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ABSTRACT 

Structural and Optical Characterization of Solution Processed Lead Iodide Ruddlesden-Popper 

Perovskite Thin Films 

Eli Kinigstein 

 

Highly efficient LEDs and photovoltaic cells based on spin coated films of layered Ruddlesden-

Popper hybrid perovskites (RPPs) have been recently reported. The electronic structure and 

phase composition of these films remains an open question, and diverse explanations have been 

offered to account for the excellent device performance. Here we report x-ray and optical 

characterization of hot cast RPP thin films, emphasizing the distribution of structural and 

electronic properties through the film depth. Our results indicate an at least 70% phase pure n=3 

film results from casting a stoichiometric solution of precursors, with minor contributions from n=2 

and n=4 phases. We observe a strong correspondence between the predicted single-crystal RPP 

reciprocal lattice and measured RPP film wide angle scattering pattern, indicating a highly ordered 

[101] oriented film. This correspondence is broken at the air-film interface where new scattering 

peaks indicate the existence of a long wavelength structural distortion localized near the films 

surface. Using transient absorption spectroscopy, we show that the previously detected 

luminescent mid-gap states are localized on the films surface. Investigating films of varying 

thickness, we determine the photo-excited carrier dynamics are dominated by diffusion to this 

interface state, and extract an excitonic diffusivity of 0.18cm2s-1. We suggest that the observed 

surface distortion is responsible for the creation of luminescent mid-gap states. 
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Preface: 

 

This work is part of an on-going effort in the scientific community to develop materials for solar 

energy conversion which are significantly cheaper to produce than the dominant silicon 

technology. Much of this work has focused on replacing each semiconductor component in the 

solar cell by an analogue that can be deposited via solution. One possible solution processed 

material proposed to replace the silicon active layer is methyl-ammonium lead tri-iodide 

(MaPbI3). Solution deposited solar cells based on MaPbI3 exhibit a large power conversion 

efficiency of around 22%. However, these high device efficiencies degrade significantly on the 

time scale of 100 hours, and the cells are essentially non-operational after a couple of weeks. 

Therefor it is of great technological interest to develop materials which like MaPbI3 are 

intrinsically well suited for solution deposition and solar energy conversion, but maintain their 

material integrity on the timescale of 5 years or longer. A natural place to look for such materials 

is in the layered derivatives of MaPbI3, of which there are several. The layered Ruddlesden-

Popper Perovskites (RPP) of the form Ba2Man-1PbnI3n+1 have been shown to make highly 

efficient solar cells (~12.5%) and exhibit increased air and moisture stability. However, the 

operating principals of devices based on these films are not well understood. This thesis is an 

attempt to understand the processes involved with light absorption and the subsequent motion 

of electrical energy through solution processed RPP thin films. We show how different solution 

deposition procedures result in films with strongly divergent structural and optical properties, 

and provide an interpretation for the widely varying and solar energy conversion efficiencies 

based on these films.  
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Introduction 

 Due to the surge of interest in Hybrid Organic-Inorganic Perovskites (HIOP) for 

applications in solution processed LEDs and Photovoltaic cells, many groups have focused on 

simulating and understanding their electronic band structure. MaPbI3 has thus far proven the most 

successful in optoelectronic applications, so this brief review will focus on this material, as well as 

it’s layered derivatives which are the subject of this thesis. We note that HIOPs differ qualitatively 

from the familiar perovskite metal-organic frameworks in that they do not contain direct organic-

inorganic bonds1.   

 MaPbI3 can successfully form large grain polycrystalline films via a low temperature 

solution based technique on account2 of it’s relatively low activation energy for solid state 

crystallization between 60kJ/mol and 150kJ/mol3 (depending on the precursor lead salts used). 

In contrast the activation energy for an amorphous Silicon film has been measured to be several 

hundred kJ/mol4. However, it is generally believed that the microscopic electronic structure of 

these crystals is the fundamental driving force behind their optoelectronic utility, rather than the 

mesoscale structure of the grains4. In particular, it is found that all point defects (interstitials, 

vacancies, substitutions) with low formation-energy form shallow impurities5, which in principal do 

not contribute to non-radiative recombination. This is favorable for photovoltaic applications as 

non-radiative recombination lowers both the open circuit voltage and the short circuit current.   

This defect tolerance of MaPbI3 is purported to result directly from it’s curious band edge 

electronic structure which is quite different from that of tradition II-VI and III-V ionic 

semiconductors5,6. Band structure calculations have inevitably centered around density functional 

theory6 (DFT) and below I will review some of the important results obtained on MaPbI3 before 

transitioning to a description of the electronic structure of the layered derivatives. 
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General Structural Properties Of HIOPs 

Hybrid Organic-Inorganic Perovskite crystals have a chemical formula of the form AMX3. Where 

A is a monovalent cation, M is a divalent metal cation and X is a monovalent halide ion. The ability 

of this combination of elements and molecules to crystallize in the perovskite structure is related 

to geometric constraints dictated by size of the ions. These geometric considerations can be 

summed up in the most basic description by the Goldschmidt tolerance factor 𝑡 =
𝑅𝐴+𝑅𝑋

√2(𝑅𝑀+𝑅𝑋)
 where 

Ri (i=A,M,X) are the ionic radii of the various crystal constituent. A tolerance factor close to 1 is a 

necessary condition to form an undistorted cubic perovskite structure. 0.8<t<1 results in 

distortions of the octahedra.  Given a (PbI6)-4 octahedra, and assuming t=1 implies that RA should 

equal 2.6Å for an undistorted perovskite structure. 2.6Å is quite large for an atomic cation, and 

this results from the relatively large ionic radii of Pb and I. Therefor the molecular cation 

methylammonium+ is used. The carbon-nitrogen bond in methylammonium+ is ~1.5Å while the N-

H and C-H bonds are ~1Å, yielding an effective ionic radius of 2.17Å1, which implies that MaPbI3 

should form a stable, though distorted perovskite structure.  

MaPbI3 Crystal Phases 

MaPbI3 has three phases, a low temperature orthorhombic phase (T<160K) a room temperature 

tetragonal phase (160K<T<330K), and a high temperature psudo-cubic phase(T>330K). These 

phases are associated with a changing effective ionic radius of methylammonium+ which 

increases as the increasing temperature activates rotational modes around the C-N bond in the 

tetragonal phase and tumbling modes of the of the C-N bond in the psudo-cubic phase7. These 

crystals therefor exhibit dynamic disorder making first principals simulations challenging. However 

a number of work-arounds have been implemented with varying degrees of success.  
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DFT Band Structure of MaPbI3 without Spin Orbit Coupling Analysis of Point Defects 

 It is found that the orientation of the MA+ ion has a weak impact on the band gap and band 

edge structure. Reference 5 simulates the tetragonal structure (no MA+ disorder) by fixing the C-

N bond to lay on the [111] direction which orients the nitrogen towards one of the faces of the 

(PbI6)-4 octahedra. This choice undoubtedly gives rise to a different set of octahedral distortions 

than those observed experimentally7, as the orientation of the MA+ cation has been shown distort 

the Pb-I-Pb bond angle8. Thus in the context of DFT, the orientational pattern assumed for the 

MA+ largely determines the tilting pattern adopted by the octahedra. In any event, DFT-GGA 

simulations of the said structure yield reasonable agreement with the experimentally determined 

band gap around 1.5eV. However it has been determined that this agreement is spurious9 as the 

inclusion of inclusion of spin-orbit coupling (SOC) related to the lead and iodine atoms bring the 

band gap down to about 0.7eV10, which shows the huge energetic importance of this effect. The 

obtained agreement between DFT-GGA and experiment has been attributed to cancelation of 

errors, involving SOC and correlation effects not accounted for at the GGA level5. Without being 

an expert on DFT, it seems questionable to extract energetic information about the point defects 

based on DFT-GGA, as it is unclear that the cancelation of errors present for the delocalized 

bands will obtain in the case of localized point defects. However, reference 5 is cited in many 

reviews which adopt it’s point of view, and concurring DFT predictions have followed11,12. We 

therefor review some of the qualitative aspects of reference 5 below.  

 The band gap of tetragonal MaPbI3 is located at the R point of the brillouin zone 

(unchanged by SOC). The conduction band minimum is composed of the Pb 6Px,y,z orbitals with 

a small contribution from the I 5s state. The valance band maximum is composed mostly of I 5p 

orbitals with a reasonable contribution from the lower energy lead Pb 5s states. The strong 

interaction between the I 5p states and the Pb 5s states at the valance band maximum is anti-

bonding in character, which pushes the valance band maximum higher in energy than the normal 
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position of the I 5p states. This situation in which the conduction band is located on the metallic 

cation, and the valance band is mostly localized on the halogen anion reflects the ionic nature of 

the crystal. Specifically, the two Pb 6p valance electrons present in metallic lead are transferred 

to Iodine, and these empty states form the conduction band. In the absence of orbital hybridization 

between lead and iodine (a covalent bond) the crystal is held together by electrostatic interactions. 

Qualitatively, this situation does not change by the inclusion of spin orbit coupling, or changing 

the orientation of MA+. 

 Point defects are simulated in a 3x3x3 super cell, which is large enough that the impurities 

don’t spatially overlap, and thus no impurity bands are formed in the simulation. Based on a 

thermodynamic analysis of the formation energies of various defects they conclude that a lead 

vacancy and a MA+ substitution at a lead site are the dominant acceptor point impurities, and they 

are derived from the I 5p orbitals. Without the antibonding interactions with the lead ions in these 

two cases, the energy of the I 5p orbitals is decreased which puts these impurity energies in the 

valance band. Likewise, the dominant donor point defects are MA+ interstitials and Iodine 

vacancies which are composed of the Pb 6p orbitals. Because the MA+ ions have no covalent 

bonds to the inorganic lattice components, they don’t create sub gap states when they exist at 

interstitials. Similarly, due to lack of bonding interactions between I and Pb (iconicity), an iodine 

vacancy has very little effect on the Pb 6p orbitals. All other defects are shown to have large 

formation energies, and thus are much less likely to occur during formation. The lack of deep 

impurity levels means that photoexcited carriers can be trapped, but escape those traps with 

relative ease. Thus these point defects do not serve as non-radiative recombination centers.  

DFT with Spin Orbit Coupling 

To understand the effects of spin orbit coupling, a cubic lead halide perovskite phase was 

simulated in reference 6. Here the MA+ ions are replaced by cesium+, which is shown to have no 

effect on the band edge electronic structure due to lack of covalent interactions with between the 
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octahedra and the ion on the A site. This is necessary because the cubic phase features dynamic 

disorder associated with the rotation and tumbling motion of the MA+ ions, which results a cubic 

structure on average7. The inclusion of spin orbit coupling in a DFT-LDA calculation splits both 

the conduction band and the valance band, significantly reducing the degeneracy of both. The 

conduction band minimum becomes the spin orbit split off band which now has a degeneracy of 

2 (previously 6), and is shifted down by an amount 2ΔSO/3. The remaining 4 states are shifted up 

by an amount ΔSO/3. A similar effect is produced on the valance band, except these states have 

opposite parity from the conduction band, and thus the direct band gap nature is preserved. 

Information on spin orbit coupling in the tetragonal phase can be obtained by parameterizing a k-

p Hamiltonian model with the bands from the cubic phase (without SOC). With this k-p Hamiltonian 

the electronic structure of the band edge of the tetragonal phase can be obtained by considering 

the tetragonal structure as a perturbative strain acting on the cubic phase. With this model it is 

shown that the effects of spin orbit coupling always dominate those produced by the strain, thus 

we expect the band edge of the other perovskite phases to be dominated by SOC as well.  

Relativistic GW  

 A number of papers have shown that the correlation corrections in the DFT+GW 

approximation increase the energy of the band gap, counteracting the shift due to spin orbit 

coupling. These calculations show that systematically including the many body correlation effects 

in conjunction with SOC results in a band gap (1.67eV) in reasonable agreement with what 

observed experimentally13(1.6eV) .  

Electronic Structure of Layered HIOP Single Crystals  
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 Lead Halide Ruddelsden-Popper 

Perovskites (RPPs) such as (Ba)2(Ma)n-1PbnI3n+1 

(figure 1a) are a family of layered compounds 

related to the MAPbI3 structure. MaPbI3 devices 

are plagued by instability and degradation in 

ambient conditions.  However the layered RPP 

materials exhibit enhanced moisture and air 

stability14–18, with suppressed ion migration19 

compared to MAPbI3. Each layer has an 

inorganic core of (PbI6 )-4 octahedra , and a 

capping layer of butylammonium ions which 

electronically isolate the slabs from each 

other20,21. The inorganic core can be constructed 

conceptually by taking a slab out of the MaPbI3 crystal structure parallel to the [110] plane. The 

number of (PbI6 )-4  octahedra composing the slab thickness determines ‘n’ in the chemical formula 

(BA)2(MA)n-1PbnI3n+1. The organic capping layer is constructed by substituting the surface methyl 

ammonium cations for the bulkier butly-ammonium cations. This structure can be regarded as a 

self-assembled multiple quantum well. The octahedral periodicity is completely out of phase in 

adjacent slabs which is driven by the bulkiness of the butylammonium hydrocarbon chain, and is 

characteristic of the Ruddelsden-Popper phase.  

 Phase pure (containing only one n value) single crystals of (BA)2(MA)n-1PbnI3n+1 have been 

produced in solution and characterized by x-ray diffraction8,22,23. Single crystals exhibit room 

temperature excitonic luminescence8,22. However, because of the large unit cell, and the expected 

large impact of spin orbit coupling (described in the previous sections), simulations are strongly 

limited by computational resources. Simulating the optical properties requires the resolution of the 

Figure 1. This figure compares the 

crystal structure of MaPbI3 with it’s 

layered derivative (Ba)2(Ma)2Pb3I10 which 

is the subject of this thesis.  
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Bethe-Salpeter equations to account for excitonic effects, which has not been possible up to this 

point. By analogy with type 1 quantum wells it seems reasonable to attempt an effective mass 

model in the envelope function approximation to understand the confinement effects of the 

ultrathin inorganic slabs. Physically this picture makes sense because the crystal structure 

consists of alternating layers of a small band gap semiconductor separated by much larger band 

gap organic materials. However, to construct an effective mass model the bulk parameters 

(effective mass, band offsets) of the heterostructure must be known. The bulk parameters of 

MaPbI3 may be reasonably assumed for the core of the slab provided that passivating ions are 

included, however there is ambiguity in defining the parameters of the organic spacer layers in 

the crystal. Futhermore, the envelope function approximation assumes that the Bloch functions 

at the interface are very similar which is clearly not the case21.  

 Briefly the electronic structure at the level of DFT will be reported for comparison with the 

MaPbI3. Similar to the bulk MaPbI3 phase, the band edge of the layered materials exhibit the ionic 

character that one would expect. The conduction band is composed of the lead 6p states while 

the valance band consists of the iodine 5p states with a small contribution from lead 5s. The n=3 

layered compound exhibits a direct band gap at the Γ point8, however the band gap is 

systematically underestimated at this level of calculation. The variation of the band gap with layer 

thickness is qualitatively reproduced. The valance band has an effective mass of 0.14me and the 

conduction band has an effective mass of 0.09me which is close to constant as a function of layer 

thickness. The effective mass in the direction corresponding to the layer stacking is observed to 

be very large, indicating highly anisotropic transport is expected. Spin orbit interactions can only 

be applied to the n=1 crystal (BA2PbI4) due to the large number of atoms in the unit cell of thicker 

layered materials. Similar to MaPbI3 it is found that including the spin orbit interaction drastically 

decreases the band gap to way below the experimental values, but results in no change in the 

band dispersion.  
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 Below the band gap, an additional absorption peak is observed, and room temperature 

photoluminescence is observed at the positions of these lower energy peaks. These peaks shift 

with the band gap as the layer number increases, and are attributed to excitonic absorption. The 

presence of stable room temperature excitons in layered perovskites has received much 

attention24,25, and has been explained by a combination of reduced dimensionality and an image 

charge effect. It’s well known that the two dimensional hydrogen atom exhibits a binding energy 

four times larger than the three dimensional hydrogen atom26. The image charge effect results 

from the dielectric mismatch between the organic spacer and the perovskite core which results in 

a slab surface polarization charge which has the same sign as the carrier. These induced charges 

increase the coulomb interaction between the carriers and thus the binding energy8,20,21,24,27,27,28. 

