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ABSTRACT

Genomic and machine-learning analysis of germline variants in cancer

Chioma Madubata

Cancer oen develops from specific DNA alterations, and these cancer-associated mu-

tations influence precision cancer treatment. ese alterations can be specific to the tumor

DNA (somatic mutations) or they can be heritable and present in normal and tumor DNA

(germline mutations). Germline variants can affect how patients respond to therapy and

can influence clinical surveillance of patients and their families. While identifying cancer-

associated germline variants traditionally required studying families with inherited can-

cer predispositions, large-scale cancer sequencing cohorts enable alternative analysis of

germline variants.

In this dissertation, we develop and apply multiple strategies for analyzing germline

DNA from cancer sequencing cohorts. First, we develop the Tumor-Only Boosting Iden-

tification framework (TOBI) to learn biological features of true somatic mutations and

generate a classification model that identifies DNA variants with somatic characteristics.

TOBI has high sensitivity in identifying true somatic variants across several cancer types,

particularly in known driver genes. Aer predicting somatic variants with TOBI, we as-

sess the identified somatic-like germline variants for known oncogenic germline variants

and enrichment in biological pathways. We find germline and somatic variants inacti-

vating the Fanconi anemia pathway in 11% of patients with bladder cancer. Finally, we

investigate germline, diagnosis, and relapse variants in a large cohort of patients with

pediatric acute lymphoblastic leukemia (ALL). Our somatic analysis captures known ALL



driver genes, and we describe the sequential order of diagnosis and relapse mutations, in-

cluding late events in NT5C2. We apply both the TOBI framework and guidelines Amer-

ican College of Medical Genetics and Genomics to identify potentially cancer-associated

germline variants, and nominate nonsynonymous variants in TERT and ATM.
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Introduction

Germline variants in cancer

Cancer reflects a group of diseases characterized by unconstrained cell replication and

growth, evasion of cell death, and tissue invasion and metastasis [1]. Tumor cells have

numerous genomic alterations, including whole chromosomal gains or losses, copy num-

ber variations, and single nucleotide variants (SNVs). ese alterations in DNA (deoxyri-

bonucleic acid) can be somatic (unique to the tumor), or germline (found in both tumor

and matched normal DNA from the same patient, and transmissible from parent to off-

spring).

e relative contribution of heritable cancer risk varies depending on cancer type.

Analysis of 44,788 pairs of twins from Swedish, Danish, and Finnish twin registries found

that while monozygotic concordance was typically less than 0.1, heritable factors signif-

icantly contributed to prostate cancer (42% of risk explained; 95 % confidence interval

29-50%%), colorectal cancer (35 %; 95 % confidence interval 10-48 %), and breast cancer

(27 %; 95 % confidence interval 4-41 %)[2]. Rare Mendelian cancer syndromes caused

by alterations in specific genes do contribute to this heritability, but do not fully ex-

plain it. For example, Mendelian disorders associated with colorectal cancer (Familial

1
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Figure 0.1: Population allele frequency and penetrance of germline variants in cancer.
Blue circles indicate germline variants that have not traditionally been assessed in cancer.
Modified from [4], Figure 2.

Adenomatous Polyposis, Lynch syndrome,MUTYH -associated polyposis, and rarer poly-

posis syndromes) only explain 5% of colorectal cancer [3], while ref. [2] estimated 35

% heritability. Common genetic variants as assayed by genome-wide association study

(GWAS) and many case control studies explain only ∼10% of the familial relative risk of

cancer, suggesting that rare variants, potentially with greater effect sizes, explain some

of the heredity[3]. Figure 0.1 depictrs the population frequency and penetrance of these

germline variants.
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Common variants

A GWAS analyzes whether common variants (minor allele present in greater than 5%

of the population) are associated with a common trait [5]. Common loci are assayed

throughout the genome to provide a relatively unbiased assessment of genomic contri-

bution to a trait. Since the 2000s, GWAS studies have uncovered genetic associations

with cancer predisposition and aributes. Multiple studies focused on pediatric acute

lymphoblastic leukemia (ALL) identified common variants associated with ALL risk and

treatment response[6]. For example, 6-mercaptopurine is a thiopurine and a standard

component of pediatric ALL therapy, but has a narrow therapeutic index. One GWAS

identified a coding and non-coding variant associated with patient drug tolerance in the

gene NUDT15 [7], which encodes the Nudix Hydrolase 15 that negatively regulates of

thiopurine activation. While significant GWAS variants can be biologically or clinically

informative, they also typically have small effect sizes indicating minimal contribution to

disease risk.

Rare coding variants from familial studies

While common variants typically have a small effect size, rare variants with highly pen-

etrant effects can cause inherited cancer predisposition. In 1913, Warthin described the

heredity nature of carcinoma based on family case studies [8]; before that, the concept of

familial cancer was controversial. Specific familial cancer predispositions include Li and

Fraumeni’s 1969 report of a high-frequency cancer predisposition syndrome (Li-Fraumeni

syndrome) [9, 10] and Knudson’s 1971 confirmation that certain retinoblastoma cases

3



were inherited (familial retinoblastoma)[11]. Patients with these inherited cancer syn-

dromes developed tumors at earlier ages than patients with sporadic tumors of the same

type [11]. is earlier age of tumor development due to germline mutations suggests that

many pediatric tumors are caused by germline driver variants, either inherited or de novo.

While clinical characteristics such as family history and early age of onset allowed

for the identification of inherited cancers in the 1900s, beginning in the 1980s, improved

molecular biology techniques allowed scientists to identify the genetic loci associated

with these syndromes. Both tumor suppressors genes (TSG) and oncogenes cause inher-

ited cancers. Germline variants in TSGs may be inherited in a single allele, with the TSG

locus undergoing loss of heterozygosity (LOH) of the wild type allele in tumor tissue[11,

12]. LOH occurs when a formerly heterozygous locus loses a functional wildtype allele,

possibly through deletion of the wildtype allele, mitotic recombination leading to two re-

tained copies of the variant allele, or other mechanisms[13]. While some inherited onco-

genes such as MET [14] (which causes renal cell carcinoma) and RET [15] (which causes

Multiple Endocrine Neoplasia, types 2A/3) also exhibit LOH or copy number gain, these

gains are rare compared to protein changing mutations. Other oncogenes such as ALK

(neuroblastoma) have not shown LOH in inherited tumors[16]. e germline alterations

causing these cancer-predisposition syndromes are rare in populations and highly pen-

etrant, compared to more common alleles identified via GWAS[13]. Many causal genes

in familial cancer syndromes are recurrently altered across cancer types, including RB1

(the driver of inherited retinoblastoma[12]),NF1 (neurofibromatosis, type 1[17]), and TP53

(the cause of Li-Fraumeni syndrome [18]). Of note, certain germline variants that cause

familial tumors occur as somatic driver mutations [19].
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At least 100 genes have been associated to Mendelian cancer predisposition syn-

dromes[3, 20], and genes associated with cancer predisposition continue to be identified

as DNA sequencing technology improves. For example, recent studies using whole ex-

ome sequencing identified inherited predisposition to acute lymphoblastic leukemia via

mutations in PAX5[21], ETV6 [22–25], IKZF1 [26], and SH2B3 [27].

Rare coding variants from sporadic cancer cohorts

As DNA sequencing technology has improved, cohorts of sporadic cancers have been

analyzed for rare germline variants[28]. For example, whole exome sequencing (WES)

and whole genome sequencing (WGS) of hypodiploid ALL found that 43.3% of low-

hypodiploid ALL with TP53mutations had germline TP53mutations, including mutations

previously associated with Li-Fraumeni syndrome [28]. One patient in this cohort also

had a germlineNRAS p.Gly12Ser substitution. Sequencing of over 100 cases of early T-cell

precursor acute lymphoblastic leukemia found recurrent somatic and germline mutations

in the gene ECT2L[29]. Certain adult cancer studies have also assessed rare germline vari-

ants. One study of 429 ovarian carcinoma cases and 557 controls found germline trunca-

tions and deletions in BRCA2 and other Fanconi pathway genes in 20% of cases[30].

Pan-cancer investigations of germline variants have found genes with pathogenic

variants affected multiple cancer types. A study of 1,120 pediatric patients with differ-

ent cancers found potentially pathogenic germline variants in 8.5% of patients[31], with

recurrent variants in TP53, APC, BRCA2, NF1, PMS2, RB1, and RUNX1. is percentage

only reflects variants in 60 genes known to cause familial cancers with autosomal domi-

5



nant inheritance, and may underestimate the percentage of pediatric cancer patients with

cancer-associated germline variants. Pan-cancer analysis of 4,034 cases cancer represent-

ing 12 cancer types frome Cancer Genome Atlas (TCGA) found that across 624 cancer-

associated genes, the fraction of cases with cancer-predisposition variants in a cancer type

ranged from 4% (acute myeloid leukemia) to 19% (ovarian), with frequent mutations in

ATM, BRCA1, BRCA2, BRIP1, and PALB2 [32]. Case-control study genotyping of 10 rare

germline mutations in PALB2, CHEK2 and ATM in patients with breast cancer (42,671

cases and 42,164 controls), prostate cancer (22,301 cases and 22,320 controls) and ovar-

ian cancer (14,542 cases and 23 491 controls) found breast cancer risk associated with

certain PALB2, CHEK2 and ATM variants [33]. Specific CHEK2 variants also associated

with prostate cancer risk[33]. A recent study of 10,389 adult cases representing 33 can-

cer types found 8% of cases had a pathogenic variant in any of 152 cancer disposition

genes, including variants with evidence of tumor LOH affecting genes ATM, BRCA1, and

NF1[34]. While these cancer cohort studies have revealed that approximately 8% of pa-

tients with cancer have a pathogenic variant in a gene related to a cancer predisposition,

an approach focused on previously identifed cancer-associated genes limits opportunities

to identify new genes with cancer-associated germline variants.

Strategies to assess germline variant pathogenicity

An important issue in germline variant analysis is assessing the potential pathogenicity

of a variant. Variants observed with high penetrance in a familial cancer syndrome or

observed at high frequency in affected cases compared to controls have fairly high ev-

6



idence of pathogenicity. Another strategy to assess a variant’s association with cancer

is experimental validation of aberrant function or a cancer phenotype. Unfortunately,

many germline variants of interest are found in sporadic cases with no family history,

and experimental validation of all germline variants remains unfeasible.

In silico or curated assessments of pathogenicity are increasingly used to prioritize

variants in research and clinical care. Early curated assessments focused only on protein

changing variants, particularly truncating variants, in known cancer genes. However,

many germline variants in cancer genes are benign as seen from a study of 681 individ-

uals without cancer who all exhibited protein changing variants in cancer genes [35].

Additionally, focusing on truncating variants in cancer genes does not improve identi-

fication of truly deleterious variants [36]. More sophisticated in silico assessments come

from soware that predicts variant effects based on amino acid conservation, protein

structure, nucleotide structure, and other factors[37]. ese methods for assessing vari-

ant significance oen are not cancer-specific, instead scoring functional impact[38] or

deleteriousness[39] of variants from any study.

To beer standardize interpretations of pathogenicity from germline variants, the

American College of Medical Genetics and Genomics (ACMG) and the Association for

Molecular Pathology recently released guidelines for classifying sequence variants in

genes with known roles in inherited disorders as “benign”, “likely benign”, “uncertain

significance”, “likely pathogenic”, or “pathogenic” [37]. Soware predictions are included

in the algorithm, with increased evidence for pathogenicity if multiple soware programs

predict a deleterious affect. However, these soware programsmust have different under-

lying bases for prediction (e.g. amino acid conservation versus nucleotide conservation).

7



Additionally, the ACMG cautions against applying their criteria to candidate genes, since

their guidelines are not meant to identify new genes in disease[37]. Finally, discordance

remains even when using the ACMG guidelines. When nine different molecular diagnos-

tic laboratories applied ACMG guidelines to a standardized variant set, the laboratories’

ACMG classifications had 34% initial concordance, with an increase to 71% aer detailed

review of the ACMG criteria and consensus discussions[40].

Integration of large scale clinical and genomic information to nominate

cancer driver genes based on comorbidity with Mendelian disorders

Integration of germline and somatic data remains uncommon, despite biological similari-

ties between germline and somatic alterations[19, 30] and possible relationships between

germline and somatic mutations such as LOH. Further biological interactions between

germline and somatic variants are suggested by the genetic similarity between cancers

and comorbidMendelian diseases [41]. AMendelian disease is caused by a specific genetic

alteration, while a complex disease such as breast cancer has multiple genetic and envi-

ronmental causes. Recent study of diagnosis from electronic medical records representing

110 million patients found that each complex disease had a unique set of Mendelian dis-

ease associations, a “Mendelian code’’ of disease comorbidity [42]. ese unique codes

included novel comorbidities and known cancer comorbidities, such as the increased risk

for breast cancer in patients with the Mendelian disease ataxia telangiectasia.

Our lab further assessed whether comorbid cancers and Mendelian disorders had ge-

netic similarity [41]. By comparing the genes somatically mutated in a cancer type with

8
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edges represent significant co-expression. (c) Interaction of genes altered in glioblas-
toma with Diamond–Blackfan anemia genes. Right shows cellular pathways; le sum-
marizes of copy-number changes to MDM2 and Diamond–Blackfan associated ribosomal
proteins known to suppress the action of MDM2. RPL5 is recurrently and focally deleted
in glioblastoma, and is mutual exclusivity with MDM2 amplification (one-tailed Fisher’s
exact test, P=0.033). RPL11 deletion also has mutual exclusivity with MDM2 amplification
(P=0.042).amp, amplification; del, deletion; germ, germline; incl., including; mut, muta-
tion; SNP, single-nucleotide polymorphism. Modified from ref. [41], Figures 1 and 3.

the genes causing comorbid Mendelian diseases, we found a cancer type and comorbid

Mendelian diseases had significant functional similarity across multiple metrics, includ-

ing significant cell-specific co-expression (Figure 0.2). is genetic similarity indicates

that germline DNA alterations that lead to Mendelian diseases affect pathways that are

also somatically deregulated in comorbid cancers.
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Based on this significant genetic similarity, we nominated potential cancer driver

genes.For example, melanoma was comorbid with multiple Mendelian disorders associ-

ated with MITF, a melanocyte cell fate transcription factor, suggesting that MITF is a

melanoma driver gene amplified in 26% of TCGAmelanomas. Our results also suggest al-

terations in RPL5 may drive glioblastoma based on the comorbidity between glioblastoma

and Diamond–Blackfan anemia (caused by inherited mutations in RPL5 and other genes

encoding ribosomal proteins), particularly because RPL5 is significantly deleted in 8% of

TCGA glioblastoma cases and suppressesMDM2, an oncogene amplified in 15% of TCGA

glioblastoma. Our analysis suggests that certainMendelian variants promote the develop-

ment of comorbid cancer, and that the genes deregulated by these variants may be altered

somatically because they influence cancer progression. is research also illustrates that

integrated germline and somatic analysis can further inform our understanding of cancer

biology.

