contributions to the state of different substates are completely disjoint, which
is formalized by the following lemma.

Lemma 4.3 If α 6= β or i 6= j, then substate(α, i) and substate(β, j) are disjoint.

Proof. Let substate(α, i) = (~l1, ~v1,~c1) and let substate(β, j) = (~l2, ~v2,~c2).

1. ~l1 and ~l2 share no indices. For the proof, assume that they do, i.e., by Definition
4.1 a process p exists such that γ(p, α) = i and γ(p, β) = j. We see, however,
that p now is associated with two scalarset elements, since α 6= β or i 6= j, which
contradicts the third item of Assumption 4.2. Therefore, ~l1 and ~l2 share no indices.

2. ~v1 and ~v2 share no indices. In the previous item we proved that the substates
refer to disjoint sets of processes. Thus, the sets of local variables of these sets of
processes also are disjoint. Now consider an array entry b[h1] . . . [hn] and assume
that it is associated with the i-th element of α and with the j-th element of β.
This means (see Definition 4.1) that some k exists such that (b, k) ∈ Dα ∧ hk = i
and some k′ exists such that (b, k′) ∈ Dβ ∧ hk′ = j. From our assumption that
α 6= β ∨ i 6= j we can easily prove that k 6= k′: (1) if α 6= β, then Dα ∩Dβ = ∅.
Therefore, (b, k) 6= (b, k′) and clearly k 6= k′. (2) if i 6= j, then hk 6= hk′ and
clearly k 6= k′. Thus, two dimensions of b are indexed by scalarsets which clearly
contradicts the second item in Assumption 4.2. Therefore, ~v1 and ~v2 share no
indices.

3. ~c1 and ~c2 share no indices. We can prove this by a similar argument as in the
previous case.
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Consider some substate (~l1, ~v1,~c1) and a state q = (~l, v, Z). We can project the state
to this substate: [[~l1]]q is obtained from ~l1 by replacing every index by the encoding of the
associated active location (according to q of course). The projection of q to ~v1, denoted
by [[~v1]]q, is obtained similarly. If we use the notation [~l]k to refer to the k-th element in
the sequence ~l, then for all k:

[[~l1]]q = ~l′1 where [~l′1]k = [~l]
[~l1]k

(3)

[[~v1]]q = ~v′1 where [~v′1]k = [v][~v1]k (4)

Note that the location and variable projections can be ordered using the lexicograph-
ical order on sequences of numbers. We cannot easily define the projection of a state to
the clock indices, since the state contains a set of clock valuations. For a single clock
valuation ν, however, we define the projection of ν to a clock index vector ~c1 as follows:

[[~c1]]ν = ~c′1 where [~c′1]k = ν(ρ−1([~c1]k)) (5)

Clock valuation projections can be ordered using the lexicographical order on se-
quences of numbers. In the next subsection a preorder on clocks is defined that enables
us to compare the projections of the clock parts of substates for any given state.

The next assumption formalizes the correspondence between substates of different
elements of a scalarset. This correspondence is ensured by the implementation of Up-
paal, and is needed to define the state swaps that are used for the computation of
representatives.

Assumption 4.4 Consider substate(α, i) = (~l1, ~v1,~c1), and substate(α, j) = (~l2, ~v2,~c2).

1. The length of ~l1 equals the length of ~l2, and i < j ⇔ [~l1]k < [~l2]k.

2. The length of ~v1 equals the length of ~v2, and i < j ⇔ [~v1]k < [~v2]k, and [~v1]k and
[~v2]k refer to equivalent variables:

• [~v1]k is the index of the local variable b of the process ρ−1([~l1]q) if and only if
[~v2]k is the index of the local variable b of the process ρ−1([~l2]q).

• [~v1]k is the index of the array entry b[h1] . . . [hp−1][i][hp+1] . . . [hq] if and only
if [~v2]k is the index of b[h1] . . . [hp−1][j][hp+1] . . . [hq].

3. The length of ~c1 equals the length of ~c2, and i < j ⇔ [~c1]k < [~c2]k, and [~c1]k and
[~c2]k refer to equivalent clocks (defined as above).

Assumptions 4.2 and 4.4 enable us to define so-called state swaps3.

