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ABSTRACT

Flexible Regression Models for Estimating
Interactions between a Treatment and

Scalar/Functional Predictors

Hyung G. Park

In this dissertation, we develop regression models for estimating interactions between

a treatment variable and a set of baseline predictors in their effect on the outcome in a

randomized trial, without restriction to a linear relationship. The proposed semiparamet-

ric/nonparametic regression approaches for representing interactions generalize the notion

of an interaction between a categorical treatment variable and a set of predictors on the

outcome, from a linear model context.

In Chapter 2, we develop a model for determining a composite predictor from a set

of baseline predictors that can have a nonlinear interaction with the treatment indicator,

implying that the treatment efficacies can vary across values of such a predictor without a

linearity restriction. We introduce a parsimonious generalization of the single-index models

that targets the effect of the interaction between the treatment conditions and the vector of

predictors on the outcome. A common approach to interrogate such treatment-by-predictor

interaction is to fit a regression curve as a function of the predictors separately for each

treatment group. For parsimony and insight, we propose a single-index model with multiple-

links that estimates a single linear combination of the predictors (i.e., a single-index), with

treatment-specific nonparametrically-defined link functions. The approach emphasizes a

focus on the treatment-by-predictors interaction effects on the treatment outcome that

are relevant for making optimal treatment decisions. Asymptotic results for estimator are

obtained under possible model misspecification. A treatment decision rule based on the

derived single-index is defined, and it is compared to other methods for estimating optimal

treatment decision rules. An application to a clinical trial for the treatment of depression



is presented to illustrate the proposed approach for deriving treatment decision rules.

In Chapter 3, we allow the proposed single-index model with multiple-links to have an

unspecified main effect of the predictors on the outcome. This extension greatly increases

the utility of the proposed regression approach for estimating the treatment-by-predictors

interactions. By obviating the need to model the main effect, the proposed method extends

the modified covariate approach of [Tian et al., 2014] into a semiparametric regression

framework. Also, the approach extends [Tian et al., 2014] into general K treatment arms.

In Chapter 4, we introduce a regularization method to deal with the potential high

dimensionality of the predictor space and to simultaneously select relevant treatment effect

modifiers exhibiting possibly nonlinear associations with the outcome. We present a set of

extensive simulations to illustrate the performance of the treatment decision rules estimated

from the proposed method. An application to a clinical trial for the treatment of depression

is presented to illustrate the proposed approach for deriving treatment decision rules.

In Chapter 5, we develop a novel additive regression model for estimating interactions be-

tween a treatment and a potentially large number of functional/scalar predictor. If the main

effect of baseline predictors is misspecified or high-dimensional (or, infinite dimensional),

any standard nonparametric or semiparametric approach for estimating the treatment-by-

predictors interactions tends to be not satisfactory because it is prone to (possibly severe)

inconsistency and poor approximation to the true treatment-by-predictors interaction ef-

fect. To deal with this problem, we impose a constraint on the model space, giving the

orthogonality between the main and the interaction effects. This modeling method is par-

ticularly appealing in the functional regression context, since a functional predictor, due to

its infinite dimensional nature, must go through some sort of dimension reduction, which

essentially involves a main effect model misspecification. The main effect and the interac-

tion effect can be estimated separately due to the orthogonality between the two effects,

which side-steps the issue of misspecification of the main effect. The proposed approach

extends the modified covariate approach of [Tian et al., 2014] into an additive regression

model framework. We impose a concave penalty in estimation, and the method simulta-

neously selects functional/scalar treatment effect modifiers that exhibit possibly nonlinear

interaction effects with the treatment indicator. The dissertation concludes in Chapter 6.
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Chapter 1

Introduction

Precision medicine represents a powerful and effective general approach for disease treat-

ment and prevention that takes into account individual variability in genetic structure,

environment, and lifestyle for each person. Its growth is not only helped by technological

advances in detecting and measuring a wide range of biomedical information, such as brain

imaging (structure, function, connectivity), molecular, genomic, cellular, clinical, behav-

ioral, physiological, and environmental characteristics, but also helped by the increasing

pace of developing treatment options. The most daunting challenge for precision medicine

is discovery of the treatment implications of the available complex and large-scale biological

information.

To develop strategies for precision medicine, it is important to identify treatment and

predictor interactions ([Royston and Sauerbrei, 2008], [Tian et al., 2014]) particularly in

the setting of randomized clinical trials (RCT). There are many RCTs dedicated to dis-

covering the treatment implications based on individual patient’s characteristics. Just in

major depressive disorder (MDD), for example, recent large-scale studies include iSPOT-D:

International Study to Predict Optimized Treatment for Depression, PReDICT: Predictors

of Remission in Depression to Individual and Combined Treatments, and EMBARC: Estab-

lishing Moderators and Biosignatures of Antidepressant Response for clinical Care, among

others.

Recent breakthroughs in biotechnology allows a vast amount of data available for explor-

ing for potential interaction effect with the treatment and assisting in the optimal treatment
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decision for individual patients ([Tian et al., 2014]). For example, data from modern med-

ical experiments include more and more commonly not only traditional clinical measures,

but also increasingly complex information such as genetic information (e.g., [van’t Veer and

Bernards, 2008]) and brain structure or functions, measured from neuroimaging modalities

such as magnetic resonance imaging (MRI), functional MRI (fMRI), electroencephalogram

(EEG), among others. This motivates the need for developing an efficient and also flexible

statistical method for discovery of biomarkers from high-dimensional data, specifically de-

signed to estimate the interactions between a treatment and high-dimensional pretreatment

predictors.

In particular, development of individualized treatment decisions rules (ITRs) based on

patient characteristic data measured at baseline is an increasingly important topic in pre-

cision medicine. Much research has been done since the seminal papers of [Murphy, 2003]

and [Robins, 2004]. Regression-based methodologies are intended to optimize the ITRs

by estimating treatment-specific mean responses (e.g., [Qian and Murphy, 2011], [Zhang et

al., 2012], [Gunter et al., 2011], [Lu et al., 2011], among others), while seeking robustness

with respect to model misspecification. Extensions that allow functional data objects to be

incorporated as baseline predictors have also been developed (e.g., [McKeague and Qian,

2014], [Ciarleglio et al., 2015a]). Machine learning approaches for developing ITRs originate

from computer science literature, and can often be framed in the context of classification

problems ([Zhang et al., 2012], [Zhang et al., 2012]), for example, the outcome weighted

learning (OWL) (e.g., [Zhao et al., 2012], [Zhao et al., 2015], [Song et al., 2015]) based on

support vector machines, tree-based classification (e.g. [Laber and Zhao, 2015]), and the

[Kang et al., 2014] method based on adaptive boosting, among others. In these settings of

optimizing ITRs, a major challenge is in the discovery of biomarkers that exhibit interac-

tion effects with the treatment indicator when large amount of patient characteristics are

available.

Suppose we are given pre-treatment predictors X ∈ X , a treatment variable T that

takes a value in a finite, discrete treatment space, say, T = {1, · · · ,K}, and a real-valued

response variable Y . We assume that a larger Y is preferred, without loss of generality.

Let the distribution of (Y, T,X) be denoted by P. An ITR D : X → T is a deterministic
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decision rule that maps X into the treatment space T . For any fixed ITR D, let PD denote

the distribution of (Y, T,X) conditioning on T = D(X), i.e., the treatments are chosen

according to the rule D. Let ED denote the expectation with respect to PD. A natural

measure for the effectiveness of D is the expected outcome that would have resulted if D

had been used to choose treatment for the entire study population

V (D) = ED(Y ), (1.1)

which is often called the “value” associated with D ([Murphy, 2005], [Qian and Murphy,

2011]). A larger value of (1.1) is preferred. Therefore, an ITR that maximizes the function

D → V (D) over all D is called optimal. It can be easily verified that any D0(X) with

D0(X) ∈ arg max
t∈T

E(Y | X,T = t), X ∈ X (1.2)

is optimal ([Murphy, 2005], [McKeague and Qian, 2014]), where E denotes expectation

under P.

A first natural approach to estimate the optimal ITR is then to maximize an empirical

version of the mean response (1.1) (or its surrogate) over a class of ITRs, in a classifi-

cation context, for example, as in OWL ([Zhao et al., 2012]). Although the classification

approaches can be appealing in many settings, in this dissertation, we will focus on a regres-

sion approach that estimates the conditional expectations E(Y | X,T = t), t ∈ T in (1.2),

as the regression-based approaches are most frequently utilized in practice, and often come

with great interpretability. We will employ a two-step procedure (e.g., [Qian and Murphy,

2011]) that first estimates the conditional expectation E(Y | X,T ) using a regression model

and then from this estimated conditional expectation derives the estimated treatment.

In (1.2), if the conditional expectation is modeled correctly, then the two-step proce-

dure consistently estimates the optimal ITR. [Qian and Murphy, 2011] derived several finite

sample upper bounds on the difference between the mean response (1.1) to the optimal ITR

and the mean response to the estimated ITR. If the part of the model for the conditional

expectation involving the treatment-by-predictors interaction effect is correct, then the up-

per bounds imply that, although a surrogate two-step procedure is used, the estimated

ITR is consistent. The upper bound of [Qian and Murphy, 2011] is an improvement over

that of ([Murphy, 2005]), in the sense that the upper bound depends only on how well we
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approximate the interaction effect term, and not on the main effect term of the conditional

expectation. These upper bounds guarantee that if the T -by-X interaction effect is consis-

tently estimated (for example, estimated under the squared error loss), then the value (1.1)

of the estimated ITR will converge to the optimal value.

However, if the approximation space for the interaction effect does not provide an inter-

action effect term close to the true interaction effect term of the conditional expectation,

then the two-step procedure does not provide the best value of the considered ITRs in the

approximation space ([Qian and Murphy, 2011]). This is due to the “mismatch” ([Murphy,

2005]) between the loss functions (weighted 0-1 loss for directly maximizing the value and

the squared error loss for approximating the conditional expectation). In other words, if the

interaction effect model is misspecified, then the ITR obtained from the two-step procedure

may not be the best ITR within the class of ITRs defined by the model. [McKeague and

Qian, 2014] noted that this issue also arises when a smooth surrogate of the empirical value

function is maximized ([Zhao et al., 2012]).

The primary focus of this dissertation is on developing flexible regression approaches

to accurately approximate the interaction effect term of the conditional expectation. The

semiparametric/nonparametric regression approaches that we develop in this dissertation

for estimating the interaction effect term will reduce the concerns regarding the mismatch

between the two loss functions, that occur from the misspecification of the interaction effect

term in the model.

[Qian and Murphy, 2011] approximated the conditional expectation using L1 penalized

least squares with a rich linear model. However, the approach is generally not robust to

the main effect model misspecification, and is restricted to a parametric regression model.

The presence of main effect, which often have much bigger effect on the outcome than

the treatment interactions, makes the consistent estimation of the interaction effect very

difficult, if the main effect model is misspecified or is high-dimensional. [Tian et al., 2014]

proposed a novel approach to consistently estimate the covariates and treatment interactions

without the need for modeling main effects. Their method modified the covariates in a

simple way, and then fit a standard model using the modified covariates and no main effects.

However, the approach is limited to a linear regression framework. In realistic situations,
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the knowledge of the true functional forms for models of interactions is often lacking, and

a linear model is generally restrictive.

The main contribution of this dissertation is in generalizing the work of [Tian et al.,

2014] to a single-index model framework in Chapter 3, and to an additive model framework

in Chapter 5. These extensions provide robust and flexible regression approach to devel-

oping ITRs in many situations, particularly when we deal with a large number of baseline

predictors, that includes multiple functional predictors.

The thesis is organized as follows. In Chapter 2, we introduce a flexible model for

determining composite predictors that permit nonlinear association with the outcome. In

Chapter 3, we will consider a more general model where we assume an unspecified structure

for the main effect component. In Chapter 4, we use a L1 regularization to consider a large

model for the treatment effect modification. In Chapter 5, we develop a sparse additive

regression model for estimating interactions between a treatment and a large number of

functional/scalar predictors. The thesis concludes in Chapter 6.
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Chapter 2

A Single-index model with

multiple-links

2.1 Introduction

In precision medicine, a critical concern is to identify baseline measures that have distinct

relationships with the outcome from different treatments so that patient-specific treatment

decisions can be made ([Murphy, 2003], [Robins, 2004]). Such variables are called treatment

effect modifiers, and these can be useful in determining a treatment decision rule that will

select a treatment for a patient based on observations made at baseline. There is a growing

need to extract treatment effect modifiers from (usually noisy) baseline patient data that,

more and more commonly, consist of a large number of clinical and biological characteristics.

Typically, treatment effect modifiers (or, “moderators”) are identified either one by one,

using one model for each potential predictor, or from a large model which includes all

potential predictors and their (two-way) interactions with treatment, and then testing for

significance of the interaction terms, almost exclusively using linear models. In the linear

model context, [Petkova et al., 2016] proposed a model using a linear combination (i.e., an

index) of patients’ characteristics, termed a generated effect modifier (GEM) constructed

to optimize the interaction with a treatment indicator. Such a composite variable approach

is especially appealing for complex diseases such as psychiatric diseases, in which each

baseline characteristic may only have a small treatment modifying effect. In such settings,
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it is uncommon to find variables that are individually strong moderators of treatment effects.

Here we present novel flexible methods for determining composite variables that permit

non-linear association with the outcome. In particular, the proposed methods allow the

conditional expectation of the outcomes to have a flexible treatment-specific link function

with an index. We define the index to be a one-dimensional linear combination of the co-

variates. This approach is related to single-index models ([Brillinger, 1982], [Stoker, 1986],

[Powell et al., 1989], [Hardle et al., 1993], [Xia and Li, 1999], [Horowitz, 2009], [Antoniadis

et al., 2004]), as well as to single-index model generalizations such as projection pursuit

regression ([Friedman and Stuetzle, 1981]) and multiple-index models ([Xia, 2008], [Yuan,

2011]). We employ a single projection of the covariates (i.e., an index) to summarize the

variability of the baseline covariates, and multiple link functions to connect the derived

single-index to the treatment-specific mean responses; we call these single-index models

with multiple-links (SIMML) models. This single-index models with multiple-links pro-

vides a parsimonious generalization of the single-index model in modeling the effect of the

interaction between a categorical treatment variable and a vector-valued covariate. The

dependence of treatment-specific outcomes on a common single index improves the inter-

pretability, and helps determining ITRs. This approach extends the notion of a “treatment

effect modifier” from the linear model setting, to a single-index model framework, to define

a nonparametric generated effect modifier.

2.2 A Single-index model with multiple-links (SIMML)

Let X = (x1, . . . , xp)
> ∈ Rp denote the set of covariates. Let T denote the categorical

(treatment assignment) variable of interest, taking values in {1, . . . ,K} with probabilities

(π1, . . . πK) that sum to one. Let Y ∈ R denote an outcome variable, where a higher value

of Y is preferred. We focus on data arising from a randomized experiment, however, the

method can be extended to observational studies.

A conventional approach to study the effect of the interaction between X and the treat-

ment indicator T on an outcome is to fit a regression model separately for each of the K

treatment groups, as functions of X. For instance, a single-index model can be fitted sep-
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arately for each treatment group t, resulting in K indices, β>t X, t ∈ {1, . . . ,K}. We refer

to this as a K-index model; it has the form

E (Y | T = t,X = x) = gt(β
>
t x) (t = 1, . . . ,K), (2.1)

where both the treatment-specific nonparametric link functions gt(·), and the treatment-

specific index vectors βt ∈ Rp, need to be estimated for each group t. [Wu and Rolling,

2016] proposed this model for dimension reduction in optimizing ITRs. (The vectors βt

need to satisfy some identifiability condition ([Lin and Kulasekera, 2007]).) While this is

a reasonable approach, the K indices of model (2.1) lack useful interpretation as effect

modifiers and often lead to over-parametrization.

The SIMML constrains the βt in (2.1) to be equal, and it requires separate nonpara-

metrically defiend curves for each treatment t as a function of a single index α>X common

for all t:

E (Y | T = t,X = x) = gt(α
>x) (t = 1, . . . ,K), (2.2)

where both the links gt and the vector α need to be estimated. Due to the nonparametric

nature of gt, the scale of α is not identifiable in (2.2) and to address this we restrict α to

be in Θ = {α = (α1, . . . , αp)
>|
∑p

j=1 α
2
j = 1, αp > 0}, i.e., to be in the upper hemisphere of

the unit sphere.

If the true model for the treatment-specific outcome Yt is not a SIMML, then the SIMML

can be regarded as the L2 projection of the treatment specific mean outcome mt(X) = E(Yt |

X) on the single index u = α>X,

gt(u) = E(mt(X) | α>X = u) (t = 1, . . . ,K), (2.3)

for each given α. Specifically, suppose the true treatment-specific model can be expressed

as

Yt = mt(X) + σt(X)ε (t = 1, . . . ,K), (2.4)

in which E(ε | X) = 0, E(ε2 | X) = 1. Let R(α) =
∑K

t=1 πtE
(
Yt − gt(α>X)

)2
, where gt is

defined in (2.3) and let

α0 := arg min
α∈Θ

R(α). (2.5)
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Then α0 can be shown to be the minimizer of the cross-entropy (e.g., [Mackay, 2003])

between the SIMML (2.2) and the general model (2.4) under the Gaussian noise assumption.

Here, the cross-entropy of an arbitrary distribution with the probability density (or, mass)

f , with respect to another reference distribution P is defined as EP (− log f), where the

expectation is take with respect to the distribution P. Model (2.3) evaluated at α0 can

be viewed as the “projection” (in the sense of the closest point) of the true distribution P

(2.4) onto the space Θ of the SIMML distribution, using the Kullback-Leibler divergence

as a distance measure.

The SIMML (2.2) allows a visualization useful for characterizing differential treatment

effects, varying with the single index α>X. As X ∈ Rp varies, the mean response of model

(2.2) changes only in the specific direction α ∈ Θ, and the effect of varying X, described by

the link functions gt, is different for each treatment condition t ∈ {1, . . . ,K}. Therefore, the

single index can be viewed as a useful biosignature that can describe differential treatment

effects, provided that gt 6= gt′ for at least one pair t, t′ ∈ {1, . . . ,K}.

2.3 Criteria for estimation

2.3.1 Profile likelihood maximization

While any nonparametric smoother can be employed to approximate the unspecified smooth

link functions gt(·) in (2.2), in this chapter, we will apply cubic splines. Specifically, gt(u) ≈

η>t Z(u), for some ηt ∈ Rd. Here, Z(u) =
[
B1(u), . . . , Bd(u)

]>
∈ Rd consists of a set of d

normalized cubic B-spline basis functions [de Boor, 2001]. For ease of notation, the number

of basis functions, d, is taken to be the same across treatments but in practice d may vary

by treatment. Let nt be the sample size for the tth treatment group and n =
∑K

t=1 nt

denote the total sample size. For a given α, let Zα,t denote the B-spline evaluation matrix

(nt × d), so that the ith row is Z(α>Xti)
>, which is the B-spline evaluation of the ith

individual from the tth treatment group. The subscript α in the matrix Zα,t highlights its

dependence on α.

For sample data, SIMML (2.2) can be represented by[
Y
]
n×1

=
[
Zα
]
n×Kd

[
η
]
Kd×1

+
[
ε
]
n×1

, (2.6)
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where Y =
[
Y >1 , . . . ,Y >K

]>
is the observed response vector in which Yt ∈ Rnt , Zα is

n ×Kd block-diagonal B-spline design matrix of the Zα,t’s, η =
[
η>1 , . . . ,η

>
K

]>
is the B-

spline coefficient vector, and ε =
[
ε>1 , . . . , ε

>
K

]>
is a mean zero noise vector with covariance

matrix σ2In.

Given α, we define the n×n single index projection matrix to be Sα = Zα
(
ZTαZα

)−1 ZTα.

Assuming Gaussian noise and treating η as a nuisance parameter, the negative “profile”

loglikelihood of α, up to a constant multiplier, is

Q(α) = ‖Y − SαY ‖2. (2.7)

We define the profile likelihood estimator of the index parameter α as

α̂ = arg min
α∈Θ

Q(α). (2.8)

Each link functions gt(·) in (2.2) can be estimated by

ĝt(u) = Z(u)>
(
ZTα̂,tZα̂,t

)−1 ZTα̂,tYt (t = 1, . . . ,K), (2.9)

where Zα̂,t is Zα,t evaluated at α = α̂.

2.3.2 Maximizing L2 distance between two link functions

A natural criterion for choosing α in the SIMML (2.2) in terms of moderator analysis is to

maximize an interaction effect. In the special case of linear link functions in the SIMML

gt(α
>X) = γt0 + γtα

>X (t = 1, . . . ,K). (2.10)

[Petkova et al., 2016] proposed estimating α to maximize the variability of the GEM slopes

γt’s, weighted by their respective probabilities πt; this was called the “numerator” criterion

because it corresponds to maximizing the numerator of a F -test statistic for significance of

an interaction effect.

Analogously, for nonlinear gt(·), α can be chosen to maximize the variance of the distance

between any two link functions, e.g., g1(·) and g2(·) of (2.2). Assuming that the outcome

has been centered at 0 for each treatment group and that the observations are independent,
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maximizing the variance corresponds to maximizing the L2 distance between the two link

functions over α ∈ Θ, which simplifies to

EX
(
g1(α>X)− g2(α>X)

)2
=

∫
g2

1(α>x)fX(x)dx+

∫
g2

2(α>x)fX(x)dx, (2.11)

where fX(·) is the density of X (assumed equal across treatment groups due to randomiza-

tion). Given α, define the nt×nt matrix Sα,t = Zα,t
(
Z>α,tZα,t

)−1 Z>α,t for t = 1, 2. Then the

index coefficients α can be chosen to maximize the corresponding empirical approximation

of the L2 distance (2.11)

W (α) = Y T
1 Sα,1Y1/n1 + Y T

2 Sα,2Y2/n2, (2.12)

and

α̂ = arg max
α∈Θ

W (α). (2.13)

The associated link functions ĝt(·) can be obtained by (2.9).

