
Six Centuries of Upper Indus Basin Streamflow Variability
and Its Climatic Drivers
Mukund Palat Rao1,2 , Edward R. Cook1 , Benjamin I. Cook3,4 , Jonathan G. Palmer5 ,
Maria Uriarte6, Naresh Devineni7,8 , Upmanu Lall8,9 , Rosanne D. D’Arrigo1,
Connie A. Woodhouse10 , Moinuddin Ahmed11, Muhammad Usama Zafar11, Nasrullah Khan12,
Adam Khan11, and Muhammad Wahab13

1Tree Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA, 2Department of Earth
and Environmental Science, Columbia University, New York, NY, USA, 3NASA Goddard Institute for Space Studies, New York,
NY, USA, 4Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA, 5ARC
Centre of Excellence in Australian Biodiversity and Heritage, School of Biological, Earth and Environmental Sciences,
University of New South Wales, Sydney, New South Wales, Australia, 6Ecology, Evolution, and Environmental Biology,
Columbia University, New York, NY, USA, 7Department of Civil Engineering, The City College of New York, New York, NY,
USA, 8Columbia Water Center, Columbia University, New York, NY, USA, 9Department of Earth and Environmental
Engineering, Columbia University, New York, NY, USA, 10School of Geography and Development, University of Arizona,
Tucson, AZ, USA, 11Dr. Moinuddin Ahmed Laboratory of Dendrochronology and Plant Ecology, Botany Department, Federal
Urdu University of Arts Science and Technology, Karachi, Pakistan, 12Laboratory of Plant Ecology, Department of Botany,
University of Malakand, Chakdara, Pakistan, 13Botany Department, Women University Swabi, Swabi, Pakistan

Abstract Our understanding of the full range of natural variability in streamflow, including how modern
flow compares to the past, is poorly understood for the Upper Indus Basin because of short instrumental
gauge records. To help address this challenge, we use Hierarchical Bayesian Regression with partial pooling
to develop six centuries long (1394–2008 CE) streamflow reconstructions at three Upper Indus Basin gauges
(Doyian, Gilgit, and Kachora), concurrently demonstrating that Hierarchical Bayesian Regression can be used
to reconstruct short records with interspersed missing data. At one gauge (Partab Bridge), with a longer
instrumental record (47 years), we develop reconstructions using both Bayesian regression and the more
conventionally used principal components regression. The reconstructions produced by principal
components regression and Bayesian regression at Partab Bridge are nearly identical and yield comparable
reconstruction skill statistics, highlighting that the resulting tree ring reconstruction of streamflow is not
dependent on the choice of statistical method. Reconstructions at all four reconstructions indicate that flow
levels in the 1990s were higher than mean flow for the past six centuries. While streamflow appears most
sensitive to accumulated winter (January–March) precipitation and summer (May–September) temperature,
with warm summers contributing to high flow through increased melt of snow and glaciers, shifts in winter
precipitation and summer temperatures cannot explain the anomalously high flow during the 1990s.
Regardless, the sensitivity of streamflow to summer temperatures suggests that projected warming may
increase streamflow in coming decades, though long-term water risk will additionally depend on changes in
snowfall and glacial mass balance.

1. Introduction

The Indus River and its tributaries provide the main source of water for Pakistan’s vast irrigation network and
hydropower generation for its power grid in an otherwise arid to semiarid country. The river basin consists of
seven main rivers, the Indus, Kabul, Jhelum, and Chenab, known collectively as the western tributaries, and
the Beas, Ravi, and Sutlej known as the eastern tributaries (Zawahri, 2009). Of these, the Indus is the most
important as it contributes close to half of the overall discharge of the basin. The Indus River Basin is typically
divided into two sections, the Upper Indus Basin (UIB) and Lower Indus Basin. The UIB refers to the section of
the river above the Tarbela reservoir, an important source of water for Pakistan’s irrigation network and
hydropower potential (Rashid et al., 2018), and located on the main Indus before its confluence with other
major tributaries (Archer, 2003). The headwaters of the UIB originate in the upper reaches of the
Karakoram and Himalaya ranges. Approximately three fourths of UIB discharge is estimated to be a result
of melting snow and ice, while summer rainfall plays a smaller role in contributing to the total discharge
(Immerzeel et al., 2009). The interannual variability in UIB discharge is largely controlled by variability in
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the ablation of glacial mass balance and seasonal snowfall (Forsythe et al., 2017). Consequently, future
changes in UIB flow will likely be regulated by changes in glacial mass balance and seasonal snowfall and
the melt rate of both of these components. These melt rates are primarily controlled by changes in tempera-
ture and humidity (Harpold & Brooks, 2018; Immerzeel et al., 2010). Overall, for the Indus Basin (Lower Indus
Basin and UIB) climate model projections of future runoff exhibit high uncertainty due to a large spread in
precipitation (winter and summer) projections (Ali et al., 2015; Immerzeel et al., 2013; Lutz et al., 2016).
However, there is a broad consensus that as glaciers recede, annual glacial runoff volume will likely increase
until a maximum point known as peak water, beyond which runoff will decrease due to the reduced glacial
area becoming unable to sustain the same runoff (Huss & Hock, 2018; Lutz et al., 2014). Future water manage-
ment strategies (e.g., at the Tarbela reservoir) will therefore naturally depend on expected changes in UIB dis-
charge (Tahir et al., 2011).

Conflicting interpretations of recent climate and glacier trends have been observed over the high ranges of
the Karakoram Mountains. While glaciers have declined over much of the Himalayas, glaciers in the
Karakoram have either remained stable or even expanded in certain cases (Bolch et al., 2012; Brun et al.,
2017; Gardelle et al., 2012; Kapnick et al., 2014; Minora et al., 2013). This anomalous behavior of glaciers
has been referred to as the Karakoram Anomaly (Hewitt, 2005). Two-thirds of high-altitude snow over the
Karakoram accumulates in the winter, and is caused by synoptic westerly disturbances, while the remainder
is attributed to monsoonal influences (Benn & Owen, 1998; Greene & Robertson, 2017; Palazzi et al., 2015).
While the underlying causes of the Karakoram Anomaly remain unclear, it has been attributed to increases
in summertime cloudiness (Bashir et al., 2017; Hewitt, 2005; Zafar et al., 2015), decreasing summertime tem-
perature (Fowler & Archer, 2006), increases in wintertime snowfall (Farhan et al., 2015; Kapnick et al., 2014;
Ridley et al., 2013; Tahir et al., 2011), high debris loading on the glaciers that insulates the underlying glaciers
(Kraaijenbrink et al., 2017; Minora et al., 2013), land surface feedbacks due to intensified lowland irrigation (de
Kok et al., 2018), and a southward shifted summertime westerly jet (Forsythe et al., 2017).

