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Abstract
Physiological ecology of Trichodesmium and
its microbiome in the oligotrophic ocean

Kyle R. Frischkorn

The colonial, N2 fixing cyanobacterium Trichodesmium is a keystone species in olig-

otrophic ocean ecosystems. Trichodesmium is responsible for approximately 50% of the

total biologically fixed N2 in the ocean, and this “new” nitrogen fuels primary productivity

and the amount of carbon sequestered by the ocean. Trichodesmium does not exist in isola-

tion. Colonies occur ubiquitously with an assemblage of epibiotic microorganisms that are

distinct from planktonic microbes and modulated across environments, yet the implications

of this relationship have not been explored. In this thesis, the ecology, physiology, and

potential geochemical impact of interactions within the Trichodesmium host-microbiome

system were examined across three different oligotrophic ocean environments. First, to

establish the metabolic diversity contributed by the microbiome to Trichodesmium con-

sortia, a whole community metagenomic sequencing approach was used across a transect

the western North Atlantic. This study demonstrated that the microbiome contributes a

large amount of unique functional potential and is modulated across a geochemical gra-

dient. In the following study, metatranscriptomics was used to show that such metabolic

potential in Trichodesmium and the microbiome was expressed and modulated across the

environment. Colonies were sampled in the western tropical South Pacific and gene expres-

sion dynamics indicated co-limitation by iron and phosphorus, and revealed a mechanism

for phosphate reduction by Trichodesmium and subsequent utilization by the microbiome.

These activities were verified with phosphate reduction rate measurements and indicated

cryptic phosphorus cycling within colonies. Next, the suite of potential physiological in-

teractions between host and microbiome was assessed with metatranscriptome sequencing

on high frequency samples of Trichodesmium colonies from the North Pacific subtropical



gyre. Synchronized day-night gene expression periodicity between consortia members indi-

cated tightly linked metabolisms. The functional annotations of these synchronous genes

indicated intra-consortia cycling of nitrogen, phosphorus and iron, as well as a microbiome

dependence on Trichodesmium-derived cobalamin—interactions that could alter the trans-

fer of these resources to the surrounding water column. In the final study, the effect of the

microbiome on Trichodesmium N2 fixation was assessed. Using colonies obtained from the

North Atlantic, activity in the microbiome was selectively modified using quorum sensing

acyl homoserine lactone cell-cell signaling, a mechanism that Trichodesmium itself does not

possess. These experiments indicated that the microbiome has the potential to increase

or decrease Trichodesmium N2 fixation to a degree that rivals the effects of alterations in

nutrient concentration, but at a more rapid rate. In all, the research presented in this thesis

demonstrates the integral importance of the microbiome to Trichodesmium physiology and

ecology, highlighting the importance of an unexplored facet of marine microbial systems

that likely influences the biogeochemistry of the planet.
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CHAPTER 1. INTRODUCTION 2

1.1 Background and motivation

In 1832, while sailing through the Caribbean Sea aboard the Beagle, Charles Darwin

wrote that their ship had passed through bands of reddish-brown water measuring 10 m wide

and stretching in length further than the eye could see. “The whole surface of the water, as

it appeared under a weak lens, seemed as if covered by chopped bits of hay,” he writes in The

Voyage of the Beagle1. Similar occurrences had been noted during every voyage through

the tropical and subtropical marine waters, from the logs of Captain James Cook aboard

the H.M.S. Endeavour, back in time to the first historical accounts of those living on the

coastal Red Sea—a body of water named for the very same enigmatic blooms of crimson-

colored water. In the earliest records, these blooms were thought to have supernatural

origins and were treated as omens from the gods. Later, the occurrence of red seawater was

attributed to cosmological phenomenon, or even to occur as a result of migrating butterflies

(Ehrenberg, 1830). With the invention of the microscope by Antonie van Leeuwenhoek in

the 17th Century, the invisible, microscopic world came into focus. Tropical waters did not

turn blood red on the whims of the gods, because of cosmic dust, or the flight of winged

insects. Instead, the culprit was a microscopic plant, a phytoplankter.

Using a rudimentary microscope aboard the Beagle, Darwin viewed what he described as

“minute cylindrical confervae,” a term used to refer to filamentous phytoplankter, floating

within a sample collected from the slick of reddish-brown water. He identified this organism

as the newly described Trichodesmium erythraeum (Ehrenberg, 1830). With the Beagle

adrift in an endless expanse of Trichodesmium, Darwin mused about the ecology of this

enigmatic phytoplankton: “Their numbers must be infinite,” he wrote1. Since Darwin’s

time, understanding of the ecology of this phytoplankton has been propelled to new heights.

Though Trichodesmium might not be supernatural, it is now appreciated that this organism

is a critical cog in global biogeochemical cycles that sustain the habitability of the planet.

Humans have been peering over boats and puzzling over Trichodesmium for millennia. Even

in light of the advancements of modern science, today is no different—there is still much

about Trichodesmium and how it influences our planet yet to be discovered.

1Darwin, Charles, 1809-1882. The Voyage of the Beagle. New York; Modern Library, 2001. Print.
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1.2 Microbial ecology in the oligotrophic ocean

The remote, subtropical gyres north and south of the equator are referred to as the

oligotrophic oceans. In spite of the seemingly limitless expanses of water in every direc-

tion, these regions appear almost desert-like owing to their absence of any readily visible

lifeforms. These oligotrophic oceans are hardly devoid of life, however. Covering 40% of

the surface of Earth, they are considered the largest contiguous ecosystems on the planet

(Karl, 1999, 2007). Here, life exists in great abundance at the microscopic scale: bacteria,

archaea and unicellular eukaryotes inhabit seawater in concentrations of approximately 1

million cells per milliliter. Nearly half of the total primary production on Earth is fueled

by the photosynthesizers among those marine microbes, the majority of which reside in

the oligotrophic regions (Karl, 1999). The primary productivity performed by these phy-

toplankton captures CO2 from the atmosphere and converts it into biomass; they are the

very first link in the marine food web, and the arbiters of how much CO2 is captured from

the atmosphere and subsequently sequestered to the deep sea (Ducklow et al., 2001; Eppley

and Peterson, 1979). Thus, understanding the factors that govern the processes of marine

phytoplankton is a fundamental question of the field of biological oceanography.

A defining characteristic influencing microbial ecology and primary productivity in the

oligotrophic oceans is the availability of nutrients (Arrigo, 2005). Nitrogen, phosphorus,

iron, and a suite of other micronutrients are critical to primary producers, yet they variably

occur at such low concentrations as to limit the growth and activities of the organisms

that rely on them (Howarth and Marino, 1988). Which nutrient constrains productivity

over geological timescales is a topic of much debate (Tyrrell, 1999), however in the modern

ocean the concentration of nitrogen has a large and unequivocal impact on the distribution

and activities of phytoplankton (Falkowski, 1997; Ryther and Dunstan, 1971; Zehr and

Ward, 2002).

The elemental nitrogen cycle is complex, owing to the fact that this element occurs in

more chemical species than other elements. The most abundant form in the atmosphere and

the ocean is dinitrogen gas—a compound that is not readily available for biological use. The

forms of nitrogen that can be taken up and used by microbes, termed “fixed” nitrogen and

defined as all compounds other than dissolved N2, are consumed by phytoplankton in the
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sunlit surface ocean. With the death of these organisms, particulate matter sinks to depths

below the photic zone, and there heterotrophic bacteria remineralize those compounds back

to the inorganic, labile forms from which they were derived. The resulting dissolved in-

organic nitrogen is subsequently returned to the surface ocean through physical processes,

and the loop of the nitrogen cycle starts anew (Azam et al., 1983). In the ocean ecosystem

however, this recycling of nitrogen is not enough to support the primary productivity that

takes place, and must be balanced by an alternate process that delivers an alternate source

of “new” nitrogen to the system (Falkowski et al., 1998).

In the low nutrient oligotrophic ocean, a critical source of this new nitrogen to the surface

ocean is biological N2 fixation, an enzymatically mediated process that converts dinitrogen

gas to ammonium (Capone, 2001). This capability is restricted to bacteria and archaea,

and in the surface ocean is carried out predominantly by cyanobacteria (Raymond et al.,

2004). N2 fixing, or diazotrophic, cyanobacteria encompass a large diversity of lifestyles,

from free-living unicellular species, to symbionts that live exclusively within host diatom

cells (Zehr, 2011). Among these cyanobacterial diazotrophs, the colonial, filamentous genus

Trichodesmium is of paramount importance (Bergman et al., 2013; Capone et al., 1997).

1.3 The biogeochemical importance of the cyanobacterium

Trichodesmium

Trichodesmium has a cosmopolitan distribution throughout the tropical and subtropical

oligotrophic oceans (Capone et al., 1997). Chains of Trichodesmium cells, or filaments,

cluster together to form “puff” or “raft” shaped colonies that are large enough to be visible

to the naked eye. Under the appropriate conditions—during summer months when winds

slow and the surface ocean stabilizes—colonies of Trichodesmium can accumulate to form

extensive blooms, the largest of which can extend over 2x106 km2, an area approximately

20% of the entire Arabian Sea (Capone et al., 1998). Although such massive proliferations

of Trichodesmium have long been a source of wonder and scientific curiosity (Bergman et al.,

2013; Capone et al., 1997; Ehrenberg, 1830), modern interest in this organism was propelled

by the discovery that not only is Trichodesmium a diazotroph (Dugdale et al., 1961), but
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that it is estimated to be responsible for approximately 50% of the total biologically available

nitrogen in the ocean (Capone et al., 1997; Mahaffey et al., 2005; Westberry and Siegel,

2006).

The Trichodesmium genus encompasses multiple species, but surveys suggest that in the

environment species belonging to phylogenetic Clade I (T. thiebautii, T. tenue, T. hilde-

brandtii, and T. spiralis) are more abundant than those of Clade III (T. erythraeum and T.

contortum) (Hynes et al., 2012; Rouco et al., 2014, 2016b). Within the geochemically suit-

able environments where Trichodesmium species are detected, their occurrence is largely

dependent on nitrogen concentration. In regions with higher bioavailable nitrogen con-

centrations, Trichodesmium fails to outcompete other phytoplankton. Conversely, where

nitrate levels are depleted, Trichodesmium can serve as the dominant source of new, fixed

N2 (Subramaniam et al., 2008). Because Trichodesmium is freed from the constraints of

nitrogen limitation, its ecology and physiology are controlled by other resources that vary

depending on geographical location (Sohm et al., 2011).

The predominant geochemical controls on Trichodesmium distribution and N2 fixation

are iron and phosphorus (Sohm et al., 2011). Trichodesmium has high iron quotas due to

the demands of enzymes involved in N2 fixation and photosynthesis that use this element

as a cofactor (Berman-Frank et al., 2001). In regions where iron is supplied sufficiently, for

example in the North Atlantic where deposition of dust from the Sahara Desert carries ample

iron, the supply of fixed N2 through diazotrophy increases the nitrogen to phosphorus ratio,

and subsequently phosphorus becomes limiting (Deutsch et al., 2007; Sañudo-Wilhelmy et

al., 2001). Under very oligotrophic conditions and in certain regions of the ocean, iron and

phosphorus can even co-limit N2 fixation by Trichodesmium (Mills et al., 2004; Walworth

et al., 2017b).

Over the course of its evolution in the marine environment, Trichodesmium has amassed

an arsenal of physiological strategies to survive in the variable geochemical conditions of the

oligotrophic oceans. For example, iron stress can be mitigated through Trichodesmium’s

ability to use iron complexed within desert dust (Polyviou et al., 2018), a process that can

involve actively transporting comparatively large dust particles to the center of colonies

where iron dissolution then occurs (Rubin et al., 2011). Other iron stress mitigation strate-
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gies include increased production of proteins responsible for transport of ferrous and ferric

inorganic iron, transport of ligand-bound organic iron, and the use of the electron carrier

flavodoxin which can be switched for ferredoxin, its iron-requiring counterpart (Chappell

and Webb, 2010; Snow et al., 2015b). Similar to iron, Trichodesmium employs a number of

strategies to survive in low phosphorus conditions. Phosphorus stress yields the induction

of molecular systems that enable use of a diverse suite of organic and reduced phosphorus

compounds. Such forms are generally in higher abundance than inorganic phosphate in the

oligotrophic ocean (Karl, 2014). These strategies include enzymes that hydrolyze organic

ester-bound phosphate (Orchard et al., 2009) and phosphonates (Dyhrman et al., 2006),

genes that enable the uptake and utilization of the inorganic phosphorus species phosphite

(Polyviou et al., 2015), and the storage of phosphate in the form of polyphosphate (Orchard

et al., 2010). Under low phosphorus conditions, Trichodesmium is also known to substitute

phospholipids with sulfolipids (Van Mooy et al., 2009). Overall, these low iron and low

phosphorus mechanisms are known to be implemented by Trichodesmium across the olig-

otrophic ocean and are induced to suit the prevailing environmental conditions (Chappell

et al., 2012; Dyhrman et al., 2006; Hynes et al., 2009; Rouco et al., 2018). This interplay be-

tween Trichodesmium and the geochemical environment controls the physiological processes

that supply critical fixed carbon and N2 to the ecosystem, resources that go on to fuel further

productivity by other phytoplankton. As such, in the low nutrient, desert-like oligotrophic

ocean, Trichodesmium colonies are oases of biological activity. As such, this cyanobacterium

does not exist in isolation, but rather with a consortium of tightly-associated microbes that

are likely drawn to the resources Trichodesmium supplies. Unlike the previously described

geochemical dynamics that are known to influence Trichodesmium physiology and ecology,

the implications of potential biological interactions with these tightly-associated microbes

have yet to be described.

1.4 The Trichodesmium holobiont: a consortia of microbes

The first scientific analysis of microbes living on Trichodesmium was made by Hans

Paerl and colleagues in 1989 (Paerl et al., 1989). High magnification scanning electron mi-
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crographs of colonies revealed a diverse assemblage of filamentous and rod-shaped bacteria

in close association with chains of the much larger Trichodesmium cells (Paerl et al., 1989).

Visualization was paired with microautoradiographic measurement of carbohydrate uptake

that demonstrated how epibiotic bacteria were metabolically active, yet physiologically dis-

tinct from Trichodesmium that did not appreciably take up sugars (Paerl et al., 1989).

It was hypothesized that the tight associations between Trichodesmium and associated

bacteria could facilitate the exchange of fixed carbon and N2, vitamins, or iron-chelating

compounds—a currency that might underscore a beneficial symbiotic relationship (Paerl

et al., 1989). Alternatively, but not necessarily exclusively, Trichodesmium could secrete

antibiotic or allelopathic compounds in order to keep epibionts in check and to prevent

skewing towards antagonistic interactions or invasion by parasitic organisms. Similarly, the

epibionts could do the same to exclude colonization by potential competitors (Paerl et al.,

1989).

These early microscopic observations of epibionts on Trichodesmium were only ex-

pounded upon two decades after this initial study. New molecular techniques facilitated

determination of the taxonomic composition of these associated microbes. Results showed

that the microorganisms on naturally occurring colonies were dominated by heterotrophic

bacteria in the phylum Proteobacteria (Hewson et al., 2009a; Hmelo et al., 2012). These

epibionts were distinct from free-living bacterioplankton, and also encompassed less taxo-

nomic biodiversity overall (Hewson et al., 2009a; Hmelo et al., 2012). Subsequent taxonomic

investigations showed that organisms associated with Trichodesmium were not limited to

heterotrophic bacteria, however, as eukaryotic microorganisms like copepods, radiolarians,

diatoms, dinoflagellates, foraminifera, other photosynthetic N2-fixing cyanobacteria, and

even viruses were shown to be associated with colonies across multiple ocean basins (Brown

et al., 2013b; Hewson et al., 2009a; Momper et al., 2014). These findings underscore Tri-

chodesmium’s role as a hotspot of biological activity in the oligotrophic ocean, and suggest

that colonies are ubiquitously associated with a distinct community of microbes.

Further research indicated that composition of epibiont communities was unique to dif-

ferent Trichodesmium morphologies and across ocean environments. In the Sargasso Sea,

puff-type Trichodesmium colonies were shown to have taxonomically distinct epibiont com-
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munity compositions than those associated with raft-type colonies, suggesting that physical

or physiological differences between Trichodesmium morphologies might select for different

epibiont assemblages (Hmelo et al., 2012). These results were supported by high throughput

amplicon sequencing of epibiont 16S ribosomal DNA genes associated with Trichodesmium

colonies from the North Atlantic, North Pacific, and South Pacific, indicating that to some

extent epibiont communities were distinct across ocean basins and might be selected ac-

cording to their benefit to the consortium as a whole (Rouco et al., 2016a).

Recently, the benefits conferred to Trichodesmium communities from the epibionts have

also been delved into, building on the initial hypotheses of Paerl and colleagues (Paerl et al.,

1989). One potential interaction explored was the exchange of iron between consortia mem-

bers. Trichodesmium, like other marine cyanobacteria, has not been shown to synthesize

siderophores, organic ligands that many bacteria use to chelate iron and facilitate uptake

from deficient environments (Hopkinson and Morel, 2009). Unlike Trichodesmium, epibiont

species do produce siderophores, though iron bound to the siderophores desferrioxamine

and aerobactin were not as bioavailable to Trichodesmium as other forms of iron (Roe et

al., 2012). The role of other siderophores or types of iron chelating agents in facilitating

Trichodesmium success in low iron regions remains to be explored.

Evidence also suggests that activity of the associated epibionts might also mediate

phosphorus cycling within consortia. For example, in one study, naturally occurring Tri-

chodesmium colonies were amended with bacterial quorum sensing molecules called acyl

homoserine lactones (AHLs), a form of cell-cell signaling that Trichodesmium itself does not

possess (Van Mooy et al., 2012; Vannini et al., 2002). Amended colonies showed stimulated

alkaline phosphatase activity, an enzyme that hydrolyzes organic ester-bound phosphorus

compounds, indicating that interactions between epibionts could facilitate colony phospho-

rus uptake (Van Mooy et al., 2012). Adding to the idea that epibionts may be important

facilitators of iron and phosphorus acquisition was the discovery that growth in low iron

and low phosphorus conditions stimulates colony formation by Trichodesmium filaments

(Tzubari et al., 2018). Formation of macroscopic colonies could provide more surface area

on which epibionts could attach and form biofilms, and subsequent bacterial respiration

within the colony microenvironment could create zones of anoxia beneficial for protecting
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the oxygen-sensitive nitrogenase enzymes (Paerl and Bebout, 1988). Finally, while the

process of recruitment of individual epibionts from the water column to colonies remains

unknown, the formation of biofilms by epibionts is indeed stimulated by chemical signals

produced by Trichodesmium (Rao et al., 2015), underscoring the idea of selective, beneficial

recruitment of epibionts.

The ubiquitous co-occurrence of epibionts with Trichodesmium, the way these popula-

tions are curated across different environments, and the potential mechanisms of nutrient

exchange and interactions are evidence of integral relationships within consortia. In other

biological systems, the importance of interactions between a host and its associated mi-

crobes has rapidly gained appreciation (Blaser, 2014; Bordenstein and Theis, 2015; Engel

et al., 2012). In humans, for example, such interactions are now appreciated to be critical

and ubiquitous drivers of health and disease states (Blaser, 2014; Sampson and Mazma-

nian, 2015). In effect, no organism can be fully understood without taking into account its

so-called microbiome2. Trichodesmium, with its consortia of epibionts, is likely no differ-

ent. Given this organism’s importance to primary productivity and global elemental cycles,

Trichodesmium’s physiology and ecology must be considered as a host-microbiome system.

1.5 Thesis overview

Together, decades of research has indicated the tantalizing potential for important in-

teractions between Trichodesmium and its associated epibionts. These interactions have yet

to be mechanistically examined, however. The broad objectives of the research presented in

this thesis aim to metabolically characterize the Trichodesmium microbiome and to high-

light potential interactions between host and microbiome that likely influence physiology,

ecology, and biogeochemical impact.

Research on Trichodesmium is hindered by the limited availability and derived nature of

epibionts associated with laboratory cultures, as well as the challenges inherent to probing

the intricacies of microscopic biological systems. While Trichodesmium has been main-

2The word Microbiome is a newly coined term used to describe the assemblage of microscopic organ-

isms—bacteria, archaea, viruses, and fungi—that live on and within a host organism.
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tained for nearly three decades (Prufert-Bebout et al., 1993), axenic cultures do not exist.

Because there is no record of how the epibiont populations have changed in culture since

the early 1990s, the results of any laboratory experiments investigating the role of the

microbiome may not be directly applicable to the environment. As such, studying bio-

logical interactions within Trichodesmium consortia could only be reasonably conducted

in the field. The research in this thesis was enabled by expeditions to the western North

Atlantic, the western tropical South Pacific, and the North Pacific Subtropical Gyre, and

implemented multi-disciplinary approaches that paired Trichodesmium in situ samples and

experimental incubations with geochemical parameter measurements. Metabolic functional

potential and physiology in Trichodesmium and the microbiome was also assessed, using

biochemical rate measurements and high throughput community genome and gene sequenc-

ing—metagenomics and metatranscriptomics—so-called “next generation” approaches.

The first challenge in understanding the dynamic relationship between Trichodesmium

and their microbiome was the wholly unexplored metabolic functions of these epibionts—the

physiological capabilities that govern biochemical transformation, biological interactions,

and interfacing with the geochemical environment. In Chapter 2, I used metagenomic se-

quencing to reconstruct the metabolic functional potential encoded by the Trichodesmium

host and microbiome across the western North Atlantic. I used these data to assess how the

microbiome changes across a geochemical gradient and to predict how these tightly associ-

ated organisms might underscore consortia survival in the oligotrophic ocean. Metagenomic

techniques provide an unprecedented wealth of whole community metabolic characteriza-

tion, but cannot provide clues about how functions are wielded in the environment. In

Chapter 3, I combined metagenomic, metatranscriptomic and nutrient uptake and reduction

measurements to gauge how Trichodesmium and their microbiome tailor their physiologies

to suit the oligotrophic western tropical South Pacific. This multi-disciplinary approach

was optimized to uncover resources limiting consortia physiology and mechanisms of ele-

mental cycling in colonies, both of which likely impact the geochemical environment. Next,

metabolic pathways that govern interactions between host and microbiome were elucidated.

In Chapter 4, I used high frequency Lagrangian sampling of Trichodesmium colonies in the

North Pacific Subtropical Gyre to search for coordinated gene expression patterns that
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would underscore the critical metabolic currencies within consortia. Finally, the last ques-

tion addressed in this thesis is whether or not the activities of the microbiome can influence

the host in ecologically or biogeochemically important ways. In Chapter 5, I answered

this question by selectively modifying Trichodesmium colonies with AHL quorum sensing

molecules and measuring changes in community gene expression and N2 fixation across the

western North Atlantic. Overall, the results of the studies presented in this thesis illus-

trate that the previously overlooked biological interactions between Trichodesmium and

the microbiome are critical drivers of the ecology and physiology of this keystone marine

microorganism.
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Chapter 2

Epibionts dominate metabolic

functional potential of

Trichodesmium colonies from the

oligotrophic ocean

This chapter was originally published as Frischkorn, K.R., Rouco, M., Van Mooy, B.A.S., and Dyhrman,

S.T. (2017). Epibionts dominate metabolic functional potential of Trichodesmium colonies from the olig-

otrophic ocean. ISME J. 11, 2090-2101.
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2.1 Abstract

Trichodesmium is a genus of marine diazotrophic colonial cyanobacteria that exerts a

profound influence on global biogeochemistry, by injecting ‘new’ nitrogen into the low nu-

trient systems where it occurs. Colonies of Trichodesmium ubiquitously contain a diverse

assemblage of epibiotic microorganisms, constituting a microbiome on the Trichodesmium

host. Metagenome sequences from Trichodesmium colonies were analyzed along a resource

gradient in the western North Atlantic to examine microbiome community structure, func-

tional diversity and metabolic contributions to the holobiont. Here we demonstrate the

presence of a core Trichodesmium microbiome that is modulated to suit different ocean

regions, and contributes over 10 times the metabolic potential of Trichodesmium to the

holobiont. Given the ubiquitous nature of epibionts on colonies, the substantial functional

diversity within the microbiome is likely an integral facet of Trichodesmium physiological

ecology across the oligotrophic oceans where this biogeochemically significant diazotroph

thrives.

2.2 Introduction

The colonial, diazotrophic cyanobacterium Trichodesmium has a cosmopolitan distribu-

tion throughout the tropical and subtropical oceans where it has a keystone role in olig-

otrophic ecosystems because of its ability to supply biologically available nitrogen through

N2 fixation and fixed carbon through photosynthesis (Capone et al., 1997). Models suggest

that Trichodesmium N2 fixation accounts for roughly half of the total 100–200 Tg of biolog-

ically fixed N2 annually (Bergman et al., 2013), a supply that fuels the uptake of carbon by

the broader community of photoautotrophs and ultimately the export of carbon to the deep

sea (Arrigo, 2005). In the oligotrophic oceans where Trichodesmium occurs, there is intense

competition for resources such as phosphorus and iron, which can limit Trichodesmium N2

fixation (Sañudo-Wilhelmy et al., 2001) and growth (Krishnamurthy et al., 2007).