Definition 4.5 (State swap) Consider two distinct elements, say i and j, of some
scalarset α. Let substate(α, i) = (~l1, ~v1,~c1), and let substate(α, j) = (~l2, ~v2,~c2). The
state swap is defined as swapα

i,j((~l, v, Z)) = (~l′, v′, Z ′), where:

3A more general definition that covers the current definition, but does not need Assumption 4.2
appears in [16]. E.g., that definition also covers the case when an array is indexed by multiple scalarsets.
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• ~l′ is defined as follows for all k:

[~l′]k =


[~l]k if k /∈ ~l1 and k /∈ ~l2
[~l]m if k = [~l1]n, where m = [~l2]n
[~l]m if k = [~l2]n, where m = [~l1]n

• v′ can be defined as follows (remember that Vα only contains global non-array
variables):

[v′]k =


[v]k if k /∈ ~v1 and k /∈ ~v2 and ρ−1(k) /∈ Vα

i if ρ−1(k) ∈ Vα and [v]k = j
j if ρ−1(k) ∈ Vα and [v]k = i
[v]m if k = [~v1]n, where m = [~v2]n
[v]m if k = [~v2]n, where m = [~v1]n

• Z ′ = {s(ν) | ν ∈ Z}, where the clock value swap s is defined for all clocks x as:

(s(ν))(x) =


ν(x) if ρ(x) /∈ {[~c1]k, [~c2]k} for all k
ν(ρ−1([~c1]k)) if ρ(x) = [~c2]k
ν(ρ−1([~c2]k)) if ρ(x) = [~c1]k

Note that by definition swapα
i,j(q) = swapα

j,i(q). A number of syntactic checks have
been identified in [16] that ensure that the symmetry suggested by the scalarsets is
not broken. These checks are very similar to those originally identified for the Murϕ
verification system [21]. For instance, it is not allowed to use variables of a scalarset
type for arithmetical operations such as addition. The next soundness theorem has been
proven in [16] (provided that the symmetry is not broken)4.

Theorem 4.6 (Soundness) Every state swap is an automorphism.

As a result, the representative function θ can be implemented by minimization of the
state using the state swaps. Note that every state swap resembles a transposition of two
scalarset elements. Hence, the equivalence classes induced by the state swaps originating
from a scalarset with size n consist of at most n! states. The maximal theoretical gain
that can be achieved using the state swaps therefore is in the order of a factor n!.

Consider the instance of Fischer’s mutual exclusion protocol as described in the
previous section with three processes. There are three state swap functions: swapproc id

0,1 ,
swapproc id

0,2 and swapproc id

1,2 . Now consider the following state of the model (the active
location of the i-th process is given by [~l]i and the local clock of this process is given by
xi; also note that the zone Z only contains one clock valuation):

~l : (idle, wait, cs)
v : id = 2, set = 1, active[0] = 0, active[1] = 2, active[2] = 3
Z : x0 = 4, x1 = 3, x2 = 2.5

4The soundness theorem has also been proven correct for the more general definition of the state
swap function that appears in [16]. Thus, a definition of state swaps exists such that Theorem 4.6 holds
without the need for Assumption 4.2.
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When we apply swapproc id

0,2 to this state, the result is the following state:

~l : (cs, wait, idle)
v : id = 0, set = 1, active[0] = 3, active[1] = 2, active[2] = 0
Z : x0 = 2.5, x1 = 3, x2 = 4

The process swap swaps l0 with l2, and x0 with x2. Moreover, the value of the
variable id is changed from 2 to 0, since id ∈ Vproc id, and the values of active[0] and
active[2] are swapped. Applying swapproc id

1,2 to this state gives the following state:

~l : (cs, idle, wait)
v : id = 0, set = 1, active[0] = 3, active[1] = 0, active[2] = 2
Z : x0 = 2.5, x1 = 4, x2 = 3

Note that this swap does not change the value of id, since the scalarset elements 1
and 2 are interchanged and id contains scalarset element 0.

