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ABSTRACT

Varying-Coefficient Models and Functional Data Analyses
for Dynamic Networks and Wearable Device Data

Jihui Lee

As more data are observed over time, investigating the variation across time has

become a vital part of analyzing such data. In this dissertation, we discuss varying-

coefficient models and functional data analysis methods for temporally heterogenous

data. More specifically, we examine two different types of temporal heterogeneity.

The first type of temporal heterogeneity stems from temporal evolution of rela-

tional pattern over time. Dynamic networks are commonly used when relational data

are observed over time. Unlike static network analysis, dynamic network analysis

emphasizes the importance of recognizing temporal evolution of relationship among

observations. We propose and investigate a family of dynamic network models, known

as varying-coefficient exponential random graph model (VCERGM), that character-

ize the evolution of network topology through smoothly varying parameters. The

VCERGM directly provides an interpretable dynamic network model that enables

the inference of temporal heterogeneity in dynamic networks.

Furthermore, we introduce a method that analyzes multilevel dynamic networks.

If there exist multiple relational data observed at one time point, it is reasonable to

additionally consider the variability among the repeated observations at each time

point. The proposed method is an extension of stochastic blockmodels with a priori

block membership and temporal random effects. It incorporates a variability among

multiple relational structures at one time point and provides a richer representation

of dependent engagement patterns at each time point. The method is also flexible

in analyzing networks with time-varying networks. Its smooth parameters can be

interpreted as evolving strength of engagement within and across blocks.



The second type of temporal heterogeneity is motivated by temporal shifts in

continuously observed data. When multiple curves are obtained and there exists a

common curvature shared by all the observed curves, understanding the common cur-

vature may involve a preprocessing step of managing temporal shifts among curves.

We explore the properties of continuous in-shoe sensor recordings to understand the

source of variability in gait data. Our case study is based on measurements of three

healthy subjects. The in-shoe sensor data we explore show both phase and amplitude

variabilities; we separate these sources via curve registration. We examine the cor-

relation of temporal shifts across sensors to evaluate the pattern of phase variability

shared across sensors. We apply a series of functional data analysis approaches to

the registered in-shoe sensor curves to examine their association with current gold-

standard gait measurement, so called ground reaction force.
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Chapter 1

Introduction

1.1 Temporal Heterogeneity

The main focus of this dissertation is to understand the temporal heterogeneity in

data observed over time. We begin with introducing two types of temporal hetero-

geneity we consider in this dissertation. The first type exists in dynamic networks,

and the other type appears in observations from wearable device data.

1.1.1 Dynamic Networks

Networks are widely used to represent a relational structure of actors or individual

units in a system. Nodes in a network are actors of the system, and two nodes

form an edge if they have a relationship together. Aims of network analysis include

visualizing the relational structure, detecting hidden communities within network, or

directly modeling the system of interconnected nodes.

Dynamic networks are commonly used in applications where relational data are

observed over time. When multiple networks are observed over time, it is of interest to

examine the temporal dependencies between networks observed in time. For example,

Figure 1.1 shows how the U.S. Congress co-voting networks fluctuate over time. In
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each Congress, nodes represent Senators and an edge is formed between two nodes if

they vote concurrently on at least 80% of the bills in the Congress. The nodes are

color-coded by their political affiliation. Clusters of Republicans and Democrats are

much more distinctive in Congress 113 compared to Congress 40 and Congress 70.

The contribution of political parties in forming an edge has greatly changed in the

course of 73 Congresses.

(a) 40th Congress (b) 70th Congress (c) 113th Congress

Figure 1.1: U.S. Congress co-voting network: Co-voting networks of U.S. Sena-
tors in Congress 40, 70, and 113. Red nodes represent Republican Senators and blue
nodes represent Democratic Senators.

On the contrary, Figure 1.2 shows relatively stable structure of dynamic networks.

The networks are defined based on brain activities obtained from the resting state

functional magnetic resonance imaging (fMRI). Nodes in a network are brain regions

and an edge between two nodes represents a high association between the two regions.

Given that these images are obtained in a resting state, there is no major fluctuation

over time except minor changes in local edges.

(a) Time 10 (b) Time 20 (c) Time 47

Figure 1.2: Resting state fMRI network: Resting state fMRI network at observed
times 10, 20, and 47. Each node represents a brain region. The top 10% of partial
correlation between regions form an edge.
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These two examples above demonstrate how dynamic networks exhibit temporally

fluctuating structure (either global or local). We refer to this feature as temporal

heterogeneity in dynamic networks. Statistical models for dynamic network data

should capture these temporal dependencies between networks observed across time

as well as the structural dependencies among the nodes in each network.

In Chapter 2, we propose an exponential family of random graphs for dynamic

networks that directly parametrizes the temporal heterogeneity in dynamic networks.

The proposed method, called varying-coefficient exponential random graph model

(VCERGM), characterizes the evolution of network topology using smoothly vary-

ing parameters. We establish how to fit the VCERGM through maximum pseudo-

likelihood techniques, and provide a computationally tractable method for statistical

inference of complex dynamic networks. We furthermore devise a bootstrap hypoth-

esis testing framework for testing the temporal heterogeneity of an observed dynamic

network sequence. We apply the VCERGM to the U.S. Congress co-voting networks

(Figure 1.1) and a resting state fMRI networks (Figure 1.2) and show that our method

provides relevant and interpretable patterns.

Chapter 3 proposes another method to model the temporal heterogeneity in dy-

namic networks. Specifically, it considers a case where there are repeatedly observed

networks at one time point. Many studies have focused on creating a single network

by taking a snapshot of relational structure or aggregating multiple observations or

images in an interval of time. For example, the U.S. Congress co-voting networks in

Figure 1.1 were created for each Congress by aggregating voting patterns observed

from multiple bills. In this process, important dynamics across multiple bills within

a Congress may be ignored. The proposed method in this chapter accommodates the

repeatedly observed networks within a time frame and explains the variability among

these multiple observations in a form of random effects. The proposed method is

an extension of stochastic blockmodels, which assign the probability of connectivity
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solely based on nodes’ block membership. The overall trend of topological fluctua-

tion is modeled as fixed effects via a varying-coefficient framework, while the random

effects are added to incorporate the variability among repeatedly observed networks.

In order to evaluate the performance of the proposed method, we analyze the U.S.

Congress co-voting networks where a network is defined for each bill in a Congress.

1.1.2 Wearable Device Data

Recently, wearable technology has been widely implemented to record physical activ-

ities in observational or clinical studies. Records from a wearable device are collected

very densely, resulting in a large number of observations in one time interval. The

collection of observations measured in this time interval forms a curve and this curve

can be viewed as a single unit of observation. The wearable device often cumulates

the observations over a long period of time, and thus forms multiple curves. These

curves in this context are also called functional data.

For example, Figure 1.3 shows gait measurements of a healthy subject. A curve

represents a stance (defined as the period between the foot striking and lifting from

the ground) and there are 5 curves in each panel. The curves in the left panel show

ground reaction force (GRF), observed from force plates placed on a treadmill. The

GRF is a force exerted by the ground on a body, and it provides valuable insights

into biomechanics, locomotion, and the possible presence of pathology. The curves

in the right panel are from in-shoe sensor (heel) corresponding to the 5 curves in the

left panel. The in-shoe sensors recently have been pursued as a relatively inexpensive

alternative to in-lab GRF measurement.

The curves in the left panel of Figure 1.3 show almost identical shape. It is ex-

pected because a healthy person is expected to show consistency in stances. However,

data obtained by in-shoe sensors share a common curvature yet there exist unexpected

drifting effects between curves. We refer to this time shifts as temporal heterogeneity

4



(a) Ground reaction force (b) In-shoe sensor recording

Figure 1.3: Gait measurements: Gait measurements observed from force plates
placed on a treadmill (ground reaction force; left) and in-shoe sensor (heel sensor;
right). Each panel shows 5 curves, corresponding to 5 stances of a healthy subject.
Stances are color-coded.

in functional data.

Our goal to investigate the temporal heterogeneity in functional data mainly fo-

cuses on separating the source of variability between curves. We define two types

of variabilities in functional data: amplitude variability and phase variability. For

a case where there exist unexpected phase variability (i.e. temporal heterogeneity)

between curves, removing the phase variability is an important step to appropriately

analyze the amplitude variability. By realigning them, we remove the temporal het-

erogeneity in wearable device data and focus on analyzing the curvature shared by

multiple curves.

As for the in-shoe sensor data presented in Figure 1.3, we conduct curve regis-

tration to remove the temporal heterogeneity. Essentially, we realign the originally

observed curves to get rid of the unexpected time shifts. Using the realigned curves,

we explore possible associations between in-shoe sensor recordings and GRF mea-

surements to evaluate the in-shoe sensor recordings as a possible surrogate for in-lab

GRF measurements. Functional data analysis methods are implemented to analyze

the registered curves.
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1.2 Varying-Coefficient Models

We identify the first type of temporal heterogeneity in temporally observed networks

as time-varying dynamics in longitudinal data. Dynamic networks in Figure 1.1

and Figure 1.2 capture the evolution in relational structure over time. We view

these networks as longitudinal data and analyze their temporal fluctuation using a

varying-coefficient framework.

The varying-coefficient framework models the non-linear, dynamic pattern of co-

variates on a response variable (Hastie and Tibshirani 1993). It essentially is a linear

additive model of predictors, but their coefficients are smoothly changing value of

other predictors. Consider a response variable Y and two predictors X and R. In

general, the varying-coefficient models have the form

Y = β0 +Xβ1(R). (1.1)

The predictor R in model (1.1) is called an effect modifier, which governs the effects

of X on Y ; depending on the value of R, the effect of X on Y varies. In a way, this

model considers the interactive effects of X and R on Y .

In a longitudinal setting, data are collected over a period of time. The idea of

dynamic pattern of covariate effects can be extended to analyze longitudinal data.

The varying-coefficient models for longitudinal data parametrize the temporally fluc-

tuating covariate effects on a response variable (Hoover et al. 1998; Zhang and Wang

2015). West, Harrison, and Migon 1985 referred to this model as dynamic generalized

linear regression.

Let Y (t) andX(t) denote the response and predictor at time t, respectively. Define

a smooth coefficient β(t) that explains the effects of predictor on the response at time
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t. We write the varying-coefficient model for longitudinal data as follows:

Y (t) = β0(t) + β(t)X(t) + ε(t). (1.2)

Multiple predictors can be considered in this framework, and a general idea of additive

models is applied to include more than one predictor in model (1.2). The coefficient

β(t) flexibly models the change of effect parameters over time.

The varying-coefficient framework provides flexibility and interpretability in lon-

gitudinal data analysis. The multiplicative form β(t)X(t) can be readily interpreted

to explain the fluctuation in Y (t). A detailed review of varying-coefficient models

and their applications is provided in Fan and Zhang 2008.

We view the temporally observed networks as longitudinal data and analyze the

temporal heterogeneity in these dynamic networks using the varying-coefficient frame-

work. In Chapter 2 and Chapter 3, we apply the varying-coefficient framework to

analyze the topological evolution of dynamic networks. The parameter in the pro-

posed models is written as a smooth function of time, which is equivalent to β(t) in

model (1.2). We use the smoothness-based approaches to model the evolution of a

network over time via varying-coefficient models. For estimating the coefficient in the

varying-coefficient models, we employ basis splines (b-splines) (De Boor et al. 1978;

Eilers and Marx 1996) to reduce the dimensionality of estimation.

1.3 Functional Data Analysis

While the first type of temporal heterogeneity we consider exists in longitudinal data,

the second type of temporal heterogeneity is presented among repeatedly measured

curves. The curves in Figure 1.3 are repeated samples of a smooth curve that contains

full trajectories. We view these curves as functional data and apply functional data

analysis approaches to manage the temporal heterogeneity among these curves.
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Recently, more data have been collected in a complex, high-dimensional structure

in various fields; e.g. wearable device data, electroencephalography, and screening

images. Often, these data have curves or functions as unit of observations, and

we refer to them as functional data. Key features of functional data include dense

measurements, smooth curvatures, and repeated observations.

Suppose Yi(t) denote the i-th curve; a function of time t ∈ [0, T ] for some T > 0

and the sample data contain n curves. In practice, a curve consists of a collection

of densely observed measurements. That is, we observe Yij, which denotes the j-th

observation of the i-th curve observed at time tj, j = 1, . . . ,m.

Unlike classical statistical methods, where one observation consists of a single

scalar value, functional data analysis (FDA) examines the trajectory (curvature) of

smooth curves. Statistical methods such as regression models, clustering, or princi-

pal component analysis are extended to analyze functional data. Because of discrete

observations with noise, important steps such as smoothing and interpolation are

required when implementing those FDA methods. Main goals of FDA include visu-

alizing the data to show characteristics of these curves, examining a predictive rela-

tionship, and exploring the variability among the curves. For a detailed introduction

of FDA methods, see (Ramsay 2006).

In Chapter 4, we have gait measurements using in-shoe sensors. There exist mul-

tiple curves, representing multiple stances, and we view these curves as functional

data. In recognizing the time shifts among curves, we explore the source of vari-

abilities among these observed curves. Specifically, we conduct curve registration to

separate the temporal heterogeneity from the observed curves. The estimated phase

variability is further explored to understand the underlying pattern of temporal het-

erogeneity between in-shoe sensors. We fit a function-on-function regression to inves-

tigate the relationship between in-shoe sensor recordings and current gold-standard

GRF measurements.
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Let x(t), t ∈ T , be a predictor (in-shoe sensor recordings) and y(t), t ∈ T , denote

a response (GRF measurements), respectively. The function-on-function regression

we write the relationship between x(t) and y(t) as follows:

y(t) = β0(t) +

∫
T
x(u) β(u, t) du+ ε(t). (1.3)

The bivariate coefficient coefficient β(u, t) in model (1.3) is smooth over both u

and t and relates the predictor measured over u to the response measured over t. The

bivariate smoothness of β(u, t) allows the effect of predictor functions to vary over

the domain of the response.
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Chapter 2

Varying-Coefficient Exponential

Random Graph Model

2.1 Introduction

Networks have been extensively used to explore, model, and analyze the relational

structure of individual units, or actors, in a complex system. In a network model,

nodes represent the actors of the system, and edges are placed between nodes if the

corresponding actors share a relationship. In many applications, the relationships

among the actors of a modeled system change over time, necessitating the use of

dynamic networks. Two diverse examples, which we analyze later in our application

study, include the Congressional co-voting networks in Figure 1.1 and resting state

brain connectivity networks in Figure 1.2. A prominent way to analyze relational

network systems is through the use of probabilistic models, or graphical models, which

describe the generative mechanism of an observed network. Although there is a rich

body of literature on graphical models for static networks (Fienberg 2012; Goldenberg

et al. 2010), the development of interpretable and computationally tractable models

for dynamic networks is in its early stages.
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An important feature of dynamic networks that needs to be captured in any statis-

tical model is the extent to which its local and global features change through time.

We refer to this property as temporal heterogeneity. Heterogeneity directly affects

the underlying process that best describes the formation of network. In parametric

models, heterogeneity may result in significant changes in parameters that charac-

terize the observed network. Consider the U.S. Senate co-voting network shown in

Figure 1.1. One can readily observe an evolution of the network to form distinct

clusters of Republicans and Democrats by the 113th Congress. This configuration

is in stark contrast with the sparse, seemingly random configuration formed in the

40th Congress. On the other hand, the resting state functional magnetic resonance

imaging (fMRI) network shown in Figure 1.2 remains fairly stable through time with

only minor local changes in edge formation. These contrasting examples exemplify

the need to explicitly model the heterogeneity of a network. We further analyze these

dynamic networks in Sections 2.6.1 and 2.6.2.

In this chapter, we propose a probabilistic model for dynamic networks called the

varying-coefficient exponential random graph model (VCERGM). The model param-

eterizes time-varying topological features of dynamic networks in continuous time.

Our model builds on two major statistical methodologies. One is the exponential

family of random graph models (Holland and Leinhardt 1981; Wasserman and Patti-

son 1996) that characterizes the marginal effect of local and global network features

on the likelihood of the network. The other major component is a varying-coefficient

specification (Hastie and Tibshirani 1993), which flexibly models the changes of effect

parameters over time. The VCERGM characterizes the temporal heterogeneity of dy-

namic network by modeling the parameter associated with each topological feature

as a smooth function of time.

One prominent advantage of the VCERGM is its interpretability. By quantifying

temporal heterogeneity of a network via fluctuating parameters, we are able to analyze
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key properties of the local and global features of a dynamic network. In addition to

serving as a means to test for heterogeneity of a dynamic sequence, our method can

also be directly used for interpolation of missing networks or edges. For networks

at unobserved time points, our method provides robust estimates that reflect the

structure of the unobserved networks without being strongly influenced by outliers

in the sequence. Furthermore, estimation of the VCERGM can be done with a

computationally scalable maximum pseudo-likelihood estimation (MPLE) approach,

enabling efficient inference for large dynamic networks.

There are several dynamic network models that have been investigated. We briefly

describe these here. The exponential random graph model (ERGM) is a family of

probability distributions on unweighted static network. The ERGM has been adapted

to dynamic networks in the pivotal work of Hanneke, Fu, and Xing 2010. The method

is called the temporal exponential random graph model (TERGM). The TERGM

models the difference in topological features between every two consecutive networks

in a similar fashion to the ERGM. However, it ignores the heterogeneity of the differ-

ences, and cannot fully capture the time-varying patterns of the network structure.

In fact, we show that in a wide range of situations the TERGM degenerates to a

collection of independent and identically distributed ERGMs (see Appendix).

The TERGM has been further investigated in many different perspectives. Guo

et al. 2007 devised the hidden TERGM, which utilizes a hidden Markov process to

express the nature of rewiring networks and model a time-specific network topology.

Krivitsky and Handcock 2014 generalized the TERGM to the separable TERGM

(STERGM). The STERGM flexibly models the formation and dissolution of networks

by separately parameterizing prevalence and duration of fluctuations. However, the

STERGM is essentially a special case of first-order TERGM that it still cannot cap-

ture the temporal heterogeneity.

Another method for dynamic network modeling is the stochastic actor-oriented
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model (SAOM) (Snijders 2001). It provides an alternative to dyadic models and

instead is a localized actor-based model, which characterizes network evolution as a

consequence of each actors’ connectivity. Even if the SAOM considers the fluctua-

tion between two time points, it does not provide explicit form to parametrize the

fluctuation in network topology. Sarkar and Moore 2005 and Sewell and Chen 2015

generalized the latent space model developed by Hoff, Raftery, and Handcock 2002 to

dynamic networks. The dynamics of network structure is modeled through random

effects in a latent space. It focuses on the transition between two time points and

provides limited description on overall network.

