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ABSTRACT

Managing Hospital Care: Data-driven decisions and
comparisons

Wenqi Hu

This dissertation focuses on utilizing data-driven approaches to objectively measure variation in

the quality of care across different hospitals, understand how physicians make dynamic admission

and routing decisions for patients, and propose potential changes in practice to improve the quality

of care and patient flow management. This analysis was performed in the context of Intensive Care

Units (ICUs) and the Emergency Department (ED).

In the first part, we assess variation in the overall quality of care provided by both urban and

rural hospitals under the same integrated healthcare delivery system when augmenting administra-

tive data with detailed patient severity scores from the electronic medical records (EMRs). Using

a new template matching methodology for more objective comparison, we found that the use of

granular EMR data significantly reduces the variation across hospitals in common patient severity-

of-illness levels. Further, we found that hospital rankings on 30-day mortality and estimates of

length-of-stay (LOS) are statistically different from rankings based on administrative data.

In the second part, we study ICU admission decision-making dynamically throughout a patient’s

stay in the general ward/the Transitional Care Unit (TCU). We first used an instrumental variable

approach and modern multivariate matching methods to rigorously estimate the potential benefits

and costs of transferring patients to the ICU based on a real-time risk score for deterioration. We

then used the quantified impact to calibrate a comprehensive simulation model to evaluate system

performances under various new ICU transfer policies. We show that proactively transferring the

most severe patients to the ICU could reduce mortality rates and LOS without increasing ICU

congestion and causing other adverse effects.



In the third part, we focus on understanding how physicians make ICU admission decisions for

patients in the ED. We first used two sets of reduced-form regressions to understand 1) what and

how patient risk factors and system controls impact the admission decision from the ED; and 2)

what are the potential benefits of admitting patients from the ED to the ICU. We then proposed

a dynamic discrete choice structural model to estimate to what extent physicians account for the

intertemporal externalities when deciding to admit a specific patient to the ICU, to the ward or

let him/her wait in the ED. Note that the structural model estimation is still an ongoing process

and more investigation is required to fine tune the details. Therefore, we will not discuss the

structural model estimation results in this chapter, but only present the modeling framework and

key estimation strategy.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Among all the high-income countries in the world, the U.S. has the highest healthcare spend-

ing. In 2015, U.S. healthcare expenditures increased by 5.8% to $3.2 trillion in total or $9,990

per person, accounting for 17.8% of the nation’s Gross Domestic Product. Hospital care—the

largest contributor to total U.S. healthcare expenditures—experienced a faster growth of 5.6% to

$1 trillion in 2015 compared with 2014. With the tremendous and growing amount of spending on

healthcare, especially hospital care, it has become increasingly important to objectively measure

hospital performances, identify areas for quality improvement, and propose potential new policies.

This dissertation focuses on utilizing data-driven approaches to (1) objectively measure variation

in overall quality of care across different hospitals and (2) understand and potentially improve dy-

namic admission decision-making in the Intensive Care Unit (ICU) and the Emergency Department

(ED).

Chapter 2 of this dissertation focuses on assessing variation in overall quality of care across

different hospitals when incorporating detailed patient severity scores from the electronic medical

records (EMRs) into the comparison. This work is published on Medical Care (Hu et al., 2018b).

Chapters 3 and 4 of this dissertation focus on understanding the ICU admission decisions in the

general ward/Transitional Care Unit (TCU) or the ED for patients with varying disease conditions

and severity levels. The work in Chapter 3 is published on MSOM (Hu et al., 2018a) and Chapter

4 is an ongoing work.

1



CHAPTER 1. INTRODUCTION

1.1. Quality of Care Comparisons

This stream of research focuses on finding an objective way to compare hospital performance when

hospitals may vary in their location and patient mix.

It has long been recognized that widespread variation in medical practices undermines the

consistency and quality of healthcare. Over the past 40 years, healthcare providers, researchers,

and policy makers have increasingly described and investigated the substantial variation in medical

practices and the healthcare quality across industrialized countries (Australian Commission on

Safety and Quality in Health Care, 2015; Eskander et al., 2015; Institute of Medicine, 2001; McGlynn

et al., 2003; Department of Health, 2015). To better measure the large variation in quality of care

delivered by U.S. hospitals, the Centers for Medicare and Medicaid Services (CMS) launched a

Hospital Inpatient Quality Reporting program in 2004 (Jha et al., 2005; Lindenauer et al., 2007).

More recently, Medicare payment rates to more than 3,000 hospitals have been adjusted based

on their performance across some of the metrics reported to CMS, notably, readmission rates. For

example, in 2016, a weight of 40% was assigned to quality of care outcome measures, such as 30-day

mortality rates.

Significant effort has been put into comparing hospital quality within and across hospitals, or

even across countries, using mostly claims data. Note that claims data typically only contains

selected patient demographics and treatment procedures that are necessary for reimbursement,

and therefore is less detailed than the EMRs. Concerns have been raised as to the credibility of

comparing hospital performances based on claims data given the limited information about patients

available in these datasets. In Chapter 2, we exploited the richness of our EMR data to include

patients’ composite severity of illness status at hospital admission in addition to their demographics.

We leveraged a new template matching methodology to better balance patient demographics and

severity status, so as to objectively audit hospital performances based on a common patient mix that

is representative of the population seen at all hospitals, rather than on each hospital’s individual

patient mix. We show that using only patient demographics and failing to control for a good

measure of patients’ severity of illness status could unfairly penalize hospitals that see more severe

2



CHAPTER 1. INTRODUCTION

patients.

1.2. ICU Admission Decisions

This stream of research aims at using rigorous econometric models and modern matching method-

ologies to understand physician decision-making dynamically throughout a patient’s hospitalization

and the impact on patient outcomes. With a better understanding of the current practice, we fur-

ther suggest potential policy changes to help improve hospital performances. This analysis was

performed in the context of the ICU and the ED.

ICUs are specialized inpatient units that provide intensive care and continuous monitoring to

the most critically ill patients. ICUs are expensive units to operate, where the average daily cost is

1.73–2.55 times that of an average ward due to intensive staffing, invasive therapies, and expensive

equipment (Milbrandt et al., 2008). In addition, ICUs often run near full capacity (Green, 2002).

Morever, ICU admissions have increased by 48.8% from 2002 through 2009 (Mullins et al., 2013),

and the usage of ICUs will likely continue to rise with the population aging (Milbrandt et al., 2008).

The high cost of ICU care and rising need means developing a better understanding of the ICU

admission decision is of increasing importance.

However, there is a lack of established standards on which patients should be admitted to the

ICU. One pathway to the ICU is from the general medical-surgical ward or the TCU, where patients

experience unexpected rapid deterioration in their physiological conditions while staying in the ward

and would require ICU transfer immediately. Such unplanned transfers of patients are typically

associated with higher mortality and longer length-of-stay (LOS) than expected. Chapter 3 studies

the potential benefits and costs of proactively transferring patients to the ICU based on a real-time

risk score for deterioration. Another pathway to the ICU is from the ED, and Chapter 4 studies

the decision to admit a patient from the ED to the ICU, the ward, or to continue waiting in the

ED for a bed to become available in the future. Both pathways involve dynamic decision-making

during a patient’s stay rather than at a single point-in-time.

Chapter 3 is devoted to understanding the potential benefits and costs of using a real-time
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physiologic risk score to trigger ICU transfers from the general ward/TCU before patients actually

experience rapid deterioration in their physiological conditions and have to be transferred to the

ICU immediately. In studying complex ICU admission and discharge decisions from observational

data, researchers are typically concerned about missing unobservable severity factors from the data

that could bias inferences, even with our rich set of data. To address this endogeneity bias, we

utilize an instrumental variable (IV) approach by controlling for the ICU congestion level. Although

traditional empirical healthcare studies using an IV would simply rely on the strength of the IV

as given by the data, previous work has shown that if the instrument is not strongly correlated

with the endogenous variable, the IV estimates can be biased and the confidence intervals may

be misleading. Moreover, when using regression-based methods, if there is limited overlap in the

covariate distributions across levels of the IV, it would rely heavily on the selection of a correct

functional form to extrapolate the difference in the covariate distributions. To strengthen the IV

and reduce model dependence, we restricted the analysis to the night-time period, when the IV has

a stronger effect on ICU admission decisions, and use recent advancements in multivariate matching

to balance the covariate distributions and separate the IV. Based on our rigorous estimates and the

real hospital data, we calibrated a comprehensive simulation model to evaluate system performances

under various new ICU admission policies. We found that proactively admitting the most severe

patients could reduce mortality rates and the LOS without increasing ICU congestion and other

adverse effects. Our results have helped in launching a pilot study in two hospitals since 2015 to

alert the Rapid Response Teams (RRTs) for deterioration in patient conditions that potentially

would need ICU care in the next 12 hours.

Chapter 4 aims to understand how physicians make ICU admission decisions for patients in

the ED. We first used two sets of reduced-form regressions to understand 1) what and how patient

risk factors and system controls impact the admission decision from the ED; and 2) what are the

potential benefits of admitting patients from the ED to the ICU. We found that the sicker the

patient, the less congested the ICU, the fewer severe patients in the ICU, or the more recent ICU

discharges, all contribute to increasing the likelihood of ICU admission from the ED. We showed that

being admitted to the ICU from the ED could significantly reduce patients’ in-hospital mortality,
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LOS, and readmission rates within one month. We then proposed a structural model to estimate

to what extent physicians account for the intertemporal externalities when deciding to admit a

specific patient to the ICU, to the ward or let him/her wait in the ED. Since admitting a patient

can prevent future and potentially more severe patients from being admitted, it is conceivable

that physicians would need to consider both the condition of the patient in question as well as

the congestion levels and the workload in the ICU and non-ICU units. It is not clear whether or

how physicians have been internalizing this trade-off in their decision-making. Thus, we used a

dynamic discrete choice structural model to estimate the cost parameters physicians place on their

decision choices and the intertemporal discount factor. Note that the structural model estimation

is still an ongoing process and more investigation is required to fine tune the details. Therefore,

we will not discuss the structural model estimation results in this chapter, but only present the

modeling framework and key estimation strategy. For future work, it would be helpful to conduct

counterfactual analyses to investigate whether patient flow from the ED to inpatient units can be

improved by adjusting the way physicians make decisions.
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CHAPTER 2. INCORPORATING LONGITUDINAL COMORBIDITY AND ACUTE
PHYSIOLOGY DATA IN TEMPLATE MATCHING FOR ASSESSING HOSPITAL QUALITY:
AN EXPLORATORY STUDY IN AN INTEGRATED HEALTH CARE DELIVERY SYSTEM

Chapter 2

Incorporating Longitudinal Comorbidity

and Acute Physiology Data in Template

Matching for Assessing Hospital Quality:

an Exploratory Study in an Integrated

Health Care Delivery System

2.1. Introduction

Over the past 40 years, healthcare providers, researchers and policy makers have described and

investigated the substantial variation in medical practice and health care quality across industrial-

ized countries (Australian Commission on Safety and Quality in Health Care, 2015; Eskander et al.,

2015; Institute of Medicine, 2001; McGlynn et al., 2003; Department of Health, 2015). To better

measure the large variations in quality of care delivered by U.S. hospitals, the Centers for Medicare

and Medicaid Services (CMS) launched a Hospital Inpatient Quality Reporting program in 2004

(Jha et al., 2005; Lindenauer et al., 2007). More recently, Medicare payment rates to hospitals have
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been adjusted based on their performance across some of the metrics reported to CMS, notably,

readmission rates.

Comparing hospitals objectively requires finding a good way to standardize patient populations

in different centers. This boils down to determining which patient characteristics to consider and

which statistical approach to use for risk-adjusting the patient population under comparison. At

the time of hospital admission, patients will likely vary extensively across age, sex, socioeconomic

status, disease codes, comorbid conditions, and physiological derangement. Moreover, they may

undergo medical or surgical treatments of varying resource intensity. Because patients are non-

randomly self-referred to different hospitals, the case-mix can vary substantially, and it has long

been acknowledged that making comparisons based on crude mortality rates may penalize hospitals

that have high mortality rates because they treat the most severely ill patients (Fleiss et al., 2013;

Park et al., 1990; Moscucci et al., 2005). It is, therefore, important to standardize the patient

population to avoid potential confounding variables when conducting hospital quality comparisons.

Unfortunately, it is challenging to do standardization accurately (lezzoni, 1997).

In order to standardize the patient population, policy makers must consider whether to utilize

indirect or direct standardization methods in adjusting for patient populations across hospitals.

The most common statistical approach used in indirect standardization is to employ regression-

based risk adjustment modeling (Shahian and Normand, 2008). Since 2008, CMS has reported

risk-adjusted 30-day mortality rates across all hospitals for Medicare fee-for-service patients with

congestive heart failure (CHF), myocardial infarction and pneumonia. Indirect standardization

compares a hospital’s performance for its own specific case-mix (observed outcome) with the per-

formance of a hypothetical average hospital that treats similar patients as the case-mix of the

specific hospital (expected outcome), the ratio between the two outcomes typically abbreviated as

the O/E ratio. There are several limitations regarding the method. First, indirect standardization

allows the patient mix under comparison to vary across hospitals, and relies on model adjustment to

make the quality outcomes comparable. If there is limited overlap between case-mix distributions

across hospitals, risk adjustment models would heavily rely on specific parametric assumptions to

extrapolate the counterfactual outcome from the reference hospitals, and such risk adjustment may
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not be adequate (Shahian and Normand, 2008; Rosenbaum, 2010; Jones et al., 2014). Second, risk-

adjusted mortality has been shown to be an inconsistent measure of hospital quality when patient

risk factors are correlated with hospital specific characteristics (Jones et al., 2014; Glance et al.,

2006a). Third, risk-adjusted outcomes can be sensitive to the amount of patient characteristics

adjusted for, i.e., estimated outcome measures based on different severity measures are of varying

accuracy and can disagree with each other substantially and often, especially when using medical

records versus administrative data (lezzoni, 1997; Glance et al., 2006a; Iezzoni et al., 1996). Sys-

tems may also employ different reference populations and lack stability over time, etc. (Scott et

al., 2011). Finally, confidence intervals for the O/E ratios may be underestimated when the risk-

adjustment model used for performance comparison uses data from the hospitals being compared

(Faris et al., 2003; Goldstein and Spiegelhalter, 1996).

Recently, Silber et al. (2014a) proposed a new approach to assess hospital quality by direct

standardization called template matching. Template matching uses optimal multivariate matching

to find comparable matched samples of patients across hospitals. With template matching, we first

identify a template sample that is representative of a patient target population of interest. We then

use modern multivariate matching techniques (Zubizarreta, 2012; Zubizarreta et al., 2016) to find

matched samples of patients across hospitals that are highly comparable to the template sample.

Unlike propensity score matching methods, the matching techniques in Zubizarreta (2012) and Zu-

bizarreta et al. (2016) directly and flexibly balance covariates. In this manner, template matching

ensures that the hospital comparisons are fair in terms of observed patient characteristics. In con-

trast to model-based approaches to risk adjustment and hospital comparisons, template matching

confines hospital comparisons to comparable data and avoids the perils of model misspecification

and extrapolation when there is limited overlap in covariate distributions across hospitals. In the

future, template matching may become more common due to its flexibility in selecting the target

patient population for hospital comparisons. It can also enhance transparency in understanding

who is included or not in the comparisons. In this report, we describe how we build on the sem-

inal work of Silber et al. (2014a) by incorporating additional data from comprehensive electronic

medical records (EMRs).
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In addition to the method of standardization, policy makers must also consider the tradeoff

between using purely administrative data versus incorporating data available from EMRs. Ad-

ministrative data are relatively inexpensive to collect and generally widely available. However,

the amount of detailed patient characteristics included in such datasets can be quite limited. In

contrast, data from modern comprehensive EMRs tend to have more detailed information regard-

ing patient characteristics, although many centers cannot access such data. Traditional hospital

comparison methods are typically based on administrative data, such as patient demographics,

diagnoses and procedures that are derived from hospital reimbursement claims (Jha et al., 2005;

Lindenauer et al., 2010; Krumholz et al., 2006; Fonarow et al., 2011)—databases that were not de-

signed for the purposes of quality of care assessment. Comorbidities and chronic diseases are likely

to be underreported, which may result in inaccurate quality assessment (Green and Wintfeld, 1993;

Quan et al., 2002). The lack of more detailed data, including present-on-admission (POA, present

at the time the order for inpatient admission occurs) comorbidities and information on acute phys-

iology, limits the ability to fully adjust for patient acute physiological conditions (Jollis et al., 1993;

Pine et al., 1997, 2007; Glance et al., 2006b). Both issues raise questions about the accuracy and

objectiveness of the comparison based solely on administrative data.

Increasing availability and lower cost of EMRs has generated growing interest in augmenting

administrative records with present-on-admission (POA) comorbidity conditions, secondary diag-

noses and physiological data to better quantify patient severity (Pine et al., 2007; Berner et al.,

2005; Fry et al., 2007). Escobar et al. (2013) used logistic regression and found that enhancing

traditional risk-adjustment models with physiological data enhanced the ability to predict hospital

mortality but found that incorporating longitudinally captured comorbidity data did not. In this

report, we examine how hospital rankings change when further adjusting for patients’ comorbidity

history and/or acute physiology compared to using only administrative data. However, we take a

different methodological approach—template matching—to compare hospital performance. Specif-

ically, we describe how hospital rankings may change after incorporating longitudinal comorbidities

and acute physiology.

To achieve this goal, we defined a representative reference population. We then augmented
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administrative data with information on longitudinal comorbidity and acute physiology and selected

patients with similar characteristics to those of the reference population. After this, we ranked

hospitals’ 30-day mortality rates and obtained Hodges-Lehmann point estimates of length-of-stay

(LOS) (Hodges and Lehmann, 2012). We concluded by comparing rankings obtained with varying

degrees of information.

2.2. Methods

2.2.1. Study Setting

This project was approved by the KPNC Institutional Review Board, which has jurisdiction over

all the hospitals included in this report.

Our setting consisted of 18 of the 21 hospitals in Kaiser Permanente Northern California

(KPNC), an integrated health care delivery system. We focused on patients admitted for 4 specific

diagnosis groups: (1) sepsis and pneumonia, (2) congestive heart failure (CHF), (3) hip fracture and

(4) cancer1. We chose these groups because they were among the largest disease categories in our

entire study population, which ensured enough hospitalizations from each hospital for performance

comparison. We dropped three of the smallest hospitals because they had insufficient numbers of

patients, as we aimed to ensure that all included had at least 50 patients in each of the 4 disease

categories.

2.2.2. Patient Characteristics

For each hospitalization, we had patient level admission data which included the patient’s age, sex,

admitting hospital, admitting type (medical or surgical), admission venue (emergency department

[ED] or not), admission diagnosis, longitudinal comorbidity burden and acute physiology. The co-

1The broad cancer category is a class of low severity cancers grouped by KPNC based on biologic plausibility (i.e.,
relative similarity from a disease standpoint) and on the observed mortality rate for modeling purposes (Escobar et
al., 2008). Such grouping of patients’ primary conditions has been used in developing risk adjustment and predictive
models in Escobar et al. (2008, 2013). After all, there is no easy way to come up with patient groupings, and KPNC
has to make some pragmatic choices to strike a balance between similarity among patient conditions and number of
observations.
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morbidity burden was captured using the continuous COmorbidity Point Score 2 (COPS2), which

measures a patient’s chronic disease burden during the 12 months prior to hospital admission with

integer values ranging in [0, 306]. Acute physiology was captured using the continuous Laboratory

Acute Physiology Score 2 (LAPS2), which measures a patient’s acute instability based on labora-

tory tests and vital signs 72 hours preceding hospital admission with integer values ranging in [0,

274] (see Escobar et al. (2013) and its appendix for more information on these two scores). The

availability of these scores permitted us to analyze their effects separately. Note the COPS2 and

LAPS2 scores were developed to predict in-hospital and 30-day mortality rates. In Escobar et al.

(2013), they showed that the c-statistic for predicting in-hospital mortality increased from 0.798

to 0.883 when including COPS2 and LAPS2, compared with using only administrative data. A

similar improvement was also shown for predicting 30-day mortality. Therefore, both scores cap-

ture additional information on patient severity at the time of hospital admission, and should be

adjusted for when objectively comparing hospital quality.

2.2.3. Defining a Representative Patient Sample

We used the template matching methodology developed by Silber et al. (2014a). Figure 2.1 illus-

trates the template matching process we employed.

We first defined a common reference population (the template). As recommended by Silber

et al. (2014a), we wanted the template to be representative of the 4 diagnosis groups typically

treated at all 18 hospitals. Our definition of “representative” for each diagnosis group meant that,

with respect to the pooled population from all 18 hospitals, the following were similar: (1) the

proportions of the 4 diagnosis groups; (2) the proportions of ED/non-ED and medical/surgical

patients; and (3) mean patient COPS2 and LAPS2 scores.

We chose a template size of 250. The size of the template was restricted by the number

of patients treated in the smallest hospitals in each diagnosis group after factoring in the joint

distribution of sex, admission type/venue, and the proportion of patients admitted during flu season.

We excluded small hospitals with small numbers of patients in at least one disease category from

the performance comparison, because the patient mix would be too different to allow comparisons
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Figure 2.1: Each shape represents patients from one diagnosis group (circle: sepsis & pneumonia,
triangle: CHF, diamond: hip fracture, star: cancer; trapezoid, pentagon, rectangle and cross represent
other disease categories seen by the 18 hospitals but not included in this study). The proportion of
each of the 4 diagnosis groups in the template is the same as that in the pooled hospital population.
For conciseness of presentation, we use only one shape to represent all patients selected under each
diagnosis group, and label the exact number of patients from each diagnosis group next to each shape.
Each patient in the template is matched to R patients from each of the 18 hospitals, where R is the
matching ratio varying between 1 and 5 depending on the number of cases in each hospital. In the
figure, for example, R = 2 for hospital 1 and R = 1 for hospital 2. The number of sepsis & pneumonia
patients matched in hospital 1 would therefore be 97 ∗ 2 = 194. The matched patients at each hospital
are very similar to the template, and patients from all 18 hospital matched samples are also very similar
to each other.

to other hospitals, and including them would come at the cost of significant reduction in template

size and statistical power. With a template of 250 patients, we ensured that there were nearly

double the number of cases to choose from even the smallest hospitals to achieve good matches.

For the largest hospitals, each patient in the template could be matched to up to five patients to
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take advantage of the larger case population.

To construct the template, similar to Silber et al. (2014a), we randomly generated 500 subsam-

ples of size 250 from the pooled population. Each of these had the pre-determined proportion of

diagnosis groups and admission type/venue as mentioned above. From these 500 random samples,

we selected the random sample that was closest to the pooled population for that diagnosis group

in terms of the Mahalanobis distance between the mean patient characteristics.

2.2.4. Matching Similar Hospital Samples

We examined how hospital rankings change when matching on 4 data type combinations: (1)

administrative data only, (2) administrative data and COPS2, (3) administrative data and acute

physiology (LAPS2), (4) administrative data, COPS2 and LAPS2. Note that current hospital

comparison methods, such as that used by the CMS, lie between our matching design (1) and (2),

because they take into account administrative data and a more simplified comorbidity index than

COPS2.

For each data type combination and diagnosis group, we performed multivariate matching

between the template and each hospital, minimizing the Mahalanobis distance between the matched

pairs of patients while balancing the covariates using the methods in Zubizarreta (2012). These

were implemented using the statistical software package ‘designmatch’ for R (Zubizarreta et al.,

2016). We calculated the Mahalanobis distance using all continuous covariates. To take advantage

of the different number of cases in small and large hospitals and increase matching efficiency,

we varied matching ratios from 1:1 up to 1:5. In summary, we required exact matches for the 4

diagnosis groups, matching on the proportions of each categorical variable (sex, flu season admission

indicator2, admitting type, and admission venue), and mean matching for the continuous variables

(age, COPS2, LAPS2). For these latter variables, the difference between the mean patient ages in

the template and the hospital matched samples was restricted to be within 0.1 standard deviation

(Rosenbaum and Rubin, 1985). In addition to balancing the means between the template and

2Indicator on whether a patient is admitted during the flu season, so that after matching the fraction of total
admissions that were admitted during the flu season is the same across all hospitals
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the overall hospital matched samples, we wanted the matched pairs of patients to be as close on

COPS2 and/or LAPS2 as possible to ensure each pair of patients is also comparable to each other.

Therefore, for pairs of patients who were more than one standard deviation away from each other

on COPS2 or LAPS2, we modified their pairwise distance with an added penalty equal to the mean

pairwise Mahalanobis distance.

2.2.5. Assessing the Quality of Matching

We assessed quality of the matches across two dimensions: (1) we compared the covariate distri-

butions across 18 hospitals; and (2) for each of the 4 data type combinations, we compared how

balanced the 18 hospital matched samples were with respect to age, COPS2 and/or LAPS2.

To compare the covariate distributions across 18 hospitals, we used a formal Kruskal-Wallis

test (Kruskal and Wallis, 1952) for continuous covariates and a Pearson’s χ2 test for categorical

covariates to examine the univariate balance on each covariate across 18 hospitals. The Kruskal-

Wallis test is a non-parametric analogy to the one-way ANOVA test based on ranks, and it tests if

there is stochastic dominance on the covariate between some pairs of hospitals. We then inspected

the differences in age, COPS2 and LAPS2 among pairs of patients from 18 hospitals, who were

matched to the same template patient, which we referred to as a matched group to this template

patient. If a matched patient from one hospital is very different from a matched patient from

a different hospital, while both are being matched to the same template patient, then significant

variation within this matched group may remain, and patients from the 18 hospitals in this matched

group may not be comparable to each other.

2.2.6. Ranking Hospital Performances

We focused on two patient outcomes in measuring hospital performance: 30-day mortality rates and

LOS in hospital. For the latter outcome, we derived Hodges-Lehmann point estimates (Hodges and

Lehmann, 2012). The Hodges-Lehmann estimator is a robust nonparametric location estimator

of the LOS distribution based on Wilcoxon’s signed-rank statistic, and has been used in other

studies to measure hospital LOS (Silber et al., 2014a), time to discharge (Shuster et al., 2008) and
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intensive care unit free days (Young et al., 2015), etc. Under each level of information matched on,

leveraging the paired group nature in the 18 hospital matched samples and the varying matching

ratios, we used a Cochran-Mantel-Haenszel test (Agresti, 2012) for testing the differences in 30-day

mortality rates across 18 hospitals. The Cochran-Mantel-Haenszel test examines whether 30-day

mortality rates are the same across all 18 hospitals stratified by the 250 matched patient groups.

For the continuous outcome of hospital LOS, we used a Mark-Skillings test (Agresti, 2012) to check

if the LOS distribution in all 18 hospitals was independent from the hospital assignment. Because

patients who died in the hospital typically exhibited a different (shortened) pattern of in-hospital

LOS, we set their LOS to be the 95th percentile of the pooled LOS distribution (12.8 days), similar

to the modification methods used in Lin et al. (2017); Brock et al. (2011); Liu et al. (2010), and

Silber et al. (2014b). Setting the LOS of deceased patients to the 95th percentile of the pooled

LOS distribution helps to reflect that death is ultimately the worst outcome. Some studies drop

the patients who died in hospital when analyzing LOS. We decided to retain such patients because

we utilized the matching structure to perform stratified statistical tests on patient outcomes across

hospitals, where each group of patients matched to the same template patient formed a natural

stratification. Dropping patients who died in hospital after matching when analyzing LOS would

impair the use of stratified statistical tests.

