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ABSTRACT

Statistical Methods for Integrated Cancer
Genomic Data Using a Joint Latent Variable

Model

Esther Drill

Inspired by the TCGA (The Cancer Genome Atlas), we explore multimodal genomic datasets

with integrative methods using a joint latent variable approach. We use iCluster+, an ex-

isting clustering method for integrative data, to identify potential subtypes within TCGA

sarcoma and mesothelioma tumors, and across a large cohort of 33 different TCGA cancer

datasets. For classification, motivated to improve the prediction of platinum resistance in

high grade serous ovarian cancer (HGSOC) treatment, we propose novel integrative meth-

ods, iClassify to perform classification using a joint latent variable model. iClassify provides

effective data integration and classification while handling heterogeneous data types, while

providing a natural framework to incorporate covariate risk factors and examine genomic

driver by covariate risk factor interaction. Feature selection is performed through a thresh-

olding parameter that combines both latent variable and feature coefficients. We demon-

strate increased accuracy in classification over methods that assume homogeneous data

type, such as linear discriminant analysis and penalized logistic regression, and improved

feature selection. We apply iClassify to a TCGA cohort of HGSOC patients with three

types of genomic data and platinum response data. This methodology has broad applica-

tions beyond predicting treatment outcomes and disease progression in cancer, including

predicting prognosis and diagnosis in other diseases with major public health implications.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Overview

The TCGA (The Cancer Genome Atlas) project has made widely available for the first time

multiple modes of genomic data from the same large number of samples. This has spurred

the development of integrative methods that attempt to improve the power and efficiency

of both clustering and classification methods by integrating data from multiple platforms

into a unified analysis. Here, we focus on integrative methods using a joint latent variable

approach and apply them to TCGA datasets.

We use iCluster+, an existing clustering method for integrative data using a joint latent

variable model, to identify potential subtypes within TCGA sarcoma and mesothelioma

tumors, and across a large cohort of 33 different TCGA cancer datasets.

For classification, we propose novel integrative methods to leverage data across multi-

ple genomic platforms to perform classification using a joint latent variable model. This

approach provides effective dimension reduction while handling heterogeneous, diverse data

types of different scale and variance structure. It also provides a natural framework to

incorporate important clinical or environmental covariates, and importantly to investigate
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interactions with these covariates. Effective feature selection is performed through a thresh-

olding parameter that combines both effects from latent variables and observed feature

variables. We term this new methodology iClassify.

We demonstrate that this method leads to increased accuracy in prediction over methods

that assume homogeneous data type. Moreover, we show a marked improvement in feature

selection over commonly used methods. We then apply iClassify to the classification problem

of predicting response to platinum chemotherapy in a TCGA ovarian cancer cohort.

We organize the material as follows. In Section 1.2 we provide an overview of the mu-

timodal genomic TCGA project, focusing on key questions about cancer subtyping and

classification, then review current methodological approaches to integrative genomic analy-

sis both in terms of clustering (Section 1.3.2) and classification (Section 1.2.2). In Chapter

2 we present the iCluster method and our results from integrative clustering in three pub-

lished TCGA studies on sarcoma, mesothelioma, and a pancancer cohort of 33 cancer types.

In Chapter 3, we introduce the methodological framework of iClassify , present and simu-

lation studies demonstrating its capabilities in Chapter 4. In Chapter 5 we apply iClassify

to the TCGA ovarian cancer dataset and present results of genomic-only classification and

genomic-covariate interaction analysis. We conclude the paper with discussion and future

extensions in Chapter 6.

1.2 Introduction to Motivating Studies

The Cancer Genome Atlas is providing researchers with unprecedented richness of genomic

data, with each tumor being sequened for mutation data, genotyped for copy number data,

and assayed for mRNA, noncoding RNA, and DNA methylation profiling. Integrated analy-

ses of these data could yield important contributions to knowledge about cancer mechanisms
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as well as improve prediction of drug response and overall prognosis. Integrative genomics

starts conceptually from the idea that biological mechanisms are comprised of multiple

molecular layers, and that understanding each of these layers will inform a more compre-

hensive understanding of mechanisms that lead to cancer. In fact, one of the key questions

posed by the National Cancer Institute in relation to TCGA data is: “How can investigators

effectively integrate data from multiple modes of genomic analysis into a unified view of

oncogenic pathways?” ([National Cancer Institute, 2018]).

In particular, we are interested in two objectives using integrative genomic analysis.

The first is finding individuals or samples that have similar mechanisms of disease within

a particular cancer type, as these “subtypes” of cancer may have differential prognoses or

responses to treatment. Moreover, we are interested in whether tumors may have similar

mechanisms of disease across cancer types, so that an effective treatment for a subtype in one

cancer may actually have relevance for a similar subtype in a different cancer. Additionally,

we wish to leverage the integrative genomic information available to be able to perform

better classification of tumors for new patients either by outcome or response to treatment.

1.2.1 Molecular subtyping in cancer

Cancer, even within a particular type, is an exceedingly heterogenous disease, with a myriad

of driver mutations, chromosomal alterations and key pathway disruptions. Thus, subtyping

cancer is widely understood to be essential to an improved and more personalized progno-

sis/treatment.

NCI defines a cancer subtype as a “smaller group that a type of cancer can be divided

into, based on certain characteristics of the cancer cells.” [National Cancer Institute, 2018].

A molecular subtype is specifically a group of samples that have a similar molecular mecha-
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nism as the origin of the carcinogenesis [Le Van et al., 2016]. These molecular mechanisms

can be subtype-specific mutations or copy number alterations or expression features which

may point to “disease-perturbed networks” [Hood and Friend, 2011] that may provide im-

portant new drug targets.

Prior to the genomic era, subtyping had mainly been accomplished by classic immuno-

histologic technique. For example, breast cancer was stratified into three subtypes using

traditional immunohistochemistry techniques: hormone-receptor-positive, triple negative,

and HER2-positive, each of which has it own treatment approach. With the availability of

genome-wide expression profiles, researchers used hierarchical clustering to describe addi-

tional breast cancer subtypes, including luminal A, luminal B, lumnal C, HER2-enriched,

basal-like, claudin-low, and normal breast-like [Glueck et al., 2013]. There are now genomic

assays meant to categorize breast cancer tumors into one of these subtypes, and in so doing

provide better recurrence risk and prognosis estimates.

Other examples of successful, replicated subtyping performed by clustering of gene ex-

pression profiles are in Diffuse large B-cell lymphoma (DLBCL) with “oxidative phosphory-

lation,” “B- cell receptor/proliferation,” and “host response” subtypes [Monti et al., 2005];

and glioblastoma with proneural, neural, classical and mesenchymal subtypes [Verhaak et

al., 2010].

As the multiple genomic data platforms of TCGA have become available, one of the

major challenges in cancer research has been to use these integrative data to provide fuller

insight into identifying clinically meaningful cancer subtypes, in the continued hopes of

finding new stratified, effective treatments. Many of the clustering approaches commonly

used are only capable of dealing with single data types at a time and results are often

integrated manually. However, post hoc integration of results from individual genomic data
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sets will likely not be able to capture multiple relationships that exist between different

levels of the data, and thus may fail to realize the potential inherent in the multi-modal

data.

It is in this context that we became involved in the TCGA studies of sarcoma and

mesothelioma tumors. While sarcoma has many histologically diverse malignancies, the

question of subtypes within these diverse sarcoma types had never been systematically

looked at. And in mesothelioma, we were interested in whether there were molecular sub-

types that would be histology-independent.

Additionally, an intermediate analysis of 12 TCGA cancer types and 3,527 tumors from

2014 had presented some results that suggested that molecular subtypes might provide an

alternative to current organ- and tissue-histology-based classification, and had estimated

that “at least one in ten cancer patients might be classified (and perhaps treated) dif-

ferently using such a molecular taxonomy, rather than the current histopathology-based

classification” [Hoadley et al., 2014]. The question of interest in this larger pan-cancer clus-

ter analysis of all 33 tumor types in TCGA was whether we would find further “convergent

integrated molecular subypes.”

Addressing these questions

1.2.2 Classification in cancer: response to platinum chemotherapy

In a natural followup to molecular subtyping based on integrative data, The Center for

Cancer Genomics (CCG), which is the successor to TCGA, is interested in finding classifiers

through integrative genomic classification that can facilitate prediction of newly-discovered

clinically meaningful subtypes.

And, in general, the natural corollary to the challenge of this molecular subtyping is the
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challenge of integrative genomic classification: How can we use the multi-modes of genomic

data available in TCGA to find models that effectively predict outcomes or response?

In this area, we were motivated by one problem in particular: current investigations

into platinum resistance in high grade serous ovarian cancer (HGSOC), the most agressive

subtype of ovarian cancer which makes up most of the advanced stage cases of epithelial

ovarian cancer. HGSOC has the highest mortality rate among all gynecological cancers and

its 5-year survival rate of 35-40% has shown little improvement for decades [Kamieniak et

al., 2015].

This is likely due to the fact that resistance to standard-of-care platinum chemotherapy

eventually emerges in 70% of patients, who will go on to develop recurrent cancer. Platinum

resistance is formally defined as a tumor progression within six months after completion of

first-line platinum therapy. Despite the high percentage of platinum-resistant patients, the

treatment remains the standard of care [Matsuo et al., 2010]. Being able to predict those

patients who are at high risk for platinum resistance could have important consequences

for treatment, including an increased monitoring protocol as well as a complete change in

treatment approach [Gonzalez Bosquet et al., 2016].

1.2.2.1 Molecular mechanisms

Platinum resistance is known to be multifactorial, relying on the “activation of multiple,

non-redundant molecular or cell circuitries”. In a couple of papers, [Galluzzi et al., 2012]

and [Galluzzi et al., 2012] classify these molecular mechanisms into four types: (1) pre-target

resistance, which interferes with the binding of cisplatin to DNA; (2) on-target resistance,

which disrupts DNA-cisplatin binding; (3) post-target resistance, which perturbs Cisplatin-

initiated signaling pathways mean to lead to cancer cell death; and (4) off-target resistance,
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Figure 1.1: Molecular mechanisms of cisplatin resistance [Galluzzi et al., 2014].

with no obvious links to mechanisms of cisplatin-mediated damage. The authors synthesize

genomic and functional studies done in the last decade that have contributed to this knowl-

edge and summarize findings that detail specific genes and pathways in each mechanism

type in Figures 1.1 and 1.2.

Our substantial increase in understanding, however, has so far not led to an ability to be

able to identify ovarian tumors that are likely to be platinum-resistant, although there is a

growing body of work attempting to do just that. In a recent systematic review of prediction

of resistance to chemotherapy in ovarian cancer, [Lloyd et al., 2015] concluded that “A clin-

ically applicable gene signature capable of predicting patient response to chemotherapy has

not yet been identified”. Of the 1298 genes that were identified by 32 prognostic/predictive

models reviewed, 1214 (94%) were found by only one study. And the gene most frequently

selected was only selected by 4 of the models. The vast majority of these studies have
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Figure 1.2: Strategies for reverting cisplatin resistance [Galluzzi et al., 2012].

looked at one genomic platform at a time, in most cases gene expression.

Because these efforts have not produced persuasive and replicable models, and because of

the multifactorial nature of platinum resistance, there has been increasing interest in using

additional and multiple genomic modalities. To this point, the Ovarian Cancer Action

(OCA) 2015 meeting designated “Understanding drug response” as one of seven key areas

for future research, and the emphasis was on moving to an “integrated view” that brings

together all genomics data on individual samples [Bowtell et al., 2015].

1.2.2.2 Important covariates

Additionally, there are some well known covariates that are associated with platinum resis-

tance and HGSOC prognosis. For instance, residual disease is known to be one of the most

influential factors in HGSOC prognosis. In the TCGA dataset of HGSOC tumors surgically

resected before treatment with platinum chemotherapy, [Tucker et al., 2014] reported that

survival was significantly better for patients with no residual disease compared to those who

had any residual disease at all (including <10 mm, which previously had been considered
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to be optimal).

Recently, there has been increasing interest in and accumulating evidence for the idea

that the tumor microenvironment has a large role to play in platinum resistance, particularly

characteristics of the extracellular matrix that may preferentially support cancer stem cells

or residual disease cells [Chien et al., 2013].

There is also evidence that certain genetic mutations play a role in platinum resistance.

For instance, TP53 mutations have been reported in the literature to be associated with

platinum resistance in some studies but not in others ([Agarwal and Kaye, 2003]).

The evidence for BRCA mutations is much more consistent. Mutations in BRCA1 and

BRCA2 (breast cancer susceptibility gene types 1 and 2) are known to significantly increase

the chances of a person developing ovarian cancer. (BRCA1 confers a 39-40% and BRCA2

an 11-18% lifetime risk.) Because of BRCA’s role in the DNA repair pathway, however,

tumors with BRCA mutations have proven to be more sensitive to platinum drugs than

tumors with wildtype BRCA. This leads to consistently better prognosis for patients with

BRCA1/2-mutated ovarian cancer compared with non-carriers, if they receive platinum-

based therapy ([Mylavarapu et al., 2018], [Swisher et al., 2008]).

Interestingly, this sensitivity can be modulated by other genomic events/factors. For

example, [Norquist et al., 2011] reported that 46.2% of platinum resistant tumors have

secondary mutations that restored the function of BRCA1/2 as compared with 5.3% that

are sensitive to platinum. Thus, researchers believe that secondary mutations in BRCA1/2

may be overriding the BRCA1/2 tumors’ sensitivity to platinum, and perhaps there are

other genomic factors as well that could be modulating the BRCA1/2 tumors’ response to

platinum therapy.

While it is impractical to test interaction between every genomic feature and the BRCA1/2
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genotype, a model that could make a genomic features x BRCA1/2 genotype possible would

certainly be of interest.

We propose our joint latent variable method iClassify to address the problem of pre-

dicting platinum response in high-grade serous ovarian cancer, and will use it to perform

fully integrative genomic analyses that incorporate mRNA and miRNA expression, and

methylation data, as well as interactions with clinically relevant mutations and residual

disease.

1.3 Introduction to Statistical Methods

The TCGA (The Cancer Genome Atlas) project has made widely available for the first

time multiple modes of genomic data from the same large number of samples. This has

motivated the development of methods that attempt to improve the power of estimation and

prediction of genomic effects on cancer outcomes by integrating data from these multiple

platforms into a unified analysis. Methods development for this kind of approach fall roughly

within a couple of categories that try to address two basic challenges: 1) how to reduce

dimensionality of datasets where the number of variables is much greater than the number

of samples (p � n, ”the curse of high dimensionality”) and 2) how to sensibly integrate

such diverse data types.

1.3.1 Introduction to Integrative Clustering Methods

Clustering high-throughput multimodal genomic data is a challenge that has recently arisen

as The Cancer Genome Atlas has accrued its rich, multiplatform cancer cohorts.

Early efforts to subtype TCGA cancer sets fell under the category of “clustering of clus-

tering,” where results of single platform clustering were then provided as input to a second-
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level cluster analysis. The cluster-of-cluster assignments (COCA) method ([Hoadley et al.,

2014]) takes binary vectors of cluster assignments from each single platform as input and

then performs Consensus clustering on those vectors. This allows for data to be combined

without the challenge of non-trivial normalization. It also gives each single platform an

influence on the final result proportional to how many clusters that platform produced. In

this way, the number of features in a single platform does not carry undue weight. Another

early method was SuperCluster ([Hoadley et al., 2014]), an algorithm that took a similar

approach to derive overall subtypes based on cluster memberships of single platform data

types, but treats cluster assignments as nominal rather than binary, and assumes an equal

contribution for each data type.

These methods can work well if most or all single platform clustering yields concordant

results, but is less powerful otherwise. Also, assuming equal or near-equal contribution from

all data types may not reflect true mechanisms of disease. More to the point, both of these

methods perform integration of cluster membership values rather than at the data level,

thereby losing valuable and essential information.