Compared to time-invariant models described above, an alternative actor-based

model was introduced in Hoff 2015, where dynamic networks are modeled using multi-

linear tensor regression. This work adapted autoregressive models to dictate temporal

dependence in a sequence of networks, and like the SAOM, proposed an actor-based

dependence structure between edges in each network. It directly models the temporal

heterogeneity but may not be adequate for larger networks due to its computational

complexity. In the meantime, Kolar et al. 2010 emphasizes on capturing time-varying

attributes of dynamic networks and parametrizes the evolving relationship of each

edge between nodes as a smooth function of time. Along with kernel smoothing ap-

proach, the ℓ1-regularization is utilized to ensure the smoothness. The parameters

in the model provide a valuable intuition in understanding the topological change of

each edge, but fitting this model for larger networks can be computationally expensive

considering the number of parameters.

As an alternative, the proposed model exploits a varying-coefficient framework

to model the temporal heterogeneity of topological features. The varying-coefficient

framework is a family of semi-parametric models, where the coefficient of a parametric

model evolves with some characteristics in a nonparametric fashion. It was first

developed to model non-linear effects of covariates on real-valued response variables
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(Hastie and Tibshirani 1993). Later it was extended to the dynamic generalized

linear models (Hoover et al. 1998; Zhang and Wang 2015). The varying-coefficient

models extend the classic parametric models to understand the dynamic pattern of

temporally evolving structure (Fan and Zhang 2008). A detailed review of varying-

coefficient models and their applications are provided in ibid. In our proposed model,

we model the coefficients of the topological features in the ERGM as a function of

time. As a result, the varying coefficients effectively capture the dynamic pattern of

the network structure. To our best knowledge, the VCERGM is the first attempt to

generalize the idea to dynamic networks.

2.2 Model

We begin by describing the exponential family of random graph models (ERGMs) and

their temporal extension, the TERGM, since our proposed model is closely related

to these specifications. We then introduce our proposed model: the VCERGM.

2.2.1 Exponential Random Graph Models

Suppose that X ∈ {0, 1}n×n is an unweighted network with n vertices, whose (i, j)th

entry Xij is an indicator that specifies whether or not node i and node j are con-

nected by an edge. The ERGM is a probability distribution that characterizes the

likelihood of X via a function of network statistics h : {0, 1}n×n → Rp that describe

the topological structure of X. Table 2.1 provides examples of network statistics for

a binary graph X with n nodes where xij represents whether there is an edge from

node i to node j. For example, a reciprocity statistic quantifies the tendency of nodes

in a directed network to exhibit mutual ties.

Given h, the ERGM models X as a binary random matrix generated from the
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Table 2.1: Examples of network statistics in ERGM

Type Network Statistic Definition
Directed Edge density i j

∑
i≠j

xij

Reciprocity i j
∑
i<j

xij xji

Cyclic triad i

j

k
∑
i<j<k

xij xjk xki

Undirected Two-star i

j

k
∑
i<j<k

xij xjk

Triangle i

j

k
∑
i<j<k

xij xjk xki

following probability mass function

P(X = x | ϕ) = exp{ϕTh(x)}∑
z∈{0,1}n×n

exp{ϕTh(z)}
, (2.1)

where ϕ ∈ Rp parameterizes the influence of the network statistics h(X) on the likeli-

hood of X. The coefficient corresponding to the number of triangles in an undirected

network, for example, characterizes how the number of triangles changes the likeli-

hood of a network with n nodes. Positive coefficients suggest that networks with

higher number of triangles are more likely to occur than networks with lower number

of triangles, and reflects clustering in the observed network.

The ERGM has been successfully applied in a wide variety of fields, ranging from

social networks to brain connectivity networks (Goodreau, Kitts, and Morris 2009;

Simpson, Hayasaka, and Laurienti 2011; Székely et al. 2016). Recent tutorials of

exponential random graph models and their applications are provided in Cranmer

and Desmarais 2011; Fellows and Handcock 2012; Robins et al. 2007.
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The TERGM is an important and popular statistical model for inference of dy-

namic networks (Desmarais and Cranmer 2012; Hanneke, Fu, and Xing 2010), and

can be described as follows. Consider a dynamic network X = {X1, X2, . . . , XT}

that is observed at T discrete and non-overlapping time periods, where each graph

Xt ∈ {0, 1}n×n from X is unweighted, and observed for the set of vertices [n] =

{1, . . . , n}. The TERGM is a generative model for X that characterizes the condi-

tional probability of Xt given X−
t = {Xs : s = 1, . . . , t− 1} via an exponential family

of probability distributions. Under the first order TERGM, X exhibits a one-step

Markov dependence between sequential networks as follows.

P(Xt = xt | X−
t = x−

t ) = P(Xt = xt | Xt−1 = xt−1) (2.2)

Under (2.2), one can fully specify the joint probability mass function of X by param-

eterizing the one-step transitions from Xt−1 to Xt. One models these dependencies

using a function of transition statistics g : {0, 1}n×n × {0, 1}n×n → Rp. These statis-

tics represent the temporal potential over cliques across two sequential networks and

can represent, for example, the change in the clustering or the change in overall con-

nectivity between each pair of networks. For a chosen g, the first-order TERGM

specifies the likelihood of Xt | Xt−1 for t = 2, . . . , T as

P(Xt = xt | X−
t ;ϕ) = P(Xt = xt | Xt−1 = xt−1;ϕ) =

exp{ϕT g(xt, xt−1)}∑
z∈{0,1}n×n

exp{ϕT g(z, xt−1)}
,

(2.3)

where ϕ ∈ Rp parameterizes the influence of the transition statistics g(Xt, Xt−1) on

the conditional likelihood of Xt given Xt−1. Suppose that the marginal distribution

P(X1 = x1 | ϕ) is specified. The TERGM characterizes the joint distribution of the
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dynamic sequence X by

P(X = x | ϕ) = P(X1 = x1 | ϕ)
T∏
t=2

P(Xt = xt | Xt−1 = xt−1,ϕ). (2.4)

We note that in general if one is able to specify appropriate transition statistics,

then the TERGM in (2.3) and (2.4) is readily generalized to higher-order Markov

dependency; however, for discussion of our equivalence statement in Appendix, we

consider the first-order TERGM only.

2.2.2 Varying-Coefficient Exponential Random Graph

Models

Let X = {Xt : 0 ≤ t ≤ T} be a stochastic sequence of temporally ordered networks

observed continuously up to some time T > 0. At each time point t, Xt ∈ {0, 1}nt×nt

represents an unweighted, directed or undirected network with nt nodes. Our goal is

to provide a dynamic network model for X that directly accounts for the temporal

heterogeneity of its local and global network structure.

The VCERGM consists of two components - (i) an ERGM representation for the

marginal likelihood of each observed network, and (ii) the coupling of networks over

time via a varying-coefficient model, where the coefficients at time t parameterize the

marginal likelihood of the network Xt. We first specify a set of functions h(xt, nt) :

{0, 1}nt×nt → Rp for t ∈ [0, T ], which quantify the p topological features of network

xt with size nt. Given h(xt, nt) and the coefficient vector ϕ(t) = (ϕ1(t), · · · , ϕp(t))
T ∈

Rp, the marginal likelihood of Xt at time t has an ERGM representation given by

P(Xt = xt | ϕ(t)) =
exp{ϕ(t)Th(xt, nt)}∑

z∈{0,1}nt×nt exp{ϕ(t)T h(z, nt)}
, xt ∈ {0, 1}nt×nt . (2.5)

A large collection of topological features can be used in the VCERGM. Traditionally,
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the network statistics are raw counts of different features in an observed network,

such as the number of edges (edge density), the number of triangles, or the number

of reciprocal edges in a directed network.

In dynamic networks, networks at different time points may have differing num-

bers of nodes, making it inappropriate to compare networks using un-normalized

counts. Instead, one should standardize the network statistics to make them compa-

rable over time. We propose to standardize network counts by its maximal possible

value. By using density (proportion) instead of count, we can measure and compare

the change in the ratio of certain network statistics when the number of nodes is

time-varying. For a directed binary graph Xt with nt nodes, for example, edge den-

sity and reciprocity can be defined as
∑

i ̸=j x
t
ij / {nt(nt − 1)} and

∑
i<j x

t
ij x

t
ji/

(
nt

2

)
,

respectively. Fitting a VCERGM to temporal networks is to capture the evolution

of connectivity pattern of overall relational data. Therefore, even if the network size

is time-varying, using standardized statistics enables us to detect the overall pattern

as well as maintain the smoothness assumption of ϕ(t).

The coefficients ϕ(t) in model (2.5) characterize the influence of the corresponding

network statistics on determining the network structure. By evaluating the coefficient

at time point t ∈ [0, T ], we can write the marginal distribution of a graph Xt as

described in model (2.5). When a dynamic network evolves gradually over time, it is

reasonable to believe the coefficients will also change gradually. In such a case, ϕ(t)

can be represented by smooth functions of t with continuous second order derivatives

over [0, T ] (Ramsay 2006). In the special case where all the separate functions in ϕ(t)

are constant, the generative models underlying the dynamic networks are identical

over time and the VCERGM reduces to a family of marginally identically distributed

ERGMs. In Section 2.4, we introduce a formal hypothesis testing procedure to test

the temporal heterogeneity of the coefficients.

18



2.2.3 Generalization to Higher Order Varying-Coefficient

Exponential Random Graph Models

The VCERGM, in general, can be used to model the parameters describing the

smooth transitions between consecutive networks in time. Model (2.5) investigates

the dynamics of coefficients for marginal network statistics. However, this model can

readily be extended to networks with a Markov dependency like that described by

the TERGM. For any non-negative integer q, one can incorporate an order q Markov

dependency in the VCERGM. We denote such a model as a VCERGM of order q

(VCERGM(q)). We refer to model (2.5) as the varying-coefficient exponential ran-

dom graph model of order 0 (VCERGM(0)). For q ≥ 1, one must specify summary

statistics that couple the dependence among q observed networks in the sequence.

For example, when q = 1 we can model the one step transition between Xt−1 and Xt

using a suite of statistics h1(xt, xt−1) as

P(Xt = xt |ϕ1(t), xt−1) =
exp{ϕT

1 (t)h1(xt, xt−1)}∑
z∈{0,1}nt×nt exp{ϕ1(t)

T h1(z, xt−1)}
, xt ∈ {0, 1}nt×nt .

(2.6)

Here, h1 is the temporal potential over cliques across two time-adjacent networks. For

examples of transition statistics h1, see Hanneke, Fu, and Xing 2010. In model (2.6),

ϕ1(t) = {ϕ1k(t), k = 1, . . . , p} can be modeled as smooth functions that describe the

impact of the one-step transition statistics from xt−1 to xt. Therefore, model (2.6)

effectively captures the rate of change of the temporal potential between sequential

graphs rather than the rate of change of the marginal features as done in this work.

Considering the higher order dependency, one could use the VCERGM to predict

the network structure in the future based on the Markovian framework. Like the

TERGM, we can generalize the VCERGM to a higher order Markov dependency, say

order q > 1, by specifying appropriate transition statistics hq(xt, xt−1, . . . , xt−q).

In general, the VCERGM(q) characterizes the impact of the changes of transition
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between q consecutive networks. Due to the Markov properties, the VCERGM with

lags can be used for prediction. Furthermore, since coefficients are smooth functions

through time, one can readily interpolate for unobserved networks. Notably, the

TERGM of order q is a special case of the VCERGM(q) where ϕq(t) ≡ ϕq. This

requirement greatly restricts the family of dynamic networks that can be modeled

through the TERGM. By allowing smooth fluctuations, the VCERGM models the

effects of temporal heterogeneity more efficiently.

2.3 Estimation

2.3.1 Spline-Based Representation of Time-Varying

Coefficients

Without any constraint, the collection of coefficients {ϕ(t) : 0 ≤ t ≤ T} contain an

infinite number of parameters, making inference on (2.5) intractable. To address this

problem, we approximately represent these smooth functions as a linear combination

of basis functions. Possible strategies of defining basis functions include piecewise

polynomials (De Boor et al. 1978), Fourier series (Konidaris, Osentoski, and Thomas

2011), and wavelets (Daubechies 1992). For inferential purposes, we employ basis

splines (b-splines) (De Boor et al. 1978; Eilers and Marx 1996) as a way to reduce

the dimensionality of estimation. B-splines are commonly used due to its flexibility

in incorporating smoothing constraints.

In particular, we first specify a collection of basis functions B1(t), . . . , Bq(t), 0 ≤

t ≤ T , and then approximate ϕk(t) by a linear combination of these functions

ϕk(t) =

q∑
ℓ=1

Φkℓ Bℓ(t),

where Φkℓ quantifies the contribution of the ℓth basis function on ϕk(t). Let Φ =
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{Φkℓ; k = 1, . . . , p, ℓ = 1, . . . , q} denote the p × q basis coefficient matrix and let

B(t) = (B1(t), . . . , Bq(t))
T be the length q vector of basis functions. We can represent

the coefficients ϕ(t) as

ϕ(t) = ΦB(t). (2.7)

The set of q basis functions represents the smoothness of ϕ(t), and the coefficient

matrixΦ determines the shape and trajectory of the fluctuations through time. Under

the basis representation in (2.7), the distribution of Xt in (2.5) is fully specified by

the pq parameters in the coefficient matrix Φ.

2.3.2 Fast Estimation via Maximum Pseudo Likelihood

For an observed dynamic sequence of unweighted graphs x = {xs ∈ {0, 1}ns×ns : s =

t1, . . . , tK , tj < tj+1 ∈ [0, T ]}, our goal is to estimate the coefficients {ϕ(t) : 0 ≤ t ≤

T} given the sequence x. Let Bs = {Bs,ℓ; ℓ = 1, . . . , q} be a vector of length q of

which elements are the basis functions evaluated at time s. By applying the basis

representation in (2.7), we denote ϕs = ΦBs as the smooth function ϕ(·) evaluated

at time s. Therefore, this estimation reduces to the task of estimating the p× q coef-

ficient matrix Φ. A major obstacle in obtaining the maximum likelihood estimators

of the parameters in Model (2.5), similar to that of fitting an ERGM, is that calcula-

tion of the normalizing constant in the denominator is computationally intractable.

Although numerical approaches such as the Markov chain Monte Carlo method can

be used to estimate Φ for small networks (Hunter and Handcock 2006; Wilson et al.

2017), the computational cost is prohibitive for moderate to large networks, let alone

a sequence of networks. To alleviate the computational complexity, we exploit a max-

imum pseudo-likelihood approach, originally adapted for fitting the ERGM (Strauss

and Ikeda 1990; Van Duijn, Gile, and Handcock 2009; Wasserman and Pattison 1996).

We show that the maximum pseudo-likelihood estimator (MPLE) for the VCERGM
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can be efficiently obtained via maximum likelihood estimation of a logistic regression

model. Below we describe the estimation procedure in more detail.

Without loss of generality, we assume that the numbers of nodes in different

networks are the same over time, i.e., ns ≡ n for all s. In the case where ns varies

over time, one can simply use the standardized network statistics described in Section

2.2.2. For each observed time point s = t1, . . . , tK , let Xs
ij denote the binary random

variable that describes whether or not there is an edge between node i and node j at

time s. Furthermore, let Xs
−(ij) be the collection of

(
n
2

)
− 1 binary random variables

that describe whether or not there is an edge between all other pairs of nodes other

than the node pair i and j. For each observed time point s = t1, . . . , tK , assume the

conditional independence between edges. The marginal pseudo-likelihood function of

Φ given xs at time s is defined as

PL(Φ|xs) =
∏

i,j∈[n]

P(Xs
ij = xs

ij|Xs
−(ij) = xs

−(ij)). (2.8)

Subsequently, the marginally independent composite pseudo likelihood of model (2.5)

is

PL(Φ|x) =
tK∏
s=t1

∏
i,j∈[n]

P(Xs
ij = xs

ij|Xs
−(ij) = xs

−(ij)).

The MPLE Φ̂ is obtained by maximizing PL(Φ|x). The pseudo-likelihood approach

used for estimation and hypothesis testing treats pairs of edges as pairwise indepen-

dent.

As the temporal dependence is parametrized by the coefficient ϕ(t), the composite

pseudo-likelihood function can be written as a product of marginal pseudo-likelihood

functions at the observed time points t1, . . . , tk.

Let x+
s,ij denote the realization of xs with xs

ij set to 0 and let x−
s,ij be the realization

of xs with xs
ij = 0. Define ∆s

ij = h(x+
s,ij) − h(x−

s,ij) as the vector describing the

element-wise difference in the network statistics when xs
ij changes from 0 to 1. One
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can readily show that for each s = t1, . . . , tK , the following relationship holds for all

i, j ∈ [n]:

logit
{
P(Xs

ij = 1|Xs
−(ij) = xs

−(ij))
}
= log

{
P(Xs

ij = 1|Xs
−(ij) = xs

−(ij))

P(Xs
ij = 0|Xs

−(ij) = xs
−(ij))

}

= log
[
exp{ϕ(t)T (h(x+

s,ij)− h(x−
s,ij))}

]
= ϕT

s ∆
s
ij (2.9)

Let Y s
ij = logit{P(Xs

ij = 1|Xs
−(ij) = xs

−(ij))} and let Ys = (Y s
11, Y

s
12, . . . , Y

s
nn)

T .

Similarly, define ∆s = (∆s
11,∆

s
12, . . .∆

s
nn) as the p ×

(
n
2

)
matrix whose rth row

contains the change in the rth network statistic when each edge changes from 0 to 1.

Let vec(X) be the operator that stacks the columns of X into a column vector, and

let ⊗ represent the Kronecker product operator. Combining (2.7) and (2.9) yields

Ys = ∆T
s ΦBs = (Bs ⊗∆s)

T vec(Φ), s = t1, . . . , tK . (2.10)

Let Y = (Yt1 , · · · ,YtK )
T , and define the pq ×K

(
n
2

)
design matrix H as

H =


Bt1 ⊗∆t1

...

BtK ⊗∆tK

 .

The relationship in (2.10) connects to a logistic regression where H represents a de-

sign matrix with its coefficient vec(Φ). In Strauss and Ikeda 1990, it was shown

that maximizing the pseudo-likelihood PL(Φ|xs) in (2.8) is equivalent to finding the

maximum likelihood estimator (MLE) of Φ in the logistic regression model given in

(2.9) with independent entries Xs
ij. Dependency among nodes in a network can be

indirectly modeled by conditioning on the rest of edges. As a result, the assumption
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of independent data points is not required. We expand this estimation strategy to

temporal networks. It follows from the independence of Xs and Xs′ for s ̸= s′ that

maximizing PL(Φ|x) is equivalent to calculating the MLE of Φ in the logistic re-

gression model Y = HTvec(Φ) treating {Xs
ij : i, j ∈ [n], s = t1, . . . , tK} as mutually

independent variables. Correlation between neighboring time points is not explicitly

specified, but the joint pseudo likelihood of dynamic networks is defined by multi-

plying the pseudo likelihood for each observed time point. Qu and Li 2006 showed

that the estimation procedure for varying-coefficient models based on the penalized

spline and quadratic inference function directly incorporates the correlation across

time without further specifying a nuisance parameter associated with the correlation.