4.2 A Preorder on Clocks

The zone semantics seems to render a straightforward comparison of clocks impossible,
since there are in general many different clock valuations in a zone. If we assume,
however, that the Uppaal model resets its clocks to zero only and that the convex-hull
over-approximation is not used, then the zones that are generated by the forward state
space exploration satisfy the diagonal property. This property informally states that
a zone never contains valuations on both sides of a diagonal. This implies that the
individual clocks can always be ordered using the order in which they were reset. To
formalize this, three binary relations on the set of clocks X parameterized by a zone Z
are defined:

x 4Z y ⇐⇒ ∀ν∈Z ν(x) ≤ ν(y) (6)
x ≈Z y ⇐⇒ ∀ν∈Z ν(x) = ν(y) (7)
x ≺Z y ⇐⇒ (x 4Z y ∧ x 6≈Z y) (8)

Clearly, the relation 4Z is reflexive and transitive and hence it is a preorder on the
set of clocks. Totality of this preorder w.r.t. zones that are generated during the state
space exploration follows from the diagonal property.

Lemma 4.7 (Diagonal property) Consider the state space exploration algorithm de-
scribed in Figure 6 of [23]5. Assume that the clocks are reset to the value 0 only and
that the convex-hull over-approximation is not used. Then for all states (~l, v, Z) stored
in the waiting and passed list during a run of the algorithm and for all clocks x and y it
holds that either x ≺Z y, x ≈Z y or y ≺Z x.

Proof. We prove that the diagonal property holds for the arbitrary clocks x and y
by an inductive argument. Consider the initial zone, which contains only one clock
valuation. It is clear that the diagonal property holds for such a zone. Before we prove

5Essentially, this is a Uppaal tailored instance of the algorithm in Figure 1 of the present paper.
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the induction step we observe that x ≈Z y, x ≺Z y, and y ≺Z x are mutually exclusive:
if one holds then the remaining two do not hold. Now consider a zone Z that satisfies
the diagonal property. If the convex-hull over-approximation is not used, then the three
operations on zones that are used during state space exploration are the following [2]:

1. Intersection with zone Z ′. This results in a zone Z ′′ ⊆ Z. Now assume that
x ≺Z y, which means that ν(x) ≤ ν(y) for all ν ∈ Z, and that a ν ∈ Z exists such
that ν(x) 6= ν(y). Clearly, for all ν ′′ ∈ Z ′′ still holds that ν ′′(x) ≤ ν ′′(y). Next,
we distinguish two cases: First, a ν ′′ ∈ Z ′′ exists such that ν ′′(x) 6= ν ′′(y). Then
clearly x ≺Z′′ y. Second, such a ν ′′ does not exist. Then ν ′′(x) = ν ′′(y) for all
ν ′′ ∈ Z ′′ and thus x ≈Z′′ y. It is straightforward to see that x ≈Z y implies that
x ≈Z′′ y. Thus, the diagonal property also holds for Z ′′.

2. Resetting clock x in zone Z. This results in the zone Z ′ = {ν[x := 0] | ν ∈ Z},
where ν[x := 0](u) = ν(u) if u 6= x, and ν[x := 0](x) = 0. We distinguish two
cases:

• u ∼Z w, where u 6= x and w 6= x. Thus, the clock valuations in Z ′ have not
changed for u and w, and clearly u ∼Z′ w.

• x ∼Z y. If there exists a ν ′ ∈ Z ′ such that ν ′(y) > 0, then x ≺Z′ y by
definition, since ν ′(x) = 0 and ν ′(y) ≥ 0 for all ν ′ ∈ Z ′. Otherwise, ν ′(x) =
ν ′(y) = 0 for all ν ′ ∈ Z ′, and hence x ≈Z′ y. (Note that resetting clocks to
values greater than zero destroys the property for this case.)

Thus, the diagonal property also holds for Z ′.

3. Time elapse. This removes the upper bounds on the individual clocks: Z ′ =
{ν + δ | ν ∈ Z ∧ δ ∈ R+}, where (ν + δ)(x) = ν(x) + δ for all x ∈ X. Now
assume that x ≺Z y, which means that ν(x) ≤ ν(y) for all ν ∈ Z, and that a
ν ∈ Z exists such that ν(x) 6= ν(y). First, consider a (ν + δ) ∈ Z ′. Clearly,
(ν + δ)(x) ≤ (ν + δ)(y), since ν(x) ≤ ν(y). Second, consider the ν ∈ Z such that
ν(x) 6= ν(y). By definition, (ν + δ) ∈ Z ′ for any δ. Clearly, (ν + δ)(x) 6= (ν + δ)(y).
Therefore, x ≺Z′ y. Now assume that x ≈Z y, which means that ν(x) = ν(y) for
all ν ∈ Z. By definition, (ν + δ)(x) = (ν + δ)(y), and clearly x ≈Z′ y. Thus, the
diagonal property also holds for Z ′.

