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A b str a c t

We derive the Feynman rules of the standard model in the axial gauge.
After this we prove that the fields and do not correspond to phys
ical particles. As a consequence, these fields cannot appear as incoming 
or outgoing lines in Feynman graphs. We then calculate the contribution 
of these fields in the case of a particular decay mode of the top quark.

1 Introduction
We consider the electroweak standard model in the axial gauge, restricting our
selves to leptons for simplicity. We include Dirac masses for the neutrino’s, 
not just because these particles appear to have a mass, but mainly to make it 
easier to figure out what the Feynman rules for the quarks are. The reason to 
consider the standard model in this gauge is tha t it can provide a more severe 
check on gauge invariance than the more common gauges. In [1] an example of 
a gauge dependent quantity was found th a t in the R^-gauge did not depend on 
the gauge parameter £ but in the axial gauge did depend on the gauge vector n. 
Another advantage of this gauge is th a t no Fadeev-Popov ghost particles are 
needed. There are, however, unphysical bosonic particles. Both kinds of un
physical particles disappear in tree graphs in the unitary gauge, but reappear 
in loop graphs. Furthermore, the unitary gauge has no gauge parameter, so the 
only practical check on the gauge invariance of a cross section is its high energy 
behaviour. The disadvantage of the axial gauge is tha t one either has bilinear 
terms in unphysical bosonic degrees of freedom and W or Z  particles or, if one 
diagonalizes these, rather complicated formulae for interaction vertices (and in 
addition quite a lot of different interaction vertices). We choose the option of 
having diagonalized propagators.

* chrisd@sci.kun.nl 
ikleiss@sci.kun.nl

1

http://arXiv.org/abs/hep-ph/0401136v2
mailto:chrisd@sci.kun.nl
mailto:ikleiss@sci.kun.nl


2 T he Lagrangian
Many lecture notes and books contain introductions to the standard model, 
see for instance, [3]. Here, we just quickly recall the terms of the Lagrangian 
of the unbroken standard model. After tha t we turn  to the axial gauge. The 
electroweak standard model has SU(2) x U(1) as its gauge group. The gauge field 
tha t belongs to SU(2) is called A“ , with a = 1 ,  2, 3. The gauge field tha t belongs 
to U (l) is called The lefthanded fermions are in the (2, representation 
and the righthanded ones are in (1, -1 ) . Furthermore there are righthanded 
neutrino’s in the trivial representation of the gauge group. This means tha t the 
Lagrangian for the fermions is

-Cfermion =  “  0 2 -A“ ?™ +  L  +  V’f i W  +  9 l $ ) ^ R  +  V v (* # )V V , (1 )

where stands for the right-handed neutrino field. Note tha t the T a are 2 x 2- 
matrices tha t act on the two components of ^ L. It looks as if the field is not 
coupled to anything but tha t will change if we introduce the field 4  below. The 
Lagrangian for the gauge fields is

¿gauge =  - ^ B ^ i d v B n )  +  (¿PB ,) -
+  +  g 2eabc{ d ^ A au) A ’l l A l  (2)

-  y i A ^ A ^ A l  +  { g ^ A ^ A l

Furthermore there is a complex scalar field <f> in the (2, representation. This 
has the Lagrangian

Lscaiar =  ( d ^ ) t ( d ^ )  +  ig2A a^(3 ß ^ ) ^ T a4  -  ig2A a^ 4 ^ T a(dM4)

+  \ g 22A â 4 ] 4  +  -  i f  (3 )

+  g l9 2 A aß B ^ T a4> +  ~  ^  W > W -

Finally, we can couple the field 4  to the fermions. The Lagrangian is called the 
Yukawa Lagrangian. It is given by

Lyukawa =  gaß’Öl M r  +  ^ aß V r ^  +  haß -  hl ß ^  4 ? ■  (4)

The indices a  and ß  enumerate the generations of the standard model and the 
matrices g and h contain complex numbers tha t can, in principle, be chosen 
freely. e is the two-dimensional Levi-Civita tensor. It is not difficult to see that 
all these terms transform trivially under the gauge group. The reason th a t it is 
possible to construct an SU(2) invariant from and 4  as well as from i/>L and 
4  is th a t the fundamental representation of SU(2) is pseudo-real. The reality of 
representations is, for instance, discussed in [4].