Statement of problem and organization of the esis

In this thesis, we investigate how to identify germline variants that contribute to can-

cer development. We also develop strategies to integrate germline, somatic, and relapse

genomic information when studying sporadic cancer cohorts. Traditional strategies to

assess germline variants in cancer include GWAS for common variants, mapping highly

penetrant variants in familial cancer predisposition syndromes, and expert curation of

potentially pathogenic variants in cancer-associated genes from sporadic tumor cohorts.

Given the low effect size of common variants, the infrequent nature of cancer predis-
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positions syndromes, and the ambiguity in suggesting novel cancer-associated variants

from manual analysis, we aim to learn the biological features of cancer-associated vari-

ants. Specifically, we will build a machine learning classifier that learns the features of

somatic mutations and use that classifier to identify germline variants with somatic fea-

tures. By using supervised learning on all somatic variants in our training set, our frame-

work will learn biological features of variants across the exome, instead of relying on

curated cancer-gene lists and expert manual curation. Our machine learning framework

will also support integrated analysis of germline and somatic variants. Finally, we use

this framework and other strategies to assess germline, diagnosis, and relapse mutations

in pediatric leukemia.

is thesis is organized into three chapters and a conclusion. Chapter 1 focuses on

the development of the Tumor-Only Boosting Identification (TOBI) framework that uses

machine learning to identify somatic variants from tumor-only data or to identify somatic-

like germline variants using matched germline DNA. We implement the TOBI framework

and assess performance on true somatic variants, including somatic variants in driver

genes. Using data from 1,769 patients from seven cancer types (bladder, glioblastoma,

low-grade glioma, lung, melanoma, stomach, and pediatric glioma), we show that our

framework has high sensitivity in identifying nonsynonymous somatic mutations.

In Chapter 2, we apply TOBI to integrated somatic and germline analysis. By assess-

ing which variants are present in germline DNA and have a “somatic’’ classification from

TOBI, we identify “somatic-like’’ germline variants. ese somatic-like germline vari-

ants include known TP53 germline variants and are enriched for genes associated with

autosomal dominant cancer-predisposition syndromes. By assessing both somatic-like

11



germline variants and true somatic variants in bladder cancer, we find that 5% of cases

have germline inactivating mutation in the Fanconi anemia pathway that inactivating

mutations in this pathway associate with a somatic signature of DNA repair deficiency.

Chapter 3 combines TOBI, germline variant classification, and somatic analysis to as-

sess genomic alterations in a cohort of 627 pediatric patients with ALL.We capture known

ALL driver genes in our somatic analysis, and describe a sequential ordering of variants

in patients with relapsed ALL, including early mutations in PHF6 and late mutations in

NT5C2. We also assess TOBI’s performance on the ALL cohort and nominate potentially

pathogenic germline variants.
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Chapter 1

Machine-learning to identify variants with somatic-features

from tumor-only samples

1.1 Introduction

Cancer oen results from specific DNA alterations, and identification of cancer-causing

mutations underlies genome-based precision cancer treatment[43]. Somatic mutations

can be identified by sequencing matched tumor and normal DNA[44], where normal

samples can come from blood or any other non-tumor tissue, and then removing any

shared variants (germline variants). is paired tumor-normal analysis has identified

oncogenic somatic mutations in multiple cancer types, including cohorts originally ana-

lyzed by e Cancer Genome Atlas (TCGA)[45–50]. Germline DNA alterations can also

be oncogenic[51].

A standardized framework for unified analysis of germline and somatic variants could

reveal key oncogenic pathways. Recent analysis of sporadic ovarian cancer found sig-

nificantly enriched germline and somatic alterations in the Fanconi anemia and MAPK

pathways[30]. However, unified germline and somatic analysis is historically focused on

cancers with known familial predispositions (e.g. ovarian and breast cancer) and oen

focuses on known cancer predisposition genes[31, 32, 34].
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Given that certain oncogenic germline variants share biological features with known

somatic variants, such as affecting the same amino acid[31], we hypothesize that learn-

ing the features of somatic mutations could promote integrated germline and somatic

analysis. Specifically, we hypothesize that a machine learning framework built upon bio-

logical features of somatic variants would be able identify germline variants with somatic

features that might influence tumor development. To learn the features of somatic muta-

tions, our classifier would first learn to differentiate somatic and germline variants from

a tumor sample. In the next section, we describe current techniques to classify somatic

versus germline variants.

Review of strategies to distinguish somatic and germline variants

One biological feature of many recurrent somatic variants is their low population fre-

quency. Accordingly, aempts to identify somatic variants from tumor-only whole ex-

ome sequencing (WES) data oen involve removing common population variants found

described in dbSNP[52]. Analysis then focuses on genes in the Catalogue Of Somatic

Mutations In Cancer (COSMIC)[53]. However, this strategy fails to recognize private

polymorphisms that are not annotated in public repositories and preclude the discovery

of novel oncogenic events.

A limited number of computational strategies exist to identify somatic variants from

tumor-only WES data. Certain strategies rely on a single patient’s sequence alignment

information, either predicting somatic deletions based on read-pair alignments and read

depth[54] or predicting somatic single nucleotide variants (SNV) using base quality, vari-
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ant allele frequency (VAF), and sequencing error[55]. Other strategies use population al-

lele frequency tabulated from a cohort of normal genomes to remove potential germline

SNPs[56]. None of these techniques integrate information from both the individual pa-

tient sequence and the total patient cohort. ese techniques also fail to leverage valuable

databases of somatic mutations or predicted mutation effects.

While we focused on tumor-only WES above, we note that there are strategies for

identifying somatic mutations from tumor-only samples sequenced with high-depth gene

panels[57]. However, this method again only assesses variants on an individual patient

basis, and is constrained to a set of known cancer genes.

Our approach to learn the biological features of somatic variants involves integrating

information from individual patients, patient cohorts, and curated databases. is ap-

proach would require a patient cohort with some matched tumor-normal cases and some

tumor-only cases. e tumor-normal cases would form a training set for identifying true

somatic mutations, and the biological features of these confirmed somatic variants would

be used to classify variants from the remaining tumor-only samples. Prior studies of

mixed tumor-normal and tumor-only cohorts used manual recurrence analysis of specific

genes to reveal altered genes in lymphoma[58, 59], relapsed pediatric ALL[60], and pedi-

atric glioma[61], but the focus on gene identity had decreased power to identify oncogenic

variants. In contrast, we suggest using machine learning instead of manual analysis, and

making predictions across the whole exome instead of focusing on specific genes.
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Maine learning to distinguish somatic and germline variants

Supervised machine learning algorithms generate a model that predicts a response vari-

able based on descriptive features in a training set of data. For example, an algorithm

could learn from a training set of DNA variants with descriptive features such as vari-

ant allele frequency, and a response variable stating whether the variant was somatic or

germline in patients. e algorithm could then develop a model that predicts somatic or

germline status of DNA variants in an outside test set.

In a recent comparison of supervised learningmethods, gradient boosted trees had the

highest performance across multiple metrics compared to other methods such as random

forests, bagged trees, neural nets, and calibrated support vector machines [62]. Gradi-

ent boosting generates an ensemble classifier by iteratively applying weak classifiers and

learning from training set observations misclassified in prior iterations [63]. e typi-

cal base classifier used in gradient boosting is a short, low-depth decision tree. A single

decision trees is a classifier that divides data into regions using covariates (e.g. variant

allele frequency) and assigns all observations in a region to a response variable category.

Decisions trees are biologically interpretable, but a low depth tree would predict only

slightly beer than random guessing, and higher depth trees can suffer from overfiing.

However, boosting generates an additive ensemble of shallow decision trees that is gen-

eralizable, minimizes overfiing, and has lower error than single trees [63]. In biology

research, models generated using gradient boosting have classified variants of unknown

significance in Mendelian disorders [64] and identified biologically functional gene fu-

sions in cancer [65].
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Stochastic gradient boosting is one version of gradient tree boosting that improves

model performance by introducing randomness into model generation [66]. In this chap-

ter, we use stochastic gradient boosting to generate a model that distinguishes somatic

and germline variants from tumor-only samples. Specifically, for a training set with N

variants, with (yi, x⃗i) as the ith variant for i = 1, 2, ..., N , where yi is our response vari-

able of somatic or germline status, and x⃗i is a vector of biological covariates for sample

i, we generate a model F̂ (x⃗) that maps x⃗ to y and minimizes the expected loss function

Ψ(y, F (x))Wecreate our final additivemodel using the stochastic gradient boosting strat-

egy described by Friedman [66]. Our final model, F̂ (x⃗) =
∑M

m=0 βmh(x⃗; a⃗m), summarizes

M models, where h(x⃗; a⃗m) is a simple base learner with parameters a⃗m, and βm are ex-

pansion coefficients. Each model F̂m(x⃗) = βmh(x⃗; a⃗m) trains on the pseudo-residuals

from the prior model:

ỹim = −
[∂Ψ(yi, F (x⃗i))

∂F (x⃗i)

]
F (x⃗i)=Fm−1(x⃗i)

Friedman [66] showed that by defining h(x⃗; a⃗m) as an L-terminal node tree with L-

disjoint regions {Rlm}L1 , such that

h(x⃗; {Rlm}L1 ) =
L∑
l=1

ȳim1(x⃗ ∈ {Rlm})

the base classifier h(x⃗; a⃗m) and coefficients βm reduce to

γlm = argmin
γ

∑
x⃗∈{Rlm}

Ψ(y, Fm−1(x⃗i) + γ).
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To introduce randomness, we use random subsets of the training data to build each tree

h(x⃗; {Rlm}L1 ). We outline Friedman’s stochastic gradient boosting algorithm in Algo-

rithm 1.

Algorithm 1: Stochastic Gradient Boosting
Result: F̂ (x⃗)

1 Initialize F0(x⃗) = argmin
γ
Ψ(yi, γ);

2 for m← 0 to M trees do
3 {π(i)}N1 = rand_perm({i}N1 ) for Ñ < N draws without replacement;
4 generate random subsample {yπ(i), xπ(i)}Ñ1 ;
5 for n← 1 to Ñ observations do
6 calculate pseudo-residual

ỹπ(i)m = −
[∂Ψ(yπ(i), F ( ⃗xπ(i)))

∂F ( ⃗xπ(i))

]
F (x⃗)=Fm−1(x⃗)

7 end
8 Fit a regression tree to the targets ỹπ(i)m giving terminal regions {Rlm}L1 ;
9 for l← 1 to L regions do

10 γlm = argmin
γ

∑
⃗xπ(i)∈{Rlm}Ψ(yπ(i), Fm−1( ⃗xπ(i)) + γ);

11 end
12 update Fm(x⃗) = Fm−1(x⃗) + v·

∑L
l=1 γlm1(x⃗ ∈ {Rlm})

13 end

In this chapter, we develop our Tumor-Only Boosting Identification (TOBI) frame-

work, using WES data from 1,769 patients across seven cancer types. We then assess

TOBI’s performance on predicting true somatic variants given tumor-only DNA, and com-

pare TOBI to other soware for tumor-only analysis. We find that TOBI has high true

positive rates, particularly in nonsynonymous somatic variants in cancer driver genes.

ese results show that TOBI identifies true somatic variants using a machine-learning

classifier built from somatic variant features.
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1.2 Results

Framework for predicting somatic, germline and “somatic-like”

germline variants

Our framework consists of four main steps: steps I-III accommodate tumor WES data at

different stages of analysis, and step IV incorporates germline variant allele frequency

(VAF) when available (Figure 1.1). Step I receives aligned WES files (.bam files), calls

variants against a human reference genome, and annotates variants (full details in online

Methods). ese variant calls (.vcf files) are the input for Step II, allowing users to jump to

Step II if they have previous annotated variants from tumor-only samples. Step II filters

variants using biological and technical criteria described in the Online Methods, retaining

high quality variants that are rare in the population (population minor allele frequency

less than 1% in the 1000 Genomes Project[67]).

Step III receives the remaining training set variants and uses the gradient boosting

machine learning algorithm to generate the somatic classification model. Gradient boost-

ing generates a classifier from an ensemble of decision trees, where each subsequent tree

learns from the previously misclassified training set observations.[66] For example, some

features of previously described highly-recurrent variants will easily classify hotspot vari-

ants, while other features will be more relevant for classifying rarer mutations in subse-

quent trees. We optimized the gradient boosting parameters using systematic grid search.

Each variant in the training set represents an observation for machine learning. Ten bio-

logical features were used for gradient boosting (full features in Appendix text 1.A); fea-
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Figure 1.1: Outline for predicting somatic variants with TOBI. TOBI accepts tumor-only
DNA, separated into a training set of cases with prior tumor-normal somatic analysis
available and a test set. e steps of TOBI analysis are (I) variant calling and annota-
tion, (II) filtering, (III) machine learning to classify “somatic” and “germline” variants, and
(IV) identification of somatic-like germline variants. Step III predictions result in tens of
predicted somatic variants per case.
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tures include database-derived features from COSMIC, cohort-associated features such as

“Variants per Gene”, and individual sequence features such as tumor VAF. Model genera-

tion requires training set variants annotated with true somatic status, defined by a user-

generated list of somatic variants output from separate somatic variant calling pipelines

(e.g. MuTect[68], SAVI[44]). Step III ends by applying the final somatic classification

model to the test set variants.

Finally, Step IV occurs only if normal WES DNA is available for test set samples, and

distinguishes somatic variants from somatic-like germline variants.

TOBI training and test sets

We developed TOBI using glioblastoma multiforme (GBM) cases from TCGA[45], and

assessed TOBI on six adult cancer types from TCGA: bladder urothelial carcinoma

(BLCA)[46], brain lower grade glioma (LGG)[47], lung adenocarcinoma (LUAD)[48], skin

cutaneous melanoma (SKCM)[49], and stomach adenocarcinoma (STAD)[50]. We used

TCGA’s previously published somatic calls as the “true somatic” calls for labeling train-

ing set variants. To assess TOBI’s performance on pediatric tumors, we analyzed pediatric

glioma cases (Ped.Glioma), including cases with published tumor-normal analysis[69, 70]

and tumor-only cases[61, 70, 71]. e number of cases per cancer type, and the number

of cases used in each figure, is in Table 1.A.1.