Pathway clustering is another common approach to integrative data subtyping. PARADIGM

([Vaske et al., 2010]) is a pathway approach that has been used to cluster TCGA samples

in a number of studies using copy number and mRNA expression data along with pathway

interaction data found in public databases. The method infers integrated pathway levels

(IPLs) for each gene that reflects a genes activity in a tumor sample relative to the median

activity across all tumors, then runs consensus clustering on the most varying features.

Other related approaches focus on integrating data into specific biological pathways, e.g.

gene expression regulation ([Teo et al., 2015], [Cheng et al., 2015]) or drug pathways ([Li et

al., 2015a]).
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These approaches can be very effective at answering the specific research questions they

are designed for, but are inherently limited in a global sense by the focus on specific data

types and networks. Also, as these methods depend, in large part, on prior biological knowl-

edge, so can miss out on discovery of new mechanisms or previously unknown relationships.

Methods development for integrative clustering, spurred on by TCGA, has been a very

active area for the last decade. There have been a number of“horizontal analyses” ([Tseng

et al., 2015]) approaches which focus on variable to variable relationships within and across

data types . Examples of this are correlation network analysis ([Adourian et al., 2008],

[Li et al., 2015b]), correlation motifs ([Ji et al., 2015]) and multiple canonical correlation

analysis ([Witten et al., 2009]). Again, these methods are developed for specific questions

and inherently do not focus on global modes of variation.

Another active area for clustering methods development has been in vertical integra-

tive analyses, which focus on generalized dimensionality reduction ([Tseng et al., 2015]).

Common and early dimension reduction approaches such as singular value decomposition

(SVD; [Alter et al., 2000]; [Holter et al., 2000] and non-negative matrix factorization (NMF;

Brunet2004) work well for a single data type but do not accommodate multiple heteroge-

nous data types. More recent developments specifically for multimodal data sets include

Bayesian methods with penalization [Liu et al., 2015], decomposition of variation ([Lock et

al., 2013]), and joint factor analysis ([Li and Jung, 2017], [Shen et al., 2009]).

iCluster+ is specifically a joint latent variable model-based approach to integrative clus-

tering with several advantages. In this formulation, the common set of latent variables are

proposed to represent distinct driving factors of disease. Multiple genomic data types with

different scale and variance structure can be incorporated into a single model. Biological

relationships among platforms do not need to be specified. This acknowledges the incom-
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plete nature of our understanding of genomic relationships, at the same time allowing for

the discovery of novel pathways or drivers. A penalized likelihood method still allows for

feature selection.

1.3.2 Introduction to Integrative Classification Methods

Methods for integrative classification are not as well developed as those for integrative

clustering, and there is a real need for new approaches in this area.

The idea that looking at more than one type of genomic data for classification at once

is more powerful is borne out by studies that have looked into the question. For example,

[Fuchs et al., 2013] found that in most cases, classifiers based on a combination of mRNA

and miRNA data yield equivalent or greater accuracy than classifiers based on just one type

of data. [Daemen et al., 2009] similarly found that prediction of all outcomes improved when

more than one type of genome-wide data set is used.

Sequential/filtering techniques consider different platforms one after the other, reducing

the dimensionality of the feature space to those that have known relationships among at

least two data types. For example, [Mankoo et al., 2011] filtered out features that did not

meet certain correlation criteria based on mRNA regulation in serous ovarian tumors, then

used the greatly reduced set of features to predict survival.

This is the same logic used in studies of other complex diseases that seek to incorporate

transcriptomic information into analyses to increase the power to uncover mechanisms of

disease, spurred on by the demonstration by [Nicolae et al., 2010] that single nucleotide

polymorphisms (SNPs) discovered through GWAS are more likely than frequency-matched

SNPs to be expression quantitative trait loci (eQTLs). In simple cases, eQTL studies

have provided lists of single nucleotide variants that contribute to gene expression variation
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Figure 1.3: The ’triangle” method for integration of genotype, expression, and phenotype

data [Gamazon et al., 2013].

(eSNPs) that can then be compared to significant disease-specific GWAS-associated SNPs

[Cookson et al., 2009]. This approach has proved successful in several studies, and is now

routinely used to select candidate genes for exploring disease mechanisms [Montgomery and

Dermitzakis, 2011]. For example, [Dubois et al., 2010] highlighted 20 of the 38 associated

celiac disease risk loci that are also correlated with expression variation in a nearby gene,

and Anttila et al [Anttila et al., 2010] used correlation of migraine-associated genotypes

from GWAS with gene expression data to point to a potential regulatory mechanism.

More formally, genotype and gene expression data on the same samples can be integrated

with phenotype in a ”triangle” approach [Gamazon et al., 2013], illustrated in Figure 1.3:

1. Identify a set of genes whose differential expression is associated with the phenotype

with an arbitrarily chosen p-value, p < pexpression−phenotype.

2. Identify SNPs (eQTLs) that are associated with the selected gene in the previous step

at an arbitrarily chosen p-value, p < pexpression−SNP .

3. SNPs from the previous step are then tested for association with phenotype at an
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arbitrarily chosen p-value, p < pSNP−phenotype.

Gamazon et al show that estimating the significance of these SNP-phenotype associations

with a simple FDR leads to false positive results because the null distribution of p-values

in this case is not uniform, and propose simulating a null distribution of p-values by:

1. Permuting phenotype labels Yi, for each simulation i, while retaining the correlation

structure of gene expression

2. For each permuted phenotype list, deriving a set of differentially expressed genes, gi,

that exceeds p < pexpression−phenotype

3. For each gene gij , retrieving set of eQTLs, Sijk from the SCAN database that exceeds

p < pexpression−SNP

4. Derive subset of Sijk that exceed p < pSNP−phenotype. These p-values are thus the

null distribution.

Using the above null distribution of p-values, they follow the approach of [Storey and

Tibshirani, 2003] to estimate an accurate FDR.

This method can incorporate other types of ”omics” datasets (such as methylation,

microRNA, and protein abundance, among others), and is theoretically not limited to using

only two types of data at a time. The primary advantage of this approach is that each

step of filtering accomplishes dimensionality reduction, which reduces the number of tests,

potentially improving power. The performance of the method, however, is very dependent

on the filtering thresholds chosen, although the overall p-value should remain relatively

consistent regardless of thresholds. Practically speaking, including more than two data

types becomes methodologically complicated and computing an overall p-value could quickly
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become computationally unfeasible. Moreover, software is available for the case of only two

data types.

The main drawback with these sequential or filtering methods is that they are based

on an assumption of strong linear correlation between the same features in different data

types, an assumption that could be violated either by weak correlation across two or more

data types, or by nonlinear associations.

Other integration techniques focus on ways to analyze the different types of data simul-

taneously or within the same framework.

1.3.2.1 Concatenation/matrix factorization

The simplest form of this approach is to concatenate the separate matrices for each data type

into one large matrix. Methods for dimensionality reduction could then include penalized

likelihood, some kind of matrix decomposition e.g. principal components analysis (PCA)

or singular value decomposition (SVD), or a combination of both.

[Barretina et al., 2012] combined multiple types of genomic data from the Cancer Cell

Line Encyclopedia (gene expression, gene copy number, gene mutation values, and others)

together into one large matrix of genomic features: X ∈ N,p, where N is the number of

cell lines, and p is the number of predictive features. They then predicted continuous drug

response with an elastic net regression algorithm [Zou and Hastie, 2005; Friedman et al.,

2010] which combines L1 and L2 regularized regression penalty terms in order to, on the

one hand, find a parsimonious model selecting the most influential features (with L1), and

on the other, to account for and include corelated features (with L2).

Combining different modes of data (e.g. continuous and binary), however, raises issues

of scale and normalization that are not trivial, while including all genomic types in one
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matrix puts equal weight on all data types which may not reflect the true disease mecha-

nisms. Further, this kind of approach does not have a framework to sensibly incorporate

environmental variables.

Decomposition of a concatenated matrix brings up similar issues. Performing decom-

position requires an assumption that all data types share a common variance, which is not

borne out in practice with different modes of genomic data. [Shen et al., 2013] show that

SVD on a concatenated matrix does not achieve effective integration both with simulated

and real data.

Kernel methods map data into a feature space by a kernel function, which defines gen-

eralized similarity relationships between pairs of features by computing the inner product.

Classification is then done on the kernel most often using a Support Vector Machine (SVM).

While methods were originally developed for homogeneous data, extensions for analyz-

ing different data types simultaneously have been explored. [Pavlidis et al., 2002] integrated

two types of data for gene function classification using three approaches: concatenation of

the data into one matrix (early integration), summing of the separately computed kernel

matrices (intermediate integration), and summing of the discriminant values resulting from

separate SVMs for each data type (late integration). The intermediate integration provided

the best-performing classification. However, the authors also found that SVM with inte-

grated data performs worse than SVM on a single data type in cases where one data type

provides significantly more information than the other.

A disadvantage of this method is that kernel representations of effects of genomic markers

are not directly interpretable, though methods for feature selection do exist. In terms

of our purpose, if sparse environmental variables were incorporated into this framework,

they could be easily overwhelmed by the high dimensional genomic data. And, in general,
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computational burden becomes an issues as more data types are included.

[Li, 2013] proposes a two-stage formal integrated model for clinical outcome incorporat-

ing transcript expression and genotype data based on the idea that genetic variation affects

gene regulation which affects disease probability.

Let Yi = 0, 1 be disease status for the ith subject, let Zik = 0, 1, 2 be the number of

minor alleles at the kth SNP for k = 1, ...,K, let Xij be the expression of the jth transcript

for j = 1, ..., p, and let Wil = 1, ..., q be environmental covariates.

Disease risk is modeled as a function of gene expression and covariates, with gene ex-

pression modeled as a function of genetic variation and the same covariates:

outcome model: logit P(Yi = 1|Xi, Zik,Wi) = αint0 +Xτ
i α0 +W τ

i ξ0

transcript model: Xτ
i α0 = βint0 + Zikβ0 +W τ

i ν0 + εi, εi ∼ N(0, σ2)

An approach similar to this that integrates multiple genomic data types has been devel-

oped by [Jennings et al., 2013], known as iBAG (integrative Bayesian analysis of genomics

data). In iBag, the outcome model is known as the clinical model, and the transcript model

is known as the mechanistic model. In the mechanistic model, the gene’s expression gets

partitioned into factors explained by methylation, copy number variation and other causes

using principal-component-based regression. These principal components are then included

in the clinical model, which they propose can find the gene expression related to the clinical

outcome as well as the components that affect gene expression. (Sparsity is induced with

Bayesian shrinkage.)

The main drawback here is that the appropriateness of the mechanistic model is de-

pendent on understanding the biological relationships between data types. If the biologi-

cal relationships are not well understood, or end up being more complex than the model
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would indicate, the information that exists in the data will not be extracted. For example,

[VanderKraats et al., 2013] make the point that only modest correlations have been found

between differential methylation at gene promoters and gene expression and hypothesize

that this is because existing analysis methods oversimplify the representation of the data.

Additionally, the method is not well-suited to incorporate binary or categorical genetic

data that is also important to disease etiology. There also does not appear to be publicly

available software to explore this approach.

A joint latent variable approach to classification, such as the one underlying iCluster+,

thus offers advantages that the preceding methods do not. Namely, while accomplishing

effective dimensionality reduction through latent variables, it: 1) accommodates different

data types at the model level, 2) provides feature selection that takes feature effects and

data type effects into account, and 3) is not reliant on prior biological knowledge or assump-

tions. We propose to build a classification method, iClassify, using this approach that will

further accommodate clinical and environmental covariates and allow for genomic-covariate

interaction terms.

1.4 Summary of Introduction

In this dissertation, we apply a joint latent variable approach to multimodal genomic data

to gain insight into cancer studies.

For subtyping integrative data, we use the already existing method, iCluster+, an in-

tegrative clustering method using a joint latent variable approach, to three TCGA data

sets. iCluster+ is a generalized vertical integrative clustering method that formulates la-

tent variables as distinct drivers of disease and accommodates heterogeneity of genomic

data type. It offers penalized feature selection that allows identification of features that
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directly contribute to clustering solutions.

Building on iCluster+’s model formulation, iClassify integrates different genomic plat-

forms at the data level and uses a joint latent variable model for the purposes of prediction

and classification. It additionally allows for covariate terms and genomic-covariate interac-

tion.

The development of this method can provide a refined prediction tool for patient out-

comes with systematic applications to large-scale sequencing studies, such as the TCGA

ovarian cancer data set we investigate here. Moreover, this methodology has broad appli-

cations beyond predicting treatment outcomes and disease progression in cancer, including

predicting prognosis and diagnosis in other diseases with major public health implications.

For example, prediction of conversion to Alzheimer’s disease in subjects with mild cognitive

impairment and future diagnosis of post-traumatic stress disorder in patients exposed to

violence are two areas of potential future investigation.
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Chapter 2

iCluster: Methods and

Applications

2.1 Methods

As we have noted, iCluster+ takes a joint latent variable model approach to multimodal

genomic data, jointly modeling all genomic features with a common set of unobserved la-

tent variables that we propose represents distinct driving factors of cancer, e.g. molecular

etiology and genetic pathways. These latent variables can be thought to collectively capture

the major biological variations observed across cancer genomes. [Mo et al., 2013]. To iden-

tify genomic features that contribute most to the biological variation and thus to proposed

clustering solutions, an L1 penalized likelihood approach is used to induce sparsity.

We will provide a more detailed formulation of iCluster+ and then apply this method

to three different TCGA studies.

Following [Mo et al., 2013],let xijt, i = 1, · · · , n, j = 1, · · · , pt, t = 1, · · · ,m denote the

genomic variables associated with the jth genomic feature in the ith subject of the tth data

type. A genomic feature can be a variable such as mutation status, gene expression level or
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methylation level, depending on the data type. Let zi = (zi1, · · · , zik)′ be a column vector

consisting of k unobserved latent variables.

We assume zi are continuous variables that represent continuous spectrums of driver

activation and follow a standard multivariate normal distribution N(0, Ik). The genomic

variables xijt(j = 1, · · · , pt, t = 1, · · · ,m) are connected to the latent process via a para-

metric joint model in which different genomic variables are correlated through zi. Consider

To model, if xijt is a continuous variable (e.g. mRNA value), we assume it follows a

normal distribution and consider the standard linear regression:

Xijt = αjt + βjtzi + εijt, εijt ∼ N(0, σ2jt), (2.1)

where the error terms are uncorrelated and σ2jt is the residual variance not accounted for by

the common associations represented by zis. αjt is an intercept term; and βjt is a length-k

row vector of coefficients that determine the weights genomic variable j contributes to the

latent variables.

Or if xijt is a binary variable (e.g., mutation status), we consider standard logistic

regression:

logit{Pr(Xijt = 1|zi)} = αjt + βjtzi,

where Pr(Xijt = 1|zi) is the probability of gene j mutated in tumor i given the value of the

latent factor zi.

The model also accommodates other genomic data types, such as multicategory (e.g.

copy number loss, normal, gain) and poisson (e.g. sequencing count data) variables.

Assuming conditional independence of xijt given zi, the joint likelihood can be expressed
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as this summation:

`(xijt, zi;αjt,βjt) =
n∑
i=1

m∑
t=1

pt∑
j=1

{
log f(xijt|zi, αjt,βjt) + log f(zi)

}
,

To obtain a sparse model that allows identification of the genomic variables that con-

tribute to the model, the following penalized likelihood estimation is performed with the

lasso (L1) penalty:

max
αjk,βjt

`(Xijt, Zi;αjt,βjt)−
∑
jt

λt‖βjt‖1

where ‖βjt‖1 = ‖βj1t‖ + · · · + βjkt is the L1-norm (lasso) penalty and λts are sparsity-

inducing tuning parameters with different values for each data type. Heterogeneity of the

different data types is thus accommodated through the different sparsity tuning parameters.