A wide range of binding energies have been reported for the n=3 phase from 20meV8 up to greater 

than 200meV25. The value of 20meV from reference 8 is the lowest found in the literature, with 

most values larger than 100meV. 

Spin Coated Films of Layered HIOP  

 The technologically useful form of layered perovskite materials is obtained by dissolving 

the purified single crystals, and subsequently spin coating the solution onto the desired substrate. 

In this way solution processed solar cells in a planar PIN geometry have achieved a 12.5% power 

conversion efficiency under simulated sunlight. These devices exhibited increase air stability 

compared to MaPbI3 devices and operated un-encapsulated for 2250 continuous hours with an 

only 60% degradation in power conversion efficiency. Encapsulated devices show no signs of 

degradation in efficiency14. In contrast MaPbI3 devices generally drop to 40% within 100 hours, 

although certain notable exceptions exist. Similarly, highly efficient solution processed LED have 

been produced from spin coated films16.  

 It is strange that such good devices have been obtained in reference 14, in light of the 

strongly bound excitons that dominate the optical properties, and large band gap of the material. 



10 
 

However, such device efficiencies are not typical15,22,29 of these materials. The best performing 

devices are obtained using a ‘hot casting’ spin coating procedure. Devices based on hot cast films 

consistently out-perform layered perovskite films deposited by other methods. In the hot casting 

method glass substrates coated with a transparent hole conducting material are heated to 1100C. 

They are then placed on the spin coating chuck where a solution of DMF and dissolved single 

crystal perovskites are deposited on them and allowed to dry in ambient. The resulting films are 

optically smooth, and no subsequent annealing steps are necessary. AFM images of these films 

show a ~300nm lateral grain size. Although the resulting films are polycrystalline, they all have 

their [101] planes parallel to the substrate, yielding sharp Bragg peaks in grazing incidence x-ray 

diffraction experiments14,25. This amazing macroscopic out of plane alignment of the crystal 

grains, results in the two dimensional slabs standing strictly perpendicular to the substrate. 

Incredibly, cross sectional SEM images of RPP thin film solar cells show no visible grain 

boundaries in the out of plane direction14,22,25. Thus we expect that the strong orientation of 

perovskite slabs is related to the high efficiency obtained in devices based on hot cast films.  

 The unit cell of the species existing in hot cast the thin films is found to be very similar to 

that of the single crystals. However, the optical properties of the films have notable differences 

from the single crystals regardless of the spin coating deposition procedure. The films contain an 

emissive sub gap state who’s exact energy seems to depend greatly on the processing conditions 

of the film. In hot cast films it was suggested that this state has a positive impact on device 

performance. This thesis is an attempt to understand the nature of that sub gap state, how it 

interacts with the excitons native to the material, and it’s relationship to the macroscopic alignment 

of the grains [101] crystallographic planes parallel to the substrate observed in hot cast films. We 

attempt to answer these questions by performing broad band ultrafast transient absorption 

spectroscopy, and grazing incidence X-ray diffraction on a set of hot cast of n=3 RPP films of 
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varying thickness. This work was carried out at the Center for Functional Nanomaterials (CFN) 

and the National Synchrotron Light Source-II (NSLS-II), both located at Brookhaven National Lab.  
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X-Ray Scattering Experimental Details 

Grazing incidence x-ray scattering techniques make use of high intensity x-ray beams incident on 

the sample at very low angles (<10).  This low incident angle implies that the almost microscopic 

beam (50μmX200μm) is spread out over macroscopic distances on the sample surface, greatly 

enhancing the scattering cross section. This allows the assessment of the crystalline quality of 

films as thin as 20nm. In addition to an increased cross section, the very low incident angles allow 

one to leverage the phenomenon of total external reflection of the x-rays to obtain a quantitative 

picture of the crystalline structure as a function of depth in the film. However the increased 

scattering cross section comes at a the expense of a greatly reduced resolution in the |�⃗� | direction.  

Theory of X-ray Scattering 

The interaction of the x-rays with the average electron density in the sample is accounted for  by 

the “jellium” approximation1, producing an effective refractive index which is less than 1 by roughly 

10-5. This yields very small Fresnel reflection coefficients for angles above the critical angle. 

Physically, we can consider the observed scattering as arising from the fluctuations in the electron 

density which are characteristic of the of the crystal structure. X-rays incident on the sample cause 

the fluctuations electron density to oscillate in phase with the radiation, and the oscillating electron 

density from each point produces a spherical wave in accordance with the Huygens-Fresnel 

principal. In the far field, the scattered wavelets are approximately plane waves with a phase that 

depends on it precise positon in the sample. The contributions from the ensemble of scatterers 

add coherently at the detector. Therefor periodic structures in the sample cause constructive 

interference in discrete directions, and totally destructive interference in other directions which 

result in intense scattering in specific directions called Bragg peaks. The scattering directions can 

be related to the size of the periodicity in the sample. The so-called kinematic structure amplitude 

(proportional to the scattered field amplitude)  is given by : 𝐹(�⃗� ) = ∫∆𝜌(𝑥 )𝑒𝑖�⃗� ∙𝑥 𝑑3𝑥 where �⃗� =
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𝑘𝑖
⃗⃗  ⃗ − 𝑘𝑠

⃗⃗⃗⃗  is the difference between the incident wave vector and the scattered wave vector. This 

shows that a periodicity of length scale L in the sample scatters the incident radiation by |𝑄⃗⃗⃗⃗ |=2π/L. 

Thus by measuring the x-ray scattering peaks we can evaluate the periodicities present in our 

sample to deduce information about the basic crystal structure.  The photon flux (photons/s*mm2) 

scattered �⃗�   is thus given by 𝐼0𝑟𝑒
2〈𝐹(�⃗� )𝐹(�⃗� )∗〉 1 where 𝑟𝑒

  is the classical electron radius which 

equal 2.8x10-5Å I0 is the incident flux, and the brackets indicate thermal averaging. This 

expression omits factors related to the transmission coefficient of the surface, and the polarization 

of the beam as they do not affect the Q structure of the expected scattering and only modify the 

peak magnitudes. In light of this somewhat nuanced variation of the peak magnitudes with 

incident angle and scattered angle we will refrain from analyzing the peak magnitudes 

quantitatively in this thesis. Instead our analysis is based on the locations of the observed Bragg 

peaks, and the expected periodicities present in the structural model of our crystalline samples. 

These periodicities are conveniently specified by the use of the miller indices [h k l]. By indexing 

the observed peaks with [h,k,l] values we can quantitatively compare the observed unit cell 

dimensions and orientation with what we expect based on our model.    

  

Generation of X-Rays at the National Synchrotron Light Source-II (NSLS-II) 

NSLS-II is an 3GeV electron storage ring operating at 600mA. Highly relativistic electrons are cut 

off of the main beam at 60 different end station (not all up and running). The complex materials 

scattering end station utilizes a three pole magnetic wiggler to accelerate the electrons producing 

x-ray radiation. These magnets operate at a peak field of 1.14T. The longitudinal length of the 

wiggler system is 0.25 meters with a gap of 28mm through which the beam is guided. This system 

produces broad band x-ray radiation between 10keV and 17keV which is then filtered using a 

monochromator and conditioned with the help of 4 adjustable slits to control the beam shape at 
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the sample. Our experiments utilized 13.5keV photons with a wavelength of approximately 

0.9184Å.  

Limits on the |�⃗� | resolution 

Physically the limits on the GIWAXS |�⃗� | resolution are imposed by the large beam footprint on 

the sample and the large scattering angle as is shown in figure 1. Thus any features that occur 

with a |�⃗� | variation smaller than the resolution must come from localized points on the film. This 

ambiguity in the position on the film from which the scattering arises translates into an ambiguity 

in the true scattering vector. Thus sharp features that arise at low incident angle have to be 

considered with some care when attempting to physically interpret them in term of periodicities 

present in the sample crystal structure.  One prominent effect we see in our data relates to the 

accumulation of material at the perimeter of our samples. This effect is a consequence of the spin 

Figure 1. This figure shows the physical origin limiting the |�⃗� | resolution of the GIWAXS 

setup at the CMS beam line.  
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coating procedure by which they were made. Figure 2 shows our samples mounted in the 

scattering chamber at the CMS beam line, and they clearly display thick ridges around the edges, 

which are expected to result in sharp shoulders on the high |Q| edges of the Bragg peaks at low 

incident angle, and such features are observed in our data.  

 

1. Dosch, H. Critical Phenomena At Surfaces and Interfaces. (Springer Tracts in Modern 

Physics, 1992). 

Figure 2. This figure shows the samples mounted on the alignment chuck in the scattering 

chamber. The accumulation of material on the sample edges are circled for clarity.  
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Laser Technology in the CFN’s Ultrafast Spectroscopy Lab 

In the 60 years since the first creation of the laser, significant advances in technology have 

occurred which enable the generation of wavelength tunable ultrashort short (30fs), high energy 

pulses (3mJ) with very high duty cycles (Pulse Spacing/Pulse Width ~1010). Here I’ll briefly review 

the technology behind three components which enable the outstanding time resolution and 

spectral tunability of our pump-probe technique: 1) the Ti:Sapphire Oscillator 2) the Ti:Sapphire 

Regenerative Amplifier  and 3) The Optical Parametric Amplifier.  

 The radiation wave length used in our system is 800nm, while the pulse duration is 150fs, 

which corresponds to 45μM in spatial extent. Thus we typically have about 60 full oscillations of 

the field within one pulse. The generation of ultrashort pulses requires the use of a lasing material 

which has a board fluorescence spectrum. The exact fluorescence bandwidth required is 

determined by our target pulse duration of 150fs. The relationship between the pulse duration and 

the minimum required bandwidth is 

determined by the shape of the pulse, and 

takes the form: 

∆𝜔∆𝜏 ≥ 2𝜋𝐾 

Where ∆𝜔 is the full width at half max of 

the angular frequency distribution, while 

∆𝜏 is the full width half max of the pulse’s 

temporal profile. K is a constant that 

depends on the precise temporal profile 

which  the pulse and takes on. K has the 

value 0.441 for a Gaussian temporal 

profile, and 0.142 a Lorentzian. Thus to 

Figure 1. This figure shows the absorption 

and fluorescence of the Ti:Sapphire lasing 

rod in our Oscillator and Regenerative 

Amplifier. This figure was taken from the 

user manual of the Tsunami oscillator. 
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achieve a 150fs Gaussian pulse requires 18.5THz of 

band width. At a wavelength of 800nm this 

corresponds to an intrinsic broadening 6.2nm. This 

corresponds to an energy broadening of about 

10meV which ends up limiting the energy resolution 

of the pump in ultrafast experiments. Figure 1 shows 

the fluorescence spectrum of the Titanium-Sapphire 

rod used in our oscillator. It’s bandwidth is more than 

broad enough to accommodate 150fs pulses. As 

shown in figure 1 the emission is greatly red shifted 

from the absorption, which is related the Frank-

Condon effect1. In this situation the dipole matrix 

elements of the optical transitions of the Ti3+ ions are 

strongly influenced by the nuclear coordinates of the 

Al2O3 surrounding host crystal. Therefor the highest probability transition from the ground state of 

the titanium atom is to a vibronic state with a significant vibrational contribution to the transition 

energy. After excitation, this vibrational energy relaxes and the electron and surrounding crystal 

relax to the lowest energy vibrational state consistent with the excited electronic state. The 

emission process is a mirror image of the absorption process, and the highest probability radiative 

transition downwards is to another highly excited vibrational state. Thus vibrational energy in the 

two transitions accounts for the red shift of the emission with respect to the absorption, as is 

shown in figure 2. The Ti:Sapphire rod is different from the original lasing mediums in the sense 

that the red shifted fluorescence implies population is not necessary to achieve gain.  

 

The Ti:Sapphire Oscillator 

Figure 2. This figure shows the 

nuclear potential energy surfaces 

associated with the optical transitions 

in our Ti:Sapphire rod. This figure 

was taken from the user manual of 

the Tsunami oscillator. 
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In our Tsunami Ocsillator, the Ti:Sapphire rod is pumped with high energy continuous wave solid 

state diode operating at 532nm with 5W of output power. Lasing is seeded by the vacuum 

fluctuations of the longitudinal modes of the cavity.  In order to achieve ultra-short pulses, a time 

varying loss is added to the cavity with an acousto-optic modulator. This loss is modulated at the 

round trip frequency of the cavity which is c/2L, where c is the speed of light, and L is the cavity 

length (ωRound Trip is typically ~2πx80MHz). This effectively adds an additional loss to the non-

mode-locked (ie non-pulsed) component of the intra-cavity field.  After many round trips, the 

pulsed component of the field which is in phase with the modulator gets amplified, with all other 

components decreasing due to their increased round trip loss.  

The Ti:Sapphire Regenerative Amplifier 

The Ti:Sapphire oscillator creates 

pulses that are used to seed the 

Ti:Sapphire regenerative amplifier. 

However because of the pulses very 

short duration, directly amplifying 

the pulse to the desired energy will 

bring the peak power past the 

Ti:Sapphire rod’s damage threshold 

of 10GW/cm2.   Therefore, to further 

amplify the pulses, their duration 

must be increased such that the 

peak power of the pulse is below the 

stated damage threshold at the 

desired pulse energy. This is the basis of the chirped pulse amplification (CPA) method. The pulse 

is first stretched out temporally, then amplified, then recompressed to the desired temporal length. 

Figure 3. This figure depicts the concept behind the 

operation of the pulse stretcher in our regenerative 

amplifier. An optimized version of this is used in the 

real device which only utilizes one grating. This 

figure was taken from the user manual of the 

Spitfire Regenerative Amplifier.  
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Figure 3 shows the operating principal of the pulse stretcher used in our regenerative amplifier. 

Briefly, the seed pulse from the oscillator (duration ~100fs) is directed at a diffraction grating pair. 

The first grating disburses the light, which means it causes the different wavelengths in the pulse 

to travel in different directions. Note that no temporal dispersion is introduced by the grating.  The 

second grating re-collimates the beam but preserves the spatial separation of the different 

wavelengths. This collimated beam then hits a mirror at an angle such that the longer wavelength 

components travel a shorter optical path length than the shorter wavelengths components. The 

beam is then recombined by traveling the same path backwards. Because of the shorter optical 

path length traveled by the long wavelength components they will emerge first from the pulse 

stretcher, while the shorter wavelength components having traveled a longer optical path length 

emerge later. This gives rise to a positively “chirped” pulse (a pulse in which the lower wavelength 

components are at the front and the shorter wavelength components are at the back) whose 

temporal duration is significantly longer (x104) than the seed pulse. 

 The seed pulses coming from the oscillator are separated by roughly 12 nanoseconds. 

