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Abstract

Under a pure tensile loading, cracks in brittle, isotropic, and homogeneous materials often propagate such that pure mode I
kinematics are maintained at the crack tip. However, experiments performed on geo-materials, such as sedimentary rock, shale,
mudstone, concrete and gypsum, often lead to the conclusion that the mode I and mode II critical fracture energies/surface
energy release rates are distinctive. This distinction has great influence on the formation and propagation of wing cracks and
secondary cracks from pre-existing flaws under a combination of shear and tensile or shear and compressive loadings. To capture
the mixed-mode fracture propagation, a mixed-mode I/II fracture model that employs multiple critical energy release rates based
on Shen and Stephansson, IIRMMS, 1993 is reformulated in a regularized phase field fracture framework. We obtain the mixed-
mode driving force of the damage phase field by balancing the microforce. Meanwhile, the crack propagation direction and
the corresponding kinematics modes are determined via a local fracture dissipation maximization problem. Several numerical
examples that demonstrate mode II and mixed-mode crack propagation in brittle materials are presented. Possible extensions of the
model capturing degradation related to shear/compressive damage, as commonly observed in sub-surface applications and triaxial
compression tests, are also discussed.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Brittle fracture process in geological materials can be explained by Griffith theory [1], which provides the linkages
among stress concentration caused by sharp-tipped flaws, the energy flux, and the conditions for propagation of various
types of flaws. The popularity of fracture mechanics’ application to geomaterials is largely due to its simplicity, as
well as capacity to predict the growth and spreading of the flaws [2,3].

In the brittle regime where confining pressure, temperature, and loading rate are sufficient low, Griffith theory
provides convenient tools to analyze the onset and early propagation of mode I cracks in a homogeneous, isotropic, and
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Fig. 1. Experimental results (a—c) show a time series of modified gypsum specimen under increasing uniaxial compression recovered from high-
speed video after Suits et al. [4], with their crack labels subscripted by a number indicating the corresponding propagation sequence. The pictures
show: (a) specimen with two initial flaws and partial view of loading apparatus; (b) early-time zoom-in view of wing cracks A—D proceeding
from initial flaws; (c) late-time zoom-in view of secondary shear fractures S and coalescent fracture G in the bridge region between initial flaws,
exhibiting the Bobet and Einstein [5] and Bobet [6] type II coalescence pattern; and, (d) after Yang et al. [7], a failed specimen of sandstone with
three initial flaws (fissures) exhibiting more complex coalescent crack behavior.

linearly elastic material. Nevertheless, in many geomechanics problems, the geological materials are often subjected to
a significant principal stress difference and the materials of interest, such as sedimentary rock, shale, and mudstone, are
often inherently heterogeneous and anisotropic. These complexities indicate that the fracture of geological materials
under mixed-mode loading is very common. As such, a modeling framework, whether it is based on embedded strong
discontinuity or smeared crack approximations, should consider mode mixity in a plausible physical ground that
matches the experimental evidence.

Previous experimental works (cf. [8,5,9]), primarily uniaxial and biaxial compression tests in rock, have now
established that rock may exhibit a combination of flaw slippage, onset, and propagation of wing (tensile-dominated)
and secondary (shear-dominated) cracks, and the coalescence and branching of these cracks, depending on the material
properties and the stress conditions, as shown in Fig. 1. Capturing such failure mechanisms faithfully in a numerical
model is, nevertheless, not a trivial task. First, the model must be able to capture the distinct energy release rates
for the mixed-mode fractures. In other words, the difference in critical energy release rates required to propagate
different types of flaws must be quantified [10—14]. Second, the model must be able to replicate the evolving fracture
geometrically when the crack propagation direction, as well as direction-dependent kinematics modes, are not known
a priori. This task can be further complicated by the coalescence and branching of cracks, leading to even more
complex geometries and stress field, which can rapidly increase the essential computational resource [15-21].

To address the first issue, one possible approach is to extend Griffith theory such that (1) cracks grow along the
direction that maximizes the fracture dissipation, and that (2) a crack will only grow if and only if the energy release
rate reaches a critical level [22,11]. This idea is adopted to predict brittle fracture in rock in a 2D setting by Shen
and Stephansson [12], where a fracture criterion based on distinct critical energy rates for mode I and mode 1II is
implemented in a displacement discontinuity model to predict the fracture pattern in Reyes and Einstein [8].

Though the adoption of the mixed mode approach may lead to a more realistic prediction on the energy release
required to propagate cracks, simulations of evolving cracks remain a challenging problems numerically. While
enrichment methods, such as assumed strain method (e.g. [23-25]), extended finite element method (e.g. [26]). and
cohesive elements (e.g. [27]) may embed strong discontinuity in the displacement field, the enrichment techniques
could become complicated if branching or coalescence occur [16].

A noticeable departure is the recent work by Zhang et al. [14], in which the authors adopt a phase field fracture
model to represent cracks with an implicit function and model the mixed-mode fractures with a criterion. The upshot
of this approach is that one may leverage the simplicity brought by the regularized geometrical representation of
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cracks. Thus the coalescence and branching of cracks may be modeled without modifying the trial and solution space
of the finite element models. Nevertheless, in Xhang et al. [14], the driving forces of the cracks corresponding to
mode I and mode II are written as functions of the positive part of the first variant of the infinitesimal strain tensor €
(cf. Eq. (14) in Zhang et al. [14]), i.e.

H; = Altr[e])?, ¢))

where the operator (-) = (- + |-|)/2 is the Macaulay bracket, and the trace of the positive part of the € - € (cf. Eq. (15)
in Zhang et al. [14]), i.e.

Hi = ptr(e)?], (2)

where A > 0 and v > 0 are elastic constants. Obviously, the driving forces in Egs. (1) and (2) are both isotropic.
This can be easily proven by rewriting both H; and H;; in terms of principal values of the infinitesimal strain
tensor [28,29]. The implication of this isotropic driving force is significant. On the one hand, it greatly simplifies
the implementation procedure such that there is no need to determine the propagation direction that maximizes the
energy release rate. On the other hand, the isotropy also indicates that this treatment is not compatible to the theoretical
work in Sih [22], Nuismer [11], Shen and Stephansson [12], and Shen et al. [13], where the amount of energy release
to propagate a crack within a given length is sensitive to both the propagation direction and kinematic modes. It should
also be noticed that Griffith fracture mechanics theory is not the only criterion used to predict crack growth for rock.
For instance, da Silva and Einstein [30] recently evaluate various stress, strain and energy criteria that predict the
onset and propagation of cracks. For instance, da Silva and Einstein [30] concludes that stress- and strain-based crack
criteria both lead to better predictions than an energy approach, due to the difficulty in separating tensile and shear
behaviors under Griffith theory.