2.3. Results

Our final study cohort consisted of 41,620 patient hospitalizations that began at one of the 18 hos-

pitals between Jan 2010 and Nov 2011. The proportions of hospitalizations for sepsis & pneumonia,

CHF, hip fracture and cancer were 39.3%, 14.4%, 9.7% and 36.7%, respectively.

2.3.1. Defining a Representative Patient Sample

Table 2.1 summarizes the mean patient characteristics in the template compared with that in the

pooled population for each diagnosis group. None of the differences in means between the template

and the pooled population was statistically significant at the 5% level. Thus, we concluded that
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the template was comparable to the patient population seen in all 18 hospitals.

Table 2.1: Mean patient characteristics in the Template (N = 250) and the Pooled Population (N =
41, 620)

Diagnosis Group Sepsis & Pneumonia CHF Hip Fracture Cancer

Pop. Temp. Pop. Temp. Pop. Temp. Pop. Temp.

Proportion (%) 39.3 38.8 14.4 14.4 9.7 10.0 36.7 36.8
Age 71.0 71.1 75.4 75.3 80.0 79.7 58.3 57.9
COPS2 53.7 54.7 66.6 68.7 33.4 31.6 24.1 25.2
LAPS2 98.7 98.9 84.2 85.1 58.5 56.0 22.7 23.1
Female (%) 50.4 50.5 48.6 50.0 70.1 68.0 63.3 64.1
Flu season (%) 32.8 39.2 33.8 38.9 29.3 36.0 28.5 32.6
Admission category (%)

ED surgical 2.3 2.1 0.7 0.0 50.9 56.0 1.2 1.1
Non-ED surgical 0.2 0.0 0.6 0.0 3.8 4.0 75.2 73.9

ED medical 93.0 92.8 91.3 91.7 44.6 40.0 4.2 4.4
Non-ED medical 4.6 5.2 7.5 8.3 0.7 0.0 19.4 20.7

CHF indicates congestive heart failure; COPS2, COmorbidity Point Score 2; ED, emergency depart-
ment; LAPS2, Laboratory Acute Physiology Score 2; Pop., population; Temp., template.

2.3.2. Comparing the Quality of Matching

Table 2.2 examines the maximum within-group differences on COPS2 and LAPS2. When only

matching on the administrative data, considerable variation in COPS2 and LAPS2 remained within

each matched patient group. Balancing both administrative data and COPS2 helped shrink the

mean within-group variation in COPS2 from 144.3 to 15.3, but the variation in LAPS2 remained.

A similar relationship appeared when balancing administrative data and LAPS2, but not COPS2.

Only by actively balancing both the administrative data and the two severity scores could we

meaningfully reduce the heterogeneity of patient severity of illness within each matched group.

Table 2.2: Summary statistics on the maximum differences within each matched patient group when
matching on (1) administrative data only; (2) administrative data and COPS2; (3) administrative data
and LAPS2; (4) administrative data, COPS2 and LAPS2

Admin Admin + COPS2 Admin + LAPS2 Admin+COPS2+LAPS2

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

Age 0.0 1.7 17.0 1.0 6.4 62.0 1.0 5.8 28.0 2.0 11.2 62.0
COPS2 30.0 144.3 269.0 0.0 15.3 216.0 27.0 139.2 254.0 0.0 25.5 259.0
LAPS2 27.0 127.7 245.0 24.0 127.1 278.0 0.0 14.7 75.0 0.0 28.0 108.0
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Additional tables in Appendix A.1 present covariate distributions across the 18 hospital matched

samples under 4 data type combinations. In examining covariate balances across the 18 hospital

matched samples, we found that age was well balanced under all 4 levels of information. Because

we matched exactly on hospital and fine balanced the distribution of sex, admission season and

admission type, the proportions of female, flu season admissions, and the admission type/venue

combinations were exactly the same in each hospital matched sample. In contrast, whenever COPS2

and LAPS2 were not included in the matching algorithms, substantial variation in these severity

scores persisted.

2.3.3. Ranking Hospital Performance

After matching, all 18 hospital samples had significantly different 30-day mortality rates and LOS

distributions at the 1% level and lower based on the Cochran-Mantel-Haenszel test and the Mark-

Skillings test.

Figure 2.2 shows hospital rankings for both 30-day mortality and Hodges-Lehmann LOS point

estimates under matching designs (1) and (4). Because the distribution of LOS was highly skewed

to the right, we ranked hospitals based on the Hodges-Lehmann estimates of LOS in the hospital

matched samples3.

We also broke down the hospital rankings into the top, medium and bottom terciles and exam-

ined how hospitals moved up or down in their ranking terciles when adding COPS2 and/or LAPS2

to the comparisons. If COPS2 and/or LAPS2 provided no additional information, we would expect

hospitals not to change their ranking terciles when adding them into performance comparisons,

and we would reject the null hypothesis of independence between rankings. Tables 2.3 and 2.4

show that the p-values for change of hospital ranking terciles between administrative information

and adding COPS2 or LAPS2 were significant at the 5% level for both 30-day mortality rates and

Hodges-Lehmann estimates of LOS. This rejects the null hypothesis that the two rankings were

3The Hodges-Lehmann estimator estimates the pseudo-median when the underlying distribution is asymmetric,
or it is a median-unbiased estimator if the underlying distribution is symmetric. Because the LOS distribution is
typically highly skewed, using its mean tends to be biased. Hodges-Lehmann estimator tends to have greater efficiency
than does the sample median. Rather than fitting a distribution to the LOS and estimating its mean or median, we
decided to do a robust nonparametric comparison across hospitals.
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Figure 2.2: Parallel plot of 18 hospital rankings (min rank = 1, max rank = 18, y-axis) on 30-day
mortality (left) and LOS (right) when matching on administrative data (Admin) or adding both COPS2
and LAPS2 (x-axis). Each line links a hospital’s ranking against all other hospitals under the two levels
of information. If a hospital’s rankings on 30-day mortality rates or LOS are the same under the two
data type combinations, the line should be horizontal. The darker the line color, the more changes in
hospital rankings under the two levels of information matched on.

independent. Only when adding both COPS2 and LAPS2 were hospital ranking terciles indepen-

dent from those using only administrative information. Thus, COPS2 and LAPS2 have significant

effects on hospital performance rankings. Additional data on the mean and max absolute changes

in hospital rankings are provided in Appendix A.2.

2.3.4. Sensitivity Analysis

In template matching, we have already controlled for observed patient characteristics, including

disease group, sex, admission flu season, admitting type, admission venue, age, COPS2 and LAPS2.

By controlling for observed patient characteristics, it is likely that we are also implicitly controlling

for the distribution of unobserved patient risk factors, assuming observed patient characteristics

are proxies to unobserved risk factors. Nevertheless, there may still exist some concern that the
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Table 2.3: Number of hospitals in each combination of 30-day mortality rate ranking terciles between
using administrative information only and when adding COPS2 or LAPS2 or adding both. P-value is
calculated using the Fisher’s exact test to examine whether the hospital ranking terciles are independent
under any two levels of information.

Admin + COPS2 Admin + LAPS2 Admin + COPS2 + LAPS2

Top Medium Bottom Top Medium Bottom Top Medium Bottom

Top 5 1 0 5 0 1 3 3 0
Medium 0 3 3 1 4 1 1 3 2
Bottom 1 2 3 0 2 4 2 0 4

P-value 0.04 0.01 0.08

Correlated Correlated Independent

Table 2.4: Number of hospitals in each combination of truncated LOS ranking terciles between using
administrative information only and when adding COPS2 or LAPS2 or adding both. P-value is cal-
culated using the Fisher’s exact test to examine whether the hospital ranking terciles are independent
under any two levels of information.

Admin + COPS2 Admin + LAPS2 Admin + COPS2 + LAPS2

Top Medium Bottom Top Medium Bottom Top Medium Bottom

Top 5 1 0 5 1 0 4 2 0
Medium 1 3 2 1 3 2 2 2 2
Bottom 0 2 4 0 2 4 0 2 4

P-value 0.02 0.02 0.10

Correlated Correlated Independent

distribution of some unobserved patient risk factor is not similar across the 18 hospitals, which may

impact how patients are assigned to hospitals (i.e., in a non-random way). A sensitivity analysis

asks whether a departure of a specific size Γ (in odds ratio) from random hospital assignment would

alter the conclusions about a specific hospital A of interest as compared with another hospital B

or the rest 17 hospitals as a whole. We used a stylized sensitivity analysis model in Rosenbaum

(1987) to assess how sensitive hospital rankings could be to a potential unobserved covariate U

that impacts patients’ hospital choice and outcome.

Specifically, let Zi be a binary variable indicating whether a patient i chooses to go to hospital A,

Ui be an unobserved covariate that is not controlled by matching, and Xi be the vector of observed

covariates matched on. For the unobserved covariate to have the maximum impact on biasing the

patient outcome, it is typically assumed that Ui is nearly perfectly predicting the patient outcome,
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and is positively correlated with a patient choosing to go to hospital A versus the rest 17 hospitals.

Following Rosenbaum (1987), we assume the distribution of Zi given (Xi, Ui) follows a logit model

log Pr(Zi = 1|Xi = xi, Ui = ui)
Pr(Zi = 0|Xi = xi, Ui = ui)

= f(xi) + γui.

If γ = 0, then given the observed covariates Xi, the hospital choice Zi is not affected by the

unobserved covariate Ui, as would be the case in a conventional randomized experiment. For

convenience of interpretation on the sensitivity parameter γ as in Rosenbaum (1987), we assume

Ui ∈ [0, 1] without loss of generality. Therefore, the least favorable values of Ui are binary, and two

patients matched exactly on X have odds of choosing hospital A that differ by at most a factor of

Γ , eγ . As an aid to interpreting Γ, the one parameter model can be understood in terms of an

equivalent two-dimensional model with parameters Λ and ∆ through the formula Γ = ∆Λ+1
∆+Λ , where

Λ is the odds ratio of choosing hospital A when Z = 1 vs when Z = 0, and ∆ is the odds ratio

of death in 30 days when Z = 1 vs when Z = 0. See Rosenbaum (2002); Rosenbaum and Silber

(2009) for a detailed discussion of Γ and its auxiliary parameters Λ and ∆.

For each hospital i of interest, we can calculate the sensitivity parameter Γi associated with

the odds of choosing hospital i versus the rest 17 hospitals as a whole. Figure 2.3(b) shows the

sensitivity of the two hospitals ranking the best and worst in terms of their 30-day mortality rates.

Using hospital 19, which ranks the worst on 30-day mortality, as an example: in order to attribute

the higher 30-day mortality rate among patients treated at hospital 19 to an imbalance in an

unobserved covariate U , that unobserved covariate would need to more than double the odds of

patients choosing to go to hospital 19 versus the rest 17 hospitals (Λ = 2.5), and at the same time

more than double the odds of death in 30-days (∆ = 2.55), corresponding with Γ = 1.46. Our

physician collaborator indicated that in KPNC, such an unobserved covariate is not highly likely

to exist as all hospitals fall within the same integrated healthcare delivery system. Therefore, the

conclusion on hospital 19 ranking the worst in 30-day mortality rate is moderately insensitive to

unobserved covariates.
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Figure 2.3: Sensitivity of 30-day mortality rates rankings to unobserved covariates

5
10

15

HOSPID

30
−

da
y 

M
or

ta
lit

y 
(%

),
 m

at
ch

 o
n 

ad
m

in

24 21 7 10 28 2 14 3 16 11 5 17 8 20 13 259 19

(a) Hospital 30-day mortality rates with 95% confi-
dence intervals

1.0 1.5 2.0 2.5 3.0 3.5 4.0
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

Λ: odds of treatment at HOSP A

∆:
 o

dd
s 

of
 3

0−
da

y 
m

or
ta

lit
y

(2.5, 2.55)

(1.5, 1.62)

Γ=1.10

Γ=1.46

HOSP=19, Γ=1.46
HOSP=  9, Γ=1.10

(b) Sensitivity of 30-day mortality rates rankings

2.4. Discussion

In the US, numerous studies have indicated that the quality of American health care is highly

variable across and within medical systems (Institute of Medicine, 2001; McGlynn et al., 2003).

For example, the Dartmouth Atlas of Health Care has published over 60 reports since 1996 on the

regional level variations in medical resources utilization and outcomes for the Medicare population.

In 2012, the Organization for Economic Cooperation and Development undertook an international

study that showed the wide health care variations for high-cost and high-volume procedures across

and within 13 countries (OECD, 2014).

Recognizing the large variations in health care quality, hospitals have invested time and effort

into finding ways to objectively measure their performance against other hospitals to identify po-

tential areas for quality improvement. Following the release of national public data from CMS in

2004, numerous works have studied hospital performance on Medicare beneficiaries measured by the

30-day mortality and readmission rates for common medical conditions, including acute myocardial

infarction, heart failure, pneumonia and stroke.

In this work, we have demonstrated how an integrated health care delivery system could use
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the template-matching approach to take advantage of data from comprehensive EMRs to conduct

objective internal hospital ranking on the same reference population. Further, our analyses also

confirm that both patients’ comorbidity history and acute physiology at the time of admission had

substantial effects on hospital rankings. Neglecting either the comorbidity history or acute phys-

iology would raise concerns about the comparability of the patient population and, consequently,

the validity of the derived hospital rankings.

Our findings on the importance of incorporating physiologic conditions in hospital comparison

are consistent with prior work using risk-adjustment models. The impact of incorporating the

comorbidity history on hospital rankings is more prominent in our study as compared with that

found in our previous work (Escobar et al., 2013). As the patient population and indices are the

same, the most likely reason is the risk adjustment process itself, although the work of others (Quail

et al., 2011) suggests that some of the effects we found could be due to varying effects of the indices

themselves.

Compared with the common risk-adjustment models used in prior work, template matching gives

a more objective way of auditing hospital quality by grading all hospitals on the same reference

population that is typically seen by all 18 KPNC hospitals, thereby reducing the risk of model

misspecification and extrapolation when there is limited overlap in covariate distributions across

hospitals. In addition, template matching is more transparent because one knows exactly whether

an individual patient is included or not in the comparison.

The template-matching methodology can be readily generalized to performance comparisons at

other hospitals, with the flexibility to select the target patient population and risk covariates. In

addition, Dr Escobar’s team is working with Epic to embed LAPS2 and COPS2 into the Epic EMR

core structure (currently used in more than 4,000 US hospitals), making it more widely available

in the United States for hospital comparisons.

This study has several limitations. First, our study focused on four large and severe diagnosis

groups typically treated at KPNC. It would be interesting to generalize to other large disease

categories seen at other health care systems. Second, our data covered patient hospitalizations

over the course of only two years, which limited the template size, and results from the smallest
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hospitals might be less stable. Nevertheless, the severity of illness of the patient population seen

at KPNC hospitals has been increasing over the past decade and KPNC has been continuously

launching practice improvement initiatives. Therefore, grading hospitals on earlier years may not

be comparable to their current practice and such comparison may not be objective. Finally, our

inferences on hospital performance were conditional on the matching design. An interesting open

methodological question for future study would be how to incorporate uncertainty in the hospital

ranking estimates.

Given the increasing availability of data from comprehensive EMRs, which can be merged with

administrative data even at the state level (Rosenthal et al., 2010), our study suggests it might

be worthwhile for hospital administrators and policy makers to consider regularly incorporating

patients’ comorbidity history, laboratory results, and vital signs for objective quality comparisons

between hospitals. With more comprehensive adjustment for patient populations under comparison,

hospital administrators can understand hospital performance better and identify best practices to

improve quality of care.
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ICU Admission Decisions from the Ward

and the Emergency Department
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Chapter 3

An Examination of Early Transfers to the

ICU Based on a Physiologic Risk Score

3.1. Introduction

Intensive Care Units (ICUs) provide care for critically ill patients and often operate near full

capacity (Green, 2002). ICU admissions in the US have increased by 48.8% from 2002 through

2009 (Mullins et al., 2013), and the usage of ICUs will likely continue to rise with the population

aging (Milbrandt et al., 2008). The high cost of ICU care and rising use of ICUs make it of

increasing interest to develop a better understanding of the ICU admission decision. In this work,

we focus our attention on ICU admission decisions for patients in general medical-surgical wards

and Transitional Care Units (TCUs), because unplanned transfers to the ICU from these units are

associated with worse patient outcomes than direct admissions (e.g., Barnett et al. (2002); Luyt

et al. (2007)). We use a physiologic risk score (Escobar et al., 2012) that is dynamically updated

for patients staying in the general ward and the TCU to develop an understanding of the potential

benefits and costs of proactively transferring patients to the ICU based on the risk score before

they experience rapid deterioration.

Recognizing the risks associated with unplanned transfers, the US Institute for Healthcare

Improvement advocates for the development of early warning systems to support the work of rapid
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response teams (RRTs) with the hope that this would reduce catastrophic medical events that can

lead to unplanned transfer to the ICU or in-hospital death on the ward or TCU (Duncan et al.,

2012). A rapid response team is a team of clinicians who bring critical care expertise to the bedside

of the patient who exhibits early signs of clinical deterioration. No standard detection mechanism

exists for RRTs. Some teams employ manually assigned scores such as the Modified Early Warning

Score (MEWS) (Stenhouse et al., 2000) and the National Early Warning Score (NEWS) (Royal

College of Physicians, 2012). Unfortunately, these scores are quite coarse and can suffer from high

false positive and false negative rates (Escobar et al., 2012; Gao et al., 2007).

Our study setting is Kaiser Permanente Northern California (KPNC), an integrated health

care delivery system that routinely uses severity of illness and longitudinal comorbidity scores for

internal quality assurance. Similar to some university hospitals (e.g., Kollef et al. (2014)), KPNC is

starting to embed predictive models into the electronic medical record (EMR). KPNC has developed

an early warning system that provides clinicians in the emergency department (ED) and general

medical-surgical wards with a severity of illness score (Laboratory-based Acute Physiology Score,

version 2, LAPS2), a comorbidity score (COmorbidity Point Score, COPS2), as well as a dynamic

in-hospital deterioration risk estimate (Early Detection of Impending Physiologic Deterioration

score, version 2, EDIP2) (Escobar et al., 2012, 2013) which is updated throughout a patient’s stay

in the ward/TCU. The score is updated every 6 hours and has recently been deployed to provide

dynamic risk scores to alert a RRT at two pilot hospitals (Kipnis et al., 2016).

The EDIP2 score predicts the probability of death or unplanned transfer from the ward or the

TCU to the ICU for patients who are ‘full code’ (i.e., those who desire full resuscitation efforts

in the event of a cardiac or respiratory arrest) within the next 12 hours, and is updated every 6

hours at 4am, 10am, 4pm and 10pm, as seen in Figure 3.1. The EDIP2 score utilizes vital signs,

vital signs trends, and laboratory tests from the past 24–72 hours as well as patient diagnoses and

demographics to determine a patient’s EDIP2 score. The EDIP2 score is more than twice as efficient

as the manually assigned MEWS, i.e., the EDIP2 score results in less than half the number of “false

alarms” as compared with the MEWS model for identifying the same proportion of all transfers

to the ICU (Escobar et al., 2012). When using the c-statistic as a measure of model sensitivity
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and specificity, the EDIP2 out-performs the updated NEWS score and a machine-learning based

eCART model with c-statistic of 0.82 versus 0.79 and 0.76, respectively (Kipnis et al., 2016).

Figure 3.1: Timeline for the EDIP2 score

The main premise of the EDIP2 score is to alert the RRT of a patient’s risk of deterioration

so that they may consider discrete interventions. “Some interventions performed by the response

team are simple (administration of oxygen, intravenous fluids, diuretics, and bronchodilators and

performance of diagnostic tests),” but often do not correspond to admitting a patient to the ICU

(Jones et al., 2011). This is in contrast to what we propose, which is to proactively admit patients

to the ICU based on their EDIP2 scores before the patient crashes. We will refer to this as a

‘proactive ICU transfer’ throughout this paper.

Despite the improved predictive power of the EDIP2 score, there are concerns that, if every alert

led to proactive transfer, ICU congestion would substantially increase. As such, the current use

of the EDIP2 at KPNC is only to call the RRT, not necessarily initiate an admission to the ICU.

Our goal is to develop an understanding as to whether such a fear is well-founded. Specifically,

if proactive transfers can reduce LOS and mortality for individual patients, then it is possible

that proactive ICU transfers will reduce ICU congestion. However, the actual benefit depends

on the precise magnitude of the reductions in LOS. This is because by proactively transferring a

patient, there is a guarantee that the patient will consume limited ICU resources. However, some

proactively admitted patients may never have needed ICU care, so we have needlessly increased ICU

congestion, possibly preventing other patients from getting needed care. As such, the relationship

between the ICU load for proactive transfers may be higher or lower than for traditional, reactive

transfers. Whether it is higher or lower is an empirical question, and at the heart of what we are

trying to answer. Moreover, due to the externalities one patient can impose on other patients, it is

also important to examine how proactively transferring some patients impacts the ability to treat
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other patients.

We estimate the effect of ICU transfers for patients of varying severity, as measured by the

EDIP2 score. Because it is not feasible to conduct randomized controlled trials which explore

the benefit of ICU admissions, we utilize a comprehensive retrospective dataset of nearly 300,000

hospitalizations. One specific challenge with using this dataset is that during the time period of

the data, EDIP2 scores were not available to physicians who decided whom to transfer to the ICU

on a patient-by-patient basis based on general diagnostics, and our data does not explicitly label

ICU transfers as proactive or reactive. To the best of our knowledge, there are no datasets which

explicitly indicate whether an admission was a proactive or reactive transfer. For each patient, we

have data on his/her retrospective EDIP2 score provided at fixed six-hour increments whenever the

patient is in the ward or TCU as well as whether he/she was transferred to the ICU during that

period. Due to the natural variation in the ICU transfer decision (e.g. due to ICU congestion), some

patients are transferred at much lower severity than other patients. Moreover, some patients of the

same severity will be transferred to the ICU, while others will not. We leverage this variation to

rigorously and robustly identify the causal effect of transferring patients at various levels of severity,

as measured by the EDIP2 score. From electronic data, it is typically impossible to tell whether

a patient was admitted proactively (before the patient really needs it); it is in the context of a

simulated, structural model that we examine proactive decisions.

Another common challenge with using such datasets is there are often unobserved confounders

which can increase the likelihood of both ICU admission and adverse patient outcomes (i.e., en-

dogeneity is present). To address this problem, we utilize an instrumental variable approach and

make a number of design choices to improve the reliability of our estimates. Specifically, we utilize

a new near-far matching methodology (Baiocchi et al., 2010; Zubizarreta et al., 2013) that, to the

best of our knowledge, has not been used in the Operations Management (OM) literature. Indeed,

empirical OM works which utilize instrumental variables typically assume the strength of an instru-

ment is given. In contrast, we make a number of design choices to strengthen our instrument and

reduce the potential biases due to unobserved confounders. Next, we use the results of our empirical

findings to calibrate a high-fidelity simulation model, which will allow us to examine how various
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proactive ICU transfer policies that activate at different levels of the EDIP2 score—before a patient

crashes and requires an immediate ICU transfer—might impact patient flow and outcomes at the

system level. To the best of our knowledge, our work is the first to consider proactive ICU transfers

initiated by a dynamically updated severity score. Our main contributions can be summarized as:

• We utilize an extensive dataset consisting of 296,381 hospitalizations across 21 KPNC hos-

pitals to estimate the impact of ICU transfers on patient mortality risk and length of stay

for patients of varying levels of severity, as measured by the EDIP2 score. Our dataset is

very comprehensive and includes a dynamically updated severity score (EDIP2), longitudinal

patient trajectories (bed histories), as well as patient demographics; these allow us to better

model the complex setting for ICU transfers.

• Our empirical approach is guided by design choices to make the study more robust to un-

observed confounders and model misspecification. Specifically, we focus our analysis to the

night-time period, where we find that the effect of the instrument (ICU congestion) on the

treatment (ICU admission) is stronger (and thus the estimates are less sensitive to violations

to the exclusion restriction) and use recent developments in multivariate matching to reduce

model dependence in the outcome analyses (and in this way avoid extrapolating results to

regions of the covariate space where we do not have enough data).

• We conduct a simulation study of patient arrivals to the general medical wards and ICU to

explore the impact of different proactive ICU transfer policies. To the best of our knowledge,

this is the first study to examine proactive admission based on a dynamic model of risk.

We find that proactively transferring patients to the ICU may reduce mortality rates and

lengths-of-stay, but, if done too aggressively, may increase ICU readmissions as well as the

likelihood of discharging a patient from the ICU before he/she has completed his/her nominal

length-of-stay due to the need to accommodate a new, more severe patient.
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3.1.1. Related Literature

Our work is related to three broad areas of research: 1) healthcare operations management, 2) the

use of predictive modeling to guide operational decisions, and 3) empirical methodologies.

In both the medical and operations management literatures, a number of works have examined

the flow of critical patients through the ICU. One area of focus has been on the fact that patients are

more likely to be discharged when the unit is congested. In turn, these ‘demand-driven’ discharged

patients are more likely to be readmitted. Kc and Terwiesch (2012) provides rigorous empirical

evidence for this phenomenon while Chan et al. (2012) considers theoretically and via simulation

the impact of various discharge strategies. In contrast to this body of work, we consider the transfer

of patients into the ICU.

A number of works have also considered the ICU admission decision (e.g. Shmueli et al. (2004);

Kim et al. (2015)). Our work differs from this body of literature in a number of important ways.

First, the question we are considering is fundamentally different, as we focus on the combined role of

a Rapid Response Team, a new dynamic model of patient severity (the EDIP2 score), with proactive

ICU transfers from the ward or TCU. In our study, patients are transferred from the ward/TCU

to the ICU due to unexpected rapid deterioration, which can happen any time during their stay in

the ward. This means that the ICU transfer decision in our study is made continuously throughout

a patient’s stay in the ward/TCU. In contrast, the ICU admission decision considered in prior

works is a one-time decision which must be made once the patient is admitted to the hospital. As

such, the nature of the ICU admission decision is different both in terms of frequency and timing;

moreover, the patient populations considered are quite different which could result in differences

in the impact of the decision on outcomes. Another differentiating factor is that we utilize recent

empirical approaches, which reduce potential biases introduced by unobserved covariates.

The use of RRT in hospitals has been increasing as a number of studies have documented that

timely access to critical care can substantially improve patients outcomes (e.g. Evans et al. (2015)).

The role of the RRT is to bring a medical team trained in critical care to the bedside of a patient

who exhibits signs of physiologic deterioration. While the RRT may end up recommending ICU

admission, it is most common for the RRT to perform simple interventions (e.g. administration of
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oxygen or intravenous fluids) to stabilize the patient (Jones et al., 2011). There are also benefits

of using RRTs in a proactive manner (e.g. Danesh et al. (2012); Butcher et al. (2013); Guirgis et

al. (2013)); however, the proactive aspect does not relate to the ICU admission decision, as we

examine. Rather, the focus of these works is to proactively round on high risk patients (e.g. those

recently discharged from the ICU) in order to appear at the bedside of these patients prior to the

summoning of a RRT, as is traditionally done. To the best of our knowledge, our work is the first

to study proactive admission decisions. Moreover, we consider how to make this decision based on

a more accurate, dynamic severity measure, the EDIP2 score.