If the entire vector βjt is zero, then the genomic variable j in data type t is removed from

the model. The values of λt are determined by using the Bayesian information criteria

(BIC).

For estimation, a modified Monte Carlo Newton-Raphson algorithm is used. As zi is not

observed, its joint posterior distribution using a random walk Metropolis-Hasting algorithm:

z
(r+1)
i |Xijt ∝ f(Z

(r)
i )

∏
j,t

f(xijt|αjt,βjt, z
(r)
i )

Parameter updates are then calculated by their sample averages over repeated draws.

Once latent variables zi are estimated, K-means clustering divide the n samples into

k + 1 clusters using the k latent variables. If k is unknown, it is selected from a range of

k’s using the BIC.

2.2 Data considerations

Mulitple genomic platforms are used in iCluster+ analyses. In our TCGA analyses so

far, we have used full sets and subsets of SCNA copy number data, DNA methylation,
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and mRNA, miRNA, and ncRNA expression as input. Data are pre-processed using the

following procedures: For mRNA, ncRNA and mature-strand miRNA sequence data, poorly

expressed genes are excluded based on median-normalized counts, and variance filtering

leads to a list of reduced features for clustering. Expression features are log2 transformed,

normalized, and scaled before using them as input to iCluster+.

For methylation data, the median absolute deviation was employed to select the top 4000

most variable CpG sites after beta-mixture quantile normalization [Pidsley et al., 2013]. We

removed methylation probes with >20% or more missing data and those corresponding to

SNP and autosomal chromosomes. We normalized, and scaled before using them as input

to iCluster+.

For copy number data, Circular Binary Segmented (CBS) segmented data based on

Affymetrix SNP Array 6.0 was used. We further reduced these data to a matrix of sam-

ples by non-redundant regions by adapting a method described in [Van De Wiel and Van

Wieringen, 2007]. Our algorithm forms genomic regions along a chromosome defined by

consecutive positions with a maximum Euclidean distance (based on copy number log-ratio

segmented values) between any adjacent two probes smaller than a parameter ε, which

determines the number of non-redundant region. Each region is then represented by its

medoid signature.

2.3 Analysis of TCGA Sarcoma cohort

Adult soft tissue sarcomas are malignancies of the connective tissue, including fat, muscles,

cartilage, nerves, blood vessels, and deep skin tissues. While they comprise ≈1% of adult

solid tumors, they account for a disproportionate share of young adult (ages 20-39) can-

cer mortality due to the highly aggressive nature of many sarcomas. They are generally
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classified by the soft (mesenchymal) tissue they resemble most.

The number of sample and sarcoma types in the TCGA cohort are detailed in Table 2.1.

Platforms and number of features selected after pre-processing are in Table 2.2. The stated

goal of the TCGA study was to “understand the genomic diversity of oncogenic drivers, to

refine clinical risk stratification, and to identify potential therapeutic targets.” We present

here relevant results related to our iCluster+ analyses of sarcoma tumors.

Table 2.1: TCGA sarcoma analysis: types and sample sizes

Cancer type Abbreviation Characteristics No. Samples

Dedifferentiated liposarcoma DDLPS Undifferentiated 50

Leiomyosarcoma LMS Smooth muscle differentiation 80

53 soft tissue (STLMS) and 27 uterine (ULMS)

Undifferentiated pleomorphic sarcoma UPS Undifferentiated 44

Myxofibrosarcoma MFS Fibroblastic differentiation 17

Malignant peripheral nerve sheath tumor MPNST Peripheral nerves 5

Synovial sarcoma SS Simple-karyotype 10

Table 2.2: TCGA sarcoma analysis: features and platforms

Genomic platform No. of features

DNA copy number 1097

DNA methylation 1000

mRNA expression 1107

miRNA expression 171

Cross-sarcoma clustering We first performed clustering across all 206 samples and

tried a range of cluster solutions from k=1 to 7. The plot of BIC by number of clusters

showed a clear minimum at k=4, the 5 cluster solution (See Figure 2.1).

iCluster+ results were largely influenced by histology. SS was the most distinct sarcoma

across all platforms, assigning all SS tumors into cluster C4, whose discriminatory features

included high expression of FGFR3 (p = 7e-20) and miR-183 (p = 2e-25), methylation
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Figure 2.1: iCluster+ Sarcoma analysis: BIC by cluster number

of the PDE4A promoter (p = 1e-06) and partial or complete loss of chromosome 3p in 5

cases (45%). Full tables of differential features can be found in Supplementary materials

of the full Sarcoma paper [Cancer Genome Atlas Network, 2017]. Unique patterns of DNA

methylation, miRNA expression, and gene expression recapitulate single platform clustering

for SS, and are consistent with an SS18-SSX fusion protein that is proposed to disrupt

epigenetic regulation [Svejstrup, 2013].

iCluster C1 was dominated by LMS, 64 of 65 cases (98%), and was distinguished from

other sarcomas largely by genes linked to myogenic differentiation, including high expression

of MYLK, MYH11, ACTG2, miR-143, and miR-145 (all p ¡ 5e-39), low mRNA expression
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Figure 2.2: iCluster+ Sarcoma analysis Figure 2.3: STLMS heatmap
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Figure 2.4: Disease Specific Survival by STLMS iCluster

of inflammatory response genes, and low leukocyte fraction by methylation analysis. An

association with grade was also noted, with iCluster C1 and C2 containing 11 of the 14

low-grade sarcomas (FNCLCC grade 1) compared to 3 in C3 and none in C4-5 (p = 0.011).

However, this effect may be driven by iCluster separation by histologic type, as 12 of the

14 low-grade sarcomas were LMS, which was enriched in C1.

DDLPS was mainly broken up into iCluster C2 (44%) and C3 (54%), while UPS was

mostly divided between C3 (36%) and C5 (59%). The five MPNST tumors were spread out

over 3 iClusters.

Within-LMS clustering

We then performed clustering specifically on LMS, which has been reported to have 3

mRNA expression subtypes, i.e., a mostly uterine type and two mostly soft tissue types

with very different prognoses [Guo et al., 2015]. The all-LMS clustering had a minimum

BIC at the 2-cluster solution, and resulted in one cluster highly associated with ULMS and

the other with STLMS. To see whether we could replicate the two soft tissue types with
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Figure 2.5: iCluster+ Sarcoma analysis

different prognoses, we performed an STLMS-only clustering. Again the minimum BIC was

at the2-cluster solution.

Indeed, our two clusters were consistent with reports from [Guo et al., 2015] and we

were able to contribute additional knowledge about inter-STLMS subtypes. STLMS C1

had worse recurrence-free survival (RFS; p = 0.0002) and DSS (p = 0.008; Figure 2.4).

Compared with C2, C1 was hypermethylated (Figure 2.3) and showed higher expression of

IGF1R and factors involved in cell-cycle control (CCNE2), DNA replication (MCM2), and

DNA repair (FANCI) (all with adjusted p ≤ 0.03). C1 also showed more frequent mutations

of RB1 (p = 0.04) and amplification of 17p11.2-p12 (q = 0.022), a known alteration in

LMS that notably includes MYOCD, encoding myocardin, a transcription factor involved
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in smooth muscle differentiation. The hypomethylated STLMS C2 displayed prominent

signatures of inflammatory cells, including NK cells (p = 0.004) and mast cells (p = 0.044).

The STLMS C1 cluster showed similarities with ULMS, including enrichment for PTEN

deletion, mutation, or downregulation and for amplification or overexpression of AKT path-

way members. Taken together, 46/55 (84%) of ULMS and STLMS iCluster C1 tumors

contained alterations in the AKT pathway compared to 11/25 (44%) of STLMS iCluster

C2 (p = 1e-04). Given recurrent deletion/mutation of PTEN along with frequent amplifica-

tion and upregulation of IGF1R, AKT, RICTOR, and MTOR (Figure 2.5) and high AKT

pathway scores by RPPA, aberrant PI3K-AKT-MTOR signaling may be crucial in LMS

as a whole. Our collaborators suggest that while the effect of MTOR inhibitors such as

everolimus and temsirolimus have been diminished by indirect upregulation of AKT, per-

haps newer TORC1/TORC2 inhibitors and dual PI3K/ MTOR inhibitors may overcome

this limitation and offer more effective therapy for LMS patients.

For other results and findings to emerge from the TCGA sarcoma study, see our report

in Cell [Cancer Genome Atlas Network, 2017].

2.4 Analysis of TCGA Mesothelioma cohort

Table 2.3: TCGA Mesothelioma analysis: histology and sample sizes

Histology No. Samples

Epithelioid 52

Biphasic 13

Sarcomatoid 3

Not otherwise specified 6

Malignant pleural mesothelioma (MPM) is a cancer of the mesothelial cells lining the

pleural cavity. It was rare until the widespread use of asbestos in the mid-20th century
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Table 2.4: TCGA Mesothelioma analysis: features and platforms

Genomic platform No. of features

DNA copy number 1740

DNA methylation 4000

mRNA expression 4036

miRNA expression 304

lncRNA expression 1015

[Sekido, 2013]. Although reduction and strict regulation of asbestos use may be leading to

a leveling off in new cases in Western countries, its long latency, together with continued use

of asbestos in non-Western countries, ensures that MPM remains a global problem [Leong

et al., 2015]. MPM is almost universally lethal, with only modest survival improvements in

the past decade [Yap et al., 2017], suggesting that standard treatment is reaching a ther-

apeutic plateau. Elucidating oncogenic genomic alterations in MPM is therefore essential

for therapeutic progress.

To expand our understanding of the molecular landscape and biological subtypes of

MPM, and provide insights that could lead to novel therapies, TCGA has conducted a com-

prehensive, multi-platform, genomic study of 74 MPM samples. Here, we provide iCluster+

analysis of these 74 samples (with histology detailed in Table 2.3) and report prognostically

relevant subsets of MPM with novel potential therapeutic targets. In this analysis, we used

5 data types, detailed in Table 2.4.

While the current classification of MPM into epithelioid, sarcomatoid and biphasic his-

tologies is prognostically useful, there remains variability in clinical features and patient

outcomes within histological subtypes. Previous analyses ([Bueno et al., 2016], [De Reynies

et al., 2014]) based on mRNA expression alone have defined unsupervised clusters that

largely recapitulate these histologic classes. To find out whether multi-platform molecu-
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Figure 2.6: iCluster+ Mesothelioma heatmap Figure 2.7: Epithelioid-only
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Figure 2.8: OS by MPM iClusters Figure 2.9: OS by MPM Epithelioid iClusters

lar profiling might provide additional resolution to define prognostic subsets of MPM, we

used iCluster+ to perform integrative clustering across multiple platforms. We identified

four distinct integrated subtypes of MPM. Survival was significantly different across the

4 clusters (P¡0.001, Figure 2.8), and this survival difference remained significant (P=0.01)

after adjusting for histology (epithelioid vs. non-epithelioid, Table 2.5) and age. iClus-

ter 1 patients had the best prognosis, were likely to have undergone pneumonectomy, and

were enriched for epithelioid histology. Molecularly, these tumors had low SCNA, relatively

few CDKN2A homozygous deletions (11%), and a high level of methylation (Figure 2.6).

All but one (95%) had BAP1 alterations: 26% had homozygous deletions and 53% had

heterozygous loss with mutations.

The poor prognosis cluster (Cluster 4; red) had a high score for epithelial-mesenchymal

transition (EMT) based on gene mRNA expression (P¡0.001) which was distinguished by

high mRNA expression of VIM, PECAM1 and TGFB1, and low miR-200 family mRNA
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Table 2.5: All MPM: Multivariate Cox Regression

Characteristic HR (95% CI) P

iCluster group (ref iCluster 1) 4.60E-04

iCluster4 5.71 (2.49, 13.10)

iCluster3 2.50 (1.14, 5.51)

iCluster2 1.49 (0.63, 3.52)

Histology (ref Epithelioid) 0.02

Non-Epithelioid 2.15 (1.17, 3.94)

Age (continuous) 0.98 (0.95, 1.02) 0.37

expression. These tumors also displayed MSLN promoter methylation and consequent low

mRNA expression of mesothelin, a marker of differentiated mesothelial cells, as noted pre-

viously in sarcomatoid MPM and the sarcomatoid components of biphasic MPM [Dacic

et al., 2008], [Tan et al., 2010]. Overall, this poor prognosis cluster also showed enrich-

ment of LATS2 mutations (30% compared to 4% in the rest of the cohort) and CDKN2A

homozygous deletion (66%). Moreover, this cluster showed higher AURKA mRNA ex-

pression, higher leukocyte fraction (based on methylation), and elevated mRNA expression

of E2F targets, G2M checkpoints, and DNA damage response genes. PI3K-mTOR and

RAS/MAPK signaling were upregulated, based on both mRNA and protein mRNA expres-

sion. Additionally, several miRNAs were differentially expressed between the good and poor

prognostic clusters, including miR-193a-3p, which has been proposed as a potential tumor

suppressor [Williams et al., 2015]. Finally, a comparison of immune gene mRNA expression

signatures [Bindea et al., 2013] across the four clusters revealed a significantly higher score

for the Th2 cell signature in the poor prognosis cluster 4 compared to the other clusters

(Figure 2.10). Coincidentally, it has been reported that Th2 cytokines secreted by immune

cells upon exposure to asbestos may promote MPM [Mak et al., 2016]).

Integrative clustering was also performed with PARADIGM ([Vaske et al., 2010]). There
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Figure 2.10: Th2 cells by MPM iCluster

was a strong concordance in subtype assignments between the two algorithms, especially

for the best (Cluster 1) and worst (Cluster 4) prognosis clusters, indicating that integration

of molecular data can identify distinct subgroups of MPM, independent of the specific

statistical methodology.

While biphasic and sarcomatoid MPM are more aggressive, there remains a need for

improved risk stratification of epithelioid MPM, for which clinical outcomes are more het-

erogeneous [Gill et al., 2012]. Therefore, we performed an iCluster+ analysis restricted to

epithelioid MPM. The results for the 4-cluster epithelioid-only solution were highly similar

to the 4-cluster all-MPM solution (Table 2.6), with only 7 of the 52 epithelioid samples

reassigned to other clusters. This stability indicates that the features driving the all-MPM

clustering are largely independent of histology. The epithelioid-only clusters share many of
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the features defining the corresponding clusters in the all-MPM solution (2.7). The survival

analysis also paralleled the all-MPM solution, with cluster 1 having the best outcomes and

cluster 4 having the worst (2.9). Upregulation of AURKA mRNA expression in the poor

prognosis epithelioid-only cluster 4 corroborated the results from the all-MPM analysis.

Table 2.6: Epithelioid cases: all-MPM vs Epithelioid-only iClusters

Epithelioid-only

iCluster

1 2 3 4

Epithelioid 1 14 0 1 3

cases from 2 0 13 0 0

All-MPM (n=74) 3 0 0 9 3

iCluster 4 0 0 0 9

Finally, we sought to independently validate the clinical correlations of clusters identified

in the TCGA epithelioid cases using mRNA expression profiles from two published studies:

211 MPM analyzed by RNA-sequencing [Bueno et al., 2016] and 52 MPM samples analyzed

by mRNA expression microarrays [López-Ŕıos et al., 2006]. Specifically, we assigned each

mRNA expression profile to one of the integrative clusters based on the rules derived from

the TCGA mRNA dataset. For the larger validation cohort (henceforth referred to as

Bueno), we restricted our analysis to epithelioid samples and used the epithelioid-only

gene signature to cluster samples. We found that the epithelioid-only samples assigned

to iCluster 1 (good prognosis) had significantly better survival , even after adjusting for

age (Figure 2.11). In the smaller cohort (referred to as Lopez-Rios), patient numbers were

too small to split by histology. However, this analysis provided independent validation of

the survival differences for the four all-MPM clusters (Figure 2.12). Taken together, these

results suggest that the prognostically relevant molecular profiles defined by our analysis
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Figure 2.11: Bueno OS Validation Figure 2.12: Lopez-Rios OS Validation

are robust and reproducible, and could be potentially used to improve risk stratification of

patients with epithelioid MPM.