2.4 Estimation

Suppose we have a set of observations {(Yti, Xti)
nt
i=1}Kt=1. For each candidate α, [Wang and

Yang, 2009] suggested to take an integral transformation of each candidate index variable

α>Xti, α ∈ Θ, to uα,ti = Fp(α
>Xti), where Fp is a re-scaled centered Beta{ (p+ 1)/2, (p+

1)/2 } cumulative distribution function

Fp (ν) =

∫ ν/R

−1
(1− t2)(p−1)/2Γ(p+ 1)/(Γ {(p+ 1)/2}2 2p)dt, ν ∈ [−R,R],

in which R = maxt,i|α>Xti|. For any fixed α, this (transformed) index has a quasi-uniform

[0, 1] distribution, and it is reasonable to use equally-spaced knots on [0, 1] when applying

spline smoothing ([Wang and Yang, 2009]).

In an attempt to avoid being trapped in local minima in solving (2.8), we employ a

variant of a gradient descent algorithm; we adopt elements of the Cuckoo search ([Yang

and Deb, 2009], [Yang and Deb, 2014]). The Cuckoo search considers multiple (say, C > 1)

evolving candidate solutions, where each of the C candidates takes independent random

walks, specified by the step size, s > 0 which follows a heavy-tailed distribution (we take
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the absolute value of the standard Cauchy distribution), with some direction in Rp (we take

the negative of the gradient of the criterion function Q(α), which we denote by −∇ ∈ Rp).

From the rth candidate at the hth update, α̂
(h)
(r) ∈ Rp, a new position α̂

(h+1)
(r) ∈ Rp is

generated by

α̂
(h+1)
(r) = α̂

(h)
(r) − s

(h)
(r) l

(h)
(r)∇

(h)
(r) , (2.14)

where s
(h)
(r) is the random step size; ∇(h)

(r) ∈ Rp is the gradient ∇ evaluated at α = α̂
(h)
(r) ;

l
(h)
(r) ∈ R is an adaptive multiplier which is [Ong, 2014]

l
(h)
(r) =

 lL + (lU − lL)(Q
(h)
(r) −Q

(h)
min)/(Q(h)

avg −Q
(h)
min), if Q

(h)
(r) < Q(h)

avg

lU , if Q
(h)
(r) ≥ Q

(h)
avg

 , (2.15)

where lL > 0 and lU ≥ lL are pre-specified minimum and maximum step sizes, respectively,

depending on the scale of the problem. In (2.15), Q
(h)
(r) corresponds to the criterion value

(2.7); Q
(h)
min is the minimum, and Q(h)

avg is the average of the criterion values at the hth

update, respectively, computed from C candidate solutions. Intuitively, when a candidate

solution is close to the minimum, the algorithm focuses more on the local search. The jth

component of the gradient ∇ is

∇j(α) = 2Y >(In − Sα)Ż(j)
α (Z>αZα)−1Z>αY , j ∈ {1, . . . , p}, (2.16)

where Ż(j)
α is an n× dK block diagonal matrix with the blocks equal to

Ż(j)
α,t

=
[
B
′
1(Fp(Xtα)) ∗ F ′p(Xtα) ∗Xt,j . . . B

′
d(Fp(Xtα)) ∗ F ′p(Xtα) ∗Xt,j

]
nt×d

for t = 1, . . . ,K. Here, Xt is nt × p covariate matrix of the tth treatment group, the

jth column Xt,j corresponds to the jth covariate from the tth treatment, and ∗ denotes

element-wise multiplication.

To obtain the L2 distance maximizer of Section 2.3.2, instead of the profile likelihood

maximizer, we simply change the objective function to be the negative of the criterion

function of (2.12), and ∇(h)
(r) to be the negative gradient of (2.12), evaluated at α = α̂

(h)
(r) .

The algorithm reduces to an ordinary gradient descent, if s
(h)
(r) in (2.14) is set to be

non-random and C = 1. In such cases, we can take as an initial solution α̂(h=1) of gradient

descent the leading eigenvector of the weighted “between-group” covariance matrix of the
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ordinary least-square regression coefficient vector (weighted by group assignment probabil-

ities πt), i.e., the solution that maximizes the variability of the GEM slopes from the linear

model of [Petkova et al., 2016].

Algorithm 1 An algorithm for estimating the single index coefficient α

1: Center Yt at 0 and center and scale Xt for each t = 1, . . . ,K.

2: Set h← 1. Generate C candidate solutions, A(h) =
[
α̂(1), . . . , α̂(C)

]>
, where α̂(r) ∈ Θ.

3: Evaluate (2.7) for each α̂(r), and obtain Q(h) =
[
Q(α̂(1)), . . . , Q(α̂(C))

]>
.

4: for h = 1, 2, . . . until convergence do

5: Set h← h+ 1.

6: Set A(h) ← A(h−1), and Q(h) ← Q(h−1).

7: Compute Q(h)
avg and Q

(h)
min from Q(h), obtain the multipliers

[
l
(h)
(1) , . . . , l

(h)
(C)

]>
in (2.15).

8: Compute the C × p gradient matrix
[
∇(α̂

(h)
(1)), . . . ,∇(α̂

(h)
(C))

]>
by using (2.16).

9: for r = 1, . . . , C do

10: Generate a new solution α
temp,(h)
(r) via (2.14) from α

(h)
(r) . Set α

temp,(h)
(r) to be in Θ.

11: Evaluate (2.7) at α
temp,(h)
(r) , and denote the evaluated value by Q

temp,(h)
(r) .

12: if Q
temp,(h)
(r) < Q

(h)
(r) then α

(h)
(r) ← α

temp,(h)
(r) and Q

(h)
(r) ← Q

temp,(h)
(r) .

13: end for

14: end for

15: Output α̂ that corresponds to Q
(h)
min.

Once α̂ is obtained, the estimates of the link functions ĝt(·) can be obtained by (2.9).

The fitted SIMML is then ĝt(Fp(α̂
>X)), t ∈ {1, . . . ,K}.

2.5 Asymptotic theory

In this section, we establish the asymptotic results of the profile estimator α̂ in (2.8), under

possible misspecification, when the true model is assumed to be (2.4). We assume that

the data consist of n random vectors {(Yi, Ti, Xi), i = 1, . . . , n} on an underling probability

space (Ω,F ,P), in which {(Yi, Ti, Xi) : Ti = t} are nt identically distributed random vectors

for t = 1, . . . ,K, with the ratio nt/n converging to a constant, πt ∈ (0, 1) almost surely, as
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n→∞. Observations between groups are assumed to be independent.

Let us denote the pth component of the vector α0 by α0,p(> 0, since α0 ∈ Θ). By

the completeness property of R, we can always find some c > 0 such that α0,p ≥ c, and

therefore, without loss of generality, we may assume that α0 is in a compact set Θc = {α =

(α1, . . . , αp)
> ∈ Rp|

∑p
j=1 α

2
j = 1, αp ≥ c}, with an appropriate choice of small c > 0.

Theorem 1. (Consistency) Under Assumption 1 to 5 in the Appendix, α̂ → α0 almost

surely.

The proof of Theorem 1 is given in the Appendix. To avoid the complication from

the restricted parameter space Θc, we will consider instead the “pth component removed”

R(α) in (2.5) as follows

R(α−p) = R
(
α1, . . . , αp−1,

√
1− (α2

1 + · · ·+ α2
p−1)

)
, (2.17)

where a vector α−p = (α1, α2, . . . , αp−1) ∈ Rp−1 lives inside the unit ball. Let the “pth

component removed” value of the optimal α0 be denoted by α0,−p ∈ Rp−1. Similarly, let

the corresponding profile estimator α̂ in (2.8) be denoted by α̂−p ∈ Rp−1.

Theorem 2. (Asymptotic Normality) Under Assumption 1 to 5 in the Appendix,
√
n(α̂−p−

α0,−p)→ N (0,Σα0,−p) in distribution, with asymptotic covariance matrix

Σα0,−p = H−1
α0,−p

Wα0,−pH
−1
α0,−p

, where the matrix Hα0,−p is the Hessian matrix H(α−p) =

∂2

∂α−p∂αT
−p
R(α−p) evaluated at α−p = α0,−p, and the matrix Wα0,−p is defined in the Ap-

pendix.

The proof of Theorem 2 is given in the Appendix. The asymptotic confidence intervals

for the index coefficients can be constructed using the asymptotic covariance in Theorem 2.

2.6 Simulation studies

2.6.1 Precision of estimators

We investigate the precision of the α estimators in the simple case of K = 2 treatment

groups and p = 2 baseline covariates. The covariates X = (x1, x2)> are generated from
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N (0,ΨX), where ΨX =

 1 0.1

0.1 1

. The outcomes in the two treatment groups are simu-

lated under Yt = mk(X; δ) + εt with εk ∼ N (0, 0.12)(t = 1, 2), where

m1(X; δ) = 0.5(α>1 X)2 − δ/3(α>2 X)2

m2(X; δ) = 1− 0.5(α>1 X)2 + δ/3(α>2 X)2,
(2.18)

in which α1 = (1, 1)>/
√

2 and α2 = (−1, 1)>/
√

2. If δ = 0, the data generation model

(2.18) is a “genuine” SIMML (2.2), and the single index of the SIMML is α>1 X. However,

if δ 6= 0, model (2.18) is not in the class of SIMML since it involves two indices, α>1 X

and α>2 X, and the approximate SIMML is gt(α
>X) = E[mt(X; δ) | α>X], t = 1, 2, for

some α ∈ Θ. The parameter δ in (2.18) controls the relative influence of α1 and α2. We

consider two cases in the simulations: δ = 0 (“genuine” SIMML) and δ = 1, for which α1

has a stronger influence than α2 (and so α>1 X can be considered as the more important

composite covariate that modifies the effect of treatments).

We investigate how the estimator of the index coefficient α = (a1, a2)> of (approx-

imated) SIMML (2.2) obtained via maximizing the SIMML profile likelihood (i.e., α̂ in

(2.8)) compares to the estimator obtained by maximizing the L2 distance between the two

link functions from (2.13). For the purposes of visualization we express α ∈ Θ ⊂ R2 in polar

coordinates. If Cartesian coordinates are transformed into polar coordinates, (a1, a2)> on

the unit half circle Θ can be represented by a single parameter, θ for 0 ≤ θ < π, where θ is

an angle in radians. Then α1 corresponds to θ1 = π/4 and α2 corresponds to θ2 = 3π/4.

As a function of the angle θ, the criterion function of an unbiased estimator would have a

peak at θ1 and a smaller one at θ2.

We simulated 100 data sets under the above described setup (2.18), and averaged the

values of the criterion functions (the profile likelihood and the L2 distance, respectively)

for each θ ∈ [0, π]. The resulting averaged criterion functions are shown on the third and

the fourth panels of Figure 2.2, for the case of δ = 0 and δ = 1, respectively. Both the

profile likelihood and L2 distance maximizers have a global peak at θ1 = π/4 and a smaller

local peak at θ2 = 3π/4. The profile likelihood maximizer, however, shows a sharper peak

around the true value θ1 compared to the L2 distance maximizer, indicating better efficiency

in estimation, for both δ ∈ {0, 1}.
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Figure 2.1: The first two panels: the outcomes simulated under model (2.18) when δ = 1,

plotted against the “first” index α>1 X in the first panel, and against the “second” index

α>2 X in the second panel, for the two treatment groups (blue dots and red triangles respec-

tively). The third (δ = 0 case) and the fourth (δ = 1 case) panels: the criterion functions

of the profile likelihood maximizer (the red solid curve) and the L2 distance maximizer

(the blue dotted curve), averaged over 100 simulated datasets, each scaled to have height

1. The dashed grey vertical line indicates the angle θ1 = π/4 that corresponds to α1, and

the vertical dotted grey line indicates θ2 = 3π/4 that corresponds to α2.
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2.6.2 ITR performance

A treatment decision function, D(X) : Rp 7→ {1, . . . ,K}, mapping a subject’s baseline char-

acteristics X ∈ Rp to one of K available treatments, defines an ITR for the single decision

time point ([Murphy, 2003], [Robins, 2004], [Cai et al., 2011], [Qian and Murphy, 2011]).

Given covariates X, an ITR based on SIMML is D(X) = arg maxt∈{1,...,K} gt(α
>X). We in-

vestigate the performance of the estimated ITRs of the form D(X) = arg maxt∈{1,...,K} E[Y |

X,T = t], where the conditional expectation is obtained from various modeling procedures.

The baseline covariate vector X = (x1, . . . , xp)
> ∼ N (0,ΨX), with ΨX having 1′s on

the diagonal and 0.1 everywhere else. We consider K = 2 with different noise levels for the

two treatment groups: ε1 ∼ N (0, 0.42), ε2 ∼ N (0, 0.22) . The outcome data are generated

under the following fairly broad model

Yt = δM(µ>X; ν) + Ct(α
>X;ω) + εt (t = 1, 2). (2.19)

As a function of the index µ>X, M is referred to as the “main effect” of X. As functions

of the other index α>X, the Ct’s are referred to as the “contrast” functions that define the

treatment-by-X interaction. Here, we will use the parameters ν and ω to control the degree

of non-linearity of M and Ct’s, respectively.

An optimal treatment decision rule depends only on the Ct’s, not on M or the εt’s.

The parameter δ in (2.19) controls the relative contribution of the C ′ts to the variance in

the outcomes, and is calibrated to obtain the relative contribution of 0.35. The contrast

functions Ct’s in (2.19) are set to

Ct(u;ω) =

{
C1(u;ω) = +1− cos

(
0.5πωu

)
+ 0.5(u− ω)

C2(u;ω) = −1 + cos
(
0.5πωu

)
− 0.5(u− ω),

(2.20)

where, if ω = 0, then the Ct’s are linear functions; and they are more nonlinear for larger

values of ω. We considered three cases, corresponding to linear (ω = 0), moderately nonlin-

ear (ω = 0.5), and highly nonlinear (ω = 1) Ct’s, respectively, illustrated in the first three

panels of Figure 2.2. We set the main effect function M in (2.19) to be

M(u; ν) = 0.5u− sin(0.5πνu),

where, as ν increases, the degree of nonlinearity in M increases. We considered two cases,

ν = 0, corresponding to a linear M ; and ν = 1, corresponding to a nonlinear M , illustrated
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Figure 2.2: The first panel shows the linear contrast Ct’s (ω = 0), the second panel the

moderately nonlinear contrast Ct’s (ω = 0.5), and the third panel displays highly nonlinear

contrast Ct’s (ω = 1). Data points are generated from model (2.19) with δ = 0 and p = 5.

The fourth and the fifth panel shows the linear (ν = 0) and the nonlinear main effect M

(ν = 1), respectively.

in the fourth and the fifth panels of Figure 2.2. We considered p = 5 and p = 10 with

α = (1, . . . , 5)> and α = (1, . . . , 10)>, respectively, each standardized to have norm one.

We set µ to be proportional to a vector of 1’s, standardized to have norm one. Two

treatment groups were considered with unequal sample sizes: n1 = 40 and n2 = 30. We

used d = 5 B-spline basis functions. We compared the treatment decision rules determined

based on the following regression models: (i) SIMML (2.2) estimated from maximizing the

profile likelihood; (ii) the K-Index model (2.1) fitted separately for each treatment group by

the B-spline approach of [Wang and Yang, 2009], denoted as K-Index; (iii) the linear GEM

model ([Petkova et al., 2016]) estimated under the criterion of maximizing the difference

in the treatment-specific slope, denoted as linGEM; and (iv) linear regression models fitted

separately for each treatment group under the least squares criterion, denoted as K-LR.

For each scenario, using the outcome Y from a simulated test set (of size 105), we computed

the proportion of correct decisions (PCD) of the treatment decision rules estimated from

each method. We reported the boxplots of PCDs obtained from 200 training datasets.

Figure 2.3 shows that SIMML outperformed all other methods, except for the case

under the linear M and Ct’s in which all 4 approaches performed well. The K-Index

method was clearly second best, under the linear M (ν = 0) (the top panels) with the

nonlinear Ct’s (ω = 0.5 and ω = 1). However, for more complex M function (ν = 1) (the

bottom panels), the performance of the K-index model was considerably worse compared
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Figure 2.3: Boxplots of the PCDs of the treatment decision rules obtained from 200

training datasets for each of the four methods. Each panel corresponds to one of the six

combinations of ω ∈ {0, 0.5, 1} and ν ∈ {0, 1}: the shape of the contrast functions Ct’s

controlled by ω; the shape of the main effect function M controlled by ν; the number of

predictors p ∈ {5, 10}. The sample sizes are n1 = 40, n2 = 30.
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to SIMML. When the underlying model is complex, given a relatively small sample size, the

SIMML in which the treatment contrast was emphasized through the common single-index

was more effective in estimating treatment decision rules than the K-Index model. As

would be expected, additional complexity in Ct’s (ω = 0.5 and ω = 1) had a greater effect

on the performance of the more restrictive models (linGEM and K-LR) than it did on the

flexible models (SIMML and K-index). It was clear that the number of covariates p also

had a major impact on the performance of all methods. As p changed from 5 (red) to 10

(blue), the deterioration in performance was more pronounced for the K-Index model that

requires separate fits for each treatment and thus involve estimation of more parameters

(K(p− 1) +Kd), than the more parsimonious SIMML with a fewer number of parameters

(p− 1 +Kd) to be estimated.

2.6.3 Coverage probability of asymptotic 95% confidence intervals

We present a simulation experiment that assesses the coverage probability of the asymptotic

confidence intervals derived from Theorem 2. The data were generated under model (2.19)

with δ = 0 (i.e., no main effect M) with p = 5 predictors. We set the SIMML index vector

α(= α0) to be stepwise increasing: (1, . . . , 5)>, normalized to have unit L2 norm. The

associated contrast functions, Ct’s, are given by (2.20), and two levels of the curvature

of the contrasts are considered, corresponding to a single and multiple-crossings cases,

ω ∈ {0, 1}, respectively (see Figure 2.2). To set signal to noise ratio at 1 for both scenarios,

the noise standard deviations were set to 0.64 and 0.89, corresponding to ω = 0 and ω = 1

respectively. We considered unequal sample sizes for theK = 2 groups by setting n = n1+n2

where 2n1 = 3n2. With varying n ∈ {100, 200, 400, 800, 1600, 3200, 6400}, the number of

interior knots used in the B-spline approximation, was determined to be N =
[
n

1/5.5
1

]
as

recommended by [Wang and Yang, 2009]. Five hundred data sets were generated for all

combinations of n and ω. For each (i.e., the jth) component αj of α, the proportion of

times the 95% asymptotic confidence interval contains the true value of αj was recorded

in the table in the Appendix. The 5th (i.e., the pth) element is estimated to satisfy the

constraint α ∈ Θ in Theorem 2.

As the the sample size increases, the “actual” coverage probability gets closer to the
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“nominal” coverage probability, with better coverage results for the single-crossing scenario

(ω = 0) compared to the multiple-crossing scenario (ω = 1).

2.7 Application to data from a randomized clinical trial

Major depressive disorder afflicts millions and, according to the World Health Organization,

it is the leading cause of disability worldwide. It is a highly heterogeneous disorder, however,

no individual biological or clinical marker has demonstrated sufficient ability to match

individuals to efficacious treatment. Here we illustrate the utility of the proposed SIMML

method for determining ITRs with an application to data from a randomized clinical trial

comparing an antidepressant and placebo for treating depression.

Of the 166 subjects, 88 were randomized to placebo and 78 to the antidepressant. In

addition to standard clinical assessments, patients underwent neuropsychiatric testing prior

to treatments. Patients were tested Flanker [Flanker and Eriksen, 1974] and A not B

Working Memory (AnotB; [Herrera-Guzman et al., 2009]), for which reaction time (RT)

and accuracy were assessed. In addition, RT was recorded for a choice task [Deary et al.,

2011]. Four baseline clinical and demographic characteristics were also assessed: (i) current

patient age; (ii) severity of depressive symptoms measured by the Hamilton Rating Scale for

Depression (HRSD); (iii) duration of the current major depressive episode; and (iv) age of

onset of first major depressive episode. Table 2.1 summarizes the information on the p = 9

baseline patient characteristics, X = (x1, . . . , x9)>, starting with the means and standard

deviations of the original (untransformed) covariates. The treatment outcome Y was the

improvement in symptom severity from baseline to week 8 and thus larger values of the

outcome were better.

Figure 2.4 shows the outcome Y against each of the 9 baseline covariates for placebo

(blue) and active drug (red). The estimated B-spline approximated curves are shown with

the associated 95% confidence bands: the solid blue curves for the placebo group and the

dotted red curves for the active drug group. From the figure, we can see that each individual

covariate marginally has at most a small modifying treatment effect.

One natural measure for the effectiveness of an ITR (D) is the expected mean outcome
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(Label) Baseline Mean Indiv. Value Coefficients αj ’s, j ∈ {1, . . . , 9}

patient characteristics (SD) Nonpar. Linear SIMML* SIMML linGEM

(x1) Age at evaluation 38.00 (13.84) 8.56 8.24 -0.53 -0.50 -0.43

(x2) Severity of depression 18.80 (4.29) 6.85 7.07 -0.07 -0.13 -0.37

(x3) Dur. MDD (month) 38.19 (53.17) 7.42 7.33 0.08 -0.18 0.20

(x4) Age at MDD 16.46 (6.09) 6.29 6.95 0.23 0.05 0.31

(x5) Axis II 3.92 (1.43) 7.16 7.11 0.23 0.20 0.17

(x6) Word Fluency 37.42 (11.68) 7.64 7.11 0.11 0.09 0.27

(x7) Flanker RT 59.51 (26.63) 8.19 8.39 0.12 0.23 -0.18

(x8) Post-conflict adjus. 0.07 (0.12) 6.73 7.23 -0.30 -0.29 -0.18

(x9) Flanker Accuracy 0.22 (0.15) 7.89 8.37 0.70 0.70 0.59

Value from single-index model 9.34 8.72 8.22

Table 2.1: Description of the p = 9 baseline covariates (means and SDs); the estimated

values (“Indiv. Value”) of treatment decision rules from each individual covariate, using

either the B-spline regression (“nonpar.”) or the linear regression (“linear”); the estimated

singe-index of the three (single-index based) methods, with the estimated values of the

treatment decision rules.
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Figure 2.4: For each of the 9 baseline covariates individually, treatment-specific spline

approximated regression curves with 5 basis functions are overlaid on to the data points;

the placebo group is the blue solid curve and the active drug group is the red dotted curve.