The purpose is this paper is to show that Griffith’s energy approach can be formulated via the consistent kinematic
modes in a phase field setting. As such, the model is capable of modeling mixed-mode phase field fracture problems
and secondary cracks, while allowing one to simulate coalescence and branching without any need for inserting
enrichment functions and remeshing. To achieve this goal, we first introduce an algorithm to determine the direction
that maximizes energy dissipation at each incremental step. A kinematically consistent model leads to determination
of the crack propagation direction locally. The local result is then regularized by application of a diffusive crack
model. This allows us to determine the value of the mixed-mode F-criterion from [12] with consistent kinematics.
The importance of the consistent kinematics are demonstrated in a number of numerical experiments. The rest of this
article is organized as follows. In Section 2, we review the balance principle of the phase field fracture model and
provide the extension that leads to the mixed-mode fracture. Then, the search for the crack direction using various
energy-derivative approximations is discussed. Numerical examples are then used to demonstrated the capacity of the
models in Section 3. Finally, the key findings are summarized in Section 4.

As for notations and symbols, bold-faced letters denote tensors; the symbol ‘-’ denotes a single contraction of
adjacent indices of two tensors (e.g. a - b = a;b; or ¢ - d = c;jdj); the symbol ‘:” denotes a double contraction
of adjacent indices of tensor of rank two or higher (e.g. C : € = C;ju€f;); the symbol ‘®’ denotes a juxtaposition
of two vectors (e.g. a ® b = a;b;) or two symmetric second order tensors (e.g. (& ® B);ju = o;jBu). Moreover,
(ax ® ﬂ)ijkl = ajl/gik and (x © ﬁ)ijk[ = Ol,‘l,Bjk. We also define identity tensors (l)ij = (Sij, (I)ijkl = ((Sik(Sﬂ + 5,‘15@‘)/2,
where §;; is the Kronecker delta. As for the sign convention, unless otherwise specified, we consider the direction of
the tensile stress and dilative pressure as positive.

2. Methods

This section is organized as follows. Kinematic assumptions are stated, and the relationship between Griffith theory
and phase field fracture model is briefly reviewed. The extension of the phase field fracture model to mixed-mode
predictions with consistent kinematic modes is then discussed in detail. In particular, we provide a microforce balance-
based derivation for the mixed mode fracture, which leads to a two-field governing equation with displacement and
phase field damage as the prime variables. The 1st and 2nd laws of thermodynamics of the mixed-mode phase field
fracture model are examined. Our analysis reveals that the necessary condition to prevent spurious healing of the
cracks is to enforce the driving force of the mixed-mode fracture being monotonically increasing, which is consistent
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with previous findings in the phase field fracture literature (e.g. [31-33]). Following the formulation of the mixed-
mode model, we highlight the key features of the implementation. A novel feature critical for the consistent-kinematic-
mode formulation is the direction search algorithm, required for the local fracture dissipation maximization problem,
during the evolution of the phase-field variable. This search algorithm and the corresponding tangent calculation are
detailed.

2.1. Assumptions and modeling approaches

Consider a brittle material which maintains quasi-static equilibrium, undergoes infinitesimal deformation, and
remains in an isothermal state throughout the simulation. As such, the symmetric infinitesimal strain measure is used,
thus € = V,u for V,(-) = (V(-) + V(-)T)/2.

Regarding the damage approximation, we adopt a phase field approach to represent cracks [34,15,31,35]. In the
phase field model, an implicit function is used to indicate the location of the cracks. Let I" be the domain of the crack
in a body {2, then the total crack surface area A can be obtained via the integral over crack surface I'. As a result,
the total crack surface area is approximated as A, the volume-integral over body {2 of the crack surface density /7.
In other words,

Apz/ dA~ Ar, =/ Iy(d, vV d)dv, 3)
r (9

where the phase field is d € [0, 1], and subscripting d indicates the regularization of a term. The damage phase d
varies from 0 in undamaged regions to 1 in fully broken regions [31,36—39]. The corresponding crack density is:

1(d* 1
where the length parameter /[ > 0 effects regularization, and w is a dimensionless symmetric second-order tensor
related to the microstructural orientation (cf. [40-42,33,38,43,44]). The introduction of this second order tensor
enables one to capture anisotropy of fracture in brittle materials. Thermodynamically, to stop crack healing upon
unloading, we require that Fd > 0.

As to mixed-mode fracture, we apply the approach originally proposed in [12,45] where the crack growth criterion
depends on two distinctive surface energy release rates/critical fracture energies, i.e. G;. and Gy;.. The mode I and
mode II fracture energies rates correspond to opening and shear surface energy dissipates, respectively. To identify
opening versus shear energy dissipation, we introduce a strain energy partition depending on the fracture opening
(or shearing) direction. This is based upon a microforce balance approach. Locally therefore, a search algorithm is
therefore introduced to determine the orientation of the plane (or line in the 2D case) maximizing fracture energy
release. While introducing two critical energy release rates have been attempted in [14], to the best knowledge of the
authors, this is the first time a phase field fracture model established the driving force consistent with the kinematics
of crack growth.

2.2. Balance principles

In this work, we formulate the phase field fracture model by balancing the microforce. The phase field models
derived from microforce balance can be found in [46,47] for brittle materials, in [43] for capturing brittle—ductile
transition of frictional-cohesive materials, Choo and Sun [44] for porous materials with growing crystal, and Na and
Sun [38] for anisotropic fracture in crystalline rock. Our new contribution is to introduce a microforce balance that
includes a driving force consistent with the kinematic modes on a plane with maximum energy dissipation in the
brittle regime. Neglecting the inertial force, the balance of linear momentum reads,

V-0 + pg =0, (®)]

where o is the Cauchy stress, p the density, and g the normalized body forces. In this work, the governing equation
of the phase field is derived from microforce balance. Hence, we do not have an incremental action functional whose
Euler-Lagrange equation becomes the balance of linear momentum and the phase field governing equation. Here, we
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use the classical definition in which the actual stress of the damaged material is related to fictitious (effective) stress
of the undamaged material by the degradation function, i.e.

0 =g(d)oo, (6)

where g(d) is defined in Eq. (19). The stress of undamaged material is defined in Eq. (30). Note that this treatment does
not split the tensile and compressive stresses, such that the degradation is applied to both the compressive and tensile
components of the stress. This approach is also used in [48,49], and again in [14] for rock-like materials. In reality, the
damage due to void growth and extension of micro-cracks may lead to different modulus degradation in tension and
compression. A future extension may include distinction between the tensile and compression degradation mechanism
similar to [39], where a different degradation function is applied on the compressive stress and the compressive
strain energy to reflect the difference in load-bearing capacities. Meanwhile, Wang and Sun [50] has associated the
degradation of compression as a result of anti-crack propagation that could be triggered by a higher anti-crack fracture
energy to examine the propagation of compaction band. These extensions will be considered in future study but is out
of the scope of the current work.