(Note that the convex-hull over-approximation uses the union of zones which clearly
does not preserve the diagonal property.) This proves that every zone generated during
the state space exploration satisfies the diagonal property. �

The clock parts of two substates can be compared using a lexicographical preorder
that has been based on the 4Z preorder.

Definition 4.8 (Clock preorder) Let ~c1 and ~c2 be two clock index vectors with length
k, and let q be a state with zone Z. We say that ~c1 <q ~c2 if and only if

∃0≤i<k

(
ρ−1([~c1]i) ≺Z ρ−1([~c2]i) ∧ ∀0≤j<i

(
ρ−1([~c1]j) ≈Z ρ−1([~c2]j)

))
The non-strict version of the clock order is defined as usual: ~c1 ≤q ~c2 if and only if
~c1 <q ~c2 or ρ−1([~c1]j) ≈Z ρ−1([~c2]j) for all 0 ≤ j < k.

12



Lemma 4.9 If the clocks in the model are reset to zero only and the convex hull over-
approximation is not used, then the relation on clock index vectors of equal length as
defined in Definition 4.8 is a total preorder.

Proof. Straightforward, since 4Z is a total preorder on the set of clocks under the
mentioned premises (see Lemma 4.7). �

The next lemma relates the clock preorder that is defined for zones to the projections
of the state to the individual clock valuations.

Lemma 4.10 Let ~c1 and ~c2 be two clock index vectors with length k and let q be a state
with zone Z. If some ν ∈ Z exists such that [[~c1]]ν < [[~c2]]ν , then ~c1 <q ~c2.

Proof. Assume that a ν ∈ Z exists such that [[~c1]]ν < [[~c2]]ν . From Equation 5 we
know that a 0 ≤ j < k exists such that ν(ρ−1([~c1]j)) < ν(ρ−1([~c2]j)) and ν(ρ−1([~c1]i)) =
ν(ρ−1([~c2]i)) for all 0 ≤ i < j. Now suppose that ~c1 6<q ~c2. Since the preorder is total (see
Lemma 4.9), we consider the two remaining possibilities. First, suppose that ~c1 =q ~c2.
By Definition 4.8 and Equations 6–8: for all ν ∈ Z must hold that ν(ρ−1([~c1]j)) =
ν(ρ−1([~c2]j)) for all 0 ≤ j < k. This clearly does not hold, and from this contradiction
we can conclude that ~c1 6=q ~c2. Second, suppose that ~c1 >q ~c2. By Definition 4.8
and Equations 6–8: for all ν ∈ Z must hold that ν(ρ−1([~c1]j)) ≥ ν(ρ−1([~c2]j)) for all
0 ≤ j < k. This clearly also does not hold, and we conclude that ~c1 6>q ~c2. Thus,
~c1 <q ~c2. �

In the next subsection we define a total preorder on substates and use the state swaps
to compute the representative of a symmetry class, which under certain assumptions is
canonical.

4.3 Computation of Representatives

A comparison between the state contributions of different scalarset elements is defined
as follows.

Definition 4.11 (Substate preorder) Consider substate(α, i) = (~l1, ~v1,~c1), and also
substate(α, j) = (~l2, ~v2,~c2), and let q be a state. Then substate(α, i) <q substate(α, j) iff

• [[~l1]]q < [[~l2]]q or

• [[~l1]]q = [[~l2]]q and [[~v1]]q < [[~v2]]q, or

• [[~l1]]q = [[~l2]]q and [[~v1]]q = [[~v2]]q and ~c1 <q ~c2.

The non-strict version is defined as usual: substate(α, i) ≤q substate(α, j) if and only if
substate(α, i) <q substate(α, j) or [[~l1]]q = [[~l2]]q ∧ [[~v1]]q = [[~v2]]q ∧ ~c1 =q ~c2.