Trichodesmium cells grow as filaments, which aggregate to form colonies up to a mil-

limeter in diameter, creating stable substrates that concentrate fixed carbon and nitrogen

relative to surrounding seawater (Capone et al., 1997). A hallmark of these colonies is their
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ubiquitous association with a diverse assemblage of microorganisms that are dominated by

heterotrophic bacteria, as well as photosynthetic and even other N2 fixing bacteria (Hmelo et

al., 2012; Momper et al., 2014; Rouco et al., 2016a; Sheridan et al., 2002). Collectively, these

tightly associated organisms are referred to as epibionts, and they form the Trichodesmium

microbiome, a distinct community that is taxonomically different from planktonic microbes

in surrounding seawater (Hmelo et al., 2012).

Despite the global biogeochemical significance of Trichodesmium and the ubiquitous

presence of a community of tightly associated microorganisms, ecophysiological studies of

Trichodesmium have rarely considered this consortium of co-occurring organisms as a holo-

biont. The microbiome’s taxonomic diversity, functional diversity and the interplay between

host and epibionts within the holobiont is only beginning to be explored (Hewson et al.,

2009a; Rouco et al., 2016a; Van Mooy et al., 2012), but could help explain the funda-

mental unknowns that persist regarding Trichodesmium distribution and activities across

different environments. Exploring the metabolic functional potential contained within the

Trichodesmium microbiome is a key step toward gaining a mechanistic understanding of

how this relationship influences the fitness of the holobiont and subsequently the fate of

fixed carbon and nitrogen in the oligotrophic ocean. Here we use metagenomic sequenc-

ing of Trichodesmium colonies collected from stations along a gradient of phosphorus in

the western North Atlantic to examine microbiome composition, functional diversity and

metabolic contributions to the holobiont.

2.3 Materials and methods

2.3.1 Field sampling

Trichodesmium colonies were collected with surface water net tows along a cruise tran-

sect in the western North Atlantic aboard the R/V Atlantic Explorer (AE1409) during May

2014. Sampling occurred at the same time each day (approximately 0730–0830 hours) using

nets with a mesh size of 130 µm. Nets were deployed and hauled through the surface water

column six times before recovery, such that each sample represented thousands of liters of

water. Individual Trichodesmium colonies were isolated and washed three times by succes-
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sive transfer through fresh 0.2 µm sterile-filtered local surface seawater to remove all but

tightly associated epibionts. A pooled sample of colonies was isolated and processed from

each station. For each sample, an average of approximately 30 cleaned colonies were trans-

ferred onto 47 mm 5 µm pore size polycarbonate filters, gently vacuum filtered to remove

excess liquid, flash frozen and stored in liquid nitrogen until extraction and sequencing.

There were no discernable changes in average colony size from one station to another across

the transect. In order to broadly assess the microbiome composition of the North Atlantic

Trichodesmium populations, colony composition was sampled to reflect the distribution of

Trichodesmium colony morphology found in net tows. At all stations, raft type colonies

were much more abundant than puff or bowtie variants with approximately 30 rafts to 2

puff/bowtie colonies. As such, the data largely reflect the dominant raft morphology.

2.3.2 Chemical analyses

Total dissolved phosphorus was determined on 0.2 µm filtrates of surface water (ap-

proximately 5 m depth) samples collected by a Niskin rosette outfitted with conductivity,

temperature, and depth sensors into acid-clean polycarbonate bottles. Samples were pro-

cessed at the SOEST Laboratory for Analytical Biogeochemistry at the University of Hawaii,

Honolulu, HI, USA, according to facility protocols. Alkaline phosphatase activity samples

were obtained by placing 2–5 cleaned Trichodesmium colonies on 5 µm PC filters, gently

vacuum filtering away excess liquid, then storing in 47 mm plastic Petri dishes at –20 ◦C

until analysis. Samples were processed as previously described (Dyhrman and Ruttenberg,

2006) using 6,8-difluoro-4-methylumbeliferyl phosphate (DiMufP) on a Synergy H1 Hybrid

plate reader using the Gen5 software package (BioTek, Winooski, VT, USA) (Dyhrman and

Ruttenberg, 2006). N2 fixation was measured using the acetylene reduction technique as

previously described (Capone, 1993; Paerl, 1994). Briefly, approximately 20 Trichodesmium

colonies were placed in a 60 mL polycarbonate bottle containing 60 mL of filtered seawater.

A 1 mL aliquot of acetylene was injected into the bottle through a septum cap, the bottle

was gently inverted and allowed to incubate in an on-deck incubator at ambient tempera-

ture and light. The headspace of the bottle was analyzed for ethylene approximately every

30 minutes and the rate of ethylene production through acetylene reductionwas determined
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by linear regression. All incubations were conducted in triplicate and harvested between

approximately local noon and 1400 hours.

2.3.3 DNA extraction and sequencing

Total genomic DNA was extracted from samples using the MoBio Power Plant Pro

DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad, CA, USA) following the manu-

facturer instructions. An average concentration of 30 ng µL−1 of genomic DNA for each

sample was sequenced at the Argonne National Lab (Lemont, IL, USA). Genomic DNA was

quantified using the Invitrogen (Carlsbad, CA, USA) Qubit and sheared using the Covaris

Sonicator (Woburn, MA, USA) to the desired size range. Libraries were then generated

using WaferGen’s Apollo324 automated library system and Illumina (San Diego, CA, USA)

compatible PrepX ILMN DNA library kits following the manufacturer’s instructions. Re-

sulting libraries were then size-selected using the Sage BluePippin (Beverly, MA, USA) and

sequenced on one 2x100 bp lane of the Illumina HiSeq2000. During library preparation, an

average insert size of approximately 750 base pairs (bp) was targeted. Metagenomic reads

from the six samples are available on the NCBI Sequence Read Archive under BioProject

number PRJNA330990.

2.3.4 Sequence assembly and analysis

Metagenomic reads were first trimmed using Sickle with default settings (github.com/naj-

oshi/sickle). Trimmed forward and reverse reads were then converted to fasta with the fq2fa

command in IDBA-UD (Peng et al., 2012). Reads from the six samples were assembled into

scaffolds to create a merged assembly, using IDBA-UD under default parameters in order

to yield robust assembly of the western North Atlantic Trichodesmium holobiont, modeling

our approach after similar environmental metagenomic investigations (Dombrowski et al.,

2016; Handley et al., 2012). This merged assembly of pooled colony metagenomic reads

from across six stations was used for the bulk of the analyses presented herein.

Scaffolds produced by the merged assembly were clustered into genome bins by tetranu-

cleotide frequency and read coverage of individual samples using MaxBin 2.0 set with default

parameters (Wu et al., 2015). Genome completeness was estimated at >65% using MaxBin,
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resulting in robust gene set comparisons for the majority of genome bins. Relative abun-

dance estimates were calculated by multiplying the length of contigs in each bin by the

number of reads recruited (coverage), then summing across genome bins. This method has

shown good correlation with 16S-based results in other metagenomic data sets (Aylward

et al., 2014). Binned scaffolds were translated into predicted proteins using Prodigal on the

metagenomic setting (Hyatt et al., 2010). The resulting protein sequences were annotated

using the blastp program of DIAMOND against the NCBI nr database (Buchfink et al.,

2015; Suzek et al., 2007). The organismal identity of each bin was determined by assess-

ing the nr database taxonomic affiliation of the best hits, with identity determined as the

majority (>70%) taxonomic affiliation of predicted proteins in a bin. Proteins from each

epibiont bin were also annotated against the SEED subsystems using the RAST online an-

notation program to assess differences in functional categories (Aziz et al., 2008; Overbeek

et al., 2014). Although the majority of our analyses were based on the merged, six station

metagenome assembly, we also examined regional difference in epibiont community struc-

ture by grouping northern (n=2) and southern (n=4) stations as replicates. Variance in

this north–south epibiont community structure (species relative abundance) was visualized

using principal component analysis in R (www.r-project.org), using the rda function in the

vegan package (Oksanen et al., 2015). A permutational multivariate analyses of variance

test (P<0.1) was performed to examine differences in community structure between the

two northern stations versus the four southern stations, using a Bray–Curtis dissimilarity

distance matrix (Anderson, 2001). Unpaired t-tests were calculated using GraphPad (La

Jolla, CA, USA).

To prepare for orthologous group (OG) clustering, the six individual station assemblies

were translated into predicted proteins as described above and merged together. These

proteins were then filtered to remove sequences <70 amino acids and clustered into OGs

by performing a reciprocal blastp with DIAMOND and then using MCL (Markov cluster

algorithm), set to an inflation parameter of 1.4 as previously described (Bertrand et al.,

2015). Taxonomic composition of the individual station assembly OG clustered proteins was

determined by DIAMOND blastp using the previously assembled genome bins as a reference.

OGs were classified as ‘epibiont only’ if no genes making up the group had best blast hits
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to the four Trichodesmium genome bins or to proteins that are taxonomically affiliated

with Trichodesmium. OGs defined as ‘both’ were composed of epibiont and Trichodesmium

identified proteins.

Functional annotation of the predicted proteins clustered into OGs followed a tiered

protocol. First, the size filtered and clustered proteins were annotated using blastp search

with DIAMOND against the UniRef90 database (Buchfink et al., 2015) and the Kyoto En-

cyclopedia of Genes and Genomes (KEGG) with the online Automatic Annotation Server

using the single-directional best-hit method targeted to prokaryotes and with the metage-

nomic option selected. Single functional annotations for entire OGs were determined by

taking the majority annotation for all proteins clustered into that group. To refine the

annotations of select proteins, curated databases and protein models were used. The alka-

line phosphatase-identified OG annotations were refined by performing DIAMOND searches

against representative proteins from COGs 3211 (PhoX), 1785 (PhoA) and 3540 (PhoD)

(Luo et al., 2009), as well as the protein sequences of three previously identified putative

alkaline phosphatases in the IMS101 genome (PhoA: YP723031, PhoX: YP723360, and

PhoX2: YP723924) (Orchard et al., 2009). Putative alkaline phosphatase metal cofactors

were determined based on previous investigations (Luo et al., 2009; Rodriguez et al., 2014;

Yong et al., 2014). PepM OGs were obtained by DIAMOND blast against representative

proteins from PFAM 13714 (PEP_mutase). Blast results were accepted if the e-value was

<1x10−5 with a bit score >50. For comparisons against the putative PhoA protein from

IMS101, OGs within the metagenomes were considered homologous to this protein if they

passed the blast requirements above, and contained UniRef blast homologs to the YP723031

gene from T. erythraeum IMS101 and other putative alkaline phosphatase genes identified

through KEGG or UniRef annotation.

2.4 Results and discussion

2.4.1 Composition of the Trichodesmium holobiont

High-throughput paired-end sequencing (Supplemental Table A.1) was performed on

total genomic DNA extracted from Trichodesmium colonies collected at six stations in the
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western North Atlantic (Figure 2.1a). A merged genomic DNA assembly of sequences from

all stations was used to identify 12 unique taxonomic genome bins conserved across all 6

North Atlantic stations, 9 of which were estimated to be over 65% complete based on single

copy marker gene presence (Supplemental Figure A.1), results that are similar to recov-

eries from other environmental metagenomic data sets (Dombrowski et al., 2016; Handley

et al., 2012). All bins were identified down to the lowest definitive taxonomic level possi-

ble. Of the 12 taxonomic bins, there were 4 identified as Trichodesmium, which suggests

that multiple Trichodesmium species could be present in these samples. Consistent with

this observation, analyses of surface water and colonies a similar transect in the western

North Atlantic detected species from at least three co-occurring clades of Trichodesmium

in this region (Rouco et al., 2014, 2016a). The remaining eight genomic bins were iden-

tified as heterotrophic epibionts including two in the Bacteroidetes genus Microscilla, one

Gammaproteobacterium, one Alphaproteobacterium in the order Rhodobacterales and four

Alphaproteobacteria in the order Rhodospirillales (Figure 2.1b). These results contribute

new information about the Trichodesmium microbiome, building upon a previous 16S clone

library survey of epibiont diversity from the North Atlantic (Hmelo et al., 2012), recent high-

throughput assessment of epibiont taxonomic diversity across three ocean basins (Rouco et

al., 2016a), and metatranscriptomic profiles of Trichodesmium communities from the South

Pacific (Hewson et al., 2009a). Similarities in the taxonomic groups dominating samples in

all of these aforementioned studies indicate that the epibiont metagenomes detected here

are likely from core members of the Trichodesmium holobiont. In addition, this microbiome

community does not merely represent general particle-associated microbes, as the commu-

nity recovered here was distinct from those previously found on sinking particles, which

have been shown to be enriched with Deltaproteobacteria, Planctomyces and Bacteroidetes

in genera other than Microscilla (Fontanez et al., 2015).

To estimate changes in relative abundance of holobiont members across the cruise tran-

sect, reads from each station were mapped to the taxonomic bins (Aylward et al., 2014).

All microbiome members were detected at each station, confirming that these epibionts rep-

resent core components of the microbiome, although the relative abundance was variable

from station to station (Figure 2.1c). Using the relative abundance of different epibiont
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Figure 2.1: Sampling locations, genome bin identity and relative community composition
of Trichodesmium holobiont members in the western North Atlantic. (a) Trichodesmium
colonies were collected from near surface water using hand held nets at six stations during
spring 2014 in the western North Atlantic. (b) Taxonomic affiliations of the 12 genome
bins generated from a merged metagenome assembly and represented on a simplified phy-
logenetic tree to the class level. Gammaproteo., Gammaproteobacteria. Alphaproteo.,
Alphaproteobacteria. (c) The relative community composition of the holobiont members
along the transect, noting that values were determined using reads from single samples of
pooled colony metagenomic libraries. Values were calculated by multiplying contig lengths
in each bin by read mapping coverage (Aylward et al., 2014).
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Figure 2.2: Principal component analysis of the relative abundance of Trichodesmium mi-
crobiome members. The 95% confidence intervals between northern and southern stations
are indicated by black ellipses. The relative abundance of epibionts in the microbiome
were significantly (P<0.1) different between the two northern and four southern stations
(permutational multivariate analyses of variance P=0.067).

members, microbiome communities clustered according to their sampling site, with the two

northernmost stations separated from the southernmost stations along the PC1 axis of a

principal component analysis (Figure 2.2). A permutational multivariate analyses of vari-

ance analysis (P=0.067), confirmed a differential community structure between the two

northern and four southern stations. This may be driven in part by the abundance of

Microscilla (bins 4 and 6), which was significantly different (t-test, P=0.010) between the

two northern stations and the four southern stations. There were no significant differ-

ences between the northern and southern stations in N2 fixation rate, colony PO4 turnover

or alkaline phosphatase activity, however, the two northernmost stations had significantly

lower total dissolved phosphorus compared with the four southern stations (0.08 and 0.2

µM total dissolved phosphorus, respectively, t-test, P=0.0157; Supplemental Table A.1).

As such, Microscilla relative abundance was higher at the stations with increased oligotro-

phy. Although further work measuring more parameters over a greater range of conditions

is warranted to address the consistency of these relationships, the differential distribution

of members of the core microbiome between regions suggests that variations in epibiont

community structure could be modulated by the geochemical environment.
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In order to examine the diversity of metabolic pathways in the Trichodesmium mi-

crobiome, the genome bins were functionally annotated against the SEED subsystems to

assess differences in broad functional categories between epibionts (Overbeek et al., 2014).

This functional analysis showed that while key capacities like ammonia assimilation, phos-

phate metabolism, transport of organic compounds and aerobic metabolic pathways like

the tricarboxylic acid cycle were largely uniformly present in all epibionts, there were cer-

tain SEED subsystems that were enriched or uniquely present in discrete groups (Figure

2.3). The Microscilla genome bins were enriched in functional categories related to nitro-

gen metabolism, such as nitrate, and nitrogen stress functions, as well as the synthesis and

utilization of reduced phosphorus compounds (Figure 2.3), which could help explain their

relative abundance at the most oligotrophic stations (2 and 5) (Supplemental Table A.1).

The Gammaproteobacterium and Rhodobacterales (bins 7 and 8) were enriched with func-

tions related to the uptake and exchange of genetic information (gene transfer agents and

bacterial secretion systems), whereas the Rhodospirillales bins were enriched in motility-

related functions, the uptake of tungstate and the utilization of plant-derived sugars like

fructose (Figure 2.3). In marine bacteria, secretion systems and motility functions have

been implicated in the transfer of toxins between adjacent cells and pathogenicity (Salomon

et al., 2015) and the modulation of these activities could influence relationships between

epibionts or the nature of the host–microbiome relationship. Finally, homologs to genes

encoding the light-mediated proton pump proteorhodopsin were found in Microscilla, as

well as the Rhodospirillales (Figure 2.3). In sum, these data show that there are differences

in functional metabolic capacity between epibiont groups present in the core microbiome.

Iron and phosphorus-related SEED subsystems within the microbiome (Figure 2.3), like

siderophore and heme-related functions, or reduced phosphorus utilization pathways, may

be particularly critical to Trichodesmium physiological ecology given that iron and phos-

phorus are known drivers of Trichodesmium activities in the study region (Chappell et al.,

2012; Sañudo-Wilhelmy et al., 2001). The relative proportion of microbiome genome bins

in which key marker genes were found for phosphonate metabolism, heme and siderophore

utilization, were compared with free-living microbial communities in the Sargasso Sea re-

gion of the western North Atlantic. The Trichodesmium microbiome was enriched nearly
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Figure 2.3: Enrichment of functional pathways recovered from epibiont genome bins. The
distribution is based on RAST annotation against the SEED subsystems (Aziz et al., 2008;
Overbeek et al., 2014). The contribution of each epibiont to a given SEED subsystem is
scaled relative to the percentage of genes within each subcategory found in each genome
bin. Ammonifi., Ammonification; ABC, ABC transporter; AA, amino acid. Alpha., Al-
phaproteobacteria; Bacter., Bacteroidetes; Gamma., Gammaproteobacterium.
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two fold in the phosphonate utilization marker phnJ relative to genome equivalents in the

Global Ocean Survey data set from the Sargasso Sea (Karl et al., 2008) (Supplemental

Table A.2). Phosphonates are known to be an important source of bioavailable phosphorus

for Trichodesmium in the North Atlantic (Dyhrman et al., 2006) and the enrichment of

phnJ in the microbiome indicates the importance of this bond class of phosphorus to the

holobiont relative to free-living microbes in the upper water column. Heme transporters

and siderophore/vitamins transporters were present in all core microbiome genome bins,

relative to communities of free-living Sargasso Sea microbes in which these functions were

present in roughly 2% and 18% of genome equivalents, respectively (Tang et al., 2012)

(Supplemental Table A.2). This enrichment is again suggestive of the importance of iron

to the holobiont relative to free-living microbes in the upper water column. The apparent

enrichment of phosphorus and iron functions in the microbiome may provide a competi-

tive advantage to the holobiont relative to co-occurring free-living microbes and underlie

possible syntrophic interactions between Trichodesmium and the microbiome, but this en-

richment could also enhance internal competition within the holobiont. Taken together, the

taxonomic and functional diversity within the Trichodesmium microbiome, and its variation

along the transect, raises the possibility that the fitness of holobiont members or regional

biogeochemistry could influence the distribution and activities of the holobiont.

2.4.2 The microbiome dominates holobiont functional potential

We evaluated the distribution of and diversity of physiological capabilities in the Tri-

chodesmium host (genome bins 1–3 and 9) compared with members of their microbiome by

functionally analyzing OGs of proteins. The taxonomic composition of predicted proteins

in OGs was assessed to investigate the extent to which the Trichodesmium microbiome

augments the global metabolic potential of the holobiont. Of the total 55,738 unique OGs,

4,546 OGs were composed solely of predicted proteins identified as Trichodesmium and

2,252 OGs were composed of predicted proteins from Trichodesmium and epibiont genome

bins (Figure 2.4). The Trichodesmium spp. present in the field samples contained over

two times the number of gene families (6,798) present in T. erythraeum IMS101 genome,

which is predicted to encode 5,076 proteins (Walworth et al., 2015) and yielded 2,982 OGs
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Figure 2.4: Distribution of OGs in the Trichodesmium holobiont. A total of 264,073 pre-
dicted proteins (>70 amino acids) were clustered into 55,738 OGs. OGs were considered
‘Trichodesmium only’ or ‘epibiont only’ if they were composed of predicted proteins solely
from those organisms. The ‘both’ category refers to OGs composed of predicted proteins
from Trichodesmium and epibiont genome bins.

following the clustering protocol described herein. Trichodesmium does not exhibit genome

streamlining like other oligotrophic cyanobacteria (Walworth et al., 2015), and the dispar-

ity in the number of OGs between type strain and field samples could be driven by the

presence of multiple species with varying gene contents, or the fact that T. erythraeum is

not common in Trichodesmium populations in the North Atlantic (Rouco et al., 2014).

Given the taxonomic diversity of the microbiome, we would expect the number of

epibiont OGs to exceed that of Trichodesmium. Nearly 90% of the total 55,738 OGs were

composed only of epibiont-identified proteins (Figure 2.4). This number exceeds what would

be expected from the eight core microbiome members together and likely comes from less

abundant epibionts that were not sequenced deeply enough to yield genome bins. These

epibiont-only OGs represent functions without homologs in Trichodesmium, suggesting re-

cruitment and selection in the microbiome could expand and alter the metabolic repertoire

of the holobiont. To more conservatively examine functional content, OGs were assigned

functional annotations using KEGG, and the epibiont-only OGs were found to have twice

as many unique functions relative to those shared between epibionts and Trichodesmium,

and nearly 10 times as many unique functions as those found in Trichodesmium alone (Sup-

plemental Figure A.2). These differences are most notable within the genetic information
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processing module, consistent with the broad taxonomic diversity within the microbiome

and to some extent in the carbohydrate and lipid metabolism module (Supplemental Figure

A.2), which is represented by an abundance of carbohydrate active enzymes not present in

Trichodesmium (see below).

Specific OGs enriched or unique to the microbiome included proteins with functions

related to cell–cell signaling and the processing of organic matter (Figure 2.5). Homologs

to the proteins responsible for sensing and responding to quorum-sensing molecules like

acyl homoserine lactone (AHL), the LuxR family, were detected in all epibionts (Figure

2.5). Although putative LuxR homologs identified as belonging to Trichodesmium genome

bins shared sequence identity along the DNA-binding domain, it has been previously de-

termined that these Trichodesmium genes do not share the characterized AHL-binding

residues of these proteins (Patankar and Gonzalez, 2009; Van Mooy et al., 2012; Vannini

et al., 2002). This indicates that Trichodesmium is either not involved in quorum sensing,

or that the LuxR variant present in Trichodesmium is responding to a different quorum-

sensing molecule. Homologs to proteins in the LuxQ family, which is part of a sensor kinase

complex that detects the autoinducer-2 (AI-2) signaling molecule (Miller and Bassler, 2001)

were detected in the Rhodospirillales (bins 5 and 11) (Figure 2.5). Homologs of LuxI, a

gene responsible for synthesis of AHL quorum-sensing molecules, and a homolog to acyl-sn-

glycerol-3-phosphate acyltransferase, a putative AHL synthase designated HdtS and charac-

terized in Pseudomonas fluorescens (Case et al., 2008), were found in the Rhodobacterales

and Rhodospirillales epibionts (Figure 2.5).

Quorum-sensing circuits, and subsequently the activities they modulate, can be broken

through the secretion of molecules that break down AHLs. This process, termed quo-

rum quenching, can be driven by quorum quenching enzymes like metallo-beta-lactamases,

which degrade antibiotics and AHLs (Fetzner, 2014; Hong et al., 2012). Homologs of this

enzyme were detected in Microscilla, Rhodospirillales and Rhodobacterales (Figure 2.5).