Following the treatment in [46], we postulate the existence of a microforce traction &, such that the surface
microforce & - i1 is energy-conjugate to the phase field d, for i the unit outward normal around a volume. After
applications of the divergence theorem and identifying V-0 = —pg, the energy balance reads,

pe=0:+E-Vd+(V-£)d. (7
where e is the normalized internal energy. Meanwhile, the local microforce balance equation established in [51] reads,

V-E+m =0, ®)
where 7 is a scalar microforce. The phase-conjugate microforce term is partitioned,

§=§,+&,, V& =-m, V&, =—m, ©)

where subscripting I and /1 once again indicates quantities conjugate to mode I and mode II energies, based upon
a partition of the stored energy function by resolving orthogonal tensors. The idea of phase-field-energy-conjugate
force “parts” was recently applied to isotropic/anisotropic energy functions (cf. [39,52]), albeit within the framework
of variational fracture, and yet ultimately to yield a similar result. Applying the partition of £, the dissipation inequality
corresponding to Eq. (8) reads:

D=o:¢+&, -Vd+&,-Vd—m;d —m;d —y > 0. (10)

where D is the dissipation, and i the stored energy function. The function arguments v (e, d) are assumed.
As mentioned previously, the stored energy function is also partitioned such that,

Ve, d)=yi(e,d)+ Yri(e, d) + Y—_(e). an

Hence:

’lp':

e T\ %a T aa

Applying the derivative expansion, as well as the recognized equality ¢ = 9v/d€, to Eq. (10),

. v\ - . 9 .
D=§,~Vd—(m+%>d+§,,-Vd—<n”+ ;{;’>d30. (12)

oy .+<3W1 3W11>d'

We prescribe the identity 7" = 7 — 7% = —31//dd, where superscripting en indicates energetic, whereas dis

indicates dissipative, microforces. The modal partition becomes

en dis 81[/] en dis 31//'][
T, =] —T; = ——F—, T =70 — T =— .
od od

Substituting those identities into the dissipation inequality Eq. (12),

D=D;+7D;; >0, (13)
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where

D/:EI'Vd—ﬂ?isd, 'DHZE”-VQ"—JT;HISd'.
Heretofore only & and 7% remain unidentified. However the energy dissipation is uniformly due to fracture. Hence
the change in mode I fracture energy is also the energy dissipation part.

D, =G ly = gz,( d+1Vd- - Vd>
=§,-Vd—nd,

where D; > 0if I, > 0. Matching coefficients in the above equation,
glc i glc d
& = 5 oVd, nf‘sz—z 7))

Collecting known terms into the mode I microforce balance of Eq. (9),

1S aw gc d gL
T =7; —|-71';j :—a—dl— 21 <—>=—V.§I= ; Vi (w-Vd).

[

As an aside to cell-centered finite volume discretization-based readers, G;.lw (and G;;.lw) should serve as an internal
coefficient of the vector Laplacian, if the damage phase is understood to be continuous. Performing the identical
procedure for mode II, we arrive at the two-equation system:

—g;CZV(arVd):—%—glc <i>’

od 2 l
Grrel v Gre (d
_ Vi(w-Vd) = — _ “).
; V(@ V) od 2 <1>

The above equations are normalized and summed, to obtain the field equation:
- T _d+4+D’V-(@-Vd)=0. 14
Gro/l 94~ Grrefl d @V (1

In the case of an isotropic material, @ equals the identity tensor 1, but may otherwise incentivize directional-dependent
dissipation propensity. The mixed mode stored energy is:

Ve, d) = g (d)Wi(€) + g11/(d)Wii(€) 15)

where W indicates the strain energy of the undamaged fictitious material, and g; and g;; are the degradation functions.
Degradation function g;() is monotonically decreasing and satisfies: g;(0) = 1, g;(1) = 0, and g} (1) = 0; the same
holds for g;;(d). Substituting the mode I/II parts of dy/dd into Eq. (14),

Wie) 2 )WII(G)
G/l 8 Grre/l

The specific method to enforce crack irreversibility will be discussed in the following section.

— gid)——— d+1*’V-(w-Vd)=0. (16)

2.3. Energy partition and crack irreversibility

We prevent the crack healing following the treatment used in [53], such that the global irreversibility constraint of
crack evolution can be enforced by ensuring that the local driving force remains non-negative and that the phase field
d is monotonically increasing. Assuming that g(d) = g,;(d) = g;;(d), Eq. (16) can be rewritten as,

— g dF —d+1PV-(w-Vd) =0, 17)
where the normalized and nondimensional mixed-mode strain energy reads,

_ Wi n Wi
Gre/l G/l
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Fig. 2. Discontinuity models, with (a—b) after Wu and Cervera [56], showing: (a) strong discontinuity model; (b) finite-thickness regularized
discontinuity model, for crack width b; and, (c) diffusive regularized discontinuity model with the phase field’s isolines as dashed.

To halt crack reversibility, just one distinct history or “driving force” function needs be introduced, as evidenced in
the following manner. Let the history function H > 0 be the pseudo-temporal maximum of the normalized function
F. Inserting our definition of 7 into Eq. (16):

—gdH—-d+1PV-(w-Vd) =0. (18)

Eq. (18) is the field equation actually solved for the phase field in below numerical examples. As explained in [54], the
thermodynamic consistency of introduced history functions can be checked by considering a spatially homogeneous,
isotropic problem where the last term in Eq. (18) vanishes. A monotonically increasing phase field d simply implies
that the history function must be monotonically increasing, provided that the derivative of the degradation function
remains non-positive. Hence we adopt the same technique to examine the driving force H for the mixed-mode fracture
problem. First, we specify the quadratic degradation function used in below examples as,

g(d) = (1—d)’. (19)
Let H = 2% by convention, and for homogeneity Vd = 0. After substitutions in Eq. (18), we obtain the spatially
homogeneous solution by rearranging for d, and take its derivative:
H . 1
d= ~€[0,1], d=——=—
1+H (1+H)?

H > 0. (20)
In other words, if more than one critical energy release rate is used in the F-criterion model, # > 0 remains that
necessary condition to ensure monotonic crack growth and prevent the crack healing after the crack growth, i.e. d > 0.