After stretching the pulses by a factor of 104 we have pulse duration of roughly 1.5 nanoseconds, 

which shows that the pulses remain spatially and temporally separated. This allows us to actively 

pick which pulses which are trapped in the amplifier cavity, and this is achieved with the help of 

the extra cavity Pockels cell in combination with a polarizer, as shown in green and yellow in 

Figure 4. This figure shows a schematic of the cavity in our regenerative amplifier. The beam 

line of the CW laser pumping the Ti:Sapphire rod is not shown for clarity. This figure was 

taken from the user manual of the Spitfire Regenerative Amplifier and modified for 

clarity.  
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figure 4 respectively.  A Pockels cell is an electro-optic modulator that can rotate the pulse’s 

polarization depending on the voltage across it. A polarizer is an optical element that transmits 

light polarized parallel to its axis, while reflecting all light polarized perpendicular to it’s axis. A 

polarizer sits at the entrance of the amplifier cavity. In conjunction with the Pockels, cell the 

polarizer can dynamically determine which pulses can enter and exit the cavity. The pulses 

coming from the stretcher are horizontally polarized, and are subsequently rotated to vertical 

using a polarization rotating periscope, shown in pink if figure 4. After the periscope the pulse 

passes through the extra-cavity Pockels cell shown in green. Depending on the voltage across it 

one of two things can happen. If the voltage across the Pockels cell is zero, the polarization of 

the pulse remains vertical and is subsequently rejected by a polarizer (shown in yellow) at the 

cavity’s entrance. If the Pockels cell is in a high voltage state, the polarization of the beam is 

rotated back to horizontal in passing through the Pockels cell, and is subsequently allowed to 

pass through the entrance polarizer and enter the cavity. The pulse now encounters the intra-

cavity Pockels cell λ/4 plate combination (purple and blue respectively). If the intra-cavity Pockels 

cell is off when the pulse enters the cavity, the beam will be rotated back to vertical by two passes 

through the λ/4 plate (one pass on the way in, and one pass after reflection from CM1). The 

vertically polarized pulse cannot pass through the polarizer at the cavity’s entrance, and thus 

reflects off of it, and becomes trapped in the cavity. The reflected pulse is directed at the 

Ti:Sapphire  rod (shown in red) which is synchronously pumped by a frequency doubled pulse of 

an Nd:YLF laser (527nm 20mJ pulses 300ns 1kHz). In traveling through the rod twice, it picks up 

a factor of 3 or 4 in energy. After being reflected by the mirror at the cavities end and passing 

through the Ti:Sapphire rod once more, the pulse is then incident on the entrance polarizer. Up 

to this point, the pulses polarization remains unchanged and it is thus once again reflected from 

the entrance polarizer, and is directed back towards the Pockels cell-λ/4 plate combination. At 

this time if the Pockels cell is in a high voltage state, the pulse will experience four λ/4 rotations 

(two from the intra-cavity Pockels cell, 2 from the λ/4 plate), which will leave the vertical 
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polarization unchanged. In this case the pulse goes back to the lasing medium for another round 

trip. As long as the Pockels cell remains on the pulse will remain trapped in the cavity and will 

have it energy multiplied by a factor of 3 with each round trip. After 13 to 15 round trips the pulse 

will have been amplified by a factor of roughly 313= 1,594,323, which turns oscillator’s nanojoule 

pulses into milliejoule pulses. However, if the intra-cavity Pockels cell is turned off when the 

trapped pulse hits it, the pulse will experience 2 λ/4 rotations making it horizontally polarized, and 

it will exit the cavity. Thus when the pulse can no longer obtain gain from the Ti:Sapphire rod, the 

Pockels cell is turned off and the pulse is kicked out of the cavity. The pulse then encounters the 

compressor, where it squeezed back to 150fs, and exits the amplifier. These milliejoule pulses 

are split by a beam splitter, with one arm used to generate our white light probe, and the other 

used to pump the Optical Parametric Amplifier, which tunes the pulses wavelength, and is used 

for the pump pulse. Our regenerative amplifier is run at 1kHz, to achieve the pulse energies 

required of the experiment.  

Figure 5. This figure illustrates the operating principals of our TOPAS-c optical parametric 

amplifier.  
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Optical Parametric Amplifier (OPA) 

A schematic of our OPA is shown in figure 5. Optical Parametric Amplifiers make use of χ(2) 

interactions in a nonlinear crystal to turn the pump pulse into a signal pulse and an idler pulse. 

The signal pulse is used to excite our sample. In our OPA the frequency conversion is achieved 

in two steps. First there is a pre-amplifier stage in which a seed pulse at the desired wavelength 

is generated by overlapping a white light pulse and a small portion of the pump beam. The energy 

of the seed pulse is generally about 0.5μJ. Next the amplification stage mixes the majority of the 

pump beam with the seed beam, which produces pulses of roughly 10μJ. This process will be 

described in more detail in the following. In the description of the operation of the OPA I will refer 

to optical elements by their numbers shown in yellow in figure 5. 

Seed Generation- Pre Amplifier 

As noted, when the pump beam enters the OPA it is split with the majority of the energy used in 

the amplifier stage, this first beam splitter corresponds to number 1. This beam is again split (2) 

with one portion incident on a sapphire plate which generates a white light continuum pulse (WLC)  

The WLC is a chirped pulse with a long temporal profile and a large spectral bandwidth(3b). The 

stability of the white light generation process depends strongly on the pump pulse’s energy and 

cross sectional profile. If the energy is too high or too low this will lead to fluctuations in the power 

of the seed pulse, which ultimately leads to fluctuations in our pump beam. The other beam 

emerging from beam splitter (2) is sent down a delay stage (3a). These two beams are non-

collinearly overlapped in the pre-amp nonlinear crystal (4) with the pre-amp pump pulse 

parametrically amplifying a portion of the WLC pulse. The WLC pulse is chirped and has a very 

long temporal duration compared to the pre amp pump pulse (150fs) which comes directly from 

the regenerative amplifier. Thus the pre amp pump pulse can only be spatially overlapped with a 

small portion of the WLC pulse, and this is the component of the WLC which experiences 

parametric amplification. The chirp of the WLC pulse implies that different spatial positions of the 
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WLC pulse have different frequencies. Thus by adjusting the spatial overlap (or equivalently the 

temporal overlap) of the pre-amp pump pulse and the WLC pulse, different frequencies can be 

parametrically amplified. The overlap between the pre amp pump and the WLC can be 

continuously varied using delay stage (3a), which can continuously tune the frequency of the seed 

pulse which results from the pre amplifier stage. We note many subtleties of the pre-amplification 

process. First, the pump and WLC are not collinear in the non-linear crystal. This allows the 

separation of the parametrically amplified signal (propagating collinearly with the WLC), and the 

pump. The collinear nature of the seed and the WLC is not reflected in figure 5 for clarity. In 

addition to the signal, there are other nonlinear process which give rise to distinct beams. There 

is the idler, the sum frequency of the signal and the pre-amp pump, and the sum frequency of the 

idler and the pre-amp pump. Due to the non collinear geometry, these are all spatially separated 

which allows one to pick the desired beam for the amplification step. Also, the delay line is actually 

on the WLC pulse which modulates it’s timing with respect to the pre-amp pump pulse. This is not 

reflected in the figure for clarity. However, this implies that the timing of the pre-amp pump pulse 

and thus the seed of the amplifier stage has a relatively constant timing with respect to the 

amplifier pump pulse. Finally, we note that the pre-amp Nonlinear crystal (4) is mounted on a pre-

calibrated rotation stage, which automatically adjusts the orientation of the crystal with respect to 

the incident beams to achieve phase matching for the desired parametric amplification 

wavelength.  

Amplifier 

As stated, the majority of the power passes the first beam splitter (1) and is directed down an 

additional delay line (2c). The Amplifier pump pulse and the seed pulse have to be well-

overlapped temporally in the amplifier non-linear crystal (5) in order to achieve efficient energy 

conversion from the pump into the signal.  The delay stage (2c) is used for fine adjustment of the 

the timing of the amplifier pump pulse to account for delay incurred in the seed pulse coming from 
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the pre-amp stage. Generally, this stage does note move during normal operation because as 

noted the pre-amp pump pulse, and thus the amplifier seed has a constant delay with respect to 

the amplifier pump. Again the amplifier nonlinear crystal (5) is mounted on a pre-calibrated 

rotation stage which is used to optimize the phase matching for the parametric amplification 

process with the desired wavelength.  

Nonlinear extension package 

In the amplifier non-linear crystal, the pump and seed travel collinearly, and thus the signal, idler 

and pump all emerge from the crystal collinearly as well. The pump still contains significant energy 

and we use this fact to extend the tuning range of the OPA system using a non-linear extension 

package (6). This package is a suite of χ(2) nonlinear crystals, which perform sum frequency 

generation (SFG) between the signal and the pump or idler and pump. The system is also 

calibrated to perform second harmonic generation (SHG) on the signal or idler. However, because 

the pump generally has more energy than the signal or idler, the SFG process generally has a 

Figure 6. This figure shows a picture of the OPA in our lab, with the nonlinear extension 

package.  
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higher energy output at the desired wavelength than the SHG process. The χ(2) crystals in the 

nonlinear extension are mounted on a pre-calibrated rotation stage which allows the automated 

selection of the correct crystal, and automated adjustment of the crystals angle for phase 

matching. The OPA box and nonlinear extension package are shown in figure 6. After the desired 

wavelength has emerged from the nonlinear extension box, it still contains the pump, signal, idler 

and likely the second harmonic of the signal and the idler. Thus we use a dichroic mirror (7) to 

filter out the unwanted light, and direct this light at a beam stop (the ‘black hole’ seen in figure 6, 

but not shown in figure 5). Finally, to filter our any remaining unwanted light passing the dichroic 

mirror, we use a band pass filter. This concludes the pulse frequency conversion. The beam is 

now sent to the Helios spectrometer and is hence fourth referred to as the “pump pulse” because 

it is used to excite electrons and holes in our sample. We typically have about 10μJ pulses coming 

out of the OPA at 1kHz depending on the desired wavelength.  

 

1. Moulton, P. F. Spectroscopic and laser characteristics of Ti:A120 3. J Opt Soc Am B 3, 125–

133 (1986). 

2. Tsunami Mode-Locked Ti:Sapphire Laser, Users Manual. Spectra Physics 

3. Spitfire Pro Ti:Sapphire, Users Manual. Spectra Physics 

4. TOPAS-c Users Manual. Coherent 
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Transient Absorption Spectrometer at the CFN 

Transient absorption spectroscopy is a time resolved a pump-probe optical technique. It 

measures how the transmission spectrum of a material changes as a function of time after being 

excited by a pump pulse. We physically interpret the transient absorption spectrum as reflecting 

the energetic distribution of photoexcitations in the material. Thus the transient absorption spectral 

kinetics contain information about the local electronic structure, dissipation processes, transport 

processes, and electronic temperature experienced by the photoexcitations. Throughout the 

description of the set up, I’ll direct your attention to various parts of figure 1 by referring to the 

numbers that appear in red. 

 Transient absorption spectroscopy is based on a high powered, mode locked laser 

source. We use a Ti:Sapphire regenerative amplifier emitting 3.5mJ pulses of 800nm light at 1kHz 

(1). The operating principals of the regenerative amplifier are described in chapter 3. The first 

optical element encountered by output of the regenerative amplifier is a beam splitter which 

Figure 1. This panel shows a schematic of the transient absorption spectrometer used in my 

thesis experiments. Lenses and filters were left out for simplicity and clarity.  

Range of Motion 



31 
 

divides the beam into two (2). The beam reflected from the beam splitter is used to generate the 

pump pulse, and is directed into an optical parametric amplifier (3a), whose operation is described 

in chapter 3 as well. The OPA utilizes parametric amplification change the λ=800nm pulse from 

the regenerative amplifier into a pulse with the wavelength desired of the pump pulse. When used 

in conjunction with the nonlinear extension, the range of accessible pump wavelengths is 

extended to 1600nm - 300nm. After the desired wavelength is achieved, the pump pulse is then 

synchronously chopped such that every other pulse is blocked (4a). The chopped beam is then 

used to photo-excite the sample material (labeled in green). The probe pulse is created using the 

beam transmitted at the initial beam splitter (2). This beam is directed down a variable delay line 

(3b), which consists of a retroreflective mirror mounted on a translation stage. This delay line 

functions to accurately and precisely introduce additional optical path length in the probe beam 

line, which is critical to our time resolution. The beam emerging from the delay line is then directed 

at a sapphire crystal (4b) which is used to generate a broadband pulse of white-light. The white 

light pulse is used to measure the transmission spectrum of the material with very high time 

resolution (  ̴20fs). Before the probe pulse hits the sample it is again split (5b). The transmitted 

beam is used to probe the sample, while the reflected beam is used as a reference to eliminate 

noise contributions from the probe beam. The reference beam is collected by a fiber optic cable 

(6b), and disbursed in a multi-channel spectrometer.  The probe pulse passes through the sample, 

and is collected by a fiber optic cable (7b), and is also dispersed in a multichannel spectrometer. 

This transmitted pulse carries with it a snapshot of the optical information of the material at the 

time the pulse passed through it. The spectrometers utilize diffraction gratings to disburse the 

probe pulse,  which causes light with different wavelengths to travel at different angles inside the 

spectrometer. The disbursed light is directed at a 1024x1 pixel array which measures the light 

intensity at each wavelength I(λ). Using the probe and reference intensity spectra we can 

calculate the transmission spectrum: T(λ)=I(λ)probe/I(λ)reference.  
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Information about photo-excited carrier dynamics is obtained tracking how the 

transmission spectrum changes in time after the pump pulse excites the sample. If the pump pulse 

and probe pulse travel the same optical path length, they arrive at the sample at the same time. 

This condition determines the t=0 of the experiment. The arrival time of the probe can be delayed 

relative to the pump with high accuracy and precision by increasing the optical path length of the 

probe. This is achieved introducing a retroreflective mirror on a translation stage into the probe 

beams path (3b). By adjusting the position of the stage we can introduce a specified additional 

amount of path length to the probe beam. For every 1mm moved by the stage, the probe arrival 

time is delayed by 6.6 picoseconds. It is typical that delay stages can precisely position 

themselves with the accuracy of less than one micron, which corresponds to 6.6femtoseconds. 

Thus a typical delay stage can offer more than enough accuracy and precision to obtain a time 

resolution of 150fs. High precision stages can yield time resolution on the scale of hundreds of 

attoseconds (10-16s).  

As noted the, the pump beam is chopped synchronously with the regenerative amplifier 

and thus only excites the material at 500Hz, while the probe beam is un chopped and measures 

the transmission of the sample at 1kHz. Thus we measure the excited state transmission 

spectrum and the linear transmission spectrum at 500Hz each. We calculate                                           

∆𝐴(𝜆) ≡ −log
𝑇(𝜆)𝐸𝑥𝑐𝑖𝑡𝑒𝑑 𝑆𝑎𝑡𝑒

𝑇(𝜆)𝐿𝑖𝑛𝑒𝑎𝑟
 at 500Hz. We delay the discussion of the physical significance of 

 ∆𝐴(𝜆) until a later section. In practice we specify the pump-probe delay time using the translation 

stage and average ∆𝐴(𝜆) until the desired signal to noise is achieved, then move to the next time  

point and repeat the procedure.  

The integration time per point has a maximum value of 10s in the Helios software. To 

achieve higher signal to noise ratios, we took multiple consecutive kinetic scans and averaged 

them together. This technique has the additional advantage of allowing us to track systematic and 
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irreversible changes in the spectrum or kinetics, which are signs of beam induced sample 

damage.  

For completeness we note that the pump beam of a 1kHz TA spectrometer is composed 

of relatively high energy monochromatic pulses ( Δλ~10nm, E(λ)~0.01μJ/nm). The energy of the 

probe pulse is typically much smaller and broader spectrally (Δλ ~ 400nm, E(λ) ~ 7.5x10-6 μJ/nm).  

The pump pulses typically photo excite a carrier density between 1017cm-3-1019cm-3 or a fluence 

of roughly 1012cm-2-1014cm-2. In this range of carrier densities ΔAmax is typically between                  

10-3-10-1. Satisfactory signal to noise can be achieved on the low end of the density distribution 

by integrating roughly 4 seconds at each pump probe delay. There are typically 300 points per 

scan, implying an acquisition time of around 20 minutes. However, observing ΔA signals around 

10-4 and carrier densities around 1016cm-3 takes significant effort and extensive signal integration. 

Typical carrier densities excited in solar cells are closer to 1015cm-3-1016cm-3. Thus kHz TA 

spectrometers are meant to study much higher density phenomena than what is directly 

applicable in solar energy devices, and significant effort was expended to make this set up 

amendable to these low fluences.  

 

 The experiments I conducted for this thesis had to be done at a small absorbed fluence. 

In order to achieve a reasonable signal to noise, I needed to take about 12 scans, each scan with 

250 points, using an integration time of 10 seconds per point. In total this equals about 8 hours 

and 30 minutes to obtain one piece of data at one absorbed fluence. To get a good feeling for the 

kinetics, one has to vary the absorbed fluence by at least a factor of 20. All together each data 

set took around 24 hours to complete with some taking significantly longer. Approximately 10 full 

data sets were required for the analysis in this thesis. However, the stability of the pump laser 

was very poor in the lab due in part to fluctuations in temperature. To get consistent data the 

pump power had to be stabilized.   

Laser power DAQ and Stabilization  
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 Figure 2 shows the set up used to measure the time variation of the pump power. The first 

element in the set-up is an iris which is set to ~500μm in diameter, which was significantly smaller 

than the size of the incoming pump beam ~3mm. This iris is important because in addition to 

fluctuations in the overall power of the pump beam, there are also fluctuations in the pointing of 

the beam. In the context of our experiment, these two types of fluctuations both distort our data 

in a similar way, because if the pump beam drifts away from the probe beam an effective decrease 

in pump power is measured in the TA signal. However, using an iris which is much smaller than 

the pump beam itself ensures that no fluctuations in beam pointing occur within the spectrometer. 