Lemma 4.12 If the clocks in the model are reset to zero only and the convex-hull over-
approximation is not used, then the relation as defined in Definition 4.11 is a total
preorder on the substates of a scalarset.
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Proof. Straightforward since the preorders on the three components of the substate
are total under the mentioned assumptions. �

The next lemma states how the substate preorder is affected by state swaps.

Lemma 4.13 Let q′ = swapα
i,j(q), and let π(i) = j, π(j) = i, and π(k) = k for all

k 6= i, j. Assume that substate(β, m) ∼q substate(β, n), where ∼∈ {<,=>}.

• If α 6= β, then substate(β, m) ∼q′ substate(β, n).

• If α = β, then substate(β, π(m)) ∼q′ substate(β, π(n)).

Proof. The first case can easily be proven using Lemma 4.3. The state swap of α does
not affect the parts of the state that are relevant for the substates of β. Therefore, the
order of the elements of β is not disturbed. For the second case assume that α = β and let
q = (~l, v, Z), q′ = (~l′, v′, Z ′), s1 = substate(β, m) = (~l1, ~v1,~c1), and s2 = substate(β, n) =
(~l2, ~v2,~c2).

• Suppose that m = n. Since substate(β, k) =q substate(β, k) for all states q and for
all β ∈ Ω and k ∈ β the lemma clearly holds.

• Suppose that i and j are not equal to m or n. Thus, π(m) = m and π(n) = n.
This case can easily be proven using Lemma 4.3 and Definition 4.5: the state swap
does not affect the projections to the substates of m and n.

• Suppose that m = i and n 6= i, j. Thus, π(m) = j and π(n) = n. Let s3 =
substate(β, j) = (~l3, ~v3,~c3). We prove that [[~l3]]q′ = [[~l1]]q, [[~v3]]q′ = [[~v1]]q, and that
if ~c1 ∼q ~c2, then ~c3 ∼q′ ~c2, where ∼∈ {<,=, >}. This proves (see Definition 4.11)
that s3 ∼q′ s2.

1. Let ~l1 = (l01, l
1
1, . . . , l

n
1 ) and let ~l3 = (l03, l

1
3, . . . , l

n
3 ). By Definition 4.5 we see

that [~l′]k = [~l]k if k /∈ ~l1 and k /∈ ~l2. Moreover, the definition has the effect
that the values of the entries at indices li1 and li3 are swapped for all 0 ≤ i ≤ n.
Clearly, [[~l3]]q′ = [[~l1]]q.

2. Since we assumed that Vα only contains global non-array variables (see As-
sumption 4.2 and the second assumption at the beginning of Section 4.1), we
can use the same argument as in the previous item to prove [[~v3]]q′ = [[~v1]]q.

3. Assume that ~c1 <q ~c2 and let ~c1 = (c0
1, c

1
1 . . . , ck

1), and ~c2 = (c0
2, c

1
2, . . . , c

k
2).

By Definition 4.8 we know that some 0 ≤ f ≤ k exists such that:

ρ−1(cf
1) ≺Z ρ−1(cf

2) (9)
∀0≤e<f ρ−1(ce

1) ≈Z ρ−1(ce
2) (10)

This means by definition of the ≈Z and ≺Z relations that

∃ν∈Z ν(ρ−1(cf
1)) < ν(ρ−1(cf

2)) (11)
∀0≤e<f ∀ν∈Z ν(ρ−1(ce

1)) = ν(ρ−1(ce
2)) (12)
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Next, we apply Definition 4.5 which swaps the values of ρ−1(cl
1) and ρ−1(cl

3)
for all 0 ≤ l ≤ n and lets the other clocks unchanged. Since substates are
disjoint (see Lemma 4.3) we know that the clocks in ~c2 keep their values:
s(ν)(ρ−1(cl

2)) = ν(ρ−1(cl
2)) for all 0 ≤ l ≤ n. Furthermore, s(ν)(ρ−1(cl

1)) =
ν(ρ−1(cl

3)) for all v ∈ Z and 0 ≤ l ≤ n. Combination with the previous
equations gives us that:

∃ν∈Z′ ν(ρ−1(cf
3)) < ν(ρ−1(cf

2)) (13)
∀0≤e<f ∀ν∈Z′ ν(ρ−1(ce

3)) = ν(ρ−1(ce
2)) (14)

By definition of the ≈ and ≺ relations:

ρ−1(cf
3) ≺Z′ ρ−1(cf

2) (15)
∀0≤e<f ρ−1(ce

3) ≈Z′ ρ−1(ce
2) (16)

By Definition 4.8 we can conclude that ~c3 <q′ ~c2. The case for ~c1 =q ~c2 is
similar.