We briefly outline the symmetry breaking using the axial gauge fixing. The 
unbroken standard model, as defined by the above Lagrangians, is invariant 
under local gauge transformations. The fermion fields and the field 4  trans
form according to the representation they are in. The vector fields transform 
according to the infinitesimal transformations

S B ^ j - ^ S  A));

S A ;  = j-2 (d ,(S A a)) + eabc(SAb) A ^  U
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if we parameterize group elements by e-iA and e-iA T . A and A“ are four arbi
trary  functions of space-time. The freedom to choose four arbitrary functions of 
space-time indicates tha t there is a large redundancy in the field configurations. 
In the path integral this redundancy causes problems, because of integrating 
over many equivalent field configurations, and we need to get rid of it. The 
various ways of doing this are the various gauges. We choose the so-called axial 
gauge. This means th a t we add to the Lagrangian the quantity

•^gauge-fixing =  — \X n ^  A 1 Â®n1' — ^A(n • £>)2, (6)

and in the resulting Feynman rules take the limit A ^  ro. The various gauges 
should give the same observable results (e.g. cross sections) and these should 
not depend on parameters in the gauge choice. In our case they should not 
depend on the gauge vector n.

In the standard model, it is assumed tha t the param eter p 2 tha t appears in 
the Lagrangian for the scalar field 4  is negative. The consequence of this is that 
the minimum of the energy of this field is no longer located at the point 4  =  0, 
but instead at the sphere 4 4  =  - 2 p 2 /A ^ .  To derive Feynman rules, we make 
the substitution

(7)
with v = 2 y /—jj12 /X rp so th a t the potential is minimal for </> =  0. The different 
components of the 4-field get different roles because of the arbitrary choice of 
the direction of the translation of the 4-field. The second component of this 
complex field is split into two real components according to

42 = (H  + i4 z )  ■ (8)

After the field translation, the fields A 3 and B  mix in the bilinear terms. We 
have

C -A*B, b ilinear =  ~  ^ A 3 { d ,  A 3̂ )  +  ^ A 3 ) ( d ^ 4 3 ) +  ^ V 2 A % A ^

-  ± A n M £ A > " -  i ( c ^ ) ( d „ £ y  +  (9)

+  y \ v 2B ^  -  ±A(n ■ B )2 -  y ig2v 2A%B

This part of the Lagrangian can be diagonalized by making the substitution

A fi ^  c o s A fi +  s in 0Wb m; (10)
B M ^  cos dw B M -  sin dw A 3 ,

with cos9w =  ge/ g 1 and s in 0w =  ge/g 2. ge is by definition given by g“l  =  
g21 g2i/(g21 +  g |). At this point, we introduce the masses M H and M W . These 
are given by

M W ^
2 sin 6w (11)

M 2h  = \ \ t p v 2.

The field H  turns out to have a mass M H, while M W is the mass of the 
fields A 1,2. The field B  has become massless, the mixing term  between A3 
and B  has disappeared, and the field A3 has gotten a mass M Z =  M W /  cos 0w.
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At this point we change the name of the field A3 into Z , and the components 
A 1,2 are taken to be the real and imaginary parts of the complex vector field W  
according to

1

V 2
A l  =  ^ = ( W ^ + W ; ) ;

! (12) 

A ^ = W 2 ^  ~  '
We still have a mixing term  between faz  and Z . The bilinear terms in these 

fields are given by

CZ<Pz, bilinear =  Z » ) (d uZ „) + ^ Z ^ P  Z„) + \ M 2 Z ^

-  ±An ^ Z ^ n "  +  \ { d ^ z ) { d ^ z ) -  M z Z » d ^ z . ( }

This part of the Lagrangian can be diagonalized in momentum space by substi
tuting

k » Z  (k)
4>z(k) ^  4>z (k) + 2 iM z ----p ---- . (14)

It is inadvisable to make a substitution on Z , because of the presence of the 
gauge vector n.