One simply remedy is to use the maximum value of F over the time history, rather than the maximum value of the
tensile and shear strain energy W; and W;; to formulate the driving force. To summarize:

Wi Wi

‘H = max {F} = max + . 21

‘[E[O,IJ{ } 7€(0,7] { g,c/l gllc/l } ( )

For completeness, we remark that an enhanced correspondence to the original F-criterion can be implemented

following the treatment in [54]. In particular, one may restrict the crack growth to initiate above a threshold strain
energy by using the following history function for driving force,

f
]
where F, is the critical nondimensionalized value of the threshold strain energy. In particular we reference Eq. (19)
in [12]: fracture initiates when F/F, > 1 (integrated over the length of an inserted boundary element). Shen and
Stephansson [12] also suggest to set the critical toughness ratio to be G;;./G;. ~ 10 — 20 for rocks. However, recent
work such as Backers and Stephansson [55] has shown that this critical toughness ratio is not necessarily fixed and
may depend on the confining pressure.
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2.4. Kinematically consistent driving force for phase field

At this point, we assume that the model is under either 2D plane strain or plane stress condition, such that only the
mode I and II fracture energies are considered. To introduce kinematically consistent modal dissipation in 2D cases,
we first define an in-plane normal vector describing the opening direction, n. Second we define an orthogonal in-plane
tangential vector m; these are shown in Fig. 2(a), withn - n = m - m = 1. Together the two vectors n and m form an
orthonormal basis spanning R.

The opening mode is described by the opening-normal n’s dyadic product, and the shearing mode by the 2D
reduced Schmid tensor of n and m, respectively,

1
m;=nQ®an, m,,:i(n®m+m®n), (23)

where m; : m;; = (n - n)(n - m) = 0. In turn, we define the opening-mode energy part as

1
E(GO my)e:m;) if € :m;p >0

W, = (24)

0 otherwise.

We define the mode I strain as €; = € : m;, which can be interpreted as the regularized (homogenized) mode I
opening. Similarly, the shearing-mode energy part reads,

1
Wi = 5(00 cmyr)(e myy), (25)

where the effective stress oo(€) depends on the strain, but is not necessarily co-axial with the elastic strain tensor. In
Eq. (24), we impose the restriction € : m; > 0 for the reasons: (1) practically to stop fracture in compressive zones,
and (2) conceptually to enforce kinematically consistent mode I dissipation in the opening-mode only, Fig. 2(b—c).
The coordinate x s prescribed by the crack normal #n is outside the scope of this study.

Note that the above implies an orthogonal if incomplete partition of the strain energy. The idea is simple: n
approximates the opening-mode direction, such that m describes the in-plane direction of the fracture surface. As
such, W; is strain energy due to tensile stresses resolved in the opening-mode direction. Similarly W;; is the energy
resulting from shearing along the fracture surface. In plane stress or plane strain, both W; and Wj; are uniquely
defined by m = e3 x n, where e3 is the out-of-plane vector. Being that the fracture-opening direction is approximated
kinematically (as n), the energies of the tensile versus shear stresses and strains are the product of the magnitudes of
orthogonal vectors.

By the principles we later describe (viz. use of an operator split), 0y and € are fixed prior to converging d. The
strain energy partition is then determined as

n = arg max {F(n)} |.. (26)

For an isotropic material, in principle, n’s orientation can be determined analytically from €’s eigenvalues and vectors
alone. For an anisotropic material, where the directions of the principle stresses and straines may not coincide, that
generalization is untrue. Just such a material model is introduced in below section.

2.5. Driving force for transversely isotropic materials

We adopt the form of energy functional in [33] to replicate the elastic responses of a transversely isotropic material.
Here we introduce only a marginal modification to the strain energy functional. This modification is appropriate for
certain rock-like materials, if they exhibit enhanced compliance in the out of (transversely isotropic) plane direction.
For example, the relative stiffnesses of shale rock anisotropy are discussed in [57,58]. To do this, we define:

Wo(e) = Wi(e) + Wii(e) + W_(e), (27
for the anisotropic effective energy functional Wy,
A
W) = 201 e e et D@ + Lo (28)
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where the additional elastic constants are ¢ > 0 and x > 0, and the microstructural, second-order tensors are:
p=Ixl x=1-9¢,

where [ is the out-of-isotropic-plane direction requiring /- I = 1.
Similarly, the surface energy diffusion tensor is defined by the structural tensors as:

w=1+a¢+ By, 29)

where @ >> 0 penalizes damage diffusion on planes normal to /; in contrast 8 > 0 encourages damage diffusion on
planes normal to . In order that @ be positive semi-definite, « > —1 and 8 > —1.
Finally, with the stored energy functional now being defined, we specify the effective stress

AW,
oo = 8—60 =r1:e)1+2ue+¢(p:€)p+ x(x : e)x, (30)

and by resolving o in Egs. (24) and (25), then renotating W; = (oo : m;){€ : m;)/2,

A
Wi(e) = [5(6 c D) 4 (e my) + %(6 )¢ :mp)+ %(6 S0 :mI)} (€ :my), €19}

and the shear energy is

Wii(e) = [M(G cmyp) + %(6 1)@ myp) + %(6 DX :mu)] (€ :myy), (32)

where we haveusedl1 =n@n+m@m + ez ez, thusl :m; =1and1:m;; =0.

In Eq. (30), we expect nonzero ¢ only if x = 0, and visa versa. Furthermore, if the stiffer directions are also more
brittle, then fractures may propagate preferentially in directions of lower initial elastic compliance. If this happens,
then either: ¢ > O and @ > O; or, x > 0 and 8 > O must hold. The latter combination would be more appropriate
for the characterization of macroscopic effective properties of bedded or layered materials, such as shale rock, as
indicated in [59].

In the same vein, the second derivative of W; in € does not elicit linearly independent fourth-order tensors
spanning the full space of transversely isotropic stiffness tensors (cf. [60]). To conduct the below-contained numerical
experiments, whilst simultaneously approximating rock anisotropy, the following heuristic is adopted: (A + x)/A =
E/E*, for E/E* the ratio of the in-plane over the out-of-plane Young’s moduli. For the shale rock type for instance,
X ~ (E/E* — 1)A where E/E* is ~ 2.

2.6. Direction search algorithm

To obtain the correct driving force, one must first determine the orientation of a plane in which the corresponding
mode I and II kinematic modes maximize the energy dissipation. In the context of eigenfracture or element-erosion
models (cf. [61-63]), this orientation is not directly determined, but the energy loss for each possible eroded
configuration is compared. The eroded element that leads to maximum energy dissipation is chosen to propagate
the crack. In [37] and [64], the choice for crack propagation direction remains finite, but the crack is captured as
an embedded strong discontinuity. In this work, we leverage one of the most important advantages of using implicit
function to represent crack geometry: the ability to ensure crack growth in arbitrary directions. The trade-off is that
(1) the crack is not represented explicitly as a displacement jump and (2) the mesh must be sufficiently fine such that
the implicit function has sufficient resolution to represent the interface. This trade-off could be a sensible choice for
the mixed-mode fracture simulations due to the inherent anisotropy of the materials and the anisotropy induced by
the multiple crack growth mechanisms. Nevertheless, due to the introduction of the additional critical energy release
rate, a search algorithm must be used to determine the orientation that maximizes energy dissipation. To conduct the
direction search in 2D domain, we parameterize the normal vector r of F(r) such that the orientation can be described
by a single parameter 6,

n(@) = [cosO,sinfh,0], m(@) =e3; x n =[—sind, cosH, 0], (33)

where 6 = acos(n -e;) is the angle between the normal vector n, e; = [1, 0, 0], and e, = [0, 1, 0]. Together coordinate
directions ey, e,, and e3 span R3. Furthermore, as only the dyadic products of 7 and m are used to resolve W; and
Wy, F(0) = F(0 + ), the search is conducted on 6 € [0, 7).
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Fig. 4. F /I for transverse isotropic materials with critical fracture energy ratio G;;./Gr. = 7. As shown in (b), anisotropy perturbs the local
maxima and minima from 6* = nw/4 | n € {0, 1, 2, 3}, because stress’s and strain’s spectral directions are not coaxial.