• Suppose that m = i and n = j. Thus, π(m) = j and π(n) = i. With a similar
argument as in the previous item we can prove that [[~l1]]q′ = [[~l2]]q, [[~l2]]q′ = [[~l1]]q,
[[~v1]]q′ = [[~v2]]q, [[~v2]]q′ = [[~v1]]q, and if ~c1 ∼q ~c2, then ~c2 ∼q′ ~c1, where ∼∈ {<,=, >}.
Hence, s2 ∼q′ s1.

�

We minimize the state by sorting the substate contributions of each scalarset ac-
cording to the substate preorder of Definition 4.11. To this end, we apply a variation of
the bubble-sort algorithm, see Figure 3. It is clear that this representative computation
satisfies Equation 1 which ensures soundness, since states are transformed using the
state swaps only, which are automorphisms by Theorem 4.6.

(1) for all α ∈ Ω do
(2) for i = 1 to |α| do
(3) for j = |α| − 1 to i do
(4) if substate(α, j) <q substate(α, j − 1) then
(5) q := swapα

j−1,j(q)
(6) {substate(α, j − 1) ≤q substate(α, m), j ≤ m < |α|}
(7) od
(8) {substate(α, 0) ≤q · · · ≤q substate(α, i− 1)}
(9) od
(10) {m ≤ n ⇒ substate(α, m) ≤q substate(α, n)}
(11) od

Figure 3: Minimization of state q using the bubble-sort algorithm. The size of scalarset type α
is denoted by |α|. Lines 6, 8 and 10 show the loop invariants.

The following theorem states the main technical contribution of our work. Informally,
it means that the detected symmetries are optimally used.
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Theorem 4.14 (Canonical representative) If Assumptions 4.2 and 4.4 are true,
there are no variables of a scalarset type (Vα = ∅), the convex-hull over-approximation
is not used and the clocks in the model are reset to zero only, then the representative
function θ as computed by the algorithm in Figure 3 is canonical.

Proof. The loop invariants can easily be proved using the fact that the preorder on
substates is total (Lemma 4.12) and the fact that swapping two elements of a scalarset
only has an effect on those two elements, i.e., the relations between other substates are
not disturbed (Lemma 4.13).

Next, we prove that the algorithm computes a canonical representative, i.e., θ satisfies
q ≈ q′ ⇒ θ(q) = θ(q′). Suppose that q ≈ q′, i.e., a sequence of state swaps exists that
transforms q into q′. Now consider θ(q) = (~l, v, Z) and θ(q′) = (~l′, v′, Z ′) (clearly,
θ(q) ≈ θ(q′) by Equation 1) and assume that they are different.

1. Assume that ~l 6= ~l′, more precisely, [~l]k 6= [~l′]k, and [~l]j = [~l′]j for all 1 ≤ j < k.
Without loss of generality we can also assume that [~l]k > [~l′]k. Clearly, some
scalarset α and i ∈ α exist such that k ∈ ~li, where ~li = [substate(α, i)]0 since oth-
erwise entry k cannot be swapped and as a result θ(q) 6≈ θ(q′) which we assumed.
Moreover, exactly one such a combination exists, since substates are disjoint ac-
cording to Lemma 4.3. Say that ~li = (l0i , l

1
i , . . . , l

n
i ) and that lhi = k. By Definition

4.1 we know that lgi < lhi for all 0 ≤ g < h. Combination with the fact that
[~l]j = [~l′]j for all 1 ≤ j < k gives us then that [[~li]]θ(q) > [[~li]]θ(q′).
Since θ(q) ≈ θ(q′) it is possible to transform θ(q) into θ(q′) by state swaps. By
Definition 4.5 and the fact that substates are disjoint (see Lemma 4.3), the i-th
element of α can only be replaced by the following elements of α as a result of the
transformation:

J = { j | [[~lj ]]θ(q) = [[~li]]θ(q′) where ~lj = [substate(α, j)]0 and 0 ≤ j < |α| }