There have been substantial efforts by the medical community to develop predictive models

for patient outcomes (e.g readmissions, death, admissions, etc.). A primary motivation behind

this work has been to utilize such models to guide operational decisions and allow clinicians and

administrators to better utilize limited healthcare resources. This approach has been considered

in the emergency department setting (e.g. Peck et al. (2012); Xu and Chan (2016)) and call

centers (Gans et al., 2015). In contrast to these prior works, we do not directly use the predicted

probability of deterioration or death in the ward/TCU provided by the EDIP2 model. Rather, we

use the dynamically updated EDIP2 score as an important covariate to estimate the effect of ICU

admission on patient outcomes for different values of the EDIP2 score. Then, using simulation,

we assess the impact of proactive transfer policies for different severity groups classified by their

EDIP2 scores. There have been a number of simulation studies examining the impact of ICU

congestion on patient delays and diversions (e.g. Lowery (1992); Bountourelis et al. (2012) among

others). To the best of our knowledge, we are the first to rely on causal models to estimate impact

of patient transfers from the ward/TCU at different levels of patient severity and, in turn, utilize

these estimates to develop an understanding of the potential benefits of proactively transferring

patients into the ICU.

More broadly, the tension we examine is a short-term increase in resource utilization with the

intent of preventing longer-term problems which may arise in the future and consume even more

resources. An analogous question arises in the manufacturing literature because failures during

factory operations can be more costly than replacing a machine before failure, while being too

32



CHAPTER 3. AN EXAMINATION OF EARLY TRANSFERS TO THE ICU BASED ON A
PHYSIOLOGIC RISK SCORE

proactive can also become very costly (see McCall (1965); Pierskalla and Voelker (1976); Barlow

and Proschan (1996) and related literature). In the preventative health screening setting, early

detection (Özekici and Pliska, 1991) and early interventions (Ormeci et al., 2016) can increase

the likelihood of positive outcomes for cancer patients. Our work is differentiated in that we

consider a very different problem setting (proactive ICU transfers) and we also utilize state-of-the-

art empirical approaches to rigorously estimate the causal effect of transferring patients at different

severity levels, as measured by the EDIP2 score, in order to calibrate our simulation model.

A major challenge in estimating the causal effect of ICU transfer on health outcomes is that it

is unethical to conduct a randomized experiment, so we must rely on observational data, which can

be subject to biases introduced by unobservable covariates. To address this challenge, we utilize

an instrumental variable (IV) approach. In the empirical OM literature, the strength of an IV

is typically taken as given and instrumental variable analysis tends to rely on strong parametric

assumptions implied by regression models. Unfortunately, it is common for IVs to be weak in health-

care settings, including the setting we study here, and this can lead to inference problems. Another

problem when doing routine regression analysis is that, with pure model-based adjustments, a few

observations can unduly influence the results of a study (see Imbens (2015) and Rosenbaum (2016)).

To address both the problems of weak instruments as well as model dependence, we draw upon the

literature on design of observational studies (Rosenbaum, 2010) and use recent advancements in

the methodology of near-far matching (Baiocchi et al., 2010; Zubizarreta et al., 2013; Yang et al.,

2014).

3.2. Study Setting

In this work, we consider a retrospective dataset of all 296,381 hospitalizations which began at one

of 21 hospitals in a single hospital network. We utilize patient level data assigned at the time of

hospital admission as well as data which are updated during patients’ hospital stay.

For every hospitalization episode, we have patient level admission data which includes the pa-

tient’s age, gender, admitting hospital, admitting diagnosis, classification of diseases codes, and
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three severity of illness scores which are assigned at the time of hospital admission. The COmor-

bidity Point Score 2 (COPS2) score is a measure of chronic disease burden and a score greater

than 65 could be someone with 3–4 significant comorbidities (e.g., diabetes, Chronic Heart Failure,

and cancer). The Laboratory Acute Physiology Score 2 (LAPS2) score is based on laboratory tests

and measures a patient’s acute instability over the 24–72 hours preceding hospital admission. A

patient with a LAPS2 score greater than 110 is considered very sick, potentially in shock. Finally,

a composite hospital mortality risk score (CHMR) is a predictor for in-hospital death that includes

COPS2, LAPS2 and other patient level indicators (see Escobar et al. (2013) for more information

on these scores).

Our data provides the admission and discharge date and time for each unit stayed in as well as

the unit’s level of care. In the hospital system which we study, the units are specified as being either

the ICU, Transitional Care Unit (TCU), general medical-surgical ward, the operating room (OR),

or the post-anesthesia care unit (PACU). Figure 3.2 depicts a few hypothetical patient pathways.

In addition, all patients in our dataset have EDIP2 scores assigned every 6 hours while in the

ward or TCU (scores are not assigned to patients in other units). The EDIP2 score utilizes vital

signs (e.g. temperature and oxygen saturation), vital signs trends, and laboratory tests from the

past 24–72 hours (e.g., glucose levels), the COPS2, LAPS2 and CHMR severity scores, as well as

patient diagnoses and demographics to determine a patient’s EDIP2 score. More details can be

found in Escobar et al. (2012) and Kipnis et al. (2016).

3.2.1. Data Selection

We utilize data from all 296,381 hospitalizations to derive the maximum capacity and hourly

occupancy level of the ICU in each of the 21 hospitals. While there is some differentiation across

ICUs (e.g. Medical versus Surgical ICU), the general practice in the study hospitals is that the

boundaries between these units are relatively fluid. For instance, if the medical ICU is very full, a

patient may be admitted to the surgical ICU instead. We found that the maximum ICU occupancy

varied from 6 to 34 for the 21 hospitals over our study period. In the patient flow data, 39% of the

total ICU arrivals come from ED, 8% are from outside the hospital, 31% come from OR and 22%
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are from the medical-surgical wards and the TCU.

We now describe our data selection process for our final study cohort. We focus our study on

patients who are admitted to a Medical service via the ED as this comprises the largest proportion

of admitted patients (> 60%). Additionally, there are limited standards for the care pathways for

these types of patients, so that they can be highly varied, as compared to elective admissions and

surgical cases. As such, these patients are more likely to experience variation in transfer decisions

due to operational factors, such as the availability of resources, which we can leverage in our

empirical approach to identify the impact of ICU transfer decisions on patients of varying severity.

Specifically, because there are no established standards for which patients should be admitted to

the ICU (Task Force of the American College of Critical Care Medicine, Society of Critical Care

Medicine, 1999), patients of similar severity may receive different care (e.g. ICU transfer versus

no ICU transfer) due to random variation in ICU bed availability, which will allow us to estimate

the causal effect of ICU transfer for these patients. We first eliminate 39 hospitalizations with

unknown patient gender or missing inpatient unit code. Next, we eliminate 5,426 hospitalizations

because there are inconsistent records for the inpatient unit entry/exit times (e.g. discharge took

place prior to admission). 5,998 patients are missing unit admission and discharge times during

their hospital stay. We drop 5,781 hospitalizations for patients who experience hospital transfers.

Finally, we remove the episodes admitted in the first and last month of our dataset in order to

avoid censored estimates of the ICU occupancy level.

The final study cohort consists of 174,632 hospitalizations from 21 hospitals. Out of all hos-

pitalizations, 14.2% are admitted to the ICU at least once and 4.4% experience a transfer to the

ICU from the ward or TCU. The patient characteristics of the final study cohort are summarized

in Table 3.1.

3.2.2. Actions

We define an EDIP2 decision epoch as the time comprised between an EDIP2 score measurement

(at 4am, 10am, 4pm and 10pm) and the following 6 hours before the next EDIP2 score measurement

takes place. For this, we require the patient to be in the ward or TCU because otherwise an EDIP2

35



CHAPTER 3. AN EXAMINATION OF EARLY TRANSFERS TO THE ICU BASED ON A
PHYSIOLOGIC RISK SCORE

Table 3.1: Characteristics of the final study cohort, N=174,632

Min Max Mean Median Std. Dev.

First EDIP2 0.000 0.990 .012 .006 .022
Female (%) 53.80
CHMR (%) 0.00 97.58 4.04 1.55 7.39
COPS2 0.00 306.00 45.00 29.00 43.03
LAPS2 0.00 274.00 73.24 69.00 36.51
Age 18.00 109.00 67.34 70.00 17.71

Figure 3.2: Examples of patient pathways. Each Ti denotes a time when an updated EDIP2 score will
be assigned to a patient if he/she is in the Ward or TCU. Note that there are exactly 6 hours between
each EDIP2 assignment: Ti+1 − Ti = 6.

score would not be recorded and this would not be an EDIP2 decision epoch. Each patient may

have multiple EDIP2 decision epochs during his/her hospital stay. For example, in Figure 3.2 for

Patient 1, there are three decision epochs: [Tk, Tk+1), [Tk+1, Tk+2) and [Tk+3, Tk+4). For Patient 2,

there are four EDIP2 decision epochs: [Tk, Tk+1), [Tk+1, Tk+2), [Tk+2, Tk+3) and [Tk+3, Tk+4).

At the beginning of each of these epochs, we record whether the patient was transferred to the

ICU in the following 6 hours (i.e., during the decision epoch) and call this an action. If, instead,

the patient remains in the ward or TCU until the next EDIP2 measurement, we refer to this as no

action. Thus, for Patient 1, if we consider the first EDIP2 decision epoch [Tk, Tk+1), there is no

action. On the other hand, if we consider the second EDIP2 decision epoch [Tk+1, Tk+2), then there

is an action. For Patient 2, there are 4 decision epochs and for each of them there is no action.
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3.2.3. Patient Outcomes

In this study, we focus on two measures of patient outcomes: (1) in-hospital death (Mortality) and

(2) length-of-stay (LOS). Because an action can occur at any EDIP2 decision epoch, our measure

of LOS is defined as the remaining hospital LOS from the beginning of the EDIP2 decision epoch.

In Figure 3.2, for Patient 1 the LOS for the first decision epoch would be τ = t13 − Tk; for the

second decision epoch, it would be τ = t13 − Tk+1; and for the third decision epoch it would be

τ = t13−Tk+3. Table 3.2 summarizes the statistics for in-hospital mortality and hospital remaining

length-of-stay considering the first EDIP2 decision epoch.

Table 3.2: Summary statistics for 2 patient outcomes, N=174,632

Mean mortality Mean LOS since first EDIP2 (hours) Std. Dev.

All 3.2% 90.5 135.2
Transferred to ICU 9.5% 149.1 270.2
Never transferred to ICU 2.2% 81.0 93.4

3.3. Empirical Models and Approach

Our goal is to estimate the benefit of ICU admission for patients of different severity. In this section,

we describe the empirical challenges in addressing this question and our solution approach.

3.3.1. Empirical Challenges

In our study, we utilize the retrospective patient dataset described in Section 3.2. While this data

is quite rich, we are faced with a number of estimation challenges.

Endogeneity: Physicians consider many factors when deciding whether to admit a patient to

the ICU. While we will utilize our rich set of data to adjust for heterogeneous patient severity in

our models, it is possible there are unobservable severity factors that influence both the admission

decision and a patient’s outcome, which can lead to biased inferences when ignoring this potential

source of endogeneity. For instance, sicker patients are more likely to be admitted to the ICU, but

they are also more likely to stay in the hospital longer and/or die, which would suggest that ICU
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admission results in worse patient outcomes. To address this concern, we utilize an instrumental

variable approach.

Weak instruments: While instrumental variables can be effective at removing endogeneity

biases, problems can arise if the instrument is not strongly correlated with the endogenous variable.

If an instrument is weak, the confidence intervals formed using the asymptotic distribution for two-

stage-least-squares may be misleading and IV estimates can be biased in the same way that OLS

estimates are biased (Bound et al., 1995). Additionally, the IV estimates based on weak instruments

are highly sensitive to small violations of the exclusion restriction (Small and Rosenbaum, 2008).

To address this problem, we restrict the analysis to a cohort where our instrument exerts a much

stronger influence on the endogenous variable, ICU admission.

Effect modification: Our goal is to estimate the causal effect of admissions to the ICU at dif-

ferent levels of the EDIP2 score. In other words, we need to assess how the effect of ICU admissions

is modified by the severity of the patients as measured by the EDIP2 score. We use parametric

statistical models for this purpose. It is important to make sure that there is sufficient overlap in

the covariate distributions across levels of the instrumental variable, so that the predictions of the

models are an interpolation and not an extrapolation; in doing so, the results will be less dependent

on specific parametric assumptions (Rosenbaum, 2010). Without this balancing of covariates, it is

possible that a few, unrepresentative observations, could impart a large influence over the effect

estimates (Imbens, 2015; Rosenbaum, 2016).

3.3.2. Design Choices to Strengthen the Instrument and Reduce Model Dependence

In our study, to strengthen the instrument and reduce model dependence, we make two design

choices. First, we restrict the analysis to the night-time period, where we find the instrument has

a stronger effect on ICU admissions so that violations to the exclusion restriction are less likely.

Second, we use recent advancements in multivariate matching to reduce model dependence in the

outcome analyses. Naturally, these two choices will result in a smaller sample for analysis, but

they enhance the robustness of the findings to unobserved confounders. For instance, Small and

Rosenbaum (2008) demonstrates that a smaller study cohort with a stronger instrument is more
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robust to unobserved biases than a larger study cohort with a weak instrument. Certainly, these

gains come with the caveat that our findings will fundamentally apply to the matched sample in

the night-time period.

3.3.2.1. Night-time Analyses.

In our setting, there are four EDIP2 decision epochs each day: 4am, 10am, 4pm, and 10pm. There is

evidence that ICU admission decisions may vary by day of the week and time of the day (Barnett et

al., 2002; Cavallazzi et al., 2010), so it is natural to consider whether the impact of ICU occupancy

on ICU admissions also vary by time of day.

In the KPNC hospitals included in our study, nurse staffing is relatively constant across the day

for a given unit, with a minimum of one registered nurse for every two patients for the ICU, while

the minimum for the ward is 1:4, with TCU staffing ranging between 1:2.5 to 1:3. On the other

hand, physician staffing on the ward and TCU can change dramatically over a 24 hour period,

particularly outside regular work hours (7:30 AM to 5:30 PM). Because the physician coverage

decreases at night, physicians may be more likely to transfer ‘borderline’ patients to the ICU where

they will receive more constant monitoring. As such, the differential impact of a busy ICU on

deterring ICU admissions will be more substantial at night time. We confirm that this is the case

in our data (see Appendix B.1). In contrast to most studies in the empirical OM literature which

tend to take the strength of an IV as given by the available data, we leverage the differential impact

of ICU occupancy due to operational changes (i.e. staffing levels) on ICU admission by time of day

to strengthen the IV. This allows us to obtain more robust effect estimates on the outcomes.

3.3.2.2. Multivariate Matching.

In observational studies, matching methods are often used to adjust for covariates (Stuart, 2010).

In these settings, the typical goal of matching is to remove the part of the bias in the estimated

treatment effect due to differences or imbalances in the observed covariates across treatment groups.

In order to achieve this aim, matching methods select a subset of the observations that have balanced

covariate distributions. Generally, matching methods are used to estimate the effect of treatment
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under the identification assumption of “ignorability” or “unconfoundedness”, which states that all

the relevant covariates have been measured (in other words, that there is selection on observables).

More recently, matching methods have been extended to estimation with instrumental variables,

which do not require all the relevant covariates to be measured and whose identification assumptions

are thus typically considered to be weaker (Baiocchi et al., 2010).

In instrumental variable settings, the goal of matching is to find a matched sample that is

balanced on the observed covariates and imbalanced (or separated) on the instrument. The first

goal attempts to reduce biases due to imbalances in observed covariates and model misspecification,

whereas the second goal aims at strengthening the instrument. This is achieved by near-matching

on the covariates and far-matching on the instrument (Baiocchi et al., 2010). We implement this

method using integer programming as in Zubizarreta et al. (2013) and Yang et al. (2014). See

Appendix B.1.1 for details.

3.3.3. Parametric Models

We now introduce the parametric models we use to estimate the potential benefits of ICU transfers

for patients of varying severity.

In all of our models, we use ICU occupancy as an instrumental variable. In order for ICU

occupancy to be a valid instrument, it needs to satisfy two main assumptions: 1) it must have a

significant impact on ICU admission, and 2) it must affect the outcome only through the treatment

(the so-called “exclusion restriction” (Angrist et al., 1996)). To examine the first assumption, we

use logistic regression to see how ICU occupancy impacts the ICU transfer decision when adjusting

for several patient level and seasonality controls. We find that the ICU occupancy level is significant

at the 5% level. Next, we consider whether ICU congestion is correlated with patient severity. If,

for instance, high ICU congestion coincided with the arrival of high severity patients, one could

erroneously attribute poorer patient outcomes to the lack of ICU transfer due to high occupancy

rather than to the fact that patients already had higher risk of bad outcomes. This could happen

if there is an epidemic or a severe accident which would increase hospital occupancy levels and also

increase the severity of patients. We see little evidence that this could be an issue. In particular,
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we run a linear regression of ICU occupancy on observed patient severity scores—COPS2, LAPS2

and EDIP2 scores—as well as other patient risk factors, and find that these variables are not

relevant to ICU occupancy. Assuming that observed patient risk factors are reasonable proxies for

unobservable risk measures, ICU occupancy is unlikely to be related to unobservable risk measures.

We utilize the IV framework in Angrist et al. (1996) where an IV is conceptualized as an

“encouragement” to receive treatment that affects the outcome only through the treatment. In

this framework, the IV takes two levels—encouragement and discouragement—which correspond

to non-busy and busy ICUs in our setting. Formally, we define an ICU to be “busy” when the

ICU occupancy is above the 90th percentile of its occupancy distribution. An ICU is “not-busy”

when the ICU occupancy is below 70th percentile of its occupancy distribution. Following Yang et

al. (2014), we do not use observations with ICU occupancy between the 70th and 90th percentiles.

The larger the separation between these two thresholds, the more variation there will be in the

propensity to transfer a patient to the ICU, thereby increasing the strength of the instrument.

However, this comes at the cost of eliminating observations which can be used in the analysis

because the ICU occupancy level falls between the two thresholds, i.e. all observations with ICU

occupancy in (70th, 90th) percentiles will be dropped. Comparing with other potential cutoffs,

the {70th, 90th} definition strikes a good balance in achieving a relatively large difference in ICU

transfer rates while dropping a relatively small sample size. We examine other cutoffs as robustness

tests in Section B.1.3.1.

Remaining Hospital LOS (LOS): We now present our econometric model for LOS, which

is defined as the remaining hospital LOS following the EDIP2 decision epoch in question (see

discussion about Figure 3.2 in Section 3.2.3). We use a standard two-stage-least-squares (2SLS)

method with probit regression in the first stage to account for the binary ICU transfer decision.

We let Ti be the ICU admission decision, Zi be the instrument of ICU non-busyness (Zi = 1

if ICU is not busy, 0 if busy), and Xi be patient, hospital and seasonality controls that include

patient demographics (age, gender), severity scores (EDIP2, CHMR, COPS2, LAPS2), 38 disease

categories, and other indicators for hospital, day of the week, and month (see Table B.1 in the Ap-

pendix for more details). Additionally, we define T ∗i as the corresponding latent variable capturing
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the likelihood of ICU transfer. We have that

Ti = 1{T ∗i > 0} where T ∗i = XT
i β1 + β2Zi + εi (3.1)

log Yi = XT
i β3 + β4Ti + ηi (3.2)

where εi and ηi are assumed to be correlated normal random variables. We take a natural loga-

rithmic transformation for the hospital length-of-stay because its distribution is skewed (see Table

3.2). Our estimates include patients who do not survive to hospital discharge, but our results are

robust to excluding them.

Mortality: We now present our econometric model for mortality. Because Mortality is a binary

outcome, it is more efficient to model the joint determination of mortality and the ICU transfer

decision by a bivariate probit model and use maximum likelihood estimation rather than two-stage-

least-squares (Wooldridge, 2010). The treatment equation is the same as before in equation (3.1).

For the binary outcome Mortality, the second equation is

Yi = 1{Y ∗i > 0} where Y ∗i = XT
i β5 + β6Ti + νi

and (εi, νi) follows a bivariate normal distribution with correlation coefficient ρ. A likelihood ratio

test can be used to determine whether ρ is significantly different from zero, i.e. whether Ti is indeed

endogenous.

Note that, similar to Kim et al. (2015), we include a covariate that measures the average

occupancy of every unit a patient visits during his hospital stay. This is because there is evidence

(e.g. Kuntz et al. (2014)) that occupancy levels can impact a patient’s outcome, which could

potentially invalidate our instrument. We find that our instrumental variable, ICU occupancy

during the EDIP2 epoch, has a low correlation with the average occupancy experienced by a

patient with a correlation coefficient of -0.168.
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3.4. Empirical Results

In this section, we present and discuss our main empirical results. First, we examine the impact of

our study design choices in terms of strengthening the instrument and reducing model dependence.

Second, we present our effect estimates. Next, we compare the results to those obtained under other

common study designs. Finally, in order to provide a better understanding of the population of

patients to which the results in principle generalize, we describe our matched sample and compare

it to the full patient sample.

3.4.1. Design Choices

In our study, we make two basic design choices to make the instrument stronger and reduce model

dependence. One choice involves using near-far matching to balance covariates and reduce model

dependence (near matching), and separate the matched groups on the instrument and potentially

strengthen the instrument (far matching). The other choice involves confining the study to the

night-time period, when the instrument is considerably stronger.

In our study, we solved the near-far matching problem using integer programming as in Zu-

bizarreta et al. (2013). We found matched groups of patients with similar or balanced covariate

distributions for important prognostic factors such as age and the EDIP2 score, and dissimilar

levels of encouragement to receive the treatment (ICU admission). More specifically, we matched

patients that faced non-busy ICUs (encouraged patients) to patients that faced busy ICUs (dis-

couraged patients) with a 1:5 matching ratio, matching in total 85,208 observations (15,149 dis-

couraged patients; 88% of all the available discouraged patients before matching in the data set).

See Appendix B.1.1 for further details on the near-far matching implementation using integer pro-

gramming. Tables B.2–B.4 in Appendix B.1.2 summarize covariate balance after matching for

patient- and hospital-level covariates as well as for other important seasonality covariates. The

tables show that after matching the covariates are well balanced as per common standards in the

causal inference literature. As a result, the effect estimates reported below are less sensitive to

model misspecification (Imbens, 2015).
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To evaluate the strength of the instrument after matching night-time decision epochs (instead

of using the full sample), we consider the results of the transfer decision, which is the first stage

in the econometric models presented in Section 3.3.3. The results are summarized in Table 3.3.

Despite the fact that the night-time matched sample has only 40% of the number of observations in

the first whole-day EDIP2 sample, we see the coefficient estimate for the ICU non-busyness (IV) is

much larger and the p-value is lower. Additionally, when we examine the average marginal effect—

defined as the relative difference in likelihood of ICU admission when the ICU is busy—we see the

effect at night-time is nearly triple that of the whole-day. This provides additional support that

the night-time instrument has a much larger impact on ICU transfer decisions than the whole-day

instrument. With a stronger instrument in the first stage of regression, we can be more confident

that the second stage estimation results are less likely to suffer from unobservable biases.

Table 3.3: Strength of the IV in the whole-day full sample and the first night-time IV after match in
probit regression models, IV = 1 if ICU is not busy

Sample Size IV (Std. Err.) P-val. % Incr. in Prob (Admit)

Whole-day full sample 168,351 0.098 (0.039) 0.012 34%
Night-time matched sample 84,870 0.201 (0.072) 0.005 95%

3.4.2. Estimation Results: Effect of ICU Transfers on Mortality and LOS

Table 3.4 summarizes the estimation results for the mortality and remaining LOS models after night-

time matching. Moreover, we present a number of robustness checks which considers alternative

IV definitions and additional covariates in Appendix B.1.3. We find our empirical results robust to

these alternative specifications. Note that because we are using full MLE to estimate these models,

the coefficients in the first-stage are slightly different than those of Table 3.3.

For both outcomes, the instrument is highly significant at the 1% level. Being encouraged for

ICU transfer (when the ICU is not busy) increases the probability of transfer by 97% on average.

We estimate that ICU transfer is associated with a reduction in the average LOS by 34 hours

(95% CI: [-40, -31] hrs). We also find that ICU transfer has a highly significant impact in reducing

mortality risk: ICU transfer reduces the average estimated in-hospital mortality from 2.62% to
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0.06% (95% CI: [-2.59%, -2.53%]). Note that our estimates are for the average effect. While

ICU admission may have very little (if any) effect on low risk patients, the effect may be quite

substantial for high risk patients. Because the mortality rate for patients on the ward and TCU is

very low, this average effect seems quite large. In practice, it would rarely be the case that very

low severity patients are transferred to the ICU. In fact, most medical literature on rapid response

teams involves only checking on the patients and not necessarily admitting them, and therefore, the

average effect documented in this literature is typically smaller. That said, the estimated benefits

seem quite large. This may be in part due to Do-Not-Resuscitate (DNR) orders, so that those

who are transferred to the ICU and who conform to our instrument are the ones who can actually

benefit from ICU care. We cannot estimate the impact of ICU transfer for patients who would

never be admitted to the ICU (either being too sick or too well), regardless of ICU congestion.

Table 3.4: Estimation results using the night-time IV after matching, IV = 1 if ICU is not busy

Y IV (SE) % Incr. in Prob (Admit) Admit (SE) ∆Ȳ 95% CI

Mortality 0.203** (0.067) 97% -1.665*** (0.162) -2.56% [-2.59%, -2.53%]
Remaining LOS 0.203** (0.073) 97% -0.841** (0.281) -33.81 hrs [-39.55, -30.89]
**, *** Significance at the 1%, 0.1% levels respectively

Our results suggest that ICU transfers can improve patient outcomes on average. We will

utilize these results to obtain the estimated mortality and remaining length-of-stay (LOS) when

transferred or not transferred to the ICU for patients of varying EDIP2 severity to calibrate a

simulation model in Section 3.5.

A limitation to our data set lies in that from electronic data, it is typically impossible to

tell whether a patient was admitted proactively (before the patient really needs it) or because of

crashing. To the best of our knowledge, there are no datasets which explicitly indicate whether

an admission was an “early” or “crashing” transfer. Our objective is to evaluate the impact of

transferring patients at differing severity levels. Due to variation in the ICU transfer decision, some

patients are admitted at much lower severity than other patients. Moreover, some patients of the

same severity will be transferred to the ICU, while others will not. As such, we aim to determine

the causal effect of transferring a patient to the ICU at varying levels of severity. If the impact

45



CHAPTER 3. AN EXAMINATION OF EARLY TRANSFERS TO THE ICU BASED ON A
PHYSIOLOGIC RISK SCORE

on mortality and LOS on transferring crashing patients is higher than that on “early” transfers,

then it is possible that our empirical estimates may be over-estimating the impact of transfers on

mortality and LOS.

3.4.3. Comparison to Other Study Designs

In the current analyses, we made a number of study design choices to increase the reliability and

robustness of our empirical analysis. These choices included focusing the analysis to the night-time

period and using optimal multivariate matching with an IV. In an effort to understand better the

implications of such design choices, we compare our approach to two common approaches: (i) using

an ordinary least squares approach without using an IV nor night-time matching, and (ii) using an

IV approach but without night-time matching. These results are summarized in Table 3.5.

Table 3.5: Estimated regression coefficients (i) without IV nor night-time matching, (ii) with IV but
no night-time matching, (iii) (our approach) with IV and night-time matching.

Estimated Coefficients (s.e.)

Model Outcome Measure IV: ICU Occupancy ICU Admission

i Mortality 0.592***(0.062)
LOS 0.490***(0.028)

ii Mortality 0.095*(0.039) -0.814***(0.256)
LOS 0.097*(0.040) 0.061 (0.112)

iii Mortality 0.203**(0.067) -1.665***(0.162)
LOS 0.203**(0.073) -0.841**(0.281)

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

As we can see, under (i), ICU admission is estimated to result in worse patient outcomes. This

effect is likely to be biased due to endogeneity, since sicker patients are more likely to be admitted to

the ICU and at the same time suffer worse health outcomes. Under (ii), we see that the estimated

effect of ICU admission on LOS is not statistically significant, but it is under (iii). We believe

the lack of significance in (ii) may be due to weak instruments. Specifically, the magnitude of the

estimate and the p-value of the IV is less than that of (iii). Additionally, the partial F-statistic is

8.638, which is below the rule-of-thumb of 10, while under (iii), using both the IV and night-time

matching, the IV is significant at the 1% level with a partial F-statistic of 11.029. As such, we
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believe that our estimation results are more robust to unobservable biases due to our design choices.