This manuscript is currently under review at Cell Cancer.

2.5 Analysis of TCGA Pancancer cohort

As discussed in Section 1.3.2, the question of interest for this pan-cancer TCGA 33 cancer

type clustering analysis was whether our results would expand on those of the first pan-

cancer TCGA study of 12 cancer types [Hoadley et al., 2014] and find more molecular

subtypes that would provide an alternative to the traditional organ and tissue-histology-

based classification, or whether the majority of the molecular subtypes we would find would

mirror the traditional ones.

This TCGA pancancer cohort was comprised of 9,759 tumors in TCGA, across 33 cancer
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Table 2.7: TCGA pancancer analysis: cancer tumor types/categories

Cancer type Abbreviation No. Samples

Adrenocortical carcinoma ACC 76

Bladder urothelial carcinoma BLCA 399

Breast invasive carcinoma BRCA 1031

Cervical squamous cell carcinoma CESC 291

Cholangiocarcinoma CHOL 36

Colon adenocarcinoma COAD 405

Lymphoid neoplasmdiffuse large B cell lymphoma DLBC 47

Esophageal carcinoma ESCA 171

Glioblastoma multiforme GBM 128

Head and neck squamous cell carcinoma HNSC 506

Kidney chromophobe KICH 65

Kidney renal clear cell carcinoma KIRC 488

Kidney renal papillary cell carcinoma KIRP 283

Acute myeloid leukemia LAML 160

Brain lower-grade glioma LGG 507

Liver hepatocellular carcinoma LIHC 357

Lung adenocarcinoma LUAD 490

Lung squamous cell carcinoma LUSC 460

Mesothelioma MESO 87

Ovarian serous cystadenocarcinoma OV 294

Pancreatic adenocarcinoma PAAD 176

Pheochromocytoma and paraganglioma PCPG 161

Prostate adenocarcinoma PRAD 484

Rectum adenocarcinoma READ 148

Sarcoma SARC 249

Skin cutaneous melanoma SKCM 446

Stomach adenocarcinoma STAD 407

Testicular germcell tumors TGCT 149

Thyroid carcinoma THCA 494

Thymoma THYM 119

Uterine corpus endometrial carcinoma UCEC 510

Uterine carcinosarcoma UCS 55

Uveal melanoma UVM 80
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Table 2.8: TCGA pancancer analysis: features and platforms

Genomic platform No. of features

DNA copy number 3105

DNA methylation 3139

mRNA expression 3217

miRNA expression 382

types with complete data for four genomic platforms: mRNA, DNA methylation, miRNA

and copy number alterations. See Table 2.7 for a breakdown of cancer types and Table 2.8

for the platforms and number of features that were input into the iCluster+ algorithm.

We looked at a range of cluster solutions from k= 1 to 40 (number of clusters = k+1),

and did not see a clear BIC minimum for any of the solutions (see Figure 2.13). There is a

subtle flattening out of the curve at k=27, which pointed towards the 28-cluster solution, and

further manual examination confirmed this choice. We quantified the relative contribution

of each platform to the overall clustering by summing the platform-specific feature weights

on the 27 iCluster latent variables. CNVs contributed 47%, mRNA and miRNA 42% and

methylation 11%. Figure 2.14 shows heatmap of all features organized by iCluster, including

190 protein RPPA features that were missing in 2,808 samples (including all LAML samples)

but are included in the heatmap for illustrative purposes.

Our iCluster+ solution gave a two-pronged answer to the research question. While it

emphasized the dominant role of cell-of-origin patterns, with the majority of clusters being

comprised of a dominant cancer type, there were also clusters that brought together samples

that had molecular similarities among histologically or anatomically related cancer types,

for instance pan-kidney, pan-gastrointestinal, and pan-squamous clusters. And there were

a few clusters that took members from a number of unrelated cancer types as well. As

stated in the text,“Our analysis showed both divergences from and convergences with the
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Figure 2.13: iCluster+ Pancancer analysis: BIC by cluster number

routinely used clinical tumor classification system.” The following highlights some of the

interesting findings from our analysis, as reported in Cell [Hoadley et al., 2018].

For 16 of the tumor types, over 80% of the samples grouped together in the same

iCluster. Eight iClusters were characterized by a single tumor type (C24:LAML, C11:LGG

[IDH1 mut], C6:OV, C8:UCEC, C12:THCA, C16:PRAD, C26:LIHC,C14:LUAD). Others

contained tumors from similar or related cells or tissues:C28:pan-kidney (KIRC, KIRP),

C15:SKCM/UVM-melanoma of the skin (SKCM) and eye (UVM), C23:GBM/LGG (IDH1wt),

and C5:CNS/endocrine (PCPG). C9 (KICH, ACC) was comprised mainly of two tumor

types that had high levels of hypodiploidism. Six tumor types had more diverse iCluster
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Figure 2.14: iCluster+ Pancancer analysis heatmap

membership,with less than 50% of tumors represented in a given iCluster (BLCA, UCS,

HNSC, ESCA, STAD, and CHOL).

The pan-GI cohort separated into three iClusters (C1, C4, and C18), primarily driven

by differences in DNA methylation profiles. C1:STAD (Epstein-Barr virus [EBV]-CIMP)

consisted of hypermethylated EBV-associated tumors, and C18:pan-GI (MSI) consisted

mostly of microsatellite instability (MSI) tumors of STAD and COAD. C4:pan-GI (CRC)

was predominantly COAD and READ with chromosomal instability (CIN) and a distinct
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aneuploidy profile (Figure 2.14). The pan-squamous cohort formed three iClusters (C10,

C25, and C27). The majority of LUSC fell into C10:pan-SCC, and nearly all CESC fell into

C27:pan-SCC (human papillomavirus [HPV]). Even though all squamous iClusters were

characterized by chromosome 3q amplification, unique features defined C10:pan-SCC (9p

deletion) and C25:pan-SCC (Chr11 amp) (Figure 2.14).

Among mixed tumor type iClusters, three were defined by copy-number alterations.

C7:mixed was characterized by chr9 deletion, C2:BRCA (HER2 amp) mainly consisted of

ERBB2-amplified tumors (BRCA, BLCA, and STAD), and C13:mixed (Chr8 del) contained

highly aneuploid tumors, including a mixture of BRCA-Basal, UCEC (CN-high subtype),

UCS, and BLCA. C3 and C20 were defined by their non-tumor-cell components including

immune and stromal features.

We explored the non-tumor components of the iClusters in more detail. We estimated

the stromal fraction as 1 minus tumor purity and the leukocyte fraction based on DNA

methylation. Of the mixed tumor types, C20 had the highest median stromal fraction fol-

lowed C3 (Figure 2.15). Each of these iClusters also displayed elevated leukocyte fractions

(Figure 2.16). To estimate how much of the stromal fraction was due to immune cell infil-

tration, we investigated the stromal fraction versus the leukocyte fraction. In C3, more of

the stromal fraction was defined by leukocytes than in C20. C3 contained predominately

mesenchymal cancers, which we labeled C3:mesenchymal (immune). C20 tumors were pre-

dominately mixed epithelial cancers, which we labeled C20:mixed (stromal/immune).

To characterize composition and relative homogeneity of each iCluster, we computed

the dominant-cancer-type proportion within each iCluster and plotted it against the mean

iCluster silhouette width, a measure of within-group homogeneity (Figure 2.17). The sil-

houette widths ranged from -0.05 to 0.59, with the highest silhouette widths belonging
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Figure 2.15: Stromal Proportion of Pancancer iClusters

Figure 2.16: Leukocyte Proportion of Pancancer iClusters
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Figure 2.17: iCluster silhouette width vs. cancer type proportion

to single-cancer-type-dominant iClusters (C11:LGG [IDH1 mut], C12:THCA, C16:PRAD,

and C24:LAML). Interestingly, 6 of the 7 pan-organ system iClusters (pan-GI: C1, C4,

C18; pan-SCC: C25, C27, and pan-kidney: C28) had similar ranges of silhouette widths to

those of single cancer-type dominant iClusters, suggesting that these were as robust as the

cancer-type-dominant iClusters. iClusters driven by a shared specific chromosomal alter-

ation (e.g., C13:mixed [chr8 del]) tended to compose multiple tumor types and appeared to

have among the lowest silhouette widths, suggesting substantial molecular heterogeneity.
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While a third of iClusters were mostly homogeneous for a single tumor type, the other

two-thirds showed varying degrees of heterogeneity. The most diverse group, C20:mixed

(stromal/immune), contained a remarkable 25 tumor types. Most of the heterogeneous

iClusters, including C20:mixed (stromal/immune), contained tumor types that fell within

four major cell-of-origin, or organ system, patterns: pan-GI, pan-gyn, pan-squamous, and

pan-kidney.

Figure 2.18: iCluster TumorMaps

We visualized the samples by calculating Euclidean distances between the iCluster latent

variables for all sample pairs and projecting the distances onto a 2D layout withTumorMap

(Figure 2.18A) [Newton et al., 2017]. We overlaid the tumor-type colors (Figure2.18B)

which demonstrated that tumors systematically assembled along the major organ systems

(Figure2.18C), lending further support and justification for the separate in-depth organ-

systems-focused pan-gynecological [Berger et al., 2018], pan-squamous [Campbell et al.,

2018], pan-gastrointestinal [Liu et al., 2018], and pan-kidney [Ricketts et al., 2018] TCGA

reports. For the TCGA pan-squamous report, we additionally provided squamous-specific

iCluster heatmaps and analyses.

Compared to the seemingly discohesive groupings of the 17 heterogeneous iClusters, the
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11 most homogeneous iClusters (C6:OV, C8:UCEC, C11:LGG [IDH1 mut], C12:THCA,

C14:LUAD, C15:SKCM/UVM, C16:PRAD, C19:BRCA [luminal], C21:DLBC, C24:LAML,

C26:LIHC) had higher silhouette widths, uniform tumor types, and histopathologies, but

showed surprising degrees of spatial discohesion in the TumorMap, attesting to their un-

derlying molecular heterogeneity, which has been the subject of many TCGA reports on

individual cancer types.

Analysis of individual iClusters for their differentiating PARADIGM pathway features

[Vaske et al., 2010], canonical pathways, and gene programs amenable to drug targeting

identified strong immune-related signaling features for both C3:mesenchymal (immune) and

C20:mixed (stromal/immune) tumors, suggesting that they may share potential suscepti-

bility to immunotherapy. C20:mixed (stromal/immune) and C3:mesenchymal (immune)

tumors were commonly enriched for gene programs representing PD1, CTLA4, and GP2-T

cell/B cell activation (Figure 2.19B), indicating that new therapies targeting these specific

immune pathways might be appropriate. Relatedly, PARADIGM analysis (Figure 2.19A)

showed that C3:mesenchymal (immune) and C20:mixed (stromal/immune) tumors shared

upregulated JAK2/STAT1,3,6 signaling with C14:LUAD tumors and C10:pan-SCC, point-

ing to the possibility of treating these diverse iCluster tumors with JAK-STAT agents cur-

rently approved to treat rheumatoid arthritis, myelofibrosis, polycythemia vera, and other

non-malignant diseases.

We investigated other characteristics of the 28 iClusters as well, including mutational

assessment, cancer stemness, and immune subtypes. These analyses and additional descrip-

tion of results can be found in [Hoadley et al., 2018].
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Figure 2.19: iCluster pathway analyses
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2.6 Summary of iCluster+ analyses

iCluster+’s joint latent variable approach integrates mutiple genomic platforms at the data

level and allows us to effectively model distinct global driving factors in tumor cells. Inte-

grative cluster analyses performed on three different TCGA cohorts with iCluster+ demon-

strate its ability to reveal moleculary distinct groups of tumors.

In the TCGA sarcoma cohort (Section 2.3), we were able to recapitulate two soft tissue

leiomyosarcoma (LMS) RNA-only subtypes and add significantly to the characterization

and understanding of these prognostically-distinct groups. We also showed that one of

these subtypes shared common aberrant PI3K-AKT-MTOR signaling with uterine LMS,

which may be a crucial disease mechanism in LMS overall.

Our analysis of the TCGA mesothelioma cohort was able to go beyond histology to find

four distinct malignant pleural mesothelioma (MPM) subtypes. We molecularly character-

ized these subtypes, which were stable both over all MPM samples and within only the

epithelioid samples, and were able to replicate in two external data sets the differentially

better prognosis of Cluster 1 relative to Cluster 4. These results could potentially be used

to improve risk stratification, particularly in epithelioid MPM.

Our pancancer TCGA clustering of almost 10,000 cancer tumors over 33 different cancer

types led to 28 different iClusters with a mix of clusters dominated by specific cancer

type/tissue and those that were comprised by a wider range of cancer types. A number

of our clusters were made up of samples from distinct organ systems and this provided

justification for a a number of pan-organ-systems TCGA studies, including pan-kidney,

pan-gynecological, pan-gastrointestinal, and pan-squamous. We demonstrated that two

of our most mixed-type cancer clusters (C3 and C20) were enriched for immune-related
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signaling features which might signal a potential for immunotherapy.
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Chapter 3

iClassify: Statistical Methodologies

To solve the classification problem of predicting response to platinum chemotherapy in

ovarian cancer, we developed a method based off of the joint latent variable modeling of

iCluster.

Latent variables in iClassify represent distinct latent driving factors for each platform,

which are predictive of the values of the original genomic variables. iClassify then models

the likelihood of genomic factors, latent variables, and disease status jointly, and allow for

environmental and clincial covariates. Our fitted model resultsare then used to predict

disease or response status future subjects. A schematic representation of the overarching

goals of iClassify is depicted in Figure 3.1.

3.1 Statistical framework for integrative genomics

Let Xijt, i = 1, · · · , n, j = 1, · · · , pt, t = 1, · · · ,m denote genomic variables in the ith

subject, jth genomic feature in the tth data type. A genomic feature can be a random

variable such as gene expression, methylation, or copy number alteration level, depending

on the data type. We introduce data-source-specific latent factors (e.g., Zit, t = 1, ...,m) to
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Figure 3.1: Schematics of the Proposed Integrative Genomic Method, iClassify

summarize information in each data type t. Let Di be the disease status indicator, and let

Zi = {Zit, t = 1, ....,m}.

Our approach is based on retrospective likelihood in a case-control design as used in

many genomic studies. The conditional likelihood of the observed genomic features {Xijt}

given Di is

∏
i

`(Xi11, · · · , Xipmm|Di)

=
∏
i

∫
`(Xi11, · · · , Xipmm|Zi, Di)`(Zi|Di)dP (Zi), (3.1)

where P (Z) denotes the probability measure of Z. Assume that the latent genomic drivers

fully summarize information in Xijt, conditioning on Zi, Xijt are independent of Di. Thus,

the likelihood (3.1) simplifies to

∏
i

`(Xi11, · · · , Xipmm|Di) =
∏
i

∏
j,t

∫
`(Xijt|Zit)`(Zit|Di)dP (Zit). (3.2)

The first component of equation (3.2) is the product of the likelihood of every genomic

feature over every data type. The model will vary based on data type. For continuous

genomic variables (e.g., log-transformed gene expression, methylation logM), we use a stan-
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dard linear regression model:

Xijt = αjt + βjtZit + εijt, εijt ∼ N(0, σ2jt), (3.3)

where βjt represent coefficients for each genomic feature and εijt is an independent error

term with mean zero and variance σ2jt. The model can be extended to accommodate binary,

multicategory and poisson genomic variables. The second term in (3.2) is the distribution of

Zi given Di. We assume a normal distribution for the latent genomic drivers given disease

status as:

Zit|Di = d ∼ N(µdt, σ
2), µdt = γ0t + γ1td, d = 0, 1, (3.4)

where γ’s represent coefficients for each data type, and in particular γ1t represents the

coefficient for data type effect on disease.