Taken together, these data indicate that a suite of different quorum-sensing pathways are

present within members of the microbiome. In fact, quorum-sensing molecules and quorum-

quenching activity have been detected in Trichodesmium colonies from environmental sam-

ples, and quorum-sensing molecules added to sinking particles from Trichodesmium rich
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Figure 2.5: Cell diagram depicting OGs with key functions shared across the Trichodesmium
holobiont, or unique to the microbiome. Trichodesmium LuxR is homologous only in DNA-
binding region (*) and the GH protein represents many enzymes with specific targets unique
to epibionts (**) (Supplemental Table A.3). The ‘all epibiont’ category refers to homologs
that were found in all epibiont genome bins. AE, auxin efflux protein; AI2, auto- inducer 2;
Aux, auxin; AXP, auxin-regulated protein; Fli/Flg, flagella biosynthesis and motility; GH,
glycoside hydrolase; Carb., Carbohydrate; HemY, HemC, heme group synthesis and export;
HNOX, heme-nitric oxide/oxygen binding protein; HtxA, alter- native phosphite dehydro-
genase; HdtS, AHL synthase; IucA/C, siderophore biosynthesis; Sider., Siderophore; LuxQ,
AI2 tran- scriptional activator; LuxR, QS transcriptional activator; MBL, Metallo-beta
lactamase; NO, nitric oxide; NOS, nitric oxide synthase; PhnE, phosphonate transporter
inner membrane sub- unit; PhnJ, C-P lyase; PepM, phosphoenolpyruvate mutase; PEP,
phosphoenolpyruvate; PPR, 3-phosphonopyruvate; PR, proteorho- dopsin; PtxABC, phos-
phite transport system; PtxD, phosphite dehydrogenase; PhoA, PhoD, PhoX, alkaline phos-
phatases with putative metal cofactors (Mg, magnesium, Zn, zinc, Ca, calcium, Fe, iron);
PAAd, phenylacetic acid degrading protein; QS, quorum sensing molecule; TonB-ExbB-
ExbD, putative organic iron uptake system. Tricho., Trichodesmium; Alphas, Alphapro-
teobacteria; Micros., Microscilla; Rhodospir., Rhodospirillales; Rhodobact., Rhodobac-
terales.
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environments stimulate the hydrolysis of organic matter (Hmelo et al., 2011; Krupke et al.,

2016; Van Mooy et al., 2012). The concordance between metagenomic and in situ chem-

ical evidence of these pathways constitutes strong evidence that quorum sensing is active

in Trichodesmium colonies, likely regulates a range of microbiome functions, and mediates

interactions between host and microbiome.

OGs with homologs of nitric oxide synthase (NOS) and the sensing protein (H-NOX)

were found in both Microscilla-identified genome bins (Figure 2.5). The presence of both

pathways have only previously been detected in an Alphaproteobacterial lineage (Rao et al.,

2015), and their presence here in Microscilla, a genus in the Bacteroidetes class, suggests

that the ability to both produce and sense NO is more widespread in marine bacteria than

previously thought. The NO signaling pathway can be triggered by Trichodesmium to

induce biofilm formation (Rao et al., 2015), and concomitant quorum sensing is used to

modulate a range of responses including N2 fixation, siderophore and enzyme biosynthesis,

as well as motility, aggregation and biofilm formation in other systems (Bassler, 2012).

Finally, homologs were detected for the efflux and sensing of auxin, a family of plant

hormones implicated in stimulating a suite of plant processes, including growth and di-

vision, which can be synthesized by both plants and bacteria (Spaepen and Vanderley-

den, 2011)(Figure 2.5). In the microbiome, the Microscilla epibionts contained an auxin

responsive gene, and both Microscilla and the Rhodospirillales contained genes for the

degradation of phenylacetic acid (Figure 2.5), an auxin-like compound produced by cer-

tain plant-associated bacteria with known antimicrobial activity (Somers et al., 2005). For

heterotrophic bacteria, auxin compounds have been shown to induce resistance to stress

agents and biofilm formation, upregulation of the tricarboxylic acid cycle and amino-acid

biosynthesis, and increased enzyme activity (Spaepen and Vanderleyden, 2011)[and refer-

ences therein]. The known roles of auxin, NO and AHLs in cell–cell signaling suggests that

these gene targets could be used to query potential interactions, such as mutualism or par-

asitism within the holobiont. Overall, the presence and known activation of a number of

different signaling pathways in the Trichodesmium microbiome suggests that physiological

activities may be modulated and coordinated within the holobiont, and could vary depend-
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ing on the relative abundance of epibionts and with fluctuations in taxonomic composition

of the microbiome or the fitness of the Trichodesmium host.

Another set of OGs enriched in the microbiome were identified as members of the gly-

coside hydrolase (GHs) family of carbohydrate active enzymes (CAZymes). The majority

of GH OGs were unique to epibionts with over 80% (21 out of 26) of the unique GH-

identified OGs composed solely of epibiont proteins (Supplemental Table A.3). These GHs

are predicted to be active against a diverse suite of compounds including xylans, lichenin,

chitin, xylose and arabinose (Supplemental Table A.3). GH enzymes have been implicated

in the bacterial processing of algal-derived polysaccharides (Teeling et al., 2012) and the

processing of Trichodesmium exudates by epibionts has been suggested to affect the rate

of carbon and nitrogen transfer to the deep ocean (Herbst and Overbeck, 1978; Hmelo et

al., 2012; Nausch, 1996). As such, microbiome metabolism and its potential modulation

through cell–cell signaling, may influence organic matter processing within the holobiont,

competition for resources, and the concomitant impact on the fate of carbon and nitrogen.

The abundance of these GHs and other epibiont-only OGs representing key functions high-

lights how the microbiome of Trichodesmium expands holobiont functional diversity. The

extent to which this metabolic potential increases or decreases host fitness may influence

the cycling of both nitrogen and carbon.

2.4.3 Resource niche partitioning in the Trichodesmium holobiont

Iron and phosphorus bioavailability have been shown to influence the distribution and

activities of diazotrophic communities (Deutsch et al., 2007; Krishnamurthy et al., 2007),

and both are major drivers of Trichodesmium abundance and N2 fixation rate in the At-

lantic (Moore et al., 2008, 2009; Sañudo-Wilhelmy et al., 2001; Sohm and Capone, 2006;

Webb et al., 2007; Wu et al., 2000). To evaluate the contribution of the microbiome to

potential iron and phosphorus cycling in the holobiont, OGs were additionally screened

for the presence of key processes including the metabolism of organic phosphorus, process-

ing of reduced phosphorus, and metabolism and transport of organic iron. The alkaline

phosphatase enzyme hydrolyzes phosphate from phosphoester bond dissolved organic phos-

phorus, and is central to microbial phosphorus bioavailability in the western North Atlantic
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(Mahaffey et al., 2014), where dissolved organic phosphorus concentration is higher than

the inorganic phosphate concentration (Lomas et al., 2010). Homologs for the alkaline phos-

phatases PhoA, PhoD and PhoX were found in both Trichodesmium and the microbiome

(Figure 2.5). PhoX was found in Trichodesmium, as well as all epibionts with the exception

of one Rhodospirillales (bin 12). Within the core microbiome, PhoX was more common

than PhoA, which was only found in bins 5, 6, 7 and 10, and PhoD, which was only de-

tected in the Microscilla genome bins (bins 4 and 6). This observation agrees with previous

molecular surveys that found PhoX to be more prevalent than PhoA among oligotrophic

planktonic marine bacteria (Sebastian and Ammerman, 2009).

OGs with proteins for the uptake and metabolism of reduced phosphorus were also

present in both Trichodesmium and the microbiome (Figure 2.5). The phosphite dehy-

drogenase PtxD was detected in Trichodesmium and the microbiome, and a homolog of

an alternate phosphite dehydrogenase enzyme was detected in the Rhodospirillales and in

Microscilla in the form of HtxA, a gene characterized in Pseudomonas stutzeri that has a

similar function to PtxD (Metcalf and Wolfe, 1998) (Figure 2.5). When paired to the ABC

transporter PtxABC, PtxD allows Trichodesmium to use phosphite as a sole phosphorus

source (Polyviou et al., 2015). In addition, Trichodesmium consortia at station 9 took up

radiolabeled phosphite (Van Mooy et al., 2015) and the data herein suggest that phosphite

is a substrate for both Trichodesmium and multiple members of the microbiome, which

could contribute to resource competition between holobiont members.

Other pathways to metabolize reduced phosphorus, like those involved in phospho-

nate transport (Phn E) and hydrolysis were detected in both Trichodesmium and the

microbiome. PhnJ, a component of the broad specificity C-P lyase, was found in Tri-

chodesmium, consistent with its presence in the T. erythraeum IMS101 genome (Dyhrman

et al., 2006), two Rhodospirillales epibionts and the Gammaproteobacterium (Figure 2.5).

Finally, phosphoenolpyruvate mutase (PepM), the enzyme that catalyzes formation of a

carbon–phosphorus bond through the conversion of phosphoenolpyruvate to phosphonopy-

ruvate and thought to be a major source of biological phosphonate production (Metcalf

and van der Donk, 2009), was detected in Microscilla bin 4, an unbinned epibiont species,

as well as one of theTrichodesmium genome bins (Figure 2.5). Previous research showed
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elevated rates of phosphonate compound biosynthesis at station 5 (Van Mooy et al., 2015),

and the metagenome findings suggest that phosphonate biosynthesis may be driven by both

Trichodesmium and members of the microbiome, in particular Miroscilla in this system.

Overall, the abundance and diversity of phosphorus-related functions shared between Tri-

chodesmium and the microbiome is consistent with the importance of active phosphorus

cycling within the holobiont, as may be expected given the known role of phosphorus in

limiting Trichodesmium populations in this region (Dyhrman et al., 2002; Sañudo-Wilhelmy

et al., 2001).

Similar to phosphorus-related OGs, iron-related OGs were also enriched in the holobiont

(Supplemental Table A.2), however, the majority of these were present only in epibionts,

and with subtle differences in specific genes contributing to each OG between different

members of the microbiome (Figure 2.5). Homologs to a siderophore biosynthesis protein

were found exclusively in one Microscilla (bin 6) (Figure 2.5). In addition, homologs to

heme group biosynthesis and exporter proteins were made up exclusively from those found

within the Microscilla and Rhodospirillales (Figure 2.5). Homologs of the TonB-dependent

transporter system predicted to transport heme- and siderophore-bound iron, were detected

in Trichodesmium and all epibiont genome bins (Figure 2.5; Supplemental Table A.2), sug-

gesting that while not all holobiont members produce these molecules, they could be taken

up and potentially utilized by the core microbiome and Trichodesmium. Trichodesmium is

rarely maintained in axenic culture, so direct comparisons of iron uptake between epibionts

and the host are challenging. Previous work found that siderophore-bound iron was not

as accessible to the Trichodesmium holobiont as inorganic forms, at least relative to select

epibiont isolates, which could readily utilize most iron sources (Roe et al., 2012). However,

uptake of different iron forms has been shown to vary between colonies (Achilles et al.,

2003), suggestive of the fact that alterations in epibiont composition could influence the

accessibility of different iron forms to the holobiont, and could increase competition for

this nutrient in low iron, oligotrophic conditions. Overall, the production and uptake of

different organic iron complexes by epibionts could shape the dynamics of iron-dependent

processes like N2 fixation, particularly in the many low iron regions of the ocean. In contrast

to the redundant phosphorus-related functions, the epibiont-only iron functions highlight
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how the microbiome contributes diverse and unique functions that have the potential to

uniquely modulate the geochemical microenvironment within colonies. Iron is relatively

more abundant in the study region than in other areas like the North Pacific (Sohm et al.,

2011), and additional surveys of the functional composition of holobiont metagenomes from

diverse ocean regimes would identify the consistency of the iron and phosphorus-related OG

distributions within the Trichodesmium holobiont.

2.5 Conclusions

The importance of microbiomes to marine metazoans is well established (Hentschel et

al., 2012), but the role of the Trichodesmium microbiome in shaping the distribution, activ-

ities and concomitant biogeochemical impact of these consortia is still in its infancy. Here

we show that the substantial majority of the metabolic potential in the Trichodesmium

holobiont is contained within the microbiome. This finding suggests that within the mi-

crobiome, there is a palette of functional diversity that could modulate host fitness and

subsequent biogeochemical impact across different environments. This study also provides

an annotated holobiont metagenome that could serve as a template for future metatran-

scriptomic and metaproteomic investigations focused on tracking physiological activities or

interactions within the holobiont. The microbiome may underpin Trichodesmium’s success

in oligotrophic systems and could be an important facet determining its resilience in a fu-

ture ocean that is likely to bring increased oligotrophic conditions (Riebesell et al., 2009).

Overall, these results suggest that Trichodesmium should not be considered in isolation,

but rather studied as a dynamic microbial holobiont.
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Chapter 3

Trichodesmium physiological

ecology and phosphate reduction in

the western Tropical South Pacific

A modified version of this chapter has been submitted as Frischkorn, K.R., Krupke, A., Guieu, C.,

Louis, J., Rouco, M., Salazar Estrada, A.E., Van Mooy, B.A.S., and Dyhrman, S.T. (2018). Trichodesmium

physiological ecology and phosphate reduction in the western tropical South Pacific. Biogeosciences, In

review).
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3.1 Abstract

N2 fixation by the genus Trichodesmium is predicted to support a large proportion of

the primary productivity across the oligotrophic oceans, regions that are considered among

the largest biomes on Earth. Many of these environments remain poorly sampled, limit-

ing our understanding of Trichodesmium physiological ecology in these critical oligotrophic

regions. Trichodesmium colonies, communities that consist of the Trichodesmium host

and their associated microbiome, were collected across the oligotrophic western tropical

South Pacific (WTSP). These samples were used to assess host clade distribution, host and

microbiome metabolic potential, and functional gene expression, with a focus on identify-

ing Trichodesmium physiological ecology in this region. Gene sets related to phosphorus,

iron, and phosphorus-iron co-limitation were dynamically expressed across the WTSP tran-

sect, suggestive of the importance of these resources in driving Trichodsmium physiological

ecology in this region. A gene cassette for phosphonate biosynthesis was detected in Tri-

chodesmium, the expression of which co-varied with the abundance of Trichodesmium Clade

III, which was unusually abundant relative to Clade I in this environment. Coincident with

the expression of the gene cassette, phosphate reduction to phosphite and low molecular

weight phosphonate compounds was measured in Trichodesmium colonies. The expression

of genes that enable use of such reduced phosphorus compounds were also measured in both

Trichodesmium and the microbiome. Overall, these results highlight physiological strategies

employed by consortia in an undersampled region of the oligotrophic WTSP, and reveal the

molecular mechanisms underlying previously observed high rates of phosphorus-reduction

in Trichodesmium colonies.

3.2 Introduction

The oligotrophic oceans extend over approximately 70% of the Earth and are charac-

terized by chronically low nutrient concentrations that limit primary productivity (Moore

et al., 2013). Within oligotrophic marine environments, N2 fixing microorganisms can serve

as a source of “new” nitrogen that is bioavailable to other organisms. Among these marine

diazotrophs, the colonial, filamentous cyanobacterium Trichodesmium plays a dispropor-
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tionately large role in the cycling of carbon, phosphorus and nitrogen: it supplies fixed

carbon through photosynthesis, was recently found to be a hotspot of phosphate reduction

(Van Mooy et al., 2015), and has been estimated to be responsible for approximately half of

the biologically fixed N2 in the ocean (Bergman et al., 2013; Capone et al., 1997). As such,

the efficiency of the biological pump in sequestering carbon in the deep ocean is dependent

in part on the distribution and activities of diazotrophic organisms like Trichodesmium, and

an understanding of how this organism’s physiology and ecology varies across diverse en-

vironments is a critical aspect of understanding present, and future, global biogeochemical

cycles.

Diazotrophy frees Trichodesmium from nutrient limitation by nitrogen. As such, the dis-

tribution and activities of this cyanobacterium are predominantly influenced by the avail-

ability of phosphorus and iron in the surface ocean, which vary depending on the ocean

basin and its proximity to supply of these resources (Moore et al., 2013; Sohm et al., 2011).

Evidence of the intense competition for phosphorus and iron is evident in the suite of phys-

iological strategies that this organism is known to employ. These strategies include the

production of transporters and enzymes that take up and hydrolyze diverse organic and

reduced phosphorus compounds (Dyhrman et al., 2006; Orchard et al., 2009; Polyviou et

al., 2015), or enable the uptake and storage of organic and inorganic iron (Polyviou et al.,

2018; Snow et al., 2015b). The genes encoding these functions are expressed in situ across

diverse environments, indicating that competition for these resources is a critical aspect

of Trichodesmium physiology (Chappell et al., 2012; Dyhrman et al., 2006; Rouco et al.,

2018). Recent evidence from culture studies also suggests that Trichodesmium employs a

unique set of physiological strategies to cope with co-limitation of phosphorus and iron that

differs from that of either resource alone (Walworth et al., 2017b).

Survival in oligotrophic environments might also be enabled by biological interactions

within Trichodesmium colonies. Trichodesmium has long been known to occur with tightly

associated bacteria that are unique from those free-living in the water column (Hmelo et al.,

2012; Paerl et al., 1989). Recent evidence suggests that these interactions are ubiquitous

and taxonomically conserved across ocean basins (Lee et al., 2017; Rouco et al., 2016a)

and that this epibiotic bacterial community, referred to as the Trichodesmium microbiome,
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contains a large amount of metabolic potential that exceeds and complements that of the

Trichodesmium host in populations from the western North Atlantic (Frischkorn et al.,

2017). Coordinated gene expression patterns within the holobiont (Trichodesmium and its

microbiome) suggest an interdependence of the microbiome on host-derived fixed carbon, N2

and vitamins, and suggests microbiome respiration could create conditions that favour con-

tinued diazotrophy and photosynthesis (Frischkorn et al., 2018; Paerl and Bebout, 1988).

The stability of these relationships in the future ocean is unknown, but they are likely

to change. For example, incubation of cultured Trichodesmium colonies with an elevated

carbon dioxide concentration resulted in significant changes in microbiome nutritional phys-

iology (Lee et al., 2018). These microbiome changes have the potential to alter the amount

of fixed N2 and carbon that transfer from the colony to the environment at large. Overall,

the continued appreciation of the importance of the microbiome in Trichodesmium ecology

underscores that investigations must consider these microbial communities as a holobiont

in order to fully understand and predict their role in the future environment.

Geochemical drivers of Trichodesmium distribution and N2 fixation are increasingly well

characterized in regions of the ocean where either phosphorus or iron are limiting such as the

North Atlantic and North Pacific Subtropical Gyre (Rouco et al., 2018; Sañudo-Wilhelmy

et al., 2001; Sohm et al., 2011). The western tropical South Pacific (WTSP) represents and

understudied region of the world’s oceans (Bonnet et al., 2018) with conditions characterized

by chronically low concentrations of both iron and phosphate (Moore et al., 2013; Sohm

et al., 2011). Despite low resources, this region can support high levels of N2 fixation, with

rates exceeding 700 µmol m−2d−1 where this resource transfers across diverse ecological

groups and ultimately supplies up 90% of to the photic zone with new nitrogen (Bonnet

et al., 2017; Caffin et al., 2018a,b). In this study, metagenomic and metatranscriptomic

sequencing was leveraged along with taxonomic distribution, physiological activities and

geochemical measurements to better understand Trichodesmium physiological ecology in

an under-sampled but important region of the oligotrophic ocean.
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3.3 Materials and methods

3.3.1 Biogeochemical analyses

Samples were collected across a transect of the western Tropical South Pacific (WTSP)

during the OUTPACE cruise (Oligotrophy to UlTra-oligotrophy PACific Experiment, DOI:

http://dx.doi.org/10.17600/15000900) (Moutin et al., 2017) aboard the R/V L’Atalante

during austral summer (February – April) of 2015 (Figure 3.1). Samples for nutrient anal-

yses were collected using a Titanium Rosette mounted with 24 Teflon-coated 12L GoFlos

and operated along a Kevlar cable. Samples were filtered directly from the GoFlos through

0.2 µm cartridges (Sartorius Sartrobran-P-capsule with a 0.45 µm prefilter and a 0.2 µm

final filter) inside a clean van and analysed for dissolved inorganic phosphorus (DIP) and

total dissolved iron concentrations (DFe). DIP was analysed directly on board using a 2

m length Liquid Waveguide Capillary Cells (LWCC) made of quartz capillary following a

method described previously (Pulido-Villena et al., 2010). Briefly, LWCC was connected to

a spectrophotometer and the measurements were performed in the visible spectrum at 710

nm. The 2 m length LWCC allowed for a detection limit of 1 nM and a relative standard

deviation of less than 10%. DFe concentrations were measured by flow injection with online

preconcentration and chemiluminescence detection using the exact protocol, instrument,

and analytical parameters as previously described (Blain et al., 2008).

Water column phosphate uptake rate was determined as previously described (Van Mooy

et al., 2015), and is briefly outlined here. First, 50 mL aliquots of whole seawater collected in

Niskin bottles were decanted into acid-washed polycarbonate vials. Next, 1 µCi of carrier-

free 33P-phosphoric acid was added to the bottles, which represented an amendment of

approximately 10 pmol L−1 of phosphoric acid. Then, bottles were incubated in an on-

deck incubator for 2-4 hours. Finally, the seawater in the bottles was filtered through a

25 mm diameter, 0.2 µm pore size polycarbonate membrane, and the radioactivity of the

membrane was determined by liquid scintillation counting. The phosphate turnover rate in

each incubation was calculated as the quotient of the 33P-radioactivity of the membrane

and the total 33P-radioactivity of the amendment, divided by the time duration of the

incubation. The phosphate uptake rate was calculated as the product of the phosphate
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turnover and the DIP concentration. Data were visualized and contoured using Ocean

Data View 4.6.2 with the DIVA grid method (R. Schlitzer; http://odv.awi.de).

3.3.2 Trichodesmium clade sampling and analysis

Samples for Trichodesmium clade distribution analysis were obtained at select short du-

ration stations across the transect from water depths ranging from 5 m to 150 m using 12

L of water for each depth obtained from a Rosette sampling device filtered through 47 mm

10 µm pore size polycarbonate filters. Filters were flash frozen and stored in liquid nitrogen

until processing. Quantification of absolute cell numbers in these samples was performed

following a previously described protocol (Rouco et al., 2014). Briefly, DNA was extracted

from filters and the abundance of Trichodesmium clade I (which encompasses T. thiebau-

tii, T. tenue, T. hildebrandtii, and T. spiralis) and III (which encompasses T. erythraeum

and T. contortum), was determined with quantitative polymerase chain reactions (qPCR)

targeting the rnpB gene using clade specific primer sets (Chappell and Webb, 2010). Am-

plification of standards, no template controls (RNase-free water), and field samples were

run in triplicate on a Bio-Rad CFX96 Real-Time System C1000 Touch Thermal Cycler

using Bio-Rad SYBR Green SuperMix (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Standard curves were generated from DNA extracts performed on filters with known con-

centrations of T. erythraeum IMS101 and T. thiebautii VI-I. Concentrations were previously

determined by 10 replicates of cell counting using a Sedgwick Rafter slide (Rouco et al.,

2014). Reactions were run in final volumes of 25 µL, encompassing 12.5 µL SuperMix, 2 µL

template, 9.5 µL sterile water, and 200 nmol L−1 forward and reverse primers. Reaction

conditions were as follows: 2 minutes at 50 ◦C, 10 minutes at 95 ◦C; 40 cycles of 15 seconds

at 95 ◦C, and 1 minute at 55 ◦C with a fluorescence measurement. Resulting CTs were

averaged across the triplicates and compared against the standard curve to calculate the

abundance of the rnpB gene, which is interpreted as absolute cell number. Clade distribu-

tion data was displayed and contoured using Ocean Data View 4.6.2 with the DIVA grid

method (R. Schlitzer; http://odv.awi.de).
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3.3.3 Trichodesmium colony sampling

Trichodesmium colonies were sampled across the transect at approximately the same

time (between 8 AM and 10:50 AM local time). Trichodesmium samples were obtained

with six manual hauls of a 130 µm mesh size net hand towed through surface sea water.

The total time for six hauls of the net tow was approximately 15 minutes and likely filtered

thousands of liters of seawater. Colonies were skimmed from the concentrated net tow

sample with a Pasteur pipette from the surface layer of net towed samples and then washed

two times with 0.2 µm sterile-filtered surface seawater on 5 µm, 47 mm polycarbonate filters

with gentle vacuuming (<170 mbar) to remove non-tightly associated microorganisms. All

colony samples were cleaned and processed within 15 minutes of collection. Filters with

colonies were flash frozen and stored in liquid nitrogen for DNA or RNA extraction.

3.3.4 Phosphate reduction in Trichodesmium colonies

Phosphate uptake and synthesis rates of low-molecular-weight (LMW) reduced phos-

phate (P(+3)) compounds in Trichodesmium colonies were determined as described previ-

ously (Van Mooy et al., 2015). Briefly, phosphate uptake by Trichodesmium colonies was

determined by filling acid-washed polycarbonate 50 mL bottles with filter-sterilized surface

seawater and approximately 20 Trichodesmium colonies. Incubation in on-deck incubators

and measurement by liquid scintillation counting proceeded as previously described above

for the whole water analyses. In parallel, to measure the synthesis rates of LMW P(+3)

compounds, at stations SD2, LDA, SD9, SD11, and LDB Trichodesmium incubations were

not immediately measured by liquid scintillation counting. Instead, colonies were placed

in a cryovial containing 1 mL of pure water and flash frozen in liquid nitrogen. These

samples were then transported to the lab ashore and subjected to numerous freeze-thaw

cycles to extract intracellular LMW P(+3) compounds. The LMW P(+3) compounds in

the extracts were then isolated by preparative anion chromatography. Two fractions were

collected in retention time windows consistent with retention times of pure standards of

1) methylphosphonic acid, 2-hydroxy ethylphosphonic acid, and 2-amino ethylphosphonic

acid; and 2) phosphorous acid. The 33P radioactivity in these two operationally-defined

fractions is ascribed to LMW phosphonates and phosphite, respectively.