This maximum pseudo likelihood approach can be also be applied to the

VCERGM(q) in an analogous fashion. For simplicity, we consider the VCERGM(1)

with one-step Markov dependence. The conditional likelihood of graph Xt given

Xt−1 is specified as (2.5). For a collection of basis functions B1(t), . . . , Bq(t),

0 ≤ t ≤ T , we approximate ϕ1k(t) by a linear combination of these functions as

ϕ1k(t) =
∑q

ℓ=1Φ1kℓ Bℓ(t) and represent the coefficient ϕ1k(t) as a ϕ1k(t) = Φ1B(t),

with a p×q matrix of basis coefficientsΦ1. The composite pseudo-likelihood functions

for VCERGM(1) can be expressed as

PL(Φ|x) =
∏

i,j∈[n]

P(X t1
ij = xt1

ij |Xt1
−(ij) = xt1

−(ij))

×
tK∏
s=t2

∏
i,j∈[n]

P(Xs
ij = xs

ij|Xs
−(ij) = xs

−(ij), Xs−1 = xs−1).

The likelihood of Xt1 has an ERGM representation and thus the marginal pseudo-

likelihood at time t1 is unconditional; it has the same form as (2.8). Let ∆s
ij =

h(x+
s,ij, xs−1)−h(x−

s,ij, xs−1) denote the vector of differences in the transition statistics

when xs,ij changes from 0 to 1. Then the relationship described in (2.9) can be
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similarly applied to VCERGM(1). A logistic regression model like (2.10) is used for

parameter estimation and thus the remainder of the estimation steps described above

remain the same.

2.3.3 Penalized Logistic Regression

To obtain smooth estimates of the time-varying coefficients ϕ(t), we further consider

a roughness penalty on the coefficients of the basis functions (see Eilers and Marx

1996; Hastie and Tibshirani 1993; Hoover et al. 1998, for example). A commonly

used penalty, which we use throughout this paper, is the integrated squared second

derivative defined for kth row of Φ, denoted as Φ(k), as

P(Φ(k)) =

∫
{D2ϕk(u)}2 du = ΦT

(k) ΩΦ(k)

where a smoothness matrix Ω in this case can be specified as

Ω =
{
Ωij =

∫
{D2Bi(u)}{D2Bj(u)} du ; i, j = 1, . . . , q

}
.

For networks observed at discrete time points t1, . . . , tK , the (i, j)th element of Ω is

Ωij =

tK∑
s=t1

{D2Bi(s)}{D2Bj(s)}, i, j = 1, . . . , q.

For more examples of possible penalties, see the Chapter 5 in Ramsay 2006. As

the same collection of basis functions are used to express ϕk(t), k = 1, . . . , p, via basis

representation, we impose the same Ω on all ϕk(t). Consequently, we add the penalty

term

PΩ(Φ) =

p∑
k=1

ΦT
(k) ΩΦ(k) = vec(Φ)T (Ω⊗ Ip)vec(Φ)

to the logistic log pseudo likelihood function. Similar with Y, let x̃ denote a vec-
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tor that stacks all edges from networks at t1, . . . , tK . That is, x̃ = {xs
ij : i, j ∈

[n], s = t1, . . . , tK}. We calculate the penalized pseudo-likelihood estimator Φ̂Ω by

maximizing the following penalized log likelihood with tuning parameter λ:

x̃THTvec(Φ)− 1T log[1 + exp{HTvec(Φ)}]− λPΩ(Φ). (2.11)

To fit (2.11), we implement an iteratively reweighted least squares (IRLS) algo-

rithm. A detailed description of this procedure is available in Appendix.

2.4 Testing for Heterogeneity

A key assumption of the VCERGM is that the effects of a specified collection of

statistics vary through time. This assumption reflects heterogeneity in an observed

sequence of graphs x, and provides intuition as to whether or not summaries of x

can be treated in aggregate. One can formally test for heterogeneity in x using a

likelihood ratio test (LRT), which we will now describe.

We begin with the preconceived notion that x is homogeneous, namely that the

coefficients ϕ(t) under model (2.5) are fixed as constants over time. This serves as the

null model, under which the VCERGM is equivalent to fitting independent and iden-

tically distributed ERGMs. Let ϕ0
1, . . . , ϕ

0
p be the estimates under the time-invariant

model fitting. With fixed constants ϕ0
1, . . . , ϕ

0
p, the null hypothesis corresponding to

a homogeneous sequence of graphs can be written as

H0 : ϕ1(t) = ϕ0
1, . . . , ϕp(t) = ϕ0

p. (2.12)

With basis spline (b-spline) setup of basis expansion (De Boor et al. 1978; Eilers

and Marx 1996), the basis functions satisfy
∑q

l=1Bl(t) = 1 for all t ∈ [0, T ]. As

a result, any ϕk(t) is uniquely expressed as a linear combination of b-spline basis

26



functions and setting the function ϕk(t) = ϕ0
k is equivalent to writing Φkℓ = ϕ0

k for

all ℓ = 1, . . . q. In other words, the null hypothesis in (2.12) can be expressed more

succinctly as

H0 : Φ = Φ0 = (ϕ0
1, . . . , ϕ

0
p)

T × 1T

q ,

where 1q is length q vector of 1’s. Such simplification is applicable for spline basis

functions and we have implemented hypothesis test with spline basis functions. The

condition
∑q

l=1Bl(t) = 1 for all t ∈ [0, T ] does not necessarily hold when other types

of basis functions are used. Hypothesis test under other basis function specification

remains to be explored in the future. The coefficients under the null hypothesis are

the restricted form of the VCERGM where the basis coefficients for each network

statistic are constants for all q basis functions.

The likelihood ratio test (LRT) is commonly used for conducting the test for

heterogeneity in varying-coefficient models (Cai, Fan, and Li 2000; Fan, Zhang, and

Zhang 2001; Fan and Zhang 2000, 2008). Due to the dependence between entries

in each graph, we utilize a pseudo likelihood ratio test (pLRT) (Staicu et al. 2014).

As previously emphasized in Section 2.3, the joint pseudo likelihood consists of the

distribution of Xs
ij given the rest of the data Xs

−(ij) for all i, j ∈ [n], s = t1, . . . tK .

Furthermore, maximizing the pseudo likelihood simplifies the estimation process as

fitting a logistic regression. Namely, with observed networks x = {xs : s = t1, . . . , tK}

with n nodes, the pLRT compares the pseudo log likelihood function below under the

null and alternative hypotheses:

logPL(Φ|x) =

tK∑
s=t1

∑
i,j∈[n]

log{P(Xs
ij = xs

ij|Xs
−(ij) = xs

−(ij))}

=

tK∑
s=t1

∑
i,j∈[n]

[
xs
ijBT

s Φ
T∆s

ij − log{1 + exp(BT
s Φ

T∆s
ij)}

]
.

Let Φ̂H0 and Φ̂H1 be the estimates of Φ under the null and alternative hypotheses.

27



The estimate Φ̂H1 can be calculated by fitting the VCERGM specified in (2.5) and

Φ̂H0 is the estimate from the VERCM with a restriction of constant basis coefficients.

Accordingly, let logPL(Φ̂H0|x) and logPL(Φ̂H1|x) denote the pseudo log likelihood

functions under the null and alternative, respectively. Then, the test statistic is

T = 2{log PL(Φ̂H1|x)− log PL(Φ̂H0|x)}

= 2

tK∑
s=t1

∑
i,j∈[n]

[
xs
ijB

T
s (Φ̂H1 − Φ̂H0)

T∆s
ij + log

{1 + exp(BT
s Φ̂

T

H0∆
s
ij)

1 + exp(BT
s Φ̂

T

H1∆
s
ij)

}]
.(2.13)

We reject the null hypothesis when T > Cα where Cα is the critical value of the

test with significance level α. We introduce an approach that involves generating

bootstrap samples to construct the null distribution of T (Cai, Fan, and Li 2000;

Fan and Zhang 2008; Huang, Wu, and Zhou 2002). It is s preferable for moderate

network size. Analogous to the work in De Brabanter et al. 2006; McLachlan 1987;

Tekle, Gudicha, and Vermunt 2016, the steps of obtaining the critical value Cα or

calculating the p-value with parametric bootstrapping can be described as follows.

For a large value of B, the test statistics (2.13) calculated based on B bootstrap

samples successfully represent the null distribution of T .

1. Create B bootstrap samples. For each bootstrap, indexed by b = 1, . . . , B,

x∗(b) = {x∗(b)
s : s = t1, . . . , tK} is a sample from P(X|Φ̂H0).

2. For each bootstrap sample x∗(b), estimate Φ under the null and alternative

hypotheses and denote them as Φ̂∗(b)
H0 and Φ̂

∗(b)
H1 , respectively.

3. Calculate the test statistic for each bootstrap sample as

T ∗(b) = 2{log PL(Φ̂∗(b)
H1 |x∗(b))− log PL(Φ̂∗(b)

H0 |x∗(b))}, b = 1, . . . , B.

4. The critical value Cα is determined as the (1−α)th quantile of (T ∗(1), . . . , T ∗(B)).

The p-value is the proportion of times that the bootstrap test statistic values
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exceed the observed test statistic T . Define an indicator function I(A) which

takes a value of 1 if A is true and 0 otherwise. Then the p-value can be written

as

p-value =
∑B

b=1 I(T < T ∗(b))

B
.

The p-value is then used to determine whether or not to reject the null hypothesis.

For values below a specified significance value, α, one rejects the null hypothesis in

(2.12) and decides that the sequence of networks does exhibit heterogeneity in its

parameters. In our applications below, we choose α = 0.05 when evaluating any

hypothesis test.

2.5 Simulation Study

The goal of our simulation study is two-fold: (i) to evaluate the power of the hy-

pothesis testing procedure described in Section 2.4, and (ii) to assess the goodness

of fit of the VCERGM on dynamic networks with various magnitudes of temporal

heterogeneity. In Section 2.5.1, we evaluate the sensitivity of the hypothesis test in

(2.12) for detecting temporal heterogeneity in a sequence of networks with fluctuat-

ing parameters using both the bootstrap and permutation procedures. Section 2.5.2

assesses the performance of the VCERGM under various varying-coefficient specifica-

tions. We compare the performance of the VCERGM with other competing methods

We further investigate how the VCERGM performs when the networks are observed

at unequally spaced time points due to missing networks. We explore the performance

of VCERGM when the network size is time-varying in Appendix.

2.5.1 Power Evaluation for Testing Heterogeneity

We first investigate the power of the hypothesis test for heterogeneity that we intro-

duce in Section 2.4. To do so, we investigate both Type I and Type II errors of the
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test on dynamic networks over various magnitudes of temporal heterogeneity. We

simulate 100 sequences of dynamic networks x = {x1, . . . ,x100}, where each sequence

xw = {xw,1, . . . , xw,K}, containsK networks with 30 nodes observed at equally-spaced

times t1, . . . , tK under the VCERGM that models the temporal contributions of the

edge density statistic. We set the coefficient on the edge density term, ϕ(t), to be a

sinusoidal curve with amplitude M and period T . In particular, we model

ϕ(t) = M sin
(2πt

T

)
, t ∈ [0, T ].

We vary the number of observed time points K from 10 to 100, and the amplitude

M from 0 to 0.3 in increments of 0.05. In case that M = 0, we set ϕ(t) = 1, t ∈ [0, T ]

to represent an Erdős-Rényi model. For each value of K and M , we calculate the

proportion of cases that we reject the null hypothesis at a α = 0.05 level out of

the 100 simulated dynamic network sequences. Table 2.2 reports these proportions

when using the bootstrap procedure as well as permutation test. For permutation

test, instead of simulating networks from the estimated null, we simply permute the

observed networks to break any time-varying pattern, and re-estimate the model

under the null and the alternative and then calculate the test statistics. We learned

that both testing strategies appear to be overly conservative. It is a valuable point

we would like to address for a future research.

When M = 0, ϕ(t) is a constant function and as a result the proportion of

rejections in this case provides an estimate for the Type I error of each test. From

Table 2.2, we see that both strategies obtain a Type I error at or below 0.05, as

desired. For M > 0, the proportion of rejections provides an estimate of the power

of the test. We see that for higher signal (larger M) and for a larger number of

observed networks (larger K), we obtain a higher power, as expected. Across K, we

see in general that the bootstrap procedure is consistently more powerful than the
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use of permutation procedure for each amplitude value M . For M > 0.25 the power

of both tests reaches 1, indicating that heterogeneity is successfully identified by both

tests. These results suggest that both tests are powerful for large enough signal size,

and that the bootstrap procedure slightly outperforms the permutation procedure for

small signal sizes (between M = 0.05 and 0.20).

Table 2.2: Simulation results: Proportion of cases that we reject the null hypothesis
out of 100 simulations at the significance level of α = 0.05. Bootstrap samples of size
B = 1000 and permuted samples of size P = 1000 are used to make a decision for
hypothesis testing.

M
Bootstrap Permutation

K = 10 30 50 70 100 K = 10 30 50 70 100
0 0.02 0.03 0.07 0.01 0 0.03 0.04 0.03 0 0.01
0.05 0.15 0.36 0.46 0.59 0.71 0.07 0.29 0.49 0.63 0.73
0.1 0.42 0.77 0.91 0.93 0.97 0.32 0.82 0.98 0.99 1
0.15 0.74 0.98 1 1 0.99 0.52 1 1 1 1
0.2 0.98 1 1 1 1 0.63 1 1 1 1
0.25 1 1 1 1 1 0.87 1 1 1 1
0.3 1 1 1 1 1 0.97 1 1 1 1

2.5.2 Estimation Performance

We now evaluate the performance of VCERGM to accurately estimate fluctuating

parameters ϕ(t), t ∈ [0, T ]. We consider four different settings for ϕ(t): (i) sinusoidal

curve ϕ(t) = a sin{(t + b)/c} + d of varying amplitude a; (ii) quadratic curve ϕ(t) =

a(t− T/2)2 + b of varying strength a; (iii) dynamic Erdős-Rényi random graph with

probability p of edges; and (iv) non-smooth (spiky) functions as a form of a sequence of

random numbers with varying mean and standard deviation for normal distribution.

For each setting of varying coefficients, we model the occurrence of graphs using the

VCERGM with edge density and reciprocity statistics (see Table 2.1). We simulate

100 dynamic sequences of directed graphs {x1, . . . ,x100} where each sequence xw =

{xw,1, . . . , xw,50} is observed at K = 50 equally-spaced time points. We assume

that the network size remains constant through time and consider estimation with
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networks of three different sizes n = 30, 50, 100. Furthermore, we repeat (i)-(iv) with

1, 5, and 10 randomly chosen networks removed from the time series to evaluate the

performance on dynamic networks with observations missing at random.

For each simulated dynamic network, we compare the VCERGM with two other

dynamic network models. First, we fit cross-sectional ERGMs, where the ERGM in

model (2.1) is fit separately at each of the K observed time points. As an alternative

competitive method, we also develop an ad hoc 2-step procedure, which adapts an ad

hoc smoothing procedure after fitting cross-sectional ERGMs for observed networks.

Namely, let ϕ̂(t) denote the estimate of ϕ(t). The ad hoc smoothing mechanism aims

to find a smooth function f(t) that minimizes the penalized residual sum of squares

(RSS)

RSS(f, λ) =

tK∑
s=t1

{ϕ̂(s)− f(s)}2 + λ

∫
{f ′′

(t)}2dt,

where λ is a tuning parameter that controls the amount of roughness. The generalized

cross validation (GCV) is used to choose the tuning parameter λ (Golub, Heath, and

Wahba 1979).

To assess the performance of each method, we calculate the integrated absolute

error (IAE) of the estimated coefficient curves. It measures the sum of point-wise

absolute difference between estimated curve ϕ̂(t) and true curve ϕ(t) at observed

time points t1, . . . , tK , namely

IAE(ϕ(t), ϕ̂(t)) =

tK∑
s=t1

|ϕ(s)− ϕ̂(s)|.

The mean and standard deviation (SD) are calculated to evaluate the perfor-

mance of our proposed method compared to cross-sectional ERGMs and ad hoc

2-step procedure. We provide the summary of IAE for each method on dynamic

networks with 30 nodes in Table 2.3 with (0, 1, 5, 10) missing networks. Settings

for the results are (i) sinusoidal curves with (a, b, c, d) = (1, 30, 5, 1) (edges) and

32



(a, b, c, d) = (0.6, 20, 3, 0.4) (reciprocity); (ii) quadratic curves with (a, b) = (1/202, 0)

(edges) and (a, b) = (−1/252, 0.5) (reciprocity); (iii) Erdős-Rényi with pedges = 0.85;

(iv) a sequence of random numbers from N(0, 1) (edges) and N(1.5, 0.5) (reciprocity).

The performances of cross-sectional ERGMs, ad hoc 2-step procedure, and VCERGM

become more comparable with larger network size. For results of n = 50 and n = 100

case, see Tables A.1 and A.2 in Appendix.

Without missing network, Figure 2.1 shows that cross-sectional ERGMs are more

likely to introduce unexpected spikes or increased variability in estimating true ϕ(t),

compared to VCERGM. Overall, the VCERGM presents smaller deviation from true

ϕ(t) with smaller variability compared to cross-sectional ERGMs and ad hoc 2-step

procedure. In the first three settings, the VCERGM performs better than cross-

sectional ERGMs and ad hoc 2-step procedure with smaller IAE. In case of non-

smooth functions, with true ϕ(t) not smooth but wiggly, the ad hoc 2-step proce-

dure shows better performance than the VCERGM with respect to IAE. Both Table

2.3 and Figure 2.1 indicate that the VCERGM potentially misses random wiggles,

which causes greater bias on average compared to cross-sectional ERGMs. Regard-

less, overall trend that the true non-smooth ϕ(t) presents is fairly well estimated by

the VCERGM and the variability of the estimates is still smaller for the VERGM

compared to cross-sectional ERGMs. Overall, the performance of ad hoc 2-step pro-

cedure and VCERGM is comparable, but the VCERGM is more principled in terms

of incorporating time-varying coefficients in the modeling step. For all four settings,

the VCERGM is computationally more efficient than the cross-sectional ERGMs. We

conduct an additional simulation study specifically tailored to compare the computing

time between methods and the results are presented in Table 2.4.