After the iris the beam is incident on a silicon photodiode, which generates a signal at 500Hz 

whose magnitude is proportional to the pump power. This signal is then routed to a box-car gated 

(Chopped) 

500Hz 

Figure 2. This figure shows the set-up utilized to track the real time power of the pump 

pulse.  
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integrator. The integrator integrates the signal 

from the photodiode across the gate shown in 

figure 2. As the gate is only about 10ns, the timing 

between the pulse and the gate has to be 

accurately prescribed to ensure they overlap. 

This is achieved by triggering the gate on the 

integrator using the synchronizing TTL signal 

from the regenerative amplifier. However, the 

frequency of the trigger from the regenerative 

amplifier is at 1kHz, while the chopped beam 

produces a signal in the photodiode at 500Hz. Thus a digital frequency divider is used to account 

for this difference. When the trigger for the gate is properly aligned to the photodiode signal, the 

integrator outputs a constant voltage proportional to the integrated signal for the roughly 2ms until 

the next trigger is received. The voltage from the integrator is sampled at 50kHz by an analog to 

digital converter, which reads the signal into the computer. In this way the power of the individual 

pulses can be read out by the computer. The result of this procedure is shown in figure 3. Note 

that each point in figure 3 represents the signal averaged over 500 pulses corresponding to an 

integration time of one second. Due to the small diameter of the iris compared to the beam size, 

this figure represents large fluctuations in the pointing of the beam on the time scale of hours. 

Figure 3. This figure shows the pump 

power measured vs time with the set up 

in figure 2.  
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These fluctuations in the beam pointing were found to correlate with temperature fluctuations in 

the lab which are actively monitored and recorded by the facilities manager here at the CFN. We 

note that the room which houses the ultrafast spectroscopy facility at the CFN was not originally 

designed to be a laser lab, and thus the temperature and humidity controls are less stringent than 

one would desire of a dedicated laser facility. The power fluctuations shown in figure 3 are 

definitely an over estimate of the importance of pointing fluctuations because the beam was not 

centered on the iris in this measurement. None the less, these fluctuations still represent a 

variation in pointing which is a significant fraction of the beam diameter.  

 The price of stabilizing the beam pointing with the iris are the large power fluctuations 

shown in figure 3. In reality these fluctuations are always present but they cannot be measured 

with a large area photodetector, because the detector averages the power over the illuminated 

Figure 4. The schematics of the PID control loop power stabilization set up. Error signal 

read out is achieved using a pick off mirror and a photodiode to measure the power in real 

time. Control over the beam power is achieved by mounting a variable linear attenuator on 

a translation stage.  
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area, making it insensitive to small drifts in pump pointing. To counteract the power fluctuations 

which result from the pointing drift, a PID control loop was developed in LabView, and the set-up 

is shown in figure 4. This loop utilizes a variable linear attenuator on a fast translation stage to 

adjust the power incident on the sample in response to the voltage measured on the photodiode.  

 In practice the desired power is measured with a large area power meter (after the iris) , 

and the corresponding photodiode voltage is input into the control loop as the set point. After this, 

the program is run and the linear translation stage dynamically adjusts the position of the stage-

attenuator combination to account for the long term drifts in power read out by the photodiode. 

Together, the stage and photodiode combination are capable of feeding back at 50Hz, but in 

practice this does not lead to the smallest RMS deviation from the set point, and actually 

introduces noise into the signal. This occurs because shot to shot variation in the pulse power is 

significant and unavoidable.  The PID parameters and the feed-back bandwidth were empirically 

adjusted to achieve the smallest RMS deviation from the set point. In this way we achieved long 

term power stability with a relatively small RMS deviation of +/- 10% at one second integration 

time.  

 The power stabilization loop was used in acquiring all of our data, and is now employed 

by virtually all users in the ultrafast spectroscopy lab at the CFN. This loop was incorporated into 

another program which utilizes a power meter to calibrate the photodiode voltage. Specifically, 

this program measures the pump power, the transmitted power, the reflected power, and the 

beam spot size in-situ which allows the prescription of the absorbed fluence (photons/cm2) before 

the measurement. Furthermore, this program allows one to obtain a batch of TA measurements 

at various absorbed fluences. For each measurement, the absorption information is used to 

calculate photodiode set point corresponding to the desired fluence. After the correct set point is 

achieved this program then triggers the Helios software take a full measurement of the TA spectral 

kinetics. In this way large data sets can be autonomously and consistently collected, over a period 
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of days, with no interaction from the user. Together with homemade data analysis software 

developed in Matlab, the process of acquiring and analyzing data was greatly streamlined. This 

program enabled the acquisition of huge amounts of data using the TA spectrometer in the limited 

time which was allotted to me for use.  

Figure 5. This figure shows the differential absorption kinetics obtained using the described 

program on the set of films which are the subject of this thesis.  
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Results of the Power Stabilization Loop and Long Term Sample Stability 

Figure 5 shows the differential absorption kinetics at 730nm obtained using the power stabilization 

and calibration program described in the previous section. Details of the interpretation of these 

kinetics will be given in chapter 5 on the analysis of the TA data. The legends in figure 5 indicates 

the chronological order of the measurements. The typical measurement time for these figures 

was 8 hours, but the measurement time ranges as high as 42 hours in figure 5e. Note that the 

pump-probe delay time axis in figures 5(e,f) is in nanoseconds rather than picoseconds.  

 Figure 5 shows the magnitude of these features is on the order of 10-4, and reasonably 

consistent between the different film thicknesses measured, with the notable exception of figure 

5b, which appears appreciably larger than the rest. We note that the calibration procedure is 

significantly less accurate at small pump powers (~1μW), as it depends strongly on properly taking 

into account all of the background sources of light., and we attribute the differences in signal 

magnitude to improper 

calibration at low absorbed 

fluence.  Thin film interference 

does not appear to have a big 

impact on our measured 

signals as this would result in 

a strong modulation in the line 

shape across the spectral 

band used for the probe pulse 

(400nm-800nm), which is not 

observed. The lack of this 

effect can be attributed to 

surface roughness on the 

Figure 6. this figure shows the differential absorption 

spectrum at 5ps measured on films with four different 

thicknesses. All of these films were excited with a 

calibrated absorbed fluence of 1.2x1012cm-2. 
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sample surface which is found to be significant in AFM images (shown in 6). To this effect, figure 

6 shows the calibration procedure works much better a 3x higher absorbed fluence, while all of 

the spectra look very similar. The slight shift of the peak at 730nm to larger wavelengths with 

increasing film thickness may be a result of thin film interference, however figure 6 shows this 

effect is small and does not affect the magnitude of these features. Finally, there do appear 

variations in the kinetics within the panels in figures 5b and 5c. All scans within each panel are 

supposed to be identical apart from the noise. The differences in kinetics appear to be associated 

with random periods of extreme laser instability, which degrades the performance of and PID 

control loop. Such periods of extreme instability we typically observe when the temperature and 

humidity of the room change, which impacts the stretcher and compressor of the regenerative 

amplifier and translates into instability in the output of the OPA. Importantly, these differences in 

kinetics seen in figure 5b and 5c and do not have a consistent chronological trend. On the other 

hand, in figure 5e there is a 20% decrease in the signal magnitude over the 42 hours that this 

data was acquired. However, this appears to result of the sample rather than the variation of the 

pump power. 

The Relationship Between ΔA(t,λ) and the Film Optical Constants 

 Due to the lack of interference phenomena observed in our samples, the intensity 

transmission spectrum of our samples (defined as T(λ)=I(λ)probe/I(λ)reference in section 1) as can be 

approximated as T(λ)=T0e-αL, where α=4π[Imag{ñ}]/λ, and L is the film thickness. λ is the 

wavelength of the radiation, and Imag{ñ} is the imaginary part of the complex refractive index. 

Absorption of the pump beam slightly modifies the complex refractive of the material. Thus         

αPump On= αPump Off +δα, where δα is the pump induced change in absorption coefficent. Using the 

definition of ΔA(t,λ) given in section earlier: 

 ∆𝐴(𝜆, 𝑡) ≡ −log
𝑇(𝜆)𝐸𝑥𝑐𝑖𝑡𝑒𝑑 𝑆𝑎𝑡𝑒

𝑇(𝜆)𝐿𝑖𝑛𝑒𝑎𝑟
= −log

𝑇(𝜆)0𝑒−(𝛼+𝛿𝛼)𝐿

𝑇(𝜆)0𝑒−(𝛼)𝐿 = − log(𝑒−𝛿𝛼𝐿) = 𝛿𝛼(𝜆, 𝑡)𝐿  
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Thus ΔA(t,λ) is directly proportional to the change in refractive index. In the above I have omitted 

a contribution to ΔA(t,λ) which comes from δT0, the pump induced change in the Fresnel 

transmission coefficient of the air-film interface. This contribution tends to distort the shape of the 

ΔA(t,λ) which means that quantitative analysis of the TA line shape is generally not possible 

without taking into account this contribution. δT0 is related to the change in the real and imaginary 

part of the refractive index. However, both of these changes are proportional to each other (in 

magnitude, not spectral shape), because they come from the same physical origin. Thus the 

contribution to ΔA(t,λ) from δT0 does not affect the spectral kinetics. The reasoning employed in 

this thesis is mostly based on kinetic data rather than line shape data. When reasoning based on 

line shape is employed, it is done qualitatively.   

The Physical Origin of 𝛿𝛼(𝜆, 𝑡) 

 The general description of the interaction between semiconductors and electromagnetic 

radiation requires the full force of many body quantum mechanics, which is far beyond the scope 

of this thesis. Therefor I’ll briefly review the description of light’s interaction with semiconductors 

which is relevant to the understanding of the experiments which make the body of this thesis. The 

absorption of light by direct band gap semiconductors is accomplished predominantly by moving 

electrons from the mostly full valance band into the mostly empty conduction band, while 

conserving the energy of the semiconductor + electromagnetic field system. This result can be 

derived from a time dependent perturbative treatment of the electromagnetic wave interacting 

with the quantum mechanical system of electrons in the semiconductor. The number of such 

upward transitions per unit time is given by fermi’s golden rule1: 

𝑅𝑐𝑣 = (𝜋/2ħ)𝐸(𝜔)2 ∑|𝑃𝑐𝑣|2𝛿(𝐸(𝑘)𝑐 − 𝐸(𝑘)𝑣 − ħ𝜔)

𝑘

 

The field is composed of photons. Thus for every upward transition in energy experienced by the 

electronic system the field loses energy equal to that of the photon ħ𝜔. Therefor the energy loss 
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per unit time per unit area experienced by the field         

  
𝑑𝐼

𝑑𝑡
= −𝑅𝑐𝑣ħ𝜔 = −𝐼 (

𝜋

2ħ
) ∑ |𝑃𝑐𝑣|2𝛿(𝐸(𝑘)𝑐 − 𝐸(𝑘)𝑣 − ħ𝜔)𝑘 =

𝑑𝐼

𝑑𝑥

𝑑𝑥

𝑑𝑡
= −

𝑐𝛼𝐼

𝑛
 

Thus we have the equality 

𝛼 = (
𝑛𝜋

2ħ𝑐
) ∑|𝑃𝑐𝑣|2𝛿(𝐸(𝑘)𝑐 − 𝐸(𝑘)𝑣 − ħ𝜔)

𝑘

 

The imaginary component of the refractive index thus depends on 𝑃𝑐𝑣 which is related to the 

strength of the coupling between the conduction band and valance band state induced by the 

field, and the quantity ∑ 𝛿(𝐸(𝑘)𝑐 − 𝐸(𝑘)𝑣 − ħ𝜔)𝑘  which is called the joint density of states, and it 

is equal to the number of possible electronic transitions upward in energy. If the number of upward 

transitions at a particular frequency is N, we can then write 𝛼=N(
𝑛𝜋

2ħ𝑐
) 〈|𝑃𝑐𝑣|2〉 where the brackets 

denote averaging |𝑃𝑐𝑣|2 over all possible transitions. Thus is the simplest case:    

    δα=δN(
𝑛𝜋

2ħ𝑐
) 〈|𝑃𝑐𝑣|2〉 

and we have the physical interpretation that a change in the absorption coefficient can result from 

a change in the number of electronic transitions upwards in energy. When photo-exciting a 

semiconductor the population of excited electrons and holes relax to the band edge and occupy 

these states until they decay radiatively or otherwise. Due to the Pauli-exclusion principal an 

occupied state in the conduction band is not available for subsequent transitions. Thus in 

response to photoexcitation we obtain a change in the number of allowed transitions between the 

conduction band and the valance band, and this change is directly proportional to the population. 

In this treatment we have neglected the possibility of stimulating downwards transitions of 

photoexcited electrons in the conduction band into the valance band. A more rigorous treatment 

shows that this contribution combines additively with the one derived, and has exactly the same 

magnitude. This is based on the equivalence of the Einstein ‘A’ and ‘B’ coefficients for absorption 

and stimulated emission. Thus adding a factor of two to the above equation one obtains the 
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correct expression describing how the absorption coefficient changes in response to a photo-

excited population of electrons and holes: 

     δα=2δN(
𝑛𝜋

2ħ𝑐
) 〈|𝑃𝑐𝑣|2〉 

We note that in the case that δN=N/2 (the photo-excited population is equal to half the total 

number of transitions) we find that the absorption coefficient vanishes. This describes the 

phenomenon of population inversion. Any photoexcited carriers which is excited in addition to N/2 

actually amplify the field as it travels through the semiconductor, a process which is known as 

light amplification by stimulated emission of radiation, and is the basis of the laser technology 

which is leveraged in both the Ti:Sapphire oscillator an the Ti:Sapphire regenerative amplifier we 

use in our lab. We note that pump induced changes in the oscillator strength of the transition give 

rise to a nonlinear change in the absorption coefficient with excited fluence and therefor can be 

mostly ignored.  

 Thus the physical interpretation of ΔA(λ,t) and δα(λ,t) in our data is reasonably clear. 

ΔA(λ,t) is proportional to the number of photoexcited carriers occupying transitions associated 

with the wave length λ at the time t after photo excitation. Although the treatment is different in 

the case of excitons, the result is the same.  Thus transient absorption spectral kinetics tell us 

about how the populations of photo excited electrons and hole distribute themselves over the 

optically active states of the excited material, and how these populations change in time.    

Processes Occurring After Photoexcitation of a Semiconductor 

 In order to give proper context to our measurements it is important to speak of the typical 

processes and the associated time scales that are observed after the photoexcitation of a direct 

bandgap ionic semiconductor such as Gallium Arsenide2. The following discussion is based on 

reference 2.  
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 Following excitation by an ultrashort laser pulse (like the ones used in our experiments) 

there are four physically distinct though temporally overlapping regimes that occur before the 

semiconductor can return to thermodynamic equilibrium. The first physical regime is characterized 

by coherent polarization. In this regime the electrons continue to quantum mechanically oscillate 

at the driving frequency of the field even after it has left the material. In the case of an 

inhomogeneously broadened transition this oscillation continues roughly until the dephasing time 

of the oscillators is reached, but the macroscopic polarization is destroyed immediately after the 

pulse leaves the material. This is because the phases of the various transition evolve at slightly 

different rates, and thus destroy the polarization at a time ħ/ΔEinhomogeneous which is smaller than 

the pulse duration if the inhomogeneous broadening is larger than the pulse bandwidth. A linear 

relationship between density and dephasing rate was observed in a 12nm single GaAs Quantum 

well at 2K3. Scaling the dephasing rate of free carriers to the lowest densities used in our 

experiments yields a carrier-carrier dephasing time of about 250fs. This dephasing time is similar 

to the phonon dephasing time of 100fs measured at room temperature for the excitons in GaAs 

Quantum wells4.  

 During and after the dephasing process the carriers are in a non-thermal regime meaning 

that their distribution cannot be characterized by a quasi-temperature. Again scattering process 

between carriers, and with phonons thermalizes the carriers towards a Maxwell Boltzmann 

distribution5. Once thermalization has occurred (~1ps) we are in the hot carrier regime, in which 

the electron and hole populations are in thermal equilibrium with each other, but are out of 

equilibrium with the lattice. Importantly, because of thermal equilibrium has been established in 

the electronic population, all electronic states locally available to the carriers are occupied with 

the appropriate Boltzmann factors weighing their occupation. Thus in this regime the TA spectrum 

should reflect all optically active electronic states that are locally available to the photoexcitations. 