CHAPTER 3. TRICHODESMIUM IN THE WTSP 40

3.3.5 DNA extraction and metagenome sequencing

Genomic DNA was extracted from Trichodesmium colony samples (approximately 40

colonies per sample) obtained from one day each during LDA and LDB, as well as at

station SD5 (Figure 3.1) using the MoBio Power Plant Pro DNA Isolation Kit (MoBio

Laboratories, Inc., Carlsbad, CA, USA) following the manufacturer instructions. Genomic

DNA extracts were sequenced at the Argonne National Lab (Lemont, IL, USA) following a

Trichodesmium consortium protocol previously described (Frischkorn et al., 2017). Briefly,

DNA was sheared with a Covaris Sonicator (Woburn, MA, USA), transformed into libraries

with WaferGen Apollo324 automated library system (Clonetech Laboratories, Mountain

View, CA, USA) and Illumina compatible PrepX ILMN DNA kits (San Diego, CA, USA)

following manufacturer instructions. An average insert size of approximately 750 base pairs

was targeted. Sage BluePippin (Beverly, MA, USA) was used to size select libraries prior

to sequencing all three samples split across one 2 x 100 bp lane of the Illumina HiSeq2000.

Metagenomic reads from these three samples are available on the NCBI Sequence Read

Archive under BioProject number PRJNA435427.

3.3.6 Metagenomic assembly and analysis

Raw reads were trimmed assembled into scaffolds and subsequently analysed following a

protocol previously reported (Frischkorn et al., 2017) and summarized here in an assembly

and analysis methods pipeline (Supplemental Figure B.1). Briefly, reads were trimmed with

Sickle (https://github.com/najoshi/ sickle), converted into fasta format, merged together

and co-assembled with IDBA-UD (Peng et al., 2012) so as to create a South Pacific Tri-

chodesmium holobiont genomic template to which future metatranscriptomic reads could be

mapped. Assembled scaffolds were partitioned between Trichodesmium and heterotrophic

bacteria (hereafter referred to as the microbiome) and after clustering into genome bins

using MaxBin 2.0 with default parameters (Wu et al., 2015). The taxonomic partitioning of

binned scaffolds was carried out after translation of each scaffold into protein coding genes

with the metagenomic setting of Prodigal (Hyatt et al., 2010), annotation of resultant pro-

teins with the blastp program of DIAMOND (Buchfink et al., 2015) against the NCBI nr

database, and classification with MEGAN6 (Huson et al., 2013) based on the phylogenetic
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classification of the majority of proteins within a genome bin. Scaffolds from bins identified

as phototrophic bacteria or eukaryotes were excluded from further analyses. Functional an-

notations for translated proteins in the Trichodesmium and microbiome identified genome

bins were obtained by DIAMOND against the UniRef90 database (Suzek et al., 2007) with

an e-value cut-off of 1 x 10−3. Functional annotation was also carried out using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) with the online Automatic Annotation Server

using the bi-directional best-hit method, the GHOSTX search program, and the prokaryote

representative gene set options. KEGG definitions were obtained from the modules within

the “Pathway module” and “Structural complex” categories and the submodules therein.

Proteins from the merged assembly were also clustered into gene families of similar func-

tion or orthologous groups (OGs) following a previously reported pipeline (Frischkorn et al.,

2017) and summarized in Supplemental Figure B.1. Briefly, reciprocal blast of translated

proteins greater than 70 amino acids were performed with the DIAMOND blastp program.

Blast results were processed using the program MCL (Markov cluster algorithm) set to an

inflation parameter or 1.4. UniRef was used for the consensus functional annotation of each

OG. The final UniRef annotation and KEGG annotations for each OG represent the individ-

ual annotation that the majority of proteins within that OG were assigned to. Homologs to

the phosphonate biosynthesis gene phosphoenolpyruvate phosphomutase (ppm) were found

by screening against manually annotated and reviewed Ppm proteins from the Swiss-Prot

database. These verified proteins were aligned with Muscle version 3.8.425 with default

parameters (Edgar, 2004), converted into HMM profiles with hmmbuild and hmmpress and

used as a the database for hmmsearch, all using HMMER version 3.1 (Eddy, 1995). This

HMMER approach was used to screen proteins generated from this study, as well as a pre-

viously published Trichodesmium consortia metagenome assembly from the western tropi-

cal North Atlantic Ocean (Frischkorn et al., 2017) and protein sequences derived from the

genome sequence of Trichodesmium erythraeum IMS101 available through the Joint Genome

Institute. Sequence alignments were visualized using Geneious version 11.0.3 (Kearse et al.,

2012) and important residues were obtained from previous crystal structure analyses (Chen

et al., 2006). A reassembly of Trichodesmium-identified bins was performed to lengthen

scaffolds in an attempt to provide genomic context to the ppm-containing scaffold. The
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subset of all metagenomic reads mapping to Trichodesmium bins was selected using Sam-

tools (Li et al., 2009) and the subseq program in Seqtk (https://github.com/lh3/seqtk)

and then reassembled using IDBA-UD as described previously. Maximum likelihood phy-

logenetic analysis of Ppm and related proteins was performed using the FastTree plugin in

Geneious with default settings (Price et al., 2010), following a protocol previously employed

for the annotation of environmental Ppm proteins (Yu et al., 2013). The sequences used to

generate the tree were composed of proteins with homology to the identified Trichodesmium

Ppm proteins, as well as similar sequences pulled from the NCBI nr database after online

blastp analysis. The Interactive Tree of Life program was used to edit phylogenetic trees

(Letunic and Bork, 2016). Proteins were also screened for MpnS, a protein that produces

methylphosphonate, using the same protocol described above.

3.3.7 RNA extraction and metatranscriptome sequencing

Prokaryotic RNA was extracted and sequenced from Trichodesmium colony samples

obtained from SD2, SD6 and SD9 as well as colonies collected on three separate days at

LDB (approximately 40 colonies per sample) (Figure 3.1) following a protocol described

previously (Frischkorn et al., 2018). Briefly, the Qiagen RNeasy Mini Kit (Qiagen, Hildern,

Germany) was used to extract total RNA following manufacturer instructions, with the

addition of 5 minutes of bead beating with approximately 500 µL 0.5 mm zirconia/silica

beads after addition of Buffer RLT. On column DNase digestion (RNase-free DNase Kit,

Qiagen) was performed. A MICROBEnrich Kit (ThermoFisher Scientific, Waltham, MA,

USA) was used to enrich the prokaryotic RNA fraction and ribosomal RNA was removed

with the Ribo-Zero Magnetic kit for bacteria (Illumina), both following manufacturer in-

structions. Concentration and integrity of mRNA was assessed using a BioAnalyzer and the

RNA 600 Nano Kit (Agilent Technologies, Santa Clara, CA, USA). Library preparation and

sequencing was performed at the JP Sulzberger Genome Center at Columbia University.

Libraries were generated with the Illumina TruSeq RNA sample preparation kit. Sam-

ples were chemically fragmented using the Fragment, Prime, Finish Mix reagent (Illumina)

which generates fragments of 140-220 bp. An Illumina HiSeq 2500 was used to sequence

60 million paired end 100 bp reads for each sample. Metatranscriptomic reads from these
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six samples are available on the NCBI Sequence Read Archive under BioProject number

PRJNA435427.

3.3.8 Metatranscriptomic sequence analysis

Metatranscriptomic reads were trimmed, normalized and mapped as previously de-

scribed (Frischkorn et al., 2018) and are summarized in the analysis and assembly pipeline

(Supplemental Figure B.1). Briefly, raw reads were pre-processed following the Eel Pond

Protocol for mRNAseq (Brown et al., 2013a). Cleaned reads were mapped with RSEM

(paired-end and bowtie2 options selected) (Li and Dewey, 2011) to the protein coding re-

gions of the metagenomic scaffolds previously partitioned across Trichodesmium and the

microbiome with an average of 10 million reads mapping per sample. Read counts were

summed separately for Trichodesmium and microbiome fractions for all genes in an OG.

Counts were normalized in each sample by calculating the transcript reads mapped per

million (TPMs) separately for the Trichodesmium and microbiome fractions. Comparisons

of relative enrichment across sets of nutrient responsive genes were made using Kolmogorov-

Smirnov tests to examine the null hypothesis that the expression of gene sets at a given

station did not deviate significantly from the average expression of that set across the tran-

sect. Prior to testing, TPM expression values for each OG were normalized to the average

abundance of that OG across the six samples. This normalization equalized the relative

contribution of individual OGs to the gene set as a whole, thereby avoiding bias caused

by highly expressed individual OGs. P values less than 0.05 were considered significant.

Pairwise correlation coefficients between clade abundance, DIP and OG expression (TPMs)

were calculated using the cor function in R, and p values less than 0.05 were considered

significant. In the case of the OG expression, LDB samples from separate days were aver-

aged. The data did not span enough coincident samples to do pairwise correlations between

OG expression and iron. Trichodesmium OG TPMs were hierarchically clustered with the

Broad Institute Morpheus program (https://software.broadinstitute.org/morpheus/) using

the “one minus Pearson correlation” metric and the “Average” linkage method. Only OGs

with an average expression greater than 2 TPM across all samples were included in this

analysis.
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3.4 Results

3.4.1 Biogeochemistry

Across the study transect the DIP concentration in surface water (10 m depth, with

the exception of the sample from LDA which was collected at 30 m) ranged between 2.3

nmol L−1 and 230 nmol L−1 (Figure 3.1, Supplemental Table B.1) and averaged 36 nmol

L−1. The phosphate turnover time in the water column microbial community was variable

across the transect ranging between approximately 2 hours and 800 hours (Figure 3.1,

Supplemental Table B.1), averaging approximately 220 hours across all stations sampled.

The water column phosphate uptake rate was similarly variable, ranging from 0.006 nmol

L−1hr−1 to 0.68 nmol L−1hr−1 with lower uptake measured at stations where turnover time

was high and vice versa (Figure 3.1). Iron concentrations in the surface water (10 m depth,

with the exception of the sample from SD12 which was collected at 30 m) ranged between

0.21 nmol L−1 and 1.16 nmol L−1 (Figure 3.1, Supplemental Table B.1) and averaged 0.6

nmol L−1.

Trichodesmium (combined cell counts of Clade I and Clade III) was detected at every

station and at all depths sampled across the transect with a maximum estimated concen-

tration of over 172,000 cells L−1 at 11 m at SD6 (Figure 3.2a). Overall, abundance was

markedly greater at the stations in the western half of the transect (stations west/left of

170 ◦W and LDB (Figure 3.2a). In this western region of the transect, Trichodesmium was

concentrated in the surface ocean between approximately 5 - 20 m depth, where the aver-

age concentration was approximately 53,000 cells L−1. To the east/right of station LDB

and the transition into the ultra-oligotrophic region, the concentration of Trichodesmium

dropped and the average concentration at the surface between approximately 5 - 20 m was

75 cells L−1 (Figure 3.2a). In addition to overall abundance of Trichodesmium, the contri-

bution of Clade I (T. thiebautii, T. tenue, T. hildebrandtii, and T. spiralis) and Clade III

(T. erythraeum and T. contortum) to the total Trichodesmium abundance at each station

was determined (Figure 3.2b). Across the transect, the Trichodesmium communities were

dominated by Clade I which made up approximately 80% of the cells measured on average

at each station, while Clade III made up approximately 20% on average (Figure 3.2b). Al-
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Figure 3.1: Surface water column dissolved inorganic phosphorus (DIP) concentration,
community phosphate uptake rate, community phosphate turnover, and iron concentra-
tion measured at stations across the OUTPACE (Oligotrophy to UlTra-oligotrophy PACific
Experiment) transect during austral summer (February – April) of 2015. All samples were
obtained from 10 m depth, with the exception of the DIP measurement from LDA and
the iron measurement from SD12 (30 m). Numbers above and below indicate the short
duration (denoted SD) or long duration (denoted LDA, LDB or LDC) stations where sam-
ples were obtained across the transect. In the top panel, a star indicates stations where
metagenomic or metatranscriptomic samples were obtained and a cross indicates stations
where Trichodesmium clade distribution samples were obtained.
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though Clade I was dominant overall, the percentage of Clade III rose to nearly 50% of the

measured Trichodesmium community in some samples, and was highest between 4 and 40

m at SD4, SD6 and SD11 (Figure 3.2b). Clade III was not detected at any depth in the

ultra-oligotrophic subtropical gyre stations (SD14 and SD15) (Figure 3.2b).

A merged metagenomic assembly of Trichodesmium consortia reads from selected sta-

tions across the OUTPACE transect (Figure 3.1) yielded 801,858 scaffolds in total. Tax-

onomic binning partitioned scaffolds into 48 genome bins with similar read coverage and

tetranucleotide frequency. After phylogenetic analysis with MEGAN6, 18 of the bins were

classified as Trichodesmium, 23 as heterotrophic bacteria, while the remaining bins had

the majority of their proteins phylogenetically classified as Eukaryotes or other photosyn-

thetic cyanobacteria. Subsequently, all Trichodesmium-identified scaffolds were merged and

considered as the Trichodesmium fraction of the WTSP consortia sampled. Similarly, all

heterotrophic bacteria-identified bins were merged together and considered as the micro-

biome fraction. Together, these taxonomically verified scaffolds were translated into 198,156

proteins, which clustered into 75,530 gene families of putatively similar function, or orthol-

ogous groups (OGs). Within the WTSP consortia, Trichodesmium and their microbiome

possessed 9,790 and 68,538 OGs respectively. The majority of these OGs were unique to

the microbiome, with 2,798 (3.7%) of the total OGs composed of proteins found in both

the Trichodesmium and microbiome genome bins.

Functional annotation of OGs showed that the microbiome contained nearly 10 times

more unique KEGG IDs (Supplemental Figure B.2). The greatest differences in functional

gene capacity between Trichodesmium and the microbiome were found in the Environmental

Information Processing and Carbohydrate and Lipid Metabolism modules (Supplemental

Figure B.2). Unique microbiome KEGG submodules included glycan, fatty acid, and carbo-

hydrate metabolism functions. In the Environmental Information Processing category the

microbiome possessed unique functions pertaining to peptide, nickel, phosphate, amino acid,

and ABC transporters as well as an enrichment in proteins related to bacterial secretion

systems (Supplemental Figure B.2).
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Figure 3.2: Abundance and clade distribution of Trichodesmium. Black dots denote the
depths at which samples were taken, while station number is indicated above the panels.
(a) Concentration of total Trichodesmium cells estimated from qPCR of the rnpB gene (cells
L−1). (b) Relative proportion of Trichodesmium Clade I (top panel) and Clade III (bottom
panel) across the transect. Clade I includes T. thiebautii, T. tenue, T. hildebrandtii, and
T. spiralis. Clade III includes T. erythraeum and T. contortum. Stars indicate stations
where metatranscriptomic sequences were sampled. Clade samples were not obtained at
LD stations.
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3.4.2 Expression profiling of WTSP Trichodesmium consortia

A total of 7,251 Trichodesmium OGs and 21,529 microbiome OGs recruited metatran-

scriptome reads from at least one sample. Hierarchical clustering of expression patterns in

KEGG annotated OGs identified variable patterns in Trichodesmium and the microbiome

gene expression from station to station, and over three days of sampling at LDB (Figure

3.3). Submodules in the carbohydrate and lipid metabolism, genetic information process-

ing, and nucleotide and amino acid metabolism modules had elevated expression in the

SD stations relative to LDB. Similar patterns were generally observed in the expression

of microbiome modules, most strikingly in the nucleotide and amino acid metabolism and

environmental information processing modules. In Trichodesmium, exceptions to the trend

included OGs in the ATP synthesis, nitrogen metabolism, phosphate and amino acid trans-

port, two-component regulatory systems, and certain amino acid metabolism submodules,

all of which had elevated relative expression during the three days of samples from LDB

(Figure 3.3).

Hierarchical clustering of expression patterns in Trichodesmium OGs identified shifts in

Trichodesmium gene expression from station to station, and over the three days of sam-

pling at LDB (Figure 3.4a). The nitrogenase enzyme subunit nifH OG peaked at SD2

(Figure 3.4a), while a RuBisCO OG peaked at LDB 1 (Figure 3.4a). The expression of Tri-

chodesmium OGs known to be responsive to low nutrient conditions also showed variation in

expression pattern across the transect (Figure 3.4a). The low P responsive set was composed

of OGs previously shown to have increased relative expression under conditions of phosphate

stress and included the alkaline phosphatases phoA (Tery_3467) and phoX (Tery_3845;

proteins identified as PhoX clustered into two separate OGs, as has been previously ob-

served in natural populations of Trichodesmium (Rouco et al., 2018)), the high affinity phos-

phate binding protein sphX (which is homologous to and clustered into one OG with pstS)

(Tery_3534), phosphite dehydrogenase ptxD (Tery_0368) and the carbon-phosphorus lyase

gene marker phnJ (Tery_5000) (Dyhrman et al., 2006; Orchard et al., 2009; Polyviou et al.,

2015). The iron responsive set included OGs previously shown to have increased transcript

or protein expression in experimental low iron cultures and in situ in low iron environments

and included the flavodoxins fld1 and fld2 which clustered into the same OG (Tery_1666,
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Figure 3.3: Heatmap of the summed relative expression of Trichodesmium and microbiome
orthologous groups (OGs) belonging to KEGG modules (large categories) and submodules
at the short duration (SD) and over three days at the long duration (LDB) stations. Rel-
ative expression values are normalized to row averages for either Trichodesmium or the
microbiome for that particular OG. The carbohydrate and lipid metabolism module was
simplified as follows: carbohydrate metabolism is the sum of carbohydrate metabolism,
central carbohydrate metabolism, glycan metabolism and other carbohydrate metabolism
submodules; lipid metabolism is the sum of fatty acid and lipid metabolism submodules,
The genetic information processing module was simplified as follows: RNA processes is the
sum of the RNA processing and RNA polymerase submodules. No microbiome OGs were
detected in the other amino acid metabolism submodule.
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Tery_2559), fructose bisphosphate aldolase class II fbaA (Tery_1687), the iron-stress in-

duced protein isiA (Tery_1667), and the Fe-stress induced gene idiA (Tery_3377) (Chap-

pell and Webb, 2010; Chappell et al., 2012; Snow et al., 2015b; Webb et al., 2001). Also

assayed were a suite of OGs recently shown to be significantly enriched in cultures of T.

erythraeum IMS101 following prolonged maintenance in co-limiting concentrations of phos-

phorus and iron (herein called the co-limitation responsive set) (Walworth et al., 2017b).

These OGs included the flavin-containing monoxygenase FMO (Tery_3826) that hydrolyzes

organic nitrogen, 5-methyltetrahydropteroyltriglutamate—homocysteine methyltransferase

metE (Tery_0847), the 3-dehydroquinate synthase aroB (Tery_2977), and beta-ketoacyl

synthase (OXSM, Tery_3819 and Tery_3821 which clustered into one OG). All OGs in-

cluded in the three nutrient responsive Trichodesmium sets were expressed at each station

In general, low P and low Fe responsive gene set expression patterns tracked together from

sample to sample. Two exceptions to this trend were the alkaline phosphatase phoA and the

phosphonate lyase phnJ (Figure 3.4a). There were no significant correlations between the

low P responsive OGs and the DIP concentration. The majority of the OGs (aroB, metE,

FMO) in the co-limitation responsive set had similar expression patterns to the majority

of the low P responsive set, with the exception of OXSM (Figure 3.4a). Expression of the

RuBisCO OG was also modulated with this pattern (Figure 3.4a). The expression of the

nifH OG tracked with the Fe responsive set as well as phoA, and OXSM (Figure 3.4a).

The relative enrichment of the low P responsive gene set, low Fe responsive gene set,

and co-limitation gene set were examined from station to station, and over the three days of

sampling at LDB using Kolmogorov-Smirnov tests (Figure 3.4b). This approach estimated

enrichment based on normalized expression levels of the resource responsive genes at indi-

vidual stations relative to the average expression of the set across all stations sampled. In

testing enrichment of the low P responsive set, only the four OGs whose expression clustered

together across the transect (Figure 3.4a) were used. The signal of the low P responsive set

was significantly enriched during the first day sampled at LDB, while the signal in the low

Fe responsive set was significantly enriched at SD2 (Figure 3.4b). The co-limitation set was

not found to significantly deviate from the average expression levels at any station sampled,
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Figure 3.4: Trichodesmium orthologous group (OG) expression patterns. (a) Hierarchically
clustered expression patterns of Trichodesmium OGs with key genes called out. Stars indi-
cates OGs used in subsequent Kolmogorov-Smirnov tests. Colored text indicates phosphorus
(green), iron (brown), co-limitation (blue), or nitrogen (purple) related OGs. (b) Distribu-
tion of expression patterns in OG sets known to be significantly responsive in Trichodesmium
to low phosphorus (P), low iron (Fe), and P/Fe co-limiting conditions. Distributions for
each set at each station were compared to the average distribution across all six stations
using Kolmogorov-Smirnov tests to examine the null hypothesis that the expression of gene
sets at a given station did not deviate significantly from the average expression of that set
across the transect. Whiskers show the normalized enrichment level for the least and most
enriched OG in that set. Boxes denote the upper and lower 25th percentiles, while the line
indicates the median enrichment expression value. Asterisks indicate significance: * p <
0.05, ** p < 0.005. Black triangles denote whether significant stations were increased or
decreased relative to the mean.
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although the overall pattern in expression was similar to that of the low P responsive set

(Figure 3.4b).

3.4.3 Evidence of phosphonate biosynthesis in Trichodesmium

A scaffold of approximately 7,400 bp containing a cassette of genes encoding a phos-

phonate biosynthesis pathway was found in the Trichodesmium partitioned genome bins

(Figure 3.5a). This scaffold contained 6 protein coding regions. The first three genes were

annotated as phosphoenolpyruvate phosphomutase (ppm), phosphonopyruvate decarboxy-

lase (ppd), and 2-aminoethylphosphonate-pyruvate transaminase (2-AEP-TA). These first

two genes are most similar to homologs in the UniRef databaste that belong to the non-

heterocystous diazotroph Planktothrix agardhii, a member of the order Oscillatoriales along

with Trichodesmium. The 2-AEP-TA is homologous to a gene in a Gammaproteobacte-

rial Beggiatoa sp. The fourth, fifth and sixth genes in this scaffold were annotated as a

methyltransferase, a cytidylyltransferase (both homologs to genes in P. agardhii), and a

group 1 glycosyl transferase (homologous to a gene from a Tolypothrix sp., a freshwater

cyanobacterium in the order Nostocales).

In order to verify genome binning of the ppm-containing scaffold into the Trichodesmium

fraction, reassembly was attempted to lengthen this scaffold. This effort extended the length

of the scaffold upstream of the ppm cassette and resulted in the addition of 44 bp to the 5’

end with 95% homology to a non-coding region in the T. erythraeum IMS101 genome, as well

as a protein coding gene fragment with no known annotation (Figure 3.5a). Metagenomic

reads mapped to this scaffold showed extensive coverage of this IMS101 region as well as

mate pairs connecting it to genes downstream in the ppm-containing cassette (Supplemental

Figure B.3).

Comparison of the putative Trichodesmium ppm gene’s amino acid sequence against

experimentally verified phosphonate bond forming enzymes in other organisms showed high

sequence identity (Supplemental Figure 3.4). Across the length of the peptide sequence, the

Trichodesmium Ppm was 72% and 66% similar to sequences from the freshwater cyanobac-

teria Planktothrix sp. and Moorea producens, 65% similar to that of the freshwater ciliate

Tetrahymena, 63% similar to the blue mussel Mytilus edulis, and 35% similar to that of
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Figure 3.5: Annotations, topology and expression levels of a scaffold containing a phospho-
nate biosynthesis cassette recovered from a Trichodesmium identified metagenome bin. (a)
Gene organization and annotations across the scaffold where arrows represent direction of
transcription. The star denotes a region with 95% homology to a non-coding region of the T.
erythraeum IMS101 genome. (b) Normalized expression (transcripts per million, TPM) of
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ation. Abbreviations: ppm, phosphoenolpyruvate phosphomutase; ppd, phosphonopyruvate
decarboxylase; 2-AEP-TA, 2-aminoethylphosphonate-pyruvate transaminase; Me-T, SAM-
dependent methyltransferase; Cy-T, cytidylyltransferase; GT, group 1 glycosyltransferase.
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a bacterium in the Streptomyces genus. Furthermore, closer inspection of the sequences

of all organisms showed 100% identity across residues involved in cofactor and substrate

interactions, as well as strong conservation across other key residues involved in the en-

zyme’s tertiary structure as determined by crystal structure analysis and comparison to

similar enzymes (Supplemental Figure B.4) (Chen et al., 2006). Phylogenetic analysis of

Trichodesmium Ppm placed it in a phylogenetic branch along with sequences from other

N2 fixing freshwater cyanobacteria (Supplemental Figure 3.5).