When there exist missing networks, cross-sectional ERGMs are no longer available

to provide the estimates at unobserved time points. Therefore, the IAE is calculated

only for ad hoc 2-step procedure and VCERGM. Notably, the performance of the
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Figure 2.1: Parameter estimates with 30 nodes: Estimated parameters for edges
(top) and reciprocity (bottom). Black line is the true ϕ(t). Red (ERGM) is for
cross-sectional ERGMs, green (ERGM2) is for ad hoc 2-step procedure, and blue
(VCERGM) is for VCERGM. For each method, solid line indicates the average of
100 estimated curves and the shaded band illustrates the first and third quantiles.

VCERGM remains stable across each number of missing networks. Cross-sectional

ERGMs and the 2-step approach, on the other hand, suffer more than the VCERGM

in the case of missing networks. Indeed, as shown in Table 2.3, the VCERGM out-

performs these competitive methods in the case that observations are missing and is

better able to capture the true coefficient curve in these cases.

In order to compare the computational efficiency, we vary the number of time

points K and record the computing time for VCERGM and cross-sectional ERGMs.

Table 2.4 summarizes the computing times of 500 simulated dynamic network se-

quences and displays how computing time changes as the number of time points K

changes. The maximum pseudo-likelihood approach is used for both ERGM and

VCERGM estimation. According to Table 2.4, the VCERGM takes significantly less

time than cross-sectional ERGMs to complete the parameter estimation. Even if

both VCERGM and cross-sectional ERGMs show linear increase in computing time,
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Table 2.3: Simulation results with 30 nodes and (0, 1, 5, 10) missing
networks: Mean and standard deviation of the integrated absolute errors (IAE)
for each method.

Missing Edges Reciprocity
ERGM ERGM2 VCERGM ERGM ERGM2 VCERGM

Sinusoidal 0 18.63 (11.06) 11.79 (11.76) 5.07 (1.05) 20.99 (11.11) 14.28 (12.24) 6.54 (1.25)
1 12.41 (11.79) 5.35 (1.19) 14.63 (12.28) 7.13 (1.32)
5 12.92 (11.83) 5.67 (1.37) 14.55 (12.25) 7.6 (1.3)
10 12.89 (13.76) 5.44 (1.21) 13.87 (12.97) 7.53 (1.33)

Quadratic 0 6.33 (0.74) 2.87 (1.08) 2.86 (0.97) 8.58 (0.87) 3.07 (1.1) 3.19 (0.83)
1 2.9 (1.09) 2.87 (0.99) 3.16 (1.14) 3.22 (0.86)
5 3.13 (1.11) 2.98 (1) 3.38 (1.27) 3.38 (0.89)
10 3.29 (1.28) 3.05 (0.97) 3.56 (1.41) 3.52 (0.93)

Erdős-Rényi 0 14.17 (2.5) 6.92 (3.8) 5.93 (2.71) 15.91 (2.58) 7 (3.76) 6.06 (2.67)
1 7 (3.86) 5.98 (2.76) 7.09 (3.83) 6.1 (2.75)
5 7.09 (3.79) 6.06 (2.68) 7.14 (3.83) 6.17 (2.69)
10 7.11 (4.03) 6.15 (2.83) 7.28 (3.93) 6.35 (2.81)

Non-smooth 0 12.62 (6.53) 32.32 (2.96) 31.27 (0.35) 15.88 (6.61) 21.9 (4.46) 24.08 (0.93)
1 32.25 (2.79) 31.16 (0.36) 21.86 (4.58) 22.65 (0.89)
5 32.46 (3.47) 31.34 (0.45) 22.19 (5) 22.48 (0.88)
10 32.63 (4.13) 31.42 (0.44) 22.91 (6.14) 23.46 (0.92)

the rate of change is much smaller for VCERGM. Both methods entail K separate

steps to construct design matrix and response vector at each time point, but the

cross-sectional ERGMs require K separate MPLE steps while VCERGM only needs

one estimation. In other words, the longer the time series of networks are, the more

efficient VCERGM is compared to cross-sectional ERGMs.

Table 2.4: Computing Time: Summary (Mean(SD)) of computing time (second)
for dynamic networks with different number of time points K

Number of time points K
20 40 60 80 100

ERGM 0.79 (0.07) 1.51 (0.08) 2.11 (0.10) 2.99 (0.07) 3.74 (0.11)
VCERGM 0.36 (0.04) 0.64 (0.04) 0.87 (0.06) 1.25 (0.11) 1.54 (0.06)

The VCERGM can analyze networks with time-varying network size. We conduct

a simulation to evaluate the performance of VCERGM in such scenario. The results

are presented in Appendix.
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2.6 Applications

In this section we apply the VCERGM to two case studies which portray differing

amounts of temporal heterogeneity. First, we analyze how the co-voting patterns

among U.S. Senators have changed through time. In this example, we analyze the

effects of political affiliation (Republican or Democrat) on the likelihood of the voting

networks. In our second example, we investigate the structural changes of the resting-

state functional magnetic resonance imaging (rfMRI) records of healthy individuals.

For each case study, we first test for temporal heterogeneity of any statistic included

in the model. We fit the VCERGM on the two data sets and also fit cross-sectional

ERGMs and ad hoc 2-step procedure for comparison. In the first example, we witness

a clear evidence of temporal heterogeneity that the importance of political affiliation

on the likelihood of the voting networks significantly changes over time. On the

contrary, relatively stable rfMRI networks show little fluctuations through time and

our method is shown to accommodate it successfully as well.

2.6.1 Political Voting Network

We begin by analyzing the dynamic network that describes the co-voting patterns

among U.S. Senators from 1867 (Congress 40) to 2015 (Congress 113). Three of

the voting networks are shown in Figure 1.1. This network was first investigated

in Moody and Mucha 2013 and has been subsequently analyzed in Wilson, Stevens,

and Woodall 2016. The network is based off of the roll call voting data from http:

//voteview.com, which contains the voting decision of each Senator (yay, nay, or

abstain) for every bill brought to Congress. We model the co-voting tendencies of

the Senators using a dynamic network where nodes represent Senators and an edge

is formed between two nodes if the two Senators vote concurrently (both yay or both

nay) on at least 80% of the bills to which they were both present.
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As shown in Figure 1.1, there exist great fluctuations in network structure through

time. Previous analyses in Moody and Mucha 2013; Wilson, Stevens, and Woodall

2016 have identified significant changes in the community structure of the network

over time, and that this community structure is closely associated with political affilia-

tion of the Senators. To account for these fluctuations, we incorporate a node-match

statistic for political affiliation which counts the number of edges shared between

Senators who have the same political affiliation. Furthermore, we include a statistic

which models popularity (two-star) and clustering (triangle) of the Senator networks.

See Table 1 for more details of these two statistics. We note that it is of separate

interest to perform model selection for the VCERGM; however, we pursue this in fu-

ture work. Here, we compare and contrast the results of a simple model when using

several viable dynamic network models.

Figure 2.2: Parameter estimates of political networks: Temporal heterogeneity
is clearly presented for all three network statistics. Cross-sectional ERGMs (ERGM),
ad hoc 2-step procedure (ERGM2) and VCERGM show similar estimates.

The estimated parameters from i) cross-sectional ERGMs (ERGM), ii) ad hoc

2-step procedure (ERGM2) and iii) VCERGM are presented in Figure 2.2. Com-

puting time for cross-sectional ERGMs and VCERGM are about 6 and 20 seconds,

respectively. Notably, all three network statistics exhibit temporal heterogeneity.

The permutation test p-value for testing heterogeneity is < .001. Consistent with

our simulation results, the cross-sectional ERGMs exhibits spiky estimates, but the
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ad hoc smoothing recovers the lack of smoothness efficiently and produces similar

estimates as the VCERGM. The political nodematch parameter estimate reveals an

important trend in the political network. We see that the coefficient value for this

term generally increases over time, indicating the increasing importance of political

affiliation on the co-voting habits of the Senators throughout U.S. history. More

specifically, such increasing pattern in the coefficient reflects that the number of

ties formed with the same political affiliation positively influences the likelihood. In

particular since Congress 95, this coefficient has significantly increased. This find-

ing matches the current theory of “political polarization” described in Moody and

Mucha 2013. Figure 2.2 also suggests that the triangle coefficient has decreased in

magnitude suggesting that clustering has become less and less important over time.

In other words, the clustering has become not as influential as it was in the past in

terms of forming ties.

2.6.2 fMRI Dataset

We next analyze the structure of brain connectivity in the data provided by the

WU-Minn Consortium Human Connectome Project (HCP). The dataset is available

at https://db.humanconnectome.org. See Van Essen et al. 2012 for an overview

of data acquisition and analysis. The dataset includes the resting-state functional

magnetic resonance imaging (rfMRI) of 500 subjects. For each subject, a 15-minute

run of rfMRI is recorded. We set 47 local windows and calculate a precision matrix

between 50 brain regions based on observations within each window. For a transition

from precision matrices to sequence of dynamic networks, we define the edge density

of a network as the proportion of edges in the network. Once the edge density is

specified, the threshold can be determined to form an edge between brain regions.

With the edge density of 10%, for example, the greatest 10% of partial correlation

values would form edges.
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Figure 2.3: Parameter estimates of fMRI networks: Results of two randomly
chosen individuals. For all three network statistics, one individual (first row; per-
mutation test p-value = 0.117) displays slightly more fluctuations than the other
individual (second row; permutation test p-value = 0.598). The ad hoc 2-step proce-
dure and VCERGM show similar estimates.

Simpson, Hayasaka, and Laurienti 2011; Simpson, Moussa, and Laurienti 2012

fit the ERGMs to brain networks and conducted extensive model selection. Their

final model includes network statistics such as geometrically weighted edge-wise

shared partner (GWESP) and geometrically weighted non-edge-wise shared partner

(GWNSP). We keep our analysis simple for sake of comparison of methods. We model

our rfMRI networks with three network statistics: edges, triangle and two-star and

compare i) cross-sectional ERGMs (ERGM), ii) ad hoc 2-step procedure (ERGM2)

and iii) VCERGM. We leave the model selection for the VCERGM for future research.

Figure 2.3 shows the results of two individuals from this study. Computing time

for cross-sectional ERGMs and VCERGM are about 1 second. As the data are the

resting-state fMRI records, little fluctuation is expected in parameters over time.

For both individuals, both ad hoc 2-step procedure and VCERGM provide estimates
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with a small range of fluctuation for all three network statistics. Overall, the ad hoc

2-step procedure and VCERGM provide relatively similar estimates, while both esti-

mates cross the cross-sectional ERGM estimates. The estimates from cross-sectional

ERGMs are extremely jagged that they may introduce inaccurate inference with re-

gard to explaining the topological change in brain networks over time. The VCERGM

not only produces fairly static estimates but also captures small variations through

time more sensitively than ad hoc 2-step procedure. Therefore, even with relatively

stable dynamic networks, the VCERGM performs consistently well.

2.7 Discussion

In this paper, we introduce varying-coefficient models for dynamic networks. In par-

ticular, we described the formulation and estimation of the VCERGM, a model that

incorporates temporal changes in the coefficients of an exponential random graph fam-

ily of models. We demonstrated the advantages of applying the VCERGM over com-

peting methods through simulations and two dynamic network case studies. First,

the VCERGM provides an intuitive explanation of how a network changes through

time. Both the cross-sectional ERGMs and ad hoc 2-step procedure seemed to cap-

ture the temporal heterogeneity in a sense. However, by incorporating the temporal

heterogeneity in the modeling step, the VCERGM provides a compact and meaning-

ful model to formally explain the temporal structure of dynamic networks. Second,

the VCERGM is robust to perturbations in observed temporal data. By imposing

smoothness on the coefficients, we are able to provide robust estimates that are re-

sistant to outliers and noise. Third, the VCERGM enables interpolation for missing

networks through time. In practice, one can only observe a finite number of networks

in a dynamic sequence, which may be observed in unequally spaced time increments.

Estimates of the coefficients to the VCERGM can be evaluated at any time point
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in the domain and immediately interpreted as the impact of network statistics at

that time point. By presenting the results with unequally-spaced networks, we illus-

trated how the varying-coefficients through time can be useful especially in terms of

interpolation.

Our work provides several avenues for future research. First, it is important to

consider the evaluation of goodness of fit and model selection in a dynamic context.

Through empirical exploration, we found that the network statistics used to fit a

model are often highly correlated. For example, if there exists a triangle in a network,

it is more likely to find two-stars in the network. Model identifiability should be

investigated both in static ERGM models and the VCERGM to ensure appropriate

model selection. For static ERGMs, one generally assesses goodness of fit through a

comparison of quantitative summaries of simulated networks from the fitted model

with the summaries of the observed network (Hunter, Goodreau, and Handcock 2008).

However, for dynamic networks this type of goodness of fit comparison captures only

the marginal aspects of the dynamic sequence. How exactly to assess the quality of

a dynamic model is still an open problem. A second avenue for future work involves

adapting the varying-coefficient framework introduced here to networks with weighted

edges. To do this, one can extend the exponential models of networks for integer-

valued weights from Krivitsky 2012 or to the models of networks for continuous-valued

weights considered in Desmarais and Cranmer 2012; Wilson et al. 2017.

We discussed a maximum pseudo-likelihood approach for parameter estimation.

This strategy provides a computationally feasible approach to fitting dynamic net-

works with a large number of nodes or time steps, especially when compared to

the typical simulation-based MCMCMLE approach. There have been several stud-

ies exploring the relationship between the pseudo-likelihood and the likelihood of

the ERGM, including Strauss and Ikeda 1990 and Desmarais and Cranmer 2012,

where the efficacy of MPLE was empirically compared to MCMCMLE. More re-
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cently, Schmid and Desmarais 2017 compared the performance of MCMCMLE and

MPLE and empirically supported the accuracy of MPLE. Despite this, theoretical

support for MPLE is still lacking and is an open area for future research.

In many dynamic networks, it is often of interest to identify change-points in

the network, namely points in time where the network undergoes significant local

or global structural change (Bindu and Thilagam 2016; Woodall et al. 2017). It

would be interesting to further analyze how to utilize dynamic network models like

the VCERGM to identify such changes. The test for heterogeneity that we use in

the paper may provide some idea of how to formally test for a change - through

identification of a change in network parameter - however, in future research we plan

to purse this idea further.
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Chapter 3

Multilevel Dynamic Stochastic

Blockmodel

3.1 Introduction

3.1.1 Motivation

Network topology changes over time by nature. Both local and global features of

a network significantly changes through time. As relational data are collected over

time, analyzing dynamic networks has become fundamental in demonstrating how the

form of connection and relationship changes over time (Goldenberg et al. 2010). More

studies emphasize the topological evolution of dynamic networks in various fields:

examples include email communication among the employees of ENRON (Shetty and

Adibi 2005), internet topology (Edwards et al. 2012) and biological systems of yeast

response under oxidative stress (Gopalacharyulu et al. 2009). Temporal heterogeneity

present in these examples can result in a dramatic change of the underlying process

that best describes a network.

For example, the voting pattern of the U.S. Congress has been widely explored to

understand the partisanship between Republican and Democrat. Andris et al. 2015
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visualized and cross-sectionally examined the polarization between Democrat and

Republican party members in the US House of Representatives from 1949 to 2012.

Wilson, Stevens, and Woodall 2016 detected change points in relational structure and

interpreted the topological changes to reflect the cohesion or polarization in US vot-

ing networks from Congress 40 to Congress 113. Lee, Li, and Wilson 2017 estimated

a smooth parameter that demonstrates the overall evolution in topological struc-

ture and illustrated the increasing importance of political affiliation for constructing

relational pattern among US senators.

When temporally observed relational data are used for dynamic network analysis,

they are often processed to form networks. The real-time tracking of relational data

has become more accessible, and many studies preprocess the temporal data to define

dynamic networks. A common approach for preprocessing is to aggregate relational

patterns observed in a time interval. For instance, many studies that analyzed the

U.S. voting networks including the forementioned papers created a single network for

each Congress that represents the overall relational structure for that Congress. The

network is an aggregated form of voting patterns from multiple bills addressed in the

certain Congress. It may result in a great loss of information; for example, there may

be a variability in voting patterns across bills, and aggregating multiple bills ignores

this variability and provides a limited picture of what happened in the Congress.

In this project, we propose a method for dynamic networks that does not aggregate

the multiple relational patterns at each time point. Instead, the proposed method

views them as repeated measurements and models them as random effects at each

time point. We extend the idea of stochastic blockmodels for dynamic networks and

parametrize the probability of engagement within and across blocks as a smooth

function of time. We focus on the case in which the block membership is known to

answer the effects of certain covariates, e.g. political affiliation for U.S. co-voting

networks, in building an interaction across the different categories of the covariates.
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3.1.2 Literature Review

The stochastic blockmodel (SBM) is a generative model for investigating community

structure in random graphs; it identifies a subgroup structure of nodes (actors) in

a network and assigns a probability of within-block and across-block ties (Holland,

Laskey, and Leinhardt 1983; Wang and Wong 1987). Nodes in the same block are

stochastically equivalent in that the likelihood of any given pattern of ties with a

certain node in one block is the same as any other nodes in the same block. The

block membership is often known, but in general, it has to be estimated along with

the magnitude of connectivity across blocks.

The SBM has been explored in a variety of directions. For example, the mixed

membership stochastic block model was proposed to allow an overlapping membership

in multiple communities (Airoldi et al. 2008). More recently, a framework of SBM

that incorporates edge- or node- level covariates was introduced to parametrize the

covariate effects on forming ties between nodes (Leger 2016; Sweet 2015). The R

package ‘blockmodels’ implemented an estimation process of SBM parameters using

a variational expectation-maximization (EM) algorithm (Leger 2016; Mariadassou,

Robin, and Vacher 2010).

When analyzing dynamic networks, it is of interest to examine the structural

changes over time. A wide range of literature considers to detect change-points

(anomalies) of communities of networks (Bhamidi, Jin, and Nobel 2015; Chen, Hen-

drix, and Samatova 2012; Greene, Doyle, and Cunningham 2010; Peel and Clauset

2015; Porter and White 2012; Sparks and Wilson 2016; Wilson, Stevens, and Woodall

2016). Types of anomaly are defined based on change in size and shape of com-

munities through time. For example, Bhamidi, Jin, and Nobel 2015 formulates a

non-parametric estimator for the change point based on observations of the network.

Yang et al. 2011 introduces a model that captures the evolution of communities by ex-

plicitly modeling the transition of community membership for individual nodes in the
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network. Meanwhile, Peel and Clauset 2014 employs the generalized hierarchical ran-

dom graph model for distributional specification and detects network change-points

by conducting Bayesian hypothesis testing. A hypothesis test for change-point detec-

tion compares two models, one with change and the other without change, in order

to validate the existence of a change-point at the specific time point.