Since cancer-sequencing studies have variable numbers of paired tumor-normal sam-

ples[54, 70, 71], we assessed the number of training cases required for model generation

(Fig. 1.2a). Increasing the number of training set tumor samples from one to fiy samples
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Figure 1.2: TOBI training set size and relative importance of features. (a) Average F-
score for increasing numbers of cases in the training set in seven cancer types. Number
of samples in the training set equals number in testing set. Points represent average pre-
dictions from five runs with randomly selected training and testing sets cases; error bars
represent +/- s.e.m. TOBI.bam indicates samples were analyzed from aligned sequence
files (.bam) using TOBI steps I-III; TOBI.vcf indicates samples were analyzed from vari-
ant call files (.vc) using TOBI steps II-III. (b) Relative importance of features in gradient
boosting classification model generated from a training set with twenty cases in each
individual cancer.

improved performance, with F-scores plateauing between 20 and 50 training cases in the

six adult cancers. Twenty training cases produced an average F-score within 10% of the

F-score at the maximum training set size. us, in the remainder of our analysis, we used

20 random cases as the training set size and all remaining cases as the test set to reflect a

WES scenario where the majority of patient samples are tumor-only.

Historical tumor-only samples may be formalin-fixed and paraffin-embedded (FFPE),

which introduces sequencing artifacts. We applied TOBI’s LUAD classification model to

FFPE LUAD cases (Figure 1.A.1), and observed a slightly decreased F-score for FPPE (0.68)
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vs. frozen samples (0.81). FFPE samples had similar sensitivity and specificity (0.94, 0.97)

compared to frozen samples (0.87, 0.96).

Next, we assessed how differences in patient ancestry, sequencing institution, or hy-

permutator status within a cohort might affect TOBI performance. Stratifying on pa-

tient’s reported race, TOBI had decreased mean F-scores when the training and test set

differed by race in almost all cancers. (Figure 1.A.2). Differing sequencing institutions

between the training and test set also generated lower mean F-scores in almost all cross-

institutional predictions (TCGA GBM with a cohort of 80 additional non-TCGA cases[72]

in Figure 1.A.3; Ped.Glioma analysis in Figure 1.A.4). Finally, using hypermutator status

from the STAD publication[50], we found no significant effect on TOBI’s performance

when analyzing a non-hypermutator population or mixed population (61 hypermutator,

219 non-hypermutator; figure 1.A.5). us, TOBI’s performance might improve with fea-

tures denoting racial or institutional differences, but performance appears robust to hy-

permutator samples.

TOBI features

We assessed the importance of our ten biological features to a cancer type’s final classi-

fication model using relative influence[73], a measure of how frequently one feature is

used in the decision trees within the final classification model (Figure 1.2b). In all adult

cancers, the feature with greatest relative influence was “Variants in Gene”, the total num-

ber of variants per gene normalized by cohort size. In pediatric glioma, the feature with

greatest relative influence was “Num. COSMIC Var.”, representing the number of cases
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Figure 1.3: True positive rate of TOBI somatic predictions in nonsynonymous vari-
ants. For each indicated cancer type, percentages of true positive (TP) or false negative
(FN) TOBI somatic predictions in nonsynonymous variants across all genes or only driver
genes.

in COSMIC with a specific variant; this may reflect both the lower mutation burden in

pediatric glioma and the prevalence of hotspot mutations in H3F3A. As expected, removal

of these top features from the classification model caused a slight drop in F-score, while

removal of other individual features or both COSMIC-derived features minimally affected

performance (Figure 1.A.6).

High performance somatic variant identification

We compared TOBI’s somatic classifications to published somatic calls from tumor-

normal analysis of test set cases[45–50, 69, 70]. Across all variants, TOBI had a sensitivity

of 86.6%; for nonsynonymous variants, TOBI had a sensitivity of 87.2%. Additional perfor-

mance metrics are in figure 1.A.7. TOBI also has high sensitivity for variants with tumor

VAF as low as 5% (Figure 1.A.8). Per gene, the number of cases with nonsynonymous

variants predicted as somatic closely matches published somatic analysis (Fig. 1.3, 1.4).

TOBI’s sensitivity in a cancer type positively correlates with the median somatic SNV per

megabase (Mb) across all cases of that cancer (Spearman rho 0.964, p-value < 0.003 for

both all gene and driver only sensitivity, Figure 1.A.9).
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While TOBI identifies variants with somatic characteristics, an important challenge

in precision medicine involves finding genes that promote tumor development (“driver

genes”). us, we assessed whether TOBI’s predictions were enriched for driver genes

in each tumor type, defining driver genes as those with evidence of positive selection in

somatic mutation paerns as published by the Intogen group[74]. In six cancers, TOBI

has a higher true positive rate of nonsynonymous variants in driver genes compared to

all genes (Fig. 1.4). Such enrichment occurred despite training sets retaining synonymous

variants and probable passenger variants. is driver gene enrichment did not solely arise

from predicting highly recurrent genes, as suggested by TOBI’s similar performance in

high, medium, and low recurrence genes in most cancers (Fig. 1.A.10).

Finally, to demonstrate analysis of a truly tumor-only data set, we applied the pediatric

glioma classification model to 68 tumor-only cases (Fig. 1.5), identifying known driver

genes in pediatric glioma (TP53, H3F3A, PIK3CA). All predicted BRAF and IDH1 variants

occurred at known somatic hotspots (BRAF V600E, IDH1 R132H).

TOBI outperforms other tumor-only analysis tools

Using six GBM and six Ped.Glioma cases, we compared TOBI’s results to those from

other soware for tumor-only WES somatic variant analysis: Virtual Normal Correction

(VNC)[56] and SomVarIUS[55]. Compared to VNC, TOBI has higher F-scores (0.48 for

Ped.Glioma and 0.22 for GBM; VNC F score less than 0.0002 for both Ped.Glioma andGBM;

Table 1.A.2). SomVarIUS did not identify any true somatic mutations in Ped.Glioma. TOBI

also predicts orders of magnitude fewer somatic variants per case compared to VNC and
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Figure 1.4: Comparison of actual versus predicted cases with somatic, nonsynonymous
variants. Dot color corresponds to the fraction of synonymous variants out of all variants
remaining aer TOBI filtering (Step II); dot size corresponds to number of predicted cases
over protein length in amino acids. Driver genes labeled in black; other genes in the top
five most predicted cases labeled in grey. For clarity, genes with less than three previously
published somatic variants are not shown.
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Figure 1.5: TOBI predictions on tumor-only pediatric glioma cohort. Number of cases
with predicted somatic variants when pediatric glioma classification model is applied to
68 tumor-only samples; genes predicted in at least 3 cases shown. For all cancers, twenty
randomly selected tumor-normal cases comprised training set; remaining paired tumor-
normal samples formed testing set.
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SomVarIUS (TOBI: ~5-50; VNC: ~300,000; SomVarIUS: ~100-3,000). TOBI’s higher F-scores

and biologically appropriate number of somatic variants indicates that TOBI outperforms

these methods.

We also compared TOBI to methods that assess a variant’s disease potential[38, 39,

75, 76] since these methods have been used to assess effects of somatic variants. Using

published somatic variants from tumor-normal analysis as the gold standard, TOBI con-

sistently had the highest AUC (Figure 1.A.11).

1.3 Discussion

In this chapter, we describe Tumor-Only Boosting Identification framework, or TOBI, a

new unifying framework that uses the gradient boosting machine learning algorithm to

identify somatic variants from tumor-only data or identify somatic-like germline variants

in patients with tumor-normal DNA available.

In tumor-only analysis, TOBI successfully identified 87% of nonsynonymous somatic

variants. Higher true positive rates in driver genes suggest that TOBI enriches for cancer-

causing variants. TOBI’s similar performance on frozen and FFPE samples suggests that

TOBI filters certain FFPE artifacts. A TOBI modification trained on FFPE artifacts could

potentially remove more FFPE sequencing artifacts, although this modification would

need testing. TOBI also outperforms other methods designed for somatic variant identifi-

cation from tumor-only samples. is higher performance likely reflects two fundamental

differences between alternative methods and TOBI. First, alternative techniques use a sin-

gle information source, but TOBI integrates biological features from individual variants,
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patient cohorts, and curated databases. Second, TOBI uses the powerful gradient boost-

ing algorithm to classify variants, allowing TOBI to learn features important to specific

tumor types (Fig. 1.2).

We recognize several limitations for the TOBI framework. First, TOBI’s biological

features include some that depend on outside databases (COSMIC variants), and future

versions of these databases could affect TOBI predictions. Moreover, we only assessed

a subset of biological features; alternative features could lead to improved TOBI perfor-

mance. Second, FFPE status, patient ancestry, and sequencing institution do affect TOBI’s

performance, suggesting that TOBI will perform best on relatively homogeneous cancer

cohorts. ird, TOBI’s sensitivity positively correlates with the median somatic SNV rate

per cancers, possibly due to the increased fraction of somatic mutations in the training

set of melanoma and other cancers with high mutation rates. is suggests that TOBI

will be most sensitive in cancers with high somatic mutation rates. In sum, we propose

a framework that analyzes either tumor-only samples or samples with matched tumor-

normal DNA for variants with somatic features. In tumor-only samples, the framework

(1) promotes the study of previously collected tumor samples without matched normal

DNA, potentially unlocking a vast repository of tumor-only samples without sequencing

of matched normal DNA, and (2) prioritizes exome alterations in a particular patient by

focusing on variants with somatic characteristics. e results of this chapter focused on

developing TOBI, assessing TOBI performance on true somatic mutations, and analyz-

ing tumor-only samples. However, we hypothesize that TOBI will identify certain true

germline variants as having somatic features. We further hypothesize that these somatic-

like germline variants will include true oncogenic germline variants that are biologically
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similar to somatic variants.

In the next chapter, we investigatewhether TOBI identifies somatic-like germline vari-

ants. We assess whether known oncogenic germline variants are identified, and calculate

enrichment for somatic-like germline variants in biological pathways.

1.4 Methods

Sequence access and retrieval of clinical and somatic data

We obtained approval from the database of Genotypes and Phenotypes (dbGaP) to

access exome sequences and germline variant calls from TCGA (accession number

phs000178.v9.p8). We downloadedWES files (.bam files) for 104 randomly selected tumor-

normal GBM cases fromTCGA. For the remaining five TCGA cancers (BLCA, LGG, LUAD,

SKCM, STAD), we downloaded Protected Mutation vcf files with somatic and germline

variants for entry into the TOBI.vcf pathway indicated in Figure 1.2a. We downloaded

and analyzed all TCGA Data Matrix cases with Broad Institute-generated Protected Mu-

tation vcf files between July 28, 2015 and September 1, 2015, as well as 226 additional

LGG cases downloaded between September 1, 2016 and September 4, 2016. For STAD,

282 cases had available vcf files; 63 cases classified as “hyper-mutated” in TCGA clinical

data were excluded from the main analysis. For all six TCGA cancers, clinical data was re-

trieved from cBioPortal[77] and publication MAFs from the TCGA Data Matrix provided

true somatic variant calls.

We analyzed the WES files (.bam files) for the 92 GBM cases analyzed in Wang et al.
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2016. Published somatic calls were used to label true somatic variants.

For pediatric glioma WES sequence files, we obtained approval from the appropriate

Data Access Commiees (DAC) and downloaded all available sequence files from EGA.

Bam files were available for datasets EGAD00001000807[70] (St. Jude Children’s Research

Hospital-Washington University Pediatric Cancer Genome Project Steering Commiee)

and EGAD00001000706[69] (ICR DIPG Data Access Commiee). Fastq files were avail-

able for EGAD00001000792[71] and EGAD00001000791[61] (McGill-DKFZ Pediatric Brain

Tumour Consortium); samples were mapped to GRCh37.71 using BWA 0.7.12[78] before

variant calling. Published somatic variant calls were used to label true somatic variants for

the 74 paired samples; only experimentally validated somatic mutations from [70] were

included.

Clinical data was retrieved from supplementary tables for Ped.Glioma patients[61,

69–71] and using the R cgdsr package for TCGA. To standardize nomenclature for re-

ported race across studies, we removed samples with missing or mixed classification

(“Asian & White”, “Multiple (NOS)”, “Mixed”, “”, “.”, “N/A”, “Other”, “[Not Evaluated]”,

“[Unknown]”), and standardized “BLACK OR AFRICAN AMERICAN” to “black”. Patient

counts aer standardizing nomenclature are in Table 1.A.3.

For 1000 Genomes Project[67] samples, phase 3 bam files were downloaded from the

public FTP site for the first 99 “mapped” samples listed in ftp://ftp.1000genomes.

ebi.ac.uk/vol1/ftp/alignment_indices/20130502.exome.alignment.index, as

well as sample NA11994, which was previously reported to have a germline variant in

TP53 (R273H)[31].

All GBM, pediatric glioma, and 1000 Genomes Project bam files went through the
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TOBI.bam pathway indicated in Figure 1.2a.

Variant calling and annotation

Bam files were analyzed with Samtools and Bcools[79] to call variants, excluding vari-

ants with mapping quality lower than 10.

Variants were annotated using SnpEff[80] and SnpSi with dbSNP build 144, Cosmic

v74, and dbNSFP v2.4 databases[81]. We also annotated the variants with an in-house

database of common mutations in 219 normal WES cases (“Meganormal” database).

Filtering

Filters thresholds were selected based on preliminary analysis of GBM samples. We ap-

plied two main filters on the variants: 1) Technical filter and 2) Biological filter. e

technical filter retained all variants with either a quality score from Bcools greater than

60 or variant depth higher than 10 on both strands. ese filters retained a high fraction

of true somatic mutations in known driver genes (e.g. EGFR, which had good depth but

a QUAL score <=60) while removing many low quality variants. Variants with sample

VAF (the number of sequencing reads supporting a variant nucleotide divided by the total

number of sequencing reads at that genomic position) less than 1%were removed. We also

removed the variants that had low mapping quality (mq < 40), and had strand bias, map

quality bias, and tail distance bias with the p-values below 0.01. In the biological filter, we

removed common SNPs (population allele frequency greater than 1% in the 1000 Genome

Project populations), as well as variants that were present in our Meganormal database.
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We also removed the SNPs that were in the dbSNP database, but were not in COSMIC.

Variants in intragenic, non-coding exon, and splice-site regions were also filtered. We

applied these filters to GBM and pediatric glioma variants.

e TCGA variants in the TOBI.vcf pathway did not have reported per strand depth,

mapping quality, and technical biases; thus, we used a modified Technical filter to remove

variantswith total depth <10 andQUAL score <=60. Biological filters were the same across

all samples.

Maine learning

We selected the gradient-boosting algorithm for machine learning given its excellent per-

formance on diverse binary classification problems compared to other supervised learn-

ing methods[62]. is algorithm generates a classification model using an ensemble of

decision trees that iteratively learn from the previously misclassified training set obser-

vations. Gradient boosting returns a probability that a variant is somatic, which TOBI

converts into a binary decision using an optimized probability threshold. TOBI does not

use the default threshold probability of 0.5 because that would favor the majority class (in

our case, non-somatic mutations), resulting in low sensitivity[82]. Instead, TOBI selects a

probability threshold that maximizes classification performance; the threshold’s potential

range is 0.05 to 0.95 in increments of 0.0375.