Examples of the calculation via this 6-parameterizations of F are shown in Fig. 3. For a given set of elastic material
parameters and strain, the driving force is calculated as a function of angle 6, following the same treatment in [12]
through [65]. As a result, F depends on the strain state per Fig. 3(a), as well as the ratio G;;./G;.. The material
parameters are A = p = 40.0 kN/mm?, and G;. = 1.0 x 1073 kN/mm, with generally the principal strains €; = 0.005
and € = —0.01, and the corresponding eigenvectors equal to n; = [1, 0, 0] and n, = [0, 1, 0], respectively. Recall
that the spectral form of the strain tensor reads,

dim
e:ZeAnA Rny. (34)
A=1
where dim is the dimension of the domain. As to notation, superscripting * indicates: 6* = 0 — 0; for 0; the direction
of the most positive principal strain, and /! a value not normalized by the phase field length parameter /. For a given
plane strain state, which leads to one positive and one negative principal stress in an isotropic material, we observe
that the F is maximized at 6* = 7 /4 when G;;./G;. = 1, Fig. 3(b). However, when G;;./G,;. = 7, F is maximized
at 0* = 0. This change indicates a transition from primary shearing- to opening-mode fracture, as the ratio G;;./G;.
increases from 1 to 7.

In cases where the elastic response of the material exhibits transverse isotropy, the material symmetry may affect

the orientation of the plane that maximizes energy dissipation. Fig. 4 shows the results of the numerical experiments
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performed on transversely isotropic materials, as described mechanically by Eq. (30). Given the same strain and the
ratio Grr./Gr. = 7, we first raise x from O to x = A in Fig. 4(a) and change the orientation of the plane of isotropy of
the elasticity tensor in Fig. 4(b). In the numerical example shown in Fig. 4(a), we observe that the anisotropy of the
elasticity may change the driving force as expected. In the numerical example shown in Fig. 4(b), the angle between
the normal vector of the plane of the isotropy and e; varies from /6 to /2. This latter result indicates not only that
the anisotropy of the elasticity can alter the dominant mode of fracture, but also breaks the symmetry of the driving
force profile against 6*.

Subsequent to the parameterization, the driving force becomes a function of the angle 0 for a given strain state.
As such, we may use a gradient based optimization procedure to find all the local maxima such that dF/d6 = 0
and d>F/d6?* < 0. The orientation corresponding to the largest local maximum will be used to compute the driving
force. For the unknown x* = @ at the procedure’s k-th iteration, the integration point residual vector and local tangent
operator of the optimization problem are:

X dF Lok d [dF
r(x)—@, r(x)—£<¥>. (35
The local maxima can be determined by finding all the roots of the one-parameter equation d F/d6 = 0. We then select
the maximum root of dF/d6 = 0 to determine the orientation. Since gradient-based optimization is used dF/d@ and
its derivative must be computed. This can be done by obtaining the exact expression of d.F/d@ and d*F/d6>.
However, a simpler approach is to use numerical approximations, such as central difference (CD) or complex
stepping (CS), the latter having been introduced by Lyness and Moler [66]. The approximated derivatives of F
obtained from the CD and CS methods read
dF FO+h—FO—h) dF _I{F@O+ih)}
do 2h Code h ’

where & is a small value, J{-} is the imaginary part of -, and i = /—1. CS has been of recent interest to material
modelers (cf. [67,68]) to approximate tensorial derivatives relating to the residual of field equations. As a minor caveat,
regarding the CS approximation, the condition in Eq. (24) is evaluated as 91 {€ : m;} > 0, where 9{-} is the real part
of -.

Subsequent to the spectral decomposition of the strain, we determine from the opening- and material-directional

(36)

cosines,
6, = arccos(ny - e;), O = arccos(l-ey), (37)

where n; is the direction of the most positive principal strain €;. As noted, because F exhibits more-than-one
local maximum, gradient-based optimization is applied sequentially. Accordingly the several applications employ
01 +nm/4 | n € {0, 1,2, 3} sequentially as the initial guess for 6. If the material is anisotropic, then microstructural
directions are additionally accounted for.

Discontinuities in d/d6 may arise from resolving €; in Eq. (24), where from fracture dissipation in mode I is
restricted to crack opening. A discontinuity at 6, is identifiable given €; = 0,

05 = 0o — 0 = arctan \/|€; /€], (38)

for €; and €, the most and least positive principal strains, Fig. 5. For the reason of discontinuity, and the associated
marginal accuracy improvements, we have designed the system to: (1) employ the complex-step approximation; and,
(2) separate the maximization problem into two analytic functions, and these are given by

1
case (i) : E(GO my)(e :my)+ Wy, and case (ii) : Wyy. (39)

The first analytic function’s maxima are discarded if corresponding €; < 0. As a backstop near €; = 0, 6 approaching
the derivative discontinuity are also considered. Separately, both positive and negative perturbations of F(6) by h
around 6 are evaluated. The symmetric root is then also perturbed and checked as maximizers, see vertical line
7 —60f =m — (6 —6)in Fig. 5.
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Fig. 5. Central difference and complex step F-derivative approximations, contrasting distinct and repeated in-plane strain eigenvalues, with (a)
showing derivative jumps at 6 and = — 6 as dashed vertical lines. The ratio between the two critical energy release rates is G7c/Gic = 1.

2.7. Galerkin discretization

With the local problem solved for 6, n, and F, finite elements are used to discretize the spatial domain. Boundary
conditions on body B with surface 015 are specified, i.e.

u=u on JB,, (40)
o-i=1t on 9B, (41)
Vd-n=0 on 9dB, 42)

where i is the boundary displacement, 7 the resolved stress, and 7 refer to the outward-pointing unit normal. The trial
function spaces are posited,

Su,={ulueH' u=aondB,}, (43)

Sy=1{d|deH", (44)
complimented by the spaces of test functions » and ¢,

Vi={n|neH', n=00ndB,}, (45)

Va=1{¢p|¢ecH. (46)

where H' is the Sobolev space of degree 1. Weak forms of Eqs. (5) and (16) are achieved by Green’s theorem and o'’
symmetry such that

fVSn:adV=fn-png+/ n-tdA, 47)
B B B

and similarly for Eq. (16),
f¢g’(d)7—LdV+/(¢d+12V¢-w-Vd)dV=0. (48)
B B

The spatial domain is discretized with standard low-order quadrilateral finite elements. The implementation of the
spatial discretization is done using the finite element library deal. ii [69], whereas the implicit nonlinear PDE solver,
including the assembly procedure of the residuals and the corresponding tangents, and the Newton—Raphson scheme
are modified from the software code base geocentric [70-72,38,43,44].