Our understanding of recent streamflow trends, if any, is to a large extent limited by the short instrumental
streamflow discharge records in the region that extend back two to four decades at the longest. Having such
short instrumental records encumbers our understanding of the full range of natural variability, especially at
decadal to centennial time scales, and cannot provide a sufficient long-term context to assess possible recent
changes in discharge. Predictions of future water risk may also be improved by a better understanding of the
current and past variability and climatic controls of discharge (Archer et al., 2010; Forsythe et al., 2017; Lutz
et al., 2014).

To help address these multiple challenges, we present three new and one updated (cf. Cook et al., 2013)
reconstruction of UIB discharge at four discharge gauging stations (Partab Bridge, Doyian, Gilgit, and
Kachora) for the past six centuries. These paleohydrologic reconstructions are developed using annually
resolved climatically sensitive tree ring chronologies in the UIB (Figure 1). These longer-term estimates of past
flow can be used to better assess recent trends in UIB streamflow. Due to the constraints of sparse instrumen-
tal discharge data at the three shorter gauge records (Doyian, Gilgit, and Kachora) we develop reconstruc-
tions using Hierarchical Bayesian Regression (HBR) with partial pooling (Devineni et al., 2013). At one
gauge with a long instrumental record (Partab Bridge) we test two reconstruction methods, Bayesian regres-
sion (BR) and principal components regression (PCR, see section 3). The motivation behind developing a
reconstruction using both PCR and BR at the same target gauge (Partab Bridge) from the same tree ring pre-
dictor network is to test the hypothesis that streamflow reconstructions and their uncertainties should be
highly comparable notwithstanding of the choice of statistical methodology used. The objectives of this
are twofold. First, this provides a useful foundation upon which to base the choice of statistical methodology
(i.e., PCR vs BR) for future reconstructions of streamflow or climate. Second, it allows us to compare the newly
developed HBR reconstructions of streamflow at the three streamflow gauge records (Doyian, Gilgit, and
Kachora) against the reconstruction developed at Partab Bridge (cf. Cook et al., 2013). We then investigate
the potential climate drivers of streamflow at the four gauges for which we develop reconstructions of past
discharge, along with the climate drivers of annual growth for the suite of tree ring predictors used in our
reconstruction model. We hypothesize that if the trees show a similar growth response to climate as the
streamflow response to climate, then that provides additional evidence that the paleo-discharge estimates
presented here were caused by the same climatic forcing. Finally, the climate analyses allow us to specifically
test how climate may have contributed to the high discharge rates in the 1990s and declining flows in the
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early 2000s (Cook et al., 2013; Forsythe et al., 2017; Hasson et al., 2017). Taken together, we believe that the
four long-term reconstructions of past discharge, along with the streamflow climate and tree growth climate
response analysis, provide a useful framework and context to better predict UIB hydrological regime changes.

2. Data
2.1. Instrumental Streamflow and Climate Data

Instrumental streamflow data were obtained from the Pakistan Water and Power Development Authority at
the four target gauges, Partab Bridge, Doyian, Gilgit, and Kachora (Figure 1). Mean annual (January–
December) discharge at each of these gauges is shown in Figure 2, and Table 1 describes some additional
characteristics of the data (e.g., sub-basin names, mean, and standard deviation). The instrumental record
for Partab Bridge was updated to 2008 (dashed line Figure 2) using estimates from three other gauges
(Daiynor, Gilgit, and Kachora) as described in Cook et al. (2013). The data quality in early part of the Gilgit

record between 1960 and 1972 exhibits greatly reduced interannual
variability compared to the later part of the record. Consequently, we
assume this to be a data quality issue and disregard the early period
of the Gilgit data in subsequent analysis. Discharge at the gauges peaks
between May and September as seen in the monthly discharge hydro-
graph (Figure 3). We obtained temperature and precipitation data from
the global gridded 0.5° resolution Climatic Research Unit Time Series
v.4.01 data set that covers the period 1901–2016. A box plot of monthly
climate (temperature and precipitation) averaged across a 2° latitude ×
2° longitude grid (73.5–75.5°E and 34.5°N–36.5°E) between 1961 and
2016 is also shown in Figure 3. These 2° × 2° regionally averaged tem-
perature and precipitation series are used in the climate analyses with
streamflow and tree growth.

2.2. Tree Ring Network

The annual growth of trees is often controlled on interannual and dec-
adal time scales by the same climatic factors that control streamflow in
rivers (Meko et al., 1995). These may include winter snowpack and sum-
mer temperatures (e.g., Woodhouse & Lukas, 2006), summer drought
(e.g., Cook & Jacoby, 1983; Devineni et al., 2013), and monsoonal

Figure 1. Map showing locations of streamflow gauges (blue squares) and tree ring sites (red triangles) used in this study.
The red box in the figure on the left highlights the region for which a close-up is shown on the right.

Figure 2. Instrumental period mean annual discharge (m3/s) at four streamflow
gauges in the Upper Indus Basin watershed (solid black). The Partab Bridge
record between 1997 and 2008 (dashed line) is estimated by using three proxi-
mal streamflow gauges (Cook et al., 2013).
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precipitation (e.g., D’Arrigo et al., 2011). This underlying principle has allowed the use tree rings to develop
reconstructions of past flow and flow extremes, including for one gauge on the UIB (Cook et al., 2013).
These paleohydrologic records from tree rings have found a wide variety of applications, from placing
instrumental mean discharge in a long-term context (Stockton & Jacoby, 1976); to being used as
forecasting, planning, and research tools by water managers (Meko & Woodhouse, 2011); and
understanding continental-scale streamflow covariability and clustering (Ho et al., 2017).