Clearly, J 6= ∅ since that would mean that θ(q) 6≈ θ(q′). Now we show that a
j ∈ J must exist such that j > i. Therefore, assume that j ≤ i for all j ∈ J , and
consider the following set of location vector indices which are exactly those indices
whose entries in ~l can replace the value [~l]k as a result of the transformation that
proves that θ(q) ≈ θ(q′):

G = { [~lj ]h | where ~lj = [substate(α, j)]0 and j ∈ J }

By Assumption 4.4 and the fact that j ≤ i (and j 6= i) for all j ∈ J we know
that g < k for all g ∈ G. Thus, [~l]g = [~l′]g for all g ∈ G and [~l]k 6= [~l′]k.
Clearly, ~l can never be transformed into ~l′. This contradicts our assumption that
θ(q) ≈ θ(q′), and therefore we can conclude that a j ∈ J exists such that j > i.
Now we fix this j > i and have that [[~lj ]]θ(q) = [[~li]]θ(q′). Above we have shown that

[[~li]]θ(q) > [[~li]]θ(q′). Combination gives us that i < j and [[~li]]θ(q) > [[~lj ]]θ(q). In other
words, i < j and substate(α, i) >θ(q) substate(α, j), which clearly contradicts the
loop invariant in line 10 of the algorithm in Figure 3. Therefore, ~l = ~l′.
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2. Assume that ~l = ~l′ ∧ v 6= v′. Since we assumed that Vα = ∅ we know that the
difference between v and v′ is in the projections to some substate. Therefore, the
proof is the same as in the previous item.

3. Assume that ~l = ~l′ ∧ ~v = ~v′ ∧ Z 6= Z ′. This means that a ν ∈ Z exists such
that ν /∈ Z ′. Moreover, since θ(q) ≈ θ(q′), a ν ′ ∈ Z ′ exists such that ν can be
transformed into ν ′ by the state swaps. Let us consider this ν and this ν ′.
By our assumptions, a clock index k exists such that ν(ρ−1(k)) 6= ν ′(ρ−1(k))
and ν(ρ−1(i)) = ν ′(ρ−1(i)) for all 0 ≤ i ≤ k. Without loss of generality we can
assume that ν(ρ−1(k)) > ν ′(ρ−1(k)), and that k ∈ ~ci = [substate(α, i)]2. Thus,
[[~ci]]ν > [[~ci]]ν′ . With a similar argument as in the first item we can prove that a
j > i exists such that [[~cj ]]ν = [[~ci]]ν′ , where ~cj = [substate(α, j)]2.
Combination gives us that i < j and [[~ci]]ν > [[~cj ]]ν . Applying Lemma 4.10 gives
us then that i < j and ~ci >θ(q) ~cj , which clearly contradicts the loop invariant in
line 10 of the algorithm in Figure 3. Therefore, Z = Z ′.

�

5 Experimental Results

This section presents and discusses experimental data that has been obtained with the
Uppaal prototype. The measurements were done using the tool memtime, for which a
link can be found at the Uppaal website http://www.uppaal.com/.

In order to demonstrate the effectiveness of symmetry reduction, the resource require-
ments for checking the correctness of Fischer’s mutual exclusion protocol were measured
as a function of the number of processes for both regular Uppaal and the prototype,
see Figure 4. A conservative extrapolation of the data shows that the verification of the
protocol for 20 processes without symmetry reduction would take 115 days and 1000
GB of memory, whereas this verification can be done within approximately one second
using less than 10 MB of memory with symmetry reduction.

Similar results have been obtained for the CSMA/CD protocol ([26, 30]) and for
the timeout task of a distributed agreement algorithm6 which is described in [5]. To be
more precise, regular Uppaal’s limit for the CSMA/CD protocol is approximately ten
processes, while the prototype can easily handle fifty processes. Similarly, the prototype
can easily handle thirty processes for the model of the timeout task, whereas regular
Uppaal can only handle six processes.