The mixed-mode fracture model is implemented in a non-iterative operator-split algorithm in which the incremental
displacement and phase field are updated sequentially. As pointed out in previous work, such as Miehe et al. [73]
and Wheeler et al. [74], the non-iterative operator-split solver is faster than the monolithic counterpart. Nevertheless,
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Fig. 6. Geometry of the numerical specimen for mixed-mode fracture simulations, with (b) schematizing experimental results for the same geometry
abridged from the extended typology of Bobet [6], in which the authors attribute the zig-zag crack pattern to shear-induced fracture, viz. with a
rough crack surface coated with crushed gypsum.

the incremental step must be sufficiently small to ensure that the global residuals remain below the numerical
tolerance. Since the details of the operator-split solver has been described in great detail in previous work, we omit
the details.

3. Numerical examples

The following boundary-value problems are used to showcase the capacity of the proposed model to replicate
mixed-mode crack growth. Fracture mode mixity may lead to (1) wing cracks and (2) secondary shear-dominant and
mixed shear-dominant cracks. These are experimental results of Bobet and Einstein [75], modeled numerically with
boundary elements by Shen and Stephansson [12] and a phase-field crack approximation by Zhang et al. [14], also
assuming distinct modal fracture energies. The problems describe two initial flaws situated relatively closely together,
with experimental results suggesting complex mixed-mode inter-flaw coalescent fracture. Unless otherwise specified,
we set ¢ = x = 0 and o = 8 = 0 reducing to isotropy, assume plane strain, and dimensions on diagrams are in mm.

The external boundaries are fixed in dimension, and the rectangular internal, initial flaws are fixed in length at
12.7 mm and width at 0.1 mm. The flaws’ angle relative to the horizontal axis is y = 7 /4, their closure is ¢ = 12.7
mm, and they are parameterized by their separation w, Fig. 6(a). Parameter y = m/4 was taken for two reasons.
First, the numerical specimen with /4 flaw angle has been used in the literature as benchmark for the energy
argument-based Displacement Discontinuity Method (DDM) model of Shen and Stephansson [12] and Shen [45], the
mixed-mode phase field fracture model in [14], and the stress-criterion-based crack propagation model of Bobet and
Einstein [75] and Bobet [6]. Hence, this setup is convenient for comparison purposes. Second, numerical specimens
with this flaw orientation may lead to the development of mixed-mode cracks, as demonstrated in the aforementioned
literature. Hence using this same setup helps us showcase the effect of the elastic anisotropy on crack propagations,
when anisotropic materials with different transversely isotropic planes are used in simulations. An abbreviation of
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Fig. 7. Isotropic mixed-mode case: phase field d for separation w = 0 mm, without significant topological change in closure crack geometry
between critical fracture energy ratios Grr./Gr. = 3 and 7.

experimentally recovered crack-coalescence pattern typology is presented in Fig. 6(b), as provided by Bobet and
Einstein [75,5] and expanded in [6]. As indicated by Bobet and Einstein [5], this abridged typology is suitable for
molded gypsum specimens compressed uniaxially or at low confining stresses.

The material parameters correspond to molded gypsum: A = 3.08 kN/mm? and u = 2.42 kN/mm? exactly
from [8,12], and G;. = 50.0 x 107% kN/mm reflecting Shen and Stephansson [12]. The length scale parameters
are / = 0.5942 mm, with a near-fracture fine mesh employed, in order to capture the sharp phase field gradient. Our
heuristic observations from the numerical experiments indicate that insufficiently small / and near-flaw mesh element
lengths can sometimes suppress secondary cracks.

For this reason, we use an element characteristic length of 0.06 mm in the flaw-tip region, 0.25 mm in the flaw
region, coarsening to 0.5 mm near the domain external boundaries, with refinement maintained within about ¢/2 of
the flaws. The left and right external boundaries are both traction free. On the bottom boundary Au, = 0 mm for all
time steps, with the x,-direction traction free, i.e. fixed normal displacement with zero shear. On the top boundary we
prescribe Au; = —5.0 x 10~* mm, and the x,-direction is traction free. The initial flaws are considered traction free.

3.1. Isotropic coalescent cases

The parametric study of G;;. and the various closure geometries of the initial flaws are shown in Figs. 7 and 8.
If Gr1./G. is less than a necessary threshold value, no wing cracks are apparent, and the specimens exhibit similar
fracture patterns to those materials with G;;./G;. = 1. If the ratio exceeds this threshold, wing cracks initiate and
propagate; subsequently secondary cracks initiate in mixed-strain zones. Finally, as opposed to the relatively stable
growth of the tensile-dominant wing cracks (where present), the shear-dominant fractures coalesce brutally: over
the course of about 5 boundary displacement-driven load increments, as shown in Fig. 9, applying an operator-split
algorithm to advance the simulation. Here we follow the terminology in [76] which refers to a brutal crack propagation
as the crack growth that occurs while dissipation increases rapidly and leads to a sudden dip in total free energy.
Strictly speaking, brutal cracking may lead to substantial inertial effect which cannot be completely accounted for
in a quasi-static framework, according to Negri and Ortner [77]. Accommodating the dynamic phenomenon is out
the scope of this study but will be considered in the future. However when separation w > 0, the flaw-misalignment
of the secondary cracks occasions turning during the coalescence. Of significance overall, the Macaulay bracket in
Eq. (31) usefully doubles to eliminate mode I fracture in uniaxial compaction: a welcome by-product of kinematic
consistency.

The wing cracks’ initiation and propagation directions are least sensitive to the ratio Gy;./Gy., above Gy;./Gr. = 1.
For instance, the wing cracks initiate at this same flaw corner as G;;./G;. increases. They propagate towards the
opening mode-dissipative direction, that is parallel with the zero-traction lateral boundaries. Hence wing crack
propagation maximizes fracture dissipation for G;. > Gj;.; peak stress at their initiation, however, is only loosely
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Fig. 8. Isotropic mixed-mode case: phase field d for separation w = 6.35 mm, evidencing significant topological change in closure crack geometry
between critical fracture energy ratios G;j./Gr. = 3 and 7.
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Fig. 9. Isotropic mixed-mode case: force—displacement curves.

controlled by the baseline value of G;.. After sufficient loading, the stress redistribution due to the wings enhances
shear at the original flaw tips. This causes G;;.-sensitive crack bifurcation and hence secondary cracks. Definitively
greater mode II fracture energy G;;. delays secondary crack appearance: compare Fig. 8 cases where G;;./G. = 3
and 7, and see F with increasing Gy, in Fig. 3.
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Fig. 10. Isotropic mixed-mode case: strains for separation w = 6.35 mm, at uy = 265, 530, 532.5 x —10~4 mm, where in-plane shear strain is
the in-plane principal strain difference divided by 2.
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Fig. 11. Tsotropic mixed-mode case: strains for w = 6.35 mm, at up = 265, 530, 532.5 x —10~* mm, with zoom-in region per Fig. 6.