For the fields W  and fa (i.e., the first component of the complex fa-field) we 
have a situation similar to what we had for the fields Z  and faz . These fields 
still mix. We have in the Lagrangian the bilinear terms

L w 0,bilinear =  - (d » W V)(d»W *)  +  (d»W »)(dVW*  ) +  W » W*

-  Xn»W » n vW*  +  (d»fai )(d»fa*) (15) 
+  iM W W**d»fal -  iM W W »d»fa .

The reason that, in the mixing terms, we have two conjugated fields or two 
unconjugated fields is because of the way tha t we chose to put the fields A 1,2 
into the complex field W  in equation (12). We chose this way, because it gives 
the normal conventions in the couplings to the fermions. These terms are diag- 
onalized by applying, in momentum space, the transformation

k»W »(-k)
f a ( k ) ^ f a ( k ) + 2 M w ------ÿ ---- (16)

For convenience, we rename the field fa into faW and fal into faW.
After the diagonalization process the quadratic terms in the Lagrangian for 

the field Z  are, in momentum space, given by

(17)
c z  2 =  - ±k2z ( k y z ( - k )M +  ^ z { k ) ^ z { - k ) ,  +  \ M 2z { k Y Z { - k ) ^

-  ^ k » Z { k ) ^ Z { - k ) „  -  ±An * Z { k ) lin ,' Z { - k ) l,.

From this the propagator

_  . /  _  k l /k l_i n2 +  i f f f 2 2z)/X)  n-k 1 v M (n-k)2 J
= ---------------------h ? - M %  + ie--------------------- (18)

can be found. Taking the limit A ^  ro, the term  with (k2 — )/A disappears 
and we see th a t the numerator is the same as in the axial gauge for massless
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particles. In the rest of this paper this limit is implied. For the W -particle the 
same propagator can be found except tha t M Z should be changed into M W.

From this propagator we can derive the polarization sum in the axial gauge. 
In the theory without interaction we have a particle creation field configuration

a- (k) =  —i / * « —  (19)

The complex conjugate of this is the particle annihilation field configuration. 
Because the vector field Z  has three physical degrees of freedom, the j  in the 
above formula should run from 1 to 3. For sg 2 we choose two vectors perpen
dicular to each other and perpendicular to both k  and n  with si 2 =  —1. For s3 
we pick

4  = ----------, f ' " k  t -  (20 )
3 M Z \J{k ■ n )2 — k 2n 2

This is correctly normalized as can be checked by verifying that

(,a*3(k , t)a3(k', t')) = 2\J\k\2 + M 2 (2tv)3 S3(k -  k')0{t' -  t). (21)

It is possible to add an arbitrary multiple of n g in the definition of sg, but since 
the contraction of n g with the propagator is zero, this does not contribute. The 
polarization vectors ej tha t occur in the Feynman rules are the contraction of 
Sj with the numerator of the propagator. We have

nA  I V ^  , j .  j .  n2 \  s u

+  (22) 

From this it can be found tha t the polarization sum is given by

V  =  - 0 ^  +  —  +  —  - ^ ^ - ? — . (23)
J J n - k  n - k  (n • k ) 2

j —1,2,3

In practice, only the —ggv term  plays a role, because it is a feature of the axial 
gauge th a t if we have a vector boson (B, W  or Z ) as an incoming/outgoing par
ticle, the matrix element should become zero if a polarization vector is replaced 
by the momentum of the external particle the polarization vector belongs to. 
This is a check on gauge invariance. Note tha t it is an error to contract the 
polarization sum with the numerator of the propagator. In the axial gauge one 
should be careful not to confuse the vectors sg with the vectors eM.

Also the fermions can be diagonalized. This proceeds in exactly the same way 
as in more common gauges. The result is tha t there are six different fermion 
masses and tha t the coupling to the W  boson can change a fermion of one 
generation into a fermion of another.