For each cancer, TOBI generates an optimum classification model by running a sys-

tematic grid search through gradient boosting’s three parameters: number of trees (100,

150, 200), interaction depth (3-7 splits), and shrinkage (constant at 0.1). For each possi-
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ble combination of these three parameters, TOBI performs five repeats of 5-fold cross-

validation on the training set in order to avoid over-fiing to the training set. e large

number of training set variants compared to features also avoids overfiing. TOBI finally

selects the parameter combination that maximizes average performance across the five

repeats as the final classification model.

To select the best model despite the class imbalance, we used the F-score as the model

performance metric:

F1 = 2
Precision×Recall

Precision+Recall
=

2TP

2TP + FP + FN
(1.1)

where TP, FP, and FN stand for true positive, false positive, and false negative. Maxi-

mizing F-score results in maximizing TP while minimizing FP and FN. We also assessed

performance by calculating sensitivity, specificity, positive predictive value, negative pre-

dictive value, prevalence, accuracy, false positive rate (FPR), false discovery rate (FDR),

and AUC. For these calculations, true negatives were those variants that passed all TOBI

quality filters, were not published as somatic in source publications, and were not pre-

dicted as somatic by TOBI.

Here, we describe the soware implementation of gradient boosting. For each can-

cer, cases were randomly assigned to the training or test set using the sample() function

without replacement in R. TOBI then calculated cohort-specific annotations separately

for the training and test set (see Appendix text 1.A for features). Somatic status of train-

ing set variants was annotated using a user-supplied list of somatic variants, defined by

affected case, genomic position, and variant nucleotide. Next, TOBI used the Caret and
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gbm packages in R[82] to perform gradient boosting and generate a classification model.

To assess feature importance, relative influence of features was automatically calculated

during model generation. Relative influence is a measure of how many times a feature is

selected for spliing in all trees in the gradient boosting model, weighted and scaled so

that the sum of relative influence of all features equals one hundred.

We defined drivers in Figure 1.3 using the list of driver genes provided by the Intogen

group[74].

e rate of somatic SNVs per Mb for each case was calculated using the number of

published somatic SNVs, aer converting di-nucleotide mutations into single nucleotide

components and removing indels. is number was divided by the total megabases cov-

ered in Agilent SureSelect Human All Exon 50 Mb regions.bed file.

Our framework is available online for non-commercial use https://github.com/

RabadanLab/TOBI.
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1.A Appendix

Explanation of TOBI features

• “Var. per Gene” is the total number of variants per gene normalized by the number

of patients in the cohort, calculated separately for training and testing datasets.

• “Num. COSMIC Var.” is the total number of samples in COSMIC[53] with this

specific nucleotide variant (“CNT” in COSMIC v74 vc).

• “Allele Frequency” is the variant allele frequency (VAF) in the tumor sample.

• “CADD Score” is the Combined Annotation–Dependent Depletion Score, a score

of variant deleteriousness integrated from multiple genome annotations. For more

details, please see [39].

• “Num. COSMIC Gene” is the total number of COSMIC mutations in a gene.

• “Protein Length” is the length of the protein in amino acids.

• “VAF score” is the probability of a mutation to be a germline mutation with VAF =

50%. It’s calculated using the binomial distribution:

V AFScore = Binom (dpvar, dptot, 0.5) (1.2)

where dpvar and dptot are variant depth and total depth, respectively. e justi-

fication is that assuming no copy number variation (CNV), the VAF of germline

mutations should be either 50% or 100%. is can be seen in Fig. 1.A.6 where a local

minimum ratio of somatic to non-somatic mutations occurs around VAF = 50%. is

feature helps identify mutations with a high probability of being germline in cases
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without CNV.

• “Mutability” indicates if a gene is prone to mutation in a normal, non-tumor cohort.

Per gene calculation involved counting the total number of mutations per gene in

a cohort of 219 normal samples, and dividing by the amino acid length.

• “Var. per Case” for a particular gene and a particular sample represents the number

of variants in that sample divided by the number of patients in the cohort; cohort

indicates either training or testing set.

• “Variant Impact” is the predicted effect impact from SnpEff, and it can be “High”,

“Moderate”, “Low”, and “Modifier”. For more details, please see [80].

Additional features used in preliminary GBM analysis

• “Recurrent” is the number of recurrent mutations for the specific variant in the

cohort.

• “ID” is 1 if the mutation is in no database, 2 if it is both in dbSNP and COSMIC, and

3 if it is only in COSMIC. Mutations that are only in dbSNP where filtered out.

• “MutationAssessor is a functional impact of amino-acid substitutions in proteins,

such as mutations discovered in cancer or missense polymorphisms. e functional

impact is assessed based on evolutionary conservation of the affected amino acid in

protein homologs”[38].

• “MutationTaster” is a composition of different scores including evolutionary con-

servation, splice-site changes, and loss of protein features[76].

• “Polyphen” is a score that predicts possible impact of a mutation on the struc-
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ture and function of a human protein using physical and comparative considera-

tions[84].

• “SIFT” is a score of the effect of a mutation on the protein structure[75].
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Figure 1.A.1: Performance metrics in 9 FFPE cases and 161 frozen cases from LUAD
cohort. Metric listed on top of box; for each metric, top figure represents FFPE samples,
boom frozen samples. Y-axis of case counts, x-axis represents 0 to 1 range of metrics.
In each box, ordered pair represents “(mean, median)” of metric for that patient cohort;
dashed line=mean, doed line= median.
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Figure 1.A.2: TOBI performancewhen training and testing set are stratified by patients’
self-reported race. Each box corresponds to one cancer type. Y-axis shows F-score, x-
axis shows reported race of training set used to generate model (20 randomly selected
patients) above reported race of test set; number of cases in the race-stratified test set
shown within plot area. Self-reported race categories required greater than 20 patients
for inclusion as a training set, and a minimum of 5 patients for inclusion as a test set.
Points represent F-score for five runs with randomly selected training and testing sets
from specified race; error bars represent mean +/- s.e.m.
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Figure 1.A.3: TOBI performance on GBM training and testing sets stratified by institu-
tion. Each box corresponds to one cancer type. Y-axis shows F-score or accuracy, x-axis
shows reported race of training set used to generate model (20 randomly selected patients)
above institution of test set; number of cases in the test set shown within plot area. An
institution required greater than 20 patients for inclusion as a training set, and a min-
imum of 5 patients for inclusion as a test set. Points represent performance metric for
five runs with randomly selected training and testing sets from specified race; error bars
represent mean +/- s.e.m. (a) Stratifying GBM cases analyzed by TCGA or withinWang et
al., 2016., excluding TCGA cases within Wang analysis, (b) by TCGA cases versus Wang
cases collected and analyzed in Seoul, and (c) by TCGA cases identified as “white” versus
Seoul cases.
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Figure 1.A.4: TOBI performance on Ped.Glioma training and testing sets stratified by
institution. Stratifying Ped.Glioma cases analyzed by Pediatric Cancer Genome Project
or e Institute of Cancer Research, London.
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Figure 1.A.5: Inclusion of 61 STAD cases with hypermutation phenotype does not sig-
nificantly alter TOBI performance. p-value from Welch’s Two Sample t-test.
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Figure 1.A.6: Effect of removing individual features or all COSMIC associated features
from the TOBI model. Each box indicates a cancer type. Le of the dashed line indicates
performance using the standard TOBI model with all features included; to the right, F-
scores aer the specified feature is removed from the model. Points represent F-score for
five runs with randomly selected training and testing sets from specified race; error bars
represent mean +/- s.e.m.
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Sensitivity Specificity Pos.Pred.Value Neg.Pred.Value Prevalence Accuracy False.Pos.Rate False.Disc.Rate AUC Fscore
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Figure 1.A.7: Performance metrics in cancers analyzed by TOBI. Histogram of perfor-
mance across all variants in each case. Metric on top of column; each row is a cancer type.
Y-axis: case counts, x-axis: 0 to 1 range of metrics. In each box, the upper number rep-
resents that performance metric across all samples and variants in that cancer subtype;
the ordered pair represents “(mean, median)” of metric for that patient cohort; dashed
line=mean, doed line= median.
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Figure 1.A.8: Performance metrics at different variant allele frequencies. Sensitivity,
specificity, and F-score of variants (a) with VAF 0-100% binned by 5% or (b) VAF 0-20%
binned by 1%.
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Figure 1.A.9: TOBI sensitivity correlates with somatic SNV rate. (a) Somatic SNV per
megabase (Mb) for each cancer type. Vertical axis shows the number of somatic SNV
per megabase on a log10 scale. Each point represents a tumor sample, red horizontal
lines indicate median value for cancer; cancers ordered by increasing median number of
somatic mutations. (b) Same as Figure 2a but cancers are ordered by increasing median
number of somatic mutations. (c) Scaerplot of median somatic SNV per Mb versus true
positive rate of nonsynonymous variants. Each point is a cancer type. Le panel uses
true positive rate from all genes, right panel for driver genes only. P-value for Spearman
correlation.
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Figure 1.A.10: F-score of TOBI prediction on genes binned by recurrence of true somatic
mutations. Recurrence bins defined as high (>20% of tumors), middle (10-20%) genes, and
low (<10%)
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Figure 1.A.11: TOBI somatic variant prediction outperforms other methods. ROC
curves comparing somatic variant prediction (synonymous and nonsynonymous) based
on TOBI, CADD score, Mutation Assessor, SIFT and MutationTaster.
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50



Ca
nc
er

M
et
ho

d
Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

Po
s.
Pr
ed

.5
Va

lu
e

N
eg
.P
re
d.

Va
lu
e

Pr
ev
al
en

ce
Ac

cu
ra
cy

Fa
ls
e.
Po

s.
Ra

te
Fa
ls
e.
Di
sc
.

Ra
te

AU
C

Fs
co
re

TP
TN

FP
FN

To
ta
l

Pe
d.
Gl
io
m
a

TO
BI

0.
38

23
53

0.
99

65
29

0.
65

0.
98

96
58

0.
01

65
81

0.
98

63
45

0.
00

34
71

0.
35

0.
96

78
83

0.
48

14
81

26
40

19
14

42
41

01
GB

M
TO

BI
0.
28

30
19

0.
94

52
53

0.
17

85
71

0.
96

90
89

0.
04

03
55

0.
91

85
28

0.
05

47
47

0.
82

14
29

0.
84

64
81

0.
21

89
78

45
35

74
20

7
11

4
39

40
Pe

d.
Gl
io
m
a

VN
0.
96

29
63

0.
14

43
59

6.
05

E=
05

0.
99

99
86

5.
37

E=
05

0.
14

44
03

0.
85

56
41

0.
99

99
4

.
0.
00

01
21

78
21

75
99

12
89

75
1

3
15

07
43

1
GB

M
VN

0.
98

92
47

0.
13

37
4

7.
29

E=
05

0.
99

99
95

6.
39

E=
05

0.
13

37
94

0.
86

62
6

0.
99

99
27

.
0.
00

01
46

18
4

38
94

44
25

22
51

2
2

29
12

14
2

Pe
d.
Gl
io
m
a

So
m
Va

rIU
S

.
.

0
.

.
.

.
1

.
.

0
.

69
3

.
69

3
GB

M
So
m
Va

rIU
S

.
.

0.
00

42
22

.
.

.
.

0.
99

57
78

.
.

98
.

23
11

5
.

23
21

3
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Cancer Count Race
BLCA 100 white
BLCA 6 black
BLCA 8 asian
LGG 267 white
LGG 12 black
LGG 1 asian
LGG 1 a.i.9or9a.n.
LUAD 134 white
LUAD 5 black
LUAD 1 asian
SKCM 329 white
SKCM 7 asian
SKCM 1 black
STAD 57 asian
STAD 130 white
STAD 2 black
Ped.Glioma 16 black
Ped.Glioma 42 white
Ped.Glioma 2 asian
GBM 92 white
GBM 6 black
GBM 3 asian

Table 1.A.3: Patient counts aer standardizing nomenclature
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Chapter 2

Identification of germline variants with somatic variant

features

2.1 Introduction

Germline DNA alterations can be oncogenic[51], with rare predisposing variants occur-

ring in over a hundred genes[20]. Many predisposition genes are tumor suppressors.

Oncogenic germline variants in tumor suppressor genes exhibit some common biological

features, such as loss of heterozygosity and selection for the variant allele when compar-

ing germline and tumor DNA[11]. ere are fewer known gain-of-function predisposition

variants, but kinases such as RET and ALK have oncogenic germline variants that typi-

cally occur in protein hotspots. Forty percent of these germline predisposition genes also

undergo somatic mutation in cancer[20].

Review of recent literature

While predisposition genes were initially identified via studying families with cancer pre-

disposition syndromes, recent research has focused on assessing germline variants in spo-

radic cancer cohorts. Analyses of both single cancer[30] and pan-cancer cohorts[31, 32,

34] have found that approximately 10% of patients with sporadic cancer have a potentially
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pathogenic germline variant in a known cancer predisposition gene. However, these co-

hort studies focus only on known cancer predisposition genes, precluding identification

of oncogenic germline variants in less studied genes. Additionally, nomination of poten-

tially oncogenic variants oen involves clinical guidelines that do not account for tumor

genomic information[37].

Here, we assess whether our TOBI framework predicts certain germline variants

to have somatic features. Since TOBI learns biological features of somatic mutations

throughout the exome, TOBI’s predictions are exome-wide, rather than constrained to

a known set of genes. We find that TOBI does classify certain germline variants as so-

matic, and refer to these germline variants as “somatic-like” germline variants (SLG vari-

ants) because SLG variants share biological features with true somatic mutations. SLG

variants predicted by TOBI are enriched for known cancer predisposition genes. Finally,

we find that in bladder carcinoma, TOBI predicts recurrent germline alterations in the

Fanconi anemia pathway. We show that cases with germline or somatic alterations in

the Fanconi anemia pathway are enriched for a DNA-repair deficiency somatic signature.

ese results suggest a potential inherited predisposition to bladder cancer and potential

treatment with PARP inhibitors.
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2.2 Results

Identification of “somatic-like” germline variants

Having established TOBI’s ability to identify somatic variants from tumor-only samples,

we next assessed whether TOBI was capturing germline variants with somatic features.

TOBI’s false positive (FP) variants could include germline variants that share features

with true somatic variants, making them “somatic-like” germline (SLG) variants. SLG

variants could be benign or oncogenic. Alternatively, false positive variants might be

tumor-specific variants that were not previously published due to variability in somatic

variant analysis[85].