In iClassify, the first component of the likelihood in equation (3.2) summarizes infor-

mation in genomic features and the second component performs disease prediction through

latent genomic features. We will maximize the likelihood jointly across the data types. One

distinction of the model (3.4) with traditional classification methods such as Fisher’s linear

discriminant analysis (LDA) is that Zi is a latent unobserved variable.

3.2 Estimation procedure

For model estimation, we use a modified Monte Carlo Expectation-Maximization (EM)

algorithm treating Zit as missing data. The algorithm consists of an E-step and an M-step.

As latent variable Zit is not observed in our model, and the likelihood for different data

types can vary (e.g., linear model and logistic model), direct computation of the E-step

may be difficult. Thus, we adopt Monte-Carlo EM and repeatedly sample from the joint
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posterior distribution of Zit given observed data,

Z
(r+1)
it |Xijt, Di ∝ f(Z

(r)
it |Di)

∏
j,t

`(Xijt|Z(r)
it ) (3.5)

using a random-walk Metropolis-Hasting algorithm. We then calculate parameter updates

by their sample averages over the repeated draws of the latent variables. Typically, we draw

1000 times. For the prior distribution of Z
(r)
it , we draw samples based on µd obtained with

updated γ. In the M-step, using the complete data likelihood,
∏
i

∏
j,t `(Xijt|Zit)`(Zit|Di),

standard methods in linear regression models and generalized linear models yield updated

parameter estimates. The algorithm continues to iterate through these steps until it reaches

convergence.

3.3 Feature selection

To induce a sparse model, we perform hard-thresholding, where we estimate a threshold

parameter λ that incorporates estimates for both βjt and γt coefficients, thereby accommo-

dating the heterogeneity of different genomic data types. For feature selection, we determine

the value of our threshold parameter λ using cross-validated classification error as the cri-

terion in our model selection process. In order to do this, we repeatedly partition the data

into a training and a testing set. For each value of λ on a grid points of the range of βjtγt,

we first obtain parameter estimates from the training set and use these to make predictions

(response or non-response) in the testing set, for which we calculate classification error.

The λ that results in the lowest classification error is the threshold we select denoted as λ∗.

Features with a combined effect of |β̂jtγ̂t| < λ∗ are set to have null effects. Since iClassify

is a likelihood-based approach, alternative measures such as AIC or BIC can be combined

with hard-thresholding for feature selection.
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The tuning procedure for large datasets is computationally intensive. To minimize

computing time, we have developed a parallel processing algorithm (as in iCluster) that can

take advantage of a computing cluster.

3.4 Prediction of disease status for new subjects

For a new subject with observed genomic variables X∗, but unobserved disease status, we

first obtain the marginal probability for predicting disease status:

P (D∗ = 1|X∗) =

∫
z
P (D∗ = 1, z|X∗)dP (z)

=

{∫
z
f(X∗|D∗ = 1, z)f(z|D∗ = 1)P (D∗ = 1)dz

}
/P (X∗)

=

{∫
z
f(X∗|z)f(z|D∗ = 1)P (D∗ = 1)dz

}
/P (X∗),

where the above second equation follows from conditional independence of X and D given

Z, and

P (X∗) =

∫
z

∑
d=0,1

f(X∗|D∗ = d, z)f(z|D∗ = d)P (D∗ = d).

We use Monte-Carlo integration, sampling from priors of f(Z
(r)
i |D∗ = 1) or f(Z

(r)
i |D∗ = 0),

and taking averages to obtain the desired marginal probabilities.

If the predicted probability of disease/response is greater than 0.5, we will classify the

subject as diseased.

3.5 Inclusion of covariates and interaction with genomic drivers

To extend the framework to covariates, we let Ei denote covariates (e.g. environmental,

clinical, germline mutation).
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Then the conditional likelihood of {Xijt,Ei} given Di is

∏
i

`(Xi11, · · · , Xipmm,Ei|Di)

=
∏
i

∫
`(Xi11, · · · , Xipmm|Zi, Di,Ei)`(Zi|Di,Ei)`(Ei|Di)dP (Zi) (3.6)

The association between covariates and disease status is not of our primary interest

here. Therefore we drop the term l(Ei|Di) in the subsequent discussion, and the likelihood

in Equation (3.6) simplifies to:

∏
i

`(Xi11, · · · , Xipmm,Ei|Di) =
∏
i

∏
j,t

∫
`(Xijt|Zit)`(Zit|Di,Ei)dP (Zit). (3.7)

While the covariates Ei do not bear on the first term in Equation (3.7), they can be

naturally incorporated into the second term, which is now the distribution of Zi given Di

and Ei. With the same normality assumption,

Zit|Di = d,Ei = e ∼ N(µdet, σ
2)

µdet = γ0t + γ1td+ γT2te + γT3te
∗ × d, d = 0, 1.

Importantly, interaction between Di and Ei can be modeled, and we may consider a subset

(instead of the full set) of the covariates (denoted by e∗) that interact with genomic drivers

to influence disease. The estimation procedure incorporates these extended likelihoods

containing Ei. Note that the interaction between genomic features and covariate risk factors

can be tested parsimoniously by γ3t, which has the same dimension as the covariates.

Testing parameters γ3t gives an overall strength of interaction between all genomic features

in the same platform and covariate risk factors. Thus iClassify alleviates the multiple

comparisons issue for testing interaction effects. The interaction effect of a specific genomic

feature j with covariates can be estimated by βjt ∗ γ3t.
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The marginal probability for predicting disease status now depends on observed covari-

ates E∗ as well as observed genomic variables X∗:

P (D∗ = 1|X∗,E∗) (3.8)

=

{∫
z
f(X∗|z,E∗)f(z|D∗ = 1,E∗)P (D∗ = 1,E∗)dz

}
/P (X∗|E∗), and

P (X∗|E∗) =

∫
z

∑
d=0,1

f(X∗|D∗ = d, z,E∗)f(z|D∗ = d,E∗)P (D∗ = d,E∗).

We now sample from priors of f(Z
(r)
i |D∗ = 1,Ei) or f(Z

(r)
i |D∗ = 0,Ei), and take averages

to obtain the desired marginal probabilities. Again, a subject will be predicted to be as

diseased or a responder if the corresponding probability is greater than 0.5.
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Chapter 4

iClassify: Simulation Studies

To assess the performance of our method, we performed several simulation studies with

differing sample size under different scenarios. In all cases, we simulated 100 replicates and

measured prediction accuracy through three-fold cross-validation.

4.1 Integration of genomic platforms

Table 4.1: Simple scenarios (n = 100): parameter estimation

Scenario A. Scenario B. Scenario C. Scenario D.

Strong βjt’s (1-1.5), Strong βjt’s (1-1.5), Weak βjt’s (0.5-1), Weak βjt’s (0.5-1),

strong γ’s (both 1.5) weak γ’s (1, 0.5) weak γ’s (1, 0.5) weakest γ’s (both 0.5)

Para True Est Bias MSE True Est Bias MSE True Est Bias MSE True Est Bias MSE

β1,1 1.5 1.43 -0.07 0.02 1.5 1.44 -0.06 0.02 -1 -0.97 0.04 0.02 -1 -0.84 0.16 0.09

β2,1 1 0.94 -0.06 0.01 -1 -0.96 0.04 0.02 0.5 0.49 -0.01 0.01 0.5 0.45 -0.05 0.04

β3,1 0 0 0 0.01 0 0 0 0.01 0 0 0 0.01 0 -0.01 -0.01 0.01

β4,1 0 -0.02 -0.02 0.01 0 0 0 0.01 0 0.02 0.02 0.01 0 0.01 0.01 0.01

β5,1 1.5 1.44 -0.06 0.02 1.5 1.43 -0.07 0.02 -1 -0.96 0.04 0.02 -1 -0.83 0.17 0.08

β1,2 1 1 0 0.02 1 0.95 -0.05 0.05 -0.5 -0.42 0.08 0.03 -0.5 -0.44 0.06 0.05

β2,2 0 0.01 0 0.01 0 0 0 0.01 0 0 0 0.01 0 -0.02 -0.02 0.02

β3,2 0 0 0 0.01 0 0 0 0.01 0 0 0 0.01 0 -0.02 -0.02 0.02

β4,2 1.5 1.38 -0.12 0.03 -1.5 -1.21 0.29 0.09 1 0.63 -0.37 0.06 1 0.67 -0.33 0.08

β5,2 0 -0.02 -0.02 0.01 0 -0.01 -0.01 0.01 0 0 0 0.01 0 -0.01 -0.01 0.02

γ1,1 1.5 1.63 0.13 0.1 1 0.99 -0.01 0.07 1 1.1 0.1 0.06 0.5 0.55 0.05 0.06

γ2,1 1.5 1.59 0.09 0.09 0.5 0.51 0.01 0.07 0.5 0.53 0.03 0.09 0.5 0.61 0.11 0.08
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Table 4.2: Simple scenarios (n=100): prediction accuracy

Scenario 1 - (Bayes error) iClass (SD) LDA (SD) LR (SD)

A. Strong βjt’s (1-1.5), strong γ’s (both 1.5) 0.82 0.82 (0.04) 0.78 (0.04) 0.78 (0.04)

B. Strong βjt’s (1-1.5), weak γ’s (1, 0.5) 0.69 0.67 (0.05) 0.64 (0.06) 0.64 (0.05)

C. Weak βjt’s (0.5-1), weak γ’s (1, 0.5) 0.67 0.67 (0.04) 0.62 (0.05) 0.61 (0.05)

D. Weak βjt’s (0.5-1), weakest γ’s (both 0.5) 0.61 0.58 (0.05) 0.55 (0.05) 0.55 (0.05)

Table 4.3: Simple scenarios (n=200): parameter estimation

Scenario A. Scenario D.

Strong βjt’s (1-1.5), Weak βjt’s (0.5-1),

strong γ’s (both 1.5) weakest γ’s (both 0.5)

Para True Est Bias MSE True Est Bias MSE

β1,1 1.5 1.42 -0.08 0.01 -1 -0.93 0.07 0.02

β2,1 1 0.95 -0.05 0.01 0.5 0.47 -0.03 0.01

β3,1 0 0 0 0 0 0 0 0.01

β4,1 0 0 0 0 0 0 0 0.01

β5,1 1.5 1.42 -0.08 0.01 -1 -0.94 0.06 0.02

β1,2 1 0.98 -0.02 0.01 -0.5 -0.55 -0.05 0.01

β2,2 0 0.01 0.01 0 0 0 0 0.01

β3,2 0 0 0 0 0 0 0 0.01

β4,2 1.5 1.36 -0.14 0.01 1 0.8 -0.2 0.02

β5,2 0 -0.01 -0.01 0 0 0.01 0.01 0.01

γ1,1 1.5 1.64 0.14 0.04 0.5 0.53 0.03 0.04

γ2,1 1.5 1.65 0.15 0.05 0.5 0.56 0.06 0.04

In a simple setup, we created 100 replicates of a dataset comprised of 50 cases and 50

controls, with 10 features from two different genomic data types (e.g. 5 RNA features and 5

methylation features). Four of the features were noise variables which do not associate with

disease status. Our interest was to determine both estimation and classification accuracy

of our method.

We simulated 50% of the samples in each dataset as cases and 50% as controls, and then

simulated latent variables Zit using the true γ parameters according to equation (3.4). We

then used these simulated Zit and true αjt, βjt, and εijt parameters to simulate features
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Xijt. Our simulated errors were were always ∼ N(0, 1). This simulation process resulted

in datasets with on average 40-50% of features correlated, levels of correlation which are

common in genomic data sets.

We compared prediction accuracy of our method to prediction accuracies obtained

through Linear Discriminant Analysis (LDA) and standard logistic regression (LR), meth-

ods with a unifying framework that concatenates all of the data features together into a

single matrix without distinguishing between them. All features were included as observed

data and no latent variables were considered in these alternative methods since they do not

handle latent effects. Classification in those methods was performed either with a discrim-

inant function δD(x) in the case of LDA or with prediction probabilities Pr(D = 1|X = x)

as in LR [Hastie et al., 2009].

In these scenarios, we varied true β values from stronger (1-1.5) to weaker (0.5-1) , and

true γ values from strong (both 1.5) to weaker (0.5 and 1) to weakest (both 0.5). In Table

4.1, we see that in all cases the parameters are being estimated with small MSE. The bias

is within the range of variability of the estimator and stabilizes with increasing sample size.

Table 4.2 shows that prediction accuracy is higher with iClassify than LDA or LR.

Interestingly, the prediction accuracy appears to be driven primarily by the γ values. Simple

scenario A with the strongest γ values results in significantly better prediction accuracy

across all methods than all other scenarios, and prediction accuracy decreases with γ values.

Although scenario B has stronger β values than scenario C, this has no effect on prediction

accuracy, which does not vary between the two. However, we assume that the 2% increase

in Bayes error accuracy from Scenario C to B is driven by the those stronger β values. We

did not simulate a scenario with weak β and strong γ values, but based on the similarity

of prediction accuracies for Scenario B (strong β, weak γ) and Scenario C (strong β, weak
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γ), we assume the prediction results would be close to Scenario A (strong β and strong γ).

In order to see the effect of sample size, we re-simulated Scenarios A and D, this time with

100 cases and 100 controls (n=200). Table 4.3 shows the decreases in Bias and MSE that

we would expect from the increase in sample size. Table 4.4 shows the effect of increasing

the sample size on prediction accuracy. For Scenario A with large γ values, the increase in

sample size does not affect iClassify’s performance, but does lead to increased prediction

accuracy from the comparative methods. When there are large genomic platform effects,

iClassify performs well even at small sample sizes. For the smaller γ values of Scenario D,

the increase in sample size boosts both iClassify’s prediction accuracy and the prediction

accuracy for LDA and LR by 2%.

Table 4.4: Simple scenarios (n = 200): prediction accuracy

Scenario iClass LDA LR

A. Strong βjt’s (1-1.5), strong γ’s (both 1.5) 0.82 0.81 0.81

D. Weak βjt’s (0.5-1), weakest γ’s (both 0.5) 0.60 0.57 0.57

In more complex scenarios, we simulated 50 features across three data types (e.g. 20

RNA-seq, 20 miRNA seq, 10 CNAs), 25 of which were noise variables. Here, we varied

β values from strong (1-2) to weak(0.5-1) and γ values from somewhat stronger (all 1) to

somewhat weaker (1, 0.5, 1), and simulated with both 50 cases/50 controls and 100 cases/100

controls. Results in Table 4.5 show reasonable parameter estimation that improved for β

estimation in particular as sample size improved.

In this more complex setting, logistic regression did not converge, and iClassify signif-

icantly outperformed LDA in prediction accuracy by 8-9% (Table 4.5). Again, we see the

strong effect of γ values and the relatively weaker effect of β values on prediction accuracy.

While only one γ value decreased from Scenario E to Scenario F, this presumably caused
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a decrease of 4% in prediction accuracy. Conversely, a more significant increase in all β

values from Scenario F to Scenario G resulted in only a 1% increase in prediction accuracy.

As the latent variable structure induces correlation in the genomic feature simulation,

there was again correlation in 40-50% of features. This simulation setting demonstrates

the robustness of iClassify in performing prediction in the presence of correlation and noise

variables, due to using a likelihood framework to integrate latent effects of genomic features.

In contrast, LDA’s performance is deteriorated, probably in part because of the effect

multicollinearity on the performance of LDA [Hastie et al., 1995].

We also looked at a complex scenario with different genomic platforms contributing

different weights to the model: strong (γ1,1 = 2), medium (γ1,2 = 1.25), weak (γ1,3 =

.75). β values were kept relatively weak (0.1-1) across data types. Table 4.6 shows a

similar increase in performance of iClassify over LDA with the stronger γ’s driving a higher

classification accuracy of 89%.