A metagenome derived from Trichodesmium consortia in the western tropical North

Atlantic (Frischkorn et al., 2017) was also re-screened for proteins with homology to the

Trichodesmium Ppm sequence from this dataset. Five homologous sequences were recovered

from this North Atlantic metagenome, with two proteins falling in the branch of verified

phosphonate producing Ppm proteins. One protein was located on a branch adjacent to the

Trichodesmium Ppm sequences recovered from this South Pacific dataset (Supplemental

Figure B.5). With the exception of the closely related North Atlantic sequence adjacent to

the Ppm sequence recovered from this dataset, the other similar proteins from the South

Pacific and North Atlantic consortia did not exhibit amino acid identity at the key conserved

residues determined from crystal structure analysis (Chen et al., 2006).

The T. erythraeum IMS101 genome was also screened for homologs to the Ppm pro-

tein recovered here, but no sequences with conserved amino acid identity across important

conserved residues were detected. Furthermore, another enzyme responsible for biosynthe-

sis of methylphosphonate, MpnS, was not detected in proteins from the Trichodesmium or

microbiome fractions.

All 6 genes in this scaffold recruited reads after metatranscriptome mapping of each

sample, indicating that all genes in the phosphonate biosynthesis cassette were expressed

at each station, with the exception of the methyltransferase, which recruited no reads from

LDB1 (Figure 3.5b). Relative expression of ppm at the three SD stations and the average

expression across the three LDB samples was significantly positively correlated with surface

water column average abundance (5-25 m) of Clade III Trichodesmium (R = 0.99, p =

0.006, Pearson correlation). Furthermore, the concentration of DIP (10 m) was positively

correlated with both Clade III abundance (R = 0.99, p = 0.009, Pearson correlation) and
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expression of ppm (R = 0.97, p = 0.03, Pearson correlation). There was no significant

correlation between ppm relative expression and Clade I abundance (p = 0.1), or between

DIP concentration and Clade I abundance (p = 0.13). Coincident with expression of phos-

phonate biosynthesis genes at all stations sampled, phosphate reduction by Trichodesmium

colonies was also detected in each sample analysed (Figure 3.5). At the five stations tested,

approximately 2% of the radiolabeled phosphate taken up by colonies was reduced to ei-

ther a LMW phosphonate compound (methylphosphonate, phosphonoacetylaldehyde, or 2-

aminoethylphosphonate) or phosphite (PO3
3−) (Figure 3.5c). Coincident with phosphonate

production, both Trichodesmium and the microbiome possessed and expressed markers for

reduced phosphorus metabolism, including the phosphonate (C-P) lyase phnJ (Tery_5000

in the T. erythraeum IMS101 genome) and ptxD (Tery_0368 in the T. erythraeum IMS101

genome), a gene identified as phosphite dehydrogenase that is implicated in oxidation of

phosphite to phosphate (Polyviou et al., 2015).

3.5 Discussion

3.5.1 Trichodesmium distributions in the oligotrophic WTSP

The WTSP is considered to be among the most oligotrophic environments in the global

ocean due to low concentrations of critical resources like nitrogen, phosphorus and iron, cou-

pled with intense stratification that prevents upwelling of remineralized nutrients (Moutin

et al., 2008). In spite of chronically depleted resources, a diverse assemblage of free-living

and symbiotic diazotrophs thrive in this region (Stenegren et al., 2017). In the WTSP, Tri-

chodesmium is typically abundant, and the Trichodesmium distribution determined here by

clade-specific qPCR agreed with previous analyses along this transect using genus specific

qPCR that showed high abundance in the west, decreasing sharply at the transition into

the gyre (Stenegren et al., 2017). The absolute value of Trichodesmium cells estimated here

must be interpreted with some caution, as cultures and field samples of Trichodesmium are

known to exhibit polypoloidy (Sargent et al., 2016). However, the counts presented here are

tabulated using a standard curve generated from cell counts performed on cultures of Clade

I and Clade III (Rouco et al., 2014, 2016b), which would yield CT values that take into
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account polyploidy, unlike gene standard approaches. Regardless, the consistent trends in

relative abundance observed here and with other methods (Stenegren et al., 2017) suggest

that the observed patterns are robust and that the level of polyploidy does not likely vary

drastically in Trichodesmium populations across the WTSP.

In general, low Trichodesmium relative abundance at the easternmost stations (SD14

and 15) sampled along this transect were found despite high DIP concentrations detected

in this region. This could be due to the low and homogeneous iron concentrations (0.1-

0.3 nM DFe) throughout the entire 0 to 500 m profile at these eastern stations (Guieu

et al., 2018), limiting growth. This is corroborated by the fact that rates of water column

N2 fixation were lowest in the easternmost stations along this transect (Bock et al., 2018;

Bonnet et al., 2018). Further, Trichodesmium distribution and overall rates of N2 fixation

in the water column were positively correlated with iron (Bonnet et al., 2018), the source

of was from shallow hydrothermal vents west of the Tonga arc (at approximately 175 ◦W,

near SD11) (Guieu et al., 2018). Trichodesmium biomass was too low to evaluate gene

expression patterns for the easternmost stations, but regardless, these data are consistent

with the importance of iron concentration as a driver of Trichodesmium distribution and

activities in the WTSP. In addition to iron, phosphorus also likely exerts a strong influence

over Trichodesmium in the WTSP. The surface water concentration of DIP measured along

this transect was low in the context of the global ocean (Sohm et al., 2011) and measured

phosphate turnover times in the water column at some stations on the order of hours

indicated there was intense competition for phosphate (Van Mooy et al., 2009). The WTSP

is poorly sampled relative to other oligotrophic ocean basins (Bonnet et al., 2018; Luo

et al., 2012), and little is definitively known about the canonical resource controls that

characterize this environment over prolonged time periods (Sohm et al., 2011). Herein,

the Trichodesmium distributions were consistent with the potential roles of both iron and

phosphorus in driving the physiological ecology of this genus in the WTSP.
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3.5.2 Expression of metabolic potential in Trichodesmium and its micro-

biome

Trichodesmium does not exist in isolation, as filaments and colonies are associated with

an assemblage of epibiotic microorganisms that co-occur ubiquitously in the environment

(Lee et al., 2017; Rouco et al., 2016a) and contribute a large amount of metabolic po-

tential that could underpin success in oligotrophic, low nutrient environments (Frischkorn

et al., 2017). At the broadest functional level, the microbiome contained approximately 10

times the unique KEGG functions found within the Trichodesmium fraction of the WSTP,

and these functions were largely consistent with those observed previously in the western

North Atlantic (Frischkorn et al., 2017). The presence of unique microbiome transporter

functions, especially those related to the transport of phosphate and metals including iron,

reflect the importance of these resources within the colony microenvironment that is likely

depleted in these key resources. The enrichment of microbiome functions related to the

transport and subsequent metabolism of sugars, carbohydrates and lipids could reflect the

transfer of fixed carbon from host to microbiome, as the genes encoding these functions

are known to oscillate over day night cycles in lockstep with Trichodesmium photosynthesis

and carbon fixation genes (Frischkorn et al., 2018). These oscillations may support res-

piration processes that help maintain an environment favorable for N2 fixation, and the

functional enrichment observed here could underpin interactions within the holobiont that

help maintain N2 fixation in the WTSP, despite the scarcity of resources.

In addition to distinct functions in the metagenome, the expression of broad functional

categories varied for Trichodesmium and the microbiome. Expression of OGs that belonged

to carbohydrate metabolism and nucleotide and amino acid metabolism KEGG modules

were elevated at the three SD stations sampled, relative to the three days of samples ob-

tained from LDB. Arrival at this long duration station coincided with the decline of a phyto-

plankton bloom that had been at this location for approximately two months (De Verneil et

al., 2017). Coincident with this decline in sea surface chlorophyll a, heterotrophic bacterial

populations at LDB differed from other stations both taxonomically and in their response

during experimental incubation with increased dissolved organic compounds from copepods

(Valdés et al., 2018). In Trichodesmium, the decreased relative expression at LDB samples
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in functions related to carbon fixation, DNA and RNA replication, and a suite of amino

acid metabolic functions that require nitrogen relative to the SD stations suggest shifts

away from these energy intensive and cell-division processes with bloom demise. Similarly,

in the microbiome, decreased relative expression of functional categories over the course of

sampling at LDB could reflect shifts in physiology away from reliance on Trichodesmium

or changes in community structure away from common colonizers of Trichodesmium to

opportunistic or saprophytic species. For example, in the coral reef system, pulses of or-

ganic carbon similar to what could be released during a declining phytoplankton bloom,

led to activity shifts in associated bacterioplankton including the increased expression of

virulence factors (Cárdenas et al., 2018). Taken together, these data continue to reinforce

that the microbiome both possesses and expresses unique metabolic potential relative to

Trichodesmium alone, and as such, could play an important role in the physiological ecology

of this important diazotroph.

3.5.3 Expression of resource-related signals in Trichodesmium

The expression of genes that lead to changes in activities like nitrogen fixation (nifH ), or

resource acquisition (e.g. phoX) can be used to assess the physiology of Trichodesmium in

situ. Genes responsive to low phosphorus and iron conditions are particularly well-studied

in Trichodesmium (Chappell and Webb, 2010; Chappell et al., 2012; Dyhrman et al., 2006;

Orchard et al., 2009; Snow et al., 2015b) and a recent culture study assessed the physiological

response of Trichodesmium to coupled low phosphate and low iron conditions, yielding a

set of genes with significantly elevated expression under co-limitation conditions (Walworth

et al., 2017b). Expression of many of these marker genes is heavily repressed in cultures

grown under replete conditions (Chappell and Webb, 2010; Orchard et al., 2009) or in field

samples with relatively high concentrations of resources like iron (Chappell et al., 2012).

Expression of these resource-responsive OG sets was detected in Trichodesmium across all

samples, indicating that there was intense scavenging of phosphorus and iron, consistent

with the low levels of these resources at the stations analyzed for gene expression.

The expression of P-responsive OGs related to phosphate uptake (sphX), phosphoester

hydrolysis (phoX) and the metabolism of phosphite (ptxD) tracked together, with RuBisCO,
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and were significantly enriched at LDB 1. This pattern may indicate increased P stress at

LDB 1 relative to other stations on the transect, and may be an indicator of shifts in

Trichodesmium physiology associated with modulating carbon fixation and or the declining

bloom in this region (De Verneil et al., 2017). For example, increased expression of ptxD may

indicate increased metabolism of phosphite. Notably, the expression of this low P responsive

set, which included OGs related to phosphate uptake (sphX), was significantly enriched at

LDB 1 where the phosphate turnover time was among the lowest observed. Although phnJ

has been shown to be regulated by phosphate concentration in culture studies (Dyhrman et

al., 2006), the phnJ OG here deviated from the expression pattern of the other P-responsive

genes like phoX. As a result, there may be some variability in Trichodesmium processing of

phosphoesters and phosphonates over these stations. Regardless, the expression of phoX,

ptxD, and phnJ OGs underscores the importance of organic phosphorus compounds, and

phosphite in supporting Trichodesmium growth across the WTSP.

The OGs in the low Fe responsive set were also detected at all stations consistent with

the sub-nanomolar concentrations of Fe observed across the transect. This set was signifi-

cantly enriched at SD2, where iron concentration was roughly half that of LDB. Although a

larger dataset would be needed to resolve patterns of iron stress, these data are suggestive

of an increase in Trichdoesmium iron stress at SD2 compared to the other stations. Strik-

ingly, expression of the alkaline phosphatase phoA, and the nitrogenase subunit nifH had

similar expression patterns to this low Fe responsive set. Nitrogenase requires iron and its

expression in Trichodesmium is tightly synchronized with iron processes (Frischkorn et al.,

2018). Conversely, the enzyme PhoA does not require iron, instead using a zinc-magnesium

cofactor, as opposed to PhoX which has an iron-calcium cofactor (Luo et al., 2009; Yong

et al., 2014). In low iron environments, Trichodesmium phoA is known to show enriched

expression relative to that of phoX (Rouco et al., 2018), a strategy that could free up iron

for use in photosynthetic or nitrogen fixation enzymes. Collectively, these results suggests

there is intense scavenging of iron by Trichodesmium in the WSTP, and in this and other

environments where multiple resources can be low or co-limiting, co-factors like iron could

play a role in the phosphorus acquisition strategies employed by Trichodesmium.
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The OGs in the co-limitation responsive set were detected in all samples. The expression

patterns of these co-limitation responsive OGs clustered among both the low P and low Fe

sets, and there were no significant patterns of enrichment between stations. The lack of

significant enrichment in the co-limitation set is consistent with the fact that the low P

and low Fe responsive sets were not simultaneously enriched at the same station. Broadly

however, the expression patterns between low P and co-limitation sets were more similar

to each other than that shown by the low Fe responsive set, suggesting that across these

samples phosphorus was a driver of expression of co-limitation OGs. More field observations

over a greater range in iron and phosphate might further resolve these putative co-limitation

signals, which have not been previously tracked in field populations. Collectively, the OGs

expressed across this WTSP transect are suggestive of the importance of both iron and

phosphorus in driving Trichodsmium physiological ecology in this region.

3.5.4 Phosphonate biosynthesis by Trichodesmium in the WTSP

Phosphate exists in vanishingly low concentrations in the oligotrophic surface ocean

and the activity of diazotrophs increases the demand for phosphorus by relieving nitrogen

stress—a process that is enhanced by periodic increases in iron availability (Moutin et al.,

2005). In low phosphate environments, marine microbes, like Trichodesmium, can hydrol-

yse phosphate from organically bound compounds like phosphoesters and phosphonates,

the concentration of which far surpasses phosphate in the oligotrophic ocean (Dyhrman

et al., 2007). The production and hydrolysis of reduced compounds like phosphonates are

of particular interest because the hydrolysis of methylphosphonate has the potential to re-

lease methane, a potent greenhouse gas (Karl et al., 2008; Repeta et al., 2016). Previous

studies showing biosynthesis of phosphonates by certain Trichodesmium isolates (Dyhrman

et al., 2009) as well as rapid phosphate reduction to phosphonate and phosphite and re-

lease by Trichodesmium colonies in the environment (Van Mooy et al., 2015) implicate

this diazotroph as an important player in phosphonate biogeochemistry, yet the molecular

mechanisms underlying phosphonate biosynthesis are poorly understood for this genus.

A Trichodesmium scaffold containing the full set of genes necessary to synthesize phos-

phonate compounds was recovered from metagenomes assembled from this WTSP transect.
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The Trichodesmium origin of this scaffold is supported by tetranucleotide frequency and

metagenomic read mapping coverage, as well as the presence of a stretch of non-coding

DNA with homology to the T. erythraeum IMS101 genome. Furthermore, the protein in

this scaffold identified as phosphoenolpyruvate phosphomutase (Ppm), the enzyme that

carries out the formation of a carbon-phosphorus bond using phosphoenolpyruvate as a

substrate (McGrath et al., 2013), was phylogenetically most similar to Ppm sequences from

cyanobacteria like Planktothrix that are closely related to Trichodesmium. The phyloge-

netic distance between the Trichodesmium Ppm and those of heterotrophic bacteria further

support that this scaffold was recovered from a Trichodesmium genome and not from a

member of the microbiome.

The molecular machinery necessary to synthesize phosphonates is evolutionarily con-

served and the biosynthesis of phosphonoacetaldehyde is the starting point from which a

diverse suite of organic phosphonate compounds can be produced (McGrath et al., 2013).

Based on the genes in this Trichodesmium scaffold, synthesis begins with the formation

of the carbon-phosphorus bond after molecular rearrangement of phosphoenolpyruvate to

phosphonopyruvate, catalysed by Ppm. Next, phosphonopyruvate decarboxylase (Ppd),

the protein encoded by the following gene in the cassette, likely performs the irreversible

conversion of phosphonopyruvate to phosphonoacetaldehyde which prevents reversion to

the ester bond structure. Finally, the presence of the gene for 2-aminoethylphosphonic

acid pyruvate-transaminase (2-AEP-TA) suggests that phosphonoacetaldehyde is further

converted to 2-aminoethylphosphonate (2-AEP), the organophosphonate that occurs most

commonly in the environment (McGrath et al., 2013).The mpnS gene mediates the pro-

duction of methylphosphonate down stream of ppm in the marine microbes where it has

been detected (Metcalf et al., 2012). There was no evidence of mpnS in Trichodesmium

or the microbiome, but Trichodesmium-derived phosphonates could potentially be further

modified to methylphosphonate by organisms not associated with colonies.

The ppm gene can be found in approximately 7% of microbial genome equivalents re-

covered from the Global Ocean Survey, and of these ppm-containing genomes, 20.6% are

estimated to be cyanobacterial in origin (Yu et al., 2013). A protein with homology to

Ppm was previously detected and attributed to Trichodesmium in metagenomic samples
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from the western North Atlantic (Frischkorn et al., 2017), though this gene was not found

to be part of a 2-AEP synthesis cassette. OGs derived from genes on the ppm-containing

Trichodesmium scaffold identified here recruited metatranscriptomic reads from each sam-

ple sequenced, suggesting active use of these enzymes across the transect. Furthermore,

reduced phosphonate compounds (which would include 2-AEP) were produced from radio-

labeled phosphate taken up by Trichodesmium colonies at each station analysed. Together,

these results clearly illustrate a pathway by which Trichodesmium synthesizes phospho-

nates, and that this pathway is active in the WTSP and likely other environments like the

western North Atlantic, where high rates of phosphate reduction in Trichodesmium colonies

has also been measured (Van Mooy et al., 2015).

The production of a recalcitrant form of phosphorus and its potential release into the

oligotrophic environment could have important consequences for microbial communities.

Phosphonates are a critical source of phosphorus in the oligotrophic ocean, and the ability to

utilize this resource could influence microbial ecology in low nutrient environments. Across

this transect, both Trichodesmium and their microbiome contained and expressed OGs re-

lated to phosphonate catabolism, including the marker of the C-P lyase enzyme complex,

phnJ. Trichodesmium and microbiome phnJ genes have also been detected and expressed

in Trichodesmium communities from the chronically low phosphate western North Atlantic

ocean as well as the North Pacific subtropical gyre (Dyhrman et al., 2006; Frischkorn et

al., 2017, 2018). In addition to the production and hydrolysis of phosphonate compounds,

we also detected evidence of the use of other forms of reduced phosphorus. The expres-

sion of the ptxD gene which is responsible for the oxidation of phosphite, another reduced

phosphorus compound (Polyviou et al., 2015), was also expressed by Trichodesmium and

the microbiome at all stations sampled. This finding suggests active transformation and

exchange of reduced phosphorus compounds between consortia members. In the low phos-

phorus western North Atlantic, up to 16% of the phosphate taken up by Trichodesmium

colonies has been shown to be reduced and subsequently released from cells, an amount of

phosphorus cycling that rivals the amount input to marine systems from allochthonous or

atmospheric sources (Van Mooy et al., 2015). The evidence of utilization of these traits

across additional geochemical environments, like in the WTSP, and the large quantities
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of phosphorus they recycle suggests that phosphonate cycling composes an integral facet

of the Trichodesmium holobiont’s physiology, yet the reasons behind this cycling remain

enigmatic. Not all microbes can metabolize phosphonates (Villarreal-Chiu et al., 2012)),

therefore it could also be plausible that formation of such compounds creates a cryptic phos-

phorus pool that would in part restrict access to this critical nutrient by other microbes.

Uptake and reduction to a more recalcitrant form as a mechanism of luxury storage exclu-

sive to members of the Trichodesmium holobiont is supported by the significant positive

correlation between expression of ppm and DIP concentration. In short, exchange of these

compounds within the Trichodesmium holobiont, especially if through a cryptic pool, could

help support N2 fixation in Trichodesmium by modulating access to bioavailable phosphorus

in the oligotrophic WTSP (Van Mooy et al., 2015).

Marine N2 fixation is expected to increase in future oceans that are predicted to have

higher temperatures and CO2 concentration (Hutchins et al., 2007), and Trichodesmium

cultures incubated in high CO2 conditions exhibited irreversibly increased rates of N2 fix-

ation (Hutchins et al., 2015). In such conditions, cycling of phosphonate compounds that

are not accessible to the full microbial community could support enhanced N2 fixation if

enough iron is available, the release of new nitrogen into the water column and subsequently

fuel primary production. In future studies it will be important to assay how future ocean

conditions will alter the clade distribution of Trichodesmium in the environment, as this

could play a role in determining the potential flux of phosphonate compounds from colonies

to the water column.

3.6 Conclusions

Marine microbes interact and alter the environment through abiotic transformations as

well as through biotic interactions with one another and across trophic levels, and these

processes work in tandem to influence global biogeochemical cycles. Understanding these

processes in situ is of paramount importance to forecasting the ocean’s role in the future

climate, yet challenges persist with sampling remote locations and filling knowledge gaps

surrounding the ecology and physiology of key species. The OUTPACE research expedition
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afforded a unique opportunity to investigate communities of the keystone N2 fixer Tri-

chodesmium and their microbiome in the under-sampled South Pacific. Metagenomic and

metatranscriptomic data showed a majority of unique physiological functions within the

microbiome, many of which were expressed in situ, and these functions may be important

to Trichodesmium physiological ecology in this environment. Patterns of OG expression in

low Fe responsive, low P responsive, and co-limitation sets suggested that iron and phos-

phorus are highly scavenged and that Trichodesmium variably experienced changes in these

resources, which could modulate growth and N2 fixation in situ. A Trichodesmium gene

cassette for the biosynthesis of the phosphonates, its expression, and corresponding phos-

phate reduction rate measurements suggested that Trichodesmium is producing reduced

phosphate in the WTSP. This finding expands the environments where phosphate reduc-

tion has been detected, and confirms the role of Trichodesmium in this poorly understood

aspect of phosphorus biogeochemistry. Collectively, these data underscore the importance

of iron and phosphorus, and the microbiome, in jointly driving the physiological ecology of

this key diazotroph in the WTSP.
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Chapter 4

Coordinated gene expression

between Trichodesmium and its

microbiome over day-night cycles

in the North Pacific Subtropical

Gyre

This chapter was originally published as Frischkorn, K.R., Haley, S.T., and Dyhrman, S.T. (2018).

Coordinated gene expression between Trichodesmium and its microbiome over day-night cycles in the North

Pacific Subtropical Gyre. ISME J. 12, 997-1007.
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4.1 Abstract

Trichodesmium is a widespread, N2 fixing marine cyanobacterium that drives inputs of

newly fixed nitrogen and carbon into the oligotrophic ecosystems where it occurs. Colonies

of Trichodesmium ubiquitously occur with heterotrophic bacteria that make up a diverse mi-

crobiome, and interactions within this Trichodesmium holobiont could influence the fate of

fixed carbon and nitrogen. Metatranscriptome sequencing was performed on Trichodesmium

colonies collected during high frequency Lagrangian sampling in the North Pacific Subtrop-

ical Gyre (NPSG) to identify possible interactions between the Trichodesmium host and

microbiome over day-night cycles. Here we show significantly coordinated patterns of gene

expression between host and microbiome, many of which had significant day-night period-

icity. The functions of the co-expressed genes suggested a suite of interactions within the

holobiont linked to key resources including nitrogen, carbon, and iron. Evidence of micro-

biome reliance on Trichodesmium-derived vitamin B12 was also detected in co-expression

patterns, highlighting a dependency that could shape holobiont community structure. Col-

lectively, these patterns of expression suggest that biotic interactions could influence colony

cycling of resources like nitrogen and vitamin B12, and decouple activities, like N2 fixation,

from typical abiotic drivers of Trichodesmium physiological ecology.

4.2 Introduction

The cyanobacterium Trichodesmium is biogeochemically important in nutrient-poor

oligotrophic ocean ecosystems because of its ability to supply fixed nitrogen to the water

column (Bergman et al., 2013). Through biological N2 fixation, Trichodesmium is estimated

to supply approximately half of the total fixed nitrogen in the ocean (Bergman et al., 2013;

Sohm et al., 2011). As such, Trichodesmium plays a keystone role in fueling marine pri-

mary production that is otherwise limited by the availability of nitrogen across much of the

oligotrophic ocean gyres (Falkowski et al., 1998; Zehr, 2011). The dissolved organic matter

produced through this primary production is one of the largest pools of reduced carbon on

earth, and its fate in the ocean is hypothesized to be greatly influenced by microbe-microbe

interactions (Moran et al., 2016). These interactions can span entire microbial commu-
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nities and are subject to environmental and evolutionary pressures that work in tandem

to influence ecology and subsequent biogeochemical impact (Brussaard et al., 2016). In

marine microbial communities, photosynthetic and heterotrophic bacteria have been shown

to exhibit synchronous periodic gene expression patterns over day-night cycles that are at-

tributed to cascades in metabolic activity sparked by primary productivity (Aylward et al.,

2015; Ottesen et al., 2014; Wilson et al., 2017). The taxonomic patterns of these responses

in free-living communities were similar between coastal and open ocean systems, suggesting

conserved ecological interactions and synergistic activities that could be used to inform or

predict biogeochemical transformations (Aylward et al., 2015).