First, we assessed TOBI’s overall false positive rate (FPR) in the cancer test sets. Since

false positive variants may include SLG variants, we also calculated the FPR from applying

the Ped.Glioma classificationmodel to a set of 100 germline exomes from individuals with-

out cancer sequenced by the 1000 Genomes Project[67]. e FPR in these 1000 Genomes

individuals (median FPR 0.25%, range 0.15-1.62%) was significantly lower than the FPR

in any of the cancer cohorts (Figure 2.1). e higher FPR in tumor cohorts suggests that

some false positive calls represent somatic-like germline variants.

To identify SLG variants, we analyzed germline variant allele frequency (VAF) from

1,327 test cases in six cancers excluding GBM. VAF is the fraction of exome sequencing

reads corresponding to the variant allele at a genomic site within a specific patient sam-

ple. To be classified as an SLG variant, a variant needed a germline VAF of at least 30% to

decrease the probability that the germline variant represented tumor contamination or an

artifact[31]. Since certain germline variants highly increase predisposition to cancer[31,
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Figure 2.1: TOBI false positive rate (FPR) in seven cancers and the 1000 Genomes
project. Distribution of FPR per case for each cancer was compared to the FPR from
100 cases from the 1000 Genomes project. For the seven cancers, FPR was calculated as
the number of false positive TOBI somatic calls divided by the total number of true non-
somatic variants in each case aer filtering; for 1000 Genomes samples, false positives
were defined as any variant predicted as somatic by TOBI, and FPR calculated by dividing
the number of false positives by the total number of variants aer filtering. LGG includes
original 266 test cases. p-value calculated with the two-sided Wilcoxon–Mann–Whitney
test.

32], we analyzed SLG variants for enrichment in a published list of 60 genes associated

with autosomal dominant cancer-predisposition syndromes[31] (“AD genes”, listed in Ta-

ble 2.A.1), and found significant enrichment of AD genes in nonsynonymous SLG variants

(p<1.53 x 10-10; Figure 2.2a).

Focusing on nonsynonymous FP variants in AD genes, we found at least seven cases

with mutations in CDH1, RB1, RET or TSC2, and fieen cases with mutations in the tu-

mor suppressor TP53 (Figure 2.2b). Certain inactivating mutations in tumor suppressors

are heterozygous germline variants, but show loss of heterozygosity in the tumor[11].

Five of the TP53 SLG variants exhibit evidence of loss of heterozygosity, with germline

VAFs below 45% and tumor VAFs above 70% (Figure 2.3). In three Ped.Glioma cases, TOBI
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Figure 2.2: “Somatic-like” germline (SLG) variants are enried for genes associated
with autosomal dominant cancer-predisposition syndromes (AD genes). (a) Variants
predicted as somatic by TOBI include 22,048 variants not reported as somatic in pub-
lished analysis of 1,327 cases from five adult cancer types and pediatric glioma, with sig-
nificant enrichment for AD genes in all FP variants and the subset of nonsynonymous
variants with germline allele frequency greater than 30%. p-value from Poisson cumula-
tive distribution. (b) Distribution of patient cases with FP variants in AD genes. Cancer
abbreviations and color consistent with Figure 2.1.

predicted somatic TP53 variants with tumor VAF greater than 65% and germline VAF of

0% (Fig. 3c; variants G105V, R175H, and R273C). Despite the high tumor VAF and low

germline VAF, these variants were not published as somatic variants in outside tumor-

normal analysis[70], illustrating that TOBI can identify somatic variants that may be in-

consistently called.

Certain germline variants in cancer-associated genes correlate with earlier age of di-
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Figure 2.3: FP variants inTP53 domains. Height of line represents allele frequency, with
normal frequency at the blue point and tumor frequency in black. Circles indicate patients
where normal frequency of variant is greater than or equal to 30%; diamonds indicate nor-
mal frequency less than 30%. Color of variant name corresponds to cancer color in Figure
2.1 and 2.2 (b). “<” indicates P71L and P72A occurred in same LUAD patient. “R273C (2)”
indicates two patients with LGG had this variant. Colored “+” or “”̂ indicate individual
patient allele frequencies.

agnosis[32], so we analyzed whether the presence of nonsynonymous SLG variants in

565 cancer-associated genes associated with earlier age of diagnosis in any cancer type.

In LGG, patients with cancer-associated SLG variants had significantly earlier ages at

diagnosis (median 37 years vs. 41 years, p= 0.0013; Figure 2.4a; Figure 2.A.1). e

most LGG cases had SLG variants in TP53 (n=4), followed by IDH1 (three cases: V71I

[COSM96923], one case: R82K [COSM4169909]) and RET (Y791F [COSM1159820], I852M

[COSM4573611], R982H [COSM1264016], T1038A [COSM4650197]). Many genes with

SLG variants in LGG have also shown recurrent somatic mutations in prior analysis[47],

including TP53, IDH1, EGFR, and NF2 (Figure 2.4b).
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Figure 2.4: SLG variants in low-grade glioma associated with earlier age of diagnosis.
(a) Distribution of diagnosis age in 492 LGG test set caseswith orwithout nonsynonymous
SLG variants in 565 cancer genes. For the violin plots, width of shape indicates density. In
overlaid boxplots, the horizontal center line indicates the median (37 years vs. 41 years),
upper and lower box edges correspond to the 25th and 75th percentiles, and the upper and
lower whiskers extends from the closest box edge to the highest or lowest value within
1.5x the interquartile range, respectively. p-value calculated with two-sided Wilcoxon–
Mann–Whitney test; * indicates p<0.01. (b) Cancer genes with recurrent nonsynonymous
SLG in LGG.

Bladder cancer cases with inactivating mutations in Fanconi anemia

pathway display somatic signature of BRCA-deficiency

Truncating germline alterations in cancer predisposition genes have been reported in 4-

19% of cancer types[32]. Accordingly, we examined exome-wide SLG nonsense variants

in each cancer type. Bladder carcinoma cases showed significant enrichment of SLG non-

sense variants in the Fanconi anemia (FA) pathway based on pathway assessment with

g:Profiler[86] (49 genes with SLG variants, 54 genes in FA pathway, 3 overlapping genes;

p-value of 0.029 aer multiple testing correction). e FA pathway normally performs

DNA repair of interstrand crosslinks, which requires homologous recombination.[87]

We then assessed the overall occurrence of germline and somatic nonsense mutations
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predicted by TOBI in the FA pathway (Figure 2.5a). In bladder cancer, TOBI predicted

these variants in 11% (11/100) of patients. Less than 2.5% of patients in any other cancer

type had predicted nonsense FA variants. True somatic nonsense variants occurred in

6% of BLCA cases, affecting genes BRCA2, FANCM, FANCE, REV3L, and SLX4. Germline

nonsense variants were predicted in 5% of BLCA cases, in the genes BRCA2, FANCM,

and FANCD2. Several of these germline variants showed potential loss of heterozygosity

based on increased VAF in tumor DNA compared to germline DNA (Figure 2.5b: FANCM

R1931*, BRCA2 Y3308*). Of note, BRCA2 variant Y3308* has been associated with heredi-

tary colorectal and breast cancer[88]. Mice ES cells with BRCA2 Y3308*mutations showed

hypersensitivity to ionizing radiation and crosslinking agents, as well as decreased homol-

ogous recombination efficiency[89]. Additionally, FANCM R1931* was associated with

increased breast cancer risk and deficient DNA repair[90].

Figure 2.6 and table 2.A.2 describe TOBI’s predicted nonsynonymous variants and

published somatic copy number alterations affecting the FA pathway for this BLCA co-

hort.

Finally, we assessed whether BLCA cases with predicted FA pathway nonsense mu-

tations had significantly different mutational signatures compared to wildtype cases. Us-

ing all somatic mutations published for 130 TCGA BLCA cases[46] including our 100 test

cases, we generated trinucleotide mutational spectra that decomposed into four somatic

signatures (figure 2.A.2). Cases with FA nonsense mutations were only enriched in the

fourth signature (Figure 2.7), a somatic signature similar to the BRCA1/2-deficiency signa-

ture from a pan-cancer analysis (signature 3 in [91]). Enrichment of this somatic mutation

signature in bladder cancer cases with nonsense FA variants suggests that these FA non-
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Figure 2.5: Nonsensemutations in the Fanconi anemia pathway identified by TOBI. (a).
Percentage of test set cases with TOBI-somatic nonsense mutations; “Germline” indicates
variant allele frequency (VAF) >= 30% in normal; “TP”, or true positives, were previously
reported as somatic and have VAF < 30% in normal. Total number of test cases: 100 BLCA,
317 SKCM, 165 LUAD, and 199 STAD. (b) TOBI-somatic nonsense variants in BRCA2 and
FANCM; diamond and dashed line indicate TP variants; solid line and circle are germline;
grey arrows go from VAF in normal to tumor.

sense variants, whether somatic or germline, affect the bladder cancer somatic mutation

landscape.

2.3 Discussion

In this chapter, we use TOBI for integrated germline and somatic analysis. When germline

VAF information is available, TOBI can identify “somatic-like” germline variants. We as-

sessed which somatic variants from TOBI were truly germline variants, and we found

these “somatic-like” germline variants were enriched in genes associated with autoso-
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Figure 2.6: Fanconi anemia pathway with number of altered bladder cancer cases
shown per gene.

mal dominant cancer-predisposition syndromes (Figure 2.2a). ese SLG variants include

oncogenic germline variants validated by outside groups, such as the TP53 R248Q alter-

ation confirmed as germline by tumor-normal analysis of a pediatric glioma case[70]. Ad-

ditionally, SLG variants in cancer genes associated with earlier age of diagnosis in patients

with low-grade glioma (Figure 2.4a), suggesting that TOBI’s SLG variants are enriched for

cancer-associated variants.

Analysis of bladder carcinoma cases using TOBI revealed largely unreported germline
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Figure 2.7: Association of Fanconi anemia mutation status and somatic signature 4 in
bladder cancer. p-value calculated with rank sum test. Mu = mutant, WT = wildtype.

Brca2flox/flox 
Rosa26-CAGYFP/YFP X 

Brca2flox/+;  
YFP/+  X 

Brcaflox/flox;  
YFP/+ 

F1 

F2 

Brca2flox/+;  
YFP/+  

FACS 

Adeno-Cre  Adeno-GFP 

Brca2+/+ 
GFP+ 

Brca2 flox/
flox 
GFP+ 

Brca2 f/f 
GFP+ 

Experiment: 

Brca2 +/+ 
GFP+ 

Neg. Ctrl: Non-tumorigenic 

P53 f/f; PTEN 
f/f 
GFP+ 

Pos. Ctrl: Tumorigenic 

Groups: 

Brca2+/+; 
RosaYFP/+ 

Brca2flox/flox; 
RosaYFP/+ 

a b 

c 

Figure 2.8: Experimental design of murine Brca2-KO bladder organoids. (a) Outline of
mouse genetic crosses to generate Brca2flox/flox;Y FP/+ mice, fluorescence activated cell
sorting of Brca2flox/flox;Y FP/+ mouse bladder urothelium, and delivery of adeno-Cre
or adeno-GFP to organoids. (b) Genetics of experimental and control groups. (c) Light
microscopy of organoids taken at 2-3 weeks. “f/’’ indicates “flox/flox’’. Figure designed
by Lijie Rong.

63



Brca2+/+ 
GFP+ 

Brca2 fl/fl; Ad-Cre 
GFP+ 

•  Confirmation of knock-out (Western/PCR) 
•  General histology (H&E) 

Brca2+/+ 
GFP+ 

Brca2 fl/fl; Ad-Cre 
GFP+ 

Drug treatment 

Mytomycin C 

Cisplatin 

PARP inhibitor 

•  Drug response  
(Celltiter glo) 
•  IHC: γH2AX, PtGG, etc. 

Model establishment and general phenotype description: 

Whether Brca2-KO influences response to chemotherapy :  

Whether Brca2-KO influence tumor establishment and/or aggressive progression in mice 

Brca2+/+ 
GFP+ 

Brca2 fl/fl; Ad-Cre 
GFP+ •  Orthotopic engraftment  

•  Ultrasound imaging (growth curve) 
•  Histological changes (H&E) 

Figure 2.9: Planned aracterization of murine Brca2-KO bladder organoid. Figure
designed by Lijie Rong.

inactivatingmutations in the Fanconi anemia pathway, suggesting a potential genetic pre-

disposition in 5% of patients. Outside analysis of a 14-patient bladder tumor cohort[92]

found a germline nonsense variant in BRCA2, but did not assess overall Fanconi anemia

pathway mutations. Germline BRCA2 nonsense mutations in bladder carcinoma may re-

flect the pan-cancer susceptibility aributed to germline BRCA2 mutations in analysis of

other adult cancers[32]. Future assessment of a larger BLCA cohort may reveal associa-

tions between germline FA mutations and clinical outcomes, similar to how an expanded

cohort of prostate cancer patients revealed significantly more deleterious germline muta-

tions in DNA repair genes in patients withmetastatic versus localized prostate cancer[93].

Our integrated somatic and germline analysis identified nonsense FA pathway mu-

tations in 11% of BLCA cases, suggesting a role for aberrant interstrand crosslink repair

in bladder tumor development. Enrichment for a BRCA-deficiency somatic signature in

64



these patients indicates similarity between FA mutant bladder cancers and BRCA-mutant

breast cancers. However, further biological experiments would clarify the role of the FA

mutations in bladder cancer. Treating BRCA-mutant breast cancers with PARP inhibitors

improved patient outcome[94], so PARP inhibitors may also show increased effective-

ness in bladder tumors with BRCA2 or other FA mutations. Additionally, recent research

in muscle-invasive bladder cancer found that the presence of tumor DNA alterations in

FANCC (a member of the FA pathway), ATM, and RB1 predicted beneficial response to

cisplatin neoadjuvant chemotherapy[95]. Future research could determine whether FA

nonsense mutations also predict beneficial response to Cisplatin, particularly given the

beneficial response to cisplatin in patients with BRCA1 mutant breast cancers[96]. We

are collaborating on experiments with Cory Abate-Shen’s laboratory to assess the role of

germline Fanconi anemia pathway alterations in mouse bladder cancer organoids (exper-

imental strategy described in Figures 2.8 and 2.9.

We recognize several limitations in germline variant analysis with TOBI.e previous

chapter described several limitations for developing somatic variant classifiers with TOBI.

In addition to those limitations, we recognize that TOBI’s designation of SLG variants

denotes “somatic-like” status, but does not differentiate oncogenic and benign germline

variants. Finally, fully understanding the role of Fanconi anemia variants in bladder can-

cer requires experimental validation.

Overall, we believe this chapter has shown that in cases with matched normal DNA,

the TOBI framework identifies germline variants that have somatic-like features and may

inform tumor developments Integrated analysis of germline and somatic variants remains

uncommon, making TOBI’s identification of both somatic-like germline variants and so-
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matic variants a unique strength. Applying the TOBI framework to seven cancer types

illustrated that TOBI recovers known oncogenic variants of somatic and germline ori-

gin, and suggests a previously unreported role for inactivating mutations in the Fanconi

anemia pathway in bladder cancer.