For our study, as an initial screening for useful tree ring predictors to develop our streamflow reconstruction
models we downloaded all tree ring series located within the broad Karakoram andWestern Himalaya region
with an end year later than 2005 from the International Tree Ring Data Bank (https://www.ncdc.noaa.gov/
data-access/paleoclimatology-data/datasets/tree-ring). The raw annual ring-width data for each site were
standardized (Cook & Kairiukstis, 1990; Fritts, 1976) using the signal-free method (Melvin & Briffa, 2008). The
signal-free method aims to maximize the preservation of common medium frequency variance in tree ring
series and eliminate trend distortion effects with attention paid to preserving multidecadal to centennial
variability due to climate. A series was retained as a predictor in a model if it is correlated at p < 0.05 using
a two-sided t test with the streamflow gauge record. Tree ring series were also tested as potential predictors
with a lag of 1 year (lag t + 1) with respect to the streamflow data, as often prior year climate can influence
current year tree growth (Fritts, 1976). In our analyses, we develop two sets of models. The first is a recon-
struction of May through September (MJJAS) flow at Partab Bridge using two reconstruction methods, PCR
and BR (Model I). The second is a HBR reconstruction of annual (January–December) flow at Doyian, Gilgit,
and Kachora (Model II). The choice of the MJJAS season at the target for the reconstruction at Partab

Table 1
Streamflow Gauge Network in the Upper Indus Basin

Gauge River (sub-basin) Lat. Lon. Elev. (m) Start End Missing data Annual mean (m3/s) SD (m3/s) Skewness

Partab Bridge Indus 35.78 74.63 1419 1962 1996 - 1763.43 237.34 0.66
Doyian Astore 35.33 76.42 1195 1974 2008 - 135.79 27.79 0.21
Gilgit Gilgit 35.11 74.06 1140 1960 a1980 2008 1973–1979, Jul–Dec 1999 286.99 45.50 1.44
Kachora Indus 35.27 75.25 1460 1970 2008 - 1074.85 181.79 0.38

Note. SD = standard deviation.
aWe only use the 1980–2008 section of the Gilgit gauge record for ensuing analysis.

Figure 3. Boxplots showing month-by-month variability in precipitation (mm) and temperature (°C) between 1961 and 2016, and monthly discharge hydrographs
(m3/s) for the instrumental period at four streamflow gauges in the UIB. Note the different y axis ranges. X axis labels represent months of the year. UIB = Upper
Indus Basin.
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Bridge is that it coincides with the peak flow season (cf. Cook et al., 2013). For the HBR reconstructions of flow
at Doyian, Gilgit, and Kachora, we first attempted to develop MJJAS season streamflow reconstructions as
well, followed by a Northern Hemisphere water-year (October–September) reconstruction. However, these
two models performed poorly compared to a model reconstructing mean annual (January–December) dis-
charge based on their calibration-validation statistics (see section 3). Based on our predictor screening criteria
we use 15 tree ring series as predictors for the reconstruction model at Partab Bridge and 10 series as predic-
tors for the HBR reconstruction model at the other 3 gauges. The final set of predictor tree ring series used in
Models I and II is shown in Table S1 and plotted in Figure S2 in the supporting information (Bunn, 2010). The
original source for these collections are Ahmed et al. (2011), Ahmed et al. (2013), and Zafar et al. (2010).

3. Methods
3.1. Reconstruction Model

A commonly used method to reconstruct a predictand (or dependent) variable such as streamflow or climate
from tree rings is principal components regression (PCR, Cook et al., 2010, 1999, 2013; Harley et al., 2017;
Harley & Maxwell, 2017). However, PCR cannot be easily used to reconstruct streamflow at gauges that have
extremely short records and data gaps, without an imputation step for the missing data. For the UIB specifi-
cally, while the length of each available gauge record is relatively short (Figure 2), we are fortunate to have a
network of gauging stations that are in close proximity to each other and located on different tributaries in
the same watershed (Figure 1 and Table 1). An alternative streamflow reconstruction method to PCR is HBR
with partial pooling (e.g., Devineni et al., 2013). HBR with partial pooling allows regression coefficients to be
correlated across the gauges being reconstructed by modeling the vector of regression coefficients as draws
from a commonmultivariate normal distribution. The physical basis of this assumption is that streamflow dis-
charge tends to be correlated at the scale of a watershed (Figure S1, Ho et al., 2017). This partial pooling fra-
mework allows us to shrink the number of free parameters to be estimated and reconstruct streamflow at
gauges with short instrumental records. This can result in lower uncertainty in estimated parameters and
reconstructed discharge, along with improving the skill of the final model by combining the regression
strength of the model across gauges (Devineni et al., 2013). Finally, HBR estimates predicted values by draw-
ing from prior distributions and can therefore handle data gaps in a very natural way.

For the UIB, Cook et al. (2013) used PCR to reconstruct May through September (MJJAS) peak season dis-
charge at Partab Bridge between 1452 and 2008 CE. Partab Bridge was chosen as the target gauge for recon-
struction by Cook et al. (2013) because it has the longest continuous available record of flow and also
includes discharge from both the east and west regions of the UIB (Figure 1). We develop PCR and BR models
at Partab Bridge to produce a slightly longer reconstruction (cf. Cook et al., 2013) between 1430 and 2008 CE
(originally 1452–2008 CE). The original Cook et al., 2013 PCR reconstruction at Partab Bridge and the one pro-
duced and developed here are identical over the period of overlap between 1452 and 2008 CE. In all recon-
structions we used a multiple linear regression framework where we estimated streamflow (the predictand
variable) using a vector of predictor variables. The vectors of predictor variables used are the principal com-
ponent (PC) scores (Cooley & Lohnes, 1971) of the suite of normalized tree ring-width indices (RWI). The RWI
were normalized using their respective calibration period means and standard deviations, and the PCs were
computed from the RWI suite to be orthogonal during the calibration period (Cook et al., 1999). In each
model, only leading PCs with eigenvalues greater than 1 were retained as potential predictors for streamflow
as an estimate of common shared signal (versus noise) across the different tree ring series using the Kaiser-
Guttman criteria (Guttman, 1954; Kaiser, 1960). We used a nested approach in both Models I and II, where
shorter tree ring predictor series were dropped sequentially until the predictor suite was exhausted and
reconstructions were made for each nest (e.g., Meko, 1997). To develop the final nested reconstruction, we
appended each longer nest to the start year of the shorter nest after scaling its variance to that of the calibra-
tion period instrumental data.