With a single exception, the fractures’ topology is explicable by the principal strains in the near-flaw and near-
crack-tip regions, Figs. 10 and 11. That exception is coalescence for separation w > 0 at higher ratios G;;./G., see
Gr1¢/G1. = TinFigs. 8 and 10, where coalescent fracture transitions from secondary shear to mixed-mode x;-direction
opening. Moreover during coalescence, significant material degradation occurs forward of the secondary crack tips,
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with only postcedent mixed-mode brutal crack growth. The wing cracks laterally both bound the forward region
and share its opening direction, indicating mode I energy release. By way of addendum, Shen [45] similarly requires
recourse to element insertion away from the secondary crack tips, in order to capture coalescence for separation w > 0
and comparable mixity ratio.

For non-zero flaw separation w, therefore, the coalescent fracture geometry is the most sensitive to the
parameterization (an observation that shall be echoed in the anisotropic results, as shown in the next section). In
contrast for separation w > 0 and G,;;./G;. = 3, the coalescent fracture develops only in the shear plane, directly
between wing crack tips. Alternately for G;;./G;c = 5 at u; = 476 x —107%, an intermediate result develops:
damage in the central coalescent region simultaneous to connecting the wings. The wing cracks are relatively stunted
at coalescence, meaning this result is likely attributable to inferior inter-wing stress-shadowing during coalescent
fracture. We observe corollary less crack-forward mode I dissipation.

In summary, coalescent fracture contrasts sharply with the baseline no-mixity case. After the wing crack
propagation, due to the shearing in-plane e-eigenvalues, W;; resolves as non-zero at the flaw tips. Thus, secondary
crack patterns appear with increasing Gy;.. Simply put, capturing the consistent kinematics does not only mitigate
compactive fracture (see Appendix B), but here also promote secondary bifurcations.

3.1.1. Type I fracture coalescence pattern

Overall, the mixed-mode phase field fracture model is capable of capturing coalescence patterns and coalescent
propagation sequencing not replicated in some benchmark fracture models, including other energy-based models.
Both of the experimentally observed crack coalescence patterns that we investigate are qualitatively recovered: type
I for w = 0, by comparison of Fig. 6(b) to Fig. 7(b); and, type II for w > 0 in Fig. 8(d). When compared to
the experimentally typology, the characteristic features of the type I pattern recovered are: stunted interior wing
cracks combined with coalescence in the shear plane between initial flaw tips. However, our simulations also exhibit
relatively stunted shear-induced crack propagation at the external flaw tips preceding coalescence, when compared to
the counterparts generated from the boundary element method equipped with stress-based crack propagation criterion
in [75], as well as to the crack pattern shown in experiments (see Figure 9 of Bobet and Einstein [5]). A strain-based
propagation model using an identical discretization and a similar boundary value problem, for which w = 0 but
at a different angle y, similarly shows reduced shear-induced damage at the external flaw tips [30]. Meanwhile,
simulations using the energy-based displacement discontinuity model (cf. [12,45,13]) either eliminated or reduced
external flaw-tip fracture growth for specimens with a variety of pre-existing flaw configurations. In the same vein,
the Zhang et al. [14] phase-field model is similarly energy-based and evidences damage at the external flaw tips, but
no shear-induced crack propagation from those tips until after coalescence, which is consistent with our numerical
simulations.

3.1.2. Type Il fracture coalescence pattern

In the literature, significant attention has been paid to the recovery of the type II coalescence patterns in numerical
simulations. For instance, Reyes and Einstein [8] employs a smeared crack approach after Lemaitre [78] where a
damage threshold is set for maximum principal tensile strain such that the damage accumulated with a evolution
law once that threshold value is reached. They recover wing cracks, but no secondary-shear cracks are found in
their numerical simulations. Shen and co-workers capture the type II pattern with a specimen with flaw angle
y = m/4. However, their model requires additional evaluations of the modal stress intensity factors in the bridge
area between the two initial flaws. They then insert elements disconnected from any existing macroscopically distinct
stress singularity (see Figure 3 in [13]). In other words, in these previous simulations, the coalescent crack propagates
into the secondary shear cracks, and not visa versa, as the crack nucleates in opening mode I. On the other hand, in
order to obtain the characteristic anti-symmetric type II closure geometry of Fig. 6(b), the strain- and stress-criterion
propagation mechanism-based simulations reverse that sequence. The secondary shear cracks coalesce towards each
other, after abruptly re-orienting into the opening mode, rather than outward from the centroid of the domain, compare
with Figure 14 in [75]. Both phase-field models also appear to propagate towards the opening mode, although some
inter-flaw softening in the bridge area is acknowledged, also see Fig. 11(a). Thus, a qualitative comparison — the type of
which has previously been performed for strain- versus stress-based propagation models in [30] — reveals differences
in the sequencing of the evolved coalescent cracks, depending on the simulation model employed. As a caveat, from
the existing literature and even when provided high-quality images, it is difficult to disambiguate precedence: cf. the
partial photographic time series of coalescence in gypsum, introduced in Fig. 1(a—c) [4].
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Fig. 12. Anisotropic mixed-mode case:phase field d for separation w = 6.35 mm, critical fracture energy ratio G;;./G;. = 7, and phase-field
anisotropic coefficient § = 1.

3.2. Anisotropic coalescent case

Anisotropic parameters have essentially been chosen to exhibit smooth, controllable deviation from the isotropic
mixed-mode coalescent case, above. The anisotropic coalescent cases are that case with the following modifications:
X = X, fracture energy diffusion parameter 8 = 1, and fixed G;;./G;. = 7 at the mode I-coalescent threshold. The
parameterization is the microstructural angle 6;, which increases from 0 to 7 /2.
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Fig. 13. Anisotropic mixed-mode case: force—displacement curves.

Mode-mixity significantly impacts fracture growth, particularly in the near-flaw region for these cases. Fracture
initiates in the same locations as previous, as shown in Fig. 12. Once again, the wing cracks develop first. Anisotropy
significantly alters the wing cracks’ propagation, however. For case §; = 0 with highest in-plane stiffness in the x,-
direction, the inter-flaw wings exhibit near-direct reorientation towards x,-direction growth. However the coalescent
pattern almost repeats the isotropic case, if at an enhanced peak stress, as shown in Fig. 13.