3.4.4. Description of the Night-Time Matched Sample

In order to design a study that is less sensitive to model misspecification and violations to the

exclusion restriction (Angrist et al., 1996), we confined our study to the night time and used

multivariate matching (Zubizarreta et al., 2013). Naturally, this implies that without further,

untestable, modeling assumptions the results will fundamentally apply to the night time. Here,

we follow the work of Imbens (2010) and Rosenbaum (2010) and emphasize internal validity over

external validity in order to provide more reliable evidence of the causal effect of ICU admission

at different levels of the EDIP2 score. As such, it is not immediately obvious if/how our empirical

findings will extend to other times during the day.

The night-time analysis is important in two ways. First, even if our results only apply to the

night time, using these rigorously estimated results to calibrate a simulation model would allow us

to develop an understanding of the potential benefits of proactively admitting patients to the ICU

during the night. This is valuable from a managerial standpoint, because of the fact that night-time

physician staffing tends to be much lower than during the rest of the day, which makes having an

automated early warning system to inform proactive ICU admissions especially useful. Second, as

discussed next, we believe that it is possible that our results may generalize to admission of patients

during non-night time decision epochs.

Table 3.6 summarizes the means of the risk covariates for the full sample and night-time matched

sample. We quantify the differences in means using standardized differences (Std. Dif.), which are

simply the difference in means between the two samples standardized by the average standard

deviation of the two samples. We can see that for all risk covariates, except for the EDIP2 score,

the absolute value of the standardized differences between the full and matched sample are well

less than 0.1, suggesting that these samples are quite similar (Rosenbaum and Rubin, 1985). The

difference in EDIP2 scores lends more evidence to our argument that patients are more likely to

be admitted to the ICU at night, thereby increasing the strength of our instrument. We found a

similar pattern for 30 other comorbidity and seasonality covariates.
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We believe the difference in the strength of the instrumental variable is likely due to the differ-

ences in operational practices between the night time and the entire day, rather than the difference

between patient populations as the samples appear very similar on all other dimensions. That is,

physician staffing levels are lower during the night time, making lack of ICU congestion more likely

to act as an encouragement for ICU transfer, thereby increasing the strength of the IV. Because

of this, it is possible the results from the night time cohort may generalize to the entire day. Of

course, this assumes the populations are similar based on unobservables as well. Since we cannot

completely rule out the possibility that there are differences between the patient populations during

the night time and the entire day, it is possible the empirical findings will not extend to other times

during the day.

Table 3.6: Comparison of patient characteristics in full sample versus matched sample via standardized
difference

Full Matched Std. Dif.

Age 67.35 67.73 −0.02
Female (%) 53.81 54.57 −0.01
EDIP2 0.012 0.007 0.30
CHMR 0.040 0.037 0.05
COPS2 45.07 44.92 0.00
LAPS2 73.25 72.41 0.02

3.5. System Level Effect of Proactive Admissions

Thus far, we have focused on the impact of ICU transfer on individual patients of varying EDIP2

risk levels. Our empirical findings provide evidence that such transfers could improve patient out-

comes (reducing mortality risk and LOS) and the magnitude of the impact varies depending on a

patient’s severity. Given these improvements in patient outcomes, it is conceivable that proactively

admitting patients may reduce ICU congestion. However, given the limited ICU resources, physi-

cians naturally have concerns about needlessly creating ICU demand. Specifically, by proactively

transferring patients ‘before they really need it’, the near-term ICU congestion will increase, which

could create access issues for other, more critical patients who may arrive in the near future. How-

ever, if this patient will ultimately need ICU care later and will require increased resources, the
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short-term increase in congestion could have long-term benefits. It remains to understand which

scenario is more likely to occur. To do this, we utilize a simulation model to examine the system

level impact of proactive ICU admissions on patient flow and patient outcomes.

3.5.1. Model of Patient Flows

We consider a system with two levels of inpatient care: ICU and non-ICU, where the non-ICU

units include the general medical-surgical ward and a TCU if the hospital has one. Our simulation

model is depicted in Figure 3.3. In this work, we focus specifically on the proactive ICU admission

decision and for simplicity of exposition, we will refer to the non-ICU units as the wards, with

the understanding that this includes the TCU if one exists. Note that this does not account for

transfers from the general medical-surgical ward to the TCU (if the hospital has one), which is a

transfer whose consideration that, in theory, could be triggered by the EDIP2 score in KPNC. In

order to focus on the physicians’ concern of creating unnecessary over-congestion in the ICU (and

because the ICU is often the bottleneck), we assume the ward has ample capacity, but explicitly

account for the limited number of ICU beds, which we denote by N.

ICU

Discharge/death

Discharge/death

Demand-driven discharge

Readmission

Readmission

Crash

Proactive transfer

Nominal discharge

Never been 

to the ICU

Been to the ICU

Ward

Discharge/death

Figure 3.3: Simulation Model

Patients can arrive at the ICU as transfers from the ward or via an external arrival stream of

Direct Admits (e.g. directly from the ED). Recall that our analysis focuses on patients admitted

to a medical service (rather than surgical service which can be impacted by elective surgical sched-

ules), so we model the arrivals of the direct admits as a non-homogeneous Poisson process with
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rate λE(t), which has been shown to be a good model for patient arrivals (Kim and Whitt, 2014).

We assume these patients have a hospital LOS which is lognormally distributed with mean 1/µE

and standard deviation σE . Moreover, a proportion pE ∼ fpE (p) of the patient’s hospital LOS is

spent in the ICU, where fpE (p) is a known probability mass function (pmf) with finite support on

[0, 1]. The remaining portion of their hospital LOS is spent in the ward. These patients survive to

hospital discharge with known probability 1− dE .

The second way patients can be admitted to the ICU is via transfer from the wards. We refer

to these patients as Ward Patients. We consider two types of ward patients: (a) those who have

been to the ICU and (b) those who have not. We first describe the dynamics of ward patients

who have not been to the ICU. To capture the varying level of severity for these patients, we

consider C patient classes. Patients of type i arrive at the ward according to a non-homogeneous

Poisson process with rate λi(t), i = 1, 2, . . . , C. Every 6 hours, a patient’s EDIP2 score is updated,

so patient i’s class will now be j ∈ {1, 2, . . . , C}. Alternatively, three other possible events may

occur: the patient may 1) ‘crash’ and require immediate ICU admission, 2) fully recover and leave

the hospital, or 3) die and leave the hospital. Because we are focused on the impact of proactive

transfers, which can occur at each EDIP2 decision epoch, we model the evolution of a patient’s

state on the ward via a discrete time Markov Chain with transition matrix T with each time-slot

corresponding to 6 hours. If a patient requires immediate ICU transfer due to crashing on the

ward, he will have a hospital LOS which is lognormally distributed with mean 1/µC and standard

deviation σC . We assume that a proportion pW ∼ fpW (p) of the patient’s hospital LOS is spent in

the ICU, where fpW (p) is a known pmf with finite support. The remaining 1 − pW proportion is

spent in the ward, as a patient (a) who has been to the ICU. Crashed patients survive to hospital

discharge with probability 1− dC .

Direct admits and patients who crash on the ward receive the highest priority for ICU admission.

If there are no available ICU beds at the time of arrival (or crash), the current ICU patient with the

shortest remaining service time will be “demand-driven discharged”, i.e., he/she will be discharged

in order to create space to accommodate the incoming, more severe patient (Kc and Terwiesch,

2012; Chan et al., 2012). Demand-driven discharged patients have an ICU readmission rate of
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rD. External arrival and crashed patients who are not demand-driven discharged have an ICU

readmission rate of rE . We do not incorporate the impact of demand-driven discharges on in-

hospital mortality because, while some studies find that mortality risk increases with high ICU

occupancy at discharge (e.g. Chrusch et al. (2009)), others do not find evidence of an impact

(e.g. Iwashyna et al. (2009); Chan et al. (2012)). Note that, one could also consider incorporating

rerouting direct-admits or crashed patients to other hospitals if all ICU beds are occupied, rather

than initiating a demand-driven discharge. However, such inter-hospital transfers are incredibly

rare—especially for critically ill patients—at KPNC. Still, we will examine the state of patients

who are demand-driven discharged to make sure we are not too aggressive in discharging critical

patients.

In principle, any patient in the ward can be proactively transferred to the ICU at each EDIP2

decision epoch. Such proactive transfers can only occur if there is an available ICU bed for the

transferred patient. If there are not enough available beds in the ICU to accommodate all proactive

ICU transfer requests, the most at risk patients (those with the highest EDIP2 score) will be given

priority. If a patient from EDIP2 group i is proactively transferred to the ICU, his hospital LOS

is lognormally distributed with mean 1/µA,i and standard deviation σA,i. Similar to the crashed

ward patients, we assume that a proportion pW ∼ fpW (p) of the patient’s hospital LOS is spent

in the ICU. These patients survive to hospital discharge with probability 1 − dA. If this patient

is naturally discharged from the ICU (as opposed to demand-driven discharged), his probability of

readmission to the ICU is rA,i. Otherwise, it is rD. This proactively admitted patient will be a

type (a) patient who has been to the ICU for the proportion 1 − pW of his/her LOS not spent in

the ICU.

Note that for type (a) patients (those in the ward who have been to the ICU), their mortality

risk, readmission risk, and LOS are dictated by how they got to the ICU—i.e., as a direct admit, a

crashed patient, or a proactively admitted patient. We do not allow these patients to be proactively

admitted to the ICU.
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3.5.2. Model Calibration

We now calibrate our simulation model using the data described in Section 3.2 and our empirical

results from Section 3.4. Figure 3.4 depicts the normalized empirical arrival rates of all patients

to the ward and directly admitted to the ICU in weekends versus weekdays. The empirical hourly

arrival rates are determined using 12 months of data from all 21 hospitals and are normalized via

a multiplicative factor so that the average number of arrivals per day is equal to 1. We will scale

these normalized arrival rates to vary the load on the system, which allows us to maintain the same

relative hourly demand from the ward and direct admits.

Figure 3.4: Normalized arrival rates of Direct Admits and Ward Patients. Normalized so that the
average number of arrivals (direct admits + ward patients) per day is equal to 1.
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(b) Weekend arrivals

3.5.2.1. Direct Admits.

We start by considering external arrivals. We use our full dataset from KPNC to calibrate the

average hospital LOS, standard deviation of the hospital LOS, the mortality rate, ICU readmission

rate, and the proportion of hospital LOS spent in the ICU. We use sample averages to determine

these parameters which are summarized in Table 3.7. Note that we use the empirical distribution for

pE (see Figure B.4 in the Appendix). Because patients who are demand-driven discharged exhibit

higher readmission rate than those naturally discharged, we set rD to be 15% larger than rE (Kc

and Terwiesch, 2012; Chan et al., 2012). If a demand-driven discharged patient is readmitted to
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the ICU, we set his hospital LOS to be 15% longer than the nominal LOSE as suggested by Kc

and Terwiesch (2012). Note that the parameters µE and σE are determined by accounting for the

expected number of readmissions, so that 1/µE = E[LOSE ](1− rE) and σE = std. dev. LOSE
E[LOSE ]µE .

Table 3.7: Direct Admit parameters. Note that the readmission rate for demand-driven discharged
patients is calibrated to be 15% greater than the nominal readmission rate.

Mean 95% CI

dE (%) 9.41 [9.12, 9.69]
rE (%) 15.76 [15.43, 16.10]
E[pE ] (%) 50.79 [50.49, 51.09]
E[LOSE ] (days) 6.52 [6.45, 6.58]
(std. dev. LOSE) (6.78)

rD 1.15× rE

3.5.2.2. Ward Patients.

We now turn our attention to the ward patients who may be admitted to the ICU after crashing

or via a proactive transfer. In choosing the number of EDIP2 groups and the size of each group,

we must balance having more groups to enable more flexibility in various transfer policies versus

having enough samples within each group to reasonably estimate transition probabilities between

each EDIP2 group and the absorbing states (crash, death in the ward, discharge alive). With

that in mind, we elect to have 10 EDIP2 groups (C = 10) for illustrative purposes. Additionally,

we divide the top 10% of patients into 5 groups and the bottom 90% into 5 groups, in order to

enable more flexibility for proactive transfers of the most severe patients. Table 3.8 summarizes

the partitioning of these 10 groups.

We use our full dataset from KPNC to calibrate the Markovian transition matrix T ∈ R10×13
[0,1]

(see Appendix B.2.1). We can then determine the nominal probability of crashing, dying in the

ward, and surviving to hospital discharge when no proactive transfers are done as predicted by our

Markov Chain based simulation model. We find that the mortality rate on the ward is 1.93%, which

is comparable to the empirical rate of 2.2% reported in Table 3.2. We also conduct a sensitivity

analysis over 1,000 different Markovian transition matrices selected uniformly at random over the

95% confidence intervals of the estimated transition matrix. The expected mortality rates for these
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Table 3.8: Summary statistics of ten EDIP2 groups .

Group Range of EDIP2 Mean Number of observations Proportion

1 [0.000, 0.002] 0.002 28,051 17.6%
2 [0.003, 0.004] 0.003 32,358 20.3%
3 [0.005, 0.007] 0.006 31,903 20.0%
4 [0.008, 0.011] 0.009 23,819 14.9%
5 [0.012, 0.023] 0.016 27,002 16.9%
6 [0.024, 0.027] 0.025 3,584 2.2%
7 [0.028, 0.032] 0.030 3,130 2.0%
8 [0.033, 0.040] 0.036 3,138 2.0%
9 [0.041, 0.057] 0.048 3,189 2.0%
10 [0.058, 1.000] 0.107 3,221 2.0%

transition matrices range from 1.04–3.17%.

We leverage our empirical findings from Section 3.4 to calibrate the mortality risk and hospital

LOS of a ward patient depending on whether he/she is proactively admitted to the ICU or admitted

after crashing. For each patient in EDIP2 group i, we can utilize our empirical results to predict the

probability of death and remaining hospital LOS if the patient is admitted to the ICU at their given

EDIP2 score (i.e., an action is taken in the current EDIP2 decision epoch). We use the average

predicted probability and LOS for each EDIP2 group i to calibrate the probability of death and

LOS for patients who are proactively admitted to the ICU. The remaining parameters to calibrate

are the probability of death and mean remaining hospital LOS if a patient crashes. For patients

who are not proactively admitted, they will stay in the ward for a random amount of time. These

patients will eventually leave the ward either by 1) dying in the ward, 2) being discharged alive

from the ward, or 3) crashing. The three possible absorbing states and the parameters for crashed

patients will determine the expected LOS and probability of death if not proactively admitted as

given by our Markov Chain based simulation model. We solve an optimization problem (described

in Appendix B.2.2) to determine the crashed parameters with an objective of minimizing the relative

squared error between the predicted probability of death (LOS) from our empirical model when

there is no action taken at that EDIP2 score versus the probability of death (LOS) indicated by

our Markov Chain model.

Similar to the direct admits, we use the empirical distribution for the proportion of hospital
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LOS which is spent in the ICU (pW ) (see Figure B.4 in the Appendix). We use the proportion of

all patients who are transferred to the ICU from the ward who visit the ICU more than once during

the same hospitalization as the ICU readmission rates of crashed patients. Finally, we set the ICU

readmission rates for proactive patients, rA,i = β × rC , ∀i. For our main simulations, we set β = 1,

but we also run robustness checks for β ∈ (0, 1). Similar to direct admits, we appropriately scale

the LOS by the readmission rates. To calibrate the standard deviations for each LOS parameter,

we use the same coefficient of variation (0.81) as determined by the LOS across all ward patients.

Tables 3.9 and 3.10 summarize the parameters for ward patients.

Table 3.9: Common Ward Patient parameters.
Note that the readmission rate for demand-driven
discharged patients is the same for ward patients
as direct admits. Parameters which are induced
from other parameters do not include confidence
intervals.

Mean 95% CI

rC (%) 16.88 [16.12, 17.63]
E[pW ] (%) 46.92 [46.18, 47.65]

dC (%) 57.28
E[LOSC ] (days) 15.09
(std. dev. LOSC) (12.19)
rD 1.15× rE

rA β × rC(β = 1)

Table 3.10: Expected mortality and LOS under
proactive ICU transfers for 10 EDIP2 groups

EDIP2 Group Mortality (%) LOSA,i (days)
dA,i Mean std. dev.

1 0.01 0.85 0.68
2 0.02 0.91 0.74
3 0.04 0.97 0.78
4 0.05 1.04 0.84
5 0.11 1.17 0.95
6 0.18 1.36 1.10
7 0.28 1.45 1.17
8 0.39 1.57 1.27
9 0.70 1.85 1.50
10 6.84 3.77 3.04

3.5.3. Proactive ICU Transfer Policies

We consider a number of different ICU transfer policies. To start, we assume that proactive

transfers can only happen during the night-time decision epoch. This is because our empirical

results fundamentally apply to the night time sample as described in Section 3.4.4. In Appendix

B.2.3, we relax this constraint and consider the potential benefits of proactive transfer if proactive

transfers can occur at any decision epoch and under the assumption that our empirical results

generalize to other parts of the day.

We define a Static Threshold Policy by threshold TEDIP2. Any patient in EDIP2 group

i ≥ TEDIP2 will be proactively transferred if there are available ICU beds. If the EDIP2 score is
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below the threshold, the patient will remain on the ward. For completeness, we consider all possible

proactive transfer policies with TEDIP2 ∈ {1, . . . , 11}, where TEDIP2 = 11 is the case where no

proactive transfers are done. For comparison, we also consider a Random Policy, where, for

every available ICU bed, we select a patient uniformly at random in the ward to proactively admit

into the ICU (regardless of EDIP2 score). We will also consider State-dependent Threshold

Policies in Section 3.5.5.

3.5.4. Results

Our baseline simulation considers an ICU with N = 15 beds and an aggregate (ward patients and

direct admits) arrival rate of 12.2, 14.2, and 17.4 patients/day. Patients can only be proactively

transferred to the ICU during the night-time period. We simulate 1 year with 1 month of warm-up,

over 2,000 iterations.

Figure 3.5: In-hospital mortality rate and mean hospital LOS under various proactive ICU transfer
policies, with 95% confidence intervals. ICU size N = 15. Λ = daily arrival rate. Proactive transfers
can only take place at night.
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(b) Hospital LOS

Figure 3.5 shows the in-hospital mortality rate and average hospital LOS versus ICU occupancy

level under the various proactive transfer policies. Because proactive transfers can reduce the

likelihood of death and average LOS, we see that more aggressive proactive ICU transfers can
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simultaneously reduce mortality rates and average LOS. However, these reductions come with an

increase in ICU occupancy. For instance, with a daily arrival rate of 14.2 patients/day, the nominal

ICU occupancy without any proactive transfers (labeled ‘Reactive’) is 78.75%. This increases to

80.19% when proactively admitting the top 5 EDIP2 groups and all the way to 85.12% when

proactively admitting all 10 EDIP2 groups. Thus, there is merit to physicians’ concerns about ICU

congestion, but it also comes with the benefit of reduced mortality and LOS.

Figure 3.6: Adverse event rates under various proactive ICU transfer policies, with 95% confidence
intervals. ICU size N = 15. Λ = 14.2 patients/day. Proactive transfers can only take place at night.
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(b) Readmission rates

As seen in Figure 3.6, the impact of increased congestion also translates to other adverse events—

demand-driven discharges and readmissions. We calculate the demand-driven discharge rate as

the fraction of all ICU admissions which are discharged due to incoming demand. Similarly, we

calculate the readmission rate as the fraction of all ICU admissions that are followed by another ICU

admission prior to hospital discharge (i.e. leaving the system). Interestingly, the differences between

the demand-driven discharge (readmission) rates are not statistically significant when comparing no

proactive transfers (Reactive) to proactively admitting the top five severity groups (TEDIP2 = 6).

Moreover, we find that across all policies, patients who are demand-driven discharged stay in the

ICU for 80-85% of their ICU LOS, which suggests that these patients may be sufficiently stable

for such transfers (e.g. Lowery (1992)). Still, being very aggressive with proactive transfers could

result in worse care and outcomes. While the aggregate demand-driven discharge rate goes down

with more aggressive proactive transfers (because there are simply many more ICU admissions),
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the rate for the most critical patients—direct admits and crashed patients—increases. A similar

(but smaller in magnitude) effect exists for ICU readmissions.

Our results suggest that some proactive transfers could help improve quality of care at the

system level, but it must be done carefully. We see that proactively admitting up to 10% of

ward patients (TEDIP2 = 6) can improve mortality and LOS without substantially increasing ICU

congestion, demand-driven discharges, or ICU readmissions. However, proactively admitting 26%

or more of ward patients (TEDIP2 < 6) can increase adverse events. Unsurprisingly, the impact of

proactive admissions (and the resulting increased ICU congestion) on readmissions and demand-

driven discharges depends highly on the system load. Figure 3.7(a) is an analog to Figure 3.6(a) and

depicts the impact of being more aggressive with proactive transfers on demand-driven discharge

rates for different arrival rates, which impacts the average ICU occupancy. We denote this as ρ̂

when there are no proactive transfers. We can see that when the system is very lightly loaded (e.g.

ρ̂ ≤ 0.3), proactively admitting all 10 EDIP2 groups does not increase demand-driven discharge

rates. However, as the system load increases, more aggressive proactive transfers results in an

increase of adverse outcomes. Figure 3.7(b) summarizes when this increase begins and we find that

proactively admitting more than the top 5 EDIP2 groups consistently comes with the cost of more

demand-driven discharges, thereby supporting our initial observation that proactively admitting

the most severe patients could save lives without needlessly clogging the ICU.

Note that in all of our experiments, the random policy is Pareto dominated by the static thresh-

old policies. This is true even when we consider other random policies which aim to proactively

transfer a similar number of patients as under the static threshold policies. Appendix B.2.3 provides

additional simulation results which demonstrate the robustness of our main insights.

3.5.5. State-Dependent Policies

We also consider a modification of the Static Threshold policy, where instead we consider state-

dependent thresholds (e.g. Altman et al. (2001)). For these experiments, we focus on the baseline

scenario of N = 15 beds and Λ = 14.2 patients/day.

As our model incorporates many features (e.g., demand-driven discharges, readmissions, etc.),
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Figure 3.7: ICU size N = 15. ρ̂ indicates the average ICU occupancy induced by arrival rates Λ ∈
{3.5, 4.8, 6.6, 8.7, 10.4, 12.2, 14.2, 17.4, 22.0} patients/day.
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creases in demand-driven discharge rates as a function
of average ICU occupancy.

solving a dynamic program for the optimal thresholds is computationally prohibitive. As such, we

consider a set of state-dependent thresholds and select the best one via simulation. The family

of policies we consider are parameterized by EDIP2 thresholds, T1 ≥ T2, and a bed threshold, B.

Suppose there are b available ICU beds. Then, 1) If b < B, Proactively Admit patients in EDIP2

group i ≥ T1. 2) If b ≥ B, Proactively Admit patients in EDIP2 group i ≥ T2. 3) Otherwise, the

patient will remain on the ward. If T1 = T2, we recover the static threshold policy. We can also

generalize this to more than 2 thresholds.

We use simulation and an exhaustive search over all possible state-dependent threshold policies

with two thresholds which can proactively admit 1, 2, . . . , up to 6 EDIP2 groups. Because proactive

transfers reduce mortality and LOS for all patients, aggressive proactive transfers will improve both

of these measures and we find that no state-dependent policy outperforms the static threshold pol-

icy in mortality and LOS. However, we do find that the demand-driven discharge and readmission

rates for crashed and direct admits can improve by allowing state-dependent policies. Table 3.11

summarizes the relative difference in outcomes where we report the ‘best’ state-dependent policy
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as the one that improves upon the static threshold policy in demand-driven discharges and read-

missions, but also has the lowest mortality rate and mean LOS. Table B.7 in the appendix provide

the results when allowing 3 and 4 thresholds. We find that in some cases (proactively admitting

the top 2 EDIP2 groups) the state-dependent policy can have statistically significant improvements

in readmissions and demand-driven discharges, while the mortality rate and LOS are statistically

equal. In some instances (e.g. Top 6), improvements in demand-driven discharge and readmission

rates comes at the expense of increases in mortality rates and LOS. That said, these differences are

all less than 5.31% from the static threshold policy, with an average of less than 1.01%. In a 15-bed

ICU, this amounts to approximately reducing by 7 demand-driven discharges and 2 readmissions

per year. Thus, we find that while state-dependent policies may be able to improve patient out-

comes, the improvement is very small. As static threshold policies are easier to convey to clinicians

and implement in practice, we find that the slight gains achieved with state-dependent policies may

not be worth the added complexity.

Table 3.11: Percentage differences between the best 2-threshold state-dependent policy and static policy

# of groups Mortality LOS DDDcrashed DDDdirect admit rcrashed rdirect admit

Top 1 0.99* 0.07 -1.62* -1.65* -0.34 -0.06
Top 2 0.05 -0.03 -1.83* -1.82* 0.19 -0.35
Top 3 1.23* 0.17* -2.75* -2.59* -0.52 -0.26
Top 4 0.00 0.00 0.00 0.00 0.00 0.00
Top 5 0.53* 0.04 -1.21 -1.40* -0.41 -0.19
Top 6 1.22* 0.84* -5.31* -5.22* -0.48 -0.39

*: p < 0.05 difference in means based on t-tests

3.5.6. Estimated Transfer Policies Used in Practice

We estimate the current ICU transfer policies used in practice at two representative hospitals whose

99th percentile of the ICU occupancy distribution is 15 beds. As in Section 3.5.5, we consider state-

dependent threshold policies. We consider the following probit regression model to estimate the

thresholds from the data. For each patient i at EDIP2 alarm time t, let occit be the number of ICU

beds occupied, κoccit be the threshold of admission as a function of the current ICU occupancy,

Xit be the same control variables used in the empirical analysis excluding the EDIP2 score, and
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ξit ∼ N(0, 1).

Admitit = 1{βEDIP2EDIP2it +Xitθ + ξit ≥ κoccit} (3.3)

Because the admission threshold κoccit can change at any ICU occupancy level, we enumerate over

all possible combinations of the number and location of occupancy level thresholds, and choose

the model with the lowest Bayesian information criterion (BIC) to be the estimated empirical

admission policy to obtain a parsimonious model that fits the data. We find the best fit model for

both hospitals to be a static policy. The thresholds of ICU transfer (as measured by the EDIP2

scores) are 0.543 and 0.327 for the two hospitals, regardless of the ICU occupancy. Note that both

thresholds fall in the top EDIP2 group (Table 3.8). Therefore, the estimated admission policies at

both hospitals correspond to admitting only the most severe patients. As we have seen in Figure

3.5, proactively transferring the top 5 EDIP2 groups (instead of just the top) helps to reduce

both the in-hospital mortality rates and the average LOS in hospital without significantly effecting

demand-driven discharge rates and ICU readmission rates. Thus, there are potential benefits to

extending the current ICU transfer practice to be more aggressive.