The associated 95% confidence bands of the regression curves were also plotted.
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Figure 2.5: Pair of estimated link functions (g1 and g2) obtained from SIMML with the

“main effect adjusted” profile likelihood (first panel), SIMML with the (main effect un-

adjusted) profile likelihood (second panel), and the linear GEM model estimated under the

criterion maximizing the difference in the linear regression slopes (third panel), respectively,

for the placebo group (blue solid curves) and the active drug group (red dotted curves).

The 95% confidence bands were constructed conditioning on the single-index coefficient α.

For each group, observed values of the outcomes are plotted against the estimated index.

if everyone in the population receives treatment according to that rule, the “value” (V )

(1.1) of a decision rule D ([Qian and Murphy, 2011]):

V(D) = EX
[
EY |X [Y | X,T = D(X)]

]
. (2.21)

In Table 2.1, “Indiv. Value” refers to the estimated value of an ITR based on each individual

covariate, based on two approaches for determining ITRs: the aforementioned B-spline

approximated regressions of the outcome on a single covariate (nonpar. links) as suggested

by the overlaied curves in Figure 2.4, and linear regressions of the outcome on a single

covariate (linear links). The value (2.21) of an ITR D can be estimated by the inverse

probability weighted estimator ([Murphy, 2005]):

V̂ (D) =

ñ∑
i=1

YiITi=D(Xi)/

ñ∑
i=1

ITi=D(Xi), (2.22)

using a testing set, say, {(Yi, Xi, Ti), i = 1, . . . , ñ}, in which, if we use only each individual

covariate, then Xi = xij , for each j = 1, . . . , 9. The data were randomly split into a training

set and a testing set with a ratio of 10 to 1. This splitting was performed 500 times, each
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Figure 2.6: Top row: Violin plots of the estimated values of ITRs based on each of the

individual predictors x1, . . . , x9, determined from univariate nonparametric and linear re-

gressions, respectively, obtained from 500 randomly split testing sets (with higher values

preferred). Bottom row: The estimated single-index coefficients α1, . . . , α9, associated with

the covariates x1, . . . , x9. The associated 95% confidence intervals obtained from BCa boot-

strap with 500 replications are illustrated. Estimated significant coefficients are marked

with ∗ on the top.
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time estimating D on the training set and computing (2.22) from the testing set. We

reported the averaged values. The last three columns of Table 2.1 show the estimated index

coefficients (α) obtained by two different SIMMLs and the linear GEM (linGEM) method.

The SIMML can be made more efficient by incorporating a main effect component

β>D(X) in the model, i.e., we consider E (Y | T = t,X = x) = βTD(x) + gt(α
>x), for

an appropriate vector-valued function D(X). If the n × q matrix D is the evaluation of

D(X) on the sample data, then for each α, the profile loglikelihood under this extended

model (with Gaussian outcome), up to constants, is Q∗(α) = ‖(In − Sα) Ỹ ‖2, where Ỹ =(
In − (In − Sα)D

(
DTD

)−1 DT
)
Y . In this analysis, we took D(X) = X. We refer to this

approach as “main effect adjusted” profile likelihood SIMML and denote it by SIMML*.

In Figure 2.5, the estimated pairs of link functions are plotted against the approach-

specific single index variable, obtained from applying the two SIMML approaches and the

linear GEM approach. The shapes of the regression curves capture a nonlinear treatment-

by-index interaction effect, especially due to some non-monotone relationship between the

index in the outcome in the drug group. In Figure 2.6, the coefficient estimates from each

of those single index-based methods, and the associated 95% confidence intervals obtained

from a bias-corrected and accelerated (BCa, [DiCiccio and Efron, 1996]) bootstrap with

500 replications are presented. The estimated single index coefficients reflect the relative

importance of the baseline covariates x1, . . . , x9 in determining a composite treatment effect

modifier, α>X, that is used for defining the ITRs.

In this analysis, the incorporation of the “main effect” component improved the value of

ITRs determined from the proposed SIMML method, as illustrated in the boxplots in Fig-

ure 2.7; we compared the two SIMML approaches (SIMML* and SIMML); the linear GEM

(linGEM) and the two approaches based on separate regression models for each treatment

group (K-Index and K-LR), with respect to the estimated values (2.22) of the ITRs. For

comparison, we also included the decision to treat everyone with placebo (All PBO), and

the decision to treat everyone with the active drug (All DRG). The results are summarized

in Figure 2.7.

The proposed SIMML approaches, in terms of the averaged estimated values (2.22)

estimated from the aforementioned 500 randomly split testing sets, appeared to outperform
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Figure 2.7: Boxplots of the estimated values of ITRs obtained from the 500 randomly

split testing sets (higher values are preferred). The estimated values (and the standard

deviations) are given as follows: SIMML*: 9.34 (2.68); SIMML: 8.72 (2.68); K-Index: 8.04

(2.69); K-LR: 8.36 (2.69); linGEM: 8.22 (2.67); All PBO: 6.17 (2.63); All DRG: 7.57 (2.67).

K-Index, exceeding the value estimated for the policy of assigning everyone to receive the

active drug, while also outperforming linGEM and K-LR. The visualization (see Figure 2.5)

indicates that the superiority of the active drug over placebo does not linearly decrease with

the index, but rather, it appears to remain relatively constant to the left of the crossing

point, exhibiting some nonlinear patterns. Finally, we note that the value of the treatment

decision rule All PBO was lower than the value of the treatment decision rule All DRG, and

that all treatment decision rules that took patient characteristics into account outperformed

the decision of treating everyone with the drug (which is standard current clinical practice).

In particular, the superiority the treatment decision rule SIMML* over treating everyone

with the drug in terms of value was of similar magnitude of the superiority of the decision to

treat everyone with the drug versus treating everyone with placebo. This is a clear indication

that patient characteristics can help treatment decisions for patients with depression, and

the more flexible SIMML methods are well suited for developing ITRs.



CHAPTER 2. A SINGLE-INDEX MODEL WITH MULTIPLE-LINKS 28

2.8 Discussion

Model (2.6) can be extended by allowing treatment-specific noise variances σ2
t . Under a

Gaussian noise assumption, the B-spline approximated profile log likelihood of α, that

profiles out the nuisance parameters σ2
t and ηt, up to constants, is

∑K
t=1 nt logQt(α),

in which Qt(α) = ‖(Int − Sα,t)Yt‖2/nt. The corresponding profile estimator of α is

arg min
α∈Θ

∑K
t=1 nt logQt(α). The estimation can be performed similarly as in the estima-

tion of α̂ in (2.8), but the criterion function Q(α) will be replaced by
∑K

t=1 nt logQt(α).

The SIMML can also be extended to generalized linear models (GLM) in which the

outcome variable is a member of the exponential family. The standard form of the density

is fY (Y ; θ, φ) = exp {(Y θ − b(θ)) /a(φ) + c(Y, φ)}, given a canonical link function h(·). We

can extend the SIMML approach to the GLM setting with treatment-specific natural pa-

rameters θk, k ∈ {1, . . . ,K} by modeling the treatment-specific outcomes as a function of a

single index α>X: θt(x) = h−1 (E (Y | T = t,X = x)) = gt(α
>x), t ∈ {1, . . . ,K}; gt(·) and

hence θt(x) will be approximated by cubic B-splines. The approximates can be denoted by

θ̃t(x) = η>t Z(α>x) for some ηt ∈ Rd, as in Section 2.4. The general strategy of nonlinear

maximization of the profile likelihood over ηt, for each α can be employed. The dispersion

parameter φ can also be profiled out. Other potential extensions involve performing vari-

able selection in high-dimensional covariate settings and incorporating functional-valued

data objects (such as images) as patient covariates.
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Chapter 3

A Constrained single-index model

with multiple-links for interactions

3.1 Introduction

A major challenge in constructing ITRs from a dataset with (Yi, Ti, Xi), i = 1, . . . , n, lies

in the detection of relatively small treatment effect-modification-related variations (i.e., the

T -by-X interaction effect on the outcome) against relatively large non-treatment-related

variations (i.e., the main effect of X on the outcome). In this chapter, we target the

question of estimating α>X in the SIMML model (2.2) that captures the treatment effect

modification-related variabilities in the dataset, in the presence of relatively large, unspec-

ified main effect-related variabilities.

We propose a semiparametric regression approach specifically designed to model the

interactions between a treatment indicator and predictors, without the need to model the

main effects. By obviating the need to model the main effect, the proposed approach

extends the modified covariate approach of [Tian et al., 2014] into a semiparametric regres-

sion framework, that uses treatment-specific nonparametrically-defined link functions. The

method provides a valuable regression approach that allows nonlinear interaction effects in

developing ITRs.

[Tian et al., 2014] proposed a simple and elegant approach to estimate the potentially

large number of covariates and treatment interactions, without the need to model the main
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effects in analyzing data from a RCT. The method termed the modified covariate approach

(MCA) simply codes the treatment variable as ±0.5 and then includes the products of this

variable with each covariate under a linear model framework for estimating interactions.

When the dimension of covariates, p, is high, MCA can also incorporate appropriate regu-

larization procedures to select treatment effect modifiers that interact with the treatment.

In this chapter, we will extend SIMML (2.2) to have an unspecified main effect compo-

nent on the outcome, and this approach takes MCA as a special case under a linear link

restriction. This generalization is analogous to the extension from a classical linear model

into a single-index model ([Brillinger, 1982], [Stoker, 1986], [Powell et al., 1989], [Hardle et

al., 1993], [Xia and Li, 1999], [Horowitz, 2009], [Antoniadis et al., 2004]), which employs a

flexible data-driven link function to estimate the mean response, in the context of estimating

the treatment-by-predictors interactions.

In Chapter 2, we introduced a flexible approach for determining composite variables

that permit nonlinear association with the outcome Y , using a SIMML,

E(Y | X,T ) = gT (α>X), T ∈ {1, . . . ,K}. (3.1)

which employs a single projection α>X to summarize the variability of the baseline predicd-

tors, and multiple (treatment-specific) nonparametrically-defined link functions, gT (·), T ∈

{1, . . . ,K}, to connect the derived single-index to the treatment-specific mean responses.

Although model (3.1) provides a parsimonious generalization of SIM for modeling the

interaction effect between T and X, it assumes a fairly restrictive model for a main effect,

since both the main effect of X and the T -by-X interaction effect are restricted to be

functions of the common single-index α>X.

Consider a more general model as a true model, for instance, E(Y | X,T ) = µ(µ>X) +

gT (α>X), for some distinct vectors µ 6= α and some (smooth) main effect function µ(·), and

the interaction effect functions gT (·), T ∈ {1, . . . ,K}. If one tries to fit SIMML (3.1) to the

data when the variance of the main effect µ(µ>X) is larger than that of the interaction effect

gT (α>X), then a standard least squares estimate of α would look more like µ, rather than

the α involved in the T -by-X interaction effect functions. Consequently, the estimate of α

obtained from model (3.1) would not be very informative for estimating the interactions.
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In the following section, we will introduce an extended version of SIMML that includes an

unspecified main effect component, which can solve the limitation of the SIMML (3.1).

3.2 Models

In this chapter, we will assume a completely unspecified structure, say µ(X), for the main

effect component, and consider an extension from model (3.1)

E(Y | X,T ) = µ(X)︸ ︷︷ ︸
“main” effect

+ gT (α>X)︸ ︷︷ ︸
“interaction” effect

, T ∈ {1, . . . ,K}, (3.2)

and develop a methodology to estimate gT (α>X). Model (3.2) removes the single-index

restriction of the main effect model. More precisely, we will develop a methodology that

obviates the need to model the main effect µ(X) when estimating the interaction effect.

As in Chapter 2, α ∈ Rp corresponds to a direction that we project X into, hence is

restricted to have a unit norm ‖α‖ = 1, and the set of link functions gT (·), T ∈ {1, . . . ,K},

models the nonlinear treatment T -by-X interaction effects, as general smooth functions of

the single-index α>X.

MCA, which has been shown to be an effective methodology under a linear model

to estimate the interaction effects between a binary treatment indicator and covariates,

assumes

E(Y | X,T ) = µ(X) +α>X(−1)T /2, (3.3)

where T ∈ {1, 2} with an equal probability 0.5. The form of the main effect µ(X) is left

unspecified. If we take gT (u) = u(−1)T /2 and the number of treatment options K = 2,

SIMML (3.2) reduces to MCA (3.3). In both (3.2) and (3.3), without loss of generality,

we take the centered Y and centered/scaled X ∈ Rp within each treatment. We note that

MCA, as introduced by [Tian et al., 2014], is limited to the case of the binary treatment

indicator (i.e., two treatment groups). (3.2) extends the method to the context of a general

K treatment group case.

In the (extended) SIMML (3.2), a necessary and sufficient condition for orthogonality

between the main effect component and the interaction effect component

µ(X) ⊥ gT (α>X), a.s., (3.4)
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is given by (if a nontrivial main effect)

ET
(
gT (α>X) | X

)
= 0, a.s., (3.5)

i.e., the link function gT (·) has mean zero with respect to the treatment indicator T . The

condition (3.5) for the orthogonality can be easily verified, using the law of iterated expec-

tations and independence between T and X, as in the case of an RCT.

For model (3.2), the orthogonality (3.4) is attractive, since the main effect, µ(X), and

the interaction effect, gT (α>X), can be estimated separately. When our interest is in

interactions, this suggests a simpler working model than (3.2), using the interaction effect

component only and no main effect

E(Y | X,T ) = gT (α>X), T ∈ {1, . . . ,K}, (3.6)

subject to (3.5), which gives the orthogonality (3.4). We will call model (3.6) a constrained

SIMML (a SIMML, constrained by the orthogonality condition (3.5)). Working with a

constrained SIMML is appealing, since we do not have to specify the form of the main

effects, side-stepping issues with misspecification of µ(X), which is potentially a complicated

function. In the following, we propose the criterion for optimizing model (3.2) by using the

working model (3.6).

3.3 Criterion

To optimize the interaction effect component gT
(
α>X

)
in model (3.2), we propose the

following constrained least squares criterion

minimize
α,gT

E
(
Y − gT

(
α>X

))2

subject to ET (gT ) = 0.

(3.7)

Additionally, we need an identifiability condition for α due to the nonparametric nature of

gT (·), for example, ‖α‖ = 1 with its first component α1 > 0. For a fixed α, we can write

(3.7) in the penalized Lagrangian form

E
(
Y − gT

(
α>X

))2

+ λET (gT ) , (3.8)
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where λ > 0 is the Lagrange multiplier. The minimizer function gT of (3.8), for each α, has

a closed-form expression in the population setting.

Theorem 3. Given α, the minimizer gT of (3.8) satisfies

gT (α>X) = E
(
Y | α>X,T

)
− E

(
Y | α>X

)
, a.s.. (3.9)

The proof of Theorem 3 is in the Appendix. Theorem 3 suggests that the optimization

problem (3.7) in the population setting can be split into two iterative steps. First, given α,

the link gT can be found by (3.9). Second, given the link gT , α can be found by minimizing

E
(
Y − gT

(
α>X

))2

, (3.10)

subject to ‖α‖ = 1, with α1 > 0, for model identifiability. These two steps can be iterated

until convergence, to obtain a population solution of (3.7). To obtain a sample counterpart

of the population solution, we can insert sample estimates into the population algorithm,

as in fitting generalized additive models ([Hastie and Tibshirani, 1999]).

3.4 Estimation

Suppose that we are given data (Yi, Ti, Xi), i = 1, . . . , n, where Xi = (xi1, . . . , xip)
> ∈ Rp,

the treatment indicator Ti takes a value t ∈ {1, . . . ,K}, and n =
∑K

t=1 nt is the total sample

size, in which nt denotes the sample size for the tth treatment group, i.e., {i | Ti = t, i =

1, . . . , n}.

Let us write the n × 1 vector Y =
(
Y >1 , . . . ,Y >K

)>
, in which the nt × 1 vector Yt =

(Y1, . . . , Ynt)
> is the observed response vector that corresponds to the tth treatment group.

For the regression function gT (α>X), let us write the n × 1 stacked-up vector, gα =(
g>α,1, . . . , g

>
α,K

)>
, where the nt × 1 vector gα,t =

(
gt
(
α>X1t

)
, . . . , gt

(
α>Xnt

))>
is the

evaluation vector of the observations from the tth treatment group, for each t ∈ {1, . . . ,K}.

Both the link functions gt(·)’s and the projection vector α need to be estimated.

3.4.1 Algorithm

We need to approximate the conditional expectations in (3.9) to obtain a sample estimate

of the population solution. Any nonparametric smoothers can be used to approximate
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(3.9), for example, B-splines [de Boor, 2001] and local kernel regression ([Ruppert and

Wand, 1994], [Hardle and Muller, 2012]). For each candidate α, let S(∗∗)
α denote a suitable

nonparametric smoother for approximating the bivariate conditional expectation E(Y |

α>X,T ) in (3.9). Similarly, let S(∗)
α denote a suitable nonparametric smoother for the

univariate conditional expectation E(Y | α>X) in (3.9). Then we can define a smoother

Sα for approximating gT in (3.9) that smooths the response vector Y

Sα = S(∗∗)
α − S(∗)

α (3.11)

ĝα = SαY , (3.12)

and obtain the link estimates ĝT , T ∈ {1, . . . ,K}. For given ĝT ’s, a sample counterpart for

(3.10) is

minimize
α

n∑
i=1

(
Yi − ĝTi(α>Xi)

)2 (
= ‖Y − ĝα‖2

)
,

subject to ‖α‖ = 1, α1 > 0,

(3.13)

which can be solved for α, for example, by iteratively weighted least squares (IWLS) (e.g.,

[Nelder and Wedderburn, 1972]) fixing the link estimates ĝT ’s. Expressions (3.12) and (3.13)

suggest an iterative procedure for approximately solving (3.7) over the link function gT and

α. We summarize below an algorithm that alternates between updating the link functions

(i.e., Step 1), and updating α (i.e., Step 2).

Algorithm 2 Estimation of constrained SIMML

1: Initialize α (e.g., using an MCA estimate)

2: for iteration until convergence do

3: Fix α, compute Sα in (3.11), and obtain ĝα by (3.12) and ĝT ’s.

4: Fix ĝT ’s, and obtain α by solving (3.13).

5: end for

Remark 1. For the K = 2 case, if the link function gT (u) is restricted to be linear (i.e.,

gT (u) = γTu for some scalar γT , for T ∈ {1, 2}), then the constrained SIMML estimate of

α reduces to the MCA estimate of α in (3.3) up to a constant multiplier. A justification

for this is provided in the Appendix.
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3.4.2 Main effect augmentation

In this section, we will describe how to estimate the extended SIMML (3.2) when we have

a working main effect model for µ(X), say, µ(X) = µ>D(X), with an appropriate vector-

valued function D(X) ∈ Rq and an unknown µ ∈ Rq. In the population setting, to optimize

the working model (3.6) with a main effect, we suggest the following constrained criterion,

which extends (3.7)

minimize
µ,α,gT

E
(
Y − µ>D(X)− gT

(
α>X

))2

subject to ET (gT ) = 0,

(3.14)

where ‖α‖ = 1 and α1 > 0 for model identifiability. Given α, the minimizer gT of (3.14)

satisfies

gT (α>X) = E(R | α>X,T )− E(R | α>X), a.s., (3.15)

where R = Y − µ>D(X); and the minimizer µ of (3.14) satisfies

E
(
D(X)>D(X)

)
µ = E

(
D(X)>

(
Y − gT (α>X)

))
. (3.16)

For sample data, based on (3.15) and (3.16), estimation of gT and µ, for each fixed α, can be

alternated until convergence as in Algorithm 2. If necessary, an appropriate regularization

(e.g., the Lasso ([Tibshirani, 1996])) can be employed to approximately solve (3.16) based

on the sample data. A good choice of a working model µ>D(X) for the main effect µ(X)

can increase the efficiency of the estimator, analogous to the efficiency augmentation in

[Tian et al., 2014].

3.4.3 Details for estimating the projection vector

In this subsection, we describe how to estimate the projection vector α. In implement-

ing the algorithm 2, the link estimates ĝT ’s can be approximated, for example, by a cubic

polynomial. Based on such approximated link functions, IWLS can be performed to ap-

proximately minimize (3.13) over α. The estimated α̂ can be rescaled to have unit L2 norm

(with α̂1 > 0). To implement the IWLS, we provide an expression for the gradient vectors,

as follows. For each fixed α, let Ri = Yi− ĝTi(α>Xi) (or, if we account for the working main
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effect, set Ri = Yi − µ̂>D(Xi) − ĝTi(α>Xi)), and the residual vector R = (R1, . . . , Rn)>.

Let us write the n × 1 vector of the first derivative of the (approximated) link functions

ĝ
′
Ti

(α>Xi) evaluated at {(Ti, Xi)
n
i=1} by

ĝ
′
α = (ĝ

′
1(α>X11), . . . , ĝ

′
1(α>Xn1), . . . , ĝ

′
K(α>X1K ), . . . , ĝ

′
K(α>XnK ))>. Then the jth com-

ponent of the gradient of the residual sum of squares with respect to α is

∇j = −R>
(
ĝ
′
α ∗Xj

)
, j = 1, . . . , p, (3.17)

where Xj = (X1,j , . . . , Xn,j)
> is the observed n × 1 vector for the jth predictor, and ∗

denotes element-wise multiplication of vectors.

3.5 Connection to the modified covariate approach

In this section, we will describe connections between the MCA and the methods of using

treatment-specific link functions, for example, SIMML (3.2). In comparison to the MCA

models (3.3), SIMML (3.2) permits a nonlinear interaction between T and a linear combi-

nation of the predictors, α>X, on the outcome. [Petkova et al., 2016] called the composite

predictor α>X a generated effect modifier (GEM), however, their treatment-specific link

function was restricted to be a linear function. An equivalence between a GEM model under

the orthogonality constraint and the MCA will be described in this section.