In the next chapter, we will apply the TOBI framework for integrated germline and

somatic analysis to a cohort of patients with pediatric acute lymphoblastic leukemia.

2.4 Methods

Germline variant analysis and clinical data associations

Germline VAFs were available in Protected Mutation vcf files for five TCGA cancers

(BLCA, LGG, LUAD, SKCM, STAD). For tumor-normal pediatric glioma cases, germline

VAFs were determined using the SAVI variant caller[44]. We used SAVI to perform joint

variant calling on normal and tumor pediatric glioma samples, then assessed whether

variants predicted as somatic by TOBI in tumor-only analysis were also present in the

germline SAVI calls at germline VAF > 30%. For enrichment of gene sets in false positive

(FP) variants, the Poisson cumulative distribution was calculated for each gene set, with g

total genes and n FP variants in those genes from a cancer cohort with N variants found

inG genes, as the probability of a value greater than (n−1)with lambda = (g∗N)/G us-

ing the R ppois function. Lists of 60 autosomal dominant genes and 565 cancer-associated

genes are from [31], Supplementary Appendix 2. Protein domain names and coordinates

from PFAM[97].
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We compared the distribution of diagnosis age for cases with or without SLG variants

using the Wilcoxon–Mann–Whitney test in R.

Fanconi anemia pathway enriment

g:Profiler[86] analysis of BLCA nonsense SLG variants was run using defaults (Signifi-

cant only; Hierarchical sorting; Numeric IDs treated as: WIKIGENE_ACC; Significance

threshold: g:SCS threshold; Statistical domain size: Only annotated genes.) Multiple test-

ing correction for p-values was calculated using the ontology-focused correction method

g:SCS as previously described in the g:Profiler manuscript[86]. FA pathway in Figure 2.6

was modified from the KEGG FA pathway and [98]. Bladder carcinoma CNV data was

retrieved from cBioPortal.

Mutation spectra and signatures

e non-negative matrix factorization approach developed by Alexandrov et al.[91] was

applied to infer the mutational signatures of bladder cancer, using their supplied so-

ware package (http://www.mathworks.com/matlabcentral/fileexchange/38724).

All 130 cases of bladder cancer from TCGA were used to generate signatures.
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2.A Appendix
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Figure 2.A.1: Age distribution based on cancer-associated SLG in seven cancer types.
Colors consistent with Figure 2.1. p-value calculated with the two-sided Wilcoxon–
Mann–Whitney test; * indicates p<0.01.

ALK CDK4 MAP2K1 PALB2 RET SMARCB1
APC CDKN1C MAP2K2 PAX5 RUNX1 SOS1
BAP1 CDKN2A MAX PHOX2B SDHA STK11
BMPR1A CEBPA MEN1 PMS2 SDHAF2 SUFU
BRAF DICER1 MLH1 PRKAR1A SDHB TMEM127
BRCA1 EPCAM MSH2 PTCH1 SDHC TP53
BRCA2 FH MSH6 PTEN SDHD TSC1
CBL GATA2 NF1 PTPN11 SHOC2 TSC2
CDC73 HRAS NF2 RAF1 SMAD4 VHL
CDH1 KRAS NRAS RB1 SMARCA4 WT1

Table 2.A.1: Genes associated with autosomal dominant cancer-predisposition (AD
genes). List of genes from Supplementary Appendix 2 of [31]
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a

b Signatures$in$130$BLCA$cases$from$TCGA$

Figure 2.A.2: Four somatic signatures for bladder carcinoma. (a) Selection of k=four
somatic signatures for BLCA maximizes stability and minimizes error. (b) Somatic signa-
tures from TCGA BLCA cohort (TCGA, Nature 2014), generated using techniques from
[91]. Signature 4 resembles the BRCA somatic signature described in [91].
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Gene_name Overall Germline_nonsyn Somatic_nonsyn Deletion
UBE2T 1 0 0 1
ATRIP 4 1 0 3
POLN 5 0 4 1
BOD1L 1 0 0 1
POLK 4 0 3 1
FANCE 3 0 2 1
REV3L 6 0 3 3
FANCG 1 0 0 1
FANCF 1 0 0 1
BRCA2 8 2 5 1
FAN1 2 0 1 1
SLX4 7 1 2 4
ERCC4 3 0 2 1
FANCA 3 0 1 2
RBBP8 1 0 0 1
POLI 2 0 0 2
FANCB 1 0 0 1
FANCM 5 2 3 0
FANCD2 5 1 4 0
POLH 1 1 0 0
PALB2 1 0 1 0
RAD51 2 0 2 0
BLM 1 0 1 0
BRCA1 2 0 2 0
MLH1 1 0 1 0
BOD1L1 2 0 2 0
FANCI 3 0 3 0
EXO1 4 2 2 0
RAD51C 1 0 1 0
RAD50 1 0 1 0
PMS2 2 0 2 0
NBN 2 0 2 0
WDR48 2 1 1 0
MUS81 1 0 1 0
BRIP1 3 1 2 0
REV1 2 0 2 0

Table 2.A.2: Counts of Fanconi anemia alterations in bladder carcinoma
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Chapter 3

Integrated germline and somatic analysis of a large pediatric

ALL cohort

3.1 Introduction

Pediatric acute lymphoblastic leukemia epidemiology and treatment

Acute lymphoblastic leukemia (ALL) is the most common cancer in children, with ALL

representing 26% of new cancer diagnosis in children 0-14 years of age and 8% of cases in

adolescents ages 15-19[99]. Symptoms at diagnosis include fatigue and pallor from ane-

mia, bleeding or bruising from low platelets, and infection due to low neutrophil counts

[100]. ALL arises from two lymphocyte lineages: B cell (B-ALL) or T cell (T-ALL). B-ALL

is more common, representing 85-90% of pediatric cases, while T-ALL occurs in 10-15%

of cases and is more common in boys[101]. Recent ALL five-year survival rates approach

90% across both lineages, with survival steadily increasing since 1975. However, among

the 10-20% of patients with ALL who relapse, there is a cure rate of less than 40%[102].

Given this low cure rate and the high number of initial ALL cases, relapsed ALL is the

most common cause of cancer death in children [103].

ALL risk stratification uses patient age and WBC count at diagnosis, morphologi-
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cal and cytogenetic characterization of leukemia cells, and assessment of early treatment

response [104]. High-risk criteria include age <1 year or >10 years, T-ALL, extreme hy-

podiploidy (less than 44 chromosomes), translocation t(9;22) leading to a BCR/ABL fusion,

and induction failure[105].

Contemporary ALL therapy consists of several discrete phases: induction, consolida-

tion, and maintenance [100]. e goal of induction therapy is remission, or the restora-

tion of normal hematopoiesis and the removal of all clinically detectable leukemia bur-

den [106]. Induction therapy lasts 4 to 6 weeks and typically involves daily corticos-

teroids, weekly administration of vincristine, and L-asparaginase, with possible intrathe-

cal chemotherapy [107]. Patientswith Philadelphia chromosome t(9;22) positiveALL have

imatinib or dasatinib added to their regimen [108]. Early response to induction therapy,

defined as less than 1000 blasts/µL during the first week of treatment, is a favorable prog-

nostic factor [104].

e next stage of ALL therapy aer remission is the 6-8 month consolidation

phase[100]. Consolidation therapy aims to consolidate remission and prevent leukemia

regrowth, especially CNS leukemia or drug resistant disease. To achieve this, patients re-

ceive drug combinations with mechanisms of action and schedules designed to minimize

development of resistance [109]. Chemotherapies include methotrexate, cytarabine, and

cyclophosphamide [110].

Aer completing the induction and consolidation phases, patients begin mainte-

nance therapy. Maintenance therapy consists of longterm (24 to 36 months) daily 6-

mercaptopurine (6-MP) and weekly methotrexate [111]. Recent trials suggest adding

pulses of vincristine and steroids to maintenance therapy to increase survival[112]. Given
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the duration of maintenance therapy, patient adherence is variable. Patients with adher-

ence rates of less than 90% have a 3.9-fold increased risk of relapse[113].

During and aer treatment, patients are monitored for treatment side effects and dis-

ease relapse. In this monitoring, the factor most associated with prognosis is minimal

residual disease (MRD, submicroscopic levels of leukemia), with higher MRD associat-

ing with leukemia relapse and lower survival[114]. Relapsed ALL is more resistant to

chemotherapy, due to selection of a minor subclone present at diagnosis or from acqui-

sition of drug resistance mutations during chemotherapy [115]. Aer relapse, predictors

of outcome include lymphocyte phenotype, time to relapse, and site of relapse, with the

Children’s Oncology Group (COG) and the Berlin-Frankfurt-Munster Group (BFM) both

assigning worse prognosis to early relapse, T-cell phenotype, and relapse in the bone

marrow versus isolated extramedullary sites[116].

e strongest predictor of survival is time to relapse aer diagnosis, where patients

who relapsed less than 18 months aer diagnosis had a five-year survival rate of 21%

[117]. When a patient relapses, they receive salvage therapy partially based on agents

used in the induction, consolidation, or maintenance phases; a common treatment strat-

egy is alternating short-course multi-agent chemotherapy (systemic and intrathecal) and

standardmaintenance therapy[115]. Patients with high risk relapsedALL additionally un-

dergo hematopoietic stem cell transplantation (HSCT) [115]. However, the survival rate

for these heterogeneous salvage therapies remains around 35%-40%[118]. Addressing the

low survival rates in relapsed pediatric ALL could involve generating more targeted ther-

apies or clinical strategies to prevent relapse. Both of these strategies can be informed

by the genomic landscape of pediatric ALL at diagnosis, relapse, and within the germline
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genome.

Somatic and relapse mutations in pediatric ALL

Somatic mutations in diagnosis and ALL samples have been assessed through multiple

next-generation sequencing studies[119–123]. In B-ALL, recurrent diagnosis mutations

oen occur in genes encoding transcriptional regulators of B-lineage differentiation [124],

such as PAX5 (30% of cases), IKZF1–3, and EBF1. Additional genes mutated in B-ALL

include KRAS, NRAS, FLT3. In T-ALL, T-cell development genes are frequently mutated,

particularly NOTCH1 that is mutated in 60% of T-ALL cases[101]. Both T-ALL and B-ALL

have recurrent alterations in JAK-STAT pathway genes and CREBBP. Pediatric ALL cases

have a low somatic burden at diagnosis compared to adult cancers[91, 125].

Certain genomic alterations at diagnosis correlate with patient relapse, and could be

used for risk-stratification or targeted therapy. Deletion of nuclear receptor subfamily 3

group C member 1 (NR3C1) is associated with relapse in ETV6-textitRUNX1 rearranged

leukemia [126] In B-cell–progenitor ALL, IKZF1 deletion or mutation associates with re-

lapse [121, 127]. Mutations in CREBBP are both associated with relapse and linked to

resistance to glucocorticoids[128], where glucocorticoids are a key component of ALL

therapy.

Many studies have compared genomic alterations at diagnosis and relapse, and have

found certain genes recurrently mutated at diagnosis are further selected for at relapse.

TP53 is acquired at relapse in many cases[129, 130], with TP53 mutations associated

with worse prognosis[131]. Relapsed clones oen gain mutations in CREBBP[119] and
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other epigenetic regulators (SETD2, MSH6, KDM6A and MLL2)[132]. Mutations in the

glucocorticoid-receptor gene NR3C1 are also commonly found at relapse[133], showcas-

ing another mechanism of resistance to combination chemotherapy.

e most prominent genetic events at relapse involve relapse-specific mutations in

NT5C2 [60, 134], a nucleotidase that metabolizes purine nucleotides. e standard purine

synthesis pathway is essential for effective ALL therapy by converting the prodrugs 6-

MP and 6-thioguanine into cytotoxic thioguanine nucleotides. However, NT5C2 exports

purine nucleoside monophosphates, and gain-of-function mutations at relapse result in

decreased intracellular concentrations of cytotoxic therapies[60, 134, 135]. Expression

of these mutations in ALL cells causes resistance to 6-MP [60, 134]. At relapse, gain-of-

function mutations in NT5C2 are present in 5% of B-ALL and 20% of T-ALL cases in one

study[119] and 45% of B-ALL cases in another study [123]. NT5C2 mutations are relapse-

specific, possibly due to negative selection for the purine substrate imbalance created by

NT5C2 mutations [135]. Resistance to 6-MP also arises in relapsed ALL with activating

mutations in PRPS1, a gene encoding the enzyme that begins purine and pyrimidine syn-

thesis; these mutations prevent 6-MP’s entry into the purine salvage pathway[122].

Known germline variants associated with ALL

While diagnosis and relapse mutations are acquired during ALL development, certain

germline variants present at birth also influence a patient’s disease progression and re-

sponse to treatment. For example, two genome-wide association studies assessing the B-

ALL subtype Philadelphia chromosome–like ALL (Ph-like, or BCR-ABL1-like) found SNPs
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in GATA3 associated with Ph-like ALL susceptibility[136, 137]. e GATA3 locus also as-

sociated with genomic alterations at diagnosis (CRLF2 rearrangements, JAK mutations,

and IKZF1 deletion). Additionally, patients with the GATA3 variant were at higher risk of

poor early treatment response and relapse[136, 137]. GWAS has identified other common

variants associated with ALL prognosis, including loci associated with ALL susceptibil-

ity (in ARID5B, IKZF1, CEBPE, CDKN2A, CDKN2B, PIP4K2A, BMI1, GATA3, TP63), treat-

ment toxicities (NUDT15, ACP1, GRIA1, HLA-DRB1, ASNS, CBR3, HAS3, CEP72, SLCO1B1),

and treatment outcome (TPMT, IL15, PYGL, PDE4B, and GATA3)[6]. While many of these

variants are noncoding, one GWAS identified a missense variant in CDKN2A (p.A148T)

associated with ALL development, and experimental validation of this varianted revealed

allele specific expression in patient tumor samples and increased leukemia cell growth in

vitro[138].

Rare variants related to pediatric ALL or myeloid leukemia have been identified

through family studies. Studying families with inherited ALL led to the identification

of these ALL predisposition genes: SH2B3 [27], PAX5[21], ETV6 [22–25], and IKZF1

[26]. A recent study of patients with multiple de novo leukemia diagnoses identified

germline mutations in TYK2, a member of the JAK tyrosine kinase family[139]. Genes

associated with inherited myeloid leukemia include RUNX1[140] and CEBPA [141]. Ad-

ditionally, certain inherited Mendelian disorders confer increased risk of ALL, such as

NSD1[142](associated with Sotos syndrome), NF1 [143] (neurofibromatosis 1), and TP53

(Li-Fraumeni syndrome). Assessment of TP53 germline variants in patients with spo-

radic ALL and no Li-Fraumeni diagnosis reveals germline variants in a fraction of cases.