For the reconstruction at Partab Bridge using PCR and BR (Model I) we used a 30-year period between 1975
and 2004 as amodel calibration period and the early part of the data between 1962 and 1974 (13 years) as the
model validation period. This is the same calibration and validation period used in Cook et al. (2013). For the
HBR models at Doyian, Gilgit, and Kachora (Model II) we used a 1970–2004 calibration period with a leave-
one-out cross-validation (LOOCV) approach to compute model validation statistics. LOOCV was used for
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the HBR model as the individual instrumental time series were too short to divide into separate calibration
and validation periods. After accounting for the varying start years of the gauge records (Table 1) the length
of the calibration periods for Model II were as follows: Doyian (n = 29), Gilgit (n = 23), and Kachora (n = 33). The
longer Partab Bridge record was not included in the HBR reconstruction (Model II) to maintain the indepen-
dence between the predictand variables (i.e., the streamflow gauge) being reconstructed, as the Partab
Bridge record between 1997 and 2008 was estimated by Cook et al., 2013 using the Gilgit and Kachora
records. We used the Shapiro-Wilk normality test (Shapiro & Wilk, 1965) to test the null hypothesis that the
streamflow data come from normal distributions. For instrumental MJJAS flow at Partab Bridge and annual
flows at Doyian and Kachora we accepted this null hypothesis of normality, while at Gilgit we rejected the null
hypothesis that annual flow is normally distributed at p < 0.05. However, after examining the kernel density
plot (not shown) and time series plot of mean annual streamflow at Gilgit (Figure 2), we found that if the high
flow anomaly in 2005 is excluded, then the skewness decreases from 1.44 to 0.14, and we would have
accepted the null hypothesis of streamflow being normally distributed at Gilgit. When testing for normality
during the calibration period (1975–2004, Partab Bridge; 1970–2004, Doyian, Gilgit, and Kachora) at all three
gauges, we accepted the null hypothesis of normality. Therefore, we chose to not transform (e.g., log or
power transform) the original data at Gilgit in our streamflow reconstruction. This was also done to retain
the same units across the three gauges being reconstructed using HBR. Prior to developing the PCR, BR,
HBR models, the streamflow data were also normalized by subtracting their respective calibration period
means and dividing their respective calibration period standard deviations. The final reconstructions were
then scaled to the calibration period mean and variance.

We tested model calibration and validation fidelity by computing the following statistics: (i) CRSQ (calibration
period coefficient of multiple determination or R2), (ii) CVRE (calibration period reduction of error calculated
by LOOCV), (iii) VRSQ (validation period square of the Pearson correlation or r2), (iv) VRE (validation period
reduction of error), and (v) VCE (validation period coefficient of efficiency, see supporting information in
Cook et al., 2010). The VCE is equivalent to the Nash-Sutcliffe efficiency test (Nash & Sutcliffe, 1970). For
the HBRmodel, we only present CRSQ, CVRE, and RE (reduction of error) statistics as the model does not have
a formal validation period due to the shortness of the gauge records. The formulation used for calculating RE
for the HBR model is as follows:

RE ¼ 1� SSEV
SSEnull

where SSEv is the sum of squares of cross-validation errors and SSEnull is the sum of squares of differences
using the calibration mean as the prediction for each year (Meko, 2006). In general, models with VRE, VCE,
and RE values greater than 0 are considered an indication that the model has skill compared to using the
calibration period, validation period, and calibration periodmeans, respectively, as the estimate for each year.
We also compared model performance using median-normalized root-mean-square error (RMSE) (Janssen &
Heuberger, 1995) statistic calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑t¼1:n yt �

_

y t
� �2r

median � normalized RMSE ¼ 100�
RMSE

median ytð Þ
where yt and byt are the observed and predicted discharge in year t, respectively. The median-normalized
RMSE can be thought to represent how large themodel error is as a percentage of themedian discharge, with
larger values representing larger error.
3.1.1. Principal Components Regression
PCR is used here to reconstruct streamflow discharge from tree rings and is the same method used to recon-
struct UIB discharge at Partab Bridge by Cook et al. (2013). Following that work, we also estimated model
uncertainties in PCR by applying maximum entropy bootstrapping (n = 300; MEBoot, Vinod, 2006; Vinod &
López-de-Lacalle, 2009) to both the tree ring and streamflow data. MEBoot can be thought of here as a ran-
dom perturbation method that is applied to both the predictor and predictand series. In so doing, MEBoot
preserves the overall stochastic properties of the original time series used in regression line the chronological
order of the data being resampled, but changes in a random fashion the PCs derived from the PCR procedure,
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along with the streamflow data. As such, the MEBoot procedure also produces an empirical probability dis-
tribution functions for each reconstructed year that contributes to the uncertainty estimates on the recon-
structions (Cook et al., 2013).
3.1.2. Bayesian Regression
3.1.2.1. HBR With Partial Pooling

yi;t αi; βi ¼ αiþj βi�X t þ εi;t i ¼ 1; 2; 3ð Þ
βi∼MVN μB; ∑Bð Þ

Priors modeled as

αi∼N 0; 104
� �

εi;t∼N 0; 104
� �

μB∼MVN 0; 104I
� �

∑B∼Inv�Wishartv0 Λ0ð Þ

HBR reconstructions with partial pooling were developed at each gauge using a multiple linear regression of
streamflow (yi,t) at gauge i at year t on a vector of predictors (Xt). The matrix X contains the PC score time
series of tree ring predictors used in the current nest. βi is a vector of the corresponding regression slopes
for each predictor in the vector Xt at gauge i. Each regression includes an intercept term αi and a prediction
error term εi,t. We modeled priors to be vague or noninformative (Gelman & Hill, 2006) and the covariance
structure of regression coefficients βi for each streamflow gauge to be derived from amultivariate normal dis-
tributions (MVN). This assumption is based on the consideration that annual flows are correlated across
gauges (Figure S1). Parameter βi is in turn described by two hyperparameters μB and a dispersion matrix
∑B leading to the hierarchical framework in our model (Gelman & Hill, 2006). We assumed the prior for covar-
iance matrices ∑B to be an inverse Wishart distribution with scale matrixΛ0, specified to be an identity matrix
I with v0 degrees of freedom (Devineni et al., 2013). v0 is set to be one more than the dimension of the matrix
or the total number of predictors used in the nest.