3.5.1 Sufficient reduction

As a function of X, let us consider the individualized treatment effect contrast, defined as

C(X) :=

K∑
t=1

ctE (Y | X,T = t) (3.18)

where the “contrast” vector (c1, . . . , cK)> is under a zero-sum constraint
∑K

t=1 ct = 0; for

example, if K = 2, we can consider c1 = 1 and c2 = −1. The contrast (3.18) makes

the individualized treatment efficacy comparison across the K treatment conditions as a

function of the pretreatment predictors X. Note, the main effect of X cancels out in (3.18)

due to the zero sum constraint in (c1, . . . , cK)>. For now, let us assume a classical linear

model for the interaction effect term in the conditional expectation, E(Y | X,T = t), which
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is sometimes called the “quality” of treatment t at observation X ([Qian and Murphy, 2011])

E(Y | X,T = t) = µ(X) + β>t X, (3.19)

with distinct βt’s. Assuming p > K − 1, let us introduce the p × p “between” group

dispersion matrix of the coefficients βt’s in (3.19), defined by

B =
K∑
t=1

πt(βt − β̄)(βt − β̄)>, (3.20)

where πt is probability that T takes a value t ∈ {1, . . . ,K}; the p× 1 vector β̄ =
∑K

t=1 πtβt

is the weighted average of βt’s. Let us define the p × (K − 1) orthogonal matrix Φ =

[ξ1; . . . ; ξK−1], that consists of theK−1 (normalized) leading eigenvectors ξm’s of the matrix

B, associated with the nonzero eigenvalues (there are at most K − 1 nonzero eigenvalues).

In the terminology of [Cook, 2007] and [Adragni and Cook, 2009], the span(Φ) produces a

sufficient reduction for representing the individualized treatment effect contrast (3.18).

Lemma 1. Under model (3.19), C(X) = C(Φ>X), i.e., the span(Φ) is sufficient for

representing C(X).

The proof of Lemma 1 is in the Appendix. In the following subsections, the estimation

of the leading eigenvector ξ1 of B in (3.20) in a linear regression framework will be tied to

the MCA.

3.5.2 Linear GEM models

The “numerator” method of [Petkova et al., 2016] considers the following class of models

E(Y | X,T = t) = µ(X) + ξ>1 Xγt, t ∈ {1, . . . ,K}, (3.21)

where ξ1 is the leading eigenvector of B in (3.20), and the treatment t-specific slopes

γt ∈ R, t ∈ {1, . . . ,K}, attached to the single-index ξ>1 X, describe the differential treatment

response over the different treatment conditions. In [Petkova et al., 2016], the composite

covariate ξ>1 X ∈ R was called a generated (treatment) effect modifier (GEM).

Let us reparametrize model (3.21) by setting

γ∗t := γt − γ0, t ∈ {1, . . . ,K}, (3.22)
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where γ0 :=
∑K

t=1 πtγt. Then, model (3.21) is rewritten as

E(Y | X,T = t) = µ(X) + ξ>1 Xγ0︸ ︷︷ ︸
“main” effect

+ ξ>1 Xγ
∗
t︸ ︷︷ ︸

“interaction” effect

, (3.23)

where the term µ(X)+ξ>1 Xγ0 models the main effect of X on the outcome, and the second

term ξ>1 Xγ
∗
t models the treatment t-specific effect as a linear function of X (i.e., the T -by-X

interaction), where
K∑
t=1

πtγ
∗
t = 0, (3.24)

acting as the identifiability constraint of the representation (3.23).

The constraint (3.24) suffices to give the orthogonality between the two subspaces

span (µ(X), Xγ0) ⊥ span (Xγ∗T ) , (3.25)

due to the randomization on T ∈ {1, . . . ,K} independent of X, in which the associated

inner product between arbitrary two variables is defined as the covariance between the

two variables. In estimation, the orthogonality (3.25) allows us to asymptotically separate

the interaction effect component from the main effect component in model (3.23). For

estimating the coefficients ξ1γ
∗
t , this leads us to consider the following working model

E(Y | X,T = t) = X>ξ1γ
∗
t , t ∈ {1, . . . ,K}, (3.26)

under the constraint (3.24), without specifying the form of the main effect.

Lemma 2. Assuming (3.19), the population constrained least square solution of γ∗t of model

(3.26), subject to the constraint (3.24), is given by γ∗t = ξ>1 (βt − β̄), t ∈ {1, . . . ,K}.

The proof of Lemma 2 is in the Appendix. Lemma 2 implies that, in (3.26), the coef-

ficient ξ1γ
∗
t ∈ Rp attached to X for the treatment group t has a closed form constrained

least squares solution ξ1γ
∗
t = ξ1ξ

>
1 (βt − β̄), for each t ∈ {1, . . . ,K}, which is simply the

projection of (βt − β̄) ∈ Rp onto the span of ξ1,

If K = 2, there is only one eigenvector ξ1 of the matrix B associated with a nonzero

eigenvalue. In particular, ξ1 has a closed form, given by ξ1 = (β2 − β1)/
√
‖β2 − β1‖2,

where, without loss of generality, we took π1 = π2 = 1/2 for the simplicity. This leads us to

the equivalence between optimizing model (3.26) under the constraint (3.24) and the MCA.
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Lemma 3. Under (3.19), if K = 2 with π1 = π2 = 1/2, optimizing model (3.26) using the

constrained least squares criterion subject to (3.24) is equivalent to optimizing model (3.3)

(without the main effect) using the least squares criterion, i.e., the MCA.

Proof. If K = 2, ξ1 = (β2−β1)/
√
‖β2 − β1‖2. Therefore, by Lemma 2, model (3.26) under

the constraint (3.24) can be written in terms of βt

E(Y | X,T = t) = X>ξ1ξ
>
1 (βt − β̄), t = 1, 2

= X>ξ1ξ
>
1 (βt −

β1 + β2

2
), t = 1, 2

=

{
X>(β2 − β1) (β2−β1)>

‖β2−β1‖2
(β1−β2)

2 = −1
2X
>(β2 − β1), t = 1,

X>(β2 − β1) (β2−β1)>

‖β2−β1‖2
(β2−β1)

2 = +1
2X
>(β2 − β1), t = 2.

(3.27)

Setting α = β2 − β1 leads to the MCA working model, E(Y | X,T = t) = X>α1
2(−1)t,

t = 1, 2.

From Lemma 3, MCA can be viewed as a special approach that estimates the sufficient

single-dimension reduction vector ξ1 of model (3.26), if we restrict our attention to the K =

2 case, that can be estimated by optimizing model (3.26) under an appropriate centering of

γ∗t , i.e., subject to the constraint (3.24).

3.5.3 K ≥ 3 case

The method of “undetermined” coefficients with γ∗t , t ∈ {1, . . . ,K} in (3.26), in which

we impose the orthogonality between the main effect and the interaction effect by the

constraint (3.24), sheds light on a simple approach to modeling interactions when K ≥ 3.

The projection vector ξ1 in (3.26), the leading eigenvector of B, can be computed from

sample estimates of the βt’s, which can be estimated by linear regression (via the Lasso,

for example) based on observations from the tth treatment group. Then the γ∗t ’s in (3.26)

can be computed using Lemma 2.

3.5.4 Extension to a semiparametric model

The equivalence between the MCA working model and model (3.26) under the constraint

(3.24) gives an insight on generalizing the MCA to a semiparametric regression framework.
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A semiparametric counterpart of the linear GEM model (3.21) is the SIMML (3.2), in

which a set of nonparametrically-defined link functions gt, t ∈ {1, . . . ,K} replaces the set of

treatment-specific scalar coefficients γt, t ∈ {1, . . . ,K}. We will present the followings for

completeness, although materials overlap with those from Section 3.3. Given an arbitrary

α ∈ Rp and a set of arbitrary (smooth) functions gt, t ∈ {1, . . . ,K}, let us introduce,

analogous to the reparametrization (3.22)

g∗t (α
>X) := gt(α

>X)− g0(α>X), (3.28)

where g0(α>X) :=
∑K

t=1 πtgt(α
>X). Then model (3.2) can be rewritten by

E (Y | X,T = t) = µ(X) + g0

(
α>X

)︸ ︷︷ ︸
“main” effect

+ g∗t
(
α>X

)︸ ︷︷ ︸
“interaction” effect

,
(3.29)

for t ∈ {1, . . . ,K}. By definition (3.28), we have

K∑
t=1

πtg
∗
t (α

>X) = 0, (3.30)

acting as the identifiability condition of the representation (3.29). Due to the randomization

of T ∈ {1, . . . ,K} independent of X, the condition (3.30) implies the orthogonality between

the two subspaces

span
(
µ(X), g0

(
α>X

))
⊥ span

(
g∗T (α>X)

)
. (3.31)

Under the constraint (3.30), the estimation of g∗T (α>X) can be asymptotically separated

from estimating the main effect µ(X) + g0

(
α>X

)
. Thus, the empirical version of the

expected constrained squared error

E
(
Y − g∗T (α>X)

)2
, (3.32)

subject to (3.30), i.e., ET (g∗T ) = 0, can be minimized. In Theorem 3, we have the population

constrained least squares solution of g∗T in terms of the conditional expectations (3.9). We

note that Lemma 2 is a special case of Theorem 3, in which the link g∗T is restricted to be

a linear function. Using an orthogonalized model (3.29), the optimization (3.13) for α can

be performed.
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Figure 3.1: In the simple linear regression E(Y | T ) of the outcomes on the treatments,

the fitted Ŷ for the model E(Y | T ) is the orthogonal projection of the observed Y onto the

plane of the column space spanned by the intercept and the treatments. The fitted vector

for the intercept-only model E(Y | 1) is Ȳ 1n. In the picture, the magnitude of the “effect” of

the intercept (i.e., averaging), which gets modified by the treatment (i.e., treatment-specific

averaging), can be quantified by the squared length of Ŷ − Ȳ 1n.

3.5.5 Some geometric intuition

In this section, we will provide some geometric intuition of optimizing a SIMML by the

criterion (3.32). For analogy, we take the simple regression of Y on the treatment indicator

T with no covariate X. In this case, g∗T in (3.9) is simply

g∗T = E(Y | 1, T )− E(Y | 1). (3.33)

Suppose we are given a dataset (Yi, Ti)
n
i=1. In Figure 3.1, the projections E(Y | 1, T ) and

E(Y | 1) can be represented by Ŷ and Ȳ 1n, respectively. Here, Ŷ is the n× 1 fitted vector

of the model E(Y | 1, T ) (the vector of the treatment group-specific averages), Y is the

n × 1 observed vector of the responses (Y1, . . . , Yn)>, 1n is the n × 1 vector of ones, and

Ȳ =
∑n

i=1 Yi/n, denotes the grand average. Then, in Figure 3.1, g∗T in (3.33) is represented

by the side Ŷ − Ȳ 1n.

Given each g∗T that satisfies ET (g∗T ) = 0 (3.30), minimizing the criterion (3.32)

E
(
Y − g∗T (α>X)

)2
= E

(
Y 2
)
− E

(
g∗T (α>X)

)2
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over α corresponds to maximizing E
(
g∗T (α>X)

)2
over α. In Figure 3.1, this maximization

is analogous to maximizing the squared length of the adjacent Ŷ −Ȳ 1n, i.e., ‖Ŷ −Ȳ 1n‖2, of

the right-angled triangle defined by the hypotenuse Y − Ȳ 1n. Note, the adjacent Ŷ − Ȳ 1n

is always orthogonal to the “main effect” vector Ȳ 1n.

In Figure 3.1, ‖Ŷ − Ȳ 1n‖2, corresponding to a sample version of E (g∗T )2 where g∗T

is defined in (3.33), gives the magnitude of how much the “effect” of 1 (i.e., the simple

averaging) gets modified by T (i.e., the T -specific averaging), hence it quantifies the intensity

of the interaction effect between T and 1. Analogously, in our problem with covariates X,

the quantity E
(
g∗T (α>X)

)2
gives the magnitude of the interaction effect between T and the

single-index α>X, which is to be maximized over (α, g∗t , t ∈ {1, . . . ,K}) subject to (3.30).

This can be achieved by optimizing (3.32) subject to (3.30).

This maximization corresponds to optimizing the space of functions defined on (α>X,T )

that is represented by the blue plane in Figure 3.1, by choosing an optimal α that gives the

minimal angle θ formed by the hypotenuse Y − Ȳ 1n and the adjacent Ŷ − Ȳ 1n (i.e., the

two dashed lines in Figure 3.1); or equivalently, maximizing the cosine of the angle θ, i.e.,

maximizing ‖Ŷ − Ȳ 1n‖2.

The two dashed lines in Figure 3.1 represent Ŷ − Ȳ 1n and Y − Ȳ 1n, corresponding to

the fitted (Ŷ ) and the observed (Y ) vector, respectively, centered by the intercept vector

(Ȳ 1n). Without the centering by the intercept, there is no orthogonal sum of squares

decomposition

‖Y − Ȳ 1n‖2 = ‖Y − Ŷ ‖2 + ‖Ŷ − Ȳ 1n‖2, (3.34)

in which the second component ‖Ŷ − Ȳ 1n‖2 quantifies the T -by-1 interaction effect. Analo-

gously, in orthogonalization (3.29), the “shifting” component g0(α>X)
(

=
∑K

t=1 πtgt(α
>X)

)
plays the role of an “intercept”. Centered by g0(α>X) gives the following orthogonal de-

composition, for any set of smooth functions gt, t ∈ {1, . . . ,K}

E
(
Y − µ(X)− g0(α>X)

)2
= E

(
Y − µ(X)− gT (α>X)

)2
+ E

(
gT (α>X)− g0(α>X)

)2
,

(3.35)

in which the second component E
(
g∗T (α>X)

)2 (
= E

(
gT (α>X)− g0(α>X)

)2 )
quantifies

the T -by-α>X interaction effect, which is to be maximized over gT and α, subject to some

identifiability condition.
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Finally, if we consider a single-index model (SIM)

E(Y | X,T = t) = E(Y | X) = g0(α>X) (3.36)

that is defined regardless of the treatment indicator T , then the SIM (3.36) is nested within

the SIMML (3.1), with restriction g1 = · · · = gK(= g0). Solving (3.7) for α corresponds

to choosing α that maximizes the deviance (e.g., [Nelder and Wedderburn, 1972]) between

the unconstrained SIMML (3.1) and the SIM (3.36), in which the both two models are

separately optimized under the least squares criterion, for each fixed α. It follows that

maximizing E
(
gT (α>X)− g0(α>X)

)2
in (3.35) over α leads to maximizing over α the

L2 distance (the deviance, if we consider a Gaussian response), between the unconstrained

SIMML (3.1) that permits T -by-X interactions versus the restricted SIM (3.36) that does

not permit any interactions.

3.6 Simulation examples

In this section, we performed numerical studies to illustrate the performance of the proposed

approach for estimating the SIMML and constructing associated ITRs.

3.6.1 Estimation criterion illustration

For the purpose of illustration, we first considered a simple case of p = 2 and K = 2. We

generated Xi = (xi1, xi2)> from the independent bivariate Gaussian with unit variances

and zero correlation. For the simulation set “A”, we considered a highly nonlinear (a

cosine function) contrast. We generated the outcomes Yi = µ(Xi) + gTi(α
>Xi) + εi with

εi ∼ N (0, 0.22), i = 1, . . . , n, where we set

µ(Xi) = δ cos(µ>Xi)

gTi(α
>Xi) = Ti

(
cos(α>Xi)− 0.5

)
,

(3.37)

where Ti takes a value in {−1, 1} with equal probability 0.5, independently generated of

Xi. For the simulation set “B”, we considered a moderately nonlinear contrast. In (3.37),

we took gTi(α
>Xi) = Ti

(
sin(α>Xi)−α>Xi

)
. Since the function sin(u) can be well ap-

proximated by u near 0, this setting gave an almost linear contrast. In the both settings,
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n = 200. In generating the outcomes, there were two components: µ>X and α>X. α>X

was a single-index associated with the T -by-X interactions, whereas µ>X was a single-

index associated with the main effects, hence, µ>X was a “nuisance” component. We set

α := (1, 1)>/
√

2 and µ := (−1, 1)>/
√

2. In (3.37), δ ∈ {1, 3, 5} was the main effect intensity

parameter that controlled the contribution of µ(X) on the variance of Y . With the inten-

sity parameter δ = 1, δ = 3, and δ = 5, the contribution from the main effect µ(X) to the

variance of Y was about 1, 8, and 20 times larger than that from gT (α>X), respectively,

under the setting (3.37).

In this simulation example, the “constrained SIMML” refers to the SIMML that uses

the criterion (3.7), and the “näıve SIMML” refers to the SIMML that uses (3.7) but with-

out the “orthogonality” constraint ET (gT ) = 0. The näıve SIMML criterion corresponds

to the profile likelihood criterion (2.7). For comparison, we included the least squares cri-

terion of the MCA model (3.3). A main effect augmentation with the linear regression was

implemented and regressed out before evaluating the least squares criterion.

If Cartesian coordinates are transformed into polar coordinates, then any vector (c1, c2)>

on the unit (i.e., radius 1) half circle can be represented by a single parameter θ ∈ [0, π],

where θ is the angle in radians in polar coordinates. For the purposes of visualization we

will express the vectors α and µ in polar coordinates, so α gets mapped to θ1 = π/4 and

µ gets mapped to θ2 = 3π/4.

We simulated 200 datasets under the above described setups, and averaged the values of

the empirical version of the criterion function of the constrained SIMML, the näıve SIMML,

and the MCA, respectively, for each value of θ ∈ [0, π] (evaluated on a dense grid). Then

each of the averaged criterion functions were scaled to have height 1. In Figure 3.2, the

resulting averaged criterion functions are displayed for the simulation set A.

In Figure 3.2, for all three cases of δ = 1, δ = 3, and δ = 5, the constrained SIMML

criterion had a “correct” global minimum at θ1 = π/4, implying that the minimization

of the criterion function would lead to correctly identifying the T -by-X interaction effect

component α. The näıve SIMML (the green dotted lines) had a correct minimum at θ1 =

π/4 for the case δ = 1 (i.e., when the main effect is relatively small), however, as the

main effect intensity parameter increased from δ = 1 to δ = 3 and to δ = 5, the criterion
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Figure 3.2: The empirical mean squared error criterion of the constrained SIMML, the näıve

SIMML, and the MCA, respectively, averaged over 200 simulated datasets, for simulation

set A. The vector α corresponds to the angle θ1 = π/4, and the “nuisance” vector µ

corresponds to the angle θ2 = 3π/4. The grey dashed vertical line indicates the angle θ1,

corresponding to α, and the grey dotted vertical line indicates θ2, corresponding to µ.
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Figure 3.3: The empirical mean squared error criterion of the constrained SIMML, the näıve

SIMML, and the MCA, respectively, averaged over 200 simulated datasets, for simulation

set B. The vector α corresponds to the angle θ1 = π/4, and the “nuisance” vector µ

corresponds to the angle θ2 = 3π/4. The grey dashed vertical line indicates the angle θ1,

corresponding to α, and the grey vertical dotted line indicates θ2, corresponding to µ.
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function took its global minimum at the nuisance component θ2 = 3π/4, implying that the

minimization of the näıve SIMML criterion would lead to an estimate of α of SIMML (2.2)

that looks more like the “nuisance” vector µ, which would not be informative in developing

ITRs. Under the highly nonlinear contrast, we note that the MCA criterion function did

not provide a good prescriptive information in developing ITRs, as it behaved similarly to

the näıve SIMML criterion.

In Figure 3.3, the results of the simulation set B are illustrated, where we investigated the

estimation criterion comparison under a moderate nonlinear contrast. As in the simulation

set A, the constrained SIMML criterion took a “correct” global minimum at θ1 = π/4 for

all three cases of δ = 1, δ = 3, and δ = 5. On the other hand, the näıve SIMML had its

global minimum at the nuisance component θ2 = 3π/4, when δ = 3 or δ = 5 (i.e., when the

main effect dominated the interaction effect). Since the contrast function gT was almost

linear in this simulation setting, the squared error criterion of the MCA behaved similarly

to the constrained SIMML criterion function, and took its global minimum near θ1 = π/4,

in all cases.

The results indicate that when a large main effect is present, it is essential to impose

the “orthogonality” constraint when fitting the SIMML in order to capture the interaction-

related variabilities.

3.6.2 ITR performance for K = 2 case

In this subsection and the next, we compared the performance of ITRs obtained from several

methods. We note that regularization to deal with potential high dimensionality of X was

not considered in this chapter. Methods with regularization will be considered in Chapter

4. We restricted our attention to ITRs of the form, D(X) = arg max
t∈{1,...,K}

E (Y | X,T = t),

where E (Y | X,T ) was obtained by the following approaches:

SIMML Estimate the SIMML (3.6) subject to (3.5) (i.e., the constrained SIMML). An

initial estimate for α was obtained by the MCA (3.3) for the case K = 2, and by the

linear GEM (3.26) for the case K = 3. The link function was approximated by cubic

B-splines, with smoothing parameters selected by minimizing the generalized cross

validation (GCV).
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MCA Estimate the modified covariates model with efficiency augmentation (3.3) ([Tian et

al., 2014]). Model (3.3) was fitted by the ordinary least squares (OLS) for estimating

interactions. Augmentation of main effect, µ(X) = µ>X, was utilized, fitted by OLS.

MCA is applicable only for K = 2, therefore considered only in the case of K = 2.

L.GEM Estimate the linear GEM model (3.26) as described in Section 3.5.3. The linear

GEM is equivalent to the MCA in the population level when K = 2, therefore reported

only for K > 2.

K.AM For each of the K groups separately, estimate an additive model (AM) ([Hastie and

Tibshirani, 1999]), where the nonparametrically-defined component functions were

approximated by cubic B-splines, with smoothing parameters selected by minimizing

GCV.

K.LR For each of the K groups separately, estimate a linear regression (LR) model by

OLS.

In this section and the next, the performance measure for an estimated ITR D was the

proportion of correct decisions (PCD) of D. Since we know the true data generating model

for each simulation setting, we can calculate the PCD for each of the estimation methods,

given each scenario. This measure was calculated from an independent testing set of size

n = 10000.