Considerable work has been done on the identification of structural changes in

time-varying networks by directly modeling the temporal changes in dynamic net-

works (Pensky and Zhang 2017; Xu and Hero III 2013; Xu and Hero 2014). More

specifically, the idea of state-space model (SSM) has been widely applied to model

and detect the change-points in time-evolving networks. The SSM considers the lin-

ear transition between states of adjacent time points. For example, Matias and Miele

2017; Xu and Hero 2014 propose dynamic stochastic blockmodels with varying com-

munity memberships and connectivity parameters. Fu, Song, and Xing 2009; Ho,

Song, and Xing 2011; Xing, Fu, and Song 2010 propose to model time-evolving net-

works with mixed membership stochastic blockmodel. Wilson, Stevens, and Woodall

2016 proposes the dynamic version of the degree corrected stochastic blockmodel.

The remainder of this paper is organized as follows. In Section 3.2, we intro-

duce our model that incorporates the random effects at each time point in modeling

time-varying group behavior via dynamic extension of stochastic blockmodels. We

introduce the estimation process in detail in Section 3.3. We apply our proposed

method to U.S. co-voting networks in Section 3.4. We conclude with discussion of

our method and open areas for future research in Section 4.5.

3.2 Method

We start with describing a general idea of stochastic blockmodels for a static net-

work in Section 3.2.1 and discuss the dynamic extension of stochastic blockmodel
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for temporally observed networks in Section 3.2.2. In Section 3.2.3, our proposed

model demonstrates the temporal extension of stochastic blockmodels with varying-

coefficient approaches and random effects for multilevel dynamic networks.

3.2.1 Stochastic Blockmodel

The stochastic blockmodel (SBM) is a generative model to identify the community

structure and quantify the connectivity between communities in a unweighted, sym-

metric network (Holland, Laskey, and Leinhardt 1983). Suppose Y ∈ {0, 1}n×n is a

undirected network with n nodes. Its (i, j)-th element, denoted by Yij, indicates an

edge between node between node i and node j, i, j = 1, . . . , n: Yij = 1 if there is an

edge, 0 if not. The edges in the network are assumed to be independent.

The SBM defines the stochastically equivalent likelihood of a relational structure

solely based on the block membership of any pair of nodes in the network. Let K be

the number of blocks and define a vector of length K, denoted by zi, that indicates

a block membership of node i. If node i belongs to the k-th block, k = 1, . . . , K, the

k-th element of vector zi is 1 and ||zi|| = 1, i = 1, . . . , K. Let P be a symmetricK×K

matrix that represents a probability of forming an edge across blocks. The (r, s)-th

element of matrix P indicates the strength of connection between block r and block s,

r, s = 1, . . . , K. Suppose that node i belongs to the k-th block and node j belongs to

the k′-th block. The SBM specifies the probability of forming an edge between node i

and node j as P (Yij = 1) = Pk,k′ . Often, we parametrize the strength of connectivity

across blocks via logistic regression model. That is, we write ϕk,k′ as the logit of

probability Pk,k′ and write logit{P (Yij = 1|Φ)} = ϕk,k′ . In other words, similar with

the probability matrix P , we define a K × K matrix Φ = {ϕr,s : r, s = 1, . . . , K}

whose elements are the logit of probabilities in matrix P of forming an edge across

blocks. The (r, s)-th element of Φ, denoted by ϕr,s, indicates the logit of connectivity

between block r and s.
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Φ =



ϕ1,1 . . . ϕ1,s . . . ϕ1,K

... ... ...

ϕr,1 . . . ϕr,s . . . ϕr,K

... ... ...

ϕK,1 . . . ϕK,s . . . ϕK,K


(3.1)

By using the matrix Φ in (3.1) and vectors of block membership for node i and node

j, denoted by zi and zj, respectively, the SBM models the probability of forming and

edge between the two nodes as follows:

logit{P (Yij = 1|Φ)} = z
′

i Φ zj (3.2)

The model parameters Φ govern the edge probabilities in the network. More

specifically, the nodes in the same block are stochastically equivalent in that the

likelihood of any given pattern of ties with a certain node in one block is the same

as any other nodes in the same block. For example, any edge Yi′ ,j′ is identically

distributed with Yi,j if node i and node i
′ belong to the same block and node j and

node j
′ belong to the same block, respectively. The number of blocks K is often

pre-specified due to a priori block membership, but in general, it has to be estimated

along with model parameters Φ.

The assumption of stochastic equivalence among nodes in the same block allows

to directly interpret the parameters of SBM with respect to network structure. For

example, suppose Pr,s = p for all r, s = 1, . . . , K for some known p. Then the SBM

reduces to Erdős-Rényi random graph model with the probability of an edge in a

pair. When the blocks are assortative, the nodes are more likely to form an edge

within blocks and therefore the diagonal elements of matrices P and Φ are greater

than off-diagonal elements. Reversely, dis-assortative block structure implies that the

nodes in different blocks are likely to form a connection.
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3.2.2 Stochastic Blockmodel for Dynamic Networks

Consider a network Y t observed at time t ∈ [0, T ] for some T > 0 with nt nodes. An

edge between node i and node j in the network Y t, i, j = 1, . . . , nt, is denoted as the

(i, j)-th element of matrix Y t. There have been a variety of studies that propose to

analyze dynamic networks via SBM. Most of them focus on detecting change-points,

without directly modeling the temporal fluctuation in dynamic networks.

Xu and Hero III 2013; Xu and Hero 2014 propose a state-space model for dynamic

networks that extends the static SBM to directly model the temporal fluctuation.

Suppose that the block labels are pre-specified and the number of blocks K does not

change across time. Define a K × K matrix P t that represents the probability of

forming an edge across K blocks. Its (r, s)-th element, denoted by P t
r,s, indicates the

probability of connectivity between block r and block s, r, s = 1, . . . , K. Xu and

Hero III 2013 introduces a zero mean Gaussian noise matrix Zt with variance (σt
r,s)

2

that explains the variability in connectivity over time. As a result, the probability of

forming an edge across K groups at time t is modeled as P t + Zt. The probability

P t indicates the state of a dynamic system at time t and Zt is viewed as noise in

generating the sequence of observations.

A state-space model considers the state evolution within consecutive time points.

A simple approach for the state evolution is random walk. This model considers the

temporal fluctuation in connectivity over time, yet does not account for continuous,

smooth evolution.

3.2.3 Multilevel Stochastic Blockmodel for Dynamic

Networks

Assume there exist lt networks observed at time t ∈ [0, T ] for some T > 0. A

symmetric matrix Y t
l ∈ {0, 1}nt×nt denotes the l-th observed unweighted network at
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time t, l = 1, . . . , lt with nt nodes. Define the (i, j)-th element of matrix Y t
l , denoted

by Y t
l,ij, as the connectivity between node i and node j, i, j = 1, . . . , nt, in the l-th

network at time t; Y t
l,ij = 1 if there exists an edge, 0 otherwise. For simplicity, we set

the number of nodes is the same for all observed networks at time t (i.e. nt), but the

number of nodes does not have to be the same across lt networks.

Suppose Y t
l,ij ∼ Bernoulli(ptl,ij) where ptl,ij = P (Y t

l,ij = 1). We extend the idea

of stochastic blockmodels (SBM) to multilevel dynamic networks, preserving the as-

sumption that the probability of forming an edge between node i and node j – i.e.

ptl,ij for the l-th network at time t – solely depends on the block membership of node

i, and j. Assume that the a priori block membership is known and let K be the num-

ber of pre-specified blocks. Define a smooth function ϕr,s(t) that represents the log

odds of probability of forming an edge between block r and block s, r, s = 1, . . . , K

at time t. Higher value of ϕr,s(t) indicates the stronger connectivity between block

r and block s. Any pair of nodes – one from block r and the other from block s –

is modeled to have the same log odds of probability ϕr,s(t) of forming an edge. Note

that for symmetric networks ϕr,s(t) = ϕs,r(t). We then construct a K×K symmetric

matrix Φ(t) with ϕr,s(t) as its (r, s)-th element.

A priori block membership of node i at time t is represented by a vector of length

K, zti : if the i-th node at time t belongs to the k-th block, the k-th element of

the vector zti is 1. We fix the number of blocks K to stay the same across time as

our primary goal of the proposed model is to keep track of evolution of tightness in

engagement within and across blocks.

Furthermore, we introduce random effects at time t to illustrate the variability in

forming an edge block r and block s in lt networks. The random effects between block

r and block s at time t is denoted by Rr,s(t), and we assume Rr,s(t) ∼ N(0, σ2
r,sI),

r = 1, . . . , K, s = r + 1, . . . , K. The variance σ2
r,s penalizes the variation of the

random effects deviated from 0 in relational structure between block r and block s.
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Similar with the log odds, we construct a K ×K symmetric matrix R(t) for random

effects. For a pair of node i and node j, the random effects Rr,s(t) can be expressed

as a vector-matrix multiplication zti
′
R(t) ztj.

At time t, we model the probability of forming an edge between node i and j at

time t as

log
( ptl,ij
1− ptl,ij

)
= zti

′
{Φ(t) + R(t)} ztj (3.3)

The proposed model assumes that the connectivity between blocks remains the same

across lt bills at time t. That is, the expected log odds of forming an edge between

block s and r at time t is ϕr,s(t) across lt bills. The Φ(t) denotes the fixed effects

of block membership shared by all edges from lt networks with nt nodes at time t.

The fixed effects Φ(t) can be interpreted as the smooth, overall trend of forming an

edge between blocks over time. The random effects R(t) explain the deviation of

connectivity within and between blocks away from the overall trend.

3.3 Estimation

In Section 3.3.1, we describe the overall estimation procedure. We clarify the param-

eters in the model and form a logistic regression model with random effects. Section

3.3.2 introduces how we achieve the computational efficiency by converting the binary

response per network to binomial response across repeated networks.

3.3.1 Model Fitting

In practice, the networks are observed at discrete time points t = 1, 2, . . . , T . Define

Y t = {Y t
l : l = 1, . . . , lt} as a collection of networks observed at time t. Let Y =

{Y 1, . . . ,Y T} be a collection of networks observed at T different time points. For

a given number of blocks K, there exist K(K+1)
2

fixed and random effects. We now

consider a vector of length K(K+1)
2

for fixed effects upper(Φ(t)) = {ϕr,s(t) : r =
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1, . . . , K, s = r+1, . . . , K}; it is a collection of upper triangular elements of ϕ(t) and is

the parameter of our proposed model. Similarly, we define another vector of the same

length for random effects upper(R(t)) = {Rr,s(t) : r = 1, . . . , K, s = r + 1, . . . , K}.

Without any constraint, the coefficients ϕr,s(t), 0 ≤ t ≤ T , contain an infinite

number of parameters. We employ basis splines (b-splines) as a way to reduce the

dimensionality of estimation (De Boor et al. 1978; Eilers and Marx 1996). Specify a

vector of basis functions B(t) = (B1(t), . . . , Bq(t)), 0 ≤ t ≤ T , of length q. Define a
K(K+1)

2
×q matrix Φ of basis coefficients; each row represents the basis coefficients for

ϕr,s(t). We then approximate the upper(Φ(t)) by a linear combination of these func-

tions as upper(Φ(t)) = ΦB(t). The set of q basis functions represents the smoothness

of ϕr,s(t), and the coefficient matrix Φ determines the shape and trajectory of the

fluctuations through time.

Let Φt be a K ×K symmetric matrix of which (r, s)-th element ϕt
r,s is the ϕr,s(·)

evaluated at time t and let upper(Φt) denote a vector of length K(K+1)
2

with upper

triangular elements of Φt. Accordingly, let Bt = (Bt
1, . . . , B

t
q) be a length q vector

of basis functions evaluated at time t. Therefore, we write upper(Φt) = ΦBt at

time t. For each block connection between block r and block s, the random effects

Rr,s = {R1
r,s, . . . , R

T
r,s} follows a multivariate normal distribution.

In order to build design matrix for the logistic regression, we concatenate the edge

information of all pairs of nodes across T discrete time points. That is, let ytl,ij denote

a binary response of forming an edge between node i and node j in the l-th bill at

time t and build Ỹt by stacking all ytl,ij’s for all l = 1, . . . , lt, and i, j = 1, . . . , nt.

By stacking all Ỹt at time points t = 1, . . . , T , we create a response variable Ỹ.

Correspondingly, define the probability of forming an edge ptl,ij = P (Y t
l,ij = 1) for all

t = 1, . . . , T , l = 1, . . . , lt, and i, j = 1, . . . , nt and form p.

Define btij is a vector of length K(K+1)
2

that indicates the block membership of ytl,ij.

For example, when K = 1, the vector btij is a vector of length 3; btij = (1, 0, 0) if both
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node i and node j belong to block 1. btij = (0, 1, 0) if node i belongs to block 1 and

node j belongs to block 2. btij = (0, 0, 1) if both node i and node j belong to block

2. Accordingly, upper(Rt) is a vector of length K(K+1)
2

that represents the random

effects of each block at time t. We form a matrix R that consists of T columns that

indicates the K(K+1)
2

random effects at time t, t = 1, . . . T .

log
( ptl,ij
1− ptl,ij

)
= btij

′
ΦBt + btij

′
Rht = (Bt ⊗ btij)

′ vec(Φ) + btij
′
upper(Rt)

where vec(A) indicates a vectorized form of a matrix A. Let Qt be the total number

of pairs of edges across lt bills at time t and set Q =
∑T

t=1Qt. Let bt represents the

group membership of Qt pairs of edges at time t; it is a K(K+1)
2

× Qt matrix. The

design matrices for fixed effects (X) and random effects (Z) are Q× K(K+1)
2

matrices

defined as

X =


B1 ⊗ b1

...

BT ⊗ bT


′

, Z =


b1

...

bT


′

.

Define g as a component-wise link function g(p) = log p
1−p

. Thus, we write the

model in (3.3) as

g(p) = X vec(Φ) + Z vec(R).

We implement the penalized iteratively reweighted least squares (PIRLS) algo-

rithm, which combines the step of determining conditional modes and the idea of

IRLS for generalized linear regression. For the IRLS part where we update fixed

effects parameters Φ, the log likelihood of Φ given R is given as

ℓ(Φ|R) = Ỹ′
(Xvec(Φ) + Zvec(R))− 1′ log{1 + exp(Xvec(Φ) + Zvec(R))}
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where 1 is a vector of 1’s with length Q.

To obtain smooth estimates of the time-varying coefficients ϕt, we further consider

a roughness penalty on the coefficients of the basis functions (see Eilers and Marx

1996; Hastie and Tibshirani 1993; Hoover et al. 1998, for example). We use the

integrated squared second derivative, ΦT ΩΦ, with pre-specified Ω. As a result, we

update the log-likelihood of Φ given R with penalty as

ℓ∗(Φ|R) = Ỹ′
(Xvec(Φ)+Zvec(R))−1′ log{1+ exp(Xvec(Φ)+Zvec(R))}−λΦ

′
ΩΦ

where 1 is a vector of 1’s with length Q and λ is a tuning parameter. The generalized

cross validation (GCV) is used to choose the tuning parameter λ (Golub, Heath, and

Wahba 1979). Same as logistic regression model with random effects, we implement

an iteratively reweighted least squares (IRLS) algorithm for parameter estimation.

3.3.2 Computation

At time t, there exist lt networks with nt nodes. Each network contains nt (nt+1)
2

unique

edges, and therefore there are lt × nt (nt+1)
2

binary edges at each time t. Across T

time points, the response vector T is of length
∑T

t=1 lt×
nt (nt+1)

2
. The response vector

quickly gets long as either the number of nodes or the number of time points becomes

bigger. Given the assumption that the number of nodes nt stays the same across lt

networks at time t, we are able to convert binary response ytl,ij ∼ Bernoulli(ptl,ij),

l = 1, . . . , lt, into a binomial response by summing up edges across lt networks. In

other words, we can write
∑lt

l=1 y
t
l,ij ∼ Binomial(lt, p

t
ij). Note that the probability of

forming an edge remains the same across lt networks at time t. The probability ptij

can be expressed as in model (3.3). This conversion greatly reduces computational

complexity.
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3.4 Application

We now analyze the dynamic network that describes the co-voting patterns among

U.S. Senators from 1867 (Congress 40) to 2015 (Congress 113). This network was

first investigated in Moody and Mucha 2013 and has been subsequently analyzed in

Wilson, Stevens, and Woodall 2016 and Lee, Li, and Wilson 2017. The network is

based off of the roll call voting data from http://voteview.com, which contains the

voting decision of each Senator (“Yay” or “Nay”) for every bill brought to Congress.

Previous analyses in Moody and Mucha 2013; Wilson, Stevens, and Woodall 2016

have identified significant changes in the community structure of the network over

time, and that this community structure is closely associated with political affiliation

of the Senators. Therefore, a priori block membership in this application studies is

political affiliation of the Senators and we model the fluctuating pattern of connec-

tivity between and within political parties over time.

For the l-th bill in Congress t, we can create a network Y t
l ∈ {0, 1}nt×nt , l =

1, . . . , lt. The binary edge ytl,ij is formed if Senator i and Senator j vote concurrently

in the l-th bill in Congress t. The overall temporal trend of connectivity across

political parties is modeled as Φ(t) and we incorporate the random effects of time

across bills as R(t) in (3.3).

Figure 3.1: Estimated probability of forming an edge between political par-
ties from proposed model: Probability of forming an edge within Democrat (Red),
within Republican (Blue), and across political parties (Black) in Congress 40 -113.

Figure 3.1 above presents the estimated probability of forming an edge between

55



Senators depending on their political affiliation in Congress 40 - 113. The proba-

bility of connectivity across political parties are presented in different colors. The

connectivity within the same political party remains stronger than the across-party

connectivity. That is, Senators in the same political affiliation are more likely to

form an edge in the network. Between the 40th to the 70th Congress, the connec-

tivity within Democrat (red) and within Republican (blue) stays relatively flat, but

increases after Congress 95. Inversely, the estimated connectivity between Demo-

crat and Republican drops after Congress 95. This pattern indicates the polarization

between political parties.

Figure 3.2: Estimated probability of forming an edge between political par-
ties from cross-sectional SBM: Probability of forming an edge within Democrat
(Red), within Republican (Blue), and across political parties (Black) in Congress 40
-113. The solid line represents the cross-sectional SBM estimates and the dashed line
represents the cross-sectional SBM estimates after ad-hoc smoothing.

As a comparison, we fit the cross-sectional SBM and adapt an ad-hoc smoothing

procedure. In Figure 3.2, the solid lines are for estimated probability of forming

an edge from cross-sectional SBM and the dashed lines are after ad-hoc smoothing

procedure. The estimates from cross-sectional SBM are spiky, but are in general

congruous with those from our proposed model. The estimates with ad-hoc smoothing

are similar with the estimated probability from our proposed model, implying that

our proposed model consistently captures the overall, smooth trend across time.