3.6. Conclusion and Discussion

Patients who deteriorate and require unplanned transfers to the ICU have worse outcomes. In an

effort to mitigate the number of unplanned transfers, the EDIP2 score was developed to predict

the likelihood a patient will ‘crash’ and require ICU care. In this work, we empirically estimate the

impact of ICU admissions on patient outcomes for patients with varying severity, as measured by

the EDIP2. Using a high fidelity simulation model, we find that proactively transferring the most

severe patients could reduce mortality rates without sacrificing other patient outcomes; however,

proactively transferring too many patients could result in high ICU congestion so that patients are

more likely to be demand-driven discharged and/or require ICU readmission. While some gains

can be achieved by allowing for more complex transfer policies, such as those where the severity of

patients to proactively transfer depends on the number of ICU beds available, we find the difference
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in outcomes to be minimal. Thus, it may be more reasonable to focus on using simple threshold

policies which are desirable for practical implementation.

Our simulation model has been calibrated from our empirical findings and our extensive dataset.

Certainly, the insights generated from the simulation study are highly dependent on the reliability

of our empirical results and the fidelity of the data. As we are using a very large data set from

multiple hospitals and because we make a number of important design choices to increase the

reliability and robustness of our empirical analysis, we believe the risks of misspecification are

small. While we have run a number of sensitivity analyses to test the robustness of our results, we

must acknowledge that if there are other first order dynamics that we fail to account for, this could

raise questions as to the validity of our simulation results.

Our empirical strategy relies on two study design decisions. First, we restrict our analysis to the

night-time EDIP2 decision epoch in order to strengthen the instrument and reduce the potential

biases introduced by unobserved confounders. Second, we utilize a matching approach to reduce

model dependency in order to enhance the robustness of our estimates. While these decisions can

alter the study sample, this is done in a careful manner in which to increase the reliability of our

estimates. Such approaches may be beneficial in other healthcare settings where causal inference is

challenging due to weak instruments. While our design choices have improved the reliability of our

estimation results, this is fundamentally true only for the final study cohort. While we believe that

the qualitative results likely generalize to the full population, more work is necessary to confirm

whether this is indeed the case.

One limitation of our dataset is the lack of patient code status. The estimated effect of ICU

transfer on patient outcomes may be overestimated for patients who are not full code as they will

not be transferred from the ward/TCU should their condition deteriorate. Another limitation of

our dataset lies in that it does not identify whether patients are transferred to the ICU proactively

or reactively. Therefore, the estimated impact of ICU transfer at each EDIP2 score could be the

average impact on a mix of proactively transferred and “crashed” patients. Because crashed patients

are likely to have worse outcomes than proactively transferred patients, the estimated effect of ICU

transfer on patient outcomes may be underestimated for crashed patients as their outcomes could
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have been better if proactively transferred before crashing.

Despite the limitations of our study, our results have been invaluable to our partner hospitals.

They recently deployed a pilot program where the EDIP2 score is made available to clinicians on

an hourly basis at two hospitals. It is currently being used to trigger warnings to a Rapid Response

Team (Escobar et al., 2016), but the intent is to have it inform proactive ICU transfers. Our study

lends support to this goal. Moreover, the results have been communicated to the remaining 19

hospitals in the hospital system in considering further deployment of the dynamic EDIP2 warning

system.

While our findings are specific to the EDIP2, we expect that qualitatively, the benefits of

proactive ICU transfer based on the MEWS score (or other scores) would be similar to our findings.

Of course, because the EDIP2 is more efficient (Kipnis et al., 2016), the magnitude of the benefits

will likely be higher in our study as the EDIP2 is better able to capture the severity of patients

who may need ICU care.

The EDIP2 score has high specificity and sensitivity for all 21 hospitals in our study setting,

including those with specialized ICUs (Kipnis et al., 2016). As such, we believe that qualitative

insights are likely to exist in hospitals with varying ICU resources. Of course, the exact magnitude

of the benefits of proactively admitting up to the top 5 EDIP2 groups will vary depending on case

mix and size of ICUs.

This work presents a number of interesting directions for future research. First, we used sim-

ulation to compare different proactive transfer strategies. One could consider using a stochastic

modeling and dynamic optimization framework to examine whether alternative policies may be

more effective. We note that our simulation model assumes that any patient with an EDIP2 score

above a prespecified threshold will be admitted to the ICU; however, in practice, the EDIP2 pro-

vides guidance rather than a mandate for physicians making proactive transfer decisions. One

could consider policies with possibly lower EDIP2 thresholds to use as an automated alarm to

bring physicians to a patient’s bedside for evaluation and information gathering, rather than sim-

ply as an ICU transfer alarm. Additionally, one could consider explicitly incorporating the future

information provided by the EDIP2 score in determining an optimal transfer policy in a similar
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way that Xu and Chan (2016) use predictions of future patient arrivals to make ED admission

decisions.

64



CHAPTER 4. A STRUCTURAL MODEL OF ADMITTING INPATIENTS FROM THE
EMERGENCY DEPARTMENT

Chapter 4

A Structural Model of Admitting

Inpatients from the Emergency

Department

4.1. Introduction

Hospital Emergency Departments (EDs) provide services to individuals with emergency clinical

needs or after-hour care. With the aging U.S. population, overall ED usage has been increasing

over recent decades (National Center for Health Statistics, 2017). After the ED triage and initial

treatment, emergency providers determine whether a patient can be discharged home safely or

requires hospitalization, and if so, which inpatient unit the patient should be admitted to. Such

patient disposition decisions were made 130 million times in 2013 or on average 42 times per 100

patients, resulting in over 12 million annual admissions to hospitals from the ED (Rui et al., 2013).

Hence, the ED is a primary source for hospitalizations in the United States.

Inpatient flow management from the ED is often faced with high variability in demand and high

utilization in bed capacity, particularly for the Intensive Care Unit (ICU) which often operates

under high congestion levels. When making inpatient admission decisions, emergency providers

often trade off between admitting a patient immediately to the ICU, placing the patient in the
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general ward, or letting the patient continue to wait in the ED if there is downstream congestion

in the inpatient units (referred to as boarding in the ED). Patients boarding in the ED or rerouted

to the ward due to ICU congestion have been shown to be associated with increased mortality and

extended length-of-stay (LOS) (Robert et al., 2012; Shmueli et al., 2003; Kim et al., 2015; Chan

et al., 2017). Alternatively, admitting the new and more critical patient from the ED when the

ICU is full by discharging a current ICU occupant may increase the likelihood of readmission for

the ‘demand-driven’ discharged patient (Kc and Terwiesch, 2012). A typical ED admission process

is that the ED physician would page the admitting physician and discuss the patient’s condition

over the phone, or the admitting physician would come down to the ED to assess the patient

and issue admission orders. Despite several general guidelines on patient management in the ED,

the admission decision remains a matter of individual clinical judgment on the patient’s need for

intensive care, and competing demands on ICU and non-ICU resources (Mandell et al., 2007).

Studies have demonstrated that the ED admission decision exhibits a wide range of practice across

emergency providers and EDs, partially affected by local standards of care and the availability of

primary care (Pines et al., 2013).

This work aims to understand how ED physicians trade off between admitting a patient to the

ICU, the general ward, or boarding in the ED, and the extent to which physicians are forward

looking when making the admission decision. Specifically, we propose a model to estimate how

much ED physicians account for the intertemporal externalities in making the admission decision

because admitting a patient in the current period takes up the inpatient resources (especially the

limited ICU beds), which can prevent admitting a future patient with potentially more critical

conditions. Our study setting is Kaiser Permanente Northern California (KPNC), an integrated

health care delivery system with 21 hospitals.

We first use two sets of reduced-form regressions to understand 1) what and how patient risk

factors and system controls impact the admission decision from the ED; and 2) what are the

potential benefits of admitting patients from the ED to the ICU. To evaluate which factors affect

the admission decision, we use logistic and multinomial logit models on a per patient per decision

epoch basis. To estimate the potential benefits of ICU admission on patient outcomes, we use an
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instrumental variable approach similar to those in Chapter 3 and Kim et al. (2015) on a per patient

basis to address the endogeneity of the ICU admission decision.

One limitation of the traditional reduced form analysis is that it cannot recover ED physicians’

preference parameters over the admission decisions nor the intertemporal externalities. Therefore,

we would not be able to use the estimated parameters to evaluate counterfactual admission policies.

To overcome these limitations, we further model the ED physician’s admission decision using a

dynamic discrete choice structural model. This structural estimation approach allows us to estimate

(1) the value physicians place on each admission decision choice; and (2) the intertemporal discount

factor physicians apply to future payoff given the current period admission decision. This model

has been applied to different areas of economics (Rust, 1987), but to the best of our knowledge,

has not been used in the Healthcare Operations Management (OM) setting.

Overall, we find that the severity levels of the patients under consideration, the ICU and ward

status, and the seasonality factors all impact physician’s ICU admission decision. The sicker the

patient, the more likely he/she will be admitted to the ICU rather than rerouted to the ward.

Both ICU congestion and the severity of ICU occupants discourage patients to be admitted to

the ICU from the ED, and such patients are more likely to continue boarding in the ED. On the

other hand, with more recent ICU discharges, patients are more likely to be admitted to the ICU,

possibly to preserve working hours from the nurses who would otherwise be discharged with the

discharging patient. While the ward census does not seem to discourage rerouting patients to

the ward, the average severity of patients in the ward has a high impact in discouraging ward

admission. Regarding the benefits of ICU admission, we find that being admitted to the ICU

significantly reduces patients’ in-hospital mortality, LOS, and readmission rates within one month.

Note that the structural model estimation is still an ongoing process and more investigation is

required to fine tune the details. Therefore, we will not discuss the structural model estimation

results in this chapter, but only present the modeling framework and key estimation strategy. Our

main contributions can be summarized as:

• We provide a framework to empirically estimate the intertemporal externalities on the inpa-

tient admission decision from the ED using an extensive dataset of patient-level information
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across 21 KPNC hospitals. To the best of our knowledge, this is the first study to quan-

tify the intertemporal externalities on the ED admission decision. Our results could provide

operational insights on how to improve capacity allocation of ICU beds and overall patient

outcomes.

• We pioneer in applying the dynamic discrete choice structural model to the Healthcare OM

setting to study ED admission decisions. Such structural estimation methods, to the best of

our knowledge, have not been used in the healthcare OM literature on EDs previously.

4.1.1. Related Literature

Our work is related to two main bodies of research: 1) the inpatient admission process from the ED

in the medical and healthcare operations management fields, and 2) the use of dynamic discrete

choice structural models in economics and operations management to understand human decision-

making and evaluate counterfactual policies.

In both the medical and healthcare operations management literature, a number of works have

examined the inpatient admission process from the ED. One area of focus has been on the prolonged

waiting time in the ED for admitted patients, typically due to the downstream congestion in

inpatient units (Louriz et al., 2012). Allon et al. (2013) show that ED boarding caused by congested

inpatient units is a key factor contributing to ambulance diversion. Shi et al. (2016) focus on the

impact of inpatient discharge policies on the time-of-day boarding. A specific area more relevant to

our study is ICU admission control for patients admitted from the ED. On one hand, various studies

show that when the ICU is congested, physicians ration ICU beds for more severe patients (Staiger

and Stock, 1997; Strauss et al., 1986). Patient rerouting or ED boarding due to ICU congestion are

found to be associated with increased risk of death and extended LOS in hospital (Robert et al.,

2012; Shmueli et al., 2003; Chalfin et al., 2007; Kim et al., 2015; Chan et al., 2017). On the other

hand, when the ICU is full, discharging a current ICU occupant due to admitting a new and more

critical patient from the ED may increase the likelihood of readmission (Kc and Terwiesch, 2012).

Our work differentiates from previous literature in the scope of the question and the methodol-

ogy. First, rather than estimating the impact of patient and hospital characteristics on an individual
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patient’s routing decision, we take the ED physician’s point of view on the entire system and esti-

mate the cost that physicians associate to each admission/waiting decision. More imporatantly, we

focus on understanding the intertemporal externalities on the ICU admission decisions (i.e., how

admitting a patient now affects the system status, and its ability in admitting patients with possibly

more severe conditions in the future). To the best of our knowledge, we are the first to estimate

the intertemporal externalities on the ICU admission decisions. Second, traditional reduced form

analyses used in the medical and healthcare OM literature do not recover ED physicians’ prefer-

ence parameters over the decision choices; nor can it recover the intertemporal externalities of their

ICU admission decisions, and therefore we would not be able to use the estimated parameters to

evaluate counterfactual admission policies.

In contrast, we take a structural estimation approach which is prevalent in the economics

literature and has been used to study fertility and child mortality (Wolpin, 1984), replacement of

bus engines (Rust, 1987), and retirement from a firm (Lumsdaine et al., 1992; Rust, 1989), etc. See

Eckstein and Wolpin (1989); Rust (1994); Reiss and Wolak (2007); Aguirregabiria and Mira (2010)

for an extensive survey of this literature.

There is also a growing body of structural work in operations management that study the over-

age/underage costs of a newsvendor with application to reserving operating room time (Olivares et

al., 2008), customer waiting costs in the fast food industry (Allon et al., 2011), consumer strategic

purchase delay in the airline industry (Li et al., 2014), production smoothing in automotive manu-

facturing (Bray and Mendelson, 2015), and auto manufacturer and regulator’s joint recall decisions

(Colak and Bray, 2016). We contribute to this stream of research by applying structural estimation

in the ED admission decision setting, an important area in healthcare OM where this approach has

not been used.

Specifically, we use a single-agent dynamic discrete choice structural model on ED physicians’

ICU admission decision process. Our model is based on the influential work of Rust (1987), and

we use a similar nested fixed-point maximum likelihood algorithm to numerically solve the costs

physicians associate with each of the three choices and choose the discount factor that maximizes the

log-likelihood. The nested fixed-point algorithm is essentially a dynamic programming procedure
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nested in the maximization likelihood estimation. Previous literature on structural models has

documented that the discount factor is generally not identified nonparametrically (Rust, 1994;

Magnac and Thesmar, 2002; Abbring and Daljord, 2016) unless under certain regularity conditions

(Abbring and Daljord, 2016). We make parametric assumptions common in the literature and

follow the identification condition in Magnac and Thesmar (2002), which is the existence of a pair

of states that affects expected future payoffs but not the static payoffs. Moreover, we exploit the

richness of our data and use simulations to show that the discount factor can be recovered in our

data.

A limitation of this method lies in the computational complexity when the dimension (state

space) of the problem increases. Several methods for accelerating the computation have been pre-

sented, including conditional choice probability estimator as a non-/semi-parametric approximation

(Hotz and Miller, 1993), relative value iteration when the underlying stochastic process is ergodic

(Bray, 2018a), and the endogenous value iteration which disregards the utility calculation for ex-

ogenous states unrelated to finding the stationary policy (Bray, 2018b). In this work, we focus on

the intertemporal externalities and maintain a parsimonious model of the emergency physician’s

admission decision. This approach gives us the exact solution to the cost parameters which we

would need to evaluate any counterfactual admission policy experiments.

4.2. Study Setting

In this work, we consider a retrospective dataset of all 312,306 hospitalizations which began at one

of the 21 hospitals in a single hospital network.

On the operational level, our data provide the admission venue (ED or non-ED), and the

admission and discharge date and time for each unit a patient stayed in as well as the unit’s level

of care. In the hospital system which we study, the units are specified as being either the ICU,

Transitional Care Unit (TCU), general medical-surgical ward, the operating room (OR), or the

post-anesthesia care unit (PACU).

For every hospitalization episode, we have patient-level admission data which includes the pa-
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tient’s age, gender, admitting hospital, admitting diagnosis, classification of disease codes, and

three severity of illness scores which are assigned at the time of hospital admission. The COmor-

bidity Point Score 2 (COPS2) score is a measure of chronic disease burden and a score greater

than 65 could be someone with 3–4 significant comorbidities (e.g., diabetes, chronic heart failure,

and cancer). The Laboratory Acute Physiology Score 2 (LAPS2) score is based on laboratory tests

and measures a patient’s acute instability over the 24–72 hours preceding hospital admission. A

patient with a LAPS2 score greater than 110 is considered very sick, potentially in shock. Finally,

a composite hospital mortality risk score (CHMR) is a predictor for in-hospital death that includes

COPS2, LAPS2, and other patient-level indicators (see Escobar et al. (2013) for more information

on these scores).

In addition to the three scores assigned at the time of hospital admission, we have two additional

severity of illness scores assigned during inpatient stay. First, all patients are assigned a Simplified

Acute Physiology Score 3 (SAPS3) every time they are admitted to the ICU. The SAPS3 score is a

predictor for in-hospital death for ICU patients using patient demographics, diagnosis, vital signs,

and laboratory tests preceding ICU admission (Metnitz et al., 2005; Liu et al., 2013). Second,

all patients in our dataset have an Early Detection of Impending Physiologic Deterioration score,

version 2 (EDIP2) (Escobar et al., 2012, 2013) assigned every six hours (at 4am, 10am, 4pm, 10pm)

while in the ward or TCU (scores are not assigned to patients in other units). The EDIP2 score

utilizes vital signs (e.g. temperature and oxygen saturation), vital signs trends, and laboratory

tests from the past 24–72 hours (e.g., glucose levels), the COPS2, LAPS2, and CHMR severity

scores, as well as patient diagnoses and demographics to predict the in-hospital deterioration risks.

More details can be found in Escobar et al. (2012) and Kipnis et al. (2016).

4.2.1. Data Selection

We utilize data from all 312,306 hospitalizations to derive the maximum capacity and hourly

occupancy level of all inpatient units in each of the 21 hospitals. While there is some differentiation

across ICUs (e.g. Medical versus Surgical ICU), the general practice in the study hospitals is that

the boundaries between these units are relatively fluid. For instance, if the medical ICU is very full,
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a patient may be admitted to the surgical ICU instead. We find that the maximum ICU occupancy

varies from 6 to 34 for the 21 hospitals over our study period.

We now describe our data selection process for the final study cohort. We focus on patients

who are admitted to a medical service via the ED because this comprises the largest proportion

of admitted patients (> 60%). Additionally, there are limited standards for the care pathways for

these types of patients, so that they can be highly varied, as compared to elective admissions and

surgical cases. As such, these patients are more likely to experience variation in admission decisions

due to operational factors, such as the availability of resources. In the patient flow data, 16.8% of

the total medical inpatient admissions from the ED are ever admitted to the ICU, and 11.9% are

admitted directly from the ED to the ICU.

Among all 312,306 hospitalizations, 189,316 are admitted to a medical service via the ED. We

first eliminate 12 hospitalizations with unknown patient gender and 88 hospitalizations transferred

in from outside of KPNC. Next, we drop 2,160 hospitalizations for patients who are transferred

to another hospital from the ED. We then eliminate 38 hospitalizations with inconsistent records

on the hospital ID patients are located in. Finally, we remove 9,274 episodes admitted in the first

month of our dataset to avoid censored estimates of the inpatient units occupancy level.

The final study cohort consists of 177,744 hospitalizations from 21 hospitals. Out of all hospi-

talizations, 2.2% are admitted to the inpatient units from the ED immediately after the admission

decision is made. Among the 97.8% of patients who experienced ED boarding, the average boarding

time is 1.4 hours and the maximum time waiting for admission is 6.1 days. The patient character-

istics at the time of hospital admission for the final study cohort are summarized in Table 4.1.

Table 4.1: Characteristics of the final study cohort, N=177,744

Min Max Mean Median Std. Dev.

Female (%) 53.20
CHMR (%) 0.00 98.73 4.28 1.55 8.20
COPS2 0.00 306.00 44.85 28.00 43.17
LAPS2 0.00 294.00 73.80 69.00 37.44
Age 18.00 113.00 67.15 70.00 17.64
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4.2.2. Missing Data Imputation

The focus of this work is the admission decision on patients admitted to the medical service from

the ED, which may be impacted mostly by the patient severity conditions and level of care needed.

It is also conceivable that operational factors, such as the availability of beds and the workload

in inpatient units, are likely to influence the admission decision. Therefore, we will be using all

patient hospitalizations in the raw data to calculate the hourly system census and workload in all

inpatient units. In this section, we describe how we deal with the missing data in three severity

scores (CHMR, SAPS3, EDIP2) when calculating the hourly system status.

CHMR for patients transferred in from outside of KPNC

In the raw data, there are in total 6,113 hospitalizations who are transported in from outside of

the KPNC network. Such patients do not have the in-hospital mortality prediction (CHMR) score

due to the limited knowledge of their previous hospitalizations and health conditions at the time

of transfer. Because CHMR is a probability estimate falling in [0, 1], we use Eq. 4.1 to model the

logit-transformed CHMR scores on all hospitalizations, which also helps to correct the extremely

high kurtosis (= 42.8) and right skew (= 5.4). The AdmitCategory includes ED or non-ED patients

admitted for medical or surgical services.

log( CHMR
1− CHMR) =β0 + β1LAPS2 + β2COPS2 + β3Age + β4Sex

+ β5AdmitCategory + β6DiseaseGroup + β7HospitalID
(4.1)

Table 4.2 presents the estimated coefficients in Eq. 4.1. For conciseness of presentation, we

do not show the coefficients associated with 21 hospital IDs and 38 disease groups. Figure 4.1(a)

compares the actual vs. fitted CHMR score in the estimation sample. Overall, we consider it to be

a reasonable fit of the CHMR score, with slight under-prediction on the number of patients with

CHMR score near 0 due to the distribution of the logit-transformed CHMR score being slightly

skewed to the left. Therefore, we use the estimated coefficients to predict the CHMR score for

the 6,113 hospitalizations transported in, and Figure 4.1(b) shows the histogram of their predicted

CHMR scores.
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Table 4.2: Regression table for CHMR, N=306,176, R2 = 0.86

Estimate Std. Err. t-value p-val

LAPS2 0.03 0.00 582.28 0.000
COPS2 0.01 0.00 327.47 0.000
Age 0.02 0.00 249.30 0.000
Sex -0.14 0.00 -52.98 0.000
Non-ED, Surgical -0.03 0.01 -5.14 0.000
ED, Medical -0.05 0.01 -8.19 0.000
Non-ED, Medical 0.45 0.01 61.09 0.000

Figure 4.1: Compare actual, fitted, and predicted CHMR scores

0.00 0.02 0.04 0.06 0.08

0
20

40
60

80
10

0

CHMR

D
en

si
ty

Fitted CHMR
Actual CHMR

(a) Fitted vs. actual CHMR scores

predicted CHMR

F
re

qu
en

cy

0.00 0.02 0.04 0.06 0.08

0
20

0
40

0
60

0
80

0
10

00

(b) Histogram of predicted CHMR scores

SAPS3 for ICU visits

In total, we have missing SAPS3 scores for 36 ICU visits of 13 patient episodes. There are two

cases: (1) for six patient episodes each with over 10 ICU visits, the raw data only records their

SAPS3 scores for the first 10 ICU visits of each patient episode; (2) seven hospitalizations have com-

pletely missing SAPS3 scores although the total number of ICU visits during that hospitalization

is no more than 10.

Note that SAPS3 scores vary between 8 and 112 in our data with skew=0.54 and kurtosis=3.57.

A simple linear regression of crude SAPS3 scores on all other risk covariates shows that the dis-

tribution of SAPS3 has a heavy tail (see Figure C.1 in Appendix C.1). Therefore, we run a linear

regression of the log-transformed SAPS3 on all other severity scores and patient demographics, as
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is specified in Eq. 4.2.

log(SAPS3) =β0 + β1LAPS2 + β2COPS2 + β3Age + β4Sex + β5TransportIn

+ β6AdmitCategory + β7DiseaseGroup + β8HospitalID
(4.2)

Table 4.3 presents the estimated coefficients in Eq. 4.2. For conciseness of presentation, again,

we do not show the coefficients associated with 21 hospital IDs and 38 disease groups. Figure

4.2(a) compares the actual vs. fitted SAPS3 score in the estimation sample. The log-normal

transformation still cannot completely remove the heavy tail of SAPS3 distribution. However,

since this only affects 36 ICU visits of 13 hospitalizations, it is not likely to impact the estimation

of structural parameters in Section 4.3. To focus our attention on the modeling part, for the

moment, we use the predicted SAPS3 scores from Eq. 4.2 to approximate the 13 hospitalizations

with missing SAPS3 scores. Figure 4.2(b) shows the histogram of their predicted SAPS3 scores for

each ICU visit.

Table 4.3: Regression table for log(SAPS3), N=59,125, R2 = 0.50

Estimate Std. Error t value P-val

LAPS2 0.002 0.000 91.13 0.000
COPS2 0.001 0.000 34.02 0.000
Age 0.007 0.000 125.58 0.000
Sex 0.007 0.002 4.41 0.000
Non-ED, Surgical -0.140 0.004 -39.49 0.000
ED, Medical 0.024 0.003 8.57 0.000
Non-ED, Medical 0.040 0.004 9.69 0.000
Transport in 0.194 0.005 42.92 0.000

EDIP2 for general ward/TCU stays

Among the 312,289 hospitalizations with known sex, 297,492 hospitalizations have ever been

to the general ward/TCU. For 295,553 hospitalizations, there is at least one EDIP2 score for

each patient episode. 1,939 hospitalizations from all 21 hospitals do not have any EDIP2 scores

throughout the entire hospitalization. There are two reasons for this observation: 1) 42 (2.17%)

patients are discharged from the ward quickly after admission before the next EDIP2 update time;

2) 1,897 (97.83%) hospitalizations have inconsistent records of the inpatient units they stay in.
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Figure 4.2: Compare actual, fitted, and predicted SAPS3 scores
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(b) Histogram of predicted SAPS3 scores

Patients without EDIP2 scores are more severe at admission, stayed in hospital for significantly

shorter amount of time, and are more likely to die in hospital. See Table C.2, C.3, C.4, and Figure

C.2 in Appendix C.1 for detailed comparisons of the hospitalizations with and without EDIP2

scores.

Recall that the EDIP2 score is updated every six hours while patients are staying in the general

ward/TCU. Similar to the model on CHMR, we impute the EDIP2 score for the 1,939 hospital-

izations by regressing the logit-transformed first EDIP2 score for each ward/TCU stay on other

severity scores and patient demographics, as is specified in Eq. 4.3.

log( 1st EDIP2
1− 1st EDIP2) =β0 + β1LAPS2 + β2COPS2 + β3Age + β4Sex + β5TransportIn

+ β6AdmitCategory + β7DiseaseGroup + β8HospitalID
(4.3)

Table 4.4 presents the estimated coefficients and Figure 4.3 shows the QQ plot of the residuals

from the regression. Similar to SAPS3, the distribution of EDIP2 scores has a heavy tail toward

the higher scores, as is reflected from the QQ plot.

We also attempt to fine tune the estimation model in subgroups of patients with short LOS,

divide patients by severity of illness, and pre-process the data with propensity score matching.
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Table 4.4: Regression results for first EDIP2, N=373,548, R2 = 0.40

Estimate Std. Error t value P-value

LAPS2 0.011 0.000 333.15 0.000
COPS2 0.001 0.000 34.44 0.000
Age -0.003 0.000 -44.89 0.000
Sex -0.117 0.002 -49.59 0.000
Non-ED, Surgical -0.396 0.005 -75.76 0.000
ED, Medical -0.009 0.005 -2.02 0.043
Non-ED, Medical 0.025 0.006 3.94 0.000
Transport in 0.102 0.009 11.23 0.000

Figure 4.3: QQ plot of residuals from regressing first EDIP2 on all other risk covariates

However, none of the above methods leads to significant increase in explanation power. Although

it is difficult to accurately predict each individual patient’s first EDIP2 score, ultimately we only

care about the distribution of EDIP2 scores for all patients staying in each inpatient unit at a sys-

tem snapshot. While each patient’s individual EDIP2 score could vary extensively during the entire

hospitalization, the distribution of EDIP2 scores on all patients in the ward/TCU has infinitesimal

hourly change. Overall only 8% of the average EDIP2 scores change between consecutive hours

and the average change is only 0.0003. As such, we decide to simply use the previous hour’s aver-

age/min/max EDIP2 score in the unit as the current hour’s if there are incoming patients missing
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EDIP2 scores in the current period. As a robustness check, we also drop the 23% observations

when there are patients missing EDIP2 scores in the general ward/TCU and our findings from the

reduced-form regressions are similar.