This fact will figure prominently in the analysis of our TA data.  Because of the lack of equilibrium 
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with the phonon system, this regime is characterized by a one way transfer of energy from the 

electronic system to the phonon system. Because of symmetry, energy and momentum 

conservation, the electrons and holes typically interact with a few specific phonons which may 

take a substantial amount of time to decay. Thus this regime can be characterized by large non 

equilibrium phonon populations. The phonon populations can be so large and persistent that 

phonon reabsorption by the electrons and holes can compete with phonon emission. This 

situation can be identified by an electronic cooling time that depends strongly on excitation 

density. Such a situation is called a hot phonon bottle neck, and has recently been observed in 

MaPbI3, the prototypical hybrid organic-inorganic perovskite semiconductor. In this thesis we 

report the observation of a hot phonon bottleneck in Ba2Ma2Pb3I10 as well, which is a layered 

derivative of MaPbI3.   

 Finally, after the electronic population cools to the temperature of the lattice (~100ps) we 

enter the isothermal regime. This regime is characterized by an excess of electrons and holes 

compared the thermal equilibrium. The observed kinetics in this regime mostly reflect radiative 

and non-radiative recombination.  
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Chapter 5: 
GIWAXS/GISAXS Analysis 
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Grazing Incidence Wide/Small Angle X-Ray Scattering (GIWAXS/GISAXS) Characterization of 

Spin Coated n=3 RPP Thin Films 

 Studies of RPP thin films suggest that the macroscopic alignment of their [101] planes 

parallel to the substrate plays an important role in their exceptional performance as active layers 

in photovoltaic devices1–3. X-ray diffraction studies of these materials all seem to conclude that 

the material is phase pure1,3,4 (containing close to a single n value). However, this has been 

questioned because the peaks characteristic of the layer spacing [0 k 0] are obscured when the 

crystals are oriented in the [101] geometry. Furthermore, the absorption spectra of these films 

appears to contain contributions from the primary excitons of other layer thicknesses, which is 

true in our films as well. Based on optical and device data a number of groups have suggested 

an energy funnel architecture in the film, in which the layer thickness increases towards the front 

of the film, eventually terminating with the n=∞ phase on the surface5,6 (MaPbI3). Although an 

intriguing and potentially technologically important prospect, there is no direct experimental 

evidence supporting such an architecture. A number of open questions regarding the structure of 

these films exist. In particular: How similar is the films crystal structure to that of the single crystal 

n=3 RPPs from which they are derived? Is there evidence of disorder or distortions compared to 

the single crystal structure? Is there any evidence for an energy funnel architecture?  And finally, 

what’s the mechanism behind the alignment of the crystal slabs perpendicular to the substrate? 

Therefore, to properly understand the composition of our films and give context to our optical 

studies, we performed GIWAXS and GISAXS as a function of incident angle on a number of hot 

cast RPP films with varying thickness. We also investigated the structure of an RPP thin film 

deposited with a post annealed technique for reference.  
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Comparing the Observed Scattering Pattern to That of the Single Crystal RPP Structure:           

Structural Refinement Analysis 

  Figure 1 shows the single 

crystal n=3 RPP structure in the [101] 

orientation. This structure was obtained 

from Stoumpos et al7 who inferred it 

based on single crystal x-ray diffraction 

data. To obtain the thin films used in our 

experiments, purified single crystals are 

completely dissolved in solvent and then 

are spin coated onto glass substrates. 

We note that the crystallization conditions under which the single crystals are formed very different 

from those in which and the spin coated films are formed. 

 Figure 2a shows the observed GIWAXS pattern obtained on a 400nm hot cast n=3 RPP 

thin film. Note that Qz represents the out of plane component of the scattering vector, while                       

Qr=(Qx
2 +Qy

2)1/2, is the magnitude of the in-plane component of the scattering vector. The pattern 

in figure 1a displays sharp and intense Bragg peaks reflecting the highly crystalline nature of our 

films. The red open face circles on in figure 2a represent the intensity weighted reciprocal lattice 

of the structure and orientation in figure 1 (single crystal n=3 RPP). Generally speaking, the 

agreement is very good and it appears that we have roughly the correct unit cell dimensions. 

 Typically, when performing x-ray diffraction experiments on mono crystalline materials 

only one set of Bragg peaks can fulfil the Bragg condition for a given lattice orientation with respect 

to the beam. However, figure 2a shows we observed every peak in the predicted reciprocal lattice 

for an n=3 RPP single crystal (and only one peak that can’t be indexed in this structure shown in 

Figure 1. This figure shows the single crystal n=3 

RPP structure in the orientation we expect in our film. 

We view the structure from the [10-1] direction. The 

red lines are the [101] planes which we expect to be 

parallel to the glass substrate.   
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yellow). Thus, even though we have strict crystalline order in the out of plane direction, our film 

contains every in-plane grain orientation, which enables the fulfilment of the Bragg condition for 

every peak in reciprocal space. The latter is typical of spin coated polycrystalline films while the 

former is quite unusual. The only planes of the reciprocal lattice which we cannot measure (in 

range of our detector) lay exactly parallel to the substrate, such as the [101] and [202]. In this 

case wide angle scattering cannot fulfil the Bragg condition, and this is represented in our data 

by the blank wedge at starting at the origin and expanding up the Qz axis, easily seen in figure 

2b. 

 Figure 2b shows the observed scattering pattern obtained on a post annealed n=3 RPP 

thin film 200nm thick. The post annealed GIWAXS pattern exhibits diffuse arcs of scattering 

intensity typically observed in polycrystalline spin coated thin films. These arcs reflect the 

distribution of lattice orientations of the various crystalline grains in the film. These arcs are 

noticeably absent in the hot cast films GIWAXS pattern confirming that in the out of plane 

Figure 2. Panel a shows the measured GIWAXS scattering pattern of a 400nm hot cast 

n=3 RPP thin film. The red circles are the intensity weighted reciprocal lattice of the single 

crystal n=3 RPP in the [101] orientation. Panel b shows the measured GIWAXS pattern 

obtained on a 200nm Post annealed RPP thin film.  
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direction, hot cast films appear to scatter as single crystals. The red and green open face circles 

in figure 2b are the intensity weighted reciprocal lattice of single crystal n=3 RPP in the [101] 

orientation (layer stacking perpendicular to substrate, same as figure 2a) and the [010] (layer 

stacking parallel to substrate) orientation respectively. Only 2 peak in this scattering pattern that 

appear unrelated to the perovskite structure which appear at |Q|~0.67Å-1 which corresponds to a 

periodicity on a length scale of 93Å. These peaks likely represent a long wavelength distortion of 

the unit cell, although it’s not clear exactly what they correspond to.  

 Our n=3 RPP film appears highly crystalline, however most of the observed peaks in figure 

2a could be equally well indexed in a n=[2,3,4…] structure within the accuracy of the experiment. 

This is because wide angle peaks mostly sample the atomic scale periodicity, while the 

differences in the unit cells are on the much longer length scales of b={39Å, 51Å, 64Å} for the 

n=[2,3,4] phases respectively. As noted, the [020], [040], and [060] peaks characteristic of the 

interlayer spacing are conspicuously absent on the Qr axis of figure 2a. However, most of the 

peaks on the Qr axis are obscured, except the [20-2] at Qr=2Å-1. This indicates that the absence 

of these purely in-plane peaks is likely a systematic effect of the experiment, as will be shown 

subsequently. There is one region of reciprocal space that contains phase specific information 

about the layer width which does not lay on the Qr axis, and which has not been previously 

identified in the literature. It lays along Qz =2, 0<Qr<1Å-1. This region contains the [222], [242], 

[262] peaks, though the [222] lays in Bragg restricted wedge on the Qz axis and is thus cut from 

view. A zoom in of this region is shown in figure 3. As shown in figures 3a and 3b, two peaks 

characteristic of the n=3 layer spacing can be observed, and distinct peaks corresponding to n=2 

and n=4 are absent. However, they likely exist but are buried beneath the dominating n=3 

characteristic peaks. Based on these characteristic peaks, we can definitively say that we are 

looking at a structure dominated by an n=3 RPP crystal. We note that the absorption length of the 
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13.5keV x-rays at this incident angle (0.4o) is 200nm (shown in subsequent sections), so this 

measurement has an outsized contribution from the upper region of the film. As such, we cannot 

rigorously speak of the relative abundances of the various phases in the films bulk without taking 

this into account. However, we can say that this scattering pattern is mostly reflective of an n=3 

RPP in the [101] orientation, which allows us to refine the structure based on the empirical peak 

positions for further analysis.  

 Figure 3a shows that the peaks predicted using the single crystal RPP structure lay 

systematically below (lower Qz) the positions of the measured diffraction peaks. This implies a 

slight contraction of the unit cell in the a and c directions. The b dimension of the unit cell (layer 

stacking direction) appears in fair agreement with the single crystal prediction.  Thus, we refine 

the single crystal structure by decreasing the unit cell by 1.4% in the a and c directions, figure 3 

Figure 3. Panel a shows the region of 

reciprocal space containing peaks 

characteristic of the layer spacing. The 

scattering in this region is plotted along 

with the intensity weighted reciprocal 

lattice for the [101] oriented n=2,3,4 RPP 

crystals. Panel b shows the Qz integrated 

profile of this region along with the 

predicted characteristic layer spacing 

peaks of the 2,3,4 RPP phases.     
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shows the results of this refinement, along with the data and the predictions using the single 

crystal unit cell. Although the change is slight, the refinement certainly appears to agree better 

with the measured data.  

 We note that this shrinking of the in-plane unit cell is consistent with increased octahedral 

tilting. Figure 5a and 5b shows the octahedral tilting pattern present in single crystal n=3 RPPs. 

Interestingly, tilts around the [101] axis are much larger than the tilts around the [010] axis. It is 

reported that this results from a competition between the distortions preferred by the MA+ cations 

in the octahedral cages and the BA+ cations on the slabs surface7. Figure 5c geometrically 

illustrates concept that tilting rigid octahedra results in a compressed unit cell.  If the contraction 

of the unit cell does in fact come from tilts of rigid octahedra around the [010] axis this would 

represent an important difference from the single crystal structure, with likely important electronic 

consequences as the in plane Pb-I-Pb bond angle has been shown to have a profound impact on 

Figure 4. These panels compare the reciprocal lattice of the refined unit cell and the 

single crystal unit cell, with the measured GIWAXS scattering pattern.  
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the band gap of HIOPs8 . This issue therefor warrants further investigation, perhaps with a 

rigorous peak magnitude analysis.  

 

 

GIWAXS as a function of Incident Angle: Investigation of surface contamination 

 X-rays typically have an effective refractive index less than one in solid materials as noted 

in chapter 2. This allows us to take advantage of the phenomenon of ‘total external reflection’ to 

Figure 5. This figure shows the anti-

phase octahedral tilting pattern present 

in the empirically determined n=3 RPP 

single crystal structure. Panel a shows 

the tilting around the [101] axis. Panel b 

shows the relative lack of tilting around 

the [010] axis. Panel c illustrates the 

principal that antiphase tilts of rigid 

octahedra compress the unit cell.  

Panels a and b were taken from 

reference 7. 
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obtain surface selective information 

about the crystal structure. The critical 

angle can be calculated based on the 

materials density, and empirical 

formula. In n=3 lead halide RPPs the 

critical angle is calculated to by 0.15o. 

Figure 6 shows the calculated 

absorption length versus incident 

angle, and a precipitous drop is 

observed at the critical angle, which 

reflects the evanescent nature of the x-ray field within the material. The absorption length 

represents the upper limit on the depth of the region from which scattering originates9. In the case 

of an incident angle of 0.1 degrees the main contribution to the scattering signal comes from the 

top ~3.5nm of the film at maximum at maximum. There for, if there are any crystalline species 

contaminating the surface of our samples, we should certainly be able to seem them at a low 

Figure 6. Calculated absorption length vs incident 

angle for n=3 RPP film.  
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incident angle. In particular we will be testing the hypothesis that crystalline MaPbI3 exists on the 

films surface, in light of recent claims of its existence based on the optical properties of the films. 

 Figure 7 shows selections from measured GIWAXS pattern obtained at an incident angle 

0.1o. We simulated the scattering of many different tetragonal MaPbI3 orientations, and most 

produced patterns which strongly deviated from the observed GIWAXS pattern. However, for 

comparison we pick the two that came the closest reproducing the measured scattering results. 

These two orientations are the [010], and the [001]. These two orientations have special physical 

significance in that they contain perovskite octahedra oriented such that they could naturally 

corner share iodine atoms with the existing [101] oriented n=3 RPP structure existing in the films 

bulk.  Figures 7 a and b show that the refined n=3 RPP structure comes much closer to 

reproducing the peak positions than bulk MaPbI3 in any orientation. Note that there are certain 

peaks which appear to contain contributions from different phases as is evidenced by the larger 

spreading in the azimuthal direction on the high |Q| shoulder. One example of this is shown in 

Figure 7. Panels a and b compare the GIWAXS pattern 

measured with an incident angle of 0.1o with the weighted 

reciprocal lattice of the [010] and [001] orientations of MaPbI3, as 

well as the refined single crystal n=3 RPP structure. Panel c 

shows the expected instrumental broadening resulting from the 

large beam foot print one the sample.  



57 
 

figure 7c. Interestingly, every peak which contains an excessively broadened high |Q| edge 

feature also has a [010] oriented MaPbI3 peak nicely corresponding to the radial position of the 

broadened feature. One is tempted to conclude that these peaks represent a population of [010] 

oriented MaPbI3 which exists preferentially on the surface of the film, and has a slightly larger 

distribution of lattice orientations than the bulk RPP structure. However, this interpretation is 

significantly less robust than it appears, although this data did confuse us for a short while. Please 

refer to the chapter 2 regarding the resolution limits of GIWAXS as a function of incident angle. 

Briefly, at low incident angle the sample is greatly overfilled by the incident x-ray beam, and has 

a very large foot print (I’ll denote the length of the footprint W). When the beam undergoes 

scattering this foot print is projected on to the detector, and takes up a physical size on the 

detector equal to W*Tan(θ), where theta is the scattering angle defined by 

θ=2Arcsin(qscatt/2kincident). This broadening in detector space results in the observed radial 

broadening in q space at low incident angle. The expected radial instrumental resolution expected 

from our 10mm sample is plotted as the blue dotted line in figure 8c. Thus it’s clear that the radial 

breadth of the peak can be accounted for mostly by instrumental broadening. This means that 

any peak which is present through the whole film must be broadened by the instrumental 

resolution by definition. Equivalently any peak which is sharper than the instrumental resolution 

must come from a localized region of the film. However,  there is uncertainty in what localized 

region of the film the peak comes from, and this translates to uncertainty in the true value of the 

scattering vector. Thus the radial position of any peak sharper than the instrumental resolution 

has no significance. The more likely explanation of this phenomena comes from inhomogeneity 

in the film thickness as one would expect from a spin coating procedure. In particular, at the edges 

of spin coated samples there often occurs a build-up of material. Pictures of the film orientations 

used in the experiment show that there is indeed a thick deposit of material on the upstream side 

of the film, shown in chapter 2. Having eliminated the uncertainty in the position, there is no longer 

any uncertainty in the scattering vector, which implies that this feature corresponds to the same 



58 
 

scattering vector as the center of the peak. With this possibility eliminated we inspect the peaks 

shown in figure 8a and 8b, and observe that the n=3 RPP reciprocal lattice agrees significantly 

better with the observed peaks than either the [010] or the [001] oriented MaPbI3. We thus 

eliminate the possibility of crystalline MaPbI3 contaminating the surface of our film.  

Phase Purity Analysis: Observation of the [020] characteristic peak with SAXS Detector 

The [242] and [262] discussed earlier in the chapter 

appear to sit on a relatively large background, likely 

due to the strength of the nearby [202] which is 

predicted to be the strongest peak in reciprocal space. 

It not clear a-priori how to remove this ‘background 

signal’, to do a quantitative analysis of the line shape 

to determine the relative abundances of the various 

phases. As noted, the other peaks which are 

characteristic of the layer spacing are the purely in- 

plane [020], [040], [060], and they have not yet been 

detected in hot cast films due to the [101] orientation. 