Table 4.5: Three data type scenario (n=200): Estimation and Prediction Accuracy

Scenario ¯MSEβ ¯MSEγ iClass LDA

E. Weak βjt’s (0.5-1), stronger γ’s (all 1) 0.01 0.03 0.77 0.69

F. Weak βjt’s (0.5-1), weaker γ’s (0.5-1) 0.01 0.03 0.74 0.65

G. Strong βjt’s (1-2), weaker γ’s (0.5-1) 0.00 0.03 0.75 0.67

Table 4.6: Varying γ effects setup (n=200): Estimation and Prediction Accuracy
¯MSEβ ¯MSEγ iClass LDA

H. Weak βjt’s (0.2-1), varying γ’s (2, 1.25, 0.75) 0.01 0.04 0.89 0.81

4.1.1 Feature selection

We used the “Varying γ effects” scenario from Table 4.6 to assess our feature selection

method. 50 features were simulated across three data types, 25 of which were noise variables.
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For feature selection, we determine the value of our threshold parameter λ using cross-

validated classification error as the criterion. For each value of λ in a range of βjt ∗ γt,

we obtain parameter estimates from the training set and use these to make predictions

(response or non-response) on the testing set, for which we calculate classification error.

The λ that results in the lowest classification error is the threshold we select. Since iClassify

is a likelihood-based approach, alternative measures such as AIC or BIC can be combined

with hard-thresholding for feature selection.

We compared results from our feature selection method to those from cross-validation

lasso regression which maximizes a penalized version of the log likelihood:

max
β0,β


N∑
i=1

[
yi(β0 + βTxi)− log(1 + eβ0+βT xi)

]
− λ

p∑
j=1

|βj |


We used classification accuracy to determine the tuning parameter λ.

Table 4.7: Varying γ effects simulation: Hard thresholding and prediction accuracy

λ iClass accuracy false positive rate false negative rate

0.0 0.890 1.00 0.00

0.1 0.890 0.22 0.00

0.2 0.891 0.02 0.02

0.3 0.889 0.00 0.10

0.4 0.888 0.00 0.28

0.5 0.888 0.00 0.45

Lasso accuracy false positive rate false negative rate

0.863 0.12 0.54

Table 4.7 shows that a λ value of 0.2 produces the highest iClassify prediction accuracy

(0.891), which coincides with the lowest false positive and false negative rates of any λ.

In comparison, the Lasso accuracy rate at the L1 penalty parameter is 0.863, with a 10%

higher false positive rate and notably a >50% higher false negative rate. Interestingly,
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Figure 4.1: Varying γ effects simulation: BIC by threshold

the iClassify accuracy at all λs is higher than the Lasso accuracy, demonstrating robust

classification regardless of feature selection.

We also examined the BIC in terms of feature selection. Due to the complex nature of the

model, the BIC here does not achieve a minimum (Figure 4.1). But we observe a flattening

out of the change after λ = 0.2, which agrees with the cross-validation classification accuracy

selection criteria.

At the hard threshold of λ = 0.2, β ∗ γ estimates averaged over all replicates allow

iClassify to capture all 25 simulated non-noise features. Figure 4.2 shows the iClassify

weightings for these 25 features, which can be interpreted as feature contributions to the

model, as well as averaged coefficients for each feature that was included in the lasso model

in three-fold cross-validation at least 50% of the time. While the features the Lasso did select

had coefficients that matched the direction of the iClassify weightings and had the same

relative magnitude, only nine of the 25 non-noise features were selected by Lasso at least
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Figure 4.2: Varying γ effects simulation: feature selection

half the time—a stark illustration of the high false positive rate, and a likely explanation

for the lower classification accuracy.

4.1.2 Integrative vs. single platform comparison

We were also interested in whether the model that combined the three data types improves

prediction accuracy over models that only included one data type at a time, as we would

expect from the reports of [Fuchs et al., 2013] and [Daemen et al., 2009] among others. Table

4.8 demonstrates that in the simulation setting the prediction accuracy of a combined model

is better than the prediction accuracy of its best-performing single data type. Additional,

we see that the prediction accuracy of a one-type model increases as γ increases.
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Table 4.8: Varying γ effects simulation: Combined data types vs. single data type

Data Type True γ Estimated γ iClass

Combined 0.892

γ1,1 2.5 2.45

γ1,2 1.25 1.29

γ1,3 0.75 0.69

γstrong 2.5 2.53 0.867

γmedium 1.25 1.25 0.708

γweak 0.75 0.80 0.611

4.2 Simulations with covariate × genomic interaction

An important feature of our method is its ability to incorporate covariates and model

genomic × covariate interaction.

As illustrated in Section 3.5, the inclusion of genomic × covariate interaction affects the

distributions of the latent variables Zit:

Zit|Di = d,Ei = e ∼ N(µdet, σ
2), µdet = γ0t + γ1td+ γ2te+ γT3 e

×d, d = 0, 1.

To assess how our method performs under this type of model, we simulated datasets

incorporating interactions and different strengths and prevalences. Building from Scenarios

A and D from Table 4.4, we included a covariate risk factor with 80% prevalence in the

dataset (OR≈3.86) and a true γ3t interaction coefficient of magnitude 1 or -1 in both

scenarios. Tables 4.9 and 4.11 show parameter estimation for these datasets both accounting

for and not accounting for the simulated covariate x genomic interaction. We also simulated

datasets with covariate risk factors with 50% and 20% prevalence, and tables 4.10 and 4.12

summarize prediction accuracy for all cases.

Across all scenarios and models, prediction accuracy is strongly affected by the direction
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Table 4.9: Scenario A with covariate/genomic interaction: parameter estimation

Positive effect Negative effect

Correct modeling Naive modeling Correct modeling Naive modeling

Para TRUE Est Bias MSE Est Bias MSE TRUE Est Bias MSE Est Bias MSE

β1,1 1.5 1.48 -0.02 0.01 1.61 0.11 0.01 1.5 1.42 -0.08 0.01 1.5 0 0.13

β2,1 1 0.99 -0.01 0.01 1.08 0.08 0.01 1 0.95 -0.05 0.01 1.01 0.01 0.06

β3,1 0 0 0 0 0 0 0 0 0.01 0.01 0 0.01 0.01 0

β4,1 0 -0.01 -0.01 0 -0.01 -0.01 0 0 0 0 0 0 0 0

β5,1 1.5 1.49 -0.01 0.01 1.62 0.12 0.01 1.5 1.41 -0.09 0.01 1.49 -0.01 0.13

β1,2 1 0.97 -0.03 0.01 1 0 0.01 1 0.98 -0.02 0.01 0.98 -0.02 0.13

β2,2 0 0 0 0 0 0 0 0 0.01 0.01 0 0 0 0

β3,2 0 0 0 0 0 0 0 0 0.01 0.01 0.01 0 0 0.01

β4,2 1.5 1.38 -0.12 0.01 1.4 -0.1 0.02 1.5 1.36 -0.14 0.01 1.3 -0.2 0.23

β5,2 0 0 0 0 0 0 0 0 0.01 0.01 0 0.01 0.01 0

γ1,1 1.5 1.48 -0.02 0.19 2.54 1.04 0.03 1.5 1.65 0.15 0.17 0.27 -1.23 0.01

γ2,1 1.5 1.48 -0.02 0.07 -1.5 -1.62 -0.12 0.08

γ3,1 1 1.08 0.08 0.23 -1 -1.12 -0.12 0.23

γ1,2 1.5 1.68 0.18 0.25 2.85 1.35 0.1 1.5 1.59 0.09 0.24 0.26 -1.24 0.02

γ2,2 1.5 1.63 0.13 0.09 -1.5 -1.66 -0.16 0.09

γ3,2 1 0.98 -0.02 0.23 -1 -1.08 -0.08 0.28

of the interaction term. When the interaction coefficients are positive (in the same direction

as the genomic coefficients), we see a significant increase in prediction accuracy over simpler

Scenarios A and D (Table 4.3), while negative interaction coefficients lead to prediction

accuracies that are similar to (in the case of the weak interaction effects Scenario D) or

worse than (in the case of strong interaction effects Scenario A) the simpler scenarios. LDA

prediction accuracy is lower but follows the same pattern.

Figure 4.3 illustrates why scenarios with negative interaction coefficients (or more gen-

erally scenarios that have interaction effects in the opposite direction of genomic effects)

have lower prediction accuracies. It shows distributions of the first simulated latent variable

Zi1 for Scenarios A and D with interaction effects +1 and -1.
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Table 4.10: Scenario A with covariate/genomic interaction: prediction accuracy

Covariate Interaction D|E only Full analysis Naive analysis

prevalence effect iClassify iClasssify LDA iClasssify LDA

0.8 1 0.94 0.92 0.87 0.9 0.89

-1 0.67 0.66 0.61 0.52 0.51

0.5 1 0.94 0.88 0.86 0.82 0.81

-1 0.74 0.73 0.73 0.51 0.51

0.2 1 0.94 0.85 0.82 0.81 0.79

-1 0.78 0.79 0.78 0.67 0.63

Figure 4.3: Latent variables by scenario and interaction effect sign

We recall from Section 3.5 that prediction accuracy in the presence of a covariate risk

factor is dependent on the conditional distribution of latent variables, f(Z
(r)
i |D∗ = 1,Ei)

and f(Z
(r)
i |D∗ = 0,Ei). The greater the separation between these two distributions of Zi,

the more accurate P (D∗ = 1|X,E) will be. In Scenario A, with an interaction coefficient

of +1 (upper left-hand panel of Figure 4.3), we see the largest separation between the

distribution of D = 1|E and D = 0|E with distribution medians differing by ≈2.5. However,

when the interaction coefficient is −1 (upper right hand panel), we see a tightening of
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Table 4.11: Scenario D with covariate/genomic interaction: parameter estimation

Positive effect Negative effect

Correct modeling Naive modeling Correct modeling Naive modeling

Para TRUE Est Bias MSE Est Bias MSE TRUE Est Bias MSE Est Bias MSE

β1,1 -1 -0.96 0.04 0.01 -1.05 -0.05 0.01 -1 -0.95 0.05 0.01 -1.07 -0.07 0.01

β2,1 0.5 0.48 -0.02 0.01 0.53 0.03 0.01 0.5 0.48 -0.02 0 0.54 0.04 0.01

β3,1 0 -0.01 -0.01 0 -0.01 -0.01 0 0 0 0 0 0 0 0

β4,1 0 -0.01 -0.01 0 -0.01 -0.01 0 0 0.01 0.01 0 0.01 0.01 0.01

β5,1 -1 -0.98 0.02 0.01 -1.07 -0.07 0.01 -1 -0.95 0.05 0.01 -1.08 -0.08 0.01

β1,2 -0.5 -0.5 0 0.01 -0.54 -0.04 0.01 -0.5 -0.53 -0.03 0.01 -0.62 -0.12 0.01

β2,2 0 0 0 0.01 0 0 0.01 0 0.01 0.01 0.01 0.01 0.01 0.01

β3,2 0 0 0 0.01 0 0 0.01 0 0 0 0.01 0 0 0.01

β4,2 1 0.91 -0.09 0.01 0.92 -0.08 0.01 1 0.84 -0.16 0.01 0.86 -0.14 0.01

β5,2 0 0 0 0 0 0 0.01 0 0 0 0.01 0 0 0.01

γ1,1 0.5 0.53 0.03 0.26 1.54 1.04 0.04 0.5 0.56 0.06 0.24 -0.56 -1.06 0.03

γ2,1 1 1.04 0.04 0.09 -1 -1.04 -0.04 0.07

γ3,1 1 1.03 0.03 0.26 -1 -1.09 -0.09 0.29

γ1,2 0.5 0.48 -0.02 0.31 1.64 1.14 0.05 0.5 0.49 -0.01 0.33 -0.64 -1.14 0.04

γ2,2 1 1.07 0.07 0.1 -1 -1.1 -0.1 0.12

γ3,2 1 1.1 0.1 0.36 -1 -1.05 -0.05 0.45

the distance between the distributions, whose medians now only differ by 0.5. The same

dynamic is at work in Scenario D, which has less of a separation in the distributions in the

presence of a positive interaction effect (lower left panel) than Scenario A, where distribution

medians differ by ≈1.5, and an actual change in direction in the median difference of the

distributions in the presence of a negative interaction effect (lower right panel).

Prevalence of the covariate risk factor plays an important role in prediction accuracy

as well. With a positive interaction effect, prediction accuracy increases with prevalence

in all cases. In the strong effects Scenario A with a negative interaction effect, prediction

accuracy decreases linearly with prevalence. In the weaker effects Scenario D with a neg-

ative interaction effect, prediction accuracy is uniformly similar to the simpler scenario.
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Table 4.12: Scenario D with covariate/genomic interaction: prediction accuracy

Covariate Interaction D|E only Full analysis Naive analysis

prevalence effect iClassify iClasssify LDA iClasssify LDA

0.8 1 0.82 0.77 0.75 0.78 0.77

-1 0.70 0.62 0.62 0.62 0.58

0.5 1 0.84 0.72 0.7 0.73 0.71

-1 0.81 0.64 0.65 0.58 0.55

0.2 1 0.87 0.64 0.6 0.65 0.63

-1 0.88 0.62 0.6 0.49 0.49

Prevalence does not have an effect on parameter estimation.

The inclusion of a covariate and interaction term in the model seems to have little

effect on the bias but a noticeable effect on the MSE of γ estimation. Notably, even if the

prediction rate is relatively low due to opposite signs in genomic and covariate interaction

effects, as in Scenario A (Table 4.9) or D (4.11) with covariate prevalence 0.8, we can see

from Tables 4.10 and 4.12 that our method still performs reasonable estimation of γ, thus

allowing for a way to assess whether interaction may be present.

When the analysis does not take interaction into account, prediction accuracy stays

similar to the analysis that accounts for interaction, but only when the interaction effect is

in the same direction as the genomic effect (i.e. positive/positive in this case). Presumably

this is because the positive shift in latent variables Zit results in larger estimations for γt.

Conversely, when the analysis does not account for interaction, and the interaction effects

are in the opposite direction from the genomic effect, prediction accuracies are significantly

decreased.