4.3. Empirical Models

Our goal is to estimate the intertemporal discount factor and the cost parameters physicians as-

sociate to their ED admission decisions. We first use reduced-form regressions on the individual

patient level to understand qualitatively what patient and system factors are impacting the routing

decisions of patients in the ED. Furthermore, we use rigorous econometric models to estimate the

potential impact of ICU admission from the ED on patient outcomes. We then formally intro-

duce the dynamic discrete choice structural model on the system level to quantify the structural

parameters associated with physicians’ admission decisions.

Recall that we focus on three choices ED physicians can make once they decide a patient needs

to be hospitalized. They can admit the patient to the ICU, reroute the patient to the general

ward/TCU, or let the patient wait in the ED for a downstream bed to be available. Since this

is a dynamic decision made repeatedly over the time period when patients remain in the ED, we

first define the time interval (or frequency) of the decision. We use two hours as the length of time

between any two admission decisions, for two main reasons. First, we find a behavioral pattern on

the admission and discharge time from the ED in our data, where most admission decisions are

made every 15 minutes of the hour, whereas the final departure of patients from the ED to inpatient

units happens mostly hourly, followed by every 30 minutes, as is shown in Figure 4.4. Hence, using

one or two hours as the decision interval helps to smooth out the “seasonality” in the admission

decision and departure time pattern. Table 4.5 shows that patient severity conditions are clinically

similar when comparing the groups of patients who wait no more than one or two hours. Second,

once an ED physician issues the admission request, it typically takes time to sort out the bed

availability with various inpatient units and discuss the patient conditions and potential treatment

plans with hospitalists. Hospitalists often need to come down to the ED to assess the patient prior
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to finally transferring the patient to an inpatient unit. Therefore, we believe every two hours is a

reasonable frequency for examining admission decisions from the ED.

Figure 4.4: Histogram for the time of ED admission decision and departure
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(b) Minute-of-hour for ED departure

Table 4.5: Patient characteristics between admitted immediately, wait ≤ 1hr, and wait ≤ 2hrs

# of obs LAPS2 COPS2 CHMR Age Flu season Female

Wait≤1hr 114,419 71.30 44.26 4.1% 67.05 26.5% 53.1%
Wait≤2hr 157,668 71.87 44.51 4.2% 67.16 28.5% 53.2%
Do not wait 4,228 64.88 38.77 3.2% 64.75 28.5% 48.0%

4.3.1. Reduced Form Regressions

4.3.1.1. Factors Impacting the ICU Admission Decision

To model physicians’ ICU admission decision from the ED, we first use two reduced form regressions

to understand what patient risk factors and system controls are impacting the admission decision.

Specifically, we use the logistic regression to model whether a patient is admitted to the ICU or

not, and use the multinomial logit model on all three admission choices simultaneously. The unit
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of analysis for both models is per patient per decision epoch.

Logistic regression

For each patient i in time period t, let ICUAdmiti,t be a binary variable indicating whether

patient i is admitted to the ICU from the ED in time period t. Let Xi,t be the system status and

seasonality controls faced by patient i at time t, which include the census and aggregate patient

characteristics in all inpatient units, hospital IDs, day-of-week, month, and nurse shifts. Let Yi be

the patient characteristics that are constant over t, including patient demographics (age, gender),

severity scores (CHMR, COPS2, LAPS2) and 38 disease categories (see Table C.5 in Appendix

C.2 for a list of the control variables used). Let εi,t be an error following the standard logistic

distribution. The logistic regression model is specified as follows.

ICUAdmiti,t = 1{ICUAdmit∗i,t > 0} where ICUAdmit∗i,t = X>i,tβ + Y >i α+ εi,t (4.4)

Multinomial logit regression

The multinomial logit model allows us to examine all three admission choices (denoted as option

j, j = 0, 1, 2) at the same time: reroute to the ward/TCU, admit to the ICU, or continue waiting

in the ED. Using similar notation as in Eq. 4.4, for each patient hospitalization i at system time t,

the utility of choosing option j is

U(i,t),j = X>(i,t)βj + Y >i αj + ε(i,t),j ,

where ε(i,t),j follows the standard Gumbel distribution. Normalizing at one of the three choices

“reroute to the ward” (j = 0) for identification, the probability of choosing j for patient i at time

t is

P(i,t)(j) = e
X>(i,t)βj+Y

>
i αj

1 +
∑2
k=1 e

X>(i,t)βk+Y >i αk

The coefficients βj and αj are estimated via maximum likelihood estimation.
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4.3.1.2. Impact of ICU Admission on Patient Outcomes

In Section 4.3.1.1, we attempt to understand what factors impact the ICU admission decision.

Physicians implicitly weigh the cost of taking up ICU resources and the potential benefit of im-

proving patient outcomes when making the admission decision. In this section, we present the

model to estimate the potential benefits of ICU admission on three patient oucomes: 1) in-hospital

mortality, 2) length-of-stay (LOS, measured in number of days) in hospital, and 3) hospital read-

mission within two weeks or one month. Table 4.6 summarizes the statistics for patient outcomes.

Different from that in section 4.3.1.1, the unit of analysis here is per patient because there is only

one realized admission decision and outcome per patient.

Table 4.6: Summary of patient outcomes

Outcome N Mean Median Std. Dev.

Mortality 170,405 4.05%
LOS (days) 170,405 4.24 3 6.17
Re-admit (1m) 163,502 16.70%
Re-admit (2w) 163,502 10.40%

A naive approach to estimate the effect of ICU admission on patient outcomes is to regress

patient outcome on ICUAdmiti and control variables in a way similar to Eq. 4.4. This approach

ignores the fact that there are unobservable severity factors that influence both the admission

decision and a patient’s outcome, which can lead to biased inferences when ignoring this potential

source of endogeneity. To address this concern, we utilize an instrumental variable approach similar

to that in Chapter 3 Section 3.3.3 and that in Kim et al. (2015).

Similar to Chapter 3 Section 3.3.3 and Kim et al. (2015), we use ICU occupancy as an instru-

mental variable (IV). Formally, we define an ICU to be “busy” (ICUBusy = 1) when the ICU

occupancy is no less than the 95th percentile of its occupancy distribution. We use logistic regres-

sion to verify that ICU occupancy level has a significant impact on ICU admission. We also find

that observed patient severity scores are not correlated to ICU occupancy, and therefore ICU occu-

pancy is unlikely to be related to unobservable risk measures. Similar to Chapter 3 Section 3.3.3,

we include a covariate AvgOccV isitedi that measures the average occupancy of every unit a patient
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visits during their hospital stay. This approach is required because there is evidence (e.g. Kuntz et

al. (2014)) that occupancy levels can impact a patient’s outcome, which could potentially invalidate

our instrument. The average AvgOccV isitedi was 0.78, with median of 0.79, in our dataset. We

find that our instrumental variable, ICUBusy before patient i’s admission, is not highly correlated

with the average occupancy experienced by a patient after admission, with a correlation coefficient

of 0.13. We examine other cutoffs on the ICU occupancy as robustness tests in Section 4.4.1.2.

In addition to ICUBusy, we include 3 additional instrumental variables that were used as

potential factors affecting ICU admission decisions in Kim et al. (2015). The first auxiliary IV,

RecentDischargei, accounts for the number of all discharges from the ICU within three hours prior

to patient i’s inpatient admission decision. This auxiliary is relevant to the ICU admission pattern

because ICU discharges may release the nurse in charge of the discharged patient, but intensivists

may have an incentive to “preserve the nurse hours” by admitting new patients to the ICU. In our

sample, 34% of the patients saw zero ICU discharge, 25% saw one ICU discharge, and 17% saw two

ICU discharges within three hours prior to admission. We divide the number of ICU discharges by

the ICU capacity to normalize the IV. The second auxiliary IV, RecentAdmissioni, accounts for

the number of patients admitted to the ICU via the ED for medical service within two hours before

patient i’s inpatient admission decision. The rationale is that a high number of recent admissions

from the ED may reduce the bargaining power of the ED physician to further request more ICU

admissions. In our sample, 75% of the patients saw zero recent admission and 21% saw one recent

admission. Again, we divide the number of recent admissions by the ICU capacity to normalize the

IV. The third auxiliary IV, PctSeverei, accounts for the percentage of ICU capacity occupied by

the most severe patients with LAPS2 ≥ 152 (which is the 97th percentile of the LAPS2 distribution,

typically with over 50% ICU admission rates). The idea is that when the current ICU occupants

are sicker, intensivists might require an incoming patient to also be highly severe. In our sample,

11% of the patients saw zero highly severe patients, 18% saw one, 19% saw two, and 17% saw

three highly severe ICU occupants. All three auxiliary IVs exhibit no correlation with the LAPS2

score of the incoming patient, suggesting that they are unrelated to patients’ severity of illness and

therefore appear to be exogenous.
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Mortality/Readmission: Because Mortalityi and Readmiti are binary outcomes, it is more

efficient to model the joint determination of mortality (or readmisison) and the ICU admission

decision by a bivariate probit model and use maximum likelihood estimation rather than two-

stage-least-squares (Wooldridge, 2010).

Let Zi be the set of 4 IVs, and Xi be patient, hospital, and seasonality controls that include

patient demographics (age, gender), severity scores (EDIP2, CHMR, LAPS2), 38 disease categories,

and other indicators for hospital, day of the week, and month (see Table C.6 in the Appendix for

more details). We have that

ICUAdmiti = 1{ICUAdmit∗i > 0} where ICUAdmit∗i = X>i β1 + Z>i β2 + εi (4.5)

Yi = 1{Y ∗i > 0} where Y ∗i = X>i β3 + β4ICUAdmiti + β5AvgOccV isitedi + νi. (4.6)

(εi, νi) follows a bivariate normal distribution with correlation coefficient ρ. A likelihood ratio test

can be used to determine whether ρ is significantly different from zero (i.e. whether ICUAdmiti is

indeed endogenous).

LOS: LOSi is a count variable of the number of nights a patient stays in the hospital. We use

the negative binomial regression, which can model the over-dispersion of the LOS distribution (as

is shown in Table 4.6), with Eq. 4.5 in the first stage to estimate the impact of ICU admission on

LOS using the method in Deb et al. (2006). Our estimates include patients who do not survive to

hospital discharge, but our results are robust to excluding them.

4.3.2. Structural Model

4.3.2.1. Model Formulation

In this section, we define a stylized structural model of patient admission decisions from the ED.

We first classify patients in the ED into KED groups by their severity levels at the time of ED

admission decision. Similarly, we classify patients in the ICU into KICU groups by their severity

levels during the ICU care.

Let Ai, i = 1, . . . ,KED be the number of class i patients requiring inpatient admission in the
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ED during each time period. Ai follows a Poisson distribution with rate λi. While theoretically Ai

could be unbounded, we truncate Ai at the maximum number of patients requiring admission per

period (denoted as NAi) observed in our data. This approach helps to limit the state space of the

model. Similarly, let Di, i = 1, . . . ,KICU be the number of class i patients departing from the ICU

per time period. For each individual patient from class i, his/her service completion probability

per period is µi, i = 1, . . . ,KICU .

At each time period t, t = 1, 2, . . ., an ED physician observes the hospital system state st and

chooses an action dt from a finite choice set Π(st), resulting in a utility U(st, dt). We define the

system state at the beginning of time period t as

st =
[
nED1,t , . . . , n

ED
KED,t

;nICU1,t , . . . , nICUKICU ,t

]
,

where nEDk,t is the number of class k patients in the ED at the beginning of time period t, and vice

versa for N ICU
k,t . Again, to limit the possible state space and align with the real hospital practice,

we consider an ICU with NICU beds, and an ED with the maximum boarding space of NED. A

capacitated ED bears similarity to the ambulance diversion when the ED is full. To focus our

attention on the ICU admission decision, we consider a ward with ample capacity in the hospital.

Therefore, the entire state space at the beginning of time period t is

St =

[nED1,t , . . . , n
ED
KED,t

;nICU1,t , . . . , nICUKICU ,t

]
:
KED∑
i=1

nEDi,t ≤ NED +
KED∑
i=1

NAi ,
KICU∑
i=1

nICUi,t ≤ NICU


For simplicity of presentation, we index all possible states as 1, 2, . . . , Ns.

We define the action taken at a given state at time period t as

dt = [Admit1,t,Ward1,t; . . . ;AdmitKED,t,WardKED,t] ,

where Admitk,t indicates the number of ICU admissions for class k patients from the ED, and

vice versa for Wardk,t. Because the space of waiting in the ED is limited to NED, instead of

forcing ambulance diversion, which is rarely the case in KPNC, we reroute patients to the ward
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immediately to relieve the congestion in the ED. Therefore, the entire choice set given the system

state st at time period t is

Π(st) =

 [Admit1,t,Ward1,t; . . . ;AdmitKED,t,WardKED,t] :

KED∑
i=1

Admiti,t ≤ NICU −
KICU∑
j=1

nICUj,t ,

Admiti,t +Wardi,t ≤ nEDi,t , i = 1, . . . ,KED

KED∑
i=1

Admiti,t +Wardi,t ≥

KED∑
i=1

nEDi,t −NED

+ ,
where the first two constraints are feasibility constraints on how many patients can be admitted

to the ICU or non-ICU units, and the third constraint is corresponding to the mandatory ward

rerouting to relieve the ED congestion. For simplicity of presentation, we index all possible actions

as 1, 2, . . . , Nd.

Finally, we aim to estimate the cost associated with admitting a patient from class k in the ED to

the ICU (denoted as ik), the general ward (denoted as φk), or waiting in the ED (denoted as hk). To

achieve identification, without loss of generality, we set the choice of ICU admission as the outside

option and normalize ik to zero for all k. We use β ∈ (0, 1) to denote the intertemporal discount

factor, which indicates how much physicians take into account the intertemporal externality in their

decision-making. The ED physician chooses a sequence of decision rules to maximize the expected

discounted utility over an infinite time horizon

sup E


∞∑
j=t

βj−tU (sj , dj) | st

 . (4.7)

Similar to Rust (1987), we make the following four main assumptions to simplify the model:

1. The utility function U(st, dt) is additively separable (i.e., U(st, dt) = −c(st, dt)+εt(dt)), where

c(st, dt) is the one-period cost of taking action dt on an observed system state st, and εt(dt)
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is a random utility component observed by the ED physician when making choice dt, but

unobservable in our choice data. The one-period cost of taking action dt on the observed

state st is the one-time cost of rerouting plus the cost of waiting (if any)

c(st, dt) =
KED∑
i=1

φiWardi,t + hi
(
nEDi,t −Admiti,t −Wardi,t

)+
.

2. The state transition density is Markovian, i.e.,

Pr{st+1, εt+1 | st, εt, dt; st−1, εt−1, dt−1; . . .} = Pr{st+1, εt+1 | st, εt, dt}.

3. Conditional on st, εt is independent from the past observation history (i.e., εt is a noise

superimposed on st)

Pr{st+1, εt+1|st, εt, dt} = p(st+1|st, dt)q(εt+1|st+1)

4. εt follows a multivariate extreme value distribution with mean θ and standard deviation σ

q(εt | st) =
∏

d∈Π(st)
exp{−εt(d)− θ

σ
} exp{−e−

εt(d)−θ
σ }

Under the four assumptions above, Rust (1987) shows that the optimal solution to Eq. 4.7 is

given by a stationary decision rule. The probability of choosing action d given the state s is given

by the multinomial logit choice model

P (d | s) = exp{−c(s, d) + β
∑
s′ p(s′ | s, d)v(s′)}∑

j∈Π(s) exp{−c(s, j) + β
∑
s′ p(s′ | s, j)v(s′)} (4.8)

where the expected value function v(s) at any given state s is given by the fixed point to the

contraction mapping

v(s) =
∑

d∈Π(s)
P (d | s)

[
−c(s, d) + β

∑
s′

p(s′ | s, d)v(s′)
]

(4.9)
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With the observed pairs of hospital state and action chosen, denoted as (st, dt), we aim to back

out the structural cost parameters associated with physicians’ decision-making via finding the set

of {φk, hk, β, k = 1, 2, . . . ,KED} that maximizes the likelihood of choosing action dt on a given

state st over the entire observation history:

L(st, dt, t = 1, 2, . . . , T | s0, d0) =
T∏
t=1

P (dt | st)p(st | st−1, dt−1) (4.10)

4.3.2.2. Estimation Procedures

We adopt the nested fixed point algorithm similar to that used in Rust (1987) to solve the above

structural model, which is essentially a fixed point algorithm (aka, “inner” algorithm) nested in

a maximum likelihood estimation (aka, “outer” algorithm). Specifically, given a set of structural

cost parameters {φ = {φk},h = {hk}, k = 1, 2, . . . ,KED} and the intertemporal discount factor β,

the “inner” fixed point algorithm computes the unknown v(s) as the fixed point to Eq. 4.9. Then,

given v(s), the “outer” algorithm searches for another set of cost parameters which increases the

likelihood in Eq. 4.10. We iterate the “inner” and “outer” algorithm until it converges to a set

of cost parameters that gives the maximum likelihood. For speed of convergence, we fix β in the

algorithm to find the optimal set of cost parameters corresponding to the given β. We then do

a grid search over β to find the set of cost parameters and β that maximize the likelihood. The

estimation steps are illustrated in detail below. Fix a β, at the kth iteration,

1. Given the set of unknown parameters αk = (φk,hk;β), calculate the corresponding expected

value-to-go function vk(s) for each state s as the fixed point in the Bellman Equation 4.9

through value iteration with the convergence criteria being the maximum change in vk(s) <

0.0001. Such convergence criteria strike a good balance between the accuracy of the value-

to-go function and the speed of computation. From vk(s), we can calculate the probability of

taking an action d on the state s, denoted as P k(d | s), using Eq. 4.8. For notation simplicity,
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let Ak(s, d) = −ck(s, d) + β
∑
s′ p (s′ | s, d) vk(s′), and therefore

vk(s) =
∑

d∈Π(s)
P k(d | s)

[
−ck(s, d) + β

∑
s′

p(s′ | s, d)vk(s′)
]

=
∑

d∈Π(s)

e−c
k(s,d)+β

∑
s′ p(s

′|s,d)vk(s′)∑
j∈Π(s) e

−ck(s,j)+β
∑

s′ p(s
′|s,j)vk(s′)

[
−ck(s, d) + β

∑
s′

p(s′ | s, d)vk(s′)
]

=
∑

d∈Π(s)

eA
k(s,d)∑

j∈Π(s) e
Ak(s,j)A

k(s, d)

2. Calculate the likelihood Lk of the observation history (st, dt), t = 1, . . . , T . Specifically,

because the p(st | st−1, dt−1) is exogenously determined by the arrival rates to the ED and

departure probabilities from the ICU, but is unrelated to the unknown parameters αk =

(φk,hk;β), we simply need to calculate the partial log-likelihood l as

lk(s1, · · · , sT , d1, · · · , dT | αk)

=
T∑
t=1

logP k(dt | st)

=
T∑
t=1

−ck(st, dt) + β
∑
s′

p
(
s′ | st, dt

)
vk(s′)− log

∑
j∈Π(st)

e−c
k(st,j)+β

∑
s′ p(s

′|st,j)vk(s′)


=

T∑
t=1

Ak(st, dt)− log
∑

j∈Π(st)
eA

k(st,j)



(4.11)

3. Calculate the gradient of the partial log-likelihood over all structural cost parameters: ∂lk(αk)
∂α .

Using ∂lk

∂φ1
as an example,

∂lk(αk)
∂φ1

=
T∑
t=1

∂Ak(st, dt)
∂φ1

−
∑

d∈Π(st)
P k (d | st)

∂Ak(st, d)
∂φ1

, where

∂Ak(st, dt)
∂φ1

= −∂c
k(st, dt)
∂φ1

+ β
∑
s′

p
(
s′ | st, dt

) ∂vk(s′)
∂φ1
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4. Use the BFGS and backtracking line search algorithm to find a descent direction γk and step

length δk, and update αk+1 = αk + δkγk, then repeat from step 1 with k = k + 1. The

BFGS algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) essentially

approximates the Hessian matrix H of the partial log-likelihood l(α) by its gradient ∇l to

reduce the computational burden of calculating the second derivatives of l(α). Then, the

backtracking line search algorithm (Armijo, 1966) attempts to find a step length along the

descent direction −H ∗ ∇l to increase the log-likelihood.

The above iteration process stops when lk(αk)− lk−1(αk−1) < 10−6. Again, we use this stopping

criteria to strike a balance between the accuracy of the results and the computational speed.

4.4. Empirical Results

In this section, we present and discuss our main empirical results for reduced form regressions. The

structural estimation is still an ongoing process and further investigation is needed to fine tune

the details. Therefore, we will not discuss the empirical results from the structural model in this

chapter.

4.4.1. Reduced Form Regressions

4.4.1.1. Factors Impacting the ICU Admission Decision

We use the logistic and multinomial logit regressions to obtain a preliminary understanding on

what and how patient characteristics and hospital system status measures may impact the ICU

admission decision in the ED. Table C.7 in Appendix C.2 presents the estimated coefficients from the

logistic regression on the ICU admission decision. Table C.8 in Appendix C.2 shows the estimated

coefficients from the multinomial logit model on all three decision choices (normalizing at the choice

“reroute to the ward”). Overall, the severity levels of the patients under consideration, the ICU and

ward status, and the seasonality factors all impact physicians’ ICU admission decisions. The higher

the severity of the patients under consideration, the more likely they are going to be admitted to

the ICU rather than rerouted to the ward.
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When examining the impact of the ICU status on admission choices, we find that a higher ICU

occupancy level or an ICU with more severe patients (measured by the average LAPS2 and CHMR

scores) at the time of the admission decision discourages patients to be admitted to the ICU, but

encourages them to continue waiting in the ED. The more recent discharges from the ICU, which

frees up the ICU space, the more likely patients would be admitted to the ICU from the ED. The

more severe patients recently admitted to the ICU, the less likely new patients would be admitted

to the ICU from the ED.

In terms of the ward status, the ward census does not seem to discourage rerouting patients

to the general ward/TCU. This observation may be due to the fact that the ICU census is highly

correlated with the ward census with a correlation coefficient of 0.8. Therefore, when both the

ward and the ICU are congested, more patients are being rerouted to the ward because the ICU

is more capacity constrained. On the other hand, the average EDIP2 score of the patients in the

ward has a high impact in discouraging ward admission.

Regarding the number of patients waiting for admission in the ED, the more patients boarding,

and the higher average severity of patients boarding, the more likely such patients would be waiting

in the ED for a decision, which may be because more time would be needed to sort out the right

allocation of patients to inpatient resources.

Finally, the operating room status does not have a significant impact on the ICU admission

decision on patients in the ED, probably because ICU beds are typically already reserved for the

patients finishing the surgery.

4.4.1.2. Impact of ICU Admission on Patient Outcomes

We estimate the impact of ICU admission on patient outcomes in two samples: 1) the entire patient

population, and 2) a subset of more severe patients with LAPS2 ≥ 110, which is the 85th percentile

of the LAPS2 distribution. The reason to examine a subsample of more severe patients is that

low-severity patients typically would not be considered for ICU admission regardless of the ICU

congestion level, but the IV approach applies fundamentally to patients whose admission decision

would change with the ICU congestion level. Patients with LAPS2 score above 110 have an ICU
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admission rate of 30.5%, which is significantly higher than the ICU admission rate of 11.7% in

the entire patient population. Table 4.7 compares the mean patient characteristics and outcome

measures between the entire population and the subsample with LAPS2 ≥ 110.

Table 4.7: Mean patient characteristics and outcome measures in entire population and subsample with
LAPS2 ≥ 110

Entire population LAPS2 ≥ 110 subsample

N 170,405 26,362
Female (%) 53.25 50.16
CHMR (%) 4.25 16.17
LAPS2 71.99 135.12
Age 67.13 74.74

Mortality (%) 4.05 15.62
LOS (days) 4.24 6.01
Readmit (1m) (%) 16.70 22.59
Readmit (2w) (%) 10.40 14.57

N for the entire population is smaller than the sample size in Table 4.1
due to the drop of patients staying over the stable system occupancy
time period

Tables 4.8 and 4.9 summarize estimation results for both the entire patient population and the

subsample with LAPS2 ≥ 110.

Table 4.8: Effect of ICU admission on patient outcomes, all patients

With IV1 Without IV

Outcome Coef. (Std. Err.) Avg. change Pct. change Coef. (Std. Err.)

Mortality -0.193∗∗ (0.061) -0.012 -38.0% 0.210∗∗∗ (0.018)
LOS (days) -0.337∗∗∗ (0.007) -1.037 -28.6% 0.262∗∗∗ (0.007)
Readmit (1m) -0.128∗ (0.058) -0.030 -17.9% -0.006 (0.013)
Readmit (2w) -0.050 (0.066) -0.009 -8.5% 0.008 (0.014)
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

1 First-stage F-statistic for the IVs = 97.3

First of all, we find evidence that the ICU admission decision is indeed endogenous, and hence

an IV estimation approach is necessary to obtain unbiased inferences. Both Tables 4.8 and 4.9 show

that without IV, ICU admission is estimated to result in higher in-hospital mortality and longer

LOS in hospital. This effect is likely to be biased due to endogeneity since sicker patients are more

likely to be admitted to the ICU and at the same time suffer worse health outcomes. Table C.11
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Table 4.9: Effect of ICU admission on patient outcomes, LAPS2 ≥ 110

With IV1 Without IV

Outcome Coef. (Std. Err.) Avg. change Pct. change Coef. (Std. Err.)

Mortality -0.163 (0.115) -0.017 -29.0% 0.158∗∗∗ (0.025)
LOS (days) -0.347∗∗∗ (0.017) -0.990 -29.3% 0.292∗∗∗ (0.012)
Readmit (1m) -0.071 (0.165) -0.019 -9.8% -0.009 (0.024)
Readmit (2w) -0.037 (0.167) -0.007 -6.1% -0.007 (0.026)
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

1 First-stage F-statistic for the IVs = 28.4

and C.12 in Appendix C.2 provide more detailed regression results without using an IV.

Second, we find that the set of IVs is a quite strong ensemble with the first-stage F-statistic

equal to 97.3 in the entire population and 28.4 in the more severe subsample, both well over the

rule-of-thumb of 10. Specifically, ICUBusy and RecentDischarge have a significant impact on

the ICU admission decision in both the entire patient population and the more severe subsample.

PctSevere and RecentAdmission mainly have a significant impact on the ICU admission decision

in the more severe subsample. When the ICU is busy, the likelihood of being admitted to the ICU

decreases by 40% on average in the entire population and 32% in the more severe subsample. Table

C.9 and C.10 in Appendix C.2 provide more detailed regression results using the IVs.

Third, we find that ICU admission has a significant impact on reducing in-hospital mortality,

LOS, and readmission rates within one month in the entire population. For instance, admitting

a patient to the ICU could reduce in-hospital mortality on average by 38%, LOS by 1 day, and

readmission within one month by 18% in the entire population. Interestingly, in the more severe

patient subsample, we only find significant impact of ICU admission on LOS, and its marginal

impact (-1 day) is essentially the same as that in the entire population. We do not find a significant

impact of ICU admission on in-hospital mortality, nor on hospital readmission.