A clue as to why they’re not observed lays in the fact 

that almost none of the in plane peaks are observed. 

This can be understood because purely in plane peaks 

follow the propagation of the incident beam 

downwards through the glass substrate, and are thus 

greatly attenuated. Thus, in principal they should still be detectable if one has a sufficiently 

sensitive detector. The small angle x-ray scattering detector at the CMS beamline at NSLS-II 

turned out to be exactly what was needed, as the background counts are essentially zero for large 

integration times up to 300s. 

Figure 8. Panel a shows the 

RPP crystal structure with the 

[020] planes displayed. Panel b 

shows the SAXS pattern 

observed on a 400nm film with 

the predicted peak positions 

based on the single crystal 

structure.  
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  Figure 8 shows the [020] peaks are readily observable, and confirm our 

assessment that the RPP slabs stand perpendicular to the substrate. The layer spacing appears 

to be in good agreement with that predicted for the n=3 single crystal RPP structure of ~25.5Å, 

corresponding to a peak at Qr=0.248Å-1. Note that the peaks appear in the sub-horizon on the 

SAXS detector implying they propagate through the glass substrate. The surface scattering of the 

direct beam is shown in the region Qz > 0.05 Å-1. Due to the in plane nature of the [020] Bragg 

peaks, they’re behavior as a function of incident angle mirrors that of the transmitted beam, 

disappearing below the critical angle. Therefor we do not have robust SAXS data sets as a 

function of incident angle. 

 Figure 9 shows that the films all exhibit the [020] peak characteristic of the n=3 layer 

spacing. Interestingly, figure 9a shows that the 20nm film alone exhibits a [020] peak on the Qz 

axis and the Qr axis. This represents a bimodal distribution of crystal orientations with one 

population in the conventional [101] orientation with slabs perpendicular to the substrate, the other 

in the [010] orientation representing slabs parallel to the substrate. At the end of this chapter I will 
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speculated about the significance of this fact, and what it might imply about nucleation mechanism 

producing the vertical slab orientation obtained via the hot casting procedure.  

 The region above Qz=0.05Å-1 reflects the surface scattering of the direct beam. Figure 10 

shows the normalized Qr slices of the surface scattering at various Qz. This data exhibits two 

important distinct decay regimes as a function of Qr. The low Qr regime decays as a power law 

with an exponent of 0.5. At a certain Qr, a crossover to a much faster decay is observed. The Qr 

at which this crossover occurs increases with increases Qz. Another regime appears at still greater 

Qr which is characterized by a much slower decay. These profiles qualitatively agree with previous   

measurements of roughness on a self-affine surface10–12. Although we note that the characteristic 

of self-affine surfaces: lim
𝑄𝑟→∞

𝐼(𝑄𝑟) ~𝑄𝑟
−𝜈   10,12 does not appear to obtain in our films. Rather it is the 

Figure 9. Panels a-f show the GISAXS pattern obtained on hot cast n=3 RPP thin films of 

various thicknesses.  
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low Qr behavior that appears like a power law with a power of 1/2. Further analysis of the surface 

scattering may yield an understanding of the crystal growth mechanisms, as it has in the case of 

kinetic roughening10,11.  Further understanding of this phenomenon may be obtained by acquiring 

data with a higher Q resolution, to confirm if this power law behavior hold at even larger length 

scales.  

 Figure 11 shows the Qz-

integrated profiles of the Bragg 

scattering in the region around Qz=0. 

Most of the observed [020] peaks 

reflect a n=3 layer spacing, but there 

is some residual scattering from 

other phases in the form of distinct 

satellite peaks. Thus we conclude 

that our films contain a mixture of 

phases, but are dominated by n=3.  

 Figure 12 shows these same 

profiles on a linear scale (note the sign inversion of the Qr axis). Here we have chosen the 

measurements exhibiting the largest amplitude of the satellite peaks. We note that 20nm film 

contained no discernable satellite peaks, although the peak width is relatively broad. The 

observed Bragg peaks are well localized and centered around the n=3 value. These profiles were 

fit by constraining the centers of the Gaussians to lay at the theoretical positions of the [020] of 

the n=2,3,4 RPP phases respectively, and the results look quite good in most cases. The figures 

d and e show relatively poor fits in the region |Q|>0.28Å-1 which likely over-estimates the 

contribution of the n=2 phase. From these fits, the relative peak magnitudes have been extracted. 

The absolute scattering intensity of these crystals were calculated using the single crystal 

Figure 10. This figure shows normalized slices of 

the SAXS surface scattering as a function of Qr for 

various Qz. This data was obtained on a 300nm film 

at an incident angle of 0.3o.  
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structure. Combing the simulations with the peak magnitudes, allows us to calculate the relative 

Figure 11. Panels a-g show the observed Qz integrated profiles, some displaying satellite 

peaks, other without them.  

Figure 12. Panels a-e show the Qz integrated SAXS profiles, which are fit with 

gaussians at the theoretical peak positions. Panel f shows the calculated relative 

volumetric abundances of each phase.  
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volumetric abundances of the various phases, which is shown in figure 12f. This shows that our 

films are all at least 70% n=3 RPP films.  

 This value roughly agrees with the relative sizes of the observed optical features in the 

linear absorption spectrum. We note that the beam foot print on our samples was large ~10mm 

long compared to the size of our samples. We typically observe an increase in film thickness 

moving outward from the films center, as can be observed as a gradient in the darkness of the 

film. This results from edge effects of the spin coating process. When performing grazing 

incidence diffraction the whole illuminated contributes to the scattering. Thus we cannot tell from 

this data if the other phases exist preferentially towards the edges or are equally mixed through 

the film. Importantly the center of the film is where we conducted all of the optics experiments.  

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

Sample Degradation Analysis 

  Our samples exhibited a pronounced 

degradation effect which is apparent in the 

long integration time data shown in figure 13.  

The peaks are systematically blurred out in 

the azimuthal direction, eventually leading 

nearly isotropic scattering at large |Q|. 

Therefor all of our analysis is based on the 15 

second integration time data, for which we 

observe no irreversible changes in the 

scattering pattern. The X-ray dose used to 

acquire out data was 7.4x1015photons/mm2 

with a photon energy of 13.5keV.  

GIWAXS as a Function of Incident Angle: 

200nm Film 

  Figure 14 shows the calculated beam 

footprint versus incident angle. Our samples 

were 10mm long which means that the data 

obtained at low incident angle (αincident< 0.30) 

over fills the sample. This effect implies that 

below 0.3 degrees we should see a steady 

decrease in the scattering intensity of all 

peaks. However, the scattering cross section 

increases at low angle which tends to increase 

the scattering intensity of all peaks. Together, 

Figure 13. This figure shows the 

measured GIWAXS patterns 

obtained at 15s integration time vs 

300s integration time for all film 

thicknesses. 
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these effects produce peak magnitudes that vary in a less intuitive way than we would like, 

however the peak ratios still contain physically meaningful information. 

  

Figure 14. Panel a shows the 

calculated beam foot print and 

panel b shows the expected radial 

broadening. 
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 Figure 15 shows the GIWAXS patterns obtained on a 200nm film as a function of incident 

angle. These patterns were all taken on the same spot on the film, and chronologically were taken 

from lowest angle to highest angle, which implies that the low angle data corresponds the lowest 

total dose of radiation given to the spot. As shown in figure 6, at 0.4 degrees incident angle the 

Figure 15. These panels show the measured GIWAXS pattern of a 200nm film as a function of incident 

angle. 
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absorption length is 200nm which corresponds to the 

full thickness of this film. At while at 0.1 degrees the 

scattering originates from a region within 3.5nm from 

the surface. As expected, the peak magnitudes 

decrease at lower angle due to the greatly decreased 

transmission coefficient at angles less than the critical 

angle. As a result of this our signal to noise decreases 

such that some of the fainter peaks present at 0.40 

incident angle can no longer be distinguished from the 

background. However, there is a set of peaks at 

|Q|~0.67Å-1 whose relative prominence increases with 

respect to the others as the incident angle is 

decreased. These peaks are circled in yellow in figure 

15.  

  At low angle we also observe an increase in 

magnitude of a set of diffuse rings at |Q|>1.5 Å-1. The 

azimutha width of these peaks indicates they do not 

arise from the highly oriented structure which gives rise to the Bragg peaks. However, |Q| of these 

rings seem correlated to the peaks of the RPP structure. We therefor conclude that these diffuse 

rings at high angle represent a strongly disordered nano-crystalline population existing on the 

films surface. Features looking like nanocrystals can be observed in AFM images of the films 

surface in figure 16a and 16b. We don’t suspect the nanocrystals are responsible for creation of 

the anomalous mid gap sates, because the latter also occur in exfoliated flakes of single crystal 

n=3 RPP as well, and AFM images haven’t detected them there.     

 
Figure 16. These panels 

show AFM images of the 

surface of an n=3 RPP film. 

The color range is 50nm, while 

the whole box is (2μ)x(2μ).  
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 Figure 17a shows a zoom-in of the 

peaks at 0.67Å-1. The red circles represent 

the expected scattering peaks of the n=3 

RPP, while the white circles are the 

expected peak position of MaPbI3 in the 

[010] and [001] orientations. However, 

none of these peaks coincide with the 

positions of the observed peaks.  It can be 

shown that there is no orientation of 

MaPbI3 or the n=3 RPP which can explain 

these peaks. Their position indicates they 

correspond to a periodicity of ~93Å. Which 

is almost twice the size of the n=3 RPP unit 

cell (~102Å). The orientation of the peaks 

indicates that they represent a periodicity 

which is well defined with respect to the 

RPP lattice. We therefor infer that they 

represent a distortion of the n=3 RPP unit 

cell, however it is unclear exactly what type 

of distortion they correspond to. We’ll 

hereafter refer to them as ‘distortion peaks’.  

 Figure 17b plots the ratio of the magnitude of the distortion peak to that of the Bragg peak 

circled in red in figure 15a (which corresponds to the RPP [311]). This peak was chosen for 

normalization of the distortion feature, as it has the same azimuthal coordinate. However this 

choice is arbitrary and figure 15 a-f show that the same conclusion would be drawn using any 

Figure 17. Panel a shows a zoom in of 

the peaks at 0.67Å-1 extracted from 

figure 15f. Panel b shows the relative 

peak magnitude as a function of 

incident angle.  
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prominent peak in the scattering pattern. The distortion features exhibit a large increase in relative 

magnitude below the critical angle, which shows that these features are surface localized. We 

expect that these peaks represent distortions which come about due to surface strain. Distortions 

of the RPP crystal structure are expected to have a huge impact on the films electronic structure12. 

The observation of a surface localized distortion is interesting because as will be shown in chapter 

6, our films contain a mid-gap state localized on the film’s surface. Due to concomitant 

appearance of mid gap states and distortions on the films surface, as well as the a-priori 

connection between electronic structure and crystal structure, we infer that these surface 

distortions are the physical cause of the mid gap surface state. This is one of the main results of 

this thesis. However, this is clearly not proof of a causal connection between them.  

GIWAXS as a Function of Film Thickness: 0.4 Degrees Incident Angle 

Trends in the behavior of the Bragg peaks as a function of angle and film thickness can be 

quantified by fitting the GIWAXS scattering peaks with a function of the form: 

 F(ρ,θ)=A+ B*exp(-2[( (θ- θ0)/2σθ )2+ ( (ρ- ρ0)/2σρ )2)])  

Such that Qz= ρSin(θ) and Qr= ρCos(θ). From these fits σθ , σρ and the peak amplitude can be 

extracted as a function of film thickness. Note that these extracted fit values were used in making 

figure 17b. Figure 18a shows the indexing scheme used to identify features referred to 

subsequently. Figures 2,3, and 4 show that the most prominent features contain contributions 

from multiple planes. However, I have here used the convention to index the peaks according to 

the plane contributing the maximum theoretical intensity to the feature. This indexing scheme 

appears different than previous attempts1,2,4, however this is simply a result of the stated 

convention.  
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 Figure 18b shows the scaling of the peak magnitudes against the square of the film 

thickness, illustrating the quadratic scaling of the peak magnitudes between 50nm and 200nm. 

This factor of four increase in the film thickness results in roughly a factor of 16 increase in the  

 

peak magnitude as expected. The inset on figure 18b shows the scaling against the film thickness 

for all of the films. Films thicker than 200nm show peak magnitudes which increase relatively 

Figure 18. These panels show the behavior of the observed GIWAXS patterns as a 

function of film thickness. Panel a shows the indexing of the various features. Panel 

b and b inset show the scaling of the peak magnitudes with film thickness. Panel c 

shows the fit azimuthal width as a function of film thickness. Panel d shows the 

variation of the peaks width with incident angle.  
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slowly compared to the quadratic scaling seen for thinner films. However, this does not reflect 

anything physically important about the structure of the films. Rather, the absorption length of the 

radiation at 0.4 degrees incident angle is 200nm as is shown in figure 6. Therefor the decrease 

in the slope for films greater than 200nm in 19b is reflecting the absorption of X-rays in the film. 

The region of quadratic scaling of peak magnitudes indicates that the full thickness of the crystal 

is scattering coherently, which strongly indicates single crystal behavior through the films depth. 

We note that the 20nm film does not fit this trend, and the peak magnitudes level off below 50nm, 

however this is not entirely unexpected, as the SAXS data of the 20nm film shows a bimodal 

distribution of peak intensities, and thus a-priori has a different statistical distribution of lattice 

orientations than the rest of the film.  

 Figure 18c shows the extracted azimuthal peak width, σθ for the various peaks as a 

function of film thickness. The relative consistency of σθ for all peaks in all films indicates that this 

angular spreading should be interpreted as resulting from the distribution of grain lattice 

orientations, rather than some other type of disorder. The data indicates this distribution of lattice 

orientations is gaussian with a width on the order of 1o. A monotonic decrease in the angular 

spreading is observed with increasing film thickness indicating a progression towards better gain 

alignment with increasing film thickness. This reasonably small but consistent trend is likely 

directly reflective of the crystal growth or nucleation mechanism, and any candidate model of this 

mechanism should provide a way to understand this data. In contrast the radial peak width shows 

no monotonic trend in film thickness, likely because it is dominated by instrumental resolution.  

 Finally, figure 18d shows how the azimuthal peak width varies as a function of incident 

angle. The variation is with angle is less than 10% with no clear trend. Thus this data shows that 

the ordering of the lattice is roughly independent of the depth of the film which is probed, which is 

also consistent with single crystal behavior in the out of plane direction.  

Speculation Regarding the Nucleation Process Which Gives Rise to Vertical Slab Orientation.  
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 As noted the SAXS data taken on the 20nm film indicates a bimodal distribution of layer 

orientations (figure 9a). Clearly the nucleation process in this 20nm film is strongly influenced by 

the proximity to the substrate. This implies that the natural growth motif of the crystal nucleated 

on the substrate leads to slab stacking parallel to the substrate. We thus reason that the 

nucleation process which seeds the vertical slab orientation likely occurs at the air-solvent 

interface, in agreement with a recent publication which showed that vertically oriented RPP slabs 

can  nucleate at the air-solvent interface2.  

This concept sheds light on how the hot casting procedure works. I suggest that hot casting 

causes strongly oriented films by inhibiting nucleation at the substrate, and thereby promoting the 

contributions which nucleate at the air-film interface, which is inherently oriented. Nucleation at 

the substrate is inhibited because it’s elevated temperature increases the solubility of the ions in 

the solution in its immediate vicinity. However, at the air-solvent interface, solvent is rapidly 

evaporating, cooling the liquid and increasing the concentration of ions. Thus hot casting allows 

nucleation at the top interface by inhibiting nucleation at on the substrate. And nucleation at the 

top interface is vertically oriented2.   
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Chapter 6: 
Transient Absorption Analysis 
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Transient Absorption Spectroscopy Studies Of  BA2MA2Pb3I10 

 

Although RPP thin films exhibit a crystalline structure which strongly resembles that of 

single crystal samples, notable differences in their optical properties have been observed1–4. 

Photoluminescence studies show the films contain a sub gap defect state whose emission 

dominates that of the film. A number of photophysical questions about the electronic structure 

of these films and how they operate in devices remain. In particular: How can a strongly 

excitonic material produce an efficient solar cell in a planar geometry? What’s the relationship 

between the emissive mid gap states and excitons, and how do they interact during device 

operation? How does the well-established [101] structural orientation observed in hot cast films 

impact on photo-excited carrier dynamics? Is the electronic structure constant through the film? 