In this section, we considered a relatively low dimensional X, i.e., p ∈ {5, 10}, since

we did not consider regularizations, with a varying sample size n ∈ {200, 400}. As in the

settings of Section 3.6.1, we generated the treatments Ti and the outcomes Yi = µ(Xi) +

gTi(α
>Xi) + εi with εi ∼ N (0, 0.22). We considered two cases for the treatment-specific

link function gT (ν): (1) a nonlinear contrast function gT (ν) = (cos(ν) − 0.5)T that gave

nonlinear T -by-X interaction effect, and (2) a linear contrast function gT (ν) = 0.5νT that

gave a linear T -by-X interaction effect, respectively.

For the main effect, we took µ(X) = δ cos(µ>X). The scaling parameter δ, taken at

either δ = 1 or δ = 2, controlled the intensity of the main effect, representing a relatively

small main effect case (about the same variance as the interaction effect) and a relatively

large main effect case (about 3 times larger variance than that of the interaction effect),



CHAPTER 3. A CONSTRAINED SINGLE-INDEX MODEL WITH
MULTIPLE-LINKS FOR INTERACTIONS 48

0.4

0.6

0.8

1.0

1 2

δ

P
C

D

n= 200, p= 5

0.4

0.6

0.8

1.0

1 2

δ

 

n= 400, p= 5

0.4

0.6

0.8

1.0

1 2

δ

 

n= 200, p= 10

0.4

0.6

0.8

1.0

1 2

δ

 

n= 400, p= 10

Method

SIMML

MCA

K.AM

K.LR

Nonlinear contrast

0.4

0.6

0.8

1.0

1 2

δ

P
C

D

n= 200, p= 5

0.4

0.6

0.8

1.0

1 2

δ

 

n= 400, p= 5

0.4

0.6

0.8

1.0

1 2

δ

 

n= 200, p= 10

0.4

0.6

0.8

1.0

1 2

δ

 

n= 400, p= 10

Method

SIMML

MCA

K.AM

K.LR

Linear contrast

Figure 3.4: Top panels: boxplots of the PCDs of the ITRs estimated from the four methods

(SIMML, MCA, K.AM, and K.LR) for the nonlinear contrast case. Lower panels: boxplots

of the PCDs of the ITRs for the linear contrast case. For each case, n ∈ {200, 400} and

p ∈ {5, 10} were considered.



CHAPTER 3. A CONSTRAINED SINGLE-INDEX MODEL WITH
MULTIPLE-LINKS FOR INTERACTIONS 49

respectively. We generated Xi ∼ N (0, Ip). For p = 5 and p = 10, we set α = (1, 2, 3, 4, 5)>

and α = (−5,−4,−3,−2,−1, 1, 2, 3, 4, 5)>, each standardized to have norm one. We set µ

to be proportional to a vector of 1’s, standardized to have norm one. 200 training datasets

were simulated for each scenario.

The results from the simulations are presented in Figure 3.4. For the nonlinear contrast,

the performance of the SIMML was outstanding, particularly when n = 400 and p = 5. For

the case with n = 200 and p = 10, the SIMML exhibited relatively large variabilities,

indicating that a regularization might be necessary in estimation. Nevertheless, SIMML

generally outperformed all other alternatives in all cases. Interestingly, the method signifi-

cantly outperformed the K separate additive regressions (K.AM) which was also equipped

with a set of flexible nonparametrically defined functions to model the nonlinear associa-

tions. This was because SIMML is more parsimonious than the K separate additive models.

In addition, the SIMML estimates the interaction effects only, while the K separate additive

regressions estimate both the main and the interaction effects, hence they tends to lose their

efficiency in estimating the interaction effects given a limited sample size. Moreover, when

the main effect is not an additive structure (as in this example), the K separate additive

models suffer inconsistency in estimating the interaction effects, since the method is not

made robust to the main effect model misspecification. For the nonlinear contrast, both the

MCA and the K separate linear regressions (K.LR) were significantly outperformed by the

SIMML that utilized the unspecified link functions to estimate the nonlinear interactions,

indicating a clear benefit of fitting SIMML for estimating nonlinear interactions.

The case for the linear contrast is illustrated in the bottom panels of Figure 3.4. The

proposed SIMML gave a similar performance level as the linear model based approaches

(i.e., the MCA and K.LR) when p = 5. When p = 10, the MCA slightly outperformed the

SIMML. This is expected, since the MCA is correctly specified in the linear contrast case,

and is a special case of the SIMML but under a more parsimonious model for estimating

the interactions. However, the K separate additive models were clearly outperformed by

the MCA and K.LR in all cases, unlike the SIMML.
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3.6.3 ITR performance for K = 3 case

In this subsection, we investigated the performance of the SIMML when the number of

treatment groups K = 3. The treatments Ti that take values in {1, 2, 3} with equal prob-

ability were generated, independently of Xi. The outcomes Yi were generated as in the

settings of Section 3.6.2, except that the interaction effect component, gT (ν), was set at

{ g1(ν) = ν1(1− ν)4/B(2, 5)

g2(ν) = ν1(1− ν)1/B(2, 4)

g3(ν) = ν4(1− ν)0/B(5, 1)

, in which B(a, b) = (Γ(a)Γ(b)) /Γ(a + b) is a Beta func-

tion, and ν = F (α>X), where F was the cumulative distribution function (CDF) of a

re-scaled/centered B((p∗ + 1)/2, (p∗ + 1)/2)

F (u) =

∫ u/R

−1

Γ(p∗ + 1)

Γ {(p∗ + 1)/2}2 2p∗
(1− t2)(p∗−1)/2dt, u ∈ [−R,R], (3.38)

with p∗ denoting the number of nonzero coefficients in α. In (3.38), R was the maxi-

mum of the absolute values of {(α>Xi)
n
i=1}. We used the transformation (3.38) because

{F (α>Xi)
n
i=1} is quasi-uniformly distributed on the interval [0, 1] ([Wang and Yang, 2009]).

For the main effect, we set µ(X) = δ cos(µ>X) (as in the settings of Section 3.6.2). The

intensity parameter δ ∈ {1, 3} controlled the intensity of the main effect, representing the

relatively small (about the same variance as the interaction effect) and the relatively large

main effect (about three times larger variance than the interaction effect) cases, respectively.

We generated Xi ∼ N (0, Ip), and α and µ were set at the same as in the settings

of Section 3.6.2. In the upper panel of Figure 3.5, we illustrated the functions gT (ν),

ν ∈ [0, 1], for each T ∈ {1, 2, 3}, with n = 200 data points generated from the model under

δ = 0 and p = 5. In the bottom panels of Figure 3.5, we displayed the boxplots of the

PCDs of the ITRs estimated from the 4 different methods (SIMML, L.GEM, K.AM, and

K.LR) (described in the beginning of Section 3.6.2), for each combination of n ∈ {200, 400},

p ∈ {5, 10} and δ ∈ {1, 3}.

The boxplots indicated that the proposed SIMML outperformed all other methods, in

all cases. We note that the K separate additive regressions (K.AM) and the K separate

linear regressions (K.LR) performed very badly when n = 200 and p = 10 particularly in

the presence of a large main effect (i.e., when δ = 3). These K separate regression methods
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Figure 3.5: Upper panel: illustration of gt(ν), t ∈ {1, 2, 3}, with simulated data points under

δ = 0. Lower panels: boxplots of the PCDs of the ITRs estimated from the four different

methods (SIMML, L.GEM, L.AM, and K.LR) applied to 200 simulated datasets, for each

combination of n ∈ {200, 400}, p ∈ {5, 10} and δ ∈ {1, 3}.
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lack parsimony and interpretability, especially when K > 2, in comparison to the SIMML

and the linear GEM method that estimate a single projection α>X, as opposed to the K

separate projections. Moreover, the K separate regressions are generally not robust to the

main effect misspecification. For this reason, when the main effect intensity increased, the

K separate approaches hardly captured the T -by-X interaction-related variabilities useful

for developing ITRs, resulting in a low-performing ITR in comparison to the SIMML.

3.7 Discussion

In this chapter, we presented a semiparametric regression model that uses a set of treatment-

specific unspecified link functions defined on a single projection α>X, specifically intended

to model the interaction effect between the treatment and a number of pretreatment pre-

dictors. The GEM models ([Petkova et al., 2016]) and the MCA ([Tian et al., 2014])

provide useful approaches to making ITRs by estimating an optimal linear combination of

pretreatment predictors, under a linear model framework. In this chapter we proposed a

semiparametric framework to model the interaction effect by estimating nonparametrically-

defined treatment-specific link functions connected to a linear predictor α>X, without the

need to specify the form of the main effect. This method is a special class of the projection

pursuit regression ([Friedman and Stuetzle, 1981]), in which the “pursuit” of a linear pro-

jection α>X is driven by optimizing the intensity of the interaction effect. The approach

can be viewed as a general strategy of estimating possibly nonlinear interactions between

a categorical variable and a possibly high dimensional vector-valued predictor on the out-

comes, if an appropriate regularization to deal with the potential high dimensionality is

employed. Such regularization method is described in Chapter 4.
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Chapter 4

A Sparse constrained single-index

model with multiple-links

4.1 Introduction

The search of biosignatures for treatment response that predict differential response to

different treatment has been an active research topic. In a regression model for treatment

outcome in a RCT, a treatment effect modifier is a covariate that has an interaction with

the treatment indicator, implying that the treatment efficacies vary across values of such

a covariate. Identification of such treatment effect modifiers that act as biosignatures of

differential treatment response is crucial, as we move toward developing ITRs based on

measurements made when a patient presents for treatment.

However, one challenging aspect of constructing ITRs from a RCT dataset is that there is

relatively little clinical guidance on which baseline predictors might indicate better response

to one treatment versus another, i.e., which predictors are “prescriptive” for assigning treat-

ments. Identification of effective treatment effect modifiers from those individual baseline

characteristics would help make better patient-specific treatment decisions. The primary

aim of this chapter is to develop a methodology to select useful pretreatment measurements

(i.e., treatment effect modifiers) from a potentially large number of baseline features, that

will help predict patient response to treatment, and develop ITRs that will assign the treat-

ment that is best for each patient. We will base our treatment effect modifier selection
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method on the constrained SIMML model (3.6), developed in Chapter 3. Estimating the

SIMML (3.6) in a high-dimensional covariate space is likely to cause problems of overfitting.

In this chapter we will employ an appropriate L1 regularization that can avoid overfitting

of the model, as well as can achieve simultaneous treatment effect modifier selection by

obtaining a sparse estimate of α in (3.6).

4.2 Treatment effect modifier selection

Although the SIMML formulation is a flexible and useful approach to estimating the

treatment-by-X interactions, one shortcoming is that the linear projection α>X is defined

in terms of all the predictors in the model, i.e., model (3.6) forces all the predictors play a

role in building an interaction term. However, there are often many pretreatment variables

that may or may not be useful in constructing an optimal ITR. In such case, it would be

advantageous to have a method that selects important predictors. Therefore, there is a

need to develop an algorithm for treatment effect modifier selection.

It could be initially thought that such simultaneous treatment effect modifier selection

could be easily performed, for example, using a L1 penalized least squares for estimating α,

as in the standard linear regression context (e.g., [Qian and Murphy, 2011]). However, only

limited research has been conducted to extend the single index models to a high dimensional

situation. This is mainly due to the nonconvexity of the sum of squared error function with

respect to the single-index coefficient α, which complicates the estimation of a single index

model as well as establishing theoretical properties of the estimators ([Radchanko, 2015]).

[Wang and Yin, 2008] proposed an approach that introduces L1 regularization into the

minimum average variance estimation (MAVE) method of [Xia et al., 2002], however, it

is limited to a relatively low dimensional setting. For other examples, [Peng and Huang,

2011] estimate the single-index model by minimizing a penalized least squares criterion,

performing simultaneous predictor selection, [Zhu et al., 2011] use the adaptive lasso with

kernel smoothing, and [Wang and Wang, 2015] use the smoothly clipped absolute deviation

(SCAD) ([Fan and Li, 2001]) penalization under diverging number of parameters. However,

[Radchanko, 2015] noted that such penalization approaches may be problematic in high-
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dimensional situations due to the non-convexity of the sum of squared error function.

4.2.1 A constrained L1 regularization

Even if we fix ĝT at the true link function gT , the residual sum of squares function in

(3.13) is not a convex function of the coefficient α. Such non-convexity is particularly

problematic for performing a penalized estimation to regulate α. If we add a L1 penalty,

say pλ(α) = λ‖α‖1, to the residual sum of squares
∑n

i=1

(
Yi − ĝTi(α>Xi)

)2
, then, due to

the non-convexity of the residual sum of squares, the solution path of α is generally not a

continuous function of λ. For this reason, selecting an appropriate tuning parameter λ > 0

becomes extremely difficult.

However, [Radchanko, 2015] proposed a constrained L1 regularization approach that

handles such tuning parameter selection problem, which we will employ in estimating the

SIMML (3.6). At the initialization step of the estimation, let us first compute component

index, â

â = arg min
l∈{1,...,p}

n∑
i=1

(
Yi − ĝTi(e>l Xi)

)2
, (4.1)

in which el = [0, . . . , 1, . . . , 0]> ∈ Rp, where the lth component equals 1, and all other com-

ponents equal 0 for l = 1, . . . , p (i.e., the canonical basis of Rp). In (4.1), ĝt, t ∈ {1, . . . ,K},

are (nonparametric) estimates of gT in (3.9), with α = el, l = 1, . . . , p. Then â is compo-

nent index that corresponds to the estimated best “signal” treatment effect modifier among

the p predictors. (4.1) is a convex optimization problem. It is suggested in [Radchanko,

2015] to fix the âth component of α at 1 throughout the estimation procedure, i.e., fixing

αâ = 1, to be used as the model identifiability constraint, instead of using the second line

of (3.13), i.e., ‖α‖ = 1 with α1 > 0 for the identifiability constraint. Provided that the

best individual treatment effect modifier (4.1) exists, these two identifiability constraints

are equivalent.

It is suggested in [Radchanko, 2015] that the L1 norm of α, ‖α‖1, say, λ ≥ 1, be used

as the sparsity tuning parameter for α. From λ = 1 at the beginning (the sparsest case) of

the algorithm to some λ = λmax > 1, the L1 norm ‖α‖1 = λ can be increased gradually on

a dense grid of [1, λmax]. For each given λ ∈ [1, λmax], it is suggested to solve a constrained
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minimization problem, subject to the L1 equality constraint, ‖α‖1 = λ, i.e.,

minimize
α

n∑
i=1

(
Yi − ĝTi(α>Xi)

)2 (
= ‖Y − ĝα‖2

)
,

subject to ‖α‖1 = λ,

(4.2)

in which ĝt, t ∈ {1, . . . ,K}, are (nonparametric) estimates of gT in (3.9) for each α. It is

verified in [Radchanko, 2015] that solving the (L1 equality constraint) optimization problem

(4.2) for each and every λ ∈ [1, λmax] constructs a solution path of α that is continuous as

a function of λ ∈ [1, λmax]. Therefore, the sparsity parameter λ can be reliably selected, for

example, by minimizing the Akaike information criterion (AIC), the Bayesian information

criterion (BIC), or cross-validated prediction error.

Say, ε > 0 is a small number. For each given λ, the last computed α with ‖α‖1 = λ− ε

can be used as s warm start in the search for the next one. Due to the continuity of the L1

norm function ‖·‖1, this search only needs to be conducted locally near the last computed

α. Therefore a local (quadratic) approximation to the objective function in (4.2) near the

last computed solution can be justified ([Radchanko, 2015]). This approach constructs a se-

quence of locally approximated convex objective functions near the last computed solutions,

bypassing the issue of the noncontinuity of α with respect to λ. The success of iterative

algorithms depends on the initialization, i.e., solving (4.1). Due to the L1 norm constraint

‖α‖1 = λ in (4.2), we will implement a block coordinate descent (BCD) for solving (4.2),

describe in Section 4.2.2.

4.2.2 Algorithm for treatment effect modifier selection

The sparsity parameter λ ≥ 1 will be increased from 1 to next values, say, λ+ ε, on a dense

grid in [1, λmax]. At each new λ+ ε, BCD can be performed to solve (4.2). This constructs

a continuous path of solutions, α(λ)’s, as a function of (increasing) λ. Following closely

[Radchanko, 2015], the BCD algorithm for solving (4.2) for each given λ+ ε is presented in

the following.



CHAPTER 4. A SPARSE CONSTRAINED SINGLE-INDEX MODEL WITH
MULTIPLE-LINKS 57

Algorithm 3 Block-coordinate descent for optimizing α subject to ‖α‖1 = λ+ ε, ε > 0

1: Given: an initial estimate α(0) ∈ Rp and â in (4.1)

2: Calculate ∇ (3.17) at α(0), and L← arg maxj∈{1,...,p}\â|∇j |.

3: Define A = {â, L} ∪ {indices of nonzero components of α(0)}.

4: Set sj = sign(αj); if sj = 0, set sj = −sign(∇j), j = 1, . . . , p.

5: αL ← αL + sLε

6: for outer loop until convergence do

7: L← arg maxj∈A\â|αj |.

8: for inner loop j ∈ {A \ {â, L}} do the (j, L)-block coordinate update:

9: if αj 6= 0 or (sj∇j ≤ 0 & |∇j | ≥ |∇L|) then αj ← αj + ∆j , with ∆j in (4.3).

10: else ∆j ← 0.

11: if αj switches sign then ∆j ← ∆j − αj and αj ← 0.

12: αL ← αL + ∆L.

13: if αL switches sign then αj ← αj + |αL|sj and αL ← 0.

14: end for

15: end for

16: Calculate ∇ (3.17) at α, and re-define sj , j = 1, . . . , p.

17: if ∃l ∈ Ac for which |∇l| ≥ |∇L| then augment A with l, and repeat the above steps.

If we increase the tuning parameter λ to the next point on the grid, λ(new) = λ + ε,

ε > 0, then the magnitude of some coefficients of α needs to be increased from their current

values to ensure the new L1 norm constraint ‖α‖1 = λ + ε is satisfied. Let L(6= â) denote

the component index of the gradient ∇ defined in (3.17) that corresponds to the largest

absolute value. Without loss of generality, the increment ε can be brought to the Lth

component, αL, i.e., αL ← αL + sLε, where the sign, sL, is the opposite of the sign of

the Lth component of the gradient, −sign(∇L), so that the change reduces the criterion

function of (4.2).

It is suggested in [Radchanko, 2015] to use a block of size two that consists of {j, L},

where L is fixed for each outer loop, for performing the BCD. The algorithm cycles through

the inner loop that optimizes individual blocks, until convergence of the outer loop. Within
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each block, a situation where a coefficient crosses zero is handled by setting that coefficient

to exactly zero and correspondingly updating the other coefficient in the block. Here,

we present an expression of ∆j for the jth block’s updating rule (see the Appendix for

derivation), which is

∆j =
− (∇j − SjL∇L)

‖ĝ′α ∗ (Xj − SjLXL)‖2
, (4.3)

where SjL := sign(αLαj) − sign(αL∇j)I{αj=0}. To explain SjL, it indicates the sign of

αLαj , but, when αj = 0, the “sign” of αj is the sign of −∇j . The value of ∆L is determined

through the relationship

∆L = −∆jSjL, (4.4)

which makes the L1 norm preserved (at ‖α‖1 = λ+ ε) for each within-block update.

4.3 Simulation examples

In Section 4.3.1 and Section 4.3.2, we performed numerical studies to illustrate the perfor-

mance of the ITRs obtained from the SIMML with L1 regularization, and were compared

to several other alternatives, in a relatively high dimensional predictor space setting. In

Section 4.3.3, we compared the treatment effect modifier selection performance of the L1

regularized SIMML with the MCA.

4.3.1 ITR performance for K = 2 case

We first considered the case with the number of treatment groups K = 2. To simulate

the data, we used the same settings as in Section 3.6.2, except that we increased the

dimensionality of X, to relatively high dimensions p = 100 and p = 200. When estimating

the ITRs, each of the methods considered was equipped with an appropriate regularization

to deal with the high dimensionality, as described in the following.

SIMML Fit the constrained SIMML (3.2), estimated by the constrained L1 regularization

procedure described in Section 4.2.2, with the sparsity parameter λ selected by min-

imizing the AIC. The link gT was approximated by cubic B-splines, with smoothing

parameters selected by minimizing the GCV. An initial estimate for α was obtained
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by the MCA (3.3) for the case K = 2, and by the linear GEM (3.26) for the case

K = 3, both estimated via the Lasso, as described below.

MCA Estimate the modified covariates model (3.3) with efficiency augmentation ([Tian

et al., 2014]). Model (3.3) was fitted by the Lasso with a 10-fold cross validation for

estimating interactions. Augmentation of main effect, µ(X) = µ>X, was utilized,

fitted by the Lasso with a 10-fold cross validation. MCA is applicable only for K = 2,

therefore considered in the case of K = 2 only.

L.GEM Estimate the linear GEM model (3.26) as described in Section 3.5.3, where a

Lasso penalized linear regression with a 10-fold cross validation was performed to

estimate the linear model coefficients βt, based on observations from the tth treatment

group. The linear GEM is equivalent to the MCA in the population level when K = 2,

therefore reported only for K > 2.

K.AM For each of the K groups separately, estimate a sparse additive model (SAM)

([Ravikumar et al., 2009]), where the nonparametrically-defined component functions

were approximated by cubic B-splines, with smoothing parameters selected by mini-

mizing the GCV. The sparsity parameter was selected by minimizing the AIC.

K.LR For each of the K groups separately, estimate a linear regression (LR) model by

the Lasso with a 10-fold cross validation.

The data generation settings are the same as in the settings of Section 3.6.2, ex-

cept that we considered sparse α and µ. We set α = (1, 0.5, 0.25, 0.125︸ ︷︷ ︸
4 nonzeros

, 0, . . . , 0︸ ︷︷ ︸
p−4

)>, and

µ = (0, . . . , 0︸ ︷︷ ︸
p−4

, 1, 0.5, 0.25, 0.125︸ ︷︷ ︸
4 nonzeros

)>, thus there were only 4 “signal” predictors that exhibited

interactions with the treatment T .