56



3.5 Discussion

In this project, we propose a method for analyzing multilevel dynamic networks.

When there are repeated networks observed at one time point, our proposed method

combines the idea of stochastic blockmodel (SBM) and random effects model to an-

alyze the evolution of relational structure. Particularly, the proposed method is

valuable in that it considers the multiple networks as repeatedly observed networks

and models the variability across the multiple networks via random effects. Often,

aggregating a collection of relational patterns is implemented to define a single net-

work at one time point. This process potentially introduces a loss of information;

variabilities between multiple networks at one time point. The proposed method

incorporates the variabilities in a form of random effects and considers them as a

deviation from overall trend (i.e. fixed effects). We impose the smoothness on fixed

effects and interpret the fixed effects as a smooth evolution of relational structure

over time.

The parameter of our proposed model represents the smooth, overall trend of

topological evolution across pre-specified blocks in dynamic networks. The random

effects in the model explain the variability between repeated networks observed at the

same time points. Similar with other versions of SBM, our model parameters can be

estimated via fitting a logistic regression model. We propose a strategy to achieve the

computational efficiency for multilevel structure of dynamic networks. We applied

our proposed method to the US Congress co-voting networks to examine how the

connectivity between two political parties has evolved over time from the Congress 40

to the Congress 113. Consistent with other studies that have analyzed the networks,

our proposed model demonstrated the polarization between the two political parties

since Congress 95. In addition to the overall trend, our model facilitates to examine

the variability across bills across Congresses.

There are several directions we would like to pursue to investigate our proposed
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model. First of all, we set our proposed model to be with pre-specified block member-

ship and model how the strength of connectivity between blocks changes over time.

Because our primary goal is to investigate the evolving strength of connectivity across

blocks, a priori block membership is a reasonable assumption. In many cases, how-

ever, group labels of nodes are not known and estimating both the number of groups

and group membership of nodes are important tasks. In such scenario, it would

be important to carefully consider the identifiability of the model. Secondly, there

have been studies that consider the mixed membership in stochastic blockmodels. It

would be interesting to modify our model to incorporate the mixed membership in

our proposed model. Lastly, Sweet 2015 discussed the covariate effects in stochastic

blockmodels. Introducing the fluctuating contribution of covariates on forming an

edge would be interesting to develop our model in the future; this approach allows us

to further personalize the pattern of connection depending on each node’s attributes.

These directions remain as future work.
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Chapter 4

Curve Registration

4.1 Introduction

4.1.1 Motivation

In order for humans to walk or run, the ground must exert a force on the bottom

of the shoe, or foot, that results in acceleration of the human center of mass. This

force is called the ground reaction force (GRF). The resultant GRF vector is often

resolved into three orthogonal components: a vertical component and two horizontal

components often called anterior-posterior (fore-aft) and medial-lateral (side-to-side).

Various characteristics of the vertical component of walking and running GRF are

measured, because they are associated with common musculoskeletal impairments

and disease. For example, characteristics of the vertical GRF during walking and

running are associated with knee joint health, including knee osteoarthritis onset and

progression (Hyldahl et al. 2016; Seeley et al. 2017; Teng et al. 2017). Vertical GRF

is also measured in order to discern progression of a musculoskeletal disease, like knee

osteoarthritis, or the effectiveness of a clinical intervention designed to slow disease

progression (Pietrosimone et al. 2017).

Currently, the accurate measurement of walking and running GRF requires a
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subject to walk across a force platform that is either embedded in a laboratory floor

or moveable surface (e.g., a force-sensing treadmill). Commercial force platforms

and force-sensing treadmills are expensive; further, such instruments are restricted

to laboratory environments and require extensive human resources (i.e., expertise) to

manage. These challenges prohibit some researchers and most clinicians from making

accurate measures of walking and running GRF. Additionally, real-world (i.e., out of

the laboratory) measures of GRF are currently difficult or impossible to obtain.

These issues have motivated a development of mobile force sensors that can be

used to measure GRF outside of a traditional motional analysis laboratory. Novel

piezo-responsive foam sensors placed in athletic shoes have been recently developed

to accurately estimate walking 3D GRF outside of the laboratory (Rosquist et al.

2017). The electromechanical behavior of these sensors has been validated for use

in various large-strain applications (Bilodeau et al. 2015; Johnson et al. 2011). The

strain-induced voltage is measured by attaching a conductive material embedded in

the foam to a voltage sensing system, which correlates to the force of impact (Merrell

et al. 2013). By embedding the foam into a shoe sole, it has been shown that the

voltage response generated during gait accurately correlates to 3D GRF (Rosquist

et al. 2017).

There are several potential advantages of using in-shoe sensor as a surrogate of

GRF measurement. While the GRF is only recordable in controlled indoor laborato-

ries, in-shoe sensors can be simply incorporated into the sole of a pair of shoes and

deployed anywhere to analyze one’s gait in various settings. Furthermore, Seliktar,

Yekutiel, and Bar 1979 pointed out a chance of distortion in one’s gait pattern when

asked to walk on the force plates. Distortions that interfere with detecting a true gait

pattern are less likely to happen when using the in-shoe sensors placed on a regular

pair of shoes. Thus it is important to explore the properties of in-shoe sensor data to

understand if in-shoe recordings can be a viable alternative of GRF measurement.
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Figure 4.1 shows recorded values from both in-shoe sensors and gold-standard

GRF measurement obtained via a force-sensing treadmill, during the ground contact

phase of running (i.e., between heel strike and toe-off, called a “stance”) for five

consecutive stances in a healthy individual. Recording for both in-shoe sensor and

vertical GRF (VGRF) measurements are shown over time for each stance. In the

first four panels, the x-axis corresponds to the standardized time frame and the y-

axis corresponds to in-shoe sensor readings. The sensor is measuring a triboelectric

effect as the embedded nano fillers rub against the base polymer in the foam. This

effect may be amplified or concentrated by the voids in the foam which can function

as a short duration capacitor that stores voltage and then discharges it. Larger forces

produce larger displacements in the foam, which correspond to higher magnitude

electrical response; in turn, the responses create more negative values in the sensor

readings. The sensor has its lowest (most negative) values when reacting to the largest

forces.

Figure 4.1: In-shoe sensor and GRF data: In-shoe sensor recordings and vertical
GRF (VGRF) of a healthy subject’s 5 stances. Data from in-shoe sensors at four
locations are shown in the first four panels. The fifth panel shows the measurement
of vertical GRF. Each curve represents a stance.

The values observed from the sensors reflect the subject’s gait pattern. According

to Figure 4.1, for example, each stance in in-shoe sensor data contains a large dip, after

which the value increases and flattens until the completion of the stance. Recordings

within a sensor share a common structure that is misaligned across stances: the

exact timing of major features depends on stance. Furthermore, the magnitude of

the common feature differs between stances. These observations relate to phase and
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amplitude variability, respectively; phase variability relates to shifts in time, while

amplitude variability relates to the change in the magnitude of measurements.

The VGRF measurement shown in the fifth panel of Figure 1 is more stable than

in-shoe sensor recordings, and does not show significant time shifts across stances. In-

deed, it has been documented that healthy runners are very consistent in their stances

(Benedetti, Merlo, and Leardini 2013; Karamanidis, Arampatzis, and Brüggemann

2004). Thus, the phase variability in in-shoe sensor data across stances in Figure 4.1

is not expected, and the misalignment arises in the recording process rather than re-

flecting actual variability across stances. Removing phase variability from the in-shoe

sensor data is a necessary step if these measurements are going to be used as surrogate

measures of VGRF. Additionally, analyzing the sensor data without proper under-

standing of phase variability may lead us to draw misleading conclusions regarding

the amplitude variability of common stance features (Sadeghi et al. 2000). Our goal,

then, is to explore the elimination of phase variability of in-shoe sensor data without

altering the values taken by the curves, so that differences in amplitude variability

can be evaluated as alternative measures of the VGRF in studies of walking pattern

and gait.

Temporal realignment of curves is referred to as curve registration in the func-

tional data analysis literature. Specifically, curve registration shifts, stretches, and

compresses the observations in time so that major features are aligned across curves.

In this process, clock (originally observed) time is converted into the system (common

across curves) time via time warping functions. Let t∗ and t denote clock and system

time, respectively. A warping function h : [0, 1] → [0, 1] represents the functional

relationship between clock time and system time through t∗ = h(t). The warp-

ing functions are monotone increasing with h(0) = 0 and h(1) = 1. The principal

challenge in registration, then, is the estimation of warping functions. Curve regis-

tration is often necessary before applying additional statistical methods to smooth
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curves, and warping functions themselves can contain useful information about ob-

served curves. In this manuscript, we use curve registration to understand phase and

amplitude variability arising in in-shoe sensor data.

We investigate the variability present in in-shoe sensor data recorded for three

representative healthy subjects, with more than 300 stances per subject. We em-

phasize the importance of understanding the source of variability and the utility of

adequately addressing phase variability. Based on the hypothesis that time shifts

across sensors within the same stance may be similar, we examine the correlation of

warping functions using a permutation test. We further examine amplitude variabil-

ity of in-shoe sensor recordings after registration, particularly with relation to GRF,

by employing function-on-function regression models. All analyses are conducted

separately for each subject due to unique running patterns.

4.1.2 Literature Review

In studies of gait, curve registration is valuable but underutilized in reducing intra-

subject variability. In studies of joint mechanical power data, Sadeghi et al. 2000, 2003

emphasized the importance of curve registration as a preprocessing step. Both studies

obtained joint mechanical power data for the right lower limb of healthy subjects using

a 3D video-based system. Sadeghi et al. 2000 applied a straightforward registration

method to align salient features of the observed curves before comparing key power

bursts; Sadeghi et al. 2003 implemented more flexible registration method. These

studies found that realigning the observed curves reduces the temporal variability

induced by external sources and instrumental issue and facilitates the focus on sources

of variability that reflect meaningful biomechanical features. More recently, curve

registration was used in gait studies on healthy subjects (Crane et al. 2010; Helwig

et al. 2011) and for comparing healthy individuals to stroke patients (Thies et al.

2009).
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In functional data analysis, curve registration was introduced to identify a shared

structural pattern in a sample of curves and to understand individual realizations of

the shared pattern (Kneip et al. 2000; Kneip and Gasser 1992; Ramsay and Li 1998).

There have been a variety of approaches to and applications of curve registration.

For an in-depth history of curve registration, see Marron et al. 2014; Marron et al.

2015.

A simple approach to curve registration, referred to as landmark registration,

locates important features of the observed curves by hand or using an automated

process and realigns them using piecewise linear warping functions (Gasser and Kneip

1995; Kneip and Gasser 1992); landmark registration was implemented in Sadeghi et

al. 2000. Although landmark registration is simple and straightforward to implement,

it can be difficult and time consuming to determine landmark locations, and the

performance of this approach may be poor in the area away from the landmarks.

More flexible methods for curve registration have been introduced. In principle,

they estimate nonlinear, monotone warping functions that map the system (warped)

time into observed clock time. Silverman 1995 proposes a method that does not re-

quire landmarks by considering uniform shifts in time to realign the observed curves.

Ramsay 1998 and Ramsay and Li 1998 propose an iterative algorithm with two steps:

first, estimate the cross-sectional mean of the registered curves using current warping

function estimates, and second, update warping function estimates to minimize dis-

tance to the shared mean. This approach was used by Sadeghi et al. 2003. Building

on this framework, functional principal component analysis (FPCA) has been widely

used to model the common structure shared by registered curves (Earls and Hooker

2015a,b; Kneip and Ramsay 2008).

Srivastava et al. 2011a suggests a metric-based framework for registering elastic

curves. The method, like other iterative algorithms for curve registration, alternates

between two steps until convergence. In this approach, the Fisher-Rao Riemannian
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metric and square-root velocity function (SRVF) are used to quantify the distance

between two curves. The Fisher-Rao metric is a widely used tool to compare the shape

of curves (Peter and Rangarajan 2006) and the SRVF maps the Fisher-Rao metric to

Euclidean space (Srivastava et al. 2011b), which enables the comparison of distances

in L2 space. In particular, Peter and Rangarajan 2006 represents landmark shapes

as mixtures of Gaussians and use the parametric Fisher Rao metric to compare these

density representations. On the other hand, Srivastava et al. 2011b use the extension

of the nonparametric Fisher Rao metric directly on the space of functions and use its

parameterization invariance to separate phase and amplitude variability. The SRVF

then maps this metric to L2, which greatly simplifies computation in this case. In

terms of shape analysis, i.e., analyzing shapes of Euclidean curves with dimension

higher than 1, the SRVF maps a specific case of an elastic metric to L2. This method

is extended to generative models in Tucker, Wu, and Srivastava 2013 and the analysis

of shape of elastic curves in Euclidean space in Srivastava et al. 2011b; it has also

been applied to proteomics data and spike train data (Tucker, Wu, and Srivastava

2014; Wu and Srivastava 2014).

The remainder of this paper is organized as follows. Section 4.2 introduces the

gait data and describes the questions of interest. Section 4.3 illustrates the use of

curve registration, constructs a permutation test framework for evaluating correlation

within stance across sensors, describes a metric that quantifies the amplitude variabil-

ity before and after curve registration, and introduces functional regression methods

to model the association between in-shoe sensor recordings and VGRF curves. We

present the results of curve registration, permutation testing, quantification of am-

plitude variability, and regression model fitting in Section 4.4. We conclude with a

discussion of our findings and open areas for future research in Section 4.5.
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4.2 Data

Data were collected in a biomechanics laboratory at Brigham Young University. Sub-

jects were instrumented with a Cosmed K4b2 portable metabolic analyzer (Cosmed

K4b2, Cosmed, Rome, Italy) and standardized athletic shoes instrumented with the

nanocomposite piezo-responsive foam (NCPF) sensors, accompanying electrical com-

ponents, and an accelerometer attached to the dorsal aspect of the shoe. Next, to be

able to account for any NCPF sensor drift, subjects completed a 15-minute warm-up

run at 2.68 m/s. After this warm-up, subjects completed five different trials in a

randomized order. Each trial consisted of four minutes of walking or running, at one

of the following speeds: 1.34, 2.23, 2.68, 3.13, or 3.58 m/s. A 1-min walk (1.34 m/s)

was completed before and after every trial, to be able to characterize for any drift

in the NCPF sensors. Voltages, recorded via the NCPF sensors and microcontroller

(1000 Hz), energy expenditure, recorded via the Cosmed (breath by breath), and

accelerations, measured via the shoe accelerometer (16 Hz), were measured through-

out the entire collection period (the warm-up period and all five trials), which lasted

approximately 50 minutes.

The data set analyzed here consists of measurements obtained from three healthy

female subjects who wear size 8 shoes. The mass and height of the subjects are (52,

60, 60) kg and (161, 165, 169) cm, respectively. Each subject was required to 1) be

between the ages of 18 and 30; 2) have no history of lower-extremity injury within

the past 6 months; 3) have no history of lower-extremity surgery in their lifetime; 4)

be able to walk and run without pain; and 5) be able to comfortably run consistently

for at least 5 continuous km. Each subject ran at 6mph (2.68 m/s) for 4 minutes

and completed 362, 321, and 308 stances, respectively. Consistent with much of the

scientific literature in this area, we define “stance” as a period from heel-strike (point

at which vertical GRF rises above 50 N) to toe-off (point at which VGRF drops below

50 N). From each stance, information such as VGRF and in-shoe sensor measurements
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Figure 4.2: In-shoe sensor: (Left) NCPF sensor with wires embedded to measure
the voltage response during impacts. (Right) Shoe equipped with NCPF foam sensors,
microcontroller, and battery. The sensors were embedded under the insole at the heel,
arch, ball, and toe.

at four locations (heel, arch, ball, and toe) has been collected. Completing a stance

takes different amount of time; once a stance is extracted, the curves are interpolated

to a common domain with 200 discrete time points. The time frame is then scaled

to the unit interval [0, 1].

The resulting data are shown in Figure 4.3. For each in-shoe sensor and subject,

a common feature exists across stances but is misaligned in time. In addition to

the observed phase variability, there is amplitude variability across individuals and

stances. The distinctive patterns in the in-shoe sensor and VGRF data across subjects

are due to different running styles. We classify the subject in purple as a mid-foot

striker; this runner is more likely to land near the middle of the foot, rather than

the heel, leading to low amplitude variability in the heel sensor and high amplitude

variability in the arch and ball sensors. This running pattern also results in the

absence of an impact transient, or initial local maximum, in the VGRF. In contrast,

the remaining subjects are heel strikers who show greater amplitude variability in the

heel sensor, lower amplitude variability in the arch, ball, and toe sensors, and have,
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to differing degrees, the impact transient in the VGRF.

These distinctive running patterns may have long term implications for biome-

chanics and the health of joints involved in running (Rice, Jamison, and Davis 2016).

The initial peak or impact transient is an important element of GRF data, as is the

slope, or load rate, of the impact transient. A steeper impact transient load rate is

thought to be correlated with certain musculoskeletal injury (Daoud et al. 2012), and

the absence of this peak for the subject in purple might suggest that she is at lower

risk for certain types of injuries (Rice, Jamison, and Davis 2016).

Figure 4.3: Original measurements: Observed data for three runners are shown
in rows; data from in-shoe sensors at various locations are shown in the first four
columns and the direct measure of VGRF is shown in the fifth column. Curves are
color-coded per subject and each curve represents a stance.

As noted in Section 4.1.1, time shifts in in-shoe sensor data are not expected

for healthy subjects. The stance-level force measurements are expected to be rela-

tively consistent, and shifts away from a common structure shared by every curve

are an issue of measurement rather than true phase variability; this is emphasized

by the consistency of concurrently-measured VGRFs during data collection. There
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are several possible reasons for the presence of phase variability in in-shoe sensor

data, including the need for a warming-up duration before sensors output consistent

voltages corresponding to consistent impacts and the possibility of misalignment in

the sensor recording mechanisms (e.g. inconsistent identification of heel strike). It

is also unclear whether the phase variation is similar across sensors within the same

stance; that is, whether recordings made by the difference sensors on the same stance

are time-shifted in a similar way. For a new and developing technology such as

NCPF sensors, preprocessing the observed data is valuable for understanding how

the technology can be used and improved.

4.3 Methods

Unlike classic statistical methods, where one observation consists of a single scalar

value, functional data analysis considers the basic unit of observation to be a smooth

curve. The gait data illustrated in Figure 4.3 are an example of functional data,

since stances recorded by each sensor within each subject are the observations of

interest. We introduce notation to denote curves for each subject and conduct curve

registration to each sensor and subject separately. Let ysi (t
∗), t∗ ∈ [0, 1], denote

the observed curve for the i-th stance for sensor s, where i = 1, 2, . . . , I, and s =

1 (Heel), 2 (Arch), 3 (Ball), 4 (Toe). Here, the clock time t∗ is curve specific; the goal

of curve registration is to estimate warping functions t∗ = hs
i (t) that map the shared

system time t to curve-specific clock time t∗.