Among patients with pediatric low-hypodiploid ALL and TP53 mutations, 43.3% of these
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TP53-mutant cases had germline TP53 mutations[28]. Targeted sequencing of 3,801 chil-

dren with ALL found 22 rare, putatively pathogenic germline variants in TP53 associated

with a higher risk of second cancers[144].

Plan for this apter

Since clonal evolution of leukemia occurs within the context of each patient’s germline

genetics, we propose integrated analysis of potentially pathogenic germline variants and

somatic variants. Here, we investigate the germline and somatic variants in a cohort of

over 600 pediatric patients with ALL. First, we assess the somatic landscape of the cohort

and investigate associations between diagnosis alterations and relapse status. We find

that known driver genes are recurrently mutated in the cohort, with WT1 mutations as-

sociated with relapse status. Using patients with germline, diagnosis, and relapse samples

available, we describe the temporal order of somatic mutations in ALL clones. Finally, we

assess two strategies to nominate candidate oncogenic germline variants. Strategy one

uses the TOBI framework to predict SLG variants across the exome, and strategy two as-

sesses rare germline variants in known leukemia and cancer predisposition genes. We

show that TOBI captures ALL driver genes, but has moderate performance compared to

adult cancers, and we identify potential pathogenic variants in predisposition genes in

a subset of patients. ese results suggest strategies for nominating candidate germline

oncogenic variants.
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3.2 Results

Somatic mutations in relapsed and non-relapsed ALL

To assess the landscape of somatic ALL mutations in pediatric patients with or without

ALL relapse, we performed somatic variant analysis on a set of 539 patients with pediatric

ALL (TARGET ALL Phase 2, dbGAP accession number phs000464[121]) and combined

these results with previously published diagnosis variants from 88 patients with relapsed

pediatric ALL[119, 122, 123]. In this section, somatic variants refer to mutations present

in the ALL diagnosis sample, and exclude variants specific to relapse samples. Based on

available clinical data, 133 patients (21.2%) in this cohort had a reported ALL relapse. is

cohort contains both B-ALL (437 cases, 69.7%) and T-ALL (190 cases, 30.3%) diagnoses.

Across all 627 samples, the most recurrently altered genes based on SNVs and indels

(Figure 3.1) were NOTCH1 (17.4%, 109 of 627 cases), KRAS (13.6%, 85 cases), NRAS (12.6%,

79 cases), FBXW7 (6.4%, 40), PHF6 (4.9%, 31), PAX5 (4.9%, 30), and FLT3 (4.6%, 29 of 627

cases). e recurrence of NOTCH1 mutations in this majority B-ALL cohort reflected

the high prevalence of NOTCH1 variants in T-ALL (106 of 190 T-ALL cases, 55.8% of T-

ALL). Looking specifically at T-ALL, other known driver genes were recurrently mutated,

including FBXW7 (20.5%, 39 cases of 190 T-ALL cases), PHF6 (15.8%, 30), WT1 (10.5%, 20),

DNM2 (11.6%, 22), PTEN (10%, 19 cases), and NRAS (9.5%, 18 of 190 cases). Similarly,

the 437 patients with B-ALL had recurrent alterations in known B-ALL drivers including

KRAS (17.6% of B-ALL cases, 77 cases), NRAS (13.9%, 61), PAX5 (6.9%, 30), FLT3 (6.4%, 28),

PTPN11 (4.6%, 20), and JAK2 (3.9%, 17 of 437 cases).

We assessed whether certain genomic alterations were associated with reported re-
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Figure 3.1: Genes with recurrent somatic nonsynonymous SNVs or indels in pediatric
ALL. From le to right, percentage of patients with somatic mutations in a gene across all
627 patients (red), 437 patients with B-ALL (green), and 190 patients with T-ALL (blue).
Panel headings indicate the patient subgroup, with the number of patients in parentheses.
Genes names on the y-axis. Numbers show the percentage rounded to the nearest percent;
“0” indicates percentages less than 1. Genes previously defined as drivers of pediatric ALL
or relapse-associated genes are ploed with full opacity.
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lapse across the entire cohort of 627 patients with pediatric ALL. For this analysis, we used

only SNVs causing nonsynonymous or splice variants (SnpEff effect impact of “HIGH’’

or “MODERATE’’) because SNV calls are higher confidence compared to indel calls. We

found that somaticWT1 SNVs associatedwith relapse across all 627 patients (p < 2.6e−10)

and in the 190 T-ALL cases (p < 6e − 5, Fisher’s exact uncorrected). One study of adult

patients with pre-treatment T-ALL found significantly decreased relapse-free survival in

WT1-mutant patients in the thymic T-ALL subgroup, although WT1-mutant status had

no significant difference in relapse-free survival in the full adult T-ALL cohort [145].

Order of sequential mutations in relapsed ALL

We assessed the order of diagnosis and relapse mutations using an integrated sequential

network (ISN) [146]. Mutation data from 88 pediatric cases with relapsed ALL [119, 122,

123] were used to generate ISNs. Using all relapsed cases, we found mutations in PAX5,

PHF6, DNM2, and KRAS were significantly early events (Figure 3.2). While KRAS was an

early event in our analysis, evidence for positive and negative clonal selection of RAS mu-

tations has been observed in early sequencing studies of lymphoid malignancies[147] and

recent next-generation sequencing studies of relapsed ALL [119, 123, 148]. Significantly

late events occurred in NT5C2 and CREBBP (Figure 3.2). NT5C2 is mutated specifically

at relapse, with gain-of-function mutations causing resistance to 6-mercaptopurine [60,

134]. Metabolic analysis of NT5C2-mutant leukemia cells found decreased intracellular

purine substrates and increased products of NT5C2 activity, creating a metabolic imbal-

ance that may be selected against in early ALL progression [135].
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Figure 3.2: ISN of sequential mutation order in 88 cases of relapsed ALL. ISN illustrat-
ing the sequential order of diagnosis and relapse mutations in relapsed ALL by pooling
evolutionary paths across patients. Each node represents a gene and each arrow points
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the ISN was significantly early or late, we used a one-sided binomial test based on the
in-degree and out-degree of each node.
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Figure 3.3: ISN of sequential mutation order in 37 cases of relapsed T-lineage ALL.
Each node represents a gene and each arrow points from a gene with an early event to a
gene with a late event. To test whether a gene was significantly early or late, we used a
one-sided binomial test on each node’s in-degree and out-degree.

ISN analysis of only T-ALL samples (37 patients) again found that PHF6 and DNM2

alterations were early events, and that NT5C2 and CREBBP mutations were significantly

late (Figure 3.3). Additionally, USP9X mutations were significantly late events.
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Nomination of somatic-like germline variants in ALL using TOBI

To nominate potential oncogenic germline variants in ALL, we applied our TOBI frame-

work to pediatric ALL samples. In addition to the 539 cases from TARGET, we included

19 cases with relapsed B-ALL from ref. [123], 55 cases with relapsed B-precursor or T-

ALL from [119], and 8 cases with B-ALL from ref. [149], for a total of 621 cases (186 cases

with T-ALL, 435 cases with B-ALL). All 621 cases had matched tumor and normal DNA

available. We used the somatic calls from SAVI as the “true somatic” variants in the 539

cases from TARGET (SAVI calls included in Figure 3.1), and the previously published di-

agnosis variants as “true somatic” calls for samples from [123], [119], and [149]. TOBI was

run separately for T-ALL cases and B-ALL cases given the different diagnosis mutation

distributions in B-ALL and T-ALL (Figure 3.1).

Our prior assessment of seven non-ALL cancer types found that TOBI’s sensitivity

in a cancer type positively correlated with the median mutation rate in that cancer.Since

ALL has a lower mutation rate than most adult cancers [91, 125], we assessed whether

increasing the training set size from 20 cases would improve performance in B-ALL. As

the number of cases in the training set increased from 20 to 200 cases, the model F-score

also increased (Figure 3.4). Accordingly, we used 200 training set cases to generate the

B-ALL model and 100 training set cases to generate the T-ALL model.

Aer comparing TOBI’s somatic classifications to true somatic calls in ALL, we found

that across all variants TOBI had a sensitivity of 28.2% in T-ALL and 42.6% in B-ALL. For

nonsynonymous variants, TOBI had a sensitivity of 34.3% in T-ALL and 46% in B-ALL

(Figure 3.5a). ese sensitivities are similar to those observed in pediatric glioma, and
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Figure 3.5: True positive rate and actual versus predicted cases from TOBI analysis of
pediatric ALL. (a) Percentages of true positive (TP) or false negative (FN) TOBI somatic
predictions in nonsynonymous variants across all genes or only driver genes. (b) Com-
parison of actual vs. predicted cases with somatic, nonsynonymous variants. Dot color
corresponds to the fraction of synonymous variants out of all variants remaining aer
TOBI filtering; red indicates a lower fraction of synonymous variants (same key as Fig-
ure 1.4). Dot size reflects the number of predicted cases over the protein length in amino
acids, with larger dots indicating a larger ratio. For clarity, genes with less than three
previously published somatic variants are not shown.

likely reflect the positive correlation between TOBI sensitivity and the mutation rate of a

cancer type. Focusing on per gene predictions, the number of cases TOBI predicted with

somatic nonsynonymous variants was very similar to the published number of cases with

somatic alterations (Figure 3.5b). Top predicted genes were known drivers of T-ALL and

B-ALL.
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Rare germline variants in cancer-susceptibility genes

An alternative strategy for investigating the potential role of germline variants in ALL

development involved assessing variant pathogenicity in genes associated with leukemia

predisposition or cancer predisposition. Leukemia predisposition genes were PAX5,

CEBPA, ETV6, RUNX1, NSD1, NF1, and TP53. For cancer predisposition across multiple

solid and lymphoid tumors, we used the list of genes from [34]. e union of these lists

was a 153-gene list used for further analysis.

Interpreting the potential clinical consequences of germline variants remains a ma-

jor challenge. e American College of Medical Genetics and Genomics (ACMG) and

the Association for Molecular Pathology recently provided guidelines for interpreting

sequence variants in genes with known associations to inherited disorders [37]. ese

guidelines classify variants as “benign”, “likely benign”, “uncertain significance”, “likely

pathogenic”, or “pathogenic” using integrated knowledge of disease biology, inheritance,

population genetics, and in silico effect predictions. A cancer-specific implementation of

the ACMG guidelines called the Characterization of Germline Variants (CharGer) pipeline

was recently developed to study rare germline variants in 33 adult cancers [34]. We used

CharGer to nominate potential pathogenic variants in pediatric ALL using our 153-gene

list.

In a set of 74 relapsed ALL cases[119, 123] with germline variants called using SAVI,

CharGer nominated one pathogenic nonsynonymous SNV: ATM:p.Q675*, described in

ClinVar (ID 231933) as “pathogenic/likely pathogenic” for ataxia-telangiectasia, an auto-

somal recessive disorder that increases cancer predisposition [150]. Patients with ataxia-
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Figure 3.6: Functional effects of predicted pathogenic variants in 539 ALL cases. Num-
ber of unique variants (chromosome, position, reference nucleotide > alternate nucleotide)
predicted as “pathogenic’’ in each gene.

telangiectasia have an increased risk of developing lymphoid malignancies including

ALL[151]. Recent studies have found that the initial presenting symptom of ataxia-

telangiectasia in children and adolescents can be ALL [150]. CharGer also nominated

three “likely pathogenic” variants: TERT :p.H412Y, TRIM37 :p.Q104*, andMSH2:p.Y66*. e

TERT :p.H412Y variant has been associated with dyskeratosis congenita[152, 153], a dis-

order that increases the risk of myeloid leukemia. e MSH2:p.Y66* variant (ClinVar ID

182608) and the TRIM37 :p.Q104* variant (ClinVar ID 195377) are described as “benign/-

Likely benign’’ in ClinVar. e patient in our cohort with an MSH2 variant did not dis-

play a hypermutation phenotype. CharGer also nominated multiple indels as pathogenic;

however, SAVI’s variant calling strategy was developed primarily using SNVs, so these

indels are lower confidence.

Since the GATK variant caller included local realignment for indels, we used GATK

to call germline variants in cancer predisposition genes in 539 TARGET samples.

Pathogenic variants were called in 64 genes, with DICER and MSH6 having the most

unique “pathogenic’’ variants (Figure 3.6). While CharGer and ACMG nominations of

“pathogenic’’ and “likely pathogenic’’ narrowed the list of candidate germline variants,
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variant annotations and CharGer parameters may influence nominations. For example,

an ATM splice acceptor variant at chr11:108114679 was reported as “likely pathogenic’’

in our analysis, but was reported as “pathogenic’’ in a study of rare germline variants in

33 adult cancers [34].

3.3 Discussion

In this chapter, we integrate germline and somatic analysis of a large cohort of patients

with pediatric ALL. Our cohort included patients with B-precursor lineage and T-lineage

ALL, as well as patients with and without reported ALL relapse. We found recurrent

somatic mutations in known driver genes of ALL, including NOTCH1, KRAS, NRAS, and

FBXW7. In comparing the diagnosis mutations found in patients with and without re-

lapse, we found a significant association between having WT1 somatic SNVs and relapse

status. is association was found in the whole 627-patient cohort and within the 190-

patient T-ALL cohort. Across the 190 cases with T-ALL, 13 cases (6.8%) have WT1 SNVs

and 20 cases (10.5%) have either SNVs or indels. ese percentages are similar to those of

previous pediatric T-ALL studies, which reported WT1 alterations (SNV, indel, splice site

alterations, and copy number variants) in 9.1%[120] and 13.2% of patients [154]. How-

ever, when our T-ALL cases are stratified by relapse status, we find WT1 SNVs in 3 of

143 (2%) of cases with no reported relapse and 10 of 47 (21.2%) of relapsed cases. is

high percentage of WT1-mutant relapsed cases is striking, particularly since we only in-

cluded nonsynonymous SNVs in that analysis. Enrichment for WT1 mutations at relapse

has been suggested [155], and WT1 mutations are associated with decreased relapse-free
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survival in adult patients with thymic T-ALL[145].

We also analyzed the order of somatic mutations across 88 cases with relapsed B-

lineage or T-lineage ALL using integrated sequential network[146]. Across all 88 patients,

alterations in PAX5, PHF6, DNM2, and KRAS were significantly early events, while NT5C2

and CREBBP alterations were late events (Figure 3.2). PAX5 normally maintains mature

B cell identity and function, and experimental findings that PAX5 deletion in mature B

cells leads to dedifferentiation into pro-B cells and lymphoma development suggests that

early PAX5 alterations generate a pro-B cell state that promote B-cell malignancy [21].