In Figure 4.1, we present the boxplots of the PCDs (computed from testing datasets) of

the estimated ITRs for each combination of n ∈ {200, 400}, p ∈ {100, 200}, and the main

effect intensity δ ∈ {1, 2}, obtained from 200 simulation runs, for the nonlinear contrast

cases in the top panels and the linear contrast cases in the bottom panels. Under the linear

contrast functions, the MCA slightly outperformed the SIMML approach. This is expected,
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Figure 4.1: Top panels: boxplots of the PCDs of the ITRs estimated from the four methods

(SIMML, MCA, K.AM, and K.LR) for the nonlinear contrast case. Lower panels: boxplots

of the PCDs of the ITRs for the linear contrast case. For each case, n ∈ {200, 400},

p ∈ {100, 200}, and δ ∈ {1, 2} were considered.
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since the MCA is correctly specified in the linear contrast case, and is a special case of the

SIMML but under a more parsimonious model for estimating the T -by-X interactions on

the outcome. However, when the contrast functions became nonlinear, the performance of

the MCA sharply deteriorated, which was in contrast to the performance of the SIMML.

For the nonlinear contrast, the performance of the SIMML was outstanding in all cases.

On the other hand, the benefit of fitting the MCA and the K separate linear regression

(K.LR) was small in all cases. The K separate (sparse) additive models (K.AM) performed

reasonably well in comparison to the MCA and K.LR for the nonlinear contrast, however,

was significantly outperformed by the SIMML, particularly when the main effect intensity

increased to δ = 2.

4.3.2 ITR performance for K = 3 case

In this section, we considered K = 3. To generate data, we used the same settings as in

the settings of Section 3.6.3, except that we increased the number of predicdtors to p = 100

and p = 200. α and µ were set at the same as in the settings of Section 4.3.1, thus there

were only 4 “signal” predictors associated with the nonzero coefficients of α, interacting

with the treatment indicator T ∈ {1, 2, 3} in their effects on the outcome. In Figure 4.2, we

displayed the boxplots of the PCDs (computed from testing datasets) obtained from 200

simulation runs, for the estimated ITRs from the 4 different methods (SIMML, L.GEM,

K.AM, and K.LR) (described in the beginning of Section 4.3.1), for each n ∈ {200, 400},

p ∈ {100, 200} and δ ∈ {1, 3}.

When K ≥ 3, separately estimating E(Y | X,T = t) for each group t ∈ {1, . . . ,K} is

a typical approach of modeling the T -by-X interactions. However, when the main effect

intensity increases from δ = 1 to δ = 3, due to the large main effect variance, these

K separate regression approaches tend to focus more on modeling the main effect of X

missing important T -by-X interaction effect-related variabilities. On the other hand, the

SIMML models the interaction effect only. As a result, in Figure 4.2, although the increased

magnitude of the main effect affected the performance of all methods, it had least effect

for the SIMML, and bigger effect for the K separate regression approaches. Moreover, the

SIMML is a more parsimonious model than the K separate regression models, that provides
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Figure 4.2: Boxplots of the PCDs of the ITRs estimated from the four methods (SIMML,

L.GEM, K.AM, and K.LR), for each combination of n ∈ {200, 400}, p ∈ {100, 200}, and

δ ∈ {1, 3}, obtained from 200 simulated runs.

a superior interpretability.

4.3.3 Treatment effect modifier selection performance

In this section, we compare the performance of the SIMML and the MCA, in terms of

the treatment effect modifier selection performance. Here, we report the results from the

simulation example of Section 4.3.1, in which we computed the average number of correctly

(C.) selected treatment effect modifiers (i.e., the true positives), and the average number

of incorrectly (I.C.) selected treatment effect modifiers (i.e., the false positives), averaged

out of the 200 simulation runs. The maximum possible number for the true positives was

4. The maximum possible number for the false positives was 96 for the p = 100 case and

196 for the p = 200 case. The selection performance results are presented in Table 4.1.

Not surprisingly, the cases with the nonlinear contrast was much more favorable to the

SIMML in comparison to the MCA. In Table 4.1, the SIMML tended to correctly select the

true 4 treatment effect modifiers, while the MCA selected almost 0 true treatment effect

modifiers. The cases with the linear contrast, on the other hand, was slightly more favorable

to the MCA than to the SIMML, however, their performance levels were quite comparable.

In fact, although the averaged numbers of correctly selected treatment effect modifiers (C.)

were slightly larger for the MCA, the average numbers of incorrectly selected treatment

effect modifiers (I.C.) were actually small for the SIMML. Generally, due to the increasing
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Contrast Main Eff. n Avg. number

shape intensity p = 100 p = 200

C. (max.4) I.C. (max.96) C. (max. 4) I.C. (max.196)

SIMML MCA SIMML MCA SIMML MCA SIMML MCA

Nonlinear Small 200 3.31 0.17 6.27 3.01 3.20 0.15 7.53 5.39

400 3.78 0.18 7.61 3.35 3.60 0.16 8.79 4.24

Large 200 1.98 0.18 5.04 3.22 1.70 0.09 5.65 4.89

400 3.00 0.17 6.12 3.17 2.71 0.09 6.90 3.32

Linear Small 200 3.15 3.32 6.35 11.34 2.93 3.15 7.01 14.81

400 3.66 3.72 7.43 12.83 3.44 3.56 7.93 14.39

Large 200 2.07 2.32 6.10 10.39 2.07 2.32 6.10 10.39

400 2.75 2.96 5.78 10.95 2.61 2.82 5.97 11.80

Table 4.1: Comparison of the treatment effect modifier selection performance of the SIMML

and the MCA. The averaged number of correctly (C.) selected treatment effect modifiers

and incorrectly (I.C.) selected treatment effect modifiers, averaged out of 200 simulation

runs, are reported. Superior performances are indicated in bold-faced.

variabilities that were not related to the treatment (i.e., the “noise” variabilities), the main

effect intensity affected the treatment effect modifier selection performance. However, as

the sample size increased, the SIMML tended to recover the true treatment effect modifiers,

while the MCA did not recover for the nonlinear contrast. Overall, there was a clear

advantage of utilizing the flexible link functions for discovery of treatment effect modifiers

when there was a nonlinear association between the treatment and a set of covariates, while

the performance level of the MCA and the SIMML was similar when the interaction effect

was linear.

4.4 Application: Depression RCT

In this section, we illustrate the utility of the constrained SIMML for estimating interactions

on a real dataset. We considered a dataset from a RCT comparing an antidepressant (t = 2)

and placebo (t = 1) (i.e., the number of treatments K = 2) for treating major depressive

disorder (MDD), with a primary focus on the discovery of baseline clinical characteristics
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that potentially modify the effect of treatment for the MDD patients. In order to develop

an ITR, the treatment-by-baseline predictors interactions need to be estimated. In many

psychiatric diseases, simple moderators have already been discovered if there were any, and

most patient characteristics at best have a weak moderating treatment effect. Therefore, the

proposed approach of creating a composite baseline predictor (i.e., a single-index) that could

exhibit stronger (nonlinear) interaction effects with the treatment could be particularly

appealing.

Of the 166 subjects, 88 were randomized to placebo and 78 to drug. Some pretreat-

ment clinical characteristics were collected, including: (i) current patient age; (ii) sex; (iii)

severity of depressive symptoms measured by the Hamilton Rating Scale for Depression

(HRSD); (iv) duration of the current major depressive episode (MDE); and (v) age of onset

of first MDE. In addition to those more standard clinical assessments, patients underwent

neuropsychiatric testing prior to treatments. Patients were tested on the following tasks:

Flanker [Flanker and Eriksen, 1974], Choice reaction time (CRT) [Deary et al., 2011], Word

Fluency (WF) [Loonstra et al., 2001], A not B working memory (AnotB) [Herrera-Guzman

et al., 2009] and several others. The purpose of these tests was to assess psychomotor slow-

ing, working memory, reaction time (RT) and cognitive control (e.g., post-error recovery), as

these behavioral characteristics were believed to correspond to biological phenotypes related

to response to antidepressants. Table 4.2 displays the means and the standard deviations

of the p = 22 baseline patient characteristics that were considered. The outcome Y was the

improvement in symptoms severity (assessed by the HRSD scores) from baseline to week 8

taken as the difference (week 0 - week 8), and thus larger values of the outcome were better.

The estimated coefficients α obtained from the MCA under the efficiency augmentation

with a linear model µ>X, estimated via the Lasso with a 10 fold cross validation, and the

α estimated from the proposed SIMML approach are presented in Table 4.2.

In the upper panel of Figure 4.3, we plotted the outcomes against the projection α̂>X,

in which α̂ was estimated from the SIMML under L1 regularization, and an estimated pair

of the treatment-specific B-spline approximated link functions ĝt, t ∈ {1, 2} were superim-

posed. As indicated in Table 4.2, the SIMML estimate α̂ had two nonzero components,

associated with the predictor x18 (“Flanker Accuracy”) and the predictor x22 (“Flanker
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(Label) Baseline Mean SIMML coef. MCA coef.

predictors (SD) L1-regul. Unregul. L1-regul. Unregul.

(x1) Age at evaluation 38.00 (13.84) 0 0.20 0 -0.11

(x2) Sex 0.64 (0.48) 0 -0.06 0 0.05

(x3) HRSD(baseline) 18.8 (4.29) 0 0.37 0 0.18

(x4) Dur. MDE 38.19 (53.17) 0 0.21 0 -0.04

(x5) Age at MDE 16.4 (6.09) 0 -0.04 0 -0.13

(x6) Family history 0.87 (0.68) 0 -0.09 0 -0.02

(x7) Fatigue 2.87 (0.39) 0 -0.01 0 -0.00

(x8) Hypersomnia 0.20 (0.40) 0 0.11 0 0.03

(x9) Axis II 3.92 (1.43) 0 -0.09 0 -0.05

(x10) Anger attack 3.00 (2.11) 0 0.02 0 -0.04

(x11) Anxiety 5.33 (1.87) 0 -0.21 0 -0.09

(x12) AnotB, RT(negative) 0.30 (2.13) 0 -0.24 0 -0.10

(x13) AnotB, RT(non-neg.) 0.32 (1.63) 0 -0.13 0 0.10

(x14) AnotB, RT(all) 0.37 (1.77) 0 0.21 0 0.06

(x15) AnotB, total correct 0.16 (0.77) 0 -0.06 0 0.06

(x16) Median choice RT 0.23 (1.45) 0 -0.10 0 -0.03

(x17) Word Fluency 37.42 (11.68) 0 -0.10 0 -0.04

(x18) Flanker Accuracy 0.22 (0.15) 0.84 -0.64 -0.78 -0.72

(x19) Flanker RT 59.51 (26.63) 0 -0.17 0 0.01

(x20) Post-conflict adjus. 0.07 (0.12) 0 0.07 0 0.03

(x21) x1 × x3 interaction 722.99 (336.70) 0 -0.12 0.59 -0.10

(x22) x1 × x18 interaction 7.93 (6.27) -0.53 0.25 0 0.59

Table 4.2: Description of p = 22 baseline predictors and the estimated L1 regular-

ized/unregularized index coefficients α from the SIMML and the MCA, respectively. All

coefficient estimates were scaled to have unit L2 norm.
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Figure 4.3: Observed values of the response variable against the estimated single-index

(= α>X) from the SIMML in the top panel, and against individual predictors, “Flanker

Accuracy”, “(Age) x (Flanker Accuracy)”, and “(Age) x (Baseline HRSD)”, from left to

right, respectively, in the bottom panels. Pairs of estimated treatment-specific B-spline

approximated link functions with the associated 95% confidence bands were overlaid; in the

top panel, the confidence bands were constructed conditioning on α.
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Accuracy”-by-“Age at evaluation” interaction). In the first two panels in the bottom row of

Figure 4.3, we display the marginal plots of the outcomes against each of these two predic-

tors. In each of the plots, an estimated pair of the treatment-specific B-spline approximated

curves were overlaid to describe the relationship with the outcomes. In the plots, although

the interaction effect between the treatment and the predictor “Flanker Accuracy” seemed

almost linear, the interaction effect between the treatment and the (“Flanker Accuracy”-

by-“Age at evaluation” interaction) exhibited substantial nonlinearities, which, if one used

only the linear regression lines to describe the relationship, then it would have been difficult

to be detected. The estimated composite treatment effect modifier α̂>X was the linear

combination (with the weights 0.84 and −0.53) of the predictor “Flanker Accuracy” and

the predictor (“Flanker Accuracy”-by-“Age at evaluation” interaction). Note, the compos-

ite treatment effect modifier α̂>X exhibited a stronger interaction effect compared to each

individual predictor marginally, as can be observed in Figure 4.3. The MCA identified the

predictor x18 (“Flanker Accuracy”) and the predictor x21 (“baseline HRSD”-by-“Age at

evaluation” interaction) as important treatment effect modifiers. The marginal plot for the

predictor(“baseline HRSD”-by-“Age at evaluation” interaction) is displayed in the bottom

right panel of Figure 4.3.

To evaluate the performance of the ITRs estimated from the SIMML and the MCA,

we randomly split the data into a training set and a testing set using a ratio of 10 to

1, replicated 500 times, each time fitting the methods on the training set and computing

the estimated value of ITR (2.22) based on the test set. In addition to the SIMML and

the MCA, we included the K separate additive models (K.AM) and the K separate linear

regression (K.LR), described in Section 4.3.1, for comparison. We also included the decision

to treat everyone with placebo (All PBO), and the decision to treat everyone with the active

drug (All DRG).

In Figure 4.4, the proposed SIMML approach, in terms of the average estimated values,

outperformed all other alternatives. In particular, the SIMML outperformed the MCA and

the K separate linear regressions, which indicated that the SIMML that employs unspecified

link functions to approximate the heterogeneous treatment effect was better suited for

developing ITRs. We also note that the SIMML has a significant interpretational advantage
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Figure 4.4: Boxplots of the values (2.22) of the ITRs estimated from the six different

approaches, obtained from the 500 randomly split testing sets. Higher values are preferred.

over the K separate regression approaches (K.AM and K.LR). The estimated single-index

α>X, as displayed in the top panel of Figure 4.3, allows visualization, and the single-

index coefficient α describes the relative importance of each predictor in characterizing the

heterogeneous treatment effect.

4.5 Discussion/Extension to a partially linear single-index

model (PLSIM) with multiple-links

We focused on the class of a dimension reduction using a single-index of the form wα(X) =

α>X ∈ R, however, more general nonlinear multiple-indices, for example, a vector-valued

function, wα(X) ∈ Rq, can also be considered, where q (i.e., multiple) indices need to be

estimated and can be utilized to model the (high dimensional) interaction effects. This

approach extends the SIMML to a multiple-index model with multiple-links (MIMML) for

estimating interactions. In the following, we consider one instance of the MIMML.

For K = 2, the SIMML model (3.2) can be extended to the context of the partially linear
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single-index models (PLSIM), by adding a modified covariate (MC) linear component in the

model. Assuming the equal probability π1 = π2 = 1/2 for the treatment assignment, we

consider the following extended SIMML model that embeds the MCA model (3.3) inside

E (Y | X,T = t) = µ(X) + β>X(−1)t/2 + gt(α
>X), t = 1, 2, (4.5)

where the unspecified link functions gt, t ∈ {1, 2}, are again subject to the constraint (3.5),

i.e.,
∑2

t=1 πtgt(α
>X) = 0, and the main effect µ(X) is completely unspecified. The interac-

tion component β>X(−1)t/2 + gt(α
>X) under the constraint (3.5) satisfies the “orthogo-

nality” condition, i.e., ET
(
β>X(−1)T /2 + gT (α>X) | X

)
= 0, that gives the orthogonality

with the unspecified main effects, making the approach robust to a potential misspecifica-

tion of any working model for µ(X). Model (4.5) is in the class of extended PLSIM ([Lian

and Liang, 2016], [Xia et al., 1999]), in which the linear term β>X(−1)t/2 and the non-

parametric term gt(α
>X) of the interaction component share the same set of predictors

X. For model identifiability of the extended PLSIM, an additional constraint, for example,

α ⊥ β ([Yuan, 2011]) is required. In the Appendix, the details of estimating the extended

SIMML (4.5) under such constraint are described.

Future work in refining and developing the proposed approach will investigate the in-

corporation of baseline functional predictors (considered in Chapter 5), and an extension

to incorporate longitudinal outcomes.
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Chapter 5

A Sparse functional additive model

with multiple-links

5.1 Introduction

In this chapter, we will develop an additive regression approach for estimating interactions

between a treatment variable and a large number of functional/scalar predictors. If the main

effect of baseline predictors is misspecified or high-dimensional (or, infinite dimensional),

any standard nonparametric or semiparametric approach for estimating the treatment-by-

predictors interactions tends to be unsatisfactory because it is prone to (possibly severe)

inconsistency and poor approximation to the true treatment-by-predictors interaction ef-

fect. This is particularly problematic for modeling the treatment-by-functional predictors

interactions, due to the infinite dimensional nature of functional predictors. The infinite

dimensionality requires some sort of dimension reduction when we formulate a model for

the main effect, which essentially involves a main effect model misspecification in a finite

sample. Thus, estimating treatment-by-predictors interactions in the context of a functional

regression is particularly challenging.

To address this issue, we will apply the methodology developed in the previous chapters

that gives the orthogonality between the main and the interaction effect components in a

regression model, and estimate the main and the interaction effect components separately.

If our interest is in interactions, we can estimate the interaction component only and no
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main effects. Again, this approach obviates the need to specify the form of the main effect

component, thus side-stepping the issue of misspecification of the main effects. Further, we

will impose a concave penalty in estimation, and the proposed estimation method will simul-

taneously select functional/scalar treatment effect modifiers that exhibit possibly nonlinear

interaction effects with the treatment indicator.

Earlier attempts to model interactions in a regression setting include modified covariate

approach ([Tian et al., 2014]). The method simply codes the treatment variable as ±0.5 and

then includes the products of this variable with each covariate in an appropriate working

mode. The [Tian et al., 2014]’s approach obviates the need to directly model the main effect

of covariates. MCA was extended to incorporate multiple functional and scalar predictors

([Ciarleglio et al., 2015b]). See also [McKeague and Qian, 2014] for a functional data-

analytic approach for developing ITRs with a functional predictor. However, these methods

are limited to parametric regression models for estimating the interactions.

In this chapter, we remove the parametric model restriction by developing an additive

regression ([Hastie and Tibshirani, 1999]) model for estimating the interactions. Specifi-

cally, we will base our method on a functional additive model (FAM) ([Fan et al., 2015]).

However, FAM will be extended to have treatment-specific multiple link functions for char-

actering the treatment-by-functional predictors interactions. The proposed functional ad-

ditive model will be optimized for the treatment-by-predictors interaction effects. A sparse

nonlinear combination of the baseline functional/scalar predictors is derived via a sparse

additive model formulation ([Ravikumar et al., 2009], [Fan et al., 2014]), and the method

achieves a simultaneous treatment effect modifier selection. The approach provides a natural

semiparametric framework for estimating interactions between the treatment and multiple

functional/scalar predictors.

5.2 Method

5.2.1 Functional additive model with multiple-links (FAMML)

We consider a RCT that consists of K treatment arms, with a scalar treatment outcome

Y . The treatment assignment variable, T , which takes a value t from the set {1, . . . ,K}, is
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assumed to be randomized to follow a discrete probability distribution, say, {π1, . . . , πK |∑K
t=1 πt = 1, πt > 0}. We consider p different baseline functional predictors, denoted by

xj(s), j = 1, . . . , p, each of them is squared integrable, defined on a compact interval, say,

[0, 1]. For convenience, we will collectively write X = {x1, . . . ,xp}. We also consider a

set of q baseline scalar predictors, written by Z = (z1, . . . , zq)
>. For notation, 〈αj ,xj〉 =∫ 1

0 αj(s)xj(s)ds, where αj(s) is a square integrable function defined on [0, 1], with ‖αj‖ = 1,

corresponding to a direction that we project xj(s) into.

We will consider a FAM ([Fan et al., 2014], [Fan et al., 2015]), equipped with treat-

ment T -specific unspecified link functions ([Park et al., 2017]) for modeling interactions, a

functional additive model with multiple-links (FAMML)

E(Y | X,Z, T ) =

p∑
j=1

(
µj(xj)︸ ︷︷ ︸
main

+ gj,T
(
〈αj ,xj〉

)︸ ︷︷ ︸
interaction

)
+

q∑
k=1

(
hk(zk)︸ ︷︷ ︸
main

+ hk,T (zk)︸ ︷︷ ︸
interaction

)
, (5.1)

with T ∈ {1, . . . ,K}, where gj,T (·) is designed to capture the nonlinear treatment T -by-xj

interaction effects, as a general smooth function of the jth functional index 〈αj ,xj〉, for each

j = 1, . . . , p. Here, the projection functions αj need to be determined. For scalar predictors,

hk,T (·) is designed to capture the nonlinear T -by-zk interaction effects, as a general smooth

function of the scalar predictor zk, for each k = 1, . . . , q. Importantly, the potentially

complicated main effect function µj(xj) is left unspecified in FAMML (5.1). Model (5.1)

provides a useful semiparametric framework to estimate the nonlinear interaction effects,

while treating the main effect component as a “nuisance” component. Without loss of

generality, we assume that the outcome Y is centered at 0 per each treatment group t ∈

{1, . . . ,K}.

With nontrivial main effects, a necessary and sufficient condition for the orthogonality

µj(xj) ⊥ gj,T
(
〈αj ,xj〉

)
, j = 1, . . . , p, a.s., and

hk(zk) ⊥ hk,T (zk), k = 1, . . . , q, a.s.,
(5.2)

between the main effect component and the interaction effect component in model (5.1) is

given by

ET
(
gj,T

(
〈αj ,xj〉

)
| xj

)
= 0, j = 1, . . . , p, a.s., and

ET (hk,T (zk) | zk) = 0, k = 1, . . . , q, a.s.,
(5.3)
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i.e., the nonparametrically-defined link functions, gj,T ’s and hk,T ’s, have mean zero with

respect to the treatment indicator T .

For model (5.1), the orthogonality (5.2) is attractive, since the main effect
∑p

j=1 µj(xj)+∑q
k=1 hk(zk), and the interaction effect

∑p
j=1 gj,T

(
〈αj ,xj〉

)
+
∑q

k=1 hk,T (zk), can be esti-

mated separately. This suggests a simpler working model than (5.1), using the interaction

components only and no main effects, if our interest is in estimating interactions

E(Y | X,Z, T ) =

p∑
j=1

gj,T
(
〈αj ,xj〉

)
+

q∑
k=1

hk,T (zk), (5.4)

where gj,T
(
〈αj ,xj〉

)
’s and hk,T (zk)’s are constrained by (5.3) to give the orthogonality (5.2).