We hypothesize that by modeling the covariance structure of regression coefficients we are able to borrow
the strength of the regression estimates at one streamflow gauge and use that for predictions at another
gauge (Devineni et al., 2013). This permits us to derive a better regression estimates during the model calibra-
tion period and consequently makes a better prediction of past streamflow. Unlike in Devineni et al. (2013),
here we modeled the associated prediction error terms, or residuals, εi,t be derived from a normal distribution
and not from a MVN. This is because each streamflow gauge discharge series spans a different range of years
(Figure 2). Consequently, it was not possible to compute the spatial covariance of the error term. Also, our
matrix X uses PC scores and not the standardized tree ring series directly (cf. Devineni et al., 2013). This pre-
dictand data reduction was necessary due to shortness of the gauge records, to reduce the number of free
parameters to be estimated relative to the number of years of streamflow data available for model calibration.

The final joint posterior distribution P (θ/y) for the partial pooling case, with regression intercepts αi, slopes βi,
error εi,t, and covariance ∑B, is described as follows.

P θ=yð Þ∝∏3
i¼1∏

nt
t¼1

N yi tð Þjαi þ βi X tð Þ; εi tð Þð Þ½ ��N αij0; 104
� �

MVN βijμB; ∑Bð Þ�Inv-Wishart ∑BjV0;Λ0ð Þ
MVN μBj0; 104I

� ��N εi tð Þj0; 104
� �

For each model we estimated the parameters θ and the posterior distributions P (θ/y) by employing a Gibbs
sampler, a Markov Chain Monte Carlo method using the software Just Another Gibbs Sampler (Plummer,
2003). We simulated three chains, where the parameters were assigned random starting values. This was
done to test whether starting values affect convergence toward the final parameter estimates. The chains
were run for a 1,000-cycle burn-in to discard the initial state of parameter estimates following which we
ran 10,000 simulations. We determined the chains to have converged by visually analyzing the trace plots
for the parameters and checking whether the Gelman-Rubin diagnostic shrink factors were less than 1.1
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(Gelman & Rubin, 1992). To validate the fit of our model, we computed
the Bayesian p values for the mean and sum of squared errors (SSQ).
The Bayesian p value for the mean and SSQ were calculated as the pro-
portion of times the mean and SSQ of the model simulated calibration,
and validation data were greater than that of the actual streamflow
data. A Bayesian p value of close to 0.50 indicates good model fit. The
final reconstructions and our Just Another Gibbs Sampler code are
available in Data Sets S1 and S2, respectively.
3.1.2.2. Bayesian Regression
While the relatively more complex HBR model was used to reconstruct
multiple gauges simultaneously (Doyian, Gilgit, and Kachora), we devel-
oped a simplified BR model to reconstruct streamflow at Partab Bridge
for comparison with the PCR reconstruction. Unlike the HBR model, the
BRmodel has no hierarchy, as only one gauge is being reconstructed. In
this model, we assumed the regression slopes βi to be derived from a
normal distribution. Two sets of BR models were used to develop flow
estimates at Partab Bridge. The first is a model that uses tree ring
predictors, and the resulting reconstruction from it was then used for
the comparison with the streamflow reconstruction developed using
PCR. In the second model, we use our analysis of the climatic controls
of streamflow at Partab Bridge to develop estimates of streamflow
between 2009 and 2016.

4. Results
4.1. Streamflow Reconstructions

The MJJAS seasonal reconstruction of streamflow at Partab Bridge (Figure 4) and the three HBR reconstruc-
tions of mean annual streamflow at Doyian, Gilgit, and Kachora (Figure 5) all indicate that the period of
decadal high flow between 1991 and 2000 is unusual in the long-term context of the past six centuries.
The only comparable period of high flow in the reconstructions occurs during the 1470s. In all reconstruc-
tions, the 20-year low-pass filtered discharge exceeds the 90th percentile of reconstructed discharge over
the past six centuries (but remains within reconstruction uncertainties), indicated by the dashed blue hori-
zontal lines. Following this peak in the 1990s, both the instrumental data and reconstructions suggest a
decrease in discharge post-2000. Periods of anomalous low flow are indicated in the MJJAS seasonal

Figure 4. Reconstructed mean May through September (MJJAS) discharge
(m3/s) at Partab Bridge 1430–2008 CE (solid black) using principal
components regression (PCR) and Bayesian regression (BR) along with 20-year
low-pass filtered reconstruction (solid red). Horizontal dashed red and blue
lines are 5th and 95th percentiles of the reconstructions, respectively. The
horizontal white line between 1400 and 2008 CE represents the mean of the full
reconstruction, and that between 1962 and 2008 CE is the mean of the
instrumental period. CE = Common Era.

Figure 5. Same as Figure 4 but showing reconstructed mean annual (January–December) flow (m3/s) at Doyian, Gilgit, and
Kachora between 1394 and 2008 CE using Hierarchical Bayesian Regression with partial pooling. CE = Common Era.
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reconstruction at Partab Bridge in the early 1600s, 1890s, and 1970s and in the three-gauge HBR annual
reconstruction during the 1650s and 1820s.