Late occurrence of NT5C2 variants in ALL evolution may reflect selection against NT5C2

variants early in leukemia development becauseNT5C2 variants cause purine metabolism

imbalances [135], or selection for increased purine metabolism by relapsed leukemia cells

when patients are treated with the purine analogue 6-MP [60, 134]. Mutation ordering

was relatively similar in T-ALL only-analysis, with the addition of USP9X as a late event.

ISNs provide comprehensive descriptions of tumor evolution across multiple patients,

summarizing and complementing analysis of clonal dynamics in individual ALL patients.

e late alterations in NT5C2 and CREBBP were recognized in clonal analysis of individ-

ual patients [119, 123]. e presence of significantly early and late variants across an

ALL cohort may stem from the high percentage of ALL cases with branched paerns of

evolution [119], where relapsed samples contain only a subset of the genetic alterations

seen in the major diagnosis clone.

Diagnosis and relapse variants occur atop each patient’s unique germline genetic

background, so we employed multiple strategies to assess germline variants that could

influence ALL. First, we applied TOBI to our pediatric ALL cohort to assess somatic-like
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germline variants (SLG). We previously saw that since TOBI generates models that suc-

cessfully identify true somatic variants from tumor-only samples, germline variants that

are classified as somatic are enriched for genes causing autosomal dominant cancer pre-

disposition syndromes. When we assessed TOBI’s ability to identify true somatic variants

in our pediatric ALL cohort, we found that TOBI had a sensitivity for nonsynonymous

variants of 34.3% in T-ALL and 46% in B-ALL. Although TOBI does identify true somatic

variants in driver genes (Figure 3.5), this relatively low sensitivity for somatic variant

classification may suggest that the TOBI model did not fully capture biological features of

ALL somatic variants. us, SLG variants nominated by TOBI’s ALL model may only par-

tially reflect ALL biology; these SLG variants need further critical analysis and ultimately

experimental validation.

Our second strategy to investigate candidate leukemia-associated germline variants

was interrogation of high-quality, coding germline variants in a set of curated genes re-

lated to leukemia or cancer predisposition. From 74 relapsed ALL cases, 2 nonsynony-

mous variants in TERT and ATM were nominated as “pathogenic” or “likely pathogenic”.

In a set of 539 ALL cases, 64 of 153 cancer predisposition genes were nominated to have a

pathogenic germline variant. Interpreting germline variant pathogenicity remains chal-

lenging even with ACMG guidelines, particularly given potential annotation discrepan-

cies.

We recognize several limitations of the analysis in this chapter. Our somatic anal-

ysis focused on SNVs and indels, but translocations, copy number variants, and splice

variants are common somatic alterations in ALL. Additionally, our indel calls are only

from one variant caller, but calling indels with multiple variant callers and intersecting
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the calls may have lead to more high quality indels. TOBI captured high-quality variants

in driver genes that passed quality filters. However, certain putative somatic variants

called in tumor-normal analysis were removed based on TOBI filters, including many

variants in PTEN. Future research could identify optimal methods of seing TOBI quality

filters depending on the cohort being analyzed. Classifying germline variants as benign

or pathogenic is complicated by differences in variant annotation soware and reference

transcripts. While we nominated candidate pathogenic germline variants in pediatric

ALL using CharGer and ACMG criteria, validation experiments or observed inheritance

of candidate variants in an affected pedigree would strengthen pathogenicity claims.

In summary, this chapter described somatic and germline variants in over 600 patients

with pediatric ALL.We find thatWT1mutations are significantly enriched in patients who

have relapsed. e TOBI framework identified true somatic variants at modest sensitivity.

Future assessment of SLG variants fromTOBIwill generate candidate germline alterations

for further study. ACMG guidelines nominated germline variants in TERT and ATM as

pathogenic variants. Future work will involve curating high quality germline variant sets,

and assessing their associations with relapse status and the order of somatic mutations in

ALL.
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3.4 Methods

ISN of relapsed ALL

We illustrated the sequential order of somatic mutations in relapsed ALL using the ISN25

that pools evolutionary paths across all patients. We selected recurrently mutated genes

that were previously defined as drivers of paediatric ALL[156–158] and relapse-genes[119,

122]. Only non-synonymous single nucleotide variants were used in analysis. For each

patient, we generated a sequential network that defined early events as mutations ob-

served in both the primary tumour and the relapsed tumour, whereas late events were

mutations only observed in the relapsed tumour. Each node represented a gene, and each

arrow pointed from a gene with an early event to a gene with a late event. e ISN then

pooled sequential networks across all patients. To test whether a gene within the ISN

was significantly early or late, we used the binomial test based on the in-degree and out-

degree of each node. Somatic mutation data used to generate ISN were aggregated from

previously published studies [119, 122, 123]. Figure 3.2 included all 88 published patients,

while figure 3.3 included only 37 patients with T-ALL.

Genomic sequence access and retrieval of clinical data

We obtained approval from the database of Genotypes and Phenotypes (dbGaP) to access

exome sequences from TARGET (accession number phs000218.v16.p6). Metadata from

dbGaP described 539 patients with ALL and whole exome sequencing of matched tumor

and normal DNA. ese tumor and normal WES alignment files were downloaded using

SRAToolkit.
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Clinical data was downloaded from the TARGET data matrix https://ocg.cancer.

gov/programs/target/data-matrix.

Somatic variant calling

Somatic variants and indels were called using the SAVI (Statistical Algorithm for Variant

Identification) algorithm [44] on matched tumor and normal samples, with annotations

from SnpEff version 4.1c [80]. SAVI is an empirical Bayesian framework that constructs

empirical priors for variant allele frequency (VAF) in each sample. Specifically, high qual-

ity candidate variants are obtained by removing positions with only reference reads, low

sequence depth, strand bias, or no high quality reads. For each variant position, SAVI uses

the number of remaining reference and variant supporting reads to build the prior and

posterior distributions of VAF. Variants were considered present with a VAF greater than

3% and a posterior probability of < 1e − 6 for variant presence. To call somatic variants,

SAVI calculates credibility intervals for VAF difference between one sample (e.g. tumor)

and another sample (e.g. normal), with significant differences defined by high-credibility

intervals at posterior probability less than 1e10 − 5. ese candidate somatic variants

were further filtered to retain variants with normal VAF < 3%, tumor VAF >= 3%, strand

bias p-value > 0.01 by Fisher’s exact test, and no annotation as “COMMON’’ in dbSNP

build 144.

We also excluded variants found in our in-house database of common mutations in

219 normal WES cases (“Meganormal” database), variants in Ig and T-Cell variable genes

annotated from SnpE’s transcript_biotype, and variants found recurrently in normal
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DNA from the current ALL cohort (recurrence defined as present in normal DNA of >1%

of patients).

Mutations in ALL driver genes [135] or in genes recurrently mutated in pediatric can-

cer [125] that were called by SAVI and subsequently filtered out were rescued for the final

somatic variant list. Additional variants in these driver genes were retained in the somatic

variant list if they met the following criteria: < 3 variant reads in normal sample, forward

and reverse variant-supporting reads in tumor sample, and (alternative allele depth >=

5 OR tumor VAF >=15%). We excluded potential oxoG artifacts from this rescue set by

removing C>A or G>T mutations with tumor VAF < 20% that were not observed in other

samples aer all initialy quality filters.

To standardize annotations between this cohort and previously published diagnosis

and relapse variants from [119, 122, 123], published variants were annotated using SnpEff

version 4.3t.

TOBI framework on ALL cases

Diagnosis (tumor) WES data from 621 patients with pediatric ALL were analyzed through

the TOBI.bam pathway indicated in Figure To briefly review, variants were called from di-

agnosis samples using Samtools and Bcools[79], excluding variants with mapping qual-

ity < 10. Variants were annotated with dbSNP build 144, Cosmic v74, and dbNSFP v2.4

databases[81], and our lab’s “Meganormal” database, using SnpEff[80]. Technical and bio-

logical variant filters were applied to remove variants with VAF < 1%, mq < 40, p-values <

0.01 for any of biasmetrics (strand bias, map quality bias, tail distance bias), common SNPs
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with population allele frequency > 1% in the 1000 Genome Project populations, Meganor-

mal variants, SNVs present in only dbSNP and not in COSMIC, and SNVs in intragenic,

non-coding exon, or splice-site regions. e driver genes in Section 3.4 were also used as

driver genes in TOBI assessments.

Germline variant calling

For all the 539 TARGET normal exomes, germline variants were called using e

Genome Analysis Toolkit 4 (GATK4) [159]. We generated gVCFs using HaplotypeCaller

from GATK4 (v4.beta.5) across chromosomes 1-22, X, and Y. Joint genotyping was per-

formed across all gVCFs using GATK4, v4.0.0.0 commands. First, gVCFs for all sam-

ples were merged using GenomicsDBImport on each chromosome interval. Next, all

samples underwent joint genotyping using GenotypeGVCFs. We retained only those

variants in the exome calling intervals defined in the Exome Aggregation Consor-

tium (ExAC)[160] (ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.

3/exome_calling_regions.v1.interval_list).

Germline calls had a germline VAF > 20%, a genotype that was not set to ”missing” or

homozygous reference, and alternate depth >=5 reads.

SAVI was used to call germline variant calls for 74 relapsed ALL cases from [119] and

[123]. Germline calls had a germline VAF > 30%.

Raw germline variant calls were filtered to remove variants with a population fre-

quency >1% in the 1000 Genomes project or ExAC-non-TCGA subset. We used the

set of 152 genes curated by [34] for cancer susceptibility (described in [34]’s sup-

94

ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3/exome_calling_regions.v1.interval_list
ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3/exome_calling_regions.v1.interval_list


plementary table 1). Additionally, we included the gene NSD1 since NSD1 germline

mutations cause Sotos syndrome with inherited pediatric ALL risk[142], for a total

list of 153 genes. To apply ACMG pathogenicity guidelines, we used the CharGer

pipeline[34] v0.5.2 and VEP[161] v.92.3 as installed with conda. First, we generated

a sites-only vcf of germline variants in the 153 genes using GATK4’s MakeSitesOn-

lyVcf, and removed the “AF’’ INFO field (vcf-annotate -r INFO/AF). Next, we anno-

tated using VEP: /Soware/perl/src/perl-5.22.2/perl vep –everything –offline –cache –

dir /home/.vep/ –assembly GRCh37 –format vcf –vcf -i input.vcf -o vep.input.vcf –

force_overwrite –fasta /refs/GRCh37.71.chr.fa –fork 4 –buffer_size 2000 –merged –

use_given_ref. We ran CharGer on the VEP-annotated vcf: charger –include-vcf-

details -f input.vcf -o out.txt -O -D –inheritanceGeneList demo/inheritanceGeneList.txt

-z pathogenic_var.vcf.gz -H demo/somaticHotspots.hotspot3d.clusters -l -x –PP2GeneList

demo/inheritanceGeneList.txt. Our curated list of gene-specific pathogenic variants

(pathogenic_var.vcf.gz) was generated according to the methods of [34]; specifically, we

included all variants from the ASU database for TERT mutations (http://telomerase.

asu.edu/diseases.html) and the ARUP MEN2 database for RET (http://www.arup.

utah.edu/database/MEN2/MEN2_display.php), only variants carried by an affected

proband and confirmed as germline variant in the IARC database for TP53[162], and vari-

ants marked as clinically important in the BIC database for BRCA1 and BRCA2 (https:

//research.nhgri.nih.gov/bic/).
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Conclusion

Motivation

In this work, our goals were to (1) identify germline variants that contribute to cancer

development, and (2) integrate germline, somatic, and relapse genomic information in a

systematic manner to elucidate biological aspects of cancer, particularly pediatric ALL.

Certain somatic variants and germline cancer-associated variants share biological fea-

tures, such as mutating a particular amino acid. We hypothesized that these shared bio-

logical features would allow us to identify potential cancer-associated germline variants.

Summary

In Chapter 1, we developed a framework, TOBI, that uses machine learning to identify

somatic variants from tumor-only data or identify somatic-like germline variants. As-

sessing true somatic variants, we found TOBI has a high true positive rate across all so-

matic variants. TOBI identifid driver genes in different tumor types, and outperformed

other methods of tumor-only analysis. Given TOBI’s performance on true somatic vari-

ants, we hypothesized that germline variants identified by TOBI would be enriched for

cancer-predisposition pathways.

In Chapter 2, we used TOBI for integrated somatic and germline analysis. We as-
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sessed which variants classified as somatic by TOBI are germline variants with somatic

features, or “somatic-like’’ germline variants. Somatic-like germline variants were en-

riched in genes associated with autosomal dominant cancer-predisposition syndromes

and included known TP53 germline variants. Using TOBI, we found that 5% of patients

with bladder carcinoma had germline inactivating mutations in the Fanconi anemia path-

way. Comparing the 11% of bladder carcinoma patients with somatic or germline Fanconi

anemia mutations to the remaining bladder carcinoma patients, we found mutant cases

were enriched for a BRCA-deficiency somatic signature.

In Chapter 3, we report integrated analysis of germline, somatic, and relapse variants

in a cohort of patients with pediatric acute lymphoblastic leukemia. Analyzing a cohort

of over 600 mixed B- and T-ALL cases, we capture known driver genes of ALL. We also

report an association between WT1 mutations and relapse. By analyzing the order of

somatic mutations in relapsed ALL, we confirmed prior reports that NT5C2 and CREBBP

are late events in leukemia evolution, and found that PAX5, PHF6, DNM2, and KRAS are

early events.

Next, we began assessing potential germline variants in ALL.We applied TOBI to ALL,

and found that while driver genes are captured, TOBI had low sensitivity in pediatric ALL,

decreasing our confidence in SLG variants. We also nominated pathogenic variants in a

set of cancer-predisposition genes using ACMG guidelines, identifying nonsynonymous

variants in TERT and ATM as potential pathogenic germline variants.
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Limitations

While many of our results were promising, we recognize several limitations in this work.

e choice of variant annotations can affect both our TOBI pipeline and the ACMG

germline classification pipeline we used in Chapter 3. TOBI performance is very corre-

lated to a cancer cohort’s median somatic mutation rate, making TOBI more sensitive in

high mutation rate cancers and less sensitive to most pediatric cancers. Heterogeneity in

patient ancestry or sample sequencing protocol also affected TOBI performance. We also

note that the somatic-like germline variants TOBI nominates are not necessarily onco-

genic. Further assessment and experimental validation is required to fully understand

the role of these variants. Our germline and somatic variant analysis included indels,

which may be called unreliably without indel realignment.

Future directions

SLG variants from TOBI require further study for assessing pathogenicity. Additionally,

given the depth of knowledge on aberrant diagnosis and relapse pathways in ALL, future

germline analysis can focus on genes related to those pathways.
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