The presence of bacteria on Trichodesmium filaments was first noted in the 1980s (Paerl

et al., 1989), and it is now appreciated that Trichodesmium colonies ubiquitously occur with

these heterotrophic bacterial epibionts (Frischkorn et al., 2017; Gradoville et al., 2017; Lee

et al., 2017; Rouco et al., 2016a). This microbiome is distinct from the bacteria found free-

living in the water column (Hmelo et al., 2012), and varies across ocean basins (Rouco et al.,

2016a). Such tight associations between photosynthetic diazotroph and heterotrophic bacte-

ria, in conjunction with detection of microenvironments of depleted oxygen within colonies,

led to the hypothesis that these interactions could facilitate exchange of organic carbon,

fixed N2, iron, and vitamins (Paerl et al., 1989). Metagenomic analyses of Trichodesmium

consortia have begun to elucidate the functional underpinnings of the relationship between

host and microbiome, with the abundance and diversity of microbiome genes related to

phosphorus acquisition, iron cycling, carbon metabolism and vitamin B12 transport further

suggesting that the exchange of critical resources between host and microbiome could occur

(Frischkorn et al., 2017; Lee et al., 2017).

The functional potential recovered from Trichodesmium consortia indicates a suite of

mechanisms that might underlie previously observed dynamics between host and micro-

biome. For example, selective modulation of the microbiome community with quorum

sensing molecules, which Trichodesmium does not have receptors for, resulted in increased

activity of the organic phosphate hydrolyzing enzyme alkaline phosphatase within colonies

(Van Mooy et al., 2012). This finding suggests that the interactions and activities of the

microbiome could modulate phosphorus cycling in colonies, and underscores gene expres-



CHAPTER 4. HOST-MICROBIOME COORDINATION 68

sion analyses that indicate a phosphorus-limited microenvironment within colonies may be

decoupled from the surrounding water column (Hewson et al., 2009a). The dynamics of

how the other metabolic functions observed in metagenomes are partitioned and expressed

between Trichodesmium and their microbiome may yield insight into the nature of this rela-

tionship, helping to determine whether epibionts are important members of these consortia

or simply stochastic colonizers.

New evidence of conserved relationships between Trichodesmium and specific epibionts

across ocean basins (Lee et al., 2017; Rouco et al., 2016a) suggest that these host-microbiome

interactions are widely conserved and could be used to inform or predict biogeochemical

transformations, as has been demonstrated for free-living communities (Aylward et al.,

2015). For example, synchronization of carbon and nitrogen metabolic processes between

Trichodesmium and the microbiome could alter the flux of limiting resources like nitrogen

from the colony to the water column, and ultimately influence the primary production

and carbon cycling these resources support. Here we used metatranscriptomic sequencing

of Trichodesmium colonies collected during high frequency Lagrangian sampling over day-

night transitions in the NPSG to identify the coordinated patterns in host and microbiome

gene expression that underpin interactions within the holobiont.

4.3 Materials and methods

4.3.1 Sample collection

Sampling was carried out between 27 July and 30 July, 2015 in the NPSG (Figure

4.1a). Trichodesmium samples were obtained with six hauls of a 130 µm mesh size net

tow through surface sea water every four hours starting at approximately 1:30 pm on 27

July. Trichodesmium colonies were isolated by hand and washed of non-tightly associated

microorganisms by serial transfer through 0.2 µm sterile-filtered surface seawater as pre-

viously described (Frischkorn et al., 2017). Studies using a similar approach to colony

collection have shown that the dominant heterotrophic bacterial species tightly associated

with Trichodesmium colonies are conserved within, and to some extent across, ocean basins

(Lee et al., 2017; Rouco et al., 2016a). Therefore, this approach should yield the sta-
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ble, tightly associated microbiome, limiting the presence of opportunistic colonizers, which

would contribute to colony function in a transient way. An average of 14 Trichodesmium

colonies were isolated and preserved per time point. Sampling was performed under red

light during the time points at night. Colonies were cleaned within roughly 15 minutes

of collection and immediately filtered by gentle vacuum onto 5 µm, 47 mm polycarbonate

filters and stored in liquid nitrogen until RNA extraction.

4.3.2 RNA extraction and sequencing

Prokaryotic RNA was extracted with the Qiagen RNeasy Mini Kit (Qiagen, Hildern,

Germany) with a minor modification to the lysis step. Briefly, approximately 500 µL zirco-

nia/silica beads (0.5 mm) were added to each sample tube after the addition of Buffer RLT,

and the samples were vortexed for 5 minutes. The resulting lysate was processed as per the

remainder of the manufacturer instructions, including on-column DNase digestion (RNase-

free DNase Kit, Qiagen). Prokaryotic RNA was enriched in the eluted total RNA with a

MICROBEnrich kit (ThermoFisher Scientific, Waltham, MA, USA) following manufacturer

instructions. Ribosomal RNA was removed using the Ribo-Zero Magnetic Kit for bacteria

(Illumina, San Diego, CA, USA) as per manufacturer instructions. Purified prokaryotic

mRNA was concentrated using the RNeasy MinElute Cleanup Kit (Qiagen) according to

the directions provided by the manufacturer. The mRNA concentration and quality was

assessed with a BioAnalyzer using the RNA 6000 Nano Kit (Agilent Technologies, Santa

Clara, CA, USA). The Illumina TruSeq RNA sample preparation kit was used by the JP

Sulzberger Genome Center at Columbia University (CUGC). Sequencing of 60 million paired

end reads from each sample was performed on an Illumina HiSeq at the CUGC. Sequences

were deposited in the NCBI SRA under accession number PRJNA381915.

4.3.3 Metatranscriptome analysis

Sequenced reads were trimmed, normalized, and assembled following the Eel Pond Pro-

tocol for mRNAseq (Brown et al., 2013a) yielding 1,809,695 contigs total from across the

16 time points. To create one master assembly to which reads from all 16 time points

could be mapped, individual assemblies were pooled together and clustered at 98% identity



CHAPTER 4. HOST-MICROBIOME COORDINATION 70

Figure 4.1: Sampling location and holobiont co-expression modules. (a) Lagrangian sam-
pling was carried out Northeast of Station ALOHA in the North Pacific Subtropical Gyre
with an approximate location indicated by a dashed box in the left panel, with an expanded
view in the right panel. Sampling followed a drifter track (gray line) with dots demarcating
where samples were taken and the light conditions at the time of collection, either night
(filled symbols) or day (open symbols). (b) A dendrogram showing the 33 co-expression
modules generated from Trichodesmium and microbiome metatranscriptomes.
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using CD-Hit to combine highly similar sequences across the samples (Alexander et al.,

2015; Frischkorn et al., 2014; Li and Godzik, 2006; Varaljay et al., 2010). This clustering

yielded 1,247,416 contigs total. The merged assembly was then filtered to remove sequences

shorter than 210 nucleotides and translated into corresponding amino acid sequences using

Prodigal’s metagenomics setting (Hyatt et al., 2010).

Taxonomic affiliation of contigs into the Trichodesmium and microbiome subsets was

determined using DIAMOND (Buchfink et al., 2015) against the NCBI nr database and an-

alyzed using MEGAN5 software (Huson et al., 2013). Functional annotations were obtained

by DIAMOND against the UniRef90 database (Suzek et al., 2007) as well as the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) with the online Automatic Annotation Server using

the single-directional best-hit method targeted to prokaryotes and with the metagenomic

option selected. Consensus annotations for orthologous groups (OGs) were determined by

taking the most abundant UniRef or KEGG annotation for all proteins within that group.

In some instances, similar KEGG submodule categories were combined to simplify figures.

The amino acid metabolism category includes arginine and proline metabolism, aromatic

amino acid metabolism, branched-chain amino acid metabolism, cysteine and methionine

metabolism, histidine metabolism and serine and threonine metabolism KEGG submod-

ules. The carbohydrate metabolism category includes central carbohydrate metabolism and

other carbohydrate metabolism KEGG submodules. The sugar transport and metabolism

includes saccharide and polyol transport system and sugar metabolism KEGG submodules.

The transport category includes ABC-2 type and other transport systems, metallic cation,

iron-siderophore and vitamin B12 transport system, mineral and organic ion transport sys-

tem, and peptide and nickel transport system KEGG submodules.

Read mapping to clustered and size-filtered contigs was carried out with RSEM and the

default settings with the exception of using the paired end option and the bowtie2 option

(Li and Dewey, 2011). On average, over 98% of reads from each time point mapped to this

clustered assembly. Read counts were summed across OGs separately for Trichodesmium

and heterotrophic bacterial epibiont-identified contigs. The OGs were generated by per-

forming a reciprocal comparison with DIAMOND followed by MCL (Markov cluster algo-

rithm) set to an inflation parameter of 1.4, as described elsewhere (Bertrand et al., 2015;
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Frischkorn et al., 2017), yielding 462,229 OGs total. To keep downstream analyses con-

servative, only those OGs with read coverage of greater than 100 and 200 reads total for

the Trichodesmium and microbiome subsets, respectively, across all time points were used

in downstream analyses. This approach is consistent with previous work in other systems

(Thaben and Westermark, 2014; Wilson et al., 2017). With this conservative approach, a

total of 3,188 Trichodesmium OGs and 4,827 microbiome OGs recruited sufficient read cov-

erage across the 16 samples for subsequent analyses. Read counts of these abundant OGs

in the Trichodesmium and microbiome subsets were normalized using the Variance Stabiliz-

ing Transformation (VST) in DESeq (Anders and Huber, 2010). Significant periodicity in

normalized OG expression was determined using Rhythmicity Analysis Incorporating Non-

parametric Methods (RAIN) (Thaben and Westermark, 2014) in R. OGs with p-values less

than 0.1 after false-discovery rate correction (Benjamini and Hochberg, 1995) were consid-

ered to have significant periodicity, a cutoff value that has been used previously (Wilson

et al., 2017).

To cluster consortia OGs into co-expression modules, counts from Trichodesmium and

microbiome subsets were first pooled. The combined subsets were then normalized as

a whole using VST in DESeq (Anders and Huber, 2010). Normalized read counts were

then clustered using the R package WGCNA (Langfelder and Horvath, 2008) with a soft-

threshold of 6 selected after a scale-free network topology test and the “blockwiseModules”

command set with a minimum module size of 30 OGs and a cut height of 0.25, as previously

determined (Wilson et al., 2017). A simplified visualization of the cluster dendrogram pro-

duced by WGCNA was generated by hierarchically clustering the pooled, normalized read

counts in each module using the hclust command in R.

4.4 Results and discussion

4.4.1 Coordinated expression in the Trichodesmium holobiont

High frequency Lagrangian sampling of Trichodesmium colonies generated a total of

16 metatranscriptome samples spread over four day-night transitions in the NPSG (Figure

4.1a). After mapping to a merged de novo assembly, read counts were partitioned between
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Trichodesmium and all heterotrophic bacteria orthologous groups (OGs) as determined by

MEGAN (Huson et al., 2013) and summed for each OG. The microbiome OG subset was

dominated by the genera Pseudoalteromonas and Alteromonas. Other abundant genera

included Fulvivirga (Bacteroidetes) and Nisaea (Alphaproteobacteria). These genera are

common members of the Trichodesmium microbiome based on previous 16S and metage-

nomic surveys of Trichodesmium epibiont diversity (Frischkorn et al., 2017; Gradoville et

al., 2017; Lee et al., 2017; Rouco et al., 2016a).

Expression profiles from the Trichodesmium and microbiome OGs were analyzed with

a weighted correlation network analysis (WGCNA) (Aylward et al., 2015; Langfelder and

Horvath, 2008; Wilson et al., 2017) to ascertain if there was significant co-expression between

Trichodesmium and the microbiome. Expression patterns were significantly coordinated

between Trichodesmium and the microbiome, with 3,140 Trichodesmium and 4,730 epibiont

OGs clustering into 33 WGCNA co-expression modules (Figure 4.1b). The presence of

OGs from both Trichodesmium and the microbiome within every significant co-expression

module indicates gene expression is tightly integrated within the holobiont. Many co-

expression modules were also dominated by microbiome OGs (Figure 4.1b), such as Module

9, which was composed of a suite of different functions including those related to ribosomes,

sugar transport and metabolism, ATP synthesis, and phosphate and amino acid transport

functions (Supplemental Figure C.1). The presence of microbiome dominated modules

suggests that there is significant co-expression between epibionts. Together, these patterns

of co-expression suggest coordination between Trichodesmium and their microbiome, as well

as between epibionts within the microbiome.

Dynamics within the majority of these co-expression modules were defined by diel oscil-

lations in gene expression that had significant periodicity as determined by RAIN (Thaben

and Westermark, 2014)(Figure 4.1b). In Trichodesmium, these periodic OGs included gene

sets related to photosynthesis, phosphorus, iron, N2, and carbon fixation among others (Sup-

plemental Figure C.2). Global expression patterns in Trichodesmium would be expected to

be dominated by diel patterns, as photosynthetic and N2 fixing activities are both tightly

regulated across day-night cycles (Bergman et al., 2013). Here, periodic microbiome expres-

sion patterns strikingly mirrored those observed in Trichodesmium (Supplemental Figure
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C.3). In the microbiome, OGs with day-night periodicity included genes related to stress

responses, nitrogen metabolism, carbon metabolism, and cofactor and vitamin biosynthesis

among others (Supplemental Figure C.2). Similar synchronous diel transcriptional oscil-

lations have also been observed between unicellular marine cyanobacteria and free-living

heterotrophic bacteria, as heterotrophic activity appears to be tied to pulses in primary

production (Aylward et al., 2015; Ottesen et al., 2014). Overall, microbiome activities are

likely tied to both Trichodesmium photosynthesis and N2 fixation as the release of dissolved

nitrogen and organic carbon is tied to these processes. Though Trichodesmium fixes both

carbon and N2 during daylight (Berthelot et al., 2015), net release of organic carbon, dis-

solved organic nitrogen, and ammonium oscillate throughout the day and night (Wannicke

et al., 2009). The extensive coordination and functional characteristics in gene expression

between Trichodesmium and their microbiome suggest the physiology of these associated

microbes are attuned to the host, and could thus influence the cycling and fate of carbon,

nitrogen and other resources in the colony microenvironment.

4.4.2 Coordinated expression in nitrogen and carbon pathways

The OGs related to Trichodesmium N2 fixation, including the genes of the nitrogenase-

encoding nif cassette, were clustered into co-expression Module 3. Module 3 contained 348

Trichodesmium and 57 microbiome OGs (Figure 4.1b) and was dominated by OGs with

maximum or minimum expression just prior to peak photosynthetically active radiation

(PAR) and strong day-night periodicity (Figure 4.2a). Strikingly, Module 3 contained a

suite of microbiome OGs related to nitrogen processes, which mirrored expression of nitro-

genase subunit OGs in Trichodesmium (Figure 4.2b). These nitrogen-related microbiome

OGs include aminotransferases, amino acid adenylation proteins, and peptidases with sig-

nificantly periodic patterns (Figure 4.2b). Trichodesmium releases biologically available

nitrogen in culture and the environment, even when maintained axenically (Bronk et al.,

1994; Mulholland et al., 2006; Mulholland et al., 2004; Wannicke et al., 2009). The extent to

which this release facilitates cultivation of a symbiotic heterotrophic bacterial microbiome

or whether associated epibionts are simply a product of opportunistic, stochastic colo-

nization remains an outstanding question. However, these expression data, coupled with



CHAPTER 4. HOST-MICROBIOME COORDINATION 75

recent observations of ubiquitous epibionts across ocean basins (Lee et al., 2017; Rouco

et al., 2016a), underscores conserved relationships in these consortia wherein the trans-

fer of Trichodesmium-derived fixed N2 may synchronize microbiome metabolism with host

physiology.

Expression patterns between host and microbiome also indicate possible synchrony be-

tween photosynthetic carbon fixation and release by Trichodesmium and the respiration of

that organic carbon by the microbiome. Module 8 had strong day-night periodicity in both

Trichodesmium and the microbiome and contained a high proportion of Trichodesmium

photosystem and carbon fixation OGs, including a RuBisCO subunit, three photosystem

subunits and a phycoerythrin assembly protein (Figure 4.3a). Trichodesmium photosyn-

thetic and carbon fixation related OGs were segregated into two significantly co-expressed

patterns, which had peak expression during light and dark periods (Figure 4.3b). The

microbiome subset of this module contained a number of functions that suggested syn-

chronization of carbon metabolism with Trichodesmium including those related to gluco-

neogenesis, a sugar binding protein, sugar transporter, and carbohydrate active enzymes,

as well as OGs related to ribosome functions and amino acid metabolism (Figure 4.3).

The expression patterns in these microbiome OGs exhibited peaks in both light and dark

conditions that mirrored those of Trichodesmium photosystem and carbon fixation-related

gene expression (Figure 4.3b). The microbiome pyruvate carboxyltransferase, an enzyme

from gluconeogenesis and a transporter of C4-dicarboxylates like succinate, fumarate, and

malate (Janausch et al., 2002) peaked during daylight. Peaking during nighttime were

two microbiome glycosyltransferase enzymes, along with Trichodesmium RuBisCO (Figure

4.3b). Overall, these microbiome expression patterns are consistent with organic carbon

metabolism in the microbiome being tuned to periodic fluxes of Trichodesmium organic

carbon.

Trichodesmium releases an estimated 50% of fixed carbon (Wannicke et al., 2009) and up

to 20% of fixed N2 from colonies (Berthelot et al., 2015). This loss of resources is paradoxical

in the oligotrophic ocean, however it may support microbiome colonization and beneficial

syntrophic interactions with the holobiont. Tracing these potential interactions in situ

is challenging, but they could exert important unrecognized feedbacks on the physiological
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Figure 4.2: Resource-related patterns in the nif-containing co-expression Module 3. (a) Pho-
tosynthetically active radiation (PAR) levels are shown over the duration of the Lagrangian
sampling period and correspond to vertical bars in the heatmap, which depicts row averaged
relative expression of the significantly co-expressed Trichodesmium and microbiome ortholo-
gous groups (OGs). Black bars denote rows that are microbiome OGs. Colored circles show
functional annotations based on KEGG submodules. (b) Details of select OG expression in
Module 3 highlighting patterns between Trichodesmium and the microbiome related to ni-
trogen and iron metabolism. Grey bars indicate dark conditions. Tricho., Trichodesmium.
Nitrogenase avg., average normalized expression for all nif genes clustered in Module 3.
Microbiome N metab. avg., average normalized expression of nitrogen-related OGs in the
microbiome subset in Module 3, including aminotransferases, amino acid adenylation pro-
teins, and peptidases. Tricho. other Fe processes avg., average normalized expression of
iron-related OGs including cytochromes, iron-sulfur cluster assembly protein, iron-requiring
hydrogenase, ferrochelatase, ferredoxin, and ferredoxin-dependent bilin reductase.
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Figure 4.3: Patterns in carbon fixation and respiration in co-expression Module 8. (a) Pho-
tosynthetically active radiation (PAR) levels are shown over the duration of the Lagrangian
sampling period and correspond to vertical bars in the heatmap, which depicts row averaged
relative expression of the significantly co-expressed Trichodesmium and microbiome orthol-
ogous groups (OGs). Black bars denote rows that are microbiome OGs. Colored circles
show functional annotations based on KEGG submodules. (b) Detail of expression pat-
terns in Trichodesmium photosystem and carbon fixation OGs and microbiome respiration
OGs. Gray bars indicate dark conditions. Tricho., Trichodesmium. Microbiome respiration
OGs averaged include pyruvate carboxyltransferase and a C4-dicarboxylate transporter in
the top panel and two glycosyltransferases in the bottom panel.
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ecology of Trichodesmium populations. For example, one benefit of the microbiome could be

that microbiome respiration of Trichodesmium organic carbon alleviates carbon limitation

of photosynthesis as well as O2 inhibition of N2 fixation (Lee et al., 2017; Paerl et al.,

1989). Such a feedback is consistent with the coordinated patterns of gene expression

between host and microbiome seen here. If the microbiome modulates the Trichodesmium

microenvironment in a way that decouples rates of carbon and N2 fixation from water

column geochemistry, or other abiotic drivers of these activities, this would exacerbate

ongoing challenges in modeling these processes in the oligotrophic ocean (Capone et al.,

2005; McGillicuddy, 2014). Further, the coordinated expression of microbiome nitrogen

and carbon metabolism genes with Trichodesmium activities, like N2 fixation and carbon

fixation, might allow the microbiome to influence the net flux of resources to the water

column.

4.4.3 Transcriptional evidence of shared phosphorus and iron demand

In addition to the nif enzyme subunits and several OGs related to photosynthesis, Mod-

ule 3 also contained a number of additional Trichodesmium OGs encoding iron-requiring

proteins (Figure 4.2b), suggesting complex coordination of resources across these processes.

In Crocosphaera, a marine diazotroph that decouples oxygen evolving photosynthesis and

N2 fixation between day and night respectively, the necessary iron quotas are met by degra-

dation of metalloenzymes that liberate and subsequently repurpose iron across different

processes over day-night cycles (Saito et al., 2011). Unlike Crocosphaera, Trichodesmium

cannot shuttle iron between photosynthetic and N2 fixing processes because both occur

during the day. The majority of Trichodesmium iron-requiring OGs in Module 3 had peak

daytime expression that mirrored nif and photosystem expression (Figure 4.2b; Figure

4.3b), and included cytochromes, ferredoxin, ferrochelatase, ferredoxin-dependent bilin re-

ductase, an iron-sulfur cluster assembly protein, and an iron-requiring hydrogenase. Also

peaking during daylight in this module was an OG identified as flavodoxin (Figure 4.3b),

an electron transport protein that does not require iron and can substitute for ferredoxin

during low iron conditions (Erdner and Anderson, 1999). In contrast, the expression of

an OG identified as heme oxygenase, an enzyme involved in liberating iron from organic
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complexes (Saito et al., 2011), was opposite of nif expression in Trichodesmium (Figure

4.2b). In Crocosphaera, heme oxygenase also showed diel variability with peak expression

opposite that of nitrogenase (Saito et al., 2011), suggesting that this enzyme could be used

to liberate iron for cellular processes that are not related to N2 fixation. In Module 3, a

cytochrome biogenesis gene was the only iron-requiring OG that had expression dynamics

similar to heme oxygenase (Figure 4.2b), indicating that iron liberated at night could be

repurposed for use in electron transport processes. Overall, the dynamics of gene expres-

sion in iron-related OGs in Trichodesmium underscore high daytime iron requirements that

likely modulate competition for this critical resource within the holobiont over day-night

cycles.

In addition to nitrogen and iron processes, Trichodesmium also expressed OGs for phos-

phate uptake in Module 3, with significantly periodic daytime expression peaks that were

slightly offset from expression of the OGs for phosphonate hydrolysis, which also had signifi-

cant periodic expression but at a later peak time (Supplemental Figure C.4). These patterns

likely indicate increased daytime demand for phosphorus to support growth and N2 fixa-

tion in Trichodesmium. Coincident with the expression of these Trichodesmium genes in

Module 3 was a suite of microbiome OGs including the chaperone htpG, one general stress

protein, and a uspA-like universal stress protein (Figure 4.2b). In other species of bacteria,

these protein families have been implicated in a variety of functions which are modulated in

response to stressors such as limitation for key resources like phosphorus and iron as well as

exposure to antibiotics and oxidative agents (Liu et al., 2007; Nachin et al., 2005). These

patterns suggest that relative to nitrogen, there may be an offset in the peak bioavailability

of resources like phosphorus or iron to the microbiome. This offset could result in resource

limitation scenarios that oscillate within the holobiont microenvironment. These data also

highlight the complexity of interactions within the holobiont that span multiple resources.

For example, time periods of peak N2 fixation and photosynthesis, when biologically avail-

able resources should be highest for the microbiome, are concurrent with microbiome cellular

stress. In conjunction with co-expression in nitrogen and carbon functions, this observation

could indicate a system where modulation of Trichodesmium-derived resources maintains

a stable, tightly-regulated relationship between the host and microbiome. In contrast, at
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the end of a bloom Trichodesmium releases an abundance of organic material causing a

change in community composition of the associated bacteria hypothesized to be related to

the growth of opportunistic copiotrophs (Spungin et al., 2016). A similar phenomenon has

also been observed in bacteria that colonize corals, where an abundance of labile carbon

resulted in a shift towards more virulent activities (Cárdenas et al., 2018). During non-

bloom conditions in Trichodesmium, avoiding such a resource-rich environment could help

maintain a beneficial microbiome and prevent the growth of copiotrophs that could skew

potential interactions towards those that are deleterious or parasitic.

4.4.4 Microbiome dependence on Trichodesmium cobalamin

Despite the critical importance of the B12 vitamin cobalamin to all organisms, only

select bacteria and archaea are capable of de novo cobalamin biosynthesis, making exchange

between producers and non-producers critical (Bertrand et al., 2015; Sañudo-Wilhelmy

et al., 2014; Warren et al., 2002). Based on genome sequence analysis, Trichodesmium

should possess the capability for de novo cobalamin biosynthesis (Helliwell et al., 2016),

and OGs related to cobalamin production were detected and expressed in Trichodesmium

across several co-expression modules largely without significant diel periodicity (Figure 4.4a;

Supplemental Figure C.5). Only one OG in the cobalamin biosynthesis pathway (cobW )

was detected in the microbiome, which indicates that these genes were either not expressed

at a high enough level to pass our analysis threshold, or that the microbiome members do

not possess the capability to synthesize cobalamin. Together with the recent finding that a

conserved Trichodesmium microbiome member is a cobalamin auxotroph (Lee et al., 2017)

and that marine diazotrophs are known to secrete large amounts of this vitamin (Bonnet et

al., 2010), these results suggest that Trichodesmium supplies cobalamin to the microbiome.