We also confirmed that iClassify was able to properly perform parameter estimation in

the case where there was no underlying interaction effect. Table 4.13 shows that iClassify

estimates the interaction coefficients γ to be close to 0 both where there is an underyling
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Table 4.13: Null interaction scenarios: parameter estimation
Scenario A Scenario D

W/o covariate effect With covariate effect W/o covariate effect With covariate effect

Para TRUE Est Bias MSE TRUE Est Bias MSE TRUE Est Bias MSE TRUE Est Bias MSE

β1,1 1.5 1.47 -0.03 0.01 1.5 1.45 -0.05 0.01 -1 -0.84 0.16 0.09 -1 -0.97 0.03 0.01

β2,1 1 0.99 -0.01 0.01 1 0.96 -0.04 0.01 0.5 0.42 -0.08 0.03 0.5 0.48 -0.02 0.01

β3,1 0 0 0 0 0 -0.01 -0.01 0 0 0.01 0.01 0 0 -0.01 -0.01 0.01

β4,1 0 0.01 0.01 0 0 -0.01 -0.01 0 0 0 0 0.01 0 0 0 0.01

β5,1 1.5 1.47 -0.03 0.01 1.5 1.45 -0.05 0.01 -1 -0.82 0.18 0.09 -1 -0.96 0.04 0.01

β1,2 1 0.99 -0.01 0.01 1 0.98 -0.02 0.01 -0.5 -0.43 0.07 0.05 -0.5 -0.51 -0.01 0.01

β2,2 0 0 0 0 0 0.01 0.01 0 0 0 0 0.01 0 -0.02 -0.02 0.01

β3,2 0 0.01 0.01 0 0 0 0 0 0 -0.01 -0.01 0 0 0.01 0.01 0.01

β4,2 1.5 1.42 -0.08 0.01 1.5 1.41 -0.09 0.01 1 0.65 -0.35 0.1 1 0.89 -0.11 0.01

β5,2 0 -0.01 -0.01 0.01 0 0.02 0.02 0 0 0.01 0.01 0.01 0 0 0 0.01

γ1,1 1.5 1.56 0.06 0.17 1.5 1.52 0.02 0.17 0.5 0.54 0.04 0.21 0.5 0.57 0.07 0.17

γ2,1 0 -0.01 -0.01 0.06 1.5 1.55 0.05 0.07 0 0.04 0.04 0.06 1 1.06 0.06 0.1

γ3,1 0 0 0 0.2 0 0.03 0.03 0.18 0 -0.03 -0.03 0.2 0 -0.07 -0.07 0.19

γ1,2 1.5 1.53 0.03 0.19 1.5 1.58 0.08 0.2 0.5 0.51 0.01 0.35 0.5 0.58 0.08 0.3

γ2,2 0 0.02 0.02 0.06 1.5 1.54 0.04 0.07 0 0.11 0.11 0.09 1 1.15 0.15 0.11

γ3,2 0 0.01 0.01 0.2 0 -0.04 -0.04 0.26 0 -0.1 -0.1 0.42 0 -0.08 -0.08 0.37

Table 4.14: Null interaction scenarios: prediction accuracy

Covariate Scenario A Covariate Scenario D

effect iClasssify LDA LR effect iClasssify LDA LR

0 0.82 0.80 0.76 0 0.62 0.61 0.61

1.5 0.82 0.75 0.75 1 0.62 0.61 0.60

covariate effect and where there is neither a covariate nor an interaction effect. Table 4.14

shows that, as expected, prediction accuracy does not change relative to the simple scenarios

A and D.

4.3 Sensitivity Analysis: Simulations with covariate risk fac-

tor only

Though the association between covariate risk factor and disease status is not of primary

interest, we also performed a set of simulations to examine if including a covariate risk

factor alone had any effect on estimation and prediction.

As illustrated in Section 3.5, the inclusion of one covariate risk factor, e, affects the
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Table 4.15: Scenario A with covariate risk factor only: parameter estimation

Positive effect Negative effect

Correct modeling Naive modeling Correct modeling Naive modeling

Para TRUE Est Bias MSE Est Bias MSE TRUE Est Bias MSE Est Bias MSE

β1,1 1.5 1.38 -0.12 0.02 1.54 0.04 0.01 1.5 1.42 -0.08 0.01 1.57 0.07 0.01

β2,1 1 0.93 -0.07 0.01 1.04 0.04 0 1 0.95 -0.05 0 1.06 0.06 0

β3,1 0 -0.01 -0.01 0.01 0 0 0 0 0.01 0.01 0 0.01 0.01 0

β4,1 0 0 0 0.01 0.01 0.01 0 0 0 0 0 0.01 0.01 0

β5,1 1.5 1.4 -0.1 0.02 1.54 0.04 0.01 1.5 1.43 -0.07 0.01 1.58 0.08 0.01

β1,2 1 0.95 -0.05 0.01 1.04 0.04 0.01 1 0.99 -0.01 0.01 1.1 0.1 0.01

β2,2 0 0 0 0.01 0 0 0 0 0.02 0.02 0 0.02 0.02 0.01

β3,2 0 -0.01 -0.01 0.01 0 0 0.01 0 0 0 0 0 0 0

β4,2 1.5 1.33 -0.17 0.02 1.41 -0.09 0.01 1.5 1.38 -0.12 0.01 1.5 0 0.01

β5,2 0 0.01 0.01 0.01 0 0 0 0 -0.01 -0.01 0 -0.01 -0.01 0

γ1,1 1.5 1.63 0.13 0.07 1.76 0.26 0.03 1.5 1.61 0.11 0.04 1.17 -0.33 0.03

γ2,1 1.5 1.58 0.08 0.12 -1.5 -1.61 -0.11 0.05

γ1,2 1.5 1.64 0.14 0.11 1.89 0.39 0.04 1.5 1.62 0.12 0.05 1.19 -0.31 0.04

γ2,2 1.5 1.64 0.14 0.15 -1.5 -1.64 -0.14 0.06

Table 4.16: Scenario A with covariate risk factor only: prediction accuracy

Covariate Full analysis Covariate-naive analysis

effect iClasssify LDA iClasssify LDA

Positive 0.82 0.82 0.82 0.80

Negative 0.83 0.82 0.73 0.71

distributions of the latent variables Zit. Without an interaction term:

Zit|Di = d,Ei = e ∼ N(µdet, σ
2), µdet = γ0t + γ1td+ γ2te, d = 0, 1.

We used Scenarios A and D from Table 4.4 and added in a covariate risk factor with

80% prevalence in the dataset (OR≈3.86) and a true γ2t covariate coefficient of magnitude

1.5 in Scenario A and 0.5 in Scenario D. We looked at both a positive and negative covariate

effect.

Table 4.15 shows the estimation for scenario A modeled correctly (including a covariate



CHAPTER 4. ICLASSIFY: SIMULATION STUDIES 72

Table 4.17: Scenario D with covariate risk factor only: parameter estimation

Positive effect Negative effect

Correct modeling Naive modeling Correct modeling Naive modeling

Para TRUE Est Bias MSE Est Bias MSE TRUE Est Bias MSE Est Bias MSE

β1,1 -1 -0.98 0.02 0.01 -1.05 -0.05 0.01 -1 -0.93 0.07 0.03 -0.87 0.13 0.13

β2,1 0.5 0.48 -0.02 0.01 0.52 0.02 0.01 0.5 0.47 -0.03 0.01 0.44 -0.06 0.04

β3,1 0 0 0 0.01 0 0 0.01 0 0 0 0.01 0.01 0.01 0.01

β4,1 0 -0.01 -0.01 0.01 -0.01 -0.01 0.01 0 -0.01 -0.01 0 0 0 0

β5,1 -1 -0.97 0.03 0.01 -1.04 -0.04 0.01 -1 -0.95 0.05 0.03 -0.89 0.11 0.13

β1,2 -0.5 -0.53 -0.03 0.01 -0.58 -0.08 0.01 -0.5 -0.5 0 0.02 -0.42 0.08 0.09

β2,2 0 0.01 0.01 0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0 0 0.01

β3,2 0 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0 0.01 0.01 0.01 0.01

β4,2 1 0.83 -0.17 0.01 0.84 -0.16 0.01 1 0.77 -0.23 0.05 0.58 -0.42 0.16

β5,2 0 -0.01 -0.01 0.01 -0.02 -0.02 0.01 0 0.02 0.02 0.01 0.02 0.02 0.01

γ1,1 0.5 0.52 0.02 0.03 0.68 0.18 0.03 0.5 0.53 0.03 0.03 0.32 -0.18 0.02

γ2,1 1 1.05 0.05 0.06 -1 -1 0 0.07

γ1,2 0.5 0.52 0.02 0.04 0.71 0.21 0.04 0.5 0.49 -0.01 0.04 0.31 -0.19 0.02

γ2,2 1 1.1 0.1 0.09 -1 -0.98 0.02 0.16

Table 4.18: Scenario D with covariate risk factor only: prediction accuracy

Covariate Full analysis Covariate-naive analysis

effect iClasssify LDA iClasssify LDA

Positive 0.62 0.61 0.63 0.6

Negative 0.62 0.6 0.54 0.52

risk factor) and naively (without accounting for covariate risk factor). The correct modeling

produces reasonable estimation for both the scenarios with positive and negative covariate

effects. The naive modeling of the scenario with the positive covariate effect produces posi-

tive bias in the genomic coefficient γ estimation, whereas the naive modeling of the scenario

with the negative covariate effect produces significantly underestimated γ estimates.

These γ estimates help explain the prediction accuracies in 4.16. Prediction accuracy

does not decrease in the model that does not take the positive covariate effect into account
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because the increase in µdet is picked up by the overestimation of γ1t. Conversely, prediction

accuracy of the model that does not take the negative covariate effect into account drops

significantly as the genomic effects γ1t are significantly underestimated.

Tables 4.17 and 4.18 show the analogous sets of results for scenario D, with similar

conclusions.
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Chapter 5

iClassify: Application

5.1 TCGA Ovarian Cancer data set

The data to which we applied our method comes from The Cancer Genome Atlas Research

Network [The Cancer Genome Atlas Research Network, 2011]. It is comprised of high

grade serous ovarian cancer tumors that were surgically resected before treatment with

platinum chemotherapy. The paper reported that 31% of these patients were resistant to

chemotherapy and experienced disease progression within 6 months of completing treatment.

The number of features and samples available in the TCGA set are detailed in Table

5.1, as well as the number of samples used in our integrative analyses. We included in our

basic analysis set those samples that had mRNA, methylation and miRNA profiling, as well

as platinum resistance outcome data. We also performed two interaction analyses: one on a

subset of samples that also had residual disease information, and one on a subset of samples

that also had BRCA germline variant data.

Clinical characteristics available from TCGA included age, and tumor stage and grade.

Table 5.2 shows the distribution of those clinical characteristics in the full clinical set, the

dataset used for genomic-only analysis and the data set used for the BRCA interaction



CHAPTER 5. ICLASSIFY: APPLICATION 75

Table 5.1: Platforms, features and datasets

Data type Platform Features Samples

mRNA expression profiling RNA-seq 11864 489

CpG DNA methylation Illumina 27K 23665 489

miRNA expression profiling miRNA-seq 781 589

Residual disease 432

BRCA germline mutation Whole-exome 314

Platinum status 287

Analysis datasets Samples # Platinum resistant

Integrative genomic analysis 285 90 (0.32)

Interaction analysis w/residual disease 259 85 (0.33)

Interaction analysis w/BRCA germline 187 59 (0.32)

anaysis. In all cases, the tumors are primarily Stage III and IV, and Grade 3. The median

age is stable at 59-60.

5.2 Imbalanced data considerations

Table 5.1 details the prevalence of the outcome in our analysis datasets, with 32-33% of the

tumors showing platinum resistance. This imbalance creates a challenge for analysis.

In Chapter 4, we simulated equal numbers of cases and controls for all of our scenarios,

and used overall classification accuracy as our performance measure. When faced with the

TCGA platinum resistance data, however, it became clear that this measure was not ap-

propriate, as the minority class (platinum resistance) makes only a minor contribution to

the overall accuracy relative to the majority class (platinum sensitive). To wit, if a method

classified all tumors as sensitive, i.e. misclassified every resistant tumor, that would still
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Table 5.2: Clinical characteristics

Full clinical set Genomic-only analysis BRCA interaction analysis

Characteristic n=488 n=285 n=187

Age (Median, range) 59 (27, 87) 59 (30.5,87) 60 (36, 87)

Missing (n) 11 (2%) 2 (1%) 1 (1%)

Stage (n, %)

II 24 (5%) 13 (5%) 5 (3%)

III 381 (78%) 231 (81%) 155 (83%)

IV 79 (16%) 41 (14%) 27 (14%)

NA 4 (1%) 0 (0%) 0 (0%)

Grade (n, %)

G2 57 (12%) 38 (13%) 14 (8%)

G3 420 (86%) 241 (85%) 168 (90%)

NA 11 (2%) 6 (2%) 5 (3%)

give an overall classification accuracy of 68%. In fact, this is exactly how the compara-

tive method of penalized logistic regression performed, thus prompting us to modify the

comparative method to weighted penalized logistic regression, with weights determined by

inverse prevalence in data set, e.g. 1/.32 for platinum resistant and 1/.68 for platinum

sensitive.

Further, if our interest is in identifying those tumors which have a higher probability

of becoming platinum resistant, there is actually a higher cost to a false negative in the

resistant class. So in the tradeoff that always exists between sensitivity and specificity, we

prioritize sensitivity though are still interested in reasonable specificity as well.
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5.3 Pre-screening features

We pre-processed genomic features by centering and normalizing. Methylation missing data

was imputed and then batch correction was performed.

It has been shown that a pre-screening strategy based on feature correlation with out-

come to reduce the dimension of the data set to a moderate scale can enhance finite sample

model performance and reduce computational cost [Fan and Lv, 2008].

We used an independent ovarian cancer gene expression data set with platinum resistance

outcomes [Dressman et al., 2007] to select mRNA gene expression features most strongly

associated with platinum resistance. miRNA features were selected from a literature review

of miRNAs associated with platinum resistance outcomes [Mahdian-shakib et al., 2016].

For methylation, we found CpG sites located in the selected mRNA features and included

those that showed nominal correlation. This led to our analysis feature set of 1039 mRNA

features, 416 methylation features, and 28 miRNA features.

5.4 Genomic-only Analysis

Table 5.3: Genomic-only analysis: iClassify and Lasso classification accuracy

λ # RNA # Meth # miRNA Total # Sensitivity Specificity Class acc

iClassify 0 1039 416 28 1483 0.541 0.591 0.575

0.05 700 288 17 1005 0.543 0.593 0.577

0.1 386 95 8 489 0.523 0.627 0.594

0.15 172 0 3 175 0.473 0.657 0.599

0.2 65 0 0 65 0.454 0.657 0.593

Lasso 57 (avg) 0.405 0.629 0.558

We analyzed this data set with iClassify and used the hard thresholding algorithm
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with three-fold cross validation over 100 replicates to find the threshold with the highest

classification accuracy. We show results at various thresholds in Table 5.3 along with results

from weighted cross-validated Lasso, using classification accuracy as the loss measure. The

optimal iClassify solution is at the λ=0.05 threshold, where it achieves the best performance

in both sensitivity and specificity with an overall classification accuracy of 57.7%. The

sensitivity at all iClassify thresholds is higher than that of the Lasso, with the optimal

iClassify solution improving on Lasso’s sensitivity by almost 14%. We chose to present the

results in terms of sensitivity and specificity at the optimal λ for each method because of

their clinical significance. Another way to compare the two methods would have been to

look at other measures like AUC over the range of each method’s λ values.

The difference in feature selection between iClassify and the Lasso is striking, and reca-

pitulates what we saw in the simulations on a larger scale. The optimal iClassify solution

chooses 1005 features overall while the Lasso solution chooses 57 on average. The relative

insensitivity and lower prediction accuracy of the penalized logistic regression solution sug-

gest that the Lasso solution may have a high false negative rate, and that there are likely

many genomic features with small effects contributing to the optimal model, contrasting

the typical sparsity assumption that a small subset of features are relevant for prediction,

which Lasso and other penalized methods rely on. Further, we suspect that many of these

features are correlated, an idea supported by the fact that performing an analysis with

L2-penalized logistic regression (“ridge regression”) yields increases in overall classification

accuracy (0.56) but still underperforms iClassify.

Figure 5.1 shows the top features in each platform for iClassify with iClassify weightings

( β ∗ γ estimates) and the selected features for a Lasso solution. All 48 features chosen

by the Lasso are also selected by iClassify, leaving a pool of 950 iClassify-selected features,
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Figure 5.1: Genomic-only analysis: comparative feature selection

many of which could be false negatives for the Lasso. None of the Lasso-selected RNA and

methylation features appear in the iClassify top-weighted features list. iClassify feature

weightings for RNA features are larger than for features in other data types, reflecting the

larger γ coefficient estimate for RNA relative to methylation and miRNA (see Table 5.4).

In fact, RNA features comprise the top 88 features ranked by iClassify feature weightings

overall. Notably, hsa-miR-22, one of the three Lasso-selected miRNA features, is the 89th

top-ranked feature for iClassify. Top iClassify features in both the RNA and methylation

platforms have very similar feature weightings in both magnitude and direction, illustrating
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the strongly correlated nature of the features that contribute to the model.