We produced a MJJAS seasonal streamflow reconstruction at the updated Partab Bridge record using PCR
and BR (Figure 4). The final reconstruction produced by both methods (PCR and BR) are virtually identical,
with only minor differences in the widths of their uncertainties (Figure S3). The reconstructions are highly
correlated over the 575 years of reconstructed discharge (Pearson’s r = 0.91). Importantly, the calibration-
validation statistics of the two reconstructions, as calculated using the CRSQ, VRSQ, CVRE, VRE, and VCE
metrics, are comparable for the entire length of the reconstruction between 1430 and 2004 CE (Figure S4).
The median values of these statistics for the full reconstructions are (i) CRSQ: PCR-49.80%, BR-56.04%;
(ii) VRSQ: PCR-54.70%, BR-53.79%; (iii) CVRE: PCR-42.50%, BR-43.68%; (iv) VRE: PCR-0.52, BR-0.54; and (v)
VCE: PCR-0.50, BR-0.52. The HBRmodel annual discharge estimates during the instrumental period are shown
in Figure S5, and the calibration-validation statistics computed by LOOCV are shown in Figure S6. The
consistently positive VRE and VCE values for each nest in PCR and BR reconstruction at Partab Bridge
(Figure S4) and RE values for the HBR reconstructions at Doyian, Gilgit, and Kachora (Figure S6) indicate that
reconstructions are skillful. Bayesian p values for predictions of the mean and mean squared errors were
consistently close to or equal to 0.50 for all nests for the BR and HBR models.

4.2. Climate Controls on Discharge

We then used the updated Partab Bridge (1962–2008 CE) record, the longest of our four records (n = 47), to
evaluate the relationship between climate and streamflow in the region. We first examined the relationship
between monthly climate (precipitation and temperature) and mean MJJAS streamflow (Figure 6a) and
tested for both contemporaneous and lagged relationships between climate and streamflow. All tests are
based on the Pearson correlation and a two-sided hypothesis test with each series computed as first differ-
ences to minimize the effect of trends and autocorrelation in the data. We found MJJAS streamflow to be
positively correlated with current year January through March precipitation (ρ < 0.01), inversely correlated
with prior year July (ρ < 0.05), and positively correlated with current year June (ρ < 0.05) and current year
July (ρ < 0.01) mean monthly temperature. When the same monthly climate versus discharge correlation
analysis was carried out separately for each month of streamflow between May and September (not shown),
we found that monthly discharge in a month was always significantly positively correlated with monthly tem-
perature for that month (ρ < 0.01). Based on these results, we infer the main climate seasons relevant for
MJJAS streamflow at Partab Bridge to be January through March (JFM) precipitation likely in the form of
snowfall, inferred from subfreezing temperatures in the region during this season (temperature boxplot
Figure 3), along with MJJAS mean temperature.

Next, we computed spatial correlations between MJJAS discharge at Partab Bridge and JFM monthly mean
precipitation andMJJASmonthly mean temperature to assess the spatial footprint of the climate to discharge
relationship (Figures 6b and 6c). We found that MJJAS mean discharge at Partab Bridge is positively corre-
lated (stippled blue shading for ρ < 0.01) with JFM precipitation within the Karakoram region (Figure 6b)

Figure 6. Pearson’s correlations betweenMJJAS mean discharge at Partab Bridge (1962–2008) and (a) month-by-month precipitation (blue) and temperature (red; *,
p< 0.05 and +, p< 0.01) for months between prior year (t� 1) May through current year (t0) December, (b) January–March (JFM) mean precipitation (positive-green;
negative-red), and (c) MJJAS mean temperature (positive red and negative blue). All time series were computed as first differences. In Figures 6b and 6c stippling
indicates significance at p < 0.01, while the red square is the location of the gauge station. MJJAS = May–September.
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and positively correlated with temperature (stippled red shading for ρ < 0.01) over a broad spatial region
spanning the Karakoram, Hindu Kush, and Toba Kakar ranges (Figure 6c). To further understand if the climate
controls on discharge at Partab Bridge vary through the MJJAS season, we also computed the month-by-
month correlations of mean May–July (MJJ) discharge against temperature and precipitation (Figure S7a),
alongwith similar correlations for mean August–September discharge (Figure S7b). For MJJ discharge we find
significant positive correlations with JFM precipitation and MJJ temperature (ρ < 0.05), while for August–
September discharge significant positive correlations were found with January and March precipitation
and August temperature (ρ < 0.01).

We also performed a similar month-by-month correlation analysis between climate variables and mean
MJJAS flow at Doyian (n = 35), Gilgit (n = 27), and Kachora (n = 38) (Figure S8). Discharge at all gauges shows
a significant positive correlation with February precipitation (ρ < 0.01). At Doyian there is a broad significant
positive correlation between discharge and February through May precipitation (ρ< 0.05), but no significant
correlation between discharge and temperature was observed (Figure S8a). At Gilgit, discharge was found to
be positively correlated with February and March precipitation (ρ < 0.05), and negatively correlated with
February temperature (ρ < 0.05; Figure S8b). Finally, at Kachora discharge was significantly positively corre-
lated with JFM precipitation (ρ < 0.01) and with May, June, and August temperature (Figure S8c). While the
HBR reconstructions at Doyian, Gilgit, and Kachora presented in the previous section are for mean annual dis-
charge, we found that climate to streamflow relationship was nearly identical for mean annual discharge and
mean MJJAS discharge shown in Figure S8 (not shown).

The positive relationship between wintertime precipitation and summertime temperature at Partab Bridge
and Kachora suggests that discharge at these gauges is influenced by both winter snow accumulation and
summer snow and glacial melt. However, at Doyian and Gilgit the lack of temperature sensitivity suggests
that discharge at these gauges depends primarily on wintertime snowfall and with temperature-dependent
glacial melt playing little to no contributing role. These findings are consistent with Mukhopadhyay and Khan
(2014), who use the percentage of watershed within a hypsometric band (i.e., elevation zone) and determine
that main Indus sub-basins where Kachora and Partab Bridge are located are more heavily glaciated and have
a higher mean elevation than the Astore and Gilgit sub-basins where the Doyian and Gilgit gauging stations
are located (also see Table 1 for basin names).