4.3.1 Curve Registration

We implement the curve registration proposed by Srivastava et al. 2011a. Like other

approaches, this method is based on an iterative algorithm that alternates two steps

until convergence. In the first step, the mean of registered curves using current
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warping functions is estimated; this mean is referred to as a template. In the second

step, the warping functions are updated to minimize the distance between the curves

and the current template using the square-root velocity function (SRVF) to calculate

the distance between two curves. The SRVF represents the Fisher-Rao Riemannian

metric, which is a widely used tool to compare the shape of curves, in L2 and alleviates

the computational complexity of the algorithm.

More concretely, for an absolutely continuous function ysi (t
∗), t ∈ [0, 1] with its

derivative ys
′

i (t
∗), define the SRVF qsi : [0, 1] → R as

qsi (t
∗) = sign(ys′i (t∗))

√
|ys′i (t∗)|.

In the first iteration, the template µ(t∗) is taken to be the observed qsi (t
∗) that is clos-

est to the sample mean 1
I

∑I
j=1 q

s
j (t

∗). Let qsi,h(t∗) = q(h−1(t∗))
√
(h−1)′(t∗) denote the

SRVF of registered curve ysi (h−1(t∗)) with warping function t∗ = h(t). For any curves

ysl (t
∗) and ysm(t

∗), i, i′ ∈ {1, 2, · · · , I} and warping function h(t), the distance between

SRVFs of registered curves is the same as that between SRVFs of unregistered curves.

That is, ||qsi,h(t∗) − qs
i′ ,h

(t∗)|| = ||qsi (t∗) − qs
i′
(t∗)||. Then, in the second step of the

iterative algorithm, for each observed curve ysi (t
∗), warping function estimate is up-

dated as argminh||µ(t∗)− qsi,h(t
∗)||. That is, the warping function estimate minimizes

the distance of SRVF between the template and registered curves. In subsequent

iterations, the template is updated as a mean of SRVFs qsi,hi
with current warping

function estimates. The algorithm iterates the two steps of calibrating the template

µ(t∗) and updating the warping functions until convergence.

4.3.2 Sources of Variability

We conduct exploratory analyses on registered curves to evaluate the utility of curve

registration. Following Tucker, Wu, and Srivastava 2013 and Kneip and Ramsay 2008,
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we define the amplitude variability of observed curves {ysi (t∗), i = 1, 2, . . . , I, t∗ ∈

[0, 1]} for sensor s as

Vs =
1

I − 1

∫ 1

0

I∑
i=1

(
ysi (t

∗)− 1

I

I∑
j=1

ysj (t
∗)
)2

dt∗.

Similarly, we define the amplitude variability after curve registration with time trans-

formation t∗ = hs
i (t) and denote the resulting quantity as Vs

h. This definition quan-

tifies the amplitude variability as the mean integrated sum of squared differences

between curves in a sample and their mean. We expect that the amplitude variabil-

ity before curve registration, V s, may contain variability attributable to misalignment

in time. Therefore, we compare the amplitude variability before and after curve reg-

istration to describe the utility of curve registration.

Additionally, we conduct functional principal component analysis (FPCA) to un-

derstand the patterns observed in amplitude variability after curve registration (Gold-

smith, Greven, and Crainiceanu 2013; Yao, Müller, and Wang 2005). FPCA allows a

parsimonious representation of registered curves by decomposing the observed func-

tions into a mean, scores, and shared functional principal components:

ysi (t) = µs(t) +
K∑
k=1

csikϕ
s
k(t) + ϵsi (t) (4.1)

The representation in (4.1) is based on the Karhunne-Loève representation of

the ysi (t) in which µ(t) is the population mean, the ϕs
k are population level basis

functions obtained through an eigendecomposition of the covariance Cov(ysi (t), ysi (t′))

with corresponding eigenvalues λs
k such that λs

1 ≥ λs
2 ≥ . . ., the subject-specific scores

csik ∼ (0, λs
k) are uncorrelated random variables, and the ϵsi (t) are white noise errors.
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4.3.3 Phase Variability Across Sensors

We are interested in exploring the similarity of phase shifts across sensors within

stances. Similarity in time shifts across sensors within stance may reasonably be

expected given the biomechanical process underlying these data; dissimilarity would

suggest that phase shifts are not consistent across sensors in the same stance.
To assess similarity, we use a permutation test based on a functional analog of

Pearson’s correlation that considers the relationship between two warping functions
after subtracting the identity function (i.e. h(t) = t). Namely, we define the cor-
relation between two warping functions from sensor s and s′ within the i-th stance
as

Corri =
∫ 1

0
{hs

i (t)− t}{hs′

i (t)− t} dt−
∫ 1

0
{hs

i (t)− t} dt
∫ 1

0
{hs′

i (t)− t} dt√[∫ 1

0
{hs

i (t)− t}2 dt− [
∫ 1

0
{hs

i (t)− t} dt]2
][∫ 1

0
{hs′

i (t)− t}2 dt− [
∫ 1

0
{hs′

i (t)− t} dt]2
] .

Terms in the numerator and denominator are based on the expectations and

variances that appear in the usual definition of Pearson’s correlation. Let ĥs
i (t) denote

the estimated warping function of the i-th stance for sensor s, where i = 1, 2, . . . I

and s = 1, 2, 3, 4. The test statistic used to evaluate the similarity across sensors

is the mean of correlations within stance Corri; that is, we compute the correlation

between two sensors within each stance, and then average across stances.

To determine statistical significance, we randomly permute the stance label of sec-

ond sensor, recompute within-stance correlations, and average across stances. The

test statistic for k-th permuted sample, denoted as Tk, is defined as a mean of corre-

lation in the permuted sample. We repeat the permutation process K times to obtain

a null distribution for our test statistic. The p-value for permutation test is defined

to be

p-value = 2×
∑K

k=1 I{T < Tk}
K

.
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4.3.4 Association between In-Shoe Sensors and GRF

We are interested in the relationship between VGRF curves and the aligned in-shoe

sensor recordings because any meaningful relationship between VGRF curves and

in-shoe sensor recordings may support the utilization of inexpensive in-shoe sensor

measurement as a surrogate for GRF measurement.

To understand possible associations, we apply function-on-function regression

models using VGRF as an outcome and in-shoe sensor recording as a predictor. Let

GRFi(t) be the measure of VGRF from the i-th stance and let ysi (u), u ∈ [0, 1] denote

the registered curve of the i-th stance for sensor s. We fit a model with VGRF as a

response and the sensor s recordings as a predictor:

GRFi(t) = β0(t) +

∫ 1

0

ysi (u) β(u, t) du+ εi(t). (4.2)

We fit separate models for each subject sensor predictor using the tensor-product

spline approach described in Scheipl, Staicu, and Greven 2015 and implemented in

the pffr function in the refund package in R (Goldsmith et al. 2016). The bivariate

coefficient surface β(u, t) is smooth over both u and t and relates the predictor mea-

sured over u to the response measured t, respectively. In this model, fitted values at

time t are obtained fixing t and viewing β(u, t) as as a univariate coefficient function

over u, which is multiplied by the predictor and integrated over u. The bivariate

smoothness of β(u, t) allows the effect of predictor functions to vary over the domain

of the response.
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4.4 Results

4.4.1 Curve Registration

Curve registration is applied separately to each individual and each measurement.

Figure 4.4 shows curves after registration, and can be directly compared to Figure

4.3. Curve registration achieves a reduction in phase variability; curves are better

aligned and amplitude variability is more easily understood. For example, the spikes

in the early phase of the heel sensor for each subject were largely obscured before

registration. In the middle of Subject 1’s arch and Subject 2’s toe sensors, there is

some variability after registration.

Figure 4.4: Curve after registration: Registered curves for three runners are shown
in rows; curves from in-shoe sensors at various locations are shown in columns. Curves
are color-coded per subject and each curve represents a stance.

Inverse warping functions for such realignments of Subject 1 are presented in Fig-
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ure 4.5, with observed clock times on the x-axis and aligned system times on the

y-axis. Roughly speaking, inverse warping functions above the identity line shift an

early peak in the observed time and map it to a later system time, while inverse warp-

ing functions below the identity warping shift later peaks to an earlier system time.

In the arch sensor, the range of system time when clock time is 0.5 is wide compared

to other sensors, which is reasonable given the wide time shifts across stances in the

originally observed curves. Visual inspection of inverse warping functions suggests

that adjacent sensors, such as the heel and arch or the ball and toe, are similar for

this subject, which may imply some association in time shifts for these sensors. The

similarity in warping functions across sensors within a subject motivates the pairwise

comparison of warping functions across sensors presented in Section 4.4.3.

Figure 4.5: Warping functions: Each panel represents warping function estimates
of Subject 1 of four different in-shoe sensors. The clock time (x-axis) is the curve-
specific time before registration and system time (y-axis) is the registered time which
is common for every curve. Each curve represents a stance.

4.4.2 Sources of Variability

Table 4.1 presents the amplitude variability, defined in Section 4.3.2, before and after

curve registration. As expected, all sensors across subjects have smaller amplitude

variability after curve registration. Many sensors have large reductions in amplitude

variability, often by as much as 80 – 90 %; for example, the heel sensor of Subject 2

and the heel and arch sensors of Subject 3. The substantial reduction in amplitude
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variability indicates that the registration has a substantial effect in understanding

the sources of variability in sensor data.

Table 4.1: Comparison of variability: Amplitude variability (×105) before and
after registration.

Heel Arch Ball Toe
Before After Before After Before After Before After

Subject 1 38.50 20.70 183.84 49.39 519.77 78.77 48.43 9.01
Subject 2 196.76 28.76 24.44 5.09 45.62 9.22 51.95 19.80
Subject 3 340.98 39.93 30.94 3.48 57.22 4.83 9.09 2.65

After curve registration, we can better understand the patterns that underly am-

plitude variability. We conduct FPCA to identify the dominant direction of variation

in the registered curves. The first two FPCs for all subjects and sensors are plotted

in Figure 4.6. Between 24 and 50% of curve variability is explained by the first FPC

and the first two FPCs together explain between 39 and 69%. The FPCs for each

subject, even those coming from the same sensor, are very different; this supports

the uniqueness of running patterns from subject to subject. It is also noteworthy

that for only a few subjects, major patterns of variation coincide with the location

of major peaks, while in most cases the FPCs are relatively flat in the areas where

major features are observed. For example, the peak in the heel sensor does not show

up in either the first or second FPC, suggesting much of the variability in the sensor

is not related to the magnitude of the largest force but instead lies elsewhere in the

sensor recordings.

4.4.3 Phase Variability Across Sensors

Using the permutation test framework described in Section 4.3.3 with 1000 permuted

datasets, correlations between warping functions within stance across sensors are sig-

nificant for all subjects and all sensor pairs; the p-value for each pairwise comparison

is less than 0.001. These results indicate that the phase variability in-shoe sensors are
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Figure 4.6: Functional principal components: First two FPCs of registered curves
for three runners are shown in rows; the FPCs in four in-shoe sensors are shown in
columns.

more similar within a stance than across stances, perhaps suggesting that the process

underlying phase variation depends on the stance itself.

Table 4.2: Test statistic of pairwise comparison: For each subject, the upper
diagonal elements are the mean correlation within stance across sensors.

Subject 1 Subject 2 Subject 3
Arch Ball Toe Arch Ball Toe Arch Ball Toe

Heel 0.617 0.240 0.094 0.268 0.264 0.411 0.378 0.280 0.238
Arch 0.315 0.125 0.262 0.258 0.337 0.300
Ball 0.501 0.239 0.276

Test statistics for each pairwise comparison of all subjects are presented in Table

4.2. The magnitude of the correlation varies across sensors. and, in many cases, the

correlation is relatively small. Together with the finding of strong statistical signif-
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icance, the low observed correlations suggest that although some phase variability

in sensors is similar due to processes underlying the stance, a large proportion of

phase variability is dissimilar across sensors in the same stance. Stated differently,

although the warping functions obtained through the registration process are sim-

ilar for different sensors in the same stance, substantial dissimilarities in warping

functions remain.

Recall that Subject 1 is a mid-foot striker and the other subjects are heel strikers.

The pairwise correlation values in Table 4.2 suggest different correlation patterns

depending on the running style. In case of mid-foot striker, the heel sensor shows

the biggest correlation with arch (0.617) while the smallest correlation appears be-

tween heel and toe (0.094). More generally, adjacent sensors have greater strength of

correlation within stance. Heel strikers in contrast have roughly uniform correlation

across sensors; adjacency does not matter. It is possible that the mid-foot striker has

a smoother transition of forces in different parts of the foot within a stance compared

to the heel strikers, which may help explain why mid-foot strikers have been hypoth-

esized to have lower risks of certain musculoskeletal injuries. Analyses of additional

runners with varying gait patterns will help clarify this hypothesis.

4.4.4 Association between In-Shoe Sensors and GRF

In this section we use the VGRF curves as a response and fit function-on-function

regression model; we present results using the heel sensor as an example for the

approach and interpretation of the results. We mainly focused on the relationship

of heel sensor with VGRF curve; in many gait studies, the value of VGRF curve is

interpreted with its relation to heel movement.

Figure 4.7 shows estimated coefficient surfaces of the function-on-function regres-

sion model in (4.2) for 3 subjects. The coefficient surface is interpreted by integrating

the product of the predictor and surface at a time t for the GRF(t). For example,
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fixing t = 0.1, which is roughly the location of the initial peak, the coefficient β(u, t)

is the contrast between sensor values in the middle of the u domain and values at the

ends of the domain. In particular, for all three subjects, stances with high starting

values may have higher initial peaks in the VGRF.

The estimated coefficients are distinctively different across subjects, implying the

unique relationship between in-shoe sensors and VGRF curves for each subject. Heel

strikers, Subjects 2 and 3, seem to have relatively similar estimated coefficients com-

pared to Subject 1, the mid-foot striker. This finding further suggests to include

more subjects in this study, both heel strikers and mid-foot strikers, and examine

the relationship between heel sensor data and VGRF curve depending on their gait

pattern.

(a) Subject 1 (a) Subject 2 (a) Subject 3

Figure 4.7: Function-on-function regression coefficient estimates: Heat map
of function-on-function regression coefficient estimates with heel sensor as a predictor.
VGRF is measured over t (y-axis) and heel sensor is measured over u (x-axis). Color
gradation represents the magnitude of coefficient estimates.

The fitted values from this regression, presented in the top row of Figure 4.8, are

fairly similar to the observed VGRF measurements (shown in the second row and

fifth column in Figure 4.3); the function-on-function regression model captures the

major features of observed curves, including the overall shape and impact transient.

This suggests that in-shoe sensor data may be indeed useful for predicting important

features or even the whole of VGRF curve. Residuals, shown in the top row of Figure
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4.8, indicate that variability in the VGRF is not wholly captured by the function-on-

function regression model, especially near the impact transient. Model performance

may be improved by including additional predictors, such as data from remaining

sensors, or using alternative modeling strategies.

(a) Subject 1 (a) Subject 2 (a) Subject 3

Figure 4.8: Model fitting of function-on-function regression: (Top) Fitted
values (Bottom) Residuals

4.5 Discussion

In this project, we explored in-shoe sensor data observed from three healthy subjects

obtained during an experiment evaluating gait. We examined both phase and ampli-

tude variability in the observed data and illustrated the importance of aligning the

observed curves via curve registration. Because the observed phase variability is not

expected in stances of healthy individuals, the processing of data using registration

methods is an important step in obtaining reliable data from in-shoe sensors; the
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results of registration also shed light on the properties of the in-shoe sensors and may

help to refine the development of this new technology.

In our analyses, we examined the utility of curve registration by comparing the

amplitude variability before and after curve registration, which identified a reduction

in amplitude variability after curve registration. We further investigated the simi-

larity in estimated warping functions to understand the sources of phase variability

across sensors within stances. Our permutation test results indicate that within each

stance, time shifts are related across sensors, but that much of the phase variability

across stances is dissimilar within the same sensor. This correlation may support the

development of a hierarchical approach to understand the shared and sensor-specific

phase variation within a stance.

We used function-on-function regression to begin to evaluate in-shoe sensor data

as surrogate of VGRF measurements. Our results provide some evidence for a rela-

tionship between key features of in-shoe sensor and VGRF curves. The results are

encouraging but it remains unclear, based on our limited case study, whether in-shoe

sensor data be used as a replacement for in-lab measurements, and the expansion of

this approach to include many subjects and stances is an important future direction.

Although we have focused on healthy subjects, it is also of interest to use in-shoe

data to diagnose pathologies. Both phase and amplitude variability can be an ev-

idence of pathological conditions such as movement disorders (Parkinson’s disease

and Huntington’s disease; Hausdorff et al. 1998), age effects (Owings and Grabiner

2004), and psychological disorders (major depressive disorder and bipolar disorder;

Hausdorff et al. 2004). Including individuals with pathological disorders and inves-

tigating their time shifts will emphasize the clinical importance of curve registration

and enhance the quality of gait analysis after preprocessing.

81



Chapter 5

Conclusion

In this dissertation, we emphasized the prevalence of temporal heterogeneity in tem-

porally observed data. Specifically, we focused on two types of temporal heterogene-

ity; one is the temporal evolution of relational structure in dynamic networks, and the

other is from unexpected time shifts among curves observed from a wearable device.

For both types of temporal heterogeneity, we pointed out that acknowledging the

presence of temporal heterogeneity is an important step of appropriately analyzing

the temporal data.

As for dynamic networks, we were interested in modeling the topological fluctua-

tion over time via varying-coefficient models. We proposed two models that directly

investigate the temporal heterogeneity in dynamic networks. The first method pro-

posed in Chapter 2 applies the idea of varying-coefficients model to exponential ran-

dom graph model (ERGM) for dynamic network analysis. The exponential random

graph model efficiently summarizes the formation of a network into a combination of

network statistics: either network-specific topological features (endogenous) or node-

/edge- specific attributes (exogenous). The proposed model, called varying-coefficient

exponential random graph model (VCERGM), directly parametrizes the smoothly

evolving contribution of these network statistics on the marginal likelihood of a net-
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work at each time point. Unlike other competing methods for analyzing temporal

networks using ERGMs, the VCERGM is capable of flexibly explaining temporally

heterogeneous relational structure. Its model parameter, a smooth function of time,

provides meaningful interpretation of temporal heterogeneity. Our simulation studies

showed the performance of VCERGM in terms of its efficient and robust estimation.

Furthermore, our application studies on both U.S. Congress co-voting networks and

resting-state fMRI networks suggested that our proposed method can be utilized to

analyze both temporally fluctuating and relatively stable networks over time.