Table 5.4: Genomic-only analysis: parameter estimation

# features γ̂ γ bootstrap 95% CI γ bootstrap SD β boostrap SD

RNA 700 0.55 (0.19, 0.98) 0.23 0.04

meth 288 0.23 (-0.26, 0.77) 0.29 0.05

miRNA 17 0.23 (-0.04, 0.49) 0.14 0.13

Figure 5.2: Genomic-only analysis: β estimation

The parameter estimates for γ are in Table 5.4 along with 95% bootstrap confidence

intervals. These estimates quantify the degree of association of each individual data type

with outcome. We constrain the overall γ estimate to be positive, and see that RNA appears

to have the largest effect on the model and methylation and miRNA have smaller effects.

As we saw in simulations that β MSE values were significantly smaller than γ MSE values

(see tables 4.1, 4.3, and 4.5), here we see that bootstrap standard deviations are similarly

smaller for β than for γ. Only γ1,1, associated with RNA, has a bootstrap confidence

interval that does not cross 0.

The parameter estimates for β are plotted in Figure 5.2. Notable here is that most

of the 288 methylation features have negative β2,p values, with lower average values in
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the platinum-resistance group than the platinum-sensitive group. This finding of relatively

hypomethylated features in the platinum-resistance group dovetails with the report in [Yu et

al., 2011] that platinum-resistant ovarian cancer cells show a global decrease in methylation

of CpG islands. Other reports in the literature, including [Zeller et al., 2012] find increased

methylation in platinum-resistant cell lines, but importantly the assays were performed after

exposure to platinum whereas our cohort was assayed after surgery but before treatment.

Also we see that the miRNA β values have a wider spread than the other platforms.

5.4.1 Single platform vs Integrative Analysis

Table 5.5: Genomic-only analysis: Single platform vs Integrative analysis

Data type γ̂ Sensitivity Specificity Class acc

Combined 0.543 0.593 0.577

RNA 0.55

meth 0.23

miRNA 0.23

RNA 0.70 0.476 0.662 0.604

meth 0.36 0.535 0.493 0.506

miRNA 0.25 0.159 0.875 0.649

Table 5.5 shows results of integrative analysis vs. single platform. The combined inte-

grative analysis is more effective than any of the single analyses alone in terms of balancing

sensitivity and specificity.

Interestingly, the single platform analysis reveals that it is the methylation platform

that seems to be driving the higher levels of sensitivity. However, methylation alone results

in the lowest specificity. The integrated analysis both gives the highest sensitivity and a

10% increase in specificity over methylation’s specificity level. miRNA turns out to be the
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least effective single platform by far, with extremely low sensitivity.

5.5 Interaction analysis

One of the main advantages of our method is its ability to effectively include an interaction

term in a high dimensional data setting whereas in most high dimensional settings, testing

for interaction is unwieldy and impractical. Here, we investigate potential interactions with

two covariates, BRCA germline variants and residual disease.

5.5.1 BRCA germline mutation

As discussed earlier in Section 1.2.2.2, ovarian cancer cells deficient for BRCA1 and BRCA2

have been found to be more sensitive to cisplatin, and restoration of BRCA1 and BRCA2

expression has been found to increase resistance. Given this known interaction, our interest

was to to investigate whether there might be other BRCA-interacting genomic partners.

Unfortunately, only 316 tumors in the TCGA ovarian cancer cohort had BRCA germline

variant data available, and only 187 of those had platinum resistance information. Thus,

our sample size was limited for this interaction analysis. Nevertheless, the results are of

interest.

In order to be able to make a more meaningful comparison between theresults of the

genomic-only model and the results of the model with the genomic x BRCA interaction

term, we performed an iClassifygenomic-only analysis on the subset of 187 tumors with

BRCA variant data. Results are in Table 5.6.

In our dataset, BRCA germline variant alone shows a moderate but not statistically

significant protective effect of BRCA mutation against resistance with RR=0.53, CI (0.23,

1.20) and classification accuracy of 0.462 (Table 5.7).
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Table 5.6: Genomic-only subset analysis: n=187

λ # RNA # Meth # miRNA Total # Sensitivity Specificity Class acc

iClassify 0 1039 416 28 1483 0.478 0.560 0.534

0.05 502 233 16 751 0.495 0.563 0.542

0.1 142 0 9 151 0.437 0.618 0.561

0.15 40 0 1 41 0.388 0.642 0.562

hline Lasso 40 (avg) 0.379 0.617 0.542

Table 5.7: Classification accuracy: BRCA only and Genomic x BRCA interaction

Threshold RNA meth miRNA Sensitivity specificity class acc

BRCA only 0.556 0.418 0.462

Genomic x BRCA interaction

Combined genomic 0.00 1039 416 28 0.478 0.564 0.537

RNA only 0.00 1039 0.449 0.608 0.558

meth only 0.05 312 0.444 0.523 0.498

miRNA only 0.00 28 0.167 0.848 0.633

Table 5.7 also shows the results for the combined and invidividual genomic platform

models that include a genomic × BRCA germline variant interaction term. They all show

better overall classification accuracies than BRCA alone. There is not much that separates

the prediction accuracies from the genomic-only subset analysis and the Genomic x BRCA

interaction analysis. The genomic-only model has 2% higher sensitivity whiel the specificity

and overall classification accuracies are almost equivalent. In Chapter 3 simulations, we did

not see a scenario where a model with true interaction performed worse in classification

accuracy than a model that did not account for the true interaction (see Tables 4.10 and

4.12). This suggests that significant interaction may not be present in the underlying true

model.
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However, we did see some scenarios of weak interaction where the overall classification

accuracies were equivalent in the model with true interaction and the model that did not

take interaction in account (the naive model). So it remains possible that interaction is

present but that our sample size limits our power to detect it.

Table 5.8: BRCA interaction analysis: γ estimates and 95% bootstrap confidence intervals

# feat Genomic effect (γ1) Covariate effect (γ2) Interaction effect (γ3)

RNA 1039 0.35 (-0.09, 1.25) -0.41 (-1.31, 0.6) -0.55 (-1.95, 0.57)

meth 416 0.17 (-0.47, 0.74) -0.48 (-1.52, 0.7) -0.77 (-5.75, 2.18)

miRNA 28 0.29 (-0.13, 0.57) 0.26 (-0.3, 0.81) -0.05 (-0.79, 1.13)

The 95% bootstrap confidence intervals in Table 5.8 support the conclusion that inter-

action is not significant in this model, as the confidence intervals for interaction effects γ

for all three platforms include 0. Again, the sample size is a limitation, and it is possible

that with a larger dataset, we would be able to detect an interaction effect.

5.5.2 Residual disease

Residual disease after resection has been shown to be associated with worse prognosis in

ovarian cancer, and also with platinum resistance. And, indeed, this is borne out in the

TCGA dataset as mentioned in Section 1.2.2.2. Following the report in [Tucker et al., 2014]

that survival was significantly better for patients in this cohort with no residual disease

compared to any residual disease at all, we used an any/no residual disease dichotomy

when analyzing potential association between residual disease and platinum resistance.

The TCGA dataset had 259 samples with platinum resistance information, three ge-

nomic platform profiles, and residual disease dichotomized by no vs. any residual disease.

Any residual disease increases the risk of platinum resistance with RR=2.33, 95% CI (1.25,
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4.35). This strong effect yields surprisingly low overall classification accuracy of 0.478 and

specificity of 0.316 but a notably high sensitivity of 0.811 (Table 5.9). We can thus infer

that for sensitivity, clinical factors remain most influential.

Table 5.9: Classification accuracy: Residual disease only and Genomic x residual interaction

Threshold RNA meth miRNA Sensitivity specificity class acc

Residual disease only 0.811 0.316 0.478

Genomic x Residual disease interaction

Combined genomic 0.05 791 162 11 0.505 0.613 0.577

RNA 0.05 784 0.488 0.671 0.611

meth 0.0 416 0.490 0.493 0.492

miRNA 0.2 8 0.197 0.783 0.591

We did not find any reports in the literature that the effect of residual disease on

drug response could be modified by genomic features. Thus, we would expect to see a

null interaction effect. Results here were similar to the BRCA interaction results. Again,

the interaction models all show better overall classification accuracies than residual disease

alone. However, the highest sensitivity at the threshold of 0.05 was 51%, a 3% decline from

the genomic-only model. Here too it is possible that sample size may play a role in this

decrease.

Table 5.10: Residual interaction analysis: γ estimates and 95% bootstrap confidence inter-

vals

# feat Genomic effect (γ1) Covariate effect (γ2) Interaction effect (γ3)

RNA 791 1.3 (0.23, 2.89) 0.05 (-0.48, 0.62) -0.82 (-2.35, 0.23)

meth 162 0.32 (-0.83, 1.59) 0.39 (-0.25, 1.06) -0.13 (-1.48, 0.96)

miRNA 11 0.43 (-0.53, 1.55) 0.21 (-0.04, 0.56) -0.22 (-1.3, 0.88)

95% bootstrap confidence intervals in Table 5.10 show, as we might expect, that the
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confidence intervals for interaction effects γ for all three platforms include 0. Notably, in

this case, the estimate for the RNA covariate effect γ1,2 is close to 0 while the interaction

effect γ1,3 estimate is relatively high in the opposite direction.

5.6 Summary of analysis

We used our new method iClassify to perform classification on response to platinum therapy

in the TCGA HGSOC cohort using genomic features from mRNA, methylation and miRNA

assays. Overall we saw a crossvalidated classification accuracy of 58% with 54% sensitivity

and 59% specificity. This is compared to the Lasso’s overall classification accuracy of

56% with 41% sensitivity and 63%. Poorer performing methods are likely to have lower

sensitivity and higher specificity in the context of unbalanced data, so Lasso’s comparatively

higher specificity is not surprising.

This analysis of TCGA data suggests that current knowledge of clinical and molecular

factors are not sufficient to yield high sensitivity and specificity. As more comprehensive

molecular studies are generated, larger sample sizes may allow us to make better conclusions.

Nevertheless, our general framework is applicable to future datasets.

Additionally, we were able to gain understanding about different genomic data types’

contributions to platinum resistance, and in particular our results suggest that methylation

patterns may be particularly important in determining a tumor’s potential for platinum

resistance.

We also demonstrated the ability of iClassify to perform tests for genomic-covariate

interaction, avoiding the challenge of multiple testing comparisons that are often faced in

the high throughput genomic setting. Though the samples sizes in our dataset were a

limitation, this capability has potential for future genomic analyses.
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Chapter 6

Discussion and Future Research

In this dissertation, we investigated integrated genomic datasets with joint latent variable

approaches. In these approaches, we introduce latent variables that we hypothesize to

represent underlying factors that drive disease and that explain phenotypes manifested by

thousands of genomic features.

We used an already existing method, iCluster+, to integratively cluster datasets from

The Cancer Genome Atlas, with 4 or more genomic data types. iCluster+ models latent

variables across all data types simultaneously, and jointly models heterogenous data types

through a diverse range of generalized linear models, thus accommodating the different scale

and variance structures of the different data types. Through data-type-specific sparsity tun-

ing parameters, it also allows for feature selection that takes into account the contribution

of each data type to the model.

Through our analyes, we have demonstrated that iCluster+ can detect clinically and

prognostically meaningful subtypes of cancer. For example, prognostically differential mesothe-

lioma subtypes discovered using iCluster+ on a TCGA cohort were validated in two external

datasets, suggesting potential for clinically relevant improved risk stratification. Integrative
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clustering with iCluster+ across 33 types of cancers yielded two mixed-cancer-type clus-

ters that were enriched for immune-related signaling features, suggesting specific immune

pathways as potential targets for new therapies.

For classification, we proposed a new model using a joint latent variable model, iClassify,

for predicting binary treatment response outcome by integrating multiple data sets. In this

model, latent variables represent underlying driving factors for each data type. There are

several advantages to the proposed approach. First, multiple types of genomic features are

integrated through a latent variable approach, which allows effective dimension reduction

and can handle heterogenous data types of different scale and diverse variance structure.

As our approach is not reliant on pre-existing genomic knowledge, it has the advantage of

allowing for the discovery of previously unknown mechanisms.

Because the latent variables in our model are associated with the binary outcome though

a linear model, we also have the flexibility to incorporate covariates and test for risk factor

by genomic feature interaction, which is not straightforward in traditional methods but is

of great interest in genomic investigations.

Our feature selection methodology allows for a systematic way of ranking the importance

or contribution of a different data type on the overall model, and of an individual genomic

feature, and is achieved by examining feature-specific effects through βjt and data-type

specific effects through γt.

We compared the proposed method for genomic-only data with penalized regression

and LDA using simulated data sets. In simulations, iClassify outperformed classification

accuracy of the other methods and minimized both the false positive rate and notably the

high false negative rate of the Lasso. The improvement in particular of the false negative

rate could have important clinical/biological implications. The comparatively high false
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negative rate of Lasso feature selection may stem from the need to make decisions about

which correlated features to exclude, when in fact the correlated features may each have

clinical or biological relevance. In simulations and in the data analysis, penalized regression

chose significantly fewer features for its optimized model. Additionally, our simulations

confirm the improvement in prediction accuracy gained by combining multiple genomic

datasets compared to genomic datasets of just one modality.

In our data analysis, we were able to measure performance through a combination of

sensitivity and specificity and showed better results than weighted penalized logistic regres-

sion. In all cases, classification on the combination of data platforms performs better than

on single platforms alone. Consistent with simulations, our feature selection methodology

chose notably more features than penalized logistic regression, which may imply fewer false

negatives, but would need to be confirmed in replication studies.

While in general the classification performance of platinum resistant/sensitive tumors

in our data set did not reach high levels of sensitivity and specificity, the ability to estimate

latent genomic effects provides a framework that can offer new perspectives and increased

understanding of the data. For example, through our analyses, we were able to understand

that the methylation platform was driving most of the sensitivity in our model in contrast to

the miRNA platform, which had very low sensitivity, effects we would not have anticipated.

Further, the capacity to estimate genomic x covariate interaction effects offers a potentially

valuable approach to the multiple testing problem that has classically made testing for

gene-environment interaction so impractical.

There are a few potential extensions to our method. First, iClassify can be extended

to accommodate non-normal genomic factors, which will require changing equation (3.3)

depending on the distribution of the features included. For example, to accommodate
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mutation status in our method, equation (3.3) takes the following form for binary genomic

variables: logit{Pr(Xijt = 1|Zit)} = αjt + βTjtZit. Furthermore, it will be of interest to

extend this method for time-to-event outcomes under cox models with random effects.

Another extension is to develop a systematic method of ranking the importance or

contribution of a different data type on an individual subject. Currently our model provides

the contribution of a data type to the overall model by the estimates of γt, but it is also of

interest to formalize a ranking of the importance of each genomic variable for an individual

subject through the posterior distributions of Zit, which could allow for a more personalized

approach to treatment.

While the association between covariates and disease status was not of our primary

interest in Equation (3.6), we understand the usefulness of including it in our joint likelihood

model. On the prediction side, this would allow classification accuracy to increase when

there is a direct covariate effect on disease, so that we could see the “additive” effect of

covariate on prediction accuracy over genomic effect alone.

In practice, it is possible that not all genomic platforms are available on all subjects. For

example, some subjects may only have mRNA and methylation. Our methods can analyze

unbalanced data and include all available genomic data collected on a subject under the

likelihood framework in a similar spirit to the mixed effects models for longitudinal data

analysis.

On a practical level, we will make an R package of iClassify available for use by the

research community. While the parallel computing algorithm we employ goes a long way

towards making computation feasible, the computational burden of joint maximization and

Monte-Carlo resampling remains a concern. We may remedy this by implementing a C++

version of iClassify. Another approach to easing computational burden would be to use
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variational Bayesian inference ([Blei et al., 2017]) to approximate probability rather than

the Monte Carlo approach we currently employ.
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