4.3. Climate Controls on Tree Growth

We then examined the climate to tree growth response of the predictor suite used in the first nest for the
MJJAS reconstruction at Partab Bridge. In our reconstruction model, we retained the first four PC time series
in the first nest, with the following percentage variance explained, PC1-50%, PC2-14%, PC3-9%, and PC4-7%.
Cumulatively, these PCs explain 80% to the total variance of the predictor suite. Themonth-by-month climate
to PC1 and PC2 correlations for the time period 1962–2008 is shown in Figures 7a and 7b, while those for PC3
and PC4 are shown in Figures S7c and S7d. We find that PC1 shows a broad January through May positive
correlation with precipitation (ρ < 0.01), while PC2 shows a significant inverse correlation with temperature
that peaks in current year May through August (ρ< 0.01). Both PC3 and PC4 show significant inverse correla-
tions with June (ρ< 0.01) and July (ρ< 0.05) temperature. The PC loadings of each tree ring series on the first
four PC time series are shown in Figure 7c. All sites except MuaABP.t1 and NltPCS.t1 show strong positive
loadings on PC1, as indicated by the shaded green circles. This, together with Figure 7a, reveals that almost
all tree ring predictors used in our model respond positively to wintertime snowfall. While the PC2–PC4 time
series all represent an inverse summer temperature sensitivity, the loadings of each tree ring series was either
positive (green shading) or negative (pink shading). A positive loading on PC2–PC4 indicates that a particular
tree ring series responds inversely to summer temperature, while a negative loading indicates that the tree
ring site responds positively to summer temperature (also see Ahmed et al., 2011). We also conducted a simi-
lar analysis with the first four PC time series with eigenvalues greater than one that were retained as predic-
tors in the first nest for the HBR reconstruction at Doyian, Gilgit, and Kachora. The PCs showed a nearly
identical climate response as the first four PCs retained in the BR model at Partab Bridge (not shown).

4.4. Climate Informed Discharge Prediction at Partab Bridge

To test if anomalies in winter precipitation and summer temperature can explain the 1990s high flow
(Figures 4 and 5), we developed a multivariate regression model to predict MJJAS mean streamflow at
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Partab Bridge using JFMmean precipitation andMJJASmean temperature as predictors (green line, Figure 8).
The multivariate regression model was built using the raw (i.e., not first differenced) climate data and BR with
LOOCV. This climate-informed statistical streamflow model explained ~49.34% of the variance in the
instrumental data. This climate-based streamflow prediction of instrumental MJJAS discharge at Partab
Bridge was compared to that predicted by the PCR and BR reconstructions (red and blue lines in Figure 8).

The PCR and BR model estimates are significantly correlated at
r = 0.98 during the instrumental period between 1962 and 2004, and
these modes each explained 52.97% and 54.43% of the variance in
the instrumental data. The calibration and validation statistics of the
climate-informed statistical streamflow model as measured by the
CRSQ, CVRE, and RE metrics for the model are presented in Figure S9.
Using this model, we present discharge estimates of streamflow for
the period between 2009 and 2016 beyond the last year of
instrumental data that ends in 2008 (Figure 8). While the climate-
based model predicts the high flow in 1973 reasonably well, a year of
significant UIB flooding (Deutsch & Ruggles, 1978), it underpredicts
flow between 1991 and 2000 while still capturing the direction of
interannual variability during this period. During the common period
of overlap between 1962 and 2008 the RMSEs of the BR, PCR, and
climate-variable informed statistical models are 370.93 m3/s,
373.58 m3/s, and 421.13 m3/s, respectively, while the median-
normalized RMSEs are 10.19%, 10.26%, and 11.57%, respectively.

Figure 7. Climate response during instrumental period of the tree ring predictor suite of the first nest between 1962 and
2004. (a) Same as Figure 5a but for PC1 time series and (b) PC2 time series. (c) Loadings of each tree ring series on PC1
through PC4 used in the Model I at Partab Bridge with the size of the circle and its shading are scaled to magnitude of
loading on the respective PC. PC = principal component.

Figure 8. Instrumental mean MJJAS discharge at Partab Bridge (black) com-
pared against predictions of flow (m3/s) generated by models using PCR (red),
BR (blue), and climate variables (green). Table shows R2 across instrumental data
and models. MJJAS = May–September; PCR = principal components regression;
BR = Bayesian regression.
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However, for the period of high flow between 1991 and 2000 the RMSE for the three models are 397.17 m3/s,
351.75 m3/s, and 532.52 m3/s, respectively, while the median-normalized RMSEs are 10.08%, 8.93%, and
13.52%. The greatly increased RMSE and median-normalized RMSE for the climate-variable informed model
between 1991 and 2000 as compared to 1962–2004 indicate that the climate-informed statistical model is
performing relatively poorly in this decade compared to its quality of fit over the entire instrumental period.

5. Discussion and Conclusions

Understanding climate change and assessing recent trends in climate data require an understanding of long-
term natural variability. For the UIB, available instrumental streamflow data only span two to four decades, an
insufficient time span to accurately characterize decadal to centennial time scale streamflow variability.
Paleohydrologic records can play an important role in helping us extend the instrumental record to better
understand these longer-term processes (e.g., Pages Hydro2k Consortium, 2017; Stockton & Jacoby, 1976).
Our reconstructions of past discharge at four gauging stations (Partab Bridge, Doyian, Gilgit, and Kachora)
extend our instrumental record of UIB discharge back six centuries to the 1400s. Our reconstructions high-
light extended dry periods during the mid-1600s, late 1700s, and early 1900s that have no analog in the short
instrumental period (Figures 4 and 5, also see Cook et al., 2013). Further, these longer-term reconstructions of
flow help us better contextualize streamflow variability during the past two decades associated with the
Karakoram Anomaly (Forsythe et al., 2017; Hewitt, 2005). The high flows in the instrumental period in the late
1980s through 1990s do appear to be unusual in the context of the past six centuries. Using the reconstruc-
tions as a reference baseline, the recent post-2000 decrease in discharge (Archer et al., 2010) may represent a
return to long-term mean flow conditions following the high discharge rates observed in the 1990s. At the
same time, our climate-variable informed discharge predictions between 2009 and 2016 at Partab Bridge
(Figure 8) suggest that discharge rates might be increasing after the decrease between 2000 and 2009 due
to rising summer temperatures. However, considering the underperformance of the climate-informed model
in the 1990s, this result should be viewed with caution.