Recent findings have shown the form of cobalamin produced by cyanobacteria, pseudo-

cobalamin, is not readily bioavailable to heterotrophic organisms (Heal et al., 2017; Helliwell

et al., 2016). Prior to use by heterotrophic bacteria, an adenine ligand on cyanobacterial

pseudocobalamin must be exchanged with 5,6-dimethylbenzimidizole (DMB)—a process

that relies on an exogenous supply of DMB, de novo biosynthesis of DMB with the bluB

gene or the alternative oxygen-sensitive bzaABCDE pathway (Hazra et al., 2015)—and fi-



CHAPTER 4. HOST-MICROBIOME COORDINATION 81

Figure 4.4: Detection of cobalamin pathway orthologous groups (OGs) and related tran-
scriptional patterns. (a) Presence and absence of OGs from the transcriptome data in the
de novo cobalamin biosynthesis, uptake and modification, and utilization pathways in Tri-
chodesmium and the microbiome. *Only cobT was detected in the microbiome. Colored
circles indicate corresponding expression patterns that are depicted in panel b. (b) Detail
of expression patterns in key cobalamin modification and utilization OGs in Trichodesmium
and the microbiome. FMN, flavin mononucleotide; DMB, 5,6-dimethylbenzimidizole; Met.,
methionine. Tricho., Trichodesmium. Grey bars indicate dark conditions.
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nally the activation of DMB with the enzyme nicotinate-nucleotide-dimethylbenzimidazole

phosphoribosyltransferase (cobT ) (Heal et al., 2017; Helliwell et al., 2016; Taga et al., 2007).

Within the microbiome, the OG for cobalamin uptake (cobA/O) was detected in Module

4, a module that also contained a suite of significantly co-expressed Trichodesmium OGs

for cobalamin synthesis and cobalamin-dependent methionine synthase (Figure 4.4b; Sup-

plemental Figure C.1; Supplemental Figure C.5). Supporting the hypothesis that the mi-

crobiome is using Trichodesmium-derived cobalamin, the microbiome methionine synthase

was clustered in a co-expression module that also contained microbiome cobT (Figure 4.4b).

However, despite this transcriptional evidence for microbiome conversion of Trichodesmium-

derived pseudocobalamin and subsequent use, homologs of bluB and bzaABCDE were not

detected in the microbiome subset, indicating that essential DMB is likely supplied from a

source outside the microbiome.

Contrary to the overwhelming majority of cyanobacteria that do not possess the capa-

bility to synthesize or activate DMB, the Trichodesmium IMS101 genome encodes the bluB

gene for DMB production (Helliwell et al., 2016). Within our dataset, an OG identified as

bluB was detected and expressed in Trichodesmium Module 26 (Supplemental Figure C.5).

Furthermore, an OG identified as flavin mononucleotide (FMN ) reductase, an enzyme that

generates the precursor to DMB and acts as the substrate of the BluB enzyme (Taga et al.,

2007), was detected in Trichodesmium Module 4 (Supplemental Figure C.1) along with Tri-

chodesmium OGs from the cobalamin biosynthesis pathway, methionine synthase, and the

microbiome cobA/O (Figure 4.4b). Strikingly, expression patterns of Trichodesmium FMN

reductase and cobalamin-dependent methionine synthase had significant, anti-correlated

diel periodicity (Figure 4.4b). One interpretation of the presence of bluB could be that

Trichodesmium uses DMB to convert its own pseudocobalamin prior to downstream use of

this vitamin. However, the anti-correlated expression dynamics between DMB production

and cobalamin-dependent processes (Figure 4.4b) seem to suggest that Trichodesmium is

not converting its own pseudocobalamin prior to use. Instead, these data suggest that Tri-

chodesmium both supplies pseudocobalamin to the microbiome and controls the timing of

subsequent ligand conversion within the microbiome, regulating this process to be out of

phase with their own cobalamin-dependent enzyme gene expression. These synchronized
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transcriptional patterns support evidence from metagenomic data that suggests that in

Trichodesmium consortia the direction of cobalamin transfer is opposite that of the canon-

ical pathway (Lee et al., 2017), where heterotrophic bacterial producers typically share

this vitamin with photosynthetic algae in exchange for fixed carbon (Bertrand et al., 2015;

Croft et al., 2005). The processes that govern recruitment and maintenance of microbiome

community structure are largely unknown, but the lack of evidence for microbiome cobal-

amin biosynthesis is consistent with the hypotheses from other research that this vitamin

could exert selective pressure on microbiome community structure (Lee et al., 2017). If

Trichodesmium DMB production does control subsequent microbiome cobalamin use, then

this would be an example of a microbiome dependency that drives the community structure

of the Trichodesmium holobiont. This tightly controlled structure both differentiates Tri-

chodesmium colonies from transient microbial consortia on particles that are dominated by

remineralization activities (Fontanez et al., 2015), and reinforces the apparent microbiome

influence on the flux of important resources, like cobalamin, to the oligotrophic environment.

4.5 Conclusions

The future oceans are predicted to be warmer, higher in CO2, and have expanded olig-

otrophic regions (Hutchins et al., 2015; McGillicuddy, 2014; Riebesell et al., 2009). It

is expected that these conditions will increase the rate of Trichodesmium carbon and N2

fixation (Hutchins et al., 2007, 2015) and potentially magnify the relative importance of

Trichodesmium activities within expanded regions of oligotrophy. In other marine systems,

these future ocean conditions are known to destabilize the microbiome with resultant dele-

terious effects on the host (Ainsworth et al., 2010; Bourne et al., 2016; Lesser et al., 2016).

Here we show that, like these other host-microbiome systems, the Trichodesmium micro-

biome is closely synchronized with the host, and that host-microbiome interactions likely

influence the cycling of carbon, nitrogen, iron, and cobalamin. To fully understand and

forecast future ocean dynamics, studies of Trichodesmium must consider the role of the

microbiome.
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Chapter 5

The Trichodesmium microbiome

can modulate host N2 fixation

A modified version of this chapter has been submitted as Frischkorn, K.R., Rouco, M., Van Mooy, B.A.S.,

and Dyhrman, S.T. (2018). The Trichodesmium microbiome can modulate host N2 fixation. Limnology and

Oceanography Letters, (In review).
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5.1 Abstract

Trichodesmium is a marine, diazotrophic cyanobacterium that plays a central role in

the biogeochemical cycling of carbon and nitrogen. Colonies ubiquitously co-occur with a

diverse microbiome of heterotrophic bacteria. We show that manipulation of the microbiome

with quorum sensing acyl homoserine lactones (AHLs) significantly modulated rates of

N2 fixation by Trichodesmium collected from the western North Atlantic, with positive

and negative effects of varied magnitude. Changes in Trichodesmium N2 fixation did not

correlate with changes in microbiome composition or geochemistry. Metatranscriptome

sequencing revealed significant changes in the abundance of microbiome transcripts encoding

metabolic functions consistent with quorum sensing responses in model bacteria. There

was little overlap in specific microbiome transcriptional responses to AHL addition between

stations, and this variability in microbiome gene expression may underpin the heterogeneous

changes in Trichodesmium N2 fixation. Overall, host-microbiome interactions are a complex

interplay of biotic and environmental factors that together form an overlooked mechanism

modulating Trichodesmium N2 fixation.

5.2 Introduction

Trichodesmium is a keystone member of marine environments because of its ability to

provide fixed N2 that fuels primary productivity in otherwise nutrient poor regions (Capone

et al., 1997). Some estimates predict Trichodesmium accounts for approximately half of the

total oceanic fixed N2 (Bergman et al., 2013). In oligotrophic regions, Trichodesmium N2

fixation is strongly affected by the availability of nutrients in the water column (Sohm et

al., 2011). With the high iron quotas associated with N2 fixation and photosynthesis, iron

limitation is the canonical constraint on diazotrophy in Trichodesmium (Berman-Frank et

al., 2001). In the oligotrophic western North Atlantic however, high iron concentrations

relative to phosphorus lead to phosphorus depletion, and Trichodesmium distribution and

N2 fixation is thought to be more strongly influenced by phosphorus availability (Moore

et al., 2013; Rouco et al., 2014; Sañudo-Wilhelmy et al., 2001). Despite the fact that

resource controls on Trichodesmium eco-physiology are well established, using geochemistry
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to predict and model the distribution and activities of this organism remains challenging

(Capone et al., 2005; McGillicuddy, 2014; Snow et al., 2015a). Recent studies have suggested

that some of the challenges associated with modeling Trichodesmium dynamics is in part

due to the fact that its physiology is tightly linked to that of its microbiome (Frischkorn

et al., 2017; Lee et al., 2017).

Trichodesmium ubiquitously co-occurs with a microbiome of epibiotic microorganisms

(Frischkorn et al., 2017; Hewson et al., 2009b; Hmelo et al., 2012; Lee et al., 2017; Paerl et

al., 1989; Rouco et al., 2016a), yet the role of this microbiome in modulating Trichodesmium

physiological ecology is still poorly understood. These epibionts are tightly associated with

colonies of Trichodesmium filaments, and together make up a conserved community that

is unique from planktonic microbes in the surrounding water column (Hmelo et al., 2012;

Rouco et al., 2016a). In other systems, such communities of bacteria are known to regulate

physiological activities on a population-wide scale through cell-cell signaling called quorum

sensing (Miller and Bassler, 2001). Quorum sensing molecules in the acyl homoserine lac-

tone (AHL) family modulate a range of activities in bacteria by altering gene expression

and subsequently behavior (Waters and Bassler, 2005), thus altering physiology through a

mechanism that is decoupled from external environmental stimuli. These molecules have

been detected in Trichodesmium colonies collected from the environment (Van Mooy et al.,

2012), however Trichodesmium does not possess the capacity to produce or respond to quo-

rum sensing molecules (Patankar and Gonzalez, 2009; Vannini et al., 2002), suggesting that

AHL-driven cell-cell communication takes place solely between microbiome members.

Artificial manipulation of quorum sensing circuits provides a unique opportunity to se-

lectively alter microbiome activity within Trichodesmium colonies. In previous field studies,

when Trichodesmium colonies were artificially amended with a cocktail of AHLs, phospho-

rus acquisition was altered by the induction of an organic phosphorus hydrolyzing enzyme,

providing evidence that phosphorus physiology of the entire consortia could be influenced

by solely modulating the microbiome (Van Mooy et al., 2012). The microbiome of Tri-

chodesmium contains diverse and abundant metabolic potential (Frischkorn et al., 2017;

Lee et al., 2017) that likely influences interactions between the Trichodesmium host and

the environment, and could modulate other aspects of host physiology like N2 fixation.
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Here we assess if microbiome activities can modulate Trichodesmium N2 fixation in the

western North Atlantic by amending freshly collected colonies with AHLs and monitoring

for changes in Trichodesmium N2 fixation and microbiome gene expression.

5.3 Materials and methods

We collected Trichodesmium colonies from surface water along a cruise transect in the

western North Atlantic (Figure 5.1a) aboard the R/V Atlantic Explorer (AE1409) during

May 2014, as previously described (Frischkorn et al., 2017). We focused on field studies

with freshly isolated colonies because the clade of the cultured strain (Trichodesmium ery-

thraeum IMS101) is not dominant in the environment (Rouco et al., 2014), and it likely

has a derived microbiome. Briefly, we conducted six hauls of a net tow (mesh size of 130

µm) at approximately 7 am in the upper 20 m to collect samples for experiments. We iso-

lated Trichodesmium colonies from the net tow and washed them three times with fresh 0.2

µm sterile-filtered local surface seawater, a method that prevents contamination by plank-

tonic microbe carryover and has reproducibly yielded the stable Trichodesmium microbiome

(Frischkorn et al., 2017, 2018; Rouco et al., 2016a). After washing, we transferred approxi-

mately 30 cleaned colonies of similar sizes and morphologies into acid-clean, polycarbonate

bottles filled with 30 mL of sterile-filtered seawater. Efforts were made to place colonies in

bottles to mimic colony morphology distribution found in net tow samples. To minimize

handling effects, time from initial sampling to incubation was less than 15 minutes.

The experiments were designed to selectively alter microbiome activity, rather than iso-

late quorum sensing pathways. We spiked the six experimental bottles (+AHL) with a cock-

tail of three di-deuterated AHLs (N-(decanoyl)homoserinelactone, N-(dodecanoyl)homo-

serinelactone, and N-(tetradecanoyl)homoserinelactone) in dimethylsulfoxide (DMSO) to a

final concentration of 500 nmol L−1, and the six control bottles with only DMSO (Krupke et

al., 2016). Previous field incubations showed microbiome activity was specifically altered by

the three AHL compounds used here and not by N-3-oxooctanoyl homoserine lactone (Van

Mooy et al., 2012). Selective manipulation of the microbiome was possible because natural,

non-deuterated forms of these molecules have been observed in Trichodesmium colonies,
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Figure 5.1: Sampling locations of transect stations, and Trichodesmium N2 fixation rate
measurements. (a) Circles denote stations along the transect where Trichodesmium colony
N2 fixation rate measurements were performed; size is proportional to rate. Stations where
+AHL amendment experiments were carried out are denoted with a star. Total dissolved
phosphorus (TDP) was contoured using Ocean Data View and the data intensive visualiza-
tion and analysis (DIVA) grid method. (b) N2 fixation rates in triplicate control and +AHL
experiments. * Indicates significant difference between control and +AHL after student’s
t-test (<0.05). (c) Percent change in N2 fixation between control and +AHL.
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but Trichodesmium itself cannot produce or respond to AHLs (Van Mooy et al., 2012). We

incubated the control and +AHL bottles for 4 hours in on-deck flow-through incubators

shaded with blue film to mimic in situ conditions. A 4 hour incubation was chosen as it

was short enough to capture +AHL induced transcriptional changes in the microbiome, and

long enough to have induced N2 fixation changes in Trichodesmium. Biomass limitations

and destructive sampling precluded time series analysis.

For gene expression analysis, we filtered each of the remaining three bottles of each

treatment onto 5 µm pore size polycarbonate filters after the 4 hour incubation period and

immediately stored them in liquid nitrogen until sample processing. Three bottles set up as

controls as previously described were used to measure in situ N2 fixation rates at stations

where metatranscriptome sequencing experiments were not carried out. Total dissolved

phosphorus (TDP) was determined on 0.2 µm filtrates of surface water (approximately 5

m depth) samples collected via CTD into acid-clean polycarbonate bottles. Samples were

processed at the SOEST Laboratory for Analytical Biogeochemistry at the University of

Hawaii, according to facility protocols.

We extracted prokaryotic RNA from triplicate control and +AHL samples, pooling

together triplicate samples, sequencing 60 million paired end reads, normalizing and as-

sembling as previously described (Frischkorn et al., 2018). To obtain read counts for each

sample, we mapped cleaned forward and reverse reads to metagenome assemblies from the

same sampling locations that were previously characterized and clustered into orthologous

groups (OGs) (Frischkorn et al., 2017). We carried out mapping using RSEM with the

paired-end and Bowtie2 parameters (Li and Dewey, 2011) and tabulated counts across OGs

for Trichodesmium and epibiont genome bins separately. We determined significant changes

in OG relative abundance between control and +AHL samples using a stringent empirical

Bayes approach called Analysis of Sequence Counts (ASC) (Wu et al., 2010). This approach

evaluates the posterior probability associated with a given fold change across the pooled

triplicates, and performs similarly, but conservatively, on replicated and unreplicated sam-

ple datasets (Wu et al., 2010). OGs were considered significantly higher or lower if they had

a 95% or higher posterior probability of a fold change greater than 2 between treatment



CHAPTER 5. MICROBIOME MODULATES HOST N2 FIXATION 90

and control, as previously described (Dyhrman et al., 2012). Taxonomic relative abundance

estimates for metagenome samples were previously calculated (Frischkorn et al., 2017).

5.4 Results and discussion

5.4.1 Biological interactions are a driver of Trichodesmium N2 fixation

Trichodesmium in situ N2 fixation rates increased from north to south, with stations

north of 20◦ latitude having significantly lower rates of N2 fixation than those in the south

(P=0.02, one-way ANOVA; Figure 5.1a; Supplemental Table D.1). Surface total dissolved

phosphorus (TDP) concentration in the stations north of 20◦ latitude differed significantly

from those collected to the south (P<0.03, one-way ANOVA; Figure 5.1a; Supplemental

Table D.1). Phosphorus is known to be a limiting nutrient for N2 fixation for Trichodesmium

in this region (Sañudo-Wilhelmy et al., 2001; Sohm et al., 2011). Although the changes

in N2 fixation and TDP between the northern and southern stations are consistent with

phosphorus being a strong driver of N2 fixation, across the transect the in situ rates of

N2 fixation were not significantly correlated with TDP (R2 < 0.319, P=0.186, one-way

ANOVA; Figure 5.1a). This suggests that factors other than phosphorus concentration

might also influence Trichodesmium N2 fixation.

At all stations where we performed experiments (Figure 5.1a), N2 fixation was sig-

nificantly changed in response to microbiome manipulation with the +AHL amendment,

with significant decreases in rate at station 2 and 10 (P=0.04 and 0.03 respectively), and

a significant increase at station 17 (P=0.01) (Figure 5.1b). Although Trichodesmium

has co-occurred with a N2 fixing epibiont in the North Pacific Ocean (Gradoville et al.,

2017; Momper et al., 2014), herein Trichodesmium colonies did not show evidence of non-

Trichodesmium nif genes (Frischkorn et al., 2017), indicating that Trichodesmium was

the only diazotrophic organism within these samples. The magnitude and direction of

microbiome-induced changes in host N2 fixation ranged from significantly decreased at the

northernmost station to significantly increased at the southern-most station, despite simi-

larities in TDP between proximal stations (Figure 5.1a,c). This suggests that biotic inter-
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actions within colonies can act independently of geochemistry to influence Trichodesmium

physiology.

Extrapolating the range of changes we observed in +AHL treatments to in situ N2

fixation rates, we illustrate the potential influence of the microbiome on host physiology

(Figure 5.2). This theoretical N2 fixation range was determined from the maximum (+20%)

and minimum (-41%) percent change after +AHL amendment to contextualize the potential

for biological interactions to alter observed N2 fixation rates (Figure 5.2). Although this

visualization should be interpreted with caution, the hypothetical 61% range of variation

reflects a scenario where biological interactions drive subsequent N2 fixation higher or lower

than would otherwise be expected, even given noted uncertainty in these measurements

(coefficient of variation = 10.2%). Such changes are modulated on rapid time scales (<4

hours) and are comparable to the range of variability in community N2 fixation induced

by longer nutrient amendment experiments (Mills et al., 2004), as well as that observed

across an Atlantic meridional phosphorus gradient (Moore et al., 2009). The variability we

observed suggests that interactions in the microbiome should be considered drivers of N2

fixation in addition to well-studied constraints like iron, phosphorus, and CO2 concentration

(Hutchins et al., 2015; Paerl, 1994; Sañudo-Wilhelmy et al., 2001). Overall, it may be

important to consider these biotic factors in addition to light and surface ocean nutrients

when predicting Trichodesmium physiological ecology.

5.4.2 Microbiome transcriptional patterns varied with shifts in Trichodesmium
N2 fixation

There are 8 core epibiont genomes in samples from this transect (Frischkorn et al.,

2017) and they all had OGs with significantly increased or decreased relative abundance in

+AHL treatments compared to the controls at all stations tested (Table 5.1). This result

suggests all members of the microbiome can respond to AHLs and is consistent with the

fact that all genome bins were found to possess putative LuxR genes from canonical quorum

sensing operons (Frischkorn et al., 2017). The Gammaproteobacteria (bin 7) contributed

to 60% of the significantly responsive functional categories across all three stations tested

(Figure 5.3). Notably, such Gammaproteobacteria are ubiquitously found in association
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Figure 5.2: Illustration of potential microbiome influence on in situ Trichodesmium N2

fixation across the western North Atlantic transect. Black circles represent in situ N2

fixation rates observed at each station. To highlight the potential magnitude of the effects
that biological interactions can have on Trichodesmium N2 fixation, the maximum and
minimum percent changes we observed after +AHL amendment of colonies in this study
were extrapolated to in situ colony N2 fixation rates. The grey bars reflect this theoretical
range (61%) of variability in N2 fixation that could occur on rapid (<4 hour) time scales
as a result of changes in microbiome activity. Average coefficient of variation of N2 fixation
rates in replicate incubations was 10.2%. Stations are organized in order from north to
south.
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with colonies across multiple environments and in culture (Lee et al., 2017) and biologically

relevant concentrations of AHLs have been found in Trichodesmium colonies (Van Mooy

et al., 2012). Taken together, it is likely that the microbiome could ubiquitously influence

Trichodesmium N2 fixation via quorum sensing pathways.

Table 5.1: Number of OGs from individual microbiome members that had significantly

differential relative abundance (SDRA) after +AHL amendment. Counts were tabulated

for each gene in a microbiome genome bin that belongs to an OG that was found to be

significantly higher or lower in response to +AHL amendment. OGs total = total number

of OGs found in each genome bin

4 Bacteroidetes 8354 121 61 247 1.71
5 Rhodospirillales 2787 26 32 48 1.27
6 Bacteroidetes 6016 41 26 155 1.23
7 Gammaproteobacteria 4195 105 55 163 2.57
8 Rhodobacterales 2693 75 15 102 2.38

10 Rhodospirillales 4206 53 34 106 1.53
11 Rhodospirillales 1766 51 13 60 2.34
12 Rhodospirillales 1884 29 24 34 1.54

OGs total
St2: 

Contribution 
to SDRA OGs

St10: 
Contribution 
to SDRA OGs 

Avg. % of 
SDRA OGs 
per Genome  

St17: 
Contribution to 

SDRA OGs
Bin Identity

Amendment with AHLs induced significant changes in OG relative abundance at each

station (Figure 5.3). While the responses were distinct (Supplemental Figure D.1), the

OGs encoded a range of functions that aligned at the broadest level with those expected to

respond in Pseudomonas aeruginosa (Schuster and Greenberg, 2006; Wagner et al., 2003,

2004). The relative abundance of OGs encoding carbohydrate metabolism, cell cycle con-

trol and environmental information processing functions were significantly increased in the

microbiome at all three stations (Figure 5.3). A suite of OGs encoding environmental in-

formation processing functions also had significantly decreased relative abundance at all

three stations, which, in addition to transposon and transcription functions, were the only

shared responses with decreased relative abundance across the experiments (Figure 5.3).

This shared functional response in the expression of environmental information processing

and transcription functions may be driven by a hierarchical genetic response induced by
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quorum sensing. In model bacteria, AHLs activate a cascade of transcription factors that

go on to increase or decrease expression of the genes under their control (Latifi et al., 1996;

Whiteley et al., 1999). AHLs are also known to stimulate gene transfer agents and increase

transposon mobility (Auchtung et al., 2005; Schaefer et al., 2002), and many quorum sens-

ing genes are adjacent to transposons or encoded within them (Thomson et al., 2000; Wei

et al., 2006). Station 17, the only station where +AHL amendment resulted in a signifi-

cant increase in Trichodesmium N2 fixation, exhibited the broadest range of functions with

significantly different expression (Figure 5.3). The increase in host N2 fixation observed in

response could be related to the decreased expression at Station 17 of microbiome trans-

porters for iron and phosphate, resources that are critical to or affected by N2 fixation, thus

ensuring these resources are available to Trichodesmium.

Although there were similarities across broad metabolic categories at the stations tested,

at the gene family level there was little overlap between specific OGs that contributed to

those categories across the three stations (Supplemental Figure D.1). All core microbiome

members were consistently responsive to +AHL amendment, but only 5 microbiome OGs

were significantly increased or decreased across all stations (Supplemental Figure D.1).

These OGs were all annotated as putative, uncharacterized proteins. Sampling a time

course in AHL addition experiments would help identify quorum sensing pathways and if

there is an initial conserved response in the microbiome that was unique by the 4 hour time

point observed here. Regardless, the variability in the OG transcriptional responses here is

consistent with the disparate N2 fixation responses to AHL addition.

Little is known about the quorum sensing and quenching pathways in the Trichodesmium

microbiome, but in model systems these pathways are complex, operating in circuits that

can influence each other in distinct ways and lead to a cascade of unique transcriptional re-

sponses and resulting shifts in activity (Schuster and Greenberg, 2006; Wagner et al., 2004).