Besides the three models discussed above, we also investigated the gain of symmetry
reduction for two more complex models. First, we measured the gain for the previously
mentioned agreement algorithm, of which we are unable to verify an interesting instance
even with symmetry reduction due to the size of the state space. Nevertheless, symmetry
reduction showed a very significant improvement for less interesting instances of the
algorithm (only two symmetric processes ). Second, we measured the gain for a model of
Bang & Olufsen’s audio/video protocol, which is described in [15]. This paper describes
how Uppaal is used to find an error in the protocol, and it describes the verification

6A Uppaal model is available at http://www.cs.kun.nl/ita/publications/papers/martijnh/.
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Figure 4: Run-time data for Fischer’s mutual exclusion protocol showing the enormous gain of
symmetry reduction. The step in the graph of the memory usage is probably due to the the fact
that Uppaal allocates memory in chunks of a few megabyte at a time.

of the corrected protocol for two (symmetric) senders. Naturally, we added another
sender – verification of the model for three senders was impossible at the time of the
first verification – and we found another error, whose source and implications we are
investigating at the time of this writing. Table 1 shows run-time data for these models.

Table 1: Comparing the time and memory consumption of the relations for the agreement algo-
rithm and for Bang & Olufsen’s audio/video protocol with two and three senders. The exact
parameters of the agreement model are the following: n = 2, f = 1, ones = 0, c1 = 1, c2 = 2 and
d varied (the value is written between the parenthesis). Furthermore, the measurements were
done for the verification of the agreement invariant only. Three verification runs were measured
for each model and the best one w.r.t. time is shown.

Model Time [s] Memory [MB]

Agreement (0)
Agreement (1)
Agreement (2)
Agreement (3)
B&O (2)
B&O (3)

No red. Red.
1 3
21 16
80 23
231 32
2 1

265 36

No red. Red.
33 45
294 180
905 245
2126 321
16 10

1109 181
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6 Conclusions

The results we obtained with our prototype are clearly quite promising: with relatively
limited changes/extensions of the Uppaal code we obtain a rather drastic improvement
of performance for systems with symmetry that can be expressed using scalarsets.

An obvious next step is to do experiments concerning profiling where computation
time is spent, and in particular how much time is spent on computing representatives.
In the tool Design/CPN [20, 22, 13] (where symmetry reduction is a main reduction
mechanism) there have been interesting prototype experiments with an implementation
in which the (expensive) computations of representatives were launched as tasks to be
solved in parallel with the main exploration algorithm.

Due to the presence of the global variable id, which has scalarset type, our model
of Fischer’s protocol does not satisfy the conditions of Theorem 4.14. And indeed the
representative function θ as computed by the algorithm in Figure 3 is not fully canonical
for this model. This is due to the fact that two processes can take the transition to
location wait at the same moment. The projections to the resulting substates of the
processes then are equal, but the value of id depends on the order of arrival. Our
algorithm cannot distinguish these two different states. We claim, however, that the
implementation does compute a canonical representative, since it also considers the
Vα variables for the decision whether to swap two scalarset elements. Nevertheless, of
course, it remains an interesting topic for future research to optimize the representative
function for timed automata models that do not satisfy the restrictions of Theorem 4.14.

In this paper, we have exploited symmetries to statically derive bisimulations and
(efficient) representative functions from system descriptions. A complementary static
analysis technique for deriving bisimulations and representative functions is the dead
variable reduction technique described in the PhD thesis of Karen Yorav [29]. In Yorav’s
terminology, a variable v is used in a transition l

g,a,up
−→ l′ if v appears in g or in the right

hand side of an assignment in up. Variable v is defined in the transition if it is in the left
hand side of an assignment in up. Notice that in an assignment “v := v+1” v is first used,
and then it is defined. A variable v is said to be dead at location l if on every execution
path from l, v is defined before it is used, or is never used at all. Clearly, states that only
differ on the values of dead variables are bisimilar, and any function that assigns a fixed
value to these variables will give us a canonical representative function. An example of a
dead variable is the global variable id in Fischer’s protocol, of which the value does not
matter for locations in which none of the components is in its waiting location. Dead
variable reduction is closely related to the static guard analysis technique for timed
automata as described in [6]. It would interesting to implement dead variable reduction
in Uppaal and to investigate the resulting speedup on some benchmark examples.

The scalarset approach that we follow in this paper only allows one to express total
symmetries. An obvious direction for future research will be to study how other types
of symmetry (for instance as we see it in a token ring) can be exploited.
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