5



3 Feynm an R ules
Below we list the Feynman rules of the standard model in the axial gauge. A 
few remarks are in order

1. For every Feynman rule tha t involves fermions, there is another one with 
all generation labels changed. This involves the changes e ^  p, ve ^  vg , 
m e ^  and ^  . Furthermore, in subscripts of the neutrino 
mixing m atrix V  the exchange 1 ^  2 should be carried out. Also one of 
the generations involved can be changed into the third generation (i.e., 
the t  fermion). Of Feynman rules related in this way, only one is shown 
below

2. Particles tha t have an antiparticle, have an arrow on their lines in a Feyn
man graph. In this case, momentum flows in the direction of the arrow. 
If particles do not have an arrow on them, momentum flows towards the 
vertex.

3. We use the following abbreviations

9e
9w • /I ! sin 0w

=  ffe .
sin 0W cos 0W 7 (24)

pi  =  \ {  i - 7 5);

P r  =  5 ( 1  + 7 5 )-

4. If reversing all arrows on a vertex would yield a different vertex, tha t ver
tex is also a vertex of the theory. To find the vertex factor tha t belongs to 
it, the vertex factor of the original vertex should be complex conjugated, 
except for one factor of i, and all momenta tha t belong to particles that 
do not carry an arrow on their line should get a minus sign. Of a pair 
of vertices th a t is related in this way, only one is shown below. As an 
example, consider the vertex with an incoming electron neutrino, an out
going muon and an incoming faW, tha t is shown below. The “conjugate 
vertex factor” is found by exchanging p r and pi and changing Vn into V12. 
Another example is the vertex with an incoming Higgs, an incoming 
and an outgoing W  (see below). To obtain the vertex tha t belongs to an 
incoming Higgs, an incoming W  and an outgoing , the only change 
necessary in the vertex factor is k1 ^  — k1.

5. The algebra necessary to find all the vertex factors was done using the 
C + +  computer algebra library GiNaC, see [5]. Because other symbolic 
calculations will be easier to perform starting from the Lagrangian calcu
lated here, the program used can be downloaded at the homepage [2] of 
one of the authors.
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3.1 P ropagators

B(k)
nu ku+n^kv

■k (n-fc)s

k2 +  it

2ni

W (k)
_  H'vt'vl̂ r i n r v u | ì i n

n-k  ' rvi ' rvfi ( n - k y

k 2 — M ^ r  +  Ì€

i

4>w(k) *
¥

Z(k)
(  _  , 7, 7, n2

n-fc ~r h 'l' h'V (7 ik )2J

k 2 — Mi- +  *e

i

4>Z (k ) 1
A-2

H ( k )  _____________ ‘ ____________

k2 — M “H +  it

e(fc) ¿($ +  m e)

k2 — m2 +  it

-eW i ( l '  +  » V . )
k2 — mV +  ieve

3.2 Triple boson couplings w ith ou t H iggs

W ( k 2 ) v

B(k3r

W ( k i ) u

ige gVff (k2M +  k£) +  <T  (kV — kV ) — g^v (

~ M w  I 9 k2
k^ ku

1 k2

kl +  k2 )

fcfMV
j k2 fc22 A
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ku kv
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3.10 Q uadruple boson  couplings w ith  m ultip le H

H ( k 2 )

H ( k 1 )

W(k4)v
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4 (U n)physical Particles
The and fields are unphysical. This means tha t they cannot be external 
lines in a Feynman graph. The pole at k2 = 0  tha t occurs in their propagators is 
canceled by the poles in the interaction vertices tha t the W and Z  particles have. 
The consequence is tha t these particles cannot travel over macroscopic distances. 
As an example, we show how this cancellation arrises for one particular case. 
Consider the combination

M

e ( k 2 ) e ( k 4 )

W  ( q )
+

e ( k 2 ) e ( k 4 )

^ w  ( q ) (25)
e ( k 1 ) 2 ( k 3 ) e ( k 1 ) e ( k 3 )