Working with model (5.4) under (5.3) is appealing, since we do not have to specify the form

of the main effects, side-stepping the issues with misspecification of µj(xj), a potentially

complicated function.

To deal with a large number of p and q, we can seek a further structure on model (5.4),

with the following reparametrization

E(Y | X,Z, T ) =

p∑
j=1

βjg
∗
j,T

(
〈αj ,xj〉

)
−

q∑
k=1

γkh
∗
k,T (zk), (5.5)

under the orthogonality constraint

ET
(
g∗j,T

)
= ET

(
h∗k,T

)
= 0, (5.6)

where ‖g∗j,T ‖ = ‖h∗k,T ‖ = 1, i.e., the scales are taken out, and impose sparsity on the scales,

(β1, . . . , βp, γ1, . . . , γq)
> ∈ Rp+q, i.e., we assume that most of the predictors are unrelated

to the response as treatment effect modifiers. A geometric intuition of model (5.5) under

the constraint (5.6) is described in Figure 5.1.
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Figure 5.1: Figure describes a set of orthogonal coordinate axes. g∗j,T (u) corresponds to

the axis for the T -by-u interaction effect. Its orthogonal complement, g∗j,T (u)⊥, corresponds

to the axis for the main effect of u. The interaction effect is quantified by βj . Here,

u = 〈αj ,xj〉, to be optimized over αj . The regression plane is represented by the two

orthogonal axes. The nonlinearity is captured by g∗j,T (〈αj ,xj〉), and the scale is captured

by βj .

5.2.2 Criterion

In this section, we propose the criterion for optimizing the interaction effect component of

model (5.1). First, we formulate an optimization problem in the population setting. We

suggest to minimize the following constrained mean squared error of the working model

(5.5), over the functions g∗j,t’s, h
∗
k,t’s, and αj ’s

minimize
βj ,γk,g

∗
j,T ,h

∗
k,T ,αj

E
(
Y −

p∑
j=1

βjg
∗
j,T

(
〈αj ,xj〉

)
−

q∑
k=1

γkh
∗
k,T (zk)

)2

subject to

p∑
j=1

|βj |+
q∑

k=1

|γk| ≤ L

‖g∗j,T ‖ = ‖h∗k,T ‖ = 1, j = 1, . . . , p, k = 1, . . . , q

ET
(
g∗j,T

)
= ET

(
h∗k,T

)
= 0, j = 1, . . . , p, k = 1, . . . , q.

(5.7)

The constraint that (β1, . . . , βp, γ1, . . . , γq)
> ∈ Rp+q lies in the L1 ball (the 2nd line in
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(5.7)) encourages sparsity on the index set for the link functions that are nonzero. The

orthogonality constraint (the 4th line in (5.7)) gives the orthogonality with the unspecified

main effect. Additionally, we need identifiability constraints ‖αj‖ = 1, j = 1, . . . , p.

Consider the following convenient equivalent form ([Ravikumar et al., 2009]) for (5.7):

minimize
gj,T ,hk,T ,αj

E
(
Y −

p∑
j=1

gj,T
(
〈αj ,xj〉

)
−

q∑
k=1

hk,T (zk)

)2

subject to

p∑
j=1

‖gj,T ‖+

q∑
k=1

‖hk,T ‖ ≤ L

ET (gj,T ) = ET (hk,T ) = 0, j = 1, . . . , p, k = 1, . . . , q

(5.8)

with ‖αj‖ = 1, j = 1, . . . , p.

Given αj ’s, (5.8) can be written in the following equivalent penalized Lagrangian form

E
(
Y −

p∑
j=1

gj,T
(
〈αj ,xj〉

)
−

q∑
k=1

hk,T (zk)

)2

+ λ

( p∑
j=1

‖gj,T ‖+

q∑
k=1

‖hk,T ‖
)

+

p∑
j=1

τjET (gj,T ) +

q∑
k=1

κkET (hk,T ) , (5.9)

where λ ≥ 0 is the sparsity parameter for prediction selection, in a similar fashion to the

group Lasso ([Yuan and Lin, 2006]). Given αj ’s, the minimizing functions in (5.9) have a

closed-form expression in the population setting, as follows.

Theorem 4. Given αj’s, the minimizers gj,T of (5.9) satisfy

gj,T (〈αj ,xj〉) =

[
1− λ

‖Pj,T (〈αj ,xj〉)‖

]
+

Pj,T (〈αj ,xj〉), a.s., (5.10)

where

Pj,T (〈αj ,xj〉) = E(Rj | 〈αj ,xj〉, T ) − E(Rj | 〈αj ,xj〉), (5.11)

in which the residual Rj = Y −
∑

j′ 6=j gj′,T (〈αj′ ,xj′〉) −
∑q

k=1 hk,T (zk). The minimizers

hk,T of (5.9) satisfy

hk,T (zk) =

[
1− λ

‖Qk,T (zk)‖

]
+

Qk,T (zk), a.s., (5.12)

where

Qk,T (zk) = E(Rk | zk, T ) − E(Rk | zk), (5.13)
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in which the residual Rk = Y −
∑p

j=1 gj,T (〈αj ,xj〉) −
∑q

k′ 6=k hk′,T (zk′). Here, Z+ =

max(0, Z) represents the positive part of Z.

The proof of Theorem 4 is in the Appendix. In the population setting, for each L ≥ 0 (or

equivalently, for some λ ≥ 0), the problem of optimizing (5.7) can be split into two iterative

steps ([Fan et al., 2014], [Fan et al., 2015]). First (Step 1), given αj ’s, the links gj,T ’s and

hk,T ’s can be found by a coordinate descent procedure that fixes gj′,T ’s (or hk′,T ’s) at all

j′ 6= j (or k′ 6= k), and obtain gj,T (or hk,T ) by equation (5.10) (or (5.12)), then iterate over

j and k. This step corresponds to estimating under the constraint (5.3) a sparse additive

model (SAM) ([Ravikumar et al., 2009]). Second (Step 2), given the links gj,T ’s and hk,T ’s,

αj ’s can be obtained by minimizing

E
(
Y −

p∑
j=1

gj,T
(
〈αj ,xj〉

)
−

q∑
k=1

hk,T (zk)

)2

, (5.14)

under the constraints ‖αj‖ = 1, j = 1, . . . , p. These two steps can be iterated until

convergence to obtain a population solution. To obtain a sample version of the population

solution, we can insert sample estimates into the population algorithm, as in standard

backfitting in fitting generalized additive models ([Hastie and Tibshirani, 1999]).

5.2.3 Estimation

We assume that we are given data {(Yi, Ti, Xi, Zi)
n
i=1}, with the set of p functional predictors

Xi = {xi1(s), . . . ,xip(s)} (assumed to be observed without errors), the vector of q scalar

predictors Zi = (zi1, . . . , ziq)
>, and the treatment indicator variable Ti that takes a value

t ∈ {1, . . . ,K}, corresponding to the ith subject, i = 1, . . . , n, where n =
∑K

t=1 nt is

the total sample size, with nt denoting the sample size for the tth treatment group, i.e.,

{i | Ti = t, i = 1, . . . , n}.

5.2.3.1 Representation

Let us represent the projection functions αj(s) = α̃>j Φj(s) and the predictors xij(s) =

x̃>ijΨj(s), with appropriately chosen (orthogonal) basis functions, Φj(s) and Ψj(s), respec-

tively. To ensure that αj and the links gj,T are identifiable, we constrain ‖α̃j‖ = 1 for all
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j. Then we write

〈αj ,xij〉 =

∫ 1

0
αj(s)xij(s)ds = α̃>j

[∫ 1

0
Φj(s)Ψj(s)

>ds

]
x̃ij = α̃>j ξij ,

where ξij =
[∫ 1

0 Φj(s)Ψj(s)
>ds

]
x̃ij . Here, the coefficients α̃j need to be estimated,

whereas the subject i- and the predictor j-specific scores x̃ij can be easily computed, since

xij(s) are directly observed.

Let us write the n × 1 vector Y =
(
Y >1 , . . . ,Y >K

)>
, in which the nt × 1 vector Yt =

(Y1t , . . . , Ynt)
> is the observed response vector corresponding to the tth treatment group.

For the regression function gj,T of the jth functional predictor, let us write the n× 1 vector

of evaluations, gα̃j =
(
g>α̃j ,1

, . . . , g>α̃j ,K

)>
, the nt × 1 vector

gα̃j ,t =
(
gj,t
(
α̃>j ξj1

)
, . . . , gj,t

(
α̃>j ξjnt

))>
corresponds to the vector of evaluations from the

tth treatment group, t ∈ {1, . . . ,K}. Similarly, for the regression function hk,T of the

kth scalar predictor, let us write the n × 1 vector of evaluations, hk =
(
h>k,1, . . . ,h

>
k,K

)>
,

in which the nt × 1 vector hk,t = (hk,t(zk1), . . . , hk,t(zknt))
> corresponds to the observa-

tions from the tth treatment group. Both the link functions, gj,t(·)’s and hk,t(·)’s, and the

projection directions, α̃j ’s, need to be estimated.

For approximating the conditional expectations in (5.11) and (5.13), any nonparametric

smoothers can be used, for example, B-splines [de Boor, 2001] and local kernel regression

([Ruppert and Wand, 1994], [Hardle and Muller, 2012]). For each candidate α̃j , let us denote

a suitable nonparametric smoother for approximating the bivariate conditional expectation

E(Rj | 〈αj ,xj〉, T ) in (5.11) by S
(∗∗)
α̃ . Also, let us denote a suitable nonparametric smoother

for approximating the univariate conditional expectation E(Rj | 〈αj ,xj〉) in (5.11) by S
(∗)
α̃ .

Then, a smoother for (5.11) can be given by

Sα̃j = S
(∗∗)
α̃j
− S(∗)

α̃j
, (5.15)

for the jth functional predictor. Similarly, for (5.13), with a smoother for E(Rk | zk, T )

denoted by H
(∗∗)
k and a smoother for E(Rk | zk) denoted by H

(∗)
k , a smoother for (5.13)

can be given by

Hk = H
(∗∗)
k −H(∗)

k , (5.16)

for the kth scalar predictor.
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5.2.3.2 Algorithm

Given α̃j and the smoother matrices (5.15) and (5.16), the corresponding plug-in estimates

for (5.10) and (5.12) are

ĝα̃j = cjSα̃jRj , j = 1, . . . , p, (5.17)

where Rj = Y −
∑

j′ 6=j ĝα̃j′ −
∑q

k=1 ĥk, with the shrinkage factor cj =
(
1− λ/‖Sα̃jRj‖

)
+

,

and

ĥk = ckHkRk, k = 1, . . . , q, (5.18)

where Rk = Y −
∑p

j=1 ĝα̃j −
∑

k′ 6=k ĥk′ , with the shrinkage factor ck = (1− λ/‖HkRk‖)+,

respectively.

Theorem 4 and the expressions (5.17) and (5.18) for each fixed α̃j suggest an iterative

algorithm to approximately solve (5.8) for the links gj,T and hk,T , and the projection weights

α̃j . Following [Fan et al., 2014], we summarize below an algorithm that alternates between

a coordinate descent (CD) for updating the link functions gj,T ’s and hk,T ’s (i.e., Step 1),

and a gradient descent (GD) for updating the projection weights α̃j ’s (i.e., Step 2).

Algorithm 4 Estimation of a sparse additive model with treatment specific links

1: Compute Hk defined in (5.16) for k = 1, . . . , q.

2: Initialize α̃j for j = 1, . . . , p.

3: for outer iteration until convergence do

4: (Step 1: the link updates via CD)

5: Fix all α̃j , and compute Sαj defined in (5.15) for j = 1, . . . , p.

6: for inner iteration until convergence do

7: for each j ∈ {1, . . . , p} and k ∈ {1, . . . , q} do

8: Fix ĝα̃j′ for all j′ 6= j and all ĥk, and compute ĝα̃j defined in (5.17).

9: Fix ĥk′ for all k′ 6= k and all ĝj , and compute ĥk defined in (5.18).

10: end for

11: end for

12: (Step 2: α̃j updates via GD)

13: Fix all ĝα̃j and all ĥk, and minimize (5.19) over α̃j , for j = 1, . . . , p.

14: end for
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In Algorithm 4, if the shrinkage factor cj defined in (5.17) is 0, then the jth functional

predictor is absent from the model, and the corresponding value of α̃j will not be updated.

For Step 1, the smoothing matrix Sα̃j only needs to be computed once, therefore the link

function updates can be performed efficiently ([Fan et al., 2014]). For Step 2, the following

sample counterpart of (5.14), the residual sum of squares

‖Y −
p∑
j=1

ĝα̃j −
q∑

k=1

ĥk‖2 = ‖
p∑
j=1

(
Rj − ĝα̃j

)
‖2, (5.19)

where Rj is defined in (5.17) and the link estimates ĝj,T in ĝα̃j fixed, can be minimized over

α̃j , subject to ‖α̃j‖ = 1 (with its first element constrained to be positive, i.e., α̃j1 > 0, for

model identifiability) for each j = 1, . . . , p. In implementation, we can approximate ĝj,T by

a cubic polynomial, and perform an IWLS to approximately minimize (5.19), and rescale

α̃j to have unit L2 norm with α̃j1 > 0.

5.2.3.3 Some intuition

In this subsection, we briefly describe some intuition of optimizing (5.19) over α̃j . In opti-

mizing (5.19), we can optimize the jth component separately, for each j = 1, . . . , p. Hence,

we can minimize over α̃j , ‖Rj − ĝα̃j‖2 = ‖Rj − cjSα̃jRj‖2 = ‖Rj‖2−‖Sα̃jRj‖2
(

2− c2
j

)
,

where cj and Rj are defined in (5.17). Note, minimizing ‖Rj − ĝα̃j‖2 over α̃j is equivalent

to maximizing ‖Sα̃jRj‖2 = ‖S(∗∗)
αj Rj − S(∗)

αjRj‖2 over α̃j . Next, we consider a geomet-

ric intuition of maximizing ‖Sα̃jRj‖2 over α̃j . Similar to optimizing the SIMML (3.6) of

Chapter 3, this is analogous to maximizing ‖Ŷ − Ȳ 1n‖2 in Figure 3.1.

Analogous to the orthogonal sum of squares decomposition in (3.34) which was obtained

from centering by the intercept Ȳ 1n, in our case, the observed (Rj) and the fitted (S
(∗∗)
α̃j
Rj)

are centered by the vector S
(∗)
α̃j
Rj , that gives

‖Rj − S(∗)
α̃j
Rj‖2 = ‖Rj − S(∗∗)

α̃j
Rj‖2 + ‖S(∗∗)

α̃j
Rj − S(∗)

α̃j
Rj‖2. (5.20)

Here, the second component ‖S(∗∗)
α̃j
Rj − S(∗)

α̃j
Rj‖2 = ‖Sα̃jRj‖2 quantifies the intensity of

how much the effect of α̃>j ξij (which approximates 〈αj ,xij〉) gets modified by T , i.e., the

magnitude of treatment effect modification, which is to be maximized over α̃j . Equivalently,

(5.19) is minimized over α̃j , j = 1, . . . , p. Note, for the simple linear regression on T with

no regularization, the counterpart of (5.11) is (3.33).
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5.2.3.4 Choosing the regularization parameters

The sparsity parameter λ in Section 5.2.3.2 can be chosen to minimize an estimate of the

prediction error. We can define the total effective degrees of freedom ([Ravikumar et al.,

2009]) of FAMML as

d.f.(λ) =

p∑
j=1

sjI(‖ĝ(λ)
αj ‖ 6= 0) +

q∑
k=1

rkI(‖ĥ(λ)
k ‖ 6= 0)

where sj = trace(Sαj ) is the effective degrees of freedom for the smoother on the jth

functional predictor; rk = trace(Hk) is that for the smoother on the kth scalar predictor;

ĝ
(λ)
αj and ĥ

(λ)
k are given in (5.17) and (5.18), respectively, evaluated at a particular given

λ ≥ 0. Then, λ can be chosen to minimize the following Cp statistic

Cp(λ) = ‖Y −
p∑
j=1

ĝ
(λ)
α̃j
−

q∑
k=1

ĥ
(λ)
k ‖

2 + 2σ̂2d.f.(λ),

where σ̂2 is an estimate of the error variance, based on regression on the whole set of

predictors. In our empirical studies, we took σ̂2 = ‖Y −
∑p

j=1 ĝ
(λmin)
α̃j

−
∑q

k=1 ĥ
(λmin)
k ‖2/n,

in which the smallest grid value λmin ≥ 0 was taken at some small fraction of the largest

grid value λmax, say, at λmin = λmax/100. λmax was derived from data as the smallest

regularization parameter giving the sparsest model (i.e., all the functions are identically

zeros). Other methods for choosing the tuning parameter, for example, minimizing the

AIC, the BIC, or cross-validated predictor errors, can also be used.

5.3 Simulation illustration

5.3.1 Treatment effect modifier selection performance

In this section, we will report the treatment effect modifier selection performance. The

complexity of the model can be summarized in terms of the size of the index set for the link

functions (gj,T ’s) that are not identically zero, which can be either correctly or incorrectly

estimated as nonzeros. The following model was used for generating the data

YT =

p∑
j=1

(
µj(xj)︸ ︷︷ ︸
main

+ gj,T
(
〈αj ,xj〉︸ ︷︷ ︸

interaction

))
+ ε, T ∈ {−1, 1}, (5.21)
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with p ∈ {50, 100}.

We used a 4-dimensional Fourier basis b(s) = (1,
√

2 sin(πs),
√

2 sin(2πs),
√

2 sin(3πs))>

to generate p functional predictors, xi1, . . . ,xip

xij(sk) = b(sk)
>θij + wijk, wijk ∼ N (0, σ2

x), θij ∼ N (0, I4), i = 1, . . . , n,

where the basis coefficients, θij , and the random noise term, wijk, were all sampled indepen-

dently from each other, and the predictors xij were observed at 200 equally spaced points,

0 = s1, s2, . . . , s200 = 1. For the first 2 predictors, the link functions gj,T were set at

g1,T (u) = 0.5uT, T ∈ {−1, 1}

g2,T (u) =
√

2 cos(u)T, T ∈ {−1, 1}
(5.22)

and gj,T (u) = 0, for all remaining j = 3, . . . , p. Therefore, only the first 2 predictors

were relevant treatment effect modifiers. For simplicity, we set the projection functions

αj(s) = 1
2 [1, 1, 1, 1]> b(s), for all j = 1, . . . , p. Note ‖αj‖ = 1. For the main effect, we took

µj(xj) = 〈µj ,xj〉, in which we set

µj(s) = b(s)>ηj , j = 1, . . . , 4, (5.23)

for the first 4 predictors, and µj(s) = 0, for all remaining j = 5, . . . , p. Therefore, only

the first 4 predictors had nonzero main effects. In (5.23), the vectors ηj ∈ R4 were first

generated independently from a multivariate normal distribution, and then rescaled to have

unit L2 norm, ‖ηj‖ = 1. In (5.21), the error term ε was generated from N (0, 0.52).

Under the setting (5.22) and (5.23), the contribution to the variance of the outcome from

the main effect component was about 3 times larger than that from the interaction effect

component. There were 2 true treatment effect modifiers, and the other p − 2 predictors

were “noise” predictors.
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Figure 5.2: The average number of treatment effect modifiers “correctly selected” (in

the panels with gray background), and “incorrectly selected” (in the panels with white

background), respectively, as the training sample size n varies from 50 to 500, for each

p ∈ {50, 100}. Two methods were compared: 1) the proposed semiparametric FAMML,

and 2) a FAMML with the links gj,T restricted to be linear (Linear-FAMML).

Figure 5.2 summarizes the results of the treatment effect modifier selection performance,

comparing the proposed semiparametric FAMML and a FAMML with the links gj,T re-

stricted to be linear (Linear-FAMML). In Figure 5.2, as n increased from n = 50 to n = 500,

the proposed FAMML (the red solid curves) correctly recovered the index set of the true 2

treatment effect modifiers that had nonzero link functions, with probabilities tending to 1.

In both cases of p = 50 and p = 100, the average number of correctly selected treatment

effect modifier converged to 2, while that of incorrectly selected treatment effect modifier

converged to 0, as n increased. On the other hand, the Linear-FAMML (the blue dotted

curves) failed to recover the true 2 treatment effect modifiers. For the Linear-FAMML,

the average number of correctly selected treatment effect modifier tended to 1 instead of 2,

selecting only the 1st predictor with the link g1,T that had a linear interaction effect with

the treatment on the outcome, while failing to select the 2nd predictor that had a nonlinear

interaction effect.

5.3.2 ITR performance

In this section, we will assess the performance of the proposed method with respect to

selection of optimal ITRs on simulated data in various settings.
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5.3.2.1 Setting

The vector of baseline scalar covariates, Z = (z1, . . . , zq)
>, was generated from a multivari-

ate normal distribution with each component having mean 0 and variance 1. Correlation

between the components was given by corr(zj , zk) = 0.5|j−k|. We wrote z = (1, Z)> ∈ Rq+1,

including the intercept. A set of p functional baseline predictors, X = {x1(s), . . . ,xp(s)},

was generated to be similar to the EEG curves observed in the motivating data set discussed

in Section 5.4, in which the domain for each function was set at [0, 1]. In this illustration, we

considered relatively low dimensional scenarios with (q = 5, p = 3), and made comparisons

with other functional regression approaches of constructing ITRs.