For the case 6; = 7 /4 in contrast, the fractures coalesce in the shear plane, between the wing cracks’ tips. Similarly
for case 6y = /2, we also observe severely stunted inter-closure wing cracks. Hence a rotated structural direction
masks the complex inter-wing coalescent behavior, otherwise observable under isotropy at the same G;,./G;.. Instead,
smaller wing cracks lead to shear-plane coalesce between the wings’ tips.

4. Conclusion

We present a phase field fracture framework to replicate secondary cracks by introducing distinctive critical energy
release rates for different kinematic modes in the brittle regime. To the best of the authors’ knowledge, this is the first
phase field fracture model that captures these cracks using a consistent kinematic argument. This is significant not only
for theoretical consistency, but also for inferring numerical values of the critical energy release rates measured from
specimens subjected to mode I and mode II loadings. We also provide a theoretical basis for the governing equation
of phase field via a microforce balance. This formulation allows us to obtain the driving force from a local dissipation
maximization problem where the crack propagation direction is determined. Hence, the kinematics mode for the crack
is consistent. This mathematical framework is applied to both isotropic and transverse-isotropic materials. Numerical
examples demonstrate that (1) a transition from shear-coalescent to mixed-coalescent cracks may occur by varying
the ratio of the critical energy release rate for different modes and (2) the formation of wing cracks and secondary
cracks with the consistent kinematic modes can be captured for both isotropic and transversely isotropic materials.
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Fig. 14. Setup of the boundary value problem used in both the spurious healing and shearing fracture simulations.

Appendix A. Spurious crack healing case

Our simplest numerical example compares time series of crack-healing results versus not. This example addresses
the idea to store the maximum value of H over the time history, to putatively stop crack healing. For G;. # G, ., crack
healing can be demonstrated numerically. In particular for G;. < G, we select a problem similar to the commonly
used pure shear benchmark problem in [29]: albeit with mixed-mode boundary conditions, Fig. 14.

The elastic material parameters are: A = 121.15 kN/mm? and p = 80.77 kN/mm?. The numerical parameters are
I =15 x 1073 mm for a mesh universally refined to 3.90625 x 10~ mm. Elastic and numerical parameters the same
for all cases using loading Fig. 14, unless otherwise noted. The mode I critical energy release rate is G;. = 2.7 x 1073
kN/mm, whereas G;;. = 2.7 x 10~! kN/mm. Note the lateral left and right boundaries are traction free. On the
bottom boundary Au; = Au, = 0 mm for all time steps. On the top boundary we prescribe: Au; = 0 mm and
Auy = 1.0 x 1073 for the first 940 time steps; Au; = 0 mm and Aus = —1.0 x 107> mm for the next 940 time
steps; and, Au; = 1.0 x 10~° mm and Au, = 0 for the final 3120 time steps. The effect of crack healing can be seen
by comparison of Fig. 15. The spurious healing is visible, and can be discerned from local reductions in the damage
variable towards the tensile fracture tip.

If the history function is not as assumed in Eq. (21), then spurious crack healing may occur when G;. # Gj..
For the case where G;. < G as above, the spurious healing may occur if the external force is not monotonically
increasing. In this numerical example the external force follows the following sequence: primary tensile loading,
unloading, and lastly re-loading in primary shear. The numerical-experimental premise is to drive up #H; for a
relatively low value of Gj. vs. Gy;.. Subsequently we unload, so that current values of H exceed the corresponding
stored energy partition due to a legacy of tensile loading. Now loading in pure shear, at some point we increase the
current H (now due to increases in #;;) beyond the historical value (due to legacy H;). But as G;;. > G, for this
example, the critical-energy-normalized combination of H; and H,;; plunges. So does the crack heal.

Appendix B. Shear case

In this work, we decompose the strain energy functional in a new manner. Certainly we do not follow prior
ideas e.g. [73], except in its broadest outlines. Therefore, the no-mixity G;. = Gy, result cannot be anticipated to
exactly recover Miehe et al. [73]-type behavior. Overall, when the body is loaded quasi-statically in mixed-mode
loading, we desire that the induced fracture not branch. This well-known problem with the phase field fracture
approximation traces to Bourdin et al. [15]. Compressive-zone fracture can alternately be mitigated by recourse to
a volumetric/deviatoric split Amor et al. [79].

This boundary-value problem addresses inhibition of fracture growth in compressive zones. Specifically we
prescribe Au; = 1.0 x 107> mm and Au, = 0 for all 1500 time steps. A comparison of the results is presented in
Fig. 16. They evidence a single crack tip emerging from the initial discontinuity, unlike prior so-called “isotropic”
model like Bourdin et al. [15]. In short, our strain decomposition also eliminates undesirable crack initiation in
compressive zones, Fig. 17.
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(a) Irreversible model using combined history function of Eq. (21), left-to-right: initial tensile
loading, tensile unloading, subsequent shearing, and final loading step.

(b) Healing model using dual history functions of Egs. (1) and (2), left-to-right: same loadings
as the above.

(c) Difference of (a) minus (b)’s phase field.

Fig. 15. Consistency case phase field d, at u; = 900 x 1073 and up = 1620, 1820, 2620 x 10~° mm.
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(a) gllc/glc =1 (b) gllc/glc =7

Fig. 16. Shear case phase field d, at uy = 850, 1340 x 10~ mm.
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Fig. 17. Shear case for critical fracture energy ratio Gyj./Gr. = 7, least in-plane principal strain, at u = 850 x 10> mm.
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Fig. 18. Shear case force—displacement curves, overlapping for all critical fracture energy ratios G;;./Gj., with comparison to the original Miehe
et al. [29] taking G, = Gy, and regular vs. isogeometric finite element analysis [31], elsewhere used for e.g. numerical benchmarking of mesh
h-adaptivity [80].

However, another significant trend is noticeable. The crack propagates in a zone without resolving a maximizing
shear strain. In return, the fracture trajectories as well as force—displacement curves are basically unaffected by the
ratio Gyy./Gi., Fig. 18. The local dissipation maximization-based routine both qualitatively as well as quantitatively
recovers the result of strain eigenvalue-based partition [29]; this problem has been previously studied using both that
and the volumetric/deviatoric partitions, cf. [31,49,80,81], among others.

That combination is both sensible and desirable. Inasmuch as the material stiffness degrades in a region due to
opening, the preponderance of near-tip energy dissipation is due to mode I fracture (as here). Moreover since we
ascribe kinematic consistency to this isotropic material, § maximizing F resolves zero shear. So F = W;/G;.+0/G; .
at the fracture tip, refer to Fig. 3. Hence increasing G;j. causes only slight changes in this result, as demonstrated in
the overlapping force—displacement curves for all ratios G;;./G;.. This outcome is as per our expectation, yet very
dichotomous from fracturing in a compactive region (as with coalescent cases, Section 3).
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