We do not assume anything about the external lines here, so tha t our conclusions 
also apply if all lines in the above graphs are internal lines of some bigger graph. 
For A4 we find

Pr Y

• 2 2  1 

2 M 2, [lMl q2 2

_ qMn„ +  q„nM , n~
q.n H i l ' l v  (q  n ) 2

q -  m w  +  *e

q Pi
(26)

Here, we have made the approximation tha t the neutrino’s are massless and 
consequently the mixing m atrix V can be taken diagonal. This is just for brevity 
and does not change much in the proof below. The [• • •] 1j2 are used to distinguish 
matrices in spinor space for the two different spin lines. Working out the brackets 
for the spin lines, we find

2
[ p r Y ]

q^nuJr qu,
q-n

q2 -  M W  +  * [Yv Pi]2

V _ m 2,  +  * > ]2

2
W w ' m e  r 1 j r n _____-  r v  1

+  2 [PAl QÏ -  M l ,  + i e [1 p ih

n„ _  n  
q-n (q -n)2

2 2
_  "_vw_ _e_ r 1 _

2 g2 I M l  n2

W
2 2  

1 _  SL n
(q*n)

q2 -  M 2 + -  M 2
W

2 2  
Ww m e r i 1 r i

2 Myy q2 '

(27)

Using the identity

1 1 _  1 1 1 1

q2 q2 -  M 2 + ie M 2 q2 -  M 2 + ie M 2 q2
(28)

we see tha t in equation 27 no pole remains at q2 =  0.

2 m e
q2q 1

mvY
2

2
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The general property tha t we need so tha t this always works out is th a t the 
combination

¿^interaction \  W ( \ ¿^interaction , ¿^interaction \  (f)\y / \ ¿^interaction
d w ,  A dW *  +  d fav  [q) dfaw

has no pole at q2 =  0. This property can be checked to hold. In the same way, 
it can also be shown tha t is not a physical particle.

5 O utgoing M assive V ector B osons
If a massive vector boson is produced in a process, strictly speaking this cannot 
be an asymptotic state, and one should take the decay of this particle into 
account. However, not doing so may be a rather accurate approximation. In 
this section we consider what the role of the field is. We consider a particular 
decay mode of the top quark, namely t ^  b +  b +  c. We compare the result that 
can be obtained from the full tree-level matrix element to the result tha t we get 
if we use the W boson as an on-shell particle and to the result tha t we get if 
we ignore the field. Notice tha t the contribution is itself independent 
of the gauge vector n, and might therefore be overlooked. If we consider the 
W boson as an on-shell particle we find the decay width

on-shell W r
r

t ^ b + W +  '
W + ̂ bc
r W

The full tree-level matrix element is given by

M

(30)

(31)

We find the following relative errors.

on shell W - r both graphs r W
on shell W

6 A 4 ,

fM W Vm i +  m 2MW — 2M4

+

log
m? — M 2w

M W
m^ +  3m|MW — 6m?MW

m6 — 3m?MW +  2MWW

r without r both graphs
on shell W

0.016;
3 r W m? +  m? m^

2TY M w  M yy n if  — 3m%Myy +  2M yy

3 + log
m c + in b 

m t
-----2 -10 -5

(32)
In these expressions we restricted ourselves in both numerator and denominator 
to the lowest non-trivial order in r W, m b and m c. W hat can be learned from 
this is tha t because the field couples to the fermions proportional to their 
mass we expect it not to be im portant if either of the fermions the couples 
to has a mass tha t can be ignored.
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6 C onclusions
The electroweak standard model can be considered in the axial gauge. In this 
gauge there are no Fadeev-Popov ghost particles. There are, however, the un
physical bosons and . These bosons cannot appear as asymptotic states. 
The 1 /k2-poles in their propagators cancel against the 1 /k2-factors in the ver
tices of the corresponding physical particles. The coupling of the fermions to the 
unphysical fields and to the 1 /k2 terms in the vertex factors are proportional 
to the mass of the fermions. Consequently, ignoring these masses can be an 
im portant simplification, depending on the amplitude considered.
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