To answer these questions, we performed femtosecond and nanosecond transient absorption 

spectroscopy on a set of hot cast BA2MA2Pb3I10 films with varying thickness (20nm-400nm), 

and compared the results to those obtained on a post annealed film. 
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Figure 1a shows the absorbance 

spectrum measured using a fourier 

transform interferometer. This curve was 

calculated by measuring both the 

transmission and reflection, and 

calculating  – log(T/(1-R)). It can be shown 

that using empirically determined T and R 

implies this function well approximates 

4π[Imag(n)]L/λ. In the former equation n is 

the complex refractive index L is the film 

thickness and λ is the wavelength. This 

spectrum exhibits 3 the sharp excitonic 

features. The largest feature at 605nm 

coincides with the ground state exciton in 

single crystal n=3 RPP3–6. Around the 

central feature at 605nm are two satellite 

peaks at 572nm and 635nm. It has been 

noted that the positions of these smaller 

peaks correspond to the ground state exciton transitions in single crystal n=2 and n=4 RPPs, 

and have thus been attributed to contaminating n=2 and n=4 phases respectively4,7–11. Phase 

purity analysis based on grazing incidence small angle scattering measurements (in chapter 5) 

indicate that our films contain up to 30% percent (by volume) contamination with other RPP 

phases. Thus, following the literature we assign the small features at 572nm and 635nm in figure 

1a as the ground state excitons of the contaminating n=2 and n=4 phases respectively. 

Figure 1b shows the TA spectrum observed exciting the thin film at 710nm. A broad 

bleaching features centered at 730nm rises quasi-instantaneously (instrument limited) after 

Figure 1. Panel a shows the 

measured linear absorption of an 

n=3 hot cast RPP film 200nm thick. 

Panel b shows that measured 

transient absorption spectrum of 

the same film excited at 730nm with 

an absorbed fluence of 1x1013cm-2. 
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excitation. This feature represents a population of photo-excited carriers occupying the states 

involved in the transition at 730nm. The feature at 730nm does not coincide with the ground 

state RPP exciton of the n=1,2,3,4, or 5 phases. The appearance of an optically active state in 

the band gap of RPP single crystals is expected in RPP thin films based on previous PL studies 

which have detected it1,3,7,12,13. Highly efficient LEDs based on spin coated RPPs films have 

been shown to emit through this state2,8. Although this sub gap state dominates the emission 

in RPP thin films, it’s intensity is greatly diminished in photoluminescence studies of RPP single 

crystals3–6. However, this feature can be observed in single crystal RPPs on the perimeter of 

exfoliated flakes via confocal photoluminescence spectroscopy3. This observation led the 

authors of reference 3 to name them ‘edge states’. Because edge states are associated with 

the termination of the 2d crystalline planes, they are expected to be localized in the grain 

Figure 2. These panels show the normalized differential 

absorption spectrum observed in RPP thin films under NIR 

excitation for various film thicknesses. Panel a, 20nm. Panel b, 

50nm. Panel c 100nm. Panel d 200nm. 
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boundaries of the poly-crystalline  films, and thus dominate their optical properties due to the 

expected small crystalline domains present in spin-coated films14. Due to the spectral proximity 

of this feature to the previously observed edge state feature3, we assign the prominent feature 

at 730nm in the TA spectrum to photoexcited carrier occupation of edge state optical transition.  

We note that this assignment is controversial, as recent studies of spin coated RPP thin films 

have assigned this feature to MaPbI38,12 or another high n RPP contaminating the sample. 

However recent TA  studies  of  MaPbI3 thin films show steady state bleaching features centered 

at 750nm15,16. In chapter 5 analyzing x-ray diffraction data, serious consideration of the MaPbI3 

contamination hypothesis is given, but we have ultimately concluded that there is no evidence 

for crystalline MaPbI3 in our films. 

 Figure 2 shows the normalized differential absorption spectrum measured on the 

20nm, 50nm, 100nm, and 200nm films, for various values of the pump-probe delay time. The 

center of the edge state feature systematically moves from approximately 700nm in the case 

of the 20nm film to approximately 730nm in the case of the 200nm films. However, when 

comparing different batches of films there appears no robust correlation between the spectral 

position of the edge state feature and the film thickness. The shifting of this feature in films 

made from the same batch of material, and between different batches of materials indicates 

there exist unknown extrinsic factors determine its energetics, and also suggests that this shift 

is not related to a thin film interference phenomena. We suggest surface strain plays a role, 

which is discussed in chapter 5.    

Figure 2 a-d shows that the long time spectra (mostly) take on the same shape as the 

early time spectra. This indicates the photo-excited carrier dynamics are not greatly impacted by 

cooling, which redistributes the photo-excited population in energy, changing the line shape. It 

also indicates that the spectral shift of the center of the edge state feature observed in the 

thinnest films is not a transient phenomenon related to cooling. Therefor we expect the spectral 

positions of the edge state feature in figure 2a-d to truly represent the energetic position of the 



79 
 

optical band gap in these films.  

Another important feature of these spectra are small ripples between 600nm and 

700nm, which gain relative prominence at late time (seen in figure 2d). We do not currently 

have a satisfactory explanation of the kinetics of these features or why they are observed at all. 

Spectrally, these features occur at the same position as native RPP excitonic peaks seen in 

the linear absorption spectrum in figure 1a, and in the transient spectrum shown in figure 4a-d. 

This seems to imply they result from photoexcited carrier occupation of these higher energy 

transitions. However, because these features are so much higher in energy than the edge state 

features (340meV between 730nm and 600nm), it is highly unlikely that they result from thermal 

excitation of an electron-hole pair from the edge state. High energy features can occur in these 

experiments resulting from undesired two photon absorption of the 730nm pump, or from 

residual second harmonic of the 730nm leaking through the OPA. However, it is shown in the 

coming sections that when the excitonic features are directly excited they decay faster than the 

edge states. Thus if these features were directly excited by two photon absorption or the second 

harmonic of the pump, we would not expect them 

to grow in relative prominence at late times. We 

note only that these features seem related to the 

native excitons present in the single crystal 

materials. The fact that the excitonic features are 

present under NIR excitation indicates that the 

edge state features likely arise from the same 

material as the excitonic features, as opposed to 

a distinct phase contaminating RPP material.  

In addition to the dominant edge state 

feature, there appears high energy bleach feature 

at about 470nm which is partially cut off in figure 

Figure 3. This figure shows a 

possible electronic structure 

which could explain the observed 

kinetics of the feature at 470nm. 
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2. The relative magnitude of this feature does not appear to change significantly with film 

thickness. The kinetics of the 470nm feature are directly proportional to the kinetics of the edge 

state feature, as is shown by its constant magnitude on the normalized curves in figure 2(a-d) 

which implies the magnitude of this feature is directly proportional to the population of edge 

states. This suggest a situation like the one depicted in figure 3. In this model the transition at 

470nm shares a common valance band energy level with the edge state. Thus photoexcited 

holes in the valance band decrease the number of optical transitions available to conduction 

band 2, decreasing its optical absorption. An alternative to this model in which the 470nm 

transition and the edge state transition share a conduction band state is equally possible. Again, 

because this feature is so much higher in energy than the edge state feature it seems very 

unlikely that this feature corresponds to a population thermally excited from the edge state. We 

note that the interpretation that the valance band is shared between the edge state transition 

and the 470nm transition is in agreement with DFT calculations done by our collaborators in a 

heretofore unpublished work.   

 

TA Analysis: 500nm Excitation 

 Figure 4 shows the differential absorption spectra obtained when exciting the films at 

500nm. This data was obtained on the same set of films as the NIR excitation data (figure 2).  

Compared to the NIR excitation we see new features emerge which have distinct dynamics from 

the edge states, as can be seen by the changing magnitudes of the peaks on the normalized 

curves. All together there are 4 sharp peaks visible, the largest of which is at 605nm. Figure 4 

shows that at short times the center of the edge state feature appears significantly blue shifted 

and broadened, while at long times the center of the edge state peak returns to the position 

observed under NIR excitation. A hot phonon bottleneck has recently been reported to occur in 
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MaPbI317 at similar absorbed fluences, and in the following we consider the possibility that the 

shifting and broadening behavior of the edge state bleach results from a hot phonon bottle neck. 

 After photoexcitation, cooling of the electronic population generally occurs by the emission 

of optical phonons. However, at high photo-excited carrier density, so many optical phonons can 

be created that phonon reabsorption by the photo-excited carriers can effectively compete with 

dissipation of the optical phonons into acoustic phonons. In this case energy is transferred back 

into the electronic system, which slows the net dissipation of electronic energy in to heat. When 

this occurs in MaPbI317
 a cooling timescale 𝜏𝑐𝑜𝑜𝑙𝑖𝑛𝑔 ~40ps is observed at a photo-excited carrier 

Figure 4. These panels show the normalized differential absorption 

spectrum observed in RPP thin films under 500nm excitation for various 

pump probe delay times. Panel a, 20nm. Panel b, 50nm. Panel c 100nm. 

Panel d 200nm. 
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density of 6x1018cm-3 (absorbed fluence 

4.2x1013cm-2), while a cooling timescale of 

only 50fs is observed at a density of 

5.2x1017cm-3 (absorbed fluence 

3.6x1012cm-2). This corresponds to a 

change in the cooling time by a factor of 

800 for a density change by a factor of 

roughly 10.  

Figure 5 shows the kinetics of the 

FWHM of the edge state feature (730nm) 

for low fluence and high fluence. Figure 5a 

shows that the FWHM is roughly 

independent of film thickness and time, in 

the case of an absorbed fluence of 

4x1011cm-2. This indicates that cooling has 

already completed by 1ps, in agreement 

with the observation that cooling by occurs on ultrafast time scales at low absorbed carrier 

densities17. Figure 5b shows the FWHM exhibits a much different time dependence in the case 

of a photo-excited fluence of 8x1013cm-2. In panel b the FWHM starts about 3x as large as in 

the case of low fluence and decays slowly to roughly the same value as the low fluence case. 

Thus we find generically that the cooling kinetics do depend on absorbed fluence in agreement 

with reference 15. We note that the FWHM kinetics appear very similar in all films, which is not 

expected, as the thinnest film has a photo-excited carrier density ten times larger than that of 

the thickest films (density=fluence/film thickness). However, this chapter will show that the edge 

state feature is physically localized on the air-film interface. In this context, the similarity of the 

FWHM kinetics in films of varying thickness makes perfect sense. 

Figure 5. This figure shows the kinetics of 

the edge state feature’s FWHM. Panel a 

shows the data obtained when exciting the 

film at 4x1011cm-2, while panel b shows the 

data obtained when exciting the film with 

4x1013cm-2. 
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 Alternatively, such an effect could be explained by the disordered natured of the edge 

states. In this picture the edge states are localized and exist over a broad range of energies, 

and the slow motion of the carrier population downward in energy reflects the slow hopping 

process by which the carriers explore the energy landscape, and become stuck in low energy 

wells. Such a phenomenon is observed in transport studies on the band tails of disordered 

semiconductors such as amorphous silicon18. However, this picture does not account for the 

difference in the kinetics observed with different pump fluences. Such a picture could be brought 

into correspondence with the data if we assume a waiting time distribution which depends on 

carrier density, however this assumption is completely ad hoc. The data can be explained with 

the fewest assumptions in the hot phonon bottle-neck hypothesis, which we therefore adopt. In 

either of the stated cases this shifting and broadening phenomena indicate that the edge states 

have a continuum of energy levels spread over a broad range of about 300meV. 
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TA Analysis: 480nm Excitation, New Samples 

 We obtained a new set of hot cast n=3 RPP samples, which appear very similar to the 

previous ones, however we note a couple of important differences. The spectra obtained on the 

new batch of films are much more consistent across film thickness. For example, the edge state 

feature in the new batch of films appears consistently at about 730nm, whereas the 20nm film in 

the previous batch showed an edge state feature at 700nm. Also, the transient spectra obtained 

on the 20nm film from the previous batch (figure 4a), shows practically no contribution from the 

excitonic states which are featured prominently in the all films of the new batch. For the 

remainder of the chapter I’ll analyze the TA spectrum of the “new batch” of films.  

Figure 6. This figure shows the differential absorption kinetics obtained by exciting our 

new samples at 480nm with a fluence of 2x1013cm-2. Panel a 20nm, panel b 50nm, panel 

c 100nm, panel d 200nm 
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TA Analysis: 480nm Excitation, Front-Back Analysis 

  When exciting the film with visible 

radiation, the absorption length becomes 

comparable to the film thickness. At 480nm, 

we measure the absorption length to be about 

100nm. Thus depending on the pump 

geometry defined in figure 7 we can 

selectively deposit carriers toward the air-film 

interface, or the glass-film interface.  

  Figure 8 shows the transient spectra 

at 5ps obtained in the front and back pump 

geometries when exciting our hot cast RPP films with 480nm radiation for an absorbed fluence 

of 4x1011cm-2. We find that the size of the edge state feature is larger in the in front pump 

geometry than in the back pump geometry in all films. In the case of the 200nm film, we observed 

an edge state feature which is roughly seven times larger in the front pump geometry than the 

back pump geometry. This front back asymmetry is fundamentally driven by the relationship 

between the absorption length and the film thickness, and accordingly the asymmetry decreases 

significantly in the thinner films. In this respect one would expect no asymmetry at all in the case 

of the 20nm and 50nm films, and this will be addressed directly in the coming paragraphs. As 

established in chapter 4 the early time (~5ps) transient absorption spectrum contains information 

about the electronic structure in the volume excited by the laser. Therefor the relatively small 

magnitude of the edge state feature in the back pump geometry reflects a relative paucity of 

edge states on the glass-film interface and through the bulk of the film. Conversely, the relatively 

large edge state feature observed in the front pump geometry implies that the edge states exist 

Figure 7. This figure defines the front 

and back pump geometries.  
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preferentially towards the air film interface. We note also that that the decreased magnitude of 

the edge state feature in the back pump geometry is correlated with an increased magnitude of 

the excitonic features. Thus it appears that one population is created at the expense of the other 

as would be expected.  

 

 

Figure 8. This figure compares the transient absorption spectra obtained when exciting our 

films at 480nm in the front pump and back pump geometries. In all cases the absorbed 

fluence is 4x1011cm-2.  
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  Figure 9 shows that such profound 

asymmetry is not present in 200nm thick post 

annealed films, indicating that the edge states are 

distributed symmetrically in the post annealed film. 

Additionally, the 200nm post annealed films exhibits 

an edge state feature which is dramatically shifted 

relative to the 200nm hot cast sample. The 

appearance of the edge state feature at 700nm, and 

the relative front back symmetry in post annealed 

films indicates the profound electronic consequences 

of different spin coating deposition methods. We thus 

conclude there is something ‘special’ about the hot 

casting technique that drives all of the edge states 

out of the bulk and on to the surface. We 

hypothesize that this phenomenon is related to 

concomitant macroscopic alignment of the [101] 

planes parallel to the substrate in hot cast films 

(shown in chapter 5). This difference in the 

distribution of edge states may be of profound technological significance as post annealed films 

generally exhibit a 3x lower photovoltaic power conversion efficiency ( ̴ 4%) than hot cast films 

( 12%)1. This seems to imply that the segregation of edge states observed in hot cast films is an 

essential ingredient in producing high quality photovoltaics devices using RPP materials. 

 The conclusion that edge states have an impact on photovoltaic device performance is 

supported by the work of Liu et al12, where they showed that depositing an electron accepting 

film (PCBM) on top of the RPP film produces strong quenching of the edge state feature, while 

Figure 9. Panel a shows the 

transient spectra obtained at 3ps 

when exciting a post annealed 

film at 480nm with an absorbed 

fluence of 8x1011cm-2. Panel b 

shows the kinetics of the edge 

state feature in the front and 

back pump geometry, taken 

under the same conditions as 

panel a.  
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depositing the RPP film on top of a hole accepting film (PEDOT:PSS) has no impact on the edge 

state feature. We have confirmed the latter result in our lab as well. This indicates the surface 

localized nature of the edge state feature in RPP films survives the deposition of an electron 

accepting layer, and that charge transfer occurs between these films. These facts correlate with 

our understanding of edge states as localized on the films front surface. We note that PCBM and 

PEDOT:PSS are the same electron accepting and hole accepting contacts used in the highly 

efficient RPP photovoltaic devices1. 