One possible explanation may be that for such a group of patients with high severity of illness,

their ICU admission decision is less likely to be affected by the ICU congestion level, but more

based on their medical needs (recall that the first-stage F-statistic and the marginal impact of the

IV in the more severe subsample is lower than that in the entire population). If ICU care could

substantially reduce the mortality and readmission risks of such patients, they might be admitted
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anyway even when the ICU is highly congested. In this case, our IV estimation approach cannot

capture the potential benefits of ICU admission on such “non-complying” highly severe patients

whose admission decisions are less likely to be affected by the instrumental variable.

In defining the binary ICUBusy from the continuous ICU occupancy levels, we use the 95th

percentile of the ICU occupancy distribution for each hospital as the threshold for “busy”. As a

robustness check, we also attempted different thresholds varying between 90th and 97th percentiles.

The estimation results are similar with only slight changes in the coefficient estimates.

4.5. Conclusion and Future Work

The inpatient admission decision from the ED exhibits a wide range of practice and remains a

personalized clinical decision for ED physicians. In this work, we empirically estimate whether and

how physicians account for the severity of patients and the system status in making ICU admission

decisions from the ED. We further estimate the potential benefits of ICU admission on patient

outcomes. We find that the sicker the patient, the less congested the ICU, the fewer severe patients

in the ICU, or the more recent ICU discharges, all contribute to increasing the likelihood of ICU

admission from the ED. We show that being admitted to the ICU from the ED could significantly

reduce patients’ in-hospital mortality, LOS, and readmission rates within one month.

Next, we propose a dynamic discrete choice structural model which allows us to empirically es-

timate the extent to which physicians account for the intertemporal externalities of their admission

decisions and the cost parameters associated with their decision choices. Note that the structural

estimation is still an ongoing process and further work is needed to finalize the results. Therefore,

we defer the discussion on structural estimation results to a future paper.

There are several limitations to our work. First, we do not consider elective admissions to the

ICU in modeling the transition of system states. Because the admission rates to the ICU for all

other patients vary between 0.09 and 0.58 per period (two hours), therefore, with 98% chance there

would be no more than two other patients admitted to the ICU per period. It would be similar to

reducing the ICU size, but our findings should be similar. Second, we do not include the possibility
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that patients admitted to the general ward from the ED may in the future require unplanned ICU

transfers due to deterioration. It is however difficult to distinguish between patients who should

have been admitted to the ICU but are misplaced to the ward, and the patients who are correctly

admitted to the general ward, but develop complications later in their hospitalization, the former

being avoidable but not the latter. Third, our data does not include patient code status. The

estimated effect of ICU admission on patient outcomes may be overestimated for patients who are

not full code. Fourth, our instrumental variable approach essentially estimates the impact of ICU

admission on patients whose admission decision depends on ICU occupancy. This process excludes

the set of patients who are very mildly sick (and hence never admitted to the ICU) and those who

are extremely sick (and hence always admitted to the ICU).

For future work, it would be helpful to conduct counterfactual analyses to estimate how the

ED admission practice and patient outcomes would change by modifying the estimated cost pa-

rameters and intertemporal discount factors estimated through the structural model. Because of

the computational burden, we are confining the system states to census and classifying patients

by their LAPS2 scores. It would be interesting for future work to also include the average patient

severity characteristics into the system states.
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Table A.1: Covariate means when matched on administrative data only

Hospital ID 2 3 5 7 8 9 10 11 13 14 16 17 19 20 21 24 25 28 χ2/df* P-val.

Age 67.7 68 67.8 67.7 67.8 67.8 67.7 67.8 67.8 68.1 67.7 67.7 67.7 67.8 67.8 67.7 67.8 67.6 0.01 1.00
Female (%) 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 0.00 1.00
Flu season (%) 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 0.00 1.00
ED surgical (%) 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 0.00 1.00
Non-ED surgical (%) 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 0.00 1.00
ED medical (%) 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 0.00 1.00
Non-ED medical (%) 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 0.00 1.00
COPS2 39.7 37.9 36.9 38.8 38.1 37.5 38.5 43.8 37.5 36.5 40.0 38.1 37.2 39.1 36.8 37.2 39.7 44.3 1.45 0.10
LAPS2 64.5 61.6 63.3 67.6 62.2 65.0 64.0 60.6 60.2 59.7 63.6 67.4 66.0 61.7 64.9 61.0 62.9 65.3 1.57 0.06

* For the continuous covariates (age, COPS2, LAPS2), if the Kruskal-Wallis chi-square test statistic is significant, it means that at least one hospital stochastically dominates
another hospital on the covariate of interest. If the chi-square statistic for the Kruskal-Wallis test divided by its degrees of freedom is larger than 1, patients tend to differ
more than expected by random hospital assignment, vice versa.

Table A.2: Covariate means when matched on administrative data & COPS2

Hospital ID 2 3 5 7 8 9 10 11 13 14 16 17 19 20 21 24 25 28 χ2/df P-val.

Age 67.8 68.1 68.0 67.8 68.0 67.8 67.8 67.9 68.0 68.4 67.8 68.1 67.9 68.1 67.8 67.7 67.8 67.7 0.06 1.00
Female (%) 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 0.00 1.00
Flu season (%) 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 0.00 1.00
ED surgical (%) 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 0.00 1.00
Non-ED surgical (%) 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 0.00 1.00
ED medical (%) 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 0.00 1.00
Non-ED medical (%) 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 0.00 1.00
COPS2 42.9 42.7 42.7 43.1 42.2 42.3 42.7 43.0 42.4 42.5 42.8 43.5 42.7 42.6 42.7 42.6 42.7 43.0 0.03 1.00
LAPS2 64.5 62.7 64.0 69.3 60.6 65.1 67.0 66.4 60.3 59.7 64.9 68.3 66.4 63.7 64.7 60.9 65.1 66.2 2.24 0.00
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Table A.3: Covariate means when matched on administrative data & LAPS2

Hospital ID 2 3 5 7 8 9 10 11 13 14 16 17 19 20 21 24 25 28 χ2/df P-val.

Age 67.7 68.0 67.8 67.8 67.7 67.8 67.7 67.7 67.8 68.1 67.8 67.7 67.7 67.7 67.8 67.9 67.9 67.3 0.04 1.00
Female (%) 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 0.00 1.00
Flu season (%) 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 0.00 1.00
ED surgical (%) 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 0.00 1.00
Non-ED surgical (%) 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 0.00 1.00
ED medical (%) 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 0.00 1.00
Non-ED medical (%) 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 0.00 1.00
COPS2 40.2 42.2 36.7 39.7 38.2 37.3 34.6 40.6 39.4 37.9 41.0 40.6 37.7 39.8 36.1 38.3 41.6 44.9 0.99 0.46
LAPS2 64.4 64.4 64.2 64.6 64.0 64.3 64.5 64.3 63.9 63.9 64.3 64.3 64.5 63.9 64.6 63.8 64.2 64.7 0.04 1.00

Table A.4: Covariate means when matched on administrative data, COPS2 & LAPS2

Hospital ID 2 3 5 7 8 9 10 11 13 14 16 17 19 20 21 24 25 28 χ2/df P-val.

Age 67.6 68.1 67.9 67.9 68.0 67.7 67.9 67.7 67.8 68.2 67.6 67.9 67.7 67.8 67.7 68.0 67.5 67.1 0.13 1.00
Female (%) 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 57.2 0.00 1.00
Flu season (%) 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 0.00 1.00
ED surgical (%) 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 0.00 1.00
Non-ED surgical (%) 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 0.00 1.00
ED medical (%) 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 54.8 0.00 1.00
Non-ED medical (%) 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 0.00 1.00
COPS2 42.2 42.1 42.2 42.4 41.6 41.9 42.5 42.3 41.8 41.6 41.7 42.1 42.1 41.8 41.8 42.0 41.9 42.3 0.03 1.00
LAPS2 63.9 63.7 63.8 64.8 63.7 63.8 64.8 63.9 63.5 62.0 63.9 63.8 63.7 63.8 64.0 62.9 63.5 64.3 0.17 1.00
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A.2. Supplemental Information on Hospital Ranking Changes

Table A.5: Mean and max absolute changes in hospital rankings

Admin vs Admin vs Admin vs
Admin + COPS2 Admin + LAPS2 Admin + COPS2 + LAPS2

Mean Max Mean Max Mean Max

30-day mortality 2.9 12 2.4 9 4.4 16
Truncated LOS 2.4 7 1.7 6 2.0 8

To calculate the mean and max absolute changes, we compare each hospital’s rank when
matched on administrative information only, with its corresponding rank when adding
COPS2 and/or LAPS2 into matching. We calculate the absolute difference in each hospital’s
two ranks, and summarize their mean and max across all 18 hospitals.
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Appendix B

Appendix to Chapter 3

B.1. Supplemental Information on Empirical Analysis

Figure B.1 depicts variation in the percentage of ICU transfers by ICU occupancy percentile when

considering all four EDIP2 time points (whole-day) versus just the 10pm EDIP2 time point (night-

time). We can see that the difference between (very) high occupancy (e.g. ≥ 90th percentile)

and low occupancy (≤ 50th percentile) is much greater when restricting to the night-time EDIP2

decision epoch versus considering all four. This suggests the instrument is stronger when only

considering the night-time decision epoch. We refer to the ICU occupancy for all four EDIP2

time points as the “whole-day instrument” and the ICU occupancy at 10pm as the “night-time

instrument”. We do not include the 4am–9:59am decision epoch into the night-time instrument,

because nearly half of the decision epoch is staffed by day-time physician levels. Finally, we find

that the night-time effect is strongest during the first four EDIP2 scores.

B.1.1. Matching Formulation

Let T = {t1, ..., tT} be the set of discouraged units, i.e., the subjects that encountered high ICU

congestion, and C = {c1, ..., cC}, the set of encouraged units that faced low ICU congestion, with

T ≤ C. Define P = {p1, ..., pP} as the set of observed covariates. Each discouraged unit t ∈ T has a

vector of observed covariates xt ,· = {xt ,p1 , ...,xt ,pP}, and each encouraged c ∈ C has a similar vector
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Figure B.1: Percentage of ICU transfer by ICU occupancy during night-time and whole-day
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xc,· = {xc,p1 , ...,xc,pP}. Let 0 ≤ δt,c <∞ denote the distance between each pair of discouraged and

encouraged units. We solve:

minimize
a

∑
t∈T

∑
c∈C

δt ,cat ,c − λ
∑
t∈T

∑
c∈C

at ,c

subject to
∑
c∈C

at ,c ≤ 5, t ∈ T

∑
t∈T

at ,c ≤ 1, c ∈ C

− bk
∑
t∈T

∑
c∈C

at ,c ≤
∑
t∈T

∑
c∈C

at ,cvk,t ,c ≤ bk
∑
t∈T

∑
c∈C

at ,c , k ∈ K1

∑
t∈T

∑
c∈C

at ,cvk,t ,c ≥ ck
∑
t∈T

∑
c∈C

at ,c , k ∈ K2

at ,c ∈ {0, 1}, t ∈ T , c ∈ C

(B.1)

In our study, δt ,c is the absolute difference between the EDIP2 scores of discouraged unit t and

encouraged unit c, and λ is a tuning parameter (set to the median of the δt ,c ’s) that regulates the

trade-off between finding close matches in the covariates and matching as many pairs as possible

(see Zubizarreta et al. (2013)).

The first constraint requires each discouraged unit to be matched to up to 5 different encouraged
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Table B.1: Control Variables used in Empirical Analysis

Variables Description

Age Patient age at time of hospital admission, in years
Gender Males were coded 0 and females 1
EDIP2 Predicted probability of unplanned transfer from the medical-surgical ward or the TCU to

the ICU or death on the ward within the next 12 hours (Escobar et al., 2012); updated
every 6 hours at 4am, 10am, 4pm, 10pm, range in [0, 1]; based on vital signs, laboratory
test results, COPS2, LAPS2, transpired hospital LOS and care directives;

CHMR Predicted in-hospital mortality risk, range in [0, 1] (Escobar et al., 2012); based on primary
condition-specific models that employed age, gender, admission type, LAPS2 and COPS2;

COPS2 Comorbidity Point Score 2 (Escobar et al., 2013); measures chronic disease burden during
the 12 months prior to hospital admission; integer values range in [0, 306];

LAPS2 Laboratory-based Acute Physiology Score 2 (Escobar et al., 2013); measures a patient’s
acute instability based on lab tests and vital signs 72 hours preceding hospital admission;
integer values range in [0, 274];

Diagnosis Primary diagnosis, grouped into 38 broad disease categories (e.g. pneumonia); categorical
variables

Hospital ID 21 hospital IDs; categorical variables
Month/Day Month/Day of week of hospital admission; categorical variables

units (we determined this matching ratio in view of the large number of available encouraged units

before matching and the low expected efficiency gains in going from a 1:5 to a 1:6 matching ratio

under an additive treatment effect model). The second constraint only allows each encouraged unit

to be matched at most once. The third set of constraints are the covariate balance constraints,

where bk ≥ 0 is a scalar tolerance that defines the maximum level of imbalance allowed for the kth

constraint and vk,t ,c = f(xt ,p) − f(xc,p) for some suitable function f(·) of the observed covariates

(see Zubizarreta et al. (2013)). The fourth set of constraints are the imbalance constraints, where

ck ≥ 0 is a scalar that defines the minimum level of separation required for the kth constraint.

B.1.2. Covariate Balance

By means of the integer program (B.1) above (specifically, by imposing the balancing constraints

described above), we balanced the means and in some cases the marginal and joint distributions

of the covariates. Tables B.2–B.4, show the balance in means for the five risk covariates, the seven

indicators for day of the week, and the twelve indicators for calendar month after matching. In the

tables, the standardized difference in means for covariate p is defined as x̄t,p−x̄c,p√
(s2

t,p+s2
c,p)/2

, where x̄t ,p and

x̄c,p are the sample means for the discouraged and encouraged units after matching, and s2
t ,p and
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s2
c,p are the corresponding sample variances before matching (Rosenbaum and Rubin, 1985). Figure

B.2 shows that the number of observations for each hospital in the encouraged and discouraged

groups is highly similar (with maximum difference of 0.3%). Since every hospital is almost equally

represented in the encouraged and discouraged group after matching, unobserved confounders at

the hospital level are very unlikely to bias our estimates. The number of males and females in

the two groups are similarly balanced as well. Finally, we matched exactly for the 38 indicators of

disease categories, therefore balancing the joint distribution of the disease categories and hospitals,

and disease categories and sex (we actually imposed this constraint by matching separately for each

disease category). In summary, we find that our matched sample is well-balanced, thereby reducing

model dependence and allowing for a more robust estimate of effect modification.

Table B.2: Balance table for risk covariates in means

Covariate Encouraged Discouraged Std diff

Age 67.74 67.69 0.00
COPS2 44.89 45.07 0.00
LAPS2 72.28 73.02 -0.02
CHMR 0.04 0.04 -0.02
EDIP2 0.01 0.01 -0.04

Table B.3: Balance table for day-of-week

Covariate Encouraged Discouraged Std diff

Sunday 0.15 0.14 0.04
Monday 0.14 0.18 -0.10
Tuesday 0.14 0.17 -0.09
Wednesday 0.14 0.15 -0.03
Thursday 0.14 0.14 0.01
Friday 0.14 0.11 0.10
Saturday 0.14 0.11 0.10

B.1.3. Robustness Checks

We now consider the robustness of our initial empirical results under alternative specifications.
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Table B.4: Balance table for calendar month

Covariate Encouraged Discouraged Std diff

January 0.07 0.12 -0.17
February 0.08 0.12 -0.14
March 0.09 0.14 -0.15
April 0.09 0.10 -0.04
May 0.09 0.10 -0.02
June 0.10 0.07 0.09
July 0.09 0.06 0.13
August 0.09 0.05 0.14
September 0.08 0.04 0.16
October 0.09 0.06 0.13
November 0.09 0.09 0.02
December 0.05 0.06 -0.07

Figure B.2: Balance table for hospital ID after match
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B.1.3.1. Alternative IV Definition.

In defining the binary instrumental variable from the continuous ICU occupancy levels, we use

the 90th percentile and 70th percentile of the ICU occupancy distribution for each hospital as the

threshold for “busy” and “not-busy”. We also tried different thresholds, including the 65th, 67.5th,

72.5th and 75th percentiles as the “not-busy” threshold, and 92.5th and 87.5th percentiles as the

“busy” threshold. The estimation results are similar with only slight changes in the coefficient

estimates.
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B.1.3.2. Additional Covariates.

In our econometric models, we have included both patient severity factors and seasonality controls.

We also considered including indicators of whether a patient had been admitted to the ICU or OR

before being admitted to an inpatient unit. We fit a logistic regression of the ICU transfer decisions

on all patient severity risk factors and seasonality controls, including the two additional indicators

and constructed a receiver operating characteristic (ROC) curve. An ROC curve is usually used

for model comparisons as it depicts relative trade-offs between true positive (benefits) and false

positive (costs) for different cut-offs of the parameter (Zweig and Campbell, 1993). The area under

the ROC curve (AUC) is a measure of how well a parameter can distinguish between the admitted

and not admitted groups.

Figure B.3 shows the ROC curves for the ICU transfer model and mortality model with and

without the two additional risk factors. The DeLong et al. (1988) test on the difference between

any two AUCs shows no significant difference between any two models at the 5% significance level.

Thus, it seems that adding these covariates does not significantly improve the estimation model

for ICU transfers or mortality. To avoid over-fitting, we opted not to include the two additional

covariates as controls.

Figure B.3: ROC Curves
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B.2. Supplemental information for Simulation

Figure B.4: Empirical probability mass function for proportion of hospital LOS spent in the ICU.

Percent ICU LOS

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

(a) Direct Admits fpE (p)

Percent ICU LOS

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
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B.2.1. Transition Matrix for Ward Patients

Patients in the ward are modeled by a discrete time Markov Chain with the transition probability

matrix T. There are 10 transient states: i ∈ {1, 2, . . . 10}, where state i denotes the patient

is currently in EDIP2 group i. There are 3 absorbing states: i = 11 corresponds to a patient

crashing; i = 12 corresponds to a patients being discharged alive; and i = 13 corresponds to a

patient dying in the ward. Ti,j , i = 1, 2, . . . , 10, j = 1, 2, . . . , 13 represents the probability of a

patient transitioning from EDIP2 group i to state j within each period. We calibrate Ti,j from our

data using the proportion of transitions to each state:

Ti,j =



∑
k

∑
t

1{EDIP2k(t)=i}×1{EDIP2k(t+1)=j}∑
k

∑
t

1{EDIP2k(t)=i} , i, j = 1, 2, . . . 10;∑
k

∑
t

1{EDIP2k(t)=i×1{crashk(t+1)}}∑
k

∑
t

1{EDIP2k(t)=i} , i = 1, 2, . . . 10, j = 11;∑
k

∑
t

1{EDIP2k(t)=i×1{dischargek(t+1)}}∑
k

∑
t

1{EDIP2k(t)=i} , i = 1, 2, . . . 10, j = 12;∑
k

∑
t

1{EDIP2k(t)=i×1{deathk(t+1)}}∑
k

∑
t

1{EDIP2k(t)=i} , i = 1, 2, . . . 10, j = 13.
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where 1{x} is an indictor variable equal to 1 if x is true; EDIP2k(t) is the EDIP2 group for patient

k during epoch t; crashk(t) denotes whether patient k crashed during EDIP2 epoch t; dischargek(t)

denotes whether patient k is discharged from the ward alive during EDIP2 epoch t; and, deathk(t)

denotes whether patient k died in the ward during EDIP2 epoch t. We sum over all patients, k,

and all EDIP2 epochs, t. The estimated transition matrix is:

T =



0.8134 0.0728 0.0108 0.0020 0.0009 0.0001 0.0001 0.0001 0.0000 0.0001 0.0012 0.0982 0.0003

0.3216 0.4445 0.1223 0.0226 0.0072 0.0004 0.0003 0.0002 0.0003 0.0003 0.0021 0.0774 0.0008

0.0742 0.3491 0.3638 0.1075 0.0345 0.0017 0.0011 0.0009 0.0007 0.0008 0.0031 0.0609 0.0015

0.0229 0.1351 0.3608 0.2844 0.1259 0.0060 0.0040 0.0025 0.0024 0.0021 0.0048 0.0468 0.0023

0.0058 0.0488 0.1682 0.2893 0.3608 0.0287 0.0194 0.0146 0.0105 0.0079 0.0086 0.0330 0.0045

0.0019 0.0147 0.0695 0.1604 0.4567 0.0838 0.0599 0.0475 0.0366 0.0223 0.0140 0.0246 0.0082

0.0013 0.0105 0.0483 0.1249 0.4235 0.1020 0.0829 0.0670 0.0521 0.0364 0.0190 0.0228 0.0090

0.0010 0.0066 0.0320 0.0931 0.3625 0.1068 0.1007 0.1038 0.0817 0.0555 0.0233 0.0214 0.0117

0.0008 0.0043 0.0185 0.0577 0.2678 0.0917 0.1031 0.1292 0.1490 0.1116 0.0320 0.0171 0.0171

0.0007 0.0015 0.0074 0.0212 0.1119 0.0444 0.0611 0.0872 0.1557 0.3749 0.0616 0.0143 0.0581



B.2.2. Optimization Problem to Calibrate Crashed Parameters

We use our empirical results in Section 3.4 to determine the predicted mortality rate and LOS for

patients in each of the 10 EDIP2 groups based on whether they are admitted at that EDIP2 severity

level (before crashing) versus not. The average predicted values are summarized in Table B.5. To

emphasize the translation of our empirical findings to the simulation model where proactive ICU

admissions are possible, we label the predictive values when an action is taken (i.e. ICU admission

within the 6 hour EDIP2 decision epoch) at a specific EDIP2 severity score as Proactive. In contrast,

we label no action within the epoch as Reactive.

Patients not proactively transferred to the ICU stay in the ward until they crash or are dis-

charged (alive or dead) from the ward. Thus, our Markov Chain model, with 6 hour time slots,

gives for patients in EDIP2 group i a probability of death, MDi, and an expected LOS, MLOSi,
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when not proactively transferred as:

MDi , Pi(death|not proactively transferred) = Pi(death in ward) + Pi(crash)× dC

MLOSi , E[LOSi|not proactively transferred]

= 6 · E[# of periods in ward|patient group i] + Pi(crash)× LOSC

Our objective is to determine dC in order to minimize the sum of squared percentage errors

between the reactive predicted probability of death summarized in Table B.5, which we denote by

PDR
i , and MDi. As our empirical results suggest patients proactively transferred to the ICU have

lower mortality risk than if they crash, we add a constraint that dC ≥ PDA
i ,∀i, where PDA

i is the

predicted probability of death with proactive transfer summarized in Table B.5. The optimization

problem is formulated as:

min
dC

10∑
i=1

(
PDR

i

MDi
− 1

)2

s.t. dC ≥ PDA
i ,∀i

We formulate and solve a similar optimization problem for LOSC :

min
LOSC

10∑
i=1

(
PLOSRi
MLOSi

− 1
)2

s.t. LOSC ≥ PLOSAi , ∀i

We chose to minimize the sum of squared percentage errors due to the large variation in the

magnitude of mortality across the 10 EDIP2 groups; e.g., PDR
10 is 25 times that of PDR

1 . Thus, an

optimization problem whose objective is to minimize the sum of squared errors would result in a

dC which are dominated by the top EDIP2 group at the cost of not fitting the lower EDIP2 groups

well. This is less of an issue for the LOS optimization model and we find the results for LOS are

similar under both optimization objective functions.

Solving the optimization problems result in dC = 57.3% and LOSC = 15.1 days. Table B.6
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summarizes the mortality rates and mean LOS for each EDIP2 group based on our Markov Chain

model using these crashed parameters. Recall that we use the predicted probability of death and

predicted LOS under ICU transfers at the given EDIP2 scores for the proactive parameters in our

model.

Table B.5: Summary of mean predicted mortality risk and LOS for 10 EDIP2 groups when admitted
to the ICU (Proactive) or not admitted (Reactive) in a given EDIP2 decision epoch

Mortality (%) LOS (day)

EDIP2 Proactive Reactive Proactive Reactive
Group PDA

i PDR
i PLOSA

i PLOSR
i

1 0.01 1.26 0.85 1.96
2 0.02 1.83 0.91 2.12
3 0.04 2.42 0.97 2.25
4 0.05 3.20 1.04 2.42
5 0.11 4.84 1.17 2.72
6 0.18 6.90 1.36 3.15
7 0.28 8.49 1.45 3.36
8 0.39 10.63 1.57 3.64
9 0.70 15.46 1.85 4.29
10 6.84 33.19 3.77 7.47

Table B.6: Markov Chain model: Expected mortality and LOS under proactive and reactive ICU
transfers for 10 EDIP2 groups

Mortality (%) LOS (day)

EDIP2 Proactive Reactive Proactive Reactive
Group PDA

i MDR
i PLOSA

i MLOSR
i

1 0.01 1.73 0.85 2.54
2 0.02 2.30 0.91 2.74
3 0.04 3.04 0.97 2.94
4 0.05 3.96 1.04 3.13
5 0.11 5.56 1.17 3.34
6 0.18 7.62 1.36 3.51
7 0.28 8.63 1.45 3.58
8 0.39 9.97 1.57 3.64
9 0.70 12.53 1.85 3.73
10 6.84 22.02 3.77 3.79

B.2.3. Simulation Robustness Checks

ICU size: We consider 4 different ICU sizes N = 10, 15, 20, 30 operated at approximately 70%, 80%
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Table B.7: Percentage differences between the best 3- and 4-threshold state-dependent policy static
policy

3-threshold

# of groups Mortality LOS DDDcrashed DDDdirectadmit rcrashed rdirectadmit

Top 2 0.19 -0.04 -1.94* -1.02 0.18 -0.50*
Top 3 1.01* 0.27* -2.39* -2.21* -0.50 -0.13
Top 4 0.74* 0.23* -2.01* -1.39* -0.55 -0.17
Top 5 1.09* 0.26* -3.25* -3.17* -0.25 -0.32
Top 6 2.83* 1.73* -7.25* -7.10* -0.80 -0.76*

4-threshold
# of groups Mortality LOS DDDcrashed DDDdirectadmit rcrashed rdirectadmit

Top 3 2.04* 0.44* -2.90* -3.04* -0.54 -0.31
Top 4 1.32* 0.31* -2.45* -2.58* -0.54 -0.22
Top 5 1.31* 0.37* -4.23* -3.93* -0.77 -0.33
Top 6 4.46* 2.52* -8.69* -8.14* -1.35* -0.42

*: p < 0.05 difference in means based on t-tests

and 90% average ICU occupancy under reactive transfer. The trends for in-hospital mortality rates

and LOS are highly similar across the 4 ICU sizes. We find that capacity pooling results in higher

demand-driven discharge and readmission rates for small ICUs with the same ICU occupancy level

(e.g. Figure B.5). Despite the slight changes in the magnitude of the effect of proactive admissions

in ICUs of different sizes, we see the qualitative insights (e.g. proactively admitting up to 5 EDIP2

groups can be beneficial) are robust.