Previous work found that community composition of the microbiome varied significantly be-

tween northern stations (e.g. station 2) and the southern stations (e.g. station 10 and 17),

but that the Trichodesmium host did not (Frischkorn et al., 2017). However, in the south-

ern stations where community composition and geochemistry were similar, transcriptional

responses in the microbiome were dissimilar and yielded different effects on N2 fixation. For
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Figure 5.3: Microbiome functional gene categories with significant changes in relative abun-
dance between the control and the +AHL treatments. Pie wedges are filled if that epibiont’s
genome bin contributed to an OG with significantly increased or decreased relative abun-
dance that fell into a functional category as determined by annotation against the Kyoto
Encyclopedia of Genes and Genomes (KEGG). Starred functional categories indicate cate-
gories that are known to have significantly increased or decreased relative abundance after
stimulating quorum sensing in the model bacterium Pseudomonas aeruginosa (Schuster and
Greenberg, 2006; Wagner et al., 2003).
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example, although relative abundances of the core microbiome members between Stations

10 and 17 were not significantly different (Frischkorn et al., 2017), and TDP was similar,

variable epibiont transcription forced by quorum sensing elicited different Trichodesmium

N2 fixation responses. In sum, N2 fixation responses are not predictable from microbiome

community composition alone. Variability in AHL responses in model systems can vary

as much as 100-fold due to nutrient status, oxygen availability, and whether cultures were

planktonic or growing as a biofilm (Duan and Surette, 2007; Schuster and Greenberg, 2006).

Furthermore, the transcriptional regulators that are activated by quorum sensing molecules

do not exist in isolation, but rather interact with a web of regulators and quorum quenching

molecules that affect physiology on a genome-wide scale—a finding that has been used as

an explanation for the rapid adaptability of bacteria to fluctuating environments (Schuster

and Greenberg, 2006). The concentration of the AHLs experienced by the epibionts could

also affect the direction, magnitude, and characteristics of gene expression, as hydrolytic

enzyme activity in marine particulate matter is strongly affected by the concentration of

AHLs added (Krupke et al., 2016). Similarly, in P. aeruginosa, different concentrations

of the same quorum sensing signaling molecule result in different responses that subse-

quently elicit opposite host physiological responses (Williams and Cámara, 2009). In the

Trichodesmium holobiont the effects of the microbiome on N2 fixation likely reflect a com-

plex interplay of environment, community composition, chemical signaling, and functional

response, and a more mechanistic understanding of activities in the microbiome is needed

to model how biological interactions modulate Trichodesmium N2 fixation.

5.4.3 Conclusions

Here we show that selective manipulation of microbiome activities can alter the N2 fix-

ation rate of the Trichodesmium host over short time scales, expanding the suite of factors

that are known drivers of marine N2 fixation. If the observed interplay between host and

microbiome holds true across the full range of oligotrophic environments Trichodesmium in-

habits, then these interactions are likely an overlooked factor that influences Trichodesmium

N2 fixation, and future ecological studies of Trichodesmium should take into account the

activities of the microbiome.
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6.1 Dissertation summary

Trichodesmium is a keystone marine cyanobacterium: a diazotroph thought to supply

nearly half of the total biologically fixed nitrogen in the ocean (Bergman et al., 2013). The

occurrence of this organism in the natural environment has been a source of wonder for

millennia. Thousands of years before the first microorganism was discovered, the sudden

blood red darkening of the sea—now thought to be blooms of Trichodesmium—were given

supernatural import: they were a cosmological phenomenon or a portentous omen (Ehren-

berg, 1830). Trichodesmium was described by Jules Verne in 20,000 Leagues Under the

Sea1 , noted by Charles Darwin as he sailed on the Beagle2 , and cataloged by Captain Cook

during his expeditions on the H.M.S Endeavour3 . In the age of modern scientific inquiry, it

was found that Trichodesmium was capable of turning inert N2 gas into biologically avail-

able ammonium (Dugdale et al., 1961). Trichodesmium was subsequently propelled into

planetary biogeochemical relevance with the discovery that its global input to “new” ni-

trogen was underestimated by approximately 15 fold (Capone et al., 1997; Mahaffey et al.,

2005; Westberry and Siegel, 2006).

Today, the availability of high throughput sequencing technologies and the bioinformatic

tools to analyze “big data” have ushered in a new age of Trichodesmium discoveries pio-

neered by molecular microbial oceanographers. For example, genome sequencing revealed

an expanding genetic capacity in Trichodesmium that contrasted paradoxically with other

marine bacteria that exhibit genomic streamlining to survive in the oligotrophic ocean (Wal-

worth et al., 2015). Metagenomics and 16S amplicon sequencing have been used to show

in the field and in laboratory isolates the presence of ubiquitous microbiome members, the

metabolic capabilities they possesses, and how they are altered across environments (Lee et

al., 2017; Rouco et al., 2016a). Transcriptome sequencing and epigenetics have revealed the

mechanisms of how Trichodesmium N2 fixation could be expected to change under future

ocean conditions (Hutchins et al., 2015; Walworth et al., 2017a). Metatranscriptomics in

1Verne, Jules, 1828-1905. 20,000 Leagues Under the Sea. New York; Bantam Dell, 1962. Print.
2Darwin, Charles, 1809-1882. The Voyage of the Beagle. New York; Modern Library, 2001. Print.
3J. C. Beaglehole, Ed., The Endeavor Journals of Joseph Banks 1768–1771. Cambridge; Cambridge

University Press, 1955. Print.
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the field have even been wielded to understand the molecular and ecological underpinnings

of a Trichodesmium bloom’s demise (Spungin et al., 2016). Such technologies continue

become cheaper, more efficient, and increasingly innovative. There are no doubt more Tri-

chodesmium discoveries to be made—oceanographers will be limited only by the ability to

parse through staggeringly large datasets and interpret them using databases that are not

optimized for marine microorganisms.

In this thesis I set out to codify the importance of the microbiome to Trichodesmium’s

ecology and physiology. This line of inquiry was a critical next step, considering the impor-

tance of this keystone organism to global elemental cycles as well as growing appreciation

of the influence of a microbiome on its host. Broadly, the studies I carried out delved into

unanswered questions about the physiological capabilities of the Trichodesmium micro-

biome, how those capabilities respond across diverse environments and are intertwined with

the host physiology, and the influence of previously unappreciated biological interactions

in ecologically and biogeochemically important processes like N2 fixation. Encompassing

four field expeditions across three ocean basins, my research has implemented cutting edge

nucleic acid sequencing approaches coupled with traditional oceanographic and biochemical

measurements to investigate this host microbiome system.

To first establish the importance and implications of the relationship between Tri-

chodesmium and the microbiome, Chapter 2 used metagenomic sequencing to show that

the microbiome possesses a large amount of metabolic functional potential and is altered

across a geochemical gradient in the North Atlantic ocean. In Chapter 3, I showed that this

metabolic potential was indeed wielded across the oligotrophic environment of the western

tropical South Pacific, uncovering the mechanisms of how Trichodesmium and their micro-

biome influence the reduced phosphorus cycle. The coordinated gene expression patterns

within consortia that I demonstrated in Chapter 4 indicated metabolic interactions between

Trichodesmium and the microbiome encompass carbon, nitrogen and vitamin pathways in

addition to phosphorus, interactions that might short circuit the transfer of these resources

to the water column at large. Finally, in Chapter 5, I demonstrated that interactions

with the microbiome could impact Trichodesmium’s physiology by showing that selective

manipulation of the microbiome can alter host N2 fixation.
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In short, I believe that this research creates a frame shift in how we think about Tri-

chodesmium’s physiology and ecology: this organism cannot be considered in isolation, but

rather as an integrated microscopic community in which the interactions have global rele-

vance. Coupled with traditional geochemical measurements that are canonical in biological

oceanography, considering biotic interactions will strengthen numerical models of ocean

processes, predictions, and experimental efforts pertaining to Trichodesmium. With these

approaches together, we might come closer to being able to answer a persistent question

in oceanography: what forces determine the structure of microbial communities in aquatic

habitats, and subsequently, how do they influence the planet?

6.2 Future directions

Throughout the course of my dissertation research I have generated several terabytes

worth of sequence data, genome and transcriptome assemblies, and ancillary analysis files.

Stated more simply: that’s a lot of data. With each sample encompassing a yield of up to

hundreds of thousands of individual genes—many of which have only hypothetical anno-

tations of function—delving into a new project can seem like a daunting task. With new

bioinformatic programs published frequently, embarking on big data analysis involves some

measure of reinventing the wheel. Despite the many technological advances that have made

collecting all these data points possible, the results in this thesis are on the precipice of

the unknown: databases to annotate genes, the bread and butter of my research, are not

optimized for marine microbes. Thus, a large proportion of those hundreds of thousands

of genes have only hypothetical or unknown functions. Still, the more data generated, the

more these knowledge gaps can be filled in. Six years ago, it would have been impossible to

partition metatranscriptomic reads between Trichodesmium and their microbiome. Today,

I can do this with a few keystrokes. Coupling all of these molecular data with more tra-

ditional experimental approaches—like the geochemical, enzyme activity, and uptake rate

measurements I used in my research—ground truth functional inferences and provide en-

vironmental context. Applied to the Trichodesmium system, the ultimate yield is a better
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appreciation of the integral associations within these consortia, the metabolic currencies

exchanged, and the potential geochemical implications of these interactions.

Even though these novel approaches to understanding Trichodesmium ecology push the

envelope of what is possible, it is still critical to think towards the next frontier. With

sequence data from across the globe, it is possible to delve into questions of how microbial

communities are structured using the relatively simple Trichodesmium consortium as a

model system (Morris and Hmelo, 2014). Based on existing research, it is clear that the

bacterial associations with Trichodesmium are not stochastic. Similar species cohabitate

with Trichodesmium across ocean basins (Lee et al., 2017; Rouco et al., 2016a), but are

these associations driven by key physiological capabilities that these individual epibiont

species bring to the holobiont? Such questions are a key next step that could be addressed

with existing data.

In a different vein, gaps left by the unknown and the hypothetical genes could be ad-

dressed by co-opting new molecular techniques that enable targeted genome modification.

Ideally, such investigations should bridge targeted laboratory experiments with environ-

mental surveys, and ultimately modeling efforts. With existing cultures of Trichodesmium,

and its macroscopic colonial morphology that renders it relatively easy to detect in field

samples, not to mention the wealth of archived genetic data, this system is well suited to

these efforts. I am intrigued by the prospect of applying genome editing technology like

CRISPR (Nymark et al., 2016; Rastogi et al., 2016) in Trichodesmium and the microbiome

to test the function of specific genes known or unknown, in solo or in combination. For

example, targeting some of the pathways I found to be implicated in phosphorus or iron

exchange between Trichodesmium and microbiome for CRISPR deletion would enable delv-

ing into the physiological mechanisms that structure and maintain a beneficial relationship

in the holobiont and could be coupled with the aforementioned questions of the principles

of community structure (Morris and Hmelo, 2014).

The wealth of global marine microbial sequence data is also primed for bridging labo-

ratory experiments with environmental surveys in a way that targets specific mechanisms.

Boiteau and colleagues recently investigated microbial iron physiology the low iron Pacific

Ocean using one such tiered approach (Boiteau et al., 2016). Their approach used mass
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spectrometry to detect iron chelating siderophore compounds across a transect, coupled with

searches of the Tara Ocean Expedition gene catalog (Sunagawa et al., 2015) for the presence

of siderophore biosynthesis genes, as well as a phylogenetic analysis of the molecular history

of these genes (Boiteau et al., 2016). Together, their results highlight a previously mysteri-

ous ocean mechanism: siderophore-based adaptations to low iron conditions that have been

horizontally transferred between bacteria to a point where they are detectable across the

global ocean (Boiteau et al., 2016). Considering the global relevance of Trichodesmium to

nitrogen and carbon cycles, applying similar approaches could yield fruitful insights. De-

tailed investigations of specific processes on a global level could be particularly informative

inputs to biogeochemical models (Coles et al., 2017; Follows et al., 2007), especially con-

sidering the noted challenges to accurately modeling Trichodesmium (Capone et al., 2005;

McGillicuddy, 2014).

Ultimately, the microscopic organisms that reside in the ocean form the microbiome

of Earth. I predict that much like the human microbiome is the arbiter of health and

disease in the body, the microbial systems of the natural environment are integral to the

health of the planet (Blaser, 2014; Sampson and Mazmanian, 2015). As my research and

others’ have demonstrated, these microbes interact with one another and the environment,

and such interactions and transformations influence geochemical cycles: through primary

productivity, the sequestration of the greenhouse gas CO2, and the overall habitability of

the planet (Karl, 1999). Building a holistic understanding of microbial processes in the

environment will be essential to forecast the ocean’s role in the future climate.

With unmitigated climate change, the future oceans are forecasted to have higher tem-

peratures, more acidic waters, and more expansive oligotrophic regions (Hutchins et al.,

2015; McGillicuddy, 2014; Riebesell et al., 2009). Previous research has demonstrated

that such conditions could expand the geographic range of Trichodesmium (Hutchins et al.,

2007), increase its overall fitness (Walworth et al., 2016), and lead to elevated carbon and N2

fixation rates (Hutchins et al., 2015). As of yet, these studies have performed experiments,

modeled, and made predictions about Trichodesmium without taking the microbiome into

account. Rising temperatures and CO2 concentrations, however, are known to alter ma-

rine host-microbiome relationships with deleterious consequences (Ainsworth et al., 2010;
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Bourne et al., 2016; Lesser et al., 2016). Whatever the next phase of Trichodesmium re-

search entails, as the research in this thesis has demonstrated, it is critical that future

investigations take into account biological interactions and the influence of the microbiome.
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Appendix A

Chapter 2 supplemental material

A.1 Supplemental figures

Figure A.1: Completeness of the genome bins. Percent completeness is estimated using
abundance of single copy genes as previously described (Handley et al., 2012) and using the
MaxBin program (Wu et al., 2015).
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Figure A.2: Distribution of KEGG functional annotations of OGs predicted from the indi-
vidual assemblies. (a) Functions (as determined by KEGG annotation) that are uniquely
found in Trichodesmium only OGs (T), epibiont only OGs (E), or shared between Tri-
chodesmium and epibiont (Both or B). (b) A finer scale breakdown of functionality in OG
category shows the metabolic diversity contained within epibiont only OGs.
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A.2 Supplemental tables

Table A.1: Sequencing reads, proteins from the metagenome assembly and environmental
metadata from stations in the western North Atlantic.

Station Lat. Lon. Reads
Total prots. 
binned per 

station

N2 fixation 
rate (pmol 

colony-1 hr-1)

PO4 turnover 

rate (hr-1)
Sal. Temp. (°C)

Total 
dissolved P 

(µM)

Tricho. APA 
(nmol P col-1 

hr-1)
2 27.9 -65 33,044,652 47,177 4.3 0.03 36.7 24 0.07 0.124
5 21.2 -64.9 45,080,408 81,064 8.06 0.07 36.4 26.4 0.09 0.146
9 16.5 -57.3 24,522,732 49,198 39.34 0.06 36.4 26.4 0.17 0.288

10 14 -55.7 9,067,799 17,975 14.64 0.05 34.8 27.1 0.16 0.087
16 9.9 -58.5 18,492,342 25,845 16.67 0.06 34.8 27.5 0.23 0.134
17 11.9 -59.4 26,590,472 42,773 20.43 0.09 35.8 27.4 0.22 0.2

Table A.2: Frequency of key phosphorus and iron genes in the Trichodesmium microbiome
compared to free-living bacterioplankton communities sampled from the Sargasso Sea region
of the western North Atlantic.
aPercentage of core epibiont community genome bins (out of 8 total bins) containing the
gene family
bPercentage of free living community calculated relative to the single copy gene RecA
∗Values estimated from data previously calculated (Tang et al., 2012)

Gene Family
% Core 

Microbiomea % Free Livingb % Free Living Reference

19 Karl et al., 2008

26 Martinez et al., 2010

Siderophore/Vitamin transporters 100 ~18* Tang et al., 2012

Heme/Hemophores/Iron(heme) 
binding protein transporters

100 ~2* Tang et al., 2012

Phosphonate CP lyase (PhnJ) 38
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Table A.3: Glycoside hydrolase (GH) orthologous groups (OGs) detected in the metagenome
assemblies. Substrate specificity (target) is noted when available.

OG Bins Category GH Family Target
OG_1244 1,3,9,12 Both 38 Mannose
OG_3154 3,4,6 Both 18 Chitin
OG_11528 4,6 Epibiont NA
OG_12010 6 Epibiont 30 Xylan
OG_12197 6 Epibiont 17 1,3;1,4- -D-glucan
OG_16240 6 Epibiont 16 -1,4 or -1,3 bonds in glucans and galactans
OG_1918 4,6,12 Epibiont 31 Broad specificity
OG_20631 Other Epibiont NA
OG_2728 4,6 Epibiont 3 Broad specificity (monosaccharides)
OG_28509 Other Epibiont NA
OG_3117 5,8 Epibiont 4 Broad specificity (phosphorylated sugars)
OG_31908 Other Epibiont NA
OG_3410 7,8,Other Epibiont NA
OG_3693 5,6 Epibiont 43 Arabinose or xylose
OG_3765 4 Epibiont NA
OG_43634 Other Epibiont NA
OG_52433 Other Epibiont 18 Chitin
OG_53917 Other Epibiont 10 Xylan/cellobiose
OG_6351 6 Epibiont 8 Lichenin, xylan, glucan, chitin
OG_7475 4,6 Epibiont NA
OG_7827 6 Epibiont NA
OG_8937 8,11 Epibiont 24 Unassigned
OG_9303 Other Epibiont 88 Double bonded carbons in sugars
OG_10713 3 Tricho 57 Broad specificyt
OG_2844 1,3,9 Tricho 57 Broad specificity
OG_4914 1,2 Tricho 32 Involved in inverting sugars
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B.1 Supplemental figures
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Figure B.1: Diagram detailing approach used to assemble and partition the metagenome be-
tween Trichodesmium and the microbiome, annotate and cluster protein coding sequences
into orthologous groups (OGs), and obtain gene expression values from metatranscrip-
tomes. Eukaryote identified sequences as well as phototrophs other than Trichodesmium
were excluded from downstream analysis after the genome binning and analysis step. TPM,
transcripts per million.
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Figure B.2: Distribution and annotations of KEGG functional annotations of OGs found
uniquely in the Trichodesmium (T) or microbiome (M) or those composed of both Tri-
chodesmium and microbiome proteins (B). (a) Total number of OGs in each category. (b)
A functional breakdown of these annotations at the KEGG module level and detailed an-
notations from within two KEGG module categories.
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Figure B.3: Metagenome reads aligned to the scaffold containing the ppm cassette. Thick
black rectangles depict 100 bp reads, connected by thin black lines to their mate paired
read.
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Residues involved in cofactor and substrate interactions

Residues involved in tertiary enzyme structure

Figure B.4: Amino acid alignment of the Ppm protein recovered from a Trichodesmium
metagenome bin against experimentally verified Ppm sequences in other organisms. Genes
highlighted in green denote regions with 100% amino acid identity across all sequences.
Shades of yellow denote conservation across the majority of amino acids in the column.
Un-highlighted amino acids indicate divergent residues or regions with little conservation.
Purple and grey highlighted columns denote residues that were previously determined to
be important to the structure or activity of this enzyme (Chen et al., 2006).
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Figure B.5: Phylogenetic tree showing the placement of the Trichodesmium Ppm protein
(red), a microbiome proteins from this study’s metagenome assembly that is similar to Ppm
but lacking conservation at key residues (green), as well as homologous proteins from a pre-
viously assembled North Atlantic Trichodesmium metagenome assembly (blue) (Frischkorn
et al., 2017), along with homologous sequences obtained from the NCBI nr database (black).
The tree was generated with FastTree using the default settings (Price et al., 2010). Num-
bers at the branch labels indicate FastTree support percentages for the sequences in that
branch.
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B.2 Supplemental tables

Table B.1: Summary of water column (10 m) geochemical data collected across the OUT-
PACE cruise transect. *Measurement obtained at 30 m.

Station Lat Lon
Phosphate 
turnover 

time (hrs)

Water 
column 

phosphate 
uptake rate 
(nmol/L/hr)

Water 
column 

dissolved iron 
(nmol/L) at 

10 m

avg. stdev avg stdev
SD1 -18.0 159.9 11.2 0.5376 0.67
SD2 -18.6 162.1 16.4 0.7872 0.36
SD3 -19.5 165.0 8.3 0.3984 0.0251 0.0013 39.7986 0.209 0.38
LDA -19.2 164.6 13.8* 0.6624 0.0494 0.0031 20.2525 0.681 0.85
SD4 -20.0 168.0 4.8 0.2304 0.69
SD5 -22.0 170.0 2.3 0.1104 0.0026 0.0004 383.4898 0.006 0.44
SD6 -21.4 172.1 13.4 0.6432
SD7 -20.8 174.3 10.21 0.49008 0.0029 0.0000 340.9558 0.030 0.21
SD8 -20.7 176.4 8.2 0.3936 0.0012 0.0009 827.7212 0.010 0.38
SD9 -21.0 178.6 6.1 0.2928 0.0389 0.0004 25.7207 0.237 0.22

SD10 -20.5 -178.5 6.6 0.3168 0.97
SD11 -20.0 -175.7 6.6 0.3168 0.0366 0.0002 27.3563 0.241 1.16
SD12 -19.5 -172.8 18.7 0.8976 0.0019 0.0008 519.0585 0.036 0.94*
LDB -18.2 -170.7 7 0.336 0.0694 0.0044 14.4041 0.486 0.65
SD13 -18.2 -169.1
LDC -18.4 -165.9 0.5041 0.2785 1.9839 0.37
SD14 -18.4 -163.0 214 10.272 0.46
SD15 -18.3 -160.0 230 11.04 0.31

Water colum dissolved 
inorganic phosphorus 

(nmol/L) at 10 m

Water column 
phosphate turnover 

(1/hr)
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Appendix C

Chapter 4 supplemental material

C.1 Supplemental figures
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Figure C.1: Expression patterns in a module containing microbiome cobalamin OGs, and a
module dominated by microbiome OGs. Photosynthetically active radiation (PAR) levels
are shown over the duration of the Lagrangian sampling period and correspond to vertical
bars in the heatmap, which depicts row averaged relative expression of the significantly co-
expressed Trichodesmium and microbiome orthologous groups (OGs) within two modules
that exhibited strong diel periodicity and a number of microbiome OGs related to cobalamin
(Modules 4) and a module that was the most dominated by microbiome OGs (Module
9). Black bars denote rows that are microbiome OGs. Colored circles indicate functional
annotations of Trichodesmium or microbiome OGs based on KEGG submodules.
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Figure C.2: KEGG profile of significantly periodic orthologous groups (OGs) in Tri-
chodesmium and the microbiome. (a) Presence/absence of KEGG modules in significantly
periodic OGs in Trichodesmium and the microbiome. (b) Relative abundance of signifi-
cantly periodic OGs for each detected KEGG module in Trichodesmium and microbiome
data. T, Trichodesmium; M, microbiome. Significant periodicity was determined using
RAIN (Thaben and Westermark, 2014).
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Figure C.3: Day-night trends in significantly periodic holobiont orthologous groups (OGs).
Expression patterns of significantly periodic Trichodesmium and microbiome OGs averaged
across those with peak expression times during four discrete day-night periods: peak dark
and peak light periods, and when conditions were transitioning from light to dark (dark-
ening) and dark to light (lightening). Significant periodicity was determined using RAIN
(Thaben and Westermark, 2014).
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Figure C.4: Expression patterns of N2 fixation and key phosphorus-related genes in Tri-
chodesmium. Expression profiles of Trichodesmium phosphorus-related orthologous groups
(OGs) from Module 3 as well as the OG for the phosphonate C-P lyase phnJ compared to
the average expression of nif OGs from Module 3.
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Figure C.5: Expression patterns of all cobalamin-related orthologous groups (OGs) detected
in Trichodesmium. Heatmap showing presence/absence and row-averaged relative expres-
sion of all OGs related to cobalamin biosynthesis and utilization in Trichodesmium. Grey
rows indicate OGs that were not detected in Trichodesmium field data. *Multiple OGs were
detected with similar annotations and expression was averaged to yield expression values
for that row.
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Appendix D

Chapter 5 supplemental material

D.1 Supplemental figures
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Figure D.1: Venn diagrams showing minimal overlap in microbiome OGs that were signifi-
cantly increased (top panel) or decreased (bottom panel) in the +AHL treatment relative
to the control across the three stations tested.
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D.2 Supplemental tables

Table D.1: N2 fixation rate and total dissolved phosphorus concentration at each station
sampled across the transect.

In situ N2 
Fixation 

Rate 

In situ N2 
Fixation 

Rate 

+AHL N2 
Fixation 

Rate 

+AHL N2 
Fixation 

Rate 

(pmol 

colony-1hr-1)
Standard 
deviation

(pmol 
colony-1hr-1)

Standard 
deviation

2 27.87 64.99 9.5 0.3 5.6 1.1 0.07
4 23.03 65.01 16.4 6.9 0.08
6 20.01 63.1 26.8 5.4 0.08
8 18.4 58.56 49.1 4 0.1

10 13.97 55.68 32.2 0.31 28.3 1.5 0.16
12 10.09 53.24 32.6 0.8 0.21
17 11.86 59.44 45 1.1 54 0.82 0.22

Station Latitude Longitude TDP (μM) 
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