This most recent wet period, however, is difficult to reconcile with themain climate drivers of discharge in the
region. Nevertheless, the high flow between 1991 and 2000 likely has climatic origins. We infer this because
the tree ring-based models are able to capture the high instrumental discharge during this period. However,
its proximate causes are likely not changes in JFM snowfall or summer MJJAS temperatures. This is shown by
the much better prediction of high streamflow between 1991 and 2000 by the two tree ring models (BR and
PCR) as compared to the climate-informed model, even though all three models exhibit similar overall per-
formance for the entire instrumental period between 1962 and 2004. Specifically, the climate variable-
informed statistical model has a large offset in the magnitude of predicted discharge during this period
despite capturing the direction of interannual variability. Although the underlying causes of this wet period
still need to be investigated, they may lie in climate variability in the shoulder seasons that may be still rele-
vant to streamflow yet not be primary controls on the interannual variability of streamflow. The reason our
tree ring model captures some of these changes may be because the tree growth to climate response exhi-
bits a slightly broader climate sensitivity than the streamflow data. When analyzing the instrumental precipi-
tation and temperature data, we did not find any significant changes in monthly climate (e.g., summer
precipitation) during this period. However, most of the climate records used in our discharge model come
from low-elevation locations relative to the high-elevation runoff generating regions of the UIB. It is possible
that some of the poorer discharge estimates may be a reflection of this. These low-elevation stations might
not be capturing regional processes that might differentially affect high- and low-elevation regions, such as a
preferential increase in high-elevation winter snowfall (Kapnick et al., 2014), or land surface feedbacks from
lowland irrigation causing high-elevation snowfall (de Kok et al., 2018).

Over the coming few decades, discharge in the UIB is expected to increase based on climate model predic-
tions due to a combination of predicted warming enhancing the rate of glacial melt and increases in winter
and summer precipitation (Ali et al., 2015; Brun et al., 2017; Immerzeel et al., 2013; Kraaijenbrink et al., 2017;
Lutz et al., 2014; Wijngaard et al., 2017). At the subregional level, however, these changes might not be uni-
form. For example, the climatic controls of MJJAS discharge at Partab Bridge and Kachora are primarily win-
tertime (JFM) snowfall and summertime temperature, but at Doyian and Gilgit there is no temperature
dependence of streamflow. Consequently, in basins where glacial melt is important (Partab Bridge and
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Kachora), future warming may increase discharge as long as the remaining glacial mass can support
increased flow. Assuming no increase in wintertime snowfall to offset the loss of glacier ice, this meltwater
contribution to streamflow will very likely decrease sometime in the future, thus leading to a long-term
decrease in discharge. In snowfall-dominated sub-basins (Doyian and Gilgit) changes in streamflow are more
likely to depend on changes in wintertime snowfall. At no gauge did we find a relationship between peak
flowMJJAS season discharge and summertimemonsoonal precipitation. This suggests that while monsoonal
precipitation may play a minor contributing role in maintaining baseline flow (Mukhopadhyay & Khan, 2014),
it is not a driver of interannual discharge variability. The spatial correlation between MJJAS flow at Partab
Bridge and JFM winter precipitation shows a region of positive correlation that is relatively limited to
Karakoram, Hindu Kush, and Western Himalaya. This region of positive correlations broadly spans the region
where winter is the most important precipitation season (Greene & Robertson, 2017; Kapnick et al., 2014). The
region of significant positive temperature correlations with discharge extends west and southwest from the
Karakoram broadly tracing the region of the Pakistan-Afghanistan border and does not extend east into the
main Himalayas (Figure 6c). This suggests that the atmospheric processes that control temperature-driven
glacial melt in the summer are different for the Karakoram and the main Himalayas, consistent with the find-
ings of Forsythe et al. (2017, their Figure 2), hypothesized by them to be the position of the summertime
westerly jet.

We establish that tree ring reconstruction of past MJJAS discharge at Partab Bridge produced using PCR and
BR is nearly identical in terms of the median flow reconstructed for each year. While there are differences in
the widths of the uncertainties, produced by the two reconstructions, estimated from regression prediction
intervals and Bayesian credible intervals, respectively, these differences in uncertainties appear to be minor.
We find that BR typically, but not always, produces slightly wider uncertainty intervals. Commonly used sta-
tistical approaches for tree ring reconstructions of past streamflow and climate include PCR (e.g., Allen et al.,
2018; Anchukaitis et al., 2017; Cook et al., 2010, 1999, 2013; Palmer et al., 2015; Stahle et al., 2016), a Bayesian
framework (Devineni et al., 2013; Luterbacher et al., 2016; Steinschneider et al., 2017; Tingley & Huybers,
2010), along with other statistical methods (e.g., Bracken et al., 2016; Gangopadhyay et al., 2009;
Woodhouse et al., 2016). Our results suggest that for a one predictand variable case at the Partab Bridge
gauge, both PCR and BRmethods produce comparable reconstructions in terms of their estimates, uncertain-
ties, and reconstruction skill statistics. However, for a multiple-gauge network within a watershed, HBR with
partial pooling provides a powerful framework to develop reconstructions of streamflow (or climate) with
short instrumental records and missing data. This finding was also supported by our preliminary analysis
(not presented here), where we found that our HBR model with partial pooling performed better than alter-
nate HBR models with no pooling and full pooling (also see Devineni et al., 2013). Finally, we also demonstrate
that the suite of tree ring predictors used in the reconstructions have a nearly identical climate to growth
response as the climate to streamflow relationship. This enhances our confidence that the reconstructions
presented here capture paleo-hydrologic variability caused by past changes in these climate variables, and
that these reconstructions help us better characterize longer-term climate-driven decadal to centennial time
scale streamflow variability within the UIB.
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