Parameter calibration: We also vary the calibration of some of our model primitives. Specifi-

cally, we vary β = [0.1, 0.2, . . . , 0.9], which impacts the ICU readmission rates for proactive transfers,

as well as the mortality and readmission rates for external arrivals (dE and rE) and the readmission

rate for crashed patients (rC) over the 95% confidence intervals for these parameters. Similar to

our results for different ICU sizes, we find that qualitative insights are robust to these variations

in parameter calibration. In fact, we find that the differences in most outcomes (LOS, mortality

rates, demand-driven discharge) are on average 1.2% and no more than 3.2%. Because β directly

impacts the readmission rates for proactive transfers, varying β by an order of magnitude (from

1 to 0.1) can have a substantial impact on overall readmission rates. Specifically, across all of the

various parameter combinations, we find that the mean relative change in ICU readmission is 5.3%

with a maximum of 39.8%, which occurs when β = 0.1.
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Figure B.5: Demand-driven discharge under 4 ICU sizes at daily arrival rates Λ = 9.7, 14.2, 18.7, 27.8,
which correspond to approximately 80% ICU congestion for each of the ICUs.
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Proactive transfer during the whole day: We next consider the case where proactive

transfers can occur during any EDIP2 decision epoch (instead of just the night-time one). Here

we assume that our empirical estimates can be generalized to the whole day. These results are

summarized in Figure B.6. While the main insights of this scenarios are consistent with our initial

findings which restrict to night-time proactive transfers, we find that with more frequent proactive

ICU transfer decisions, the effects on outcomes are more drastic because proactive ICU transfers

are done more aggressively.
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Figure B.6: Proactive transfers can occur throughout the day. N = 15 ICU beds. Λ = 14.2 patients/day.
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Appendix C

Appendix to Chapter 4

C.1. Supplemental Information on Missing Data Imputation

C.1.1. SAPS3 for ICU visits

Table C.1: Regression table for SAPS3, N=59,125, R2 = 0.48

Estimate Std. Error t value P-val

LAPS2 0.08 0.00 95.27 0.000
COPS2 0.03 0.00 34.17 0.000
Age 0.28 0.00 114.28 0.000
Sex 0.28 0.08 3.73 0.000
Non-ED, Surgical -5.13 0.17 -31.02 0.000
ED, Medical 0.74 0.13 5.61 0.000
Non-ED, Medical 2.10 0.19 10.91 0.000
Transport in 8.26 0.21 39.20 0.000

C.1.2. EDIP2 for ward / TCU stay
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Figure C.1: QQ plot of residuals from regressing SAPS3 on all other risk covariates
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Table C.2: Comparison of hospitalizations with and without EDIP2 scores

Without EDIP2 (N = 1, 939) With EDIP2 (N = 295, 553)

Min Mean Median Max Min Mean Median Max

LAPS2 0.00 78.89 66.00 288.00 0.00 62.13 54.00 310.00
COPS2 0.00 43.41 23.00 261.00 0.00 37.96 20.00 306.00
CHMR (%) 0.00 8.16 1.14 92.27 0.00 2.90 0.83 97.58
Age 18.00 65.59 68.00 113.00 18.00 64.73 67.00 109.00
Female (%) 48.53 54.42
Flu season (%) 28.06 29.72
Transport in (%) 2.42 1.95

ICU count 0.00 0.38 0.00 5.00 0.00 0.17 0.00 23.00
In-hospital mortality (%) 21.20 2.34
30-day mortality (%) 29.50 6.32
LOS (hrs) 0.02 52.85 27.85 1260.00 0.02 86.33 61.13 13030.00
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Table C.3: Comparison of hospitalizations without EDIP2 scores due to inconsistent records or quick
ward discharge

Inconsistent records (N = 1, 897) Quick ward discharge (N = 42)

Min Mean Median Max Min Mean Median Max

LAPS2 0.00 78.09 65.00 288.00 21.00 115.33 118.00 227.00
COPS2 0.00 43.32 23.00 261.00 6.00 47.40 21.00 174.00
CHMR 0.00 7.93 1.10 92.27 0.03 18.36 9.98 78.24
Age 18.00 65.53 68.00 113.00 26.00 68.24 74.50 99.00
Female (%) 48.39 54.76
Flu season (%) 27.78 40.48
Transport in (%) 2.42 2.38

ICU count 0.00 0.37 0.00 5.00 0.00 0.60 0.50 2.00
In-hospital mortality (%) 20.24 64.29
30-day mortality (%) 28.68 66.67

Table C.4: Comparison of ward LOS (for each ward admission) without EDIP2 scores due to inconsistent
records or quick ward discharge

Inconsistent records (N = 2, 285) Quick ward discharge (N = 45)

Min Mean Median Max Min Mean Median Max

LOS (hrs) 0.02 44.79 24.77 847.00 0.02 2.99 3.23 5.60

Figure C.2: Distributions of LOS (hrs) in the ward
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C.2. Supplemental Information on Reduced Form Regressions

Table C.5: Control variables used in reduced form regressions on ICUAdmit

Category Variables

Patient characteristics Age, Sex, COPS2, LAPS2, CHMR
ICU status # and proportion of ED/non-ED Medical/Surgical patients in the ICU

Average, min, max CHMR, COPS2, LAPS2, SAPS3, Age
% Female, % of patients transported into KPNC

ICU admissions # of ED/non-ED Medical/Surgical patients admitted in the previous hour
Average1CHMR, COPS2, LAPS2, SAPS3, Age
% Female, % of patients transported into KPNC

ICU discharges # of ED/non-ED Medical/Surgical patients discharged in the previous hour
Ward status # and proportion of ED/non-ED Medical/Surgical patients in the ward

Average, min, max CHMR, COPS2, LAPS2, EDIP2, Age
% Female, % of patients transported into KPNC

ED status # of ED/non-ED Medical/Surgical patients needing decisions in the ED
Average, min, max CHMR, COPS2, LAPS2, Age
% Female, % of patients transported into KPNC

OR/PAR status # and proportion of ED/non-ED Medical/Surgical patients in the OR/PAR
Average, min, max CHMR, COPS2, LAPS2, Age
% Female, % of patients transported into KPNC

Seasonal factors Decision day-of-week, month, nurse shift
Fixed effects 21 hospital IDs, 38 disease categories

1 Very few patients recently admitted, mostly 0 or 1, so not including distribution of severity scores.

Table C.6: Control variables used in reduced form regressions on patient outcomes

Variable Description

Age Patient age at time of hospital admission; cut into the following bins: 0–39, 40–64,
65–74, 75–84, and above 85 (114 being the max in sample)

Gender Female = 1 and male = 0
LAPS2 Laboratory-based Acute Physiology Score 2 (Escobar et al., 2013); measures a pa-

tient’s acute instability based on lab tests and vital signs 72 hours preceding hospital
admission; integer values range in [0, 274];

CHMR Predicted in-hospital mortality risk, range in [0, 1] (Escobar et al., 2012); based on
primary condition-specific models that employed age, gender, admission type, LAPS2
and COPS2;

Diagnosis Primary diagnosis, grouped into 38 broad disease categories (e.g. pneumonia); cate-
gorical variables

Hospital ID 21 hospital IDs; categorical variables
Month/Day/Hour Month/day-of-week/hour of hospital admission; categorical variables

COPS2 is omitted because it is defaulted to 10 if missing, so it may not be accurate.
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Table C.7: Logistic regression of ICU admission, showing significant variables only, N = 279, 691

Estimate Std. Error z value Pr(> |z|)

(Intercept) -1.228 0.449 -2.74 0.006
# ED Medical in ICU -0.062 0.004 -14.21 0.000
# ED Surgical in ICU -0.043 0.010 -4.23 0.000
# non-ED Surgical in ICU -0.037 0.009 -4.11 0.000
% ED Medical in ICU 0.492 0.137 3.58 0.000
% ED Surgical in ICU 0.352 0.171 2.06 0.039
Max LAPS2 in ICU -0.001 0.000 -2.66 0.008
Min Age in ICU 0.002 0.001 2.47 0.013
Max Age in ICU -0.003 0.002 -1.96 0.050
% Transport-in in ICU 0.268 0.118 2.28 0.023
# admitted ED Medical pre 1hr 0.131 0.044 2.97 0.003
# admitted non-ED Surgical pre 1hr -0.114 0.052 -2.18 0.029
Avg LAPS2 admitted pre 1hr -0.001 0.001 -2.00 0.046
# discharged ED Medical pre 1hr 0.179 0.013 13.77 0.000
# discharged ED Surgical pre 1hr 0.094 0.036 2.61 0.009
# discharged non-ED Medical pre 1hr 0.211 0.035 6.00 0.000
# discharged non-ED Surgical pre 1hr 0.146 0.026 5.71 0.000
# ED Medical in ward -0.006 0.001 -4.08 0.000
# ED Surgical in ward -0.021 0.004 -5.78 0.000
# non-ED Medical in ward -0.012 0.006 -2.10 0.036
% ED Medical in ward 1.131 0.327 3.46 0.001
% ED Surgical in ward 2.096 0.431 4.87 0.000
% non-ED Medical in ward 1.185 0.578 2.05 0.041
Avg CHMR in ward -3.284 1.520 -2.16 0.031
Avg EDIP2 in ward -59.614 7.772 -7.67 0.000
Min EDIP2 in ward 83.677 42.903 1.95 0.051
Max EDIP2 in ward 0.703 0.153 4.60 0.000
# ED Medical in ED -0.152 0.012 -13.17 0.000
Max CHMR in ED -1.366 0.293 -4.66 0.000
Max LAPS2 in ED 0.004 0.001 3.41 0.001
# non-ED Medical in OR -0.041 0.013 -3.19 0.001
# non-ED Surgical in OR -0.012 0.005 -2.15 0.032
Avg Age in OR -0.007 0.003 -2.12 0.034
Max Age in OR 0.004 0.002 2.32 0.020
LAPS2 0.026 0.001 49.74 0.000
Age -0.025 0.001 -34.19 0.000
COPS2 -0.001 0.000 -4.26 0.000
CHMR -1.213 0.187 -6.49 0.000
Sex -0.114 0.026 -4.41 0.000
Sunday 0.068 0.033 2.09 0.036
February -0.087 0.044 -1.96 0.050
March -0.153 0.043 -3.54 0.000
October 0.097 0.045 2.13 0.033
Nurse shift morning -0.088 0.023 -3.74 0.000
Nurse shift night 0.212 0.022 9.62 0.000
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Table C.8: Multinomial logit model on the three decision choices, showing significant variables only,
N = 279, 691

Admit to the ICU Wait in the ED

Coef. Std. Err. Pr(> |z|) Coef. Std. Err. Pr(> |z|)
(Intercept) -1.887 0.004 0.000 -4.264 0.004 0.000
# ED Medical in ICU -0.041 0.004 0.000 0.049 0.002 0.000
# ED Surgical in ICU -0.031 0.007 0.000 0.040 0.005 0.000
# non-ED Medical in ICU -0.001 0.008 0.891 0.043 0.005 0.000
# non-ED Surgical in ICU -0.019 0.006 0.002 0.049 0.003 0.000
% ED Medical in ICU 0.412 0.035 0.000 -0.106 0.034 0.002
% ED Surgical in ICU 0.349 0.019 0.000 -0.039 0.032 0.223
% non-ED Medical in ICU -0.292 0.012 0.000 -0.205 0.026 0.000
Avg CHMR in ICU -0.308 0.008 0.000 -0.525 0.004 0.000
Min CHMR in ICU 0.657 0.001 0.000 -1.388 0.000 0.000
Max CHMR in ICU 0.051 0.048 0.291 0.210 0.027 0.000
Max COPS2 in ICU 0.000 0.000 0.776 -0.001 0.000 0.000
Max LAPS2 in ICU -0.001 0.000 0.017 0.000 0.000 0.529
Max SAPS3 in ICU 0.001 0.001 0.327 0.002 0.001 0.003
Min Age in ICU 0.002 0.001 0.063 -0.002 0.001 0.001
Max Age in ICU -0.002 0.002 0.214 0.003 0.001 0.001
% Transport-in in ICU 0.246 0.015 0.000 -0.208 0.044 0.000
# admitted ED Medical pre 1hr 0.130 0.026 0.000 0.006 0.014 0.677
# admitted non-ED Surgical pre 1hr -0.143 0.033 0.000 -0.041 0.017 0.016
Avg CHMR admitted pre 1hr -0.284 0.003 0.000 -0.024 0.002 0.000
Avg LAPS2 admitted pre 1hr -0.001 0.000 0.010 0.000 0.000 0.786
% Transport-in admitted pre 1hr -0.053 0.014 0.000 0.094 0.046 0.040
# discharged ED Medical pre 1hr 0.159 0.010 0.000 -0.028 0.006 0.000
# discharged ED Surgical pre 1hr 0.060 0.026 0.022 -0.066 0.015 0.000
# discharged non-ED Medical pre 1hr 0.215 0.026 0.000 0.034 0.015 0.026
# discharged non-ED Surgical pre 1hr 0.135 0.019 0.000 -0.011 0.010 0.296
# ED Medical in ward 0.011 0.001 0.000 0.044 0.000 0.000
# ED Surgical in ward 0.000 0.002 0.809 0.051 0.001 0.000
# non-ED Medical in ward -0.012 0.003 0.000 0.022 0.001 0.000
# non-ED Surgical in ward 0.010 0.002 0.000 0.019 0.001 0.000
% ED Medical in ward 0.108 0.009 0.000 -1.936 0.010 0.000
% ED Surgical in ward 0.777 0.004 0.000 -2.884 0.007 0.000
% non-ED Medical in ward 1.564 0.003 0.000 0.286 0.002 0.000
Avg CHMR in ward -2.941 0.002 0.000 0.125 0.001 0.000
Min CHMR in ward 52.619 0.000 0.000 -7.790 0.000 0.000
Max CHMR in ward 0.108 0.058 0.063 0.142 0.032 0.000
Avg LAPS2 in ward 0.007 0.002 0.000 0.011 0.001 0.000
Min LAPS2 in ward -0.001 0.002 0.542 -0.002 0.001 0.028
Max LAPS2 in ward 0.001 0.000 0.112 0.001 0.000 0.000
Max Age in ward -0.005 0.002 0.016 0.000 0.001 0.707
% Female in ward 0.141 0.006 0.000 -0.094 0.009 0.000
% Transport-in in ward -0.394 0.002 0.000 -1.141 0.002 0.000
Avg EDIP2 in ward -94.466 0.000 0.000 -84.387 0.001 0.000
Min EDIP2 in ward 63.850 0.000 0.000 20.298 0.000 0.000
Max EDIP2 in ward 1.027 0.010 0.000 0.759 0.053 0.000
# ED Medical in ED 0.014 0.012 0.240 0.252 0.005 0.000
Avg CHMR in ED 0.425 0.016 0.000 1.869 0.016 0.000
Min CHMR in ED 0.009 0.012 0.466 -0.774 0.009 0.000
Max CHMR in ED -0.980 0.023 0.000 -0.577 0.032 0.000
Avg COPS2 in ED 0.002 0.002 0.138 0.004 0.001 0.000
Min COPS2 in ED -0.002 0.001 0.021 -0.004 0.000 0.000
Avg LAPS2 in ED -0.001 0.002 0.644 0.003 0.001 0.006
Min LAPS2 in ED -0.001 0.001 0.492 -0.002 0.001 0.000
Max LAPS2 in ED 0.002 0.001 0.076 -0.001 0.000 0.018
Max Age in ED -0.005 0.002 0.048 0.003 0.001 0.010
% Female in ED -0.015 0.033 0.646 0.052 0.018 0.004
# ED Medical in OR 0.008 0.010 0.422 0.055 0.006 0.000
# non-ED Medical in OR -0.009 0.012 0.446 0.074 0.007 0.000
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# non-ED Surgical in OR -0.005 0.005 0.376 0.009 0.003 0.001
% ED Medical in OR -0.079 0.043 0.065 -0.137 0.029 0.000
% ED Surgical in OR -0.058 0.043 0.172 -0.058 0.028 0.039
% non-ED Medical in OR -0.104 0.048 0.028 -0.336 0.035 0.000
Avg CHMR in OR -1.248 0.000 0.000 -0.069 0.001 0.000
Min CHMR in OR 0.001 0.000 0.002 -0.641 0.000 0.000
Max CHMR in OR 0.458 0.001 0.000 0.252 0.001 0.000
Avg LAPS2 in OR 0.002 0.002 0.211 0.002 0.001 0.009
Min LAPS2 in OR -0.001 0.001 0.625 -0.001 0.001 0.082
Max LAPS2 in OR -0.001 0.001 0.012 0.000 0.000 0.135
Avg Age in OR -0.005 0.003 0.141 0.005 0.002 0.011
Min Age in OR 0.001 0.002 0.494 -0.002 0.001 0.034
% Female in OR -0.056 0.029 0.056 -0.044 0.017 0.008
% Transport-in in OR -0.237 0.003 0.000 -0.230 0.002 0.000
LAPS2 0.026 0.000 0.000 0.000 0.000 0.023
Age -0.028 0.001 0.000 -0.007 0.000 0.000
COPS2 -0.001 0.000 0.001 0.001 0.000 0.002
CHMR 0.342 0.021 0.000 2.609 0.018 0.000
Sex -0.118 0.026 0.000 -0.008 0.014 0.539
Monday -0.038 0.032 0.238 -0.139 0.019 0.000
Sunday 0.006 0.033 0.865 -0.110 0.020 0.000
Thursday -0.042 0.032 0.193 -0.044 0.018 0.014
Tuesday 0.000 0.032 0.999 -0.083 0.018 0.000
Wednesday -0.022 0.032 0.504 -0.061 0.018 0.001
February -0.071 0.027 0.010 0.071 0.022 0.001
March -0.072 0.026 0.006 0.117 0.021 0.000
April -0.047 0.027 0.079 0.047 0.023 0.041
May 0.002 0.026 0.953 -0.055 0.023 0.017
August -0.012 0.026 0.660 -0.052 0.024 0.032
October 0.029 0.026 0.265 -0.171 0.024 0.000
November -0.026 0.034 0.452 -0.129 0.027 0.000
Nurse shift morning 0.240 0.024 0.000 0.675 0.013 0.000
Nurse shift night 0.299 0.023 0.000 0.199 0.013 0.000
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Table C.9: Summary of regression results on patients with LAPS2 ≥ 110. ICUBusy = 1 if the ICU
occupancy ≥ the 95th percentile of each hospital’s ICU occupancy distribution. First-stage F-statistic
for the IVs = 28.4. Results for categorical variables are omitted for conciseness of presentation.

(1) (2) (3) (4)
Mortality LOS Readmit (1m) Readmit (2w)

First-stage regression on ICU admission decision

ICUBusy -0.290∗∗∗ -0.361∗∗∗ -0.285∗∗∗ -0.285∗∗∗
(0.038) (0.050) (0.042) (0.042)

PctSevere -0.189∗ -0.163 -0.187 -0.187
(0.0960) (0.128) (0.106) (0.107)

RecentAdmission 0.023 -0.079 -0.078 -0.075
(0.299) (0.392) (0.332) (0.332)

RecentDischarge 0.993∗∗∗ 1.428∗∗∗ 1.012∗∗∗ 1.013∗∗∗
(0.131) (0.173) (0.143) (0.144)

Female -0.013 -0.029 -0.022 -0.022
(0.018) (0.025) (0.020) (0.020)

LAPS2 0.025∗∗∗ 0.034∗∗∗ 0.024∗∗∗ 0.024∗∗∗
(0.001) (0.001) (0.001) (0.001)

CHMR -1.846∗∗∗ -2.508∗∗∗ -1.457∗∗∗ -1.457∗∗∗
(0.142) (0.184) (0.173) (0.173)

Age[40,65) -0.364∗∗∗ -0.511∗∗∗ -0.408∗∗∗ -0.408∗∗∗
(0.059) (0.084) (0.063) (0.063)

Age[65,75) -0.608∗∗∗ -0.845∗∗∗ -0.684∗∗∗ -0.685∗∗∗
(0.060) (0.085) (0.063) (0.063)

Age[75,85) -0.849∗∗∗ -1.181∗∗∗ -0.945∗∗∗ -0.945∗∗∗
(0.060) (0.085) (0.063) (0.063)

Age[85,114] -1.187∗∗∗ -1.637∗∗∗ -1.283∗∗∗ -1.283∗∗∗
(0.061) (0.086) (0.065) (0.065)

Second-stage regression on outcomes

ICUAdmit -0.163 -0.347∗∗∗ -0.071 -0.037
(0.115) (0.017) (0.165) (0.167)

Female 0.017 -0.009 -0.070∗∗∗ -0.051∗
(0.020) (0.010) (0.019) (0.021)

LAPS2 0.002∗ 0.010∗∗∗ 0.003∗ 0.004∗
(0.001) (0.000) (0.001) (0.001)

CHMR 3.142∗∗∗ -1.396∗∗∗ -0.284 -0.454∗
(0.160) (0.075) (0.173) (0.189)

Age[40,65) 0.023 0.068 0.147∗ 0.032
(0.080) (0.036) (0.070) (0.075)

Age[65,75) 0.027 0.046 0.169∗ 0.0331
(0.083) (0.036) (0.078) (0.082)

Age[75,85) -0.045 -0.033 0.132 0.031
(0.085) (0.036) (0.084) (0.088)

Age[85,114] -0.039 -0.159∗∗∗ -0.035 -0.127
(0.090) (0.037) (0.094) (0.098)

AcgOccVisited -0.976∗∗∗ 0.118∗ 0.087 0.032
(0.119) (0.056) (0.113) (0.125)

N 26,346 25,881 22,235 22,235
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.10: Summary of regression results on all patients. ICUBusy = 1 if the ICU occupancy ≥ the
95th percentile of each hospital’s ICU occupancy distribution. First-stage F-statistic for the IVs = 97.3.
Results for categorical variables are omitted for conciseness of presentation.

(1) (2) (3) (4)
Mortality LOS Readmit (1m) Readmit (2w)

First-stage regression on ICU admission decision

ICUBusy -0.257∗∗∗ -0.338∗∗∗ -0.251∗∗∗ -0.251∗∗∗
(0.020) (0.026) (0.020) (0.020)

PctSevere -0.217∗∗∗ -0.292∗∗∗ -0.209∗∗∗ -0.210∗∗∗
(0.049) (0.066) (0.051) (0.051)

RecentAdmission 0.410∗∗ 0.388∗ 0.394∗ 0.392∗
(0.147) (0.197) (0.153) (0.153)

RecentDischarge 0.822∗∗∗ 1.047∗∗∗ 0.829∗∗∗ 0.832∗∗∗
(0.064) (0.087) (0.067) (0.067)

Female -0.070∗∗∗ -0.088∗∗∗ -0.073∗∗∗ -0.073∗∗∗
(0.009) (0.013) (0.009) (0.009)

LAPS2 0.014∗∗∗ 0.018∗∗∗ 0.013∗∗∗ 0.013∗∗∗
(0.000) (0.000) (0.000) (0.000)

DEATH_HAT3 -0.049 0.159 0.245∗ 0.245∗
(0.078) (0.102) (0.096) (0.096)

Age[40,65) -0.238∗∗∗ -0.349∗∗∗ -0.240∗∗∗ -0.240∗∗∗
(0.016) (0.024) (0.017) (0.017)

Age[65,75) -0.436∗∗∗ -0.627∗∗∗ -0.446∗∗∗ -0.447∗∗∗
(0.018) (0.026) (0.018) (0.018)

Age[75,85) -0.645∗∗∗ -0.902∗∗∗ -0.662∗∗∗ -0.662∗∗∗
(0.018) (0.026) (0.019) (0.019)

Age[85,114] -0.893∗∗∗ -1.222∗∗∗ -0.904∗∗∗ -0.905∗∗∗
(0.021) (0.028) (0.021) (0.021)

Second-stage regression on outcomes

ICUAdmit -0.193∗∗ -0.337∗∗∗ -0.128∗ -0.050
(0.061) (0.007) (0.058) (0.066)

Female -0.023 0.002 -0.023∗∗ -0.025∗∗
(0.013) (0.004) (0.008) (0.009)

LAPS2 0.009∗∗∗ 0.007∗∗∗ 0.005∗∗∗ 0.004∗∗∗
(0.000) (0.000) (0.000) (0.000)

CHMR 2.583∗∗∗ -0.601∗∗∗ -0.318∗∗∗ -0.343∗∗∗
(0.089) (0.038) (0.086) (0.095)

Age[40,65) 0.225∗∗∗ 0.081∗∗∗ 0.108∗∗∗ 0.047∗∗
(0.040) (0.008) (0.016) (0.017)

Age[65,75) 0.312∗∗∗ 0.098∗∗∗ 0.173∗∗∗ 0.087∗∗∗
(0.042) (0.009) (0.017) (0.019)

Age[75,85) 0.312∗∗∗ 0.058∗∗∗ 0.149∗∗∗ 0.089∗∗∗
(0.042) (0.009) (0.018) (0.020)

Age[85,114] 0.360∗∗∗ -0.031∗∗∗ 0.076∗∗∗ 0.023
(0.044) (0.009) (0.020) (0.023)

AvgOccVisited -1.007∗∗∗ -0.056∗ 0.013 0.028
(0.074) (0.023) (0.044) (0.050)

N 170,007 168,395 163,115 163,115
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.11: Summary of regression results on patients with LAPS2 ≥ 110, without IVs. Results for
categorical variables are omitted for conciseness of presentation.

(1) (2) (3) (4)
Mortality LOS Readmit (1m) Readmit (2w)

ICUAdmit 0.158∗∗∗ 0.292∗∗∗ -0.009 -0.007
(0.025) (0.012) (0.024) (0.026)

Female 0.018 -0.011 -0.070∗∗∗ -0.051∗

(0.020) (0.010) (0.019) (0.021)
LAPS2 -0.000 0.005∗∗∗ 0.002∗∗ 0.003∗∗∗

(0.001) (0.000) (0.001) (0.001)
CHMR 3.344∗∗∗ -1.020∗∗∗ -0.259 -0.442∗

(0.139) (0.081) (0.161) (0.178)
Age[40,65) 0.060 0.143∗∗∗ 0.156∗ 0.036

(0.080) (0.038) (0.067) (0.071)
Age[65,75) 0.090 0.167∗∗∗ 0.183∗∗ 0.040

(0.080) (0.038) (0.068) (0.072)
Age[75,85) 0.043 0.128∗∗∗ 0.151∗ 0.039

(0.080) (0.038) (0.067) (0.072)
Age[85,114] 0.080 0.055 -0.011 -0.116

(0.081) (0.039) (0.069) (0.074)
AvgOccVisited -0.975∗∗∗ 0.095 0.088 0.032

(0.120) (0.059) (0.113) (0.125)

N 26,346 25,881 22,235 22,235
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.12: Summary of regression results on all patients, without IVs. Results for categorical variables
are omitted for conciseness of presentation.

(1) (2) (3) (4)
Mortality LOS Readmit (1m) Readmit (2w)

ICUAdmit 0.210∗∗∗ 0.262∗∗∗ -0.006 0.008
(0.018) (0.007) (0.013) (0.014)

Female -0.017 0.005 -0.021∗∗ -0.025∗∗

(0.013) (0.004) (0.008) (0.009)
LAPS2 0.007∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.004∗∗∗

(0.000) (0.000) (0.000) (0.000)
CHMR 2.567∗∗∗ -0.750∗∗∗ -0.361∗∗∗ -0.363∗∗∗

(0.090) (0.045) (0.084) (0.093)
Age[40,65) 0.253∗∗∗ 0.107∗∗∗ 0.114∗∗∗ 0.049∗∗

(0.041) (0.009) (0.015) (0.017)
Age[65,75) 0.364∗∗∗ 0.148∗∗∗ 0.183∗∗∗ 0.092∗∗∗

(0.041) (0.010) (0.016) (0.018)
Age[75,85) 0.387∗∗∗ 0.126∗∗∗ 0.164∗∗∗ 0.096∗∗∗

(0.041) (0.010) (0.016) (0.018)
Age[85,114] 0.461∗∗∗ 0.058∗∗∗ 0.096∗∗∗ 0.033

(0.042) (0.010) (0.018) (0.020)
AvgOccVisited -1.012∗∗∗ -0.094∗∗∗ 0.013 0.028

(0.075) (0.024) (0.044) (0.050)

N 170,007 168,395 163,115 163,115
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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