 Figure 10b shows the differential absorption spectral kinetics obtained on a 200nm hot 

cast thin film in the back pump geometry. This spectrum displays three sharp and prominent 

excitonic peaks, as well as the edge state feature at 

730nm. The excitonic peaks in the differential 

absorption spectrum have corresponding peaks in 

the linear absorption spectrum in figure 10a. In the 

back pump geometry, these peaks display a nearly 

instrument limited rise time (<1ps) and subsequently 

decay. However, the dominant kinetic process of the 

edge state feature at 730nm is a slow rise that 

roughly correlates with the decay of the excitonic 

features. Based on our finding regarding the surface 

localization of the edge states, we hypothesize the 

long slow rise of the edge state feature results from 

diffusion of excitons from the back of the film to the 

front, where they decay into the much lower energy 

edge states. Let us make some predictions based 

on this model. 

Figure 10. Panel a shows the measured 

linear absorption of a 200nm n=3 hot 

cast RPP film. Panel b shows the TA 

spectrum obtained on the same film 

when excited at 480nm in the back 

pump geometry with a fluence of 

1.2x1012cm-2.  
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Modeling the Edge State and Excitonic Kinetics Using the 1D Diffusion Equation 

 In order to make our model soluble, we make four simplifying assumptions: 1) edge states 

are entirely localized at the front of the film 2) excitons decay into edge states immediately upon 

arrival in the vicinity of the surface 3) there is no flux of excitons from the glass into the film or 

the film into the glass 4) we neglect any exciton decay in travel from the back of the film to the 

front. Under these assumptions the excitonic density ρ(x,t) can be simply modeled using the 

diffusion equation. The above conditions imply that the edge state population per unit area n(t) is 

given by: 

𝑛(𝑡) = ∫ 𝐽(𝐿, 𝑡′)𝑑𝑡′
𝑡

0

= −𝐷 ∫
𝜕𝜌

𝜕𝑥
(𝐿, 𝑡′)𝑑𝑡′

𝑡

0

 

Which comes from assumption 2. The diffusion equation for the excitonic density ρ is: 

      
𝜕𝜌

𝜕𝑡
= 𝐷∇2𝜌       

Where D is the diffusion constant. We assume the glass interface is at x=0 thus the boundary 

conditions reads: 

    lim
𝑥→0

𝑑𝜌(𝑥,𝑡)

𝑑𝑥
= 0         

Which comes from the no flux assumption, number 3. The at the other boundary we stipulate: 

    lim
𝑥→𝐿

𝜌(𝑥, 𝑡) = 0         

Which is a result of assumptions 1 and 2. The temporal boundary condition at t=0 reads: 

    lim
𝑡→0

𝜌(𝑥, 𝑡) =
𝑒−𝑥/𝛽

𝛽
  

Which is the initial distribution of photoexcitations in the film in the back pump geometry. Here β 

is the absorption length of 100nm. We also stipulate that the solution should go to zero as time 

goes to infinity. The eigenfunctions obeying the spatial boundary conditions are: 
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𝜑𝑛(𝑥, 𝑡) = cos(𝑘𝑛𝑥) 𝑒−𝛾𝑛𝑡               such that                𝑘𝑛 =  
𝜋(2𝑛+1)

2𝐿
,             𝑛 ∈  {0,1,2 … ∞}      

Using the diffusion equation, one can show these eignefunctions obey the diffusive dispersion 

relation: 

     𝛾𝑛 = 𝐷𝑘𝑛
2 = 𝐷 (

𝜋(2𝑛+1)

2𝐿
)

2
       

Or:  

      𝜏𝑛 = 𝐷−1 (
2𝐿

𝜋(2𝑛+1)
)

2
       

 This show that the decay rate of the diffusive eignefunctions increases quickly with n. The 

n=1 mode decays 9 times faster than the n=0, and the n=2, 25 times faster. It is therefore 

reasonable to assume that the slow rise behavior of the TA signal results from only the slowest 

diffusive mode. This assumption is very good particularly in the thicker films where the initial 

distribution has a strong spatial overlap with the lowest diffusive mode. In this mode:   

     𝜏(𝐿)1 = 𝐷−1 (
2𝐿

𝜋
)

2
        

Thus: 

𝑛(𝑡) = ∫ 𝐽(𝐿, 𝑡′)𝑑𝑡′
𝑡

0

= −𝐷 ∫
𝜕𝜌

𝜕𝑥
(𝐿, 𝑡′)𝑑𝑡′

𝑡

0

= −𝛾(𝐿)1
−1 ∫ 𝑒−𝛾(𝐿)1𝑡′

𝑑𝑡′
𝑡

0

= (1 − 𝑒−𝛾(𝐿)1𝑡) 

     = (1 − 𝑒−𝛾(𝐿)1𝑡)     (1) 

Using the convention that n =1 at late times. Thus, because magnitude of the edge sate feature 

is directly proportional to the population occupying the edge states we expect the rise of edge 

state feature to evolved similarly to equation 1. There exists some uncertainty in what the initial 

population in the edge states is, both from the decay of the faster modes, and perhaps some 

initial excitation by laser penetrating through the film. In the above model the initial edge state 
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population it is exactly zero, but we are free to add a constant initial population in the edge 

states. Thus we predict the rise time of the edge state feature (𝜏𝑟𝑖𝑠𝑒
730𝑛𝑚) to vary with film 

thickness according to 𝜏(𝐿)1, meaning we expect it to vary proportionally to L2.Therefore if 

we fit our rising edge data with the function: 

    ∆𝐴(730𝑛𝑚, 𝑡) = 𝐴 − 𝐵𝑒−𝛾(𝐿)1𝑡     (1) 

as a function of film thickness we can construct the plot of 𝜏𝑟𝑖𝑠𝑒
730𝑛𝑚 vs L2. Recalling the diffusive 

dispersion relation, we have: 

    𝜏(𝐿)1 = 𝐷−1 (
2𝐿

𝜋
)

2
= 𝜏𝑟𝑖𝑠𝑒

730𝑛𝑚(L)   

Thus when plotting 𝜏𝑟𝑖𝑠𝑒
730𝑛𝑚 vs L2 the slope ‘m’ will be equal to 𝐷−1 (

2

𝜋
)

2
 

The diffusion constant is then given as:  𝐷 = 𝑚−1 (
2

𝜋
)

2
. 

Figure 11a shows that under conditions of identical low (4x1011cm-2, 480nm) absorbed 

fluence in the back pump geometry, the rise time of the edge state feature is a monotonically 

increasing function of film thickness. The edge state rising kinetics in the 300nm and 400nm 

films are shown in figure 11b, and continue this trend. Amazingly, it takes almost 15ns for the 

edge state signal to reach it maximum value in the 400nm film. We note that at these low 

absorbed fluences, we don’t expect a hot phonon bottleneck to impact our observations, as is 

shown by the invariance of the FWHM in time in figure 5a. Figure 11e shows the decay time of 

the n=3 excitonic feature at 605nm is a monotonically increasing function of film thickness in 
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the back pump geometry. In contrast to figures 11a and 11e, figures 11d and 11f indicate the 

rising kinetics of the edge state feature, the and exciton decay kinetics in the front pump 

Figure 11. This figure shows the kinetics of various differential absorption features 

obtained when exciting our film at 480nm with an absorbed fluence of 4x1011cm-2. Panel 

a shows the normalized rising kinetics of the edge state feature in the 20nm-200nm films. 

Panel b shows the same data, obtained on 300nm and 400nm films. The time scales 

extracted by Fitting the data in panels a and b are plotted vs L2 in panel c. Panel d shows 

rising kinetics of the edge state feature obtained in the front pump geometry. Panel e 

shows the normalized excitonic decay kinetics in films of various thicknesses in the back 

pump geometry. Panel f shows the same excitonic kinetics obtained in the front pump 

geometry.   
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geometry are largely independent of film thickness. 

The variation of the excitonic decay time and the edge state rise time with film thickness, 

as well as the observed asymmetry of these features in the front and back pump geometries 

imply that these kinetics could not result from any intensive process in the film. Thus figures 

11a and 11e demonstrate a strong agreement with our model in which the diffusion of excitons 

and their subsequent decay into edge states dominates the observed photo-excited carrier 

dynamics. This is one of the main results of this thesis. Note the strong contrast between the 

front-back kinetics of edge state feature in hot cast films in figure 11 with the post annealed 

films in figure 9.  

The edge state rising kinetics were fit with the function defined in equation 1, and the 

extracted time scales are plotted vs the square film thickness in figure 11c, and this relationship 

appears satisfactorily linear. We note that for the thinnest film (20nm) there appears a deviation 

from the prediction of the model. The rise time for this film is longer than what is predicted by 

our model. As we have assumed that every carrier which is incident on the interface is absorbed 

by the edge states, it would be inconsistent to ascribe this deviation to a finite ‘capture rate’ by 

the edge sates without making additional assumptions. We therefor note that the 20nm films 

exhibit a bi modal distribution of layer stacking motifs, as is revealed in their small angle 

scattering pattern (shown chapter 5), and we ascribe this deviation at low film thickness to this 

observed structural difference. 

 The slope of the fitting line in figure 7c is equal to 0.023(ps/nm
2
) which according to 

equation 2 corresponds to a diffusivity of 0.176cm
2
s

-1
. Using the Einstein relation, we can 

compare this value to carrier mobilities measured on these materials in the past. Previous 

measured mobilities in spin coated RPP thin films have yielded very small values from         

1.1x10-4-10-2   1,19 for both electrons and holes. We note that the measurement on the high end 

of this range was taken by our collaborators who made our samples implying that a difference 
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in material preparation is likely not the cause of the discrepancy. These mobility values 

correspond to diffusivities between 2.8x10-6cm2s-1 and 2.5x10-2cm2s-1. This amounts to a 

disagreement by a factor between 7x102 and 7x104. The diffusion coefficient of free carriers in 

semiconductors is on the order of 𝐷~
𝜏∗𝐾𝑏𝑇

𝑚∗  where 𝜏∗ is the carrier scattering time and 𝑚∗ is the 

band effective mass.  

 It is clear that the exciton mass cannot be responsible for the observed discrepancy 

because excitons are generally heavier than free carriers and thus diffuse more slowly which is 

the opposite trend from what is observed. The electronic temperature is likely to play a role in 

this large discrepancy, but certainly cannot account for all of it. We estimate the maximum 

possible electronic temperature using the equipartition theorem. In these experiments the 

material was excited at 2.6eV, while the ground state n=3 exciton is at 2.05eV. Assuming that 

all of the excess energy turns in to the excitons kinetic energy yields an average kinetic energy 

of 600meV. We note that this is large enough to ionize the excitons but let us assume this 

energy is stored in the excitons translational motion as a worst case scenario. Using the 

equipartition theorem for two dimensional system implies that 600𝑚𝑒𝑉  = 𝐾𝑏𝑇, which implies at 

maximum the electronic temperature is a factor of 24 larger than room temperature. This would 

account for an increase in the diffusion constant by a factor of 24, which cannot account for 

the measured discrepancy factor of at least 700. We thus conclude that the scattering time 

varies by at least a factor of 30 and thus accounts for the majority of the variation between 

exciton diffusivity and the free carrier diffusivity. This discrepancy warrants additional 

discussion.  

 We note a recent report in which the PL line width and decay rate are studied as a function 

of temperature. Their analysis shows that the temperature scaling of the optical properties are 

inconsistent with both charged impurity scattering, and polar optical phonon scattering, 

indicating that homopolar optical phonons and acoustic phonons interacting through the 
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deformation potential are the main source of excitonic scattering20. They put an upper limit on 

the deformation potential of 6x108eV/cm (6eV/Å ) which (without expertise in the matter),  

seems very large . They conclude that the excitons are protected from scattering mediated by 

the coulomb interaction due to the formation of an exciton–polaron. This reference was included 

because they have a similar conclusion to ours, however we note that the logic employed in the 

paper appears fundamentally flawed. They assume that the rise time of the photoluminescence 

is the decoherence time of the optical polarization, which they then relate to exciton scattering 

mechanisms. However as noted in chapter 4 there are a number of processes which can occur 

on these time scales that could give rise to delayed luminescence, such as phonon assisted 

cooling. Their data at 200K implies a decoherence time of 20ps, which seems unphysical in 

comparison with the phonon induced dephasing time measured in GaAs quantum wells at 200K 

of 100fs21. Furthermore, they claim that the photoluminescence decay time is proportional to 

the exciton scattering time, which is quite hard to understand.  

 We believe the large discrepancy between our diffusivity value and that of our 

collaborators results from incorrect assumptions which they have made about the nature of the 

films in calculating the mobility from their data. They have calculated the mobility using the 

carrier extraction by linearly increasing voltage (CELIV) technique which is commonly applied 

to very low mobility organic semiconductor films22,23. However in it’s closed from is not 

applicable to higher mobility films23. We believe that it is worth it to perform more quantitative 

experiments that directly measure the excitonic scattering time as a function of temperature to 

gain information about the types of interactions which scatter excitons. We suggest a photon 

echo experiment, which is capable of measuring the dephasing time of an inhomogeneously 

broadened transition24.    

 

Back Pump TA Kinetics Vs Absorbed Fluence 

 Figure 12 shows the observed kinetics of the edge state feature normalized by the 
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absorbed fluence. The dynamic behavior of these curves depends greatly on the absorbed 

fluence. At low fluence, the rise of the edge state feature dominates the kinetics, while at high 

fluence the decay of the edge state feature dominates. One prominent trend observed in figure 

12 is a decrease in the maximum bleach per particle, as the fluence increases. This effect is 

shown by by the decreasing magnitude of the curves in figure 12 with increasing fluence. 

Modeling of these decay kinetics shows that this effect can be properly understood as a 

competition between a first order diffusive process which injects population into the edge states, 

and a higher order decay process which annihilates photo excited carriers from the edge states, 

for example photoluminescence. An increased contribution to the decay kinetics from radiative 

recombination at higher photo-excited carrier density is consistent with the increased 

Figure 12. This figure shows the kinetics of the edge state feature normalized 

by the absorbed fluence in the back pump geometry, for various film 

thicknesses.  
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photoluminescence quantum 

yields (~20%) observed in 

RPP thin films at similar 

absorbed fluences3. Figure 11 

shows that at a fluence of 

4x1011cm-2 we cannot 

observe the effect of 

recombination, thus we a 

justified in extracting the 

diffusion time scale from this 

data. 

 At late times the diffusive 

process is over and the decay 

kinetics of the edge state 

feature become clear. Figure 

13a shows that at late times 

the edge sate feature decays 

as a power law with ΔA(t)~t1/2. 

Figure 13b shows that in the front pump geometry we come to the same conclusion, however 

the influence of diffusion is significantly less than in the back pump geometry. To establish pure 

power law behavior, it is generally accepted to observe the decay over at least two orders of 

magnitude, which we cannot do. However this argument shows that the asymptotic decay 

behavior of the edge state features concur in the front and back pump geometries (in the time 

window we can observe), which can be understood as a consequence of the surface localized 

nature of the edge state feature. We note that the observed power law decay ~t-1/2 cannot be 

understood in the context of a standard kinetic model in which population decay is proportional 

Figure 13. Panel a shows the edge state kinetics obtained 

in the back pump geometry under 480nm excitation with an 

absorbed fluence of 2x1013cm-2. Panel b shows the same 

data obtained under the same conditions as panel a, but in 

the front pump geometry.   
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to an integer power of the density.  

 In conclusion, we have shown that in hot cast films the luminescent mid gap edge state is 

localized on the surface of the film, which is in strong contrast with the behavior observed in post 

annealed films. We have established this by observing the early time differential absorption 

spectrum, as well as diffusive behavior in the rise of the edge state feature, and the decay of the 

excitonic feature at low absorbed fluence. We have extracted the excitonic diffusion constant, and 

shown it is significantly larger than what is expected based on measured single carrier diffusivities. 

In addition, we have observed strongly density dependent cooling kinetics which are consistent 

with a hot phonon bottleneck. This optics data in conjunction with our observation of a surface 

localized structural distortion in chapter 5 strong support to the interpretation that the edge states 

are created by the surface distortions, rather contamination of the sample by MaPbI3.  
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