Even though we mainly described the VCERGM with no lag in this disserta-

tion, the VCERGM can be extended to model the temporal dependencies among

consecutive networks. Similar with temporal ERGM, we can replace the marginal

network statistics into change statistics by considering the difference in topological

features in consecutive networks. Although we did not discuss it in this dissertation,

the VCERGM can be further explored with respect to its model selection procedure.

As multiple networks are observed through time, we can consider a cross-validation

approach to conduct model selection in VCERGM. In any type of ERGM models,

the endogenous network statistics are intrinsically correlated, and little studies have

done regarding variable selection. Its predictive performance for missing edges and

goodness-of-fit are also the important factors to be explored in the future.

For dynamic networks with multiple observations at one time point, we proposed

a method to incorporate the variability among repeated networks at the same time

point. The proposed method combines a stochastic blockmodel (SBM), which de-

termines the structure of forming a connection between two nodes solely depending

on their block membership, and the concept of random effects for repeatedly ob-

served networks. The multilevel SBM with a priori block membership presented in

Chapter 3 models how the strength of connectivity between blocks changes over time.

Fixed effects in the model are smooth functions of time and they are the parameters
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explaining the temporal heterogeneity in connectivity between blocks in dynamic net-

works. While the fixed effects explain overall trend of connectivity evolving over time,

random effects are accountable for illustrating the deviation of repeatedly observed

networks at one time point from the overall trend.

The multilevel SBM was applied to analyze the U.S. Congress co-voting net-

works. Both VCERGM and multilevel SBM analyzed these Congressional networks

and demonstrated the polarization between political parties in U.S. Congress co-

voting patterns over time. In order to apply the VCERGM, we aggregated multiple

bills in one Congress and formed a single network per Congress to summarize the

co-voting patterns in the Congress. However, multilevel SBM does not require this

preprocessing step and analyzes the bill-based networks by incorporating random ef-

fects to the model. Therefore, the multilevel SBM additionally provides information

regarding the variability in connectivity between and within political parties across

bills at each time point.

The multilevel SBM in this dissertation assumes that the node’s block membership

is pre-specified. Extending the proposed method to analyze dynamic networks with

unknown block membership remains a future work. It would require an extra step of

determining the number of blocks as well as estimating the block membership of each

node at each time point with carefully stated assumptions for model identifiability. If

some nodal attributes are known (e.g. political affiliation in U.S. Congress networks),

we may consider a hierarchical structure to calibrate the block membership using these

attributes. In this dissertation, we only considered random effects on time points. As

a future work, we may consider random effects on edges to explain the variability in

connectivity specific to each pair of nodes in a network.

One of the main research questions for dynamic network analysis is change-point

detection. The smooth parameter in both VCERGM and multilevel SBM can be

examined to detect change-points in temporally evolving networks. The parameter
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itself can be interpreted to understand the topological fluctuation in dynamic net-

works, but a formal test procedure to determine statistically significant change-points

would be additionally helpful to scrutinize the temporal heterogeneity. Meanwhile,

nodal or edge-specific attributes may greatly affect a relational structure in a net-

work. When analyzing the U.S. Congress networks, both VCERGM and multilevel

SBM considered political party of Senators to understand their polarization over time,

but extending this idea to incorporating more attributes (e.g. age, seniority) in both

VCERGM and multilevel SBM remains an important future task.

The other type of temporal heterogeneity arises when multiple curves that share

a common structure are presented with unexpected time shifts. Analyzing the ob-

served curves with respect to their common curvature may be inappropriate without

removing their time shifts. In Chapter 4, we examined the continuously observed

gait measurements using in-shoe sensors to emphasize the importance of removing

temporal heterogeneity between curves. We defined that a completion of a step (i.e.

from heel-strike to toe-off) forms a stance, and and multiple stances were collected

from a subject. We viewed these observations as functional data and applied func-

tional data analysis approaches to analyze the data. First, we detected unexpected

time shifts across stances and conducted curve registration to remove the temporal

variability among curves. After realigning the originally observed curves, we further

applied methods in functional data analysis to understand the pattern of amplitude

variability among curves. We also investigated the estimated phase variability from

curve registration to understand the intrinsic pattern of time shifts between different

sensors within a shoe. Our study was a small case study with only three subjects, but

the results provided promising insights, especially in terms of relating in-shoe sensor’s

measurements to ground reaction force, the current gold-standard gait measurement.

The results suggested further investigation of in-shoe sensor recordings to examine

their utility in gait studies.
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Wearable devices have become more accessible and more data are collected us-

ing these wearable devices. These wearable devices collect the measurements very

densely, and thus it is reasonable to view these observations as functional objects and

apply functional data analysis approaches to analyze them. However, as seen in gait

measurements using in-shoe sensors, these observations often involve instrumental

time shifts. Removing these time shifts via curve registration is an important prepro-

cessing step before appropriately analyzing the data. Many previous gait studies that

focused on analyzing a key feature of a stance (e.g. impact transient), instead of ex-

amining a whole sequence of the stance. Functional data analysis methods applied in

Chapter 4 investigated the whole curve of a stance and helped us to understand one’s

running pattern more thoroughly. In general, wearable device data can be treated as

functional data and examined by using functional data analysis methods.

In summary, this dissertation proposed varying-coefficient framework and func-

tional data analysis methods to recognize the temporal heterogeneity and analyze the

densely observed data over time. The proposed methods on dynamic network analysis

allow us to directly model the temporal heterogeneity in evolving relational pattern

using the varying-coefficient framework. A series of analysis on gait measurements

using functional data analysis approaches suggests the importance of implementing

proper preprocessing step of removing unexpected time shifts in functional data.

Carefully considering temporal fluctuation in repeatedly observed data over time not

only gives us meaningful interpretation but also allows us to properly analyze the

variability across observations.
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Appendix to Varying-Coefficient

Exponential Random Graph Model

A.1 Stochastic Equivalence under the Difference

Statistic Specification

Comparing the first-order TERGM with model (2.1), we see that the TERGM is

closely related to the ERGM in that it characterizes the conditional distribution of

Xt given Xt−1 using an ERGM representation. Perhaps not surprisingly, these two

models are much more closely related than this relationship.

Consider a simple univariate time series represented by the stochastic process

Z = {Z1, . . . , ZT} for Zt ∈ R. Without any other information about Z, a natural

non-parametric manner to investigate the rate of change in Z involves analyzing the

difference between sequential observations Zt−1 and Zt, namely analyzing ∆(Zt) =

Zt−Zt−1. The analysis of ∆(Zt) in univariate and multivariate time series is known as

differencing, and is a common first step in the analysis of time series data (Brockwell

and Davis 2013). In the context of the TERGM, differencing corresponds to the

analysis of difference statistics, where one specifies transition statistics of the form

g(xt, xt−1) = h(xt)− h(xt−1), t = 2, …, T, (A.1)
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where h : {0, 1}n×n → Rp is a topological summary of an input network with n

vertices. Statistics of the form in (A.1) can capture, for example, the differences in

the edge weight of the network from time t−1 to t, or the difference in the number of

triangles from one network to the next. Although incorporating difference statistics

in the TERGM is a natural first-step in the analysis of temporal networks, it turns

out that doing so is equivalent to modeling each network Xt ∈ X as an independent

realization from the same exponential family probability mass function. This is made

precise in the next proposition.

Proposition 1 Let X denote the family of unweighted dynamic graph sequences on

n vertices with T ≥ 1 discrete observations. Suppose that X = {X1, . . . , XT} ∈ X is

generated under the TERGM in (2.3), where for t = 2, . . . , T

Xt | X−
t ∼ P(Xt = xt | Xt−1 = xt−1;ϕ) =

exp{ϕT g(xt, xt−1)}∑
z∈{0,1}n×n

exp{ϕT g(z, xt−1)}
.

Suppose g(·, ·) ∈ Rp is a difference statistic of the form (A.1) where g(x, y) = h(x)−

h(y) for some h(·) ∈ Rp. Then for all t ≥ 2, Xt is independent of X−
t and can be

generated as an independent realization of an ERGM with the following probability

mass function

Xt | X−
t ∼ P(Xt = x | ϕ) = exp{ϕTh(x)}∑

z∈{0,1}n×n

exp{ϕTh(z)}

Proposition 1 reveals that under the difference statistic model specification, a

dynamic network under the TERGM reduces to an independent and identically dis-

tributed sequence of graphs under a corresponding ERGM. Hence under this family of

specifications, the TERGM does not capture temporal dependence in the underlying

dynamic network sequence. Although in practice one may utilize statistics that are
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not of the form (A.1), this relatively simple example motivates further investigation

between the relationship of the ERGM and the TERGM.

A.2 Iterative Reweighted Least Squares (IRLS)

The penalized logistic regression problem for fitting a VCERGM is to maximize the

following penalized log likelihood function:

x̃THTvec(Φ)− 1T log[1 + exp{HTvec(Φ)}]− λPΩ(Φ). (A.2)

The tuning parameter λ controls the amount of roughness. We implement the

iteratively reweighted least squares (IRLS) to fit the logistic regression with the

penalty term. Consider a link function g(µ) = log(µ/(1− µ)) and a convex func-

tion b(η) = log(1 + eη). The IRLS without penalty term updates Φ at the (u+ 1)th

iteration

vec(Φ(u+1)) = (HTW(u)H)−1HTW(u)
{

Hvec(Φ(u)) + (x̃ − µ(u)) · g′(µ(u))
}
, (A.3)

where µ(u) = b′(Hvec(Φ(u))) and W(u) is a diagonal matrix with

W(u)
(i,i) =

1

b′′(HT
(i)vec(Φ

(u)))

1

{g′(µ(u)
i )}2

, i = 1, 2, . . . , (p× q).

With the penalty term P(Φ), we only need to replace HTW(u)H by HTW(u)H+

λ (Ω ⊗ Ip) in (A.3). The generalized cross validation (GCV) is used to choose the

tuning parameter λ (Golub, Heath, and Wahba 1979). Namely, the λ is a minimizer

of G(λ), which is defined as

G(λ) =
1

N
||x̃ − H(HTH +NλΩ)−1HT x̃)||2

/{ 1

N
tr(I − H(HTH +NλΩ)−1HT )

}2

,
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where N is the number of rows in matrix H.

A.3 Additional Simulation Results

Tables below show the mean and standard deviation of IAE associated with fitting

ERGMs and VCERGMs to temporal networks of size 50 and 100 with 0, 1, 5, and

10 randomly missing networks. The results are from the settings (i) sinusoidal curves

with (a, b, c, d) = (1, 30, 5, 1) (edges) and (a, b, c, d) = (0.6, 20, 3, 0.4) (reciprocity);

(ii) quadratic curves with (a, b) = (1/202, 0) (edges) and (a, b) = (−1/252, 0.5) (reci-

procity); (iii) Erdős-Rényi with pedges = 0.85; (iv) a sequence of random numbers

from N(0, 1) (edges) and N(1.5, 0.5) (reciprocity).

Table A.1: Simulation results with 50 nodes and (0, 1, 5, 10) missing
networks: Mean and standard deviation of the integrated absolute errors (IAE) for
each method.

Missing Edges Reciprocity
ERGM ERGM2 VCERGM ERGM ERGM2 VCERGM

Sinusoidal 0 7.84 (2.05) 4.24 (2.89) 4.06 (2.8) 8.53 (0.99) 4.62 (1.23) 4.35 (1.05)
1 4.82 (2.89) 4.45 (2.82) 5.05 (1.23) 4.89 (1.06)
5 5.58 (2.85) 4.94 (2.8) 5.65 (1.2) 5.46 (1)
10 5.19 (2.77) 4.43 (2.63) 5.42 (1.46) 5.32 (1.1)

Quadratic 0 3.8 (0.62) 1.84 (0.96) 1.89 (0.91) 5.06 (0.57) 1.76 (0.63) 2.06 (0.46)
1 1.91 (0.93) 1.93 (0.89) 1.82 (0.64) 2.08 (0.49)
5 2.12 (0.87) 2.05 (0.83) 2.04 (0.69) 2.19 (0.53)
10 2.2 (0.93) 2.12 (0.82) 2.09 (0.67) 2.31 (0.58)

Erdős-Rényi 0 8.4 (2.62) 4.28 (3.81) 4.21 (3.7) 8.62 (1.43) 3.17 (1.94) 3.14 (1.4)
1 4.22 (3.82) 4.22 (3.7) 3.15 (1.95) 3.16 (1.39)
5 4.34 (3.75) 4.3 (3.65) 3.2 (2.01) 3.24 (1.45)
10 4.29 (3.58) 4.31 (3.48) 3.43 (2.06) 3.38 (1.35)

Non-smooth 0 5.77 (1.34) 30.92 (0.28) 30.21 (0.28) 7.9 (1.95) 19.68 (0.74) 23.23 (1.01)
1 30.98 (0.3) 30.03 (0.29) 19.64 (0.76) 21.91 (0.84)
5 30.81 (0.25) 30.12 (0.38) 19.75 (0.79) 21.64 (0.74)
10 30.62 (0.26) 30.24 (0.39) 19.85 (0.79) 23.01 (0.89)
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Table A.2: Simulation results with 100 nodes and (0, 1, 5, 10) missing
networks: Mean and standard deviation of the integrated absolute errors (IAE) for
each method.

Missing Edges Reciprocity
ERGM ERGM2 VCERGM ERGM ERGM2 VCERGM

Sinusoidal 0 18.48 (20.76) 17.81 (21.23) 17.74 (21.3) 8.44 (5.11) 7.61 (5.71) 7.5 (5.75)
1 18.4 (20.95) 18.28 (21.04) 7.9 (5.5) 7.85 (5.51)
5 18.95 (20.55) 18.81 (20.65) 8.26 (5.34) 8.22 (5.38)

10 18.3 (20.78) 18.07 (20.97) 8.23 (5.45) 8.07 (5.51)
Quadratic 0 9.14 (12.84) 8.59 (13.16) 8.67 (13.12) 3.53 (1.95) 2.44 (2.53) 2.56 (2.33)

1 8.61 (13.09) 8.66 (13.06) 2.49 (2.52) 2.59 (2.33)
5 8.58 (12.96) 8.6 (12.95) 2.59 (2.42) 2.68 (2.27)
10 8.63 (12.97) 8.65 (12.95) 2.6 (2.42) 2.67 (2.26)

Erdős-Rényi 0 23.22 (27.46) 22.32 (28.11) 22.47 (28.01) 3.61 (0.96) 1.09 (0.53) 1.5 (0.4)
1 22.34 (28.11) 22.49 (28.02) 1.05 (0.54) 1.49 (0.39)
5 22.36 (28.08) 22.55 (27.97) 1.14 (0.52) 1.59 (0.38)
10 22.36 (28) 22.52 (27.87) 1.3 (0.65) 1.73 (0.49)

Non-smooth 0 10.95 (9.95) 32.92 (3.96) 30.6 (3.98) 16.63 (15.89) 26.48 (10.91) 26.32 (9.67)
1 33.05 (3.97) 30.52 (4.01) 26.39 (10.8) 25.66 (9.94)
5 32.72 (3.92) 31.16 (3.99) 26.75 (11.08) 25.73 (10.39)
10 32.69 (4.06) 31.53 (4.02) 26.76 (10.99) 27.15 (9.7)

A.4 Estimation for Networks with Time-Varying

Network Size

We randomly vary the network size over time, simulate the networks with time-

varying network size and (0, 1, 5, 10) randomly missing networks, and estimate the

parameters. The results are from the settings (i) sinusoidal curves with (a, b, c, d) =

(1, 30, 5, 1) (edges) and (a, b, c, d) = (0.6, 20, 3, 0.4) (reciprocity); (ii) quadratic curves

with (a, b) = (1/202, 0) (edges) and (a, b) = (−1/252, 0.5) (reciprocity); (iii) Erdős-

Rényi with pedges = 0.85; (iv) a sequence of random numbers from N(0, 1) (edges)

and N(1.5, 0.5)(reciprocity).

A.5 Estimation with Different Number of Basis

Functions

We vary the number of basis functions (5, 7, 10, 12, 15, 17, 20) and compare the per-

formance of VCERGM in estimating the smooth sinusoidal true ϕ(t) from temporal
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Table A.3: Simulation results with time-varying network size and (0, 1,
5, 10) missing networks: Mean and standard deviation of the integrated absolute
errors (IAE) for each method.

Missing Edges Reciprocity
ERGM ERGM2 VCERGM ERGM ERGM2 VCERGM

Sinusoidal 0 20.63 (12.37) 13.79 (13.14) 4.99 (1.28) 22.77 (12.32) 16.54 (13.57) 6.72 (1.37)
1 14.43 (13.16) 5.26 (1.37) 16.97 (13.43) 7.5 (1.33)
5 14.21 (13.21) 5.32 (1.47) 16.3 (13.32) 7.98 (1.41)
10 14.86 (14.6) 5.32 (1.18) 15.58 (12.83) 7.81 (1.52)

Quadratic 0 6.48 (0.66) 2.72 (1.11) 2.47 (0.74) 8.95 (1.02) 3.06 (1.27) 3.14 (0.86)
1 2.79 (1.07) 2.56 (0.69) 3.15 (1.35) 3.16 (0.87)
5 3.1 (1.1) 2.82 (0.68) 3.23 (1.24) 3.33 (0.93)
10 3.11 (1.1) 2.94 (0.78) 3.5 (1.49) 3.52 (1.02)

Erdős-Rényi 0 14.52 (1.67) 5.25 (2.43) 4.72 (1.39) 16.24 (1.84) 5.48 (2.57) 5.18 (1.52)
1 5.26 (2.51) 4.74 (1.42) 5.42 (2.47) 5.21 (1.54)
5 5.4 (2.44) 4.9 (1.49) 5.54 (2.47) 5.41 (1.59)
10 5.51 (2.65) 5.12 (1.6) 5.83 (2.59) 5.71 (1.61)

Non-smooth 0 11.36 (5.46) 31.84 (2.61) 31.84 (0.43) 14.65 (5.52) 21.08 (3.98) 24.61 (1.25)
1 31.81 (2.47) 31.57 (0.41) 21.01 (4.03) 23.35 (1.22)
5 31.92 (3.11) 31.74 (0.45) 21.29 (4.42) 22.96 (1.23)
10 31.87 (3.46) 32.29 (0.58) 21.76 (5.21) 23.82 (1.27)

networks with K = 50. There is no significant difference in estimation performance

when the number of basis functions is greater than 10.

Figure A.1: Parameter estimates with 30 nodes: Estimated parameters for
edges (top) and reciprocity (bottom). Black line is the true ϕ(t). The blue line
indicates the average of 100 estimated curves and the shaded band illustrates the
first and third quantiles.
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