Responses were generated, for 1) “nonlinear” treatment-by-predictors interactions:

Y =
{

0.5 cos(β>0 z) + 0.5 cos(〈β1,x1〉) + 0.5 cos(〈β2,x2〉)
}
δ

+
{
−0.25 cos(γ>z)− 0.25 cos(〈α1,x1〉) + 0.5(〈α3,x3〉)2

}
T + ε,

(5.24)

and for 2) “linear” treatment-by-predictors interactions:

Y =
{

0.5 cos(β>0 z) + 0.5 cos(〈β1,x1〉) + 0.5 cos(〈β2,x2〉)
}
δ

+
{
−0.25γ>z − 0.25〈α1,x1〉+ 0.5〈α3,x3〉

}
T + ε,

(5.25)

where the treatment variable T ∈ {−1, 1} was generated independently of the other covari-

ates, such that P (T = 1) = P (T = −1) = 1/2. In (5.24) and (5.25), the first term on the

right hand side corresponded to the main effect of (Z,X), and the second term corresponded

to the T -by-(Z,X) interaction. The parameter δ ∈ {0, 1, 2} controlled the proportion of

the variance of the response Y attributable to the main effect and the interaction: δ = 0

corresponded to the zero contribution of the main effect; δ = 1 to a moderate main effect

contribution (the variance of Y attributable to the main effect and the interaction was about

the same); δ = 2 to a large main effect contribution (the variance of Y attributable to the

main effect was approximately 4 times larger than that from the interaction). If δ is large,

the model has a large main effect, and it is more difficult to estimate the interaction effect.

The error term, ε, followed N (0, σ2
ε ), where σ2

ε was chosen such that R2 of the model when

δ = 0 was about 0.85.

Two simulation settings were considered, denoted by set “A” and “B”, respectively.

For the simulation set “A”, the functional coefficients for the interaction effect compo-
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nent were set at α1(s) = 1
6
√

2π

{
−e−

8
9

(12s−5)2 + e−
8
9

(12s−7)2
}

, α2(s) = 0, and α3(s) =

1
6
√

2π

{
e−

8
9

(12s−5)2 − e−
8
9

(12s−7)2
}

, as described in the left two panels of Figure 5.3. This

was the setting where the true functional contrast coefficients, α1 and α3, were such that,

reducing the 1-D predictors to scalars via simple averaging resulted in the loss of important

features that were needed to correctly estimate the ITRs. We set the main effect functional

coefficients to be β1(s) = 0.055 sin(2πs), β2(s) = −0.055 sin(2πs), and β3(s) = 0. For the

coefficients corresponding to the scalar predictors, we set β0 = [5, 0.5, 0,−0.5, 0, 0.5]> for

the main effect, and γ = [−0.25, 0.5, 0, 0, 0,−0.5]> for the interaction.

For the simulation set “B”, we took the contrast functional coefficients to be α1(s) =

25
3 s

2e−10s, α2(s) = 0, and α3(s) = −25
3 (1−s)2e−10(1−s), as described in the right two panels

of Figure 5.3. This was the setting where the true functional contrast coefficients were such

that, reducing the 1-D predictors to scalars via simple averaging did not affect much in mak-

ing correct ITRs. For the main effect functional coefficients, we set β1(s) = 0.05 sin(2πs),

β2(s) = −0.05 sin(2πs), and β3(s) = 0. For the coefficients corresponding to the scalar

predictors, we set β0 = [5, 1, 0,−1, 0, 1]> for the main effect, and γ = [−0.5, 1, 0, 0, 0,−1]>

for the contrast.
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Figure 5.3: The true functional contrast coefficients (α1, α3) for the simulation set “A” on

the left two panels, and for the simulation set “B” on the right two panels, respectively.

We considered a class of ITRs of the form based on X and Z

D(X,Z) = arg max
t∈{−1,1}

E[Y | X,Z, T = t], (5.26)

where E[Y | X,Z, T ] was the conditional expectation given (X,Z, T ). In this example, we

considered the following three approaches for estimating E[Y | X,Z, T ] from the training
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set.

FAMML Fit the proposed FAMML (5.5) under the constraint (5.6), by minimizing the

criterion (5.7).

F-MCA Estimate the functional modified covariate model with efficiency augmentation

(F-MCA) ([Ciarleglio et al., 2015a]). Here, the efficiency augmentation was performed

by fitting a functional linear regression. Note, the MCA ([Tian et al., 2014]) was

extended by [Ciarleglio et al., 2015b] to incorporate both functional and scalar baseline

predictors under efficiency augmentation, which we employed here for comparison.

Separate FLR Fit a functional linear regression (FLR) model via a penalized FLR ([Gold-

smith et al., 2011]) for each treatment group separately. Then the corresponding ITR

was obtained from the K(=2) number of separately fitted FLR models by (5.26).

The evaluation measure was the proportion of correct decisions (PCD) made from each

method. PCD can be calculated for each of the ITRs estimated from the methods consid-

ered, since we know the true models (5.24) and (5.25). This measure was calculated from

an independent testing set of size n = 10000.

5.3.2.2 Simulation set “A” results

This was the setting where misspecification of the nonlinear contrast component in model

(5.24) as a linear model (i.e., the cases for F-MCA and Separate FLR models) has a detri-

mental effect in developing ITRs. The true functional contrast coefficients were set in a

way that reducing the functional predictors to scalars via a näıve averaging resulted in the

loss of salient features that were needed to correctly estimate the ITRs. In this setting, the

proposed FAMML performed significantly better than F-MCA and Separate FLR. As the

sample size increased from n = 100 to n = 200 and to n = 400, the FAMML performed

contrastingly better. F-MCA performed generally better than Separate FLR, since F-MCA

was robust to misspecification of the main effect component. The proposed method, as an

extension of the F-MCA, was robust to the main effect as well as was flexible to model the

nonlinear contrast, giving a superior performance level.
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Figure 5.4: Boxplots of the PCDs of the ITRs for the simulation set “A”, obtained from 100

replications, estimated from the following three methods: (1) FAMML: the proposed semi-

parametric method satisfying the orthogonality constraint (5.6); (2) F-MCA: the modified

covariate approach with efficiency augmentation; (3) Separate FLR: two separate FLR

models estimated separately for each of the two treatment groups. For each case, n ∈

{100, 200, 400} and δ ∈ {0, 1, 2} were considered.

5.3.2.3 Simulation set “B” results

This was the setting where a simple näıve averaging of the functional predictors provided

similar ITRs as with those of a functional regression. Hence, this was the setting where

misspecification of the nonlinear contrast component in (5.24) as a linear model (i.e., the

cases for F-MCA and Separate FLR models) is not so detrimental in terms of developing

ITRs, compared to the simulation set “A”. Even in this case, the proposed approach give

some advantage over the other two methods especially as the sample size became larger,

for the nonlinear contrast. Additionally, Figure 5.5 shows that the performance of the
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parametric linear models (i.e., F-MCA and Separate FLR) did not improve considerably

when the sample size increased, since these two methods are limited by a misspecified linear

model for the true interaction effect.

0.4

0.6

0.8

1.0

Zero Moderate Large

 

P
C

D

n = 100

0.4

0.6

0.8

1.0

Zero Moderate Large

 

 

n = 200

0.4

0.6

0.8

1.0

Zero Moderate Large

 

 

n = 400

Method

FAMML

F−MCA

Separate FLR

Nonlinear contrast

0.4

0.6

0.8

1.0

Zero Moderate Large

 

P
C

D

n = 100

0.4

0.6

0.8

1.0

Zero Moderate Large

Magnitude of main effect

 

n = 200

0.4

0.6

0.8

1.0

Zero Moderate Large

 

 
n = 400

Method

FAMML

F−MCA

Separate FLR

Linear contrast .

Figure 5.5: Boxplots of the PCDs of the ITRs for the simulation set “B”, obtained from 100

replications, estimated from the following three methods: (1) FAMML: the proposed semi-

parametric method satisfying the orthogonality constraint (5.6); (2) F-MCA: the modified

covariate approach with efficiency augmentation; (3) Separate FLR: two separate FLR

models estimated separately for each of the two treatment groups. For each case, n ∈

{100, 200, 400} and δ ∈ {0, 1, 2} were considered.

5.4 Application

In this section, we apply the proposed FAMML to a dataset from a study comparing an an-

tidepressant and placebo for treating major depressive disorder (MDD). The main objective

of our investigation in this study was to use baseline functional/scalar predictors to guide

treatment decisions when a patient presents for treatment. The study collected baseline
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scalar and functional data, including EEG amplitude spectra curves, prior to treatment

assignment. Then the study participant was randomized to either placebo (t = 1) or an

antidepressant (sertraline) (t = 2). Subjects were monitored via depression assessments

at 1,2,3,4,6, and 8 weeks after initiation of treatment. The primary endpoint of interest

was the Hamilton Rating Scale for Depression (HRSD) score at week 8. The outcome Y

was taken to be the improvement in symptoms severity from baseline to week 8 taken as

the difference (week 0 HRSD score - week 8 HRSD score). (Lower scores on the HRSD

correspond to lower depression severity.)

There were n = 156 subjects in the study. We considered p = 19 baseline functional

predictors, a subset of EEG channels from a 72-EEG montage. Specifically, the functional

data of interest consisted of the curves giving the current source density (CSD) amplitude

spectrum values over a frequency range of 3 to 16 Hz, when the participants’ eyes were

closed. This frequency range was scaled to [0, 1], hence each of the functional predictors

X = {x1, . . . ,x15} was defined on the interval [0, 1]. The locations for these 15 electrodes

are described in Figure 5.6. In addition, we considered a set of q = 4 baseline scalar

predictors, consisting of the HRSD scores at baseline (i.e., the week 0)(z1), sex (1 for

female, 0 otherwise)(z2), age (z3), and the baseline HRSD-by-age interaction (z4). In this

dataset, 46% of the subjects were randomized to the sertraline. The average outcomes Y

for the sertraline group and placebo groups were 7.75, and 6.29 respectively. The mean age

was 38.3, the mean baseline HSRD score 18.78, and 64% of the subjects were female.

The FAMML (5.5) was estimated and the method simultaneously selected the 5 func-

tional predictors with non-zero link functions associated with the electrodes indicated by

the red dashed circles in Figure 5.6: the electrodes “FP1” (x1), “C3” (x4), “O1” (x6),

“O2” (x12), and “PZ” (x15). In the top panels of Figure 5.7, we display the CSD curves

corresponding to these electrodes observed from the 156 subjects. In the bottom panels of

Figure 5.7, we display the estimated projection functions αj , j ∈ {1, 4, 6, 12, 15}, for the

selected 5 functional predictors.
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Figure 5.6: The locations for the 19 electrode channels. “A1” and “A2” were not used.

Those marked in red circles are the selected electrodes from the fitted FAMML (5.5): “FP1”,

“C3”, “O1”, “O2”, and “PZ”.
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Figure 5.7: Top panels: observed CSD curves from the 5 channels, FP1, C3, O1, O2, and

PZ, for the active drug group (red dashed curves) and for the placebo group (blue dotted

curves), over a frequency range of 3 to 16 Hz, when the participants’ eyes are closed. Bottom

panels: estimated projection functions (αj ’s) for the selected 5 functional predictors (from

left to right: FP1, C3, O1, O2, and PZ).

The estimated projection directions αj , ‖αj‖ = 1, produce data-driven scalar variables

〈αj ,xj〉. Hence, each of the EEG amplitude spectra was reduced to an weighted aver-

age, weighted by the function αj . These averages were investigated as potential scalar

effect modifiers of treatment effect, that gave 5 sets of treatment-specific links, gj,T (·),

j ∈ {1, 4, 6, 12, 15}, T ∈ {1, 2}, that were not identically zero. These processes were per-

formed simultaneously by fitting the FAMML (5.5). In Figure 5.8 and 5.9, the estimated

treatment-specific link functions of the selected functional and the selected scalar predic-

tors, respectively, are displayed, on the corresponding partial residual plots. These plots

display some nonlinear contrast patterns captured by the treatment-specific link functions,

which would have been difficult to capture if the link functions were restricted to be linear.
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Figure 5.8: The scatter plots of the jth partial residual vs. the jth projection 〈αj ,xj〉,

j ∈ {1, 4, 6, 12, 15}, corresponding to the channels, FP1, C3, O1, O2, and PZ. Overlaid are

the estimated treatment-specific link functions (gj,1, gj,2) for the placebo group in the dotted

blue, and the active drug group in the dotted red curves; the associated 95% confidence

bands were constructed conditioning on the projection functions, αj ’s.

Figure 5.9: The scatter plots of the kth partial residual vs. the kth scalar predictors, k ∈

{1, 3, 4}, the baseline HRSD, age, and the baseline HRSD-by-age interaction, respectively,

where all variables are centered at 0. The variable “sex” (z2) was not selected by the model.

Overlaid are the estimated treatment-specific functions (hk,1, hk,2) for the placebo group in

the solid blue, and the active drug group in the dotted red curves; the associated 95%

confidence bands of the regression curves were plotted.

To evaluate the performance of the ITRs obtained from the proposed method, we ran-

domly split the RCT data into a training set and a testing set using a ratio of 10 to 1,
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replicated 300 times, each time estimating an ITR D based on the training set, then es-

timating its value ([Murphy, 2005]) V(D) = E [E[Y | X,Z, T = D(X,Z)]], using an inverse

probability weighted estimator ([Murphy, 2005])

V̂ (D) =

ñ∑
i=1

YiITi=D(Xi,Zi)/

ñ∑
i=1

ITi=D(Xi,Zi), (5.27)

based on the testing set {(Yi, Ti, Xi, Zi)
ñ
i=1}, where ñ denoted the sample size of the testing

set. We compared four approaches for constructing an ITR (5.26): 1) using the estimated

FAMML, 2) using the estimated Linear-FAMML, a FAMML under the linear link restriction,

3) giving everyone the placebo (“All PLACEBO”), and 4) giving everyone the active drug

(“All DRUG”). The resulting boxplots are illustrated in Figure 5.10.
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Figure 5.10: Boxplots of the values of the ITRs, obtained from 300 randomly split testing

sets, estimated from the four approaches: FAMML, Linear-FAMML, giving everyone the

placebo, and giving everyone the active drug. Higher values are preferred.

The results in Figure 5.10 demonstrate that the proposed FAMML approach for con-

structing ITRs may be beneficial to overall patient population. The FAMML, in terms of

the averaged estimated value, outperformed the simple näıve approaches of giving everyone

either the active drug or the placebo. The FAMML also shows a modest improvement over

the Linear-FAMML which could only model the linear T -by-(X,Z) interaction effects.
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5.5 Discussion

In this chapter, we used a L1 penalized and constrained least squares optimization criterion

to optimize the proposed FAMML with respect to the interaction effect, and to simultane-

ously select treatment effect modifiers in situations involving multiple functional and scalar

predictors. We used an efficient coordinate descent algorithm to fit general nonlinear addi-

tive relationships between the treatment effect modifiers and the response. The proposed

sparse FAMML provides a natural semi-parametric framework for modeling treatment-by-

multiple predictors interactions, particularly when we use a large number of functional

covariates as predictors for estimating the treatment effect modification.



CHAPTER 6. CONCLUSION 94

Chapter 6

Conclusion

The theme of this dissertation was on the problem of effectively estimating interactions

between a treatment variable and a set of baseline predictors in their effect on the outcome,

without restriction to a linear relationship. Single-index models generalize linear regression

by replacing the linear predictor with a semiparametric component that has an unspecified

link function. Due to their flexibility and interpretability of the coefficients, single-index

models are becoming popular in many scientific field. In addition, additive models general-

ize linear regression by replacing each individual predictor with a nonparametric component

defined by an unspecified univariate transformation of each individual predictor. Because

of their flexibility, interpretability, and efficient computation with coordinate descent, addi-

tive models are becoming increasingly popular for analyzing data. In this dissertation, we

developed novel approaches for modeling the treatment effect modifications by tailoring the

single-index models and the additive models to have treatment-specific links, and estimate

the interaction effect without the need to specify the main effect. The proposed approaches

provide flexible extensions of the linear model for estimating the interactions between a

discrete treatment variable and baseline covariates.

Future work in refining and developing the proposed approach will investigate an ex-

tension to a continuous treatment variable, an extension to longitudinal outcomes, and

incorporation of hypothesis testing procedures for testing possibly nonlinear interactions

based on the proposed models.
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Appendix A

Appendix for Chapter 2

A.1 Assumptions for Theorem 1 and Theorem 2

Assumption 1. The objective function (2.17), R(α−p), is locally convex at α0,−p, and

its Hessian function, H(α−p) evaluated at α−p = α0,−p, is positive definite, with bounded

eigenvalues.

Assumption 2. (Regularity on the underlying mean functions)

The underlying mean functions mt(X) in (2.4) are in C(4)(Bp
a), t ∈ {1, . . . ,K} for some

finite a > 0, where Bp
a is the p-dimensional ball with center 0 and radius a and C(q)(Bp

a) ={
f | the qth order partial derivatives of f are continuous in Bp

a

}
.

Assumption 3. (Regularity on the probability density function of X)

The probability density function of X, fX(x) ∈ C(4)(Bp
a), and there are constants 0 < cf <

Cf such that  cf/Volp(B
p
a) ≤ fX(x) ≤ Cf/Volp(B

p
a), if x ∈ Bp

a

fX(x) = 0, if x /∈ Bp
a

Assumption 4. (Regularity on the underlying noise distribution)

The underlying noise ε in (2.4) satisfies E(ε | X) = 0 with E(ε2 | X) = 1, and there exists a

constant Cε > 0, such that supx∈Bp
a
E(|ε|3 | X = x) < Cε. For each group t ∈ {1, . . . ,K},

the standard deviation function σt(x) is continuous in Bp
a, with 0 < cσt ≤ infx∈Bp

a
σt(x) ≤

infx∈Bp
a
σt(x) ≤ Cσt <∞, for some constants 0 < cσt < Cσt.
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Assumption 5. The number of interior knots N for the B-spline satisfies: n
1/6
max � N =

d− 4� n
1/5
min(log(nmin))−(2/5), where nmax = max{n1, . . . , nt} and nmin = min{n1, . . . , nt}.

A.2 The asymptotic covariance matrix in Theorem 2

Define Rt(α) = EY,X|T=t

(
Y − gt(α>X)

)2
, t ∈ {1, . . . ,K}. In Theorem 2, the asymptotic

covariance matrix is given as Σα0,−p = H−1
α0,−p

Wα0,−pH
−1
α0,−p

. Here, the Hessian matrix

Hα0,−p =
[
Hj,q

]p−1

j,q=1
evaluated at α−p = α0,−p has its (j, q)th element given by

Hj,q =
K∑
t=1

πt

[
∂2

∂αj∂αq
Rt(α)− αj

αp

∂2

∂αj∂αp
Rt(α)− αq

αp

∂2

∂αq∂αp
Rt(α)

− αj
αq
α3
p

∂

∂αp
Rt(α) +

αjαq
α2
p

∂2

∂α2
p

Rt(α)

]∣∣∣∣
α=α0

. (A.1)

The matrix Wα0,−p =
[
Wj,q

]p−1

j,q=1
evaluated at α−p = α0,−p has its (j, q)th element given

by

Wj,q =
K∑
t=1

πtEY,uα|T=t

({
2 (gt(uα)− Y )

(
∂

∂αj
gt(uα)− αj

αp

∂

∂αp
gt(uα)

)
+

∂

∂αj
Rt(α)−αj

αp

∂

∂αp
Rt(α)

}
×
{

2 (gt(uα)− Y )

(
∂

∂αq
gt(uα)− αq

αp

∂

∂αp
gt(uα)

)
+

∂

∂αq
Rt(α)− αq

αp

∂

∂αp
Rt(α)

})∣∣∣∣
α=α0

(A.2)

where uα = Fp(α
>X) and Fp is the rescaled centered Beta{(p+1)/2, (p+1)/2} cumulative

distribution function defined in Section 2.4.

A.3 Proof

A.3.1 Proof of Theorem 1

Proof. Under Assumptions 2–4 from the Appendix, by the results from A.14 of [Wang and

Yang, 2007], we have

sup
α∈Θc

|Qt(α)−Rt(α)| ≤ O((n
−1/2
t h−1/2 log nt)

2 + (h4)2)

+O(n
−1/2
t log nth

−1/2 + h4)
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almost surely, where h = 1
N+1 is the distance between knot points, and N (note, N = d−4)

is the number of interior knots on [0, 1]. Since we choose N such that n
1/6
t � N �

n
1/5
t (log(nt))

−(2/5) for all t ∈ {1, . . . ,K}, under Assumption 5,

sup
α∈Θc

|Qt(α)−Rt(α)| → 0 t ∈ {1, . . . ,K},

almost surely.

By the continuous mapping theorem,

sup
α∈Θc

∣∣∣∣∣
K∑
t=1

nt
n
Qt(α)−

K∑
t=1

πtRt(α)

∣∣∣∣∣ ≤ sup
α∈Θc

K∑
t=1

∣∣∣nt
n
Qt(α)− πtRt(α)

∣∣∣→ 0

almost surely, therefore, we have

sup
α∈Θc

|Q(α)−R(α)| → 0, (A.3)

almost surely. Denote by (Ω,F ,P) the probability space on which all {Yi, Ti, X>i }∞i=1

are defined. By (A.3), for any δ > 0, ω ∈ Ω, there is an integer n∗(ω), such that

Q(α0, ω) − R(α0) < δ/2, whenever n > n∗(ω). Since α̂(ω) is the minimizer of Q(α, ω),

we have Q(α̂(ω), ω) − R(α0) < δ/2. Also, by (A.3), there exists an integer n∗∗(ω),

such that R(α̂(ω), ω) − Q(α̂(ω), ω) < δ/2, whenever n > n∗∗(ω). Therefore, whenever

n > max(n∗(ω), n∗∗(ω)), we have R(α̂(ω), ω)−R(α0) < δ. The strong consistency α̂→ α0

follows from the local convexity of Assumption 1.

A.3.2 Proof of Theorem 2

Proof. We first derive the expression (A1) from the Appendix for the Hessian matrix. We

can write R(α−p) =
∑K

t=1 πtRt(α−p), where the “pth component removed” function cor-

responding to the tth treatment is Rt(α−p) = Rt

(
α1, . . . , αp−1,

√
1− (α2

1 + · · ·+ α2
p−1)

)
.

Applying the chain rule for taking the derivative of Rt(α−p) with respect to αj , we obtain

∂

∂αj
Rt(α−p) =

∂

∂αj
Rt(α)− αj

αp

∂

∂αp
Rt(α) (A.4)
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for each j ∈ {1, . . . , p− 1}. Taking another derivative of (A.4) with respect to αq, for each

q ∈ {1, . . . , p− 1}, again by applications of the chain rule,

∂2

∂αq∂αj
Rt(α−p) =

∂2

∂αq∂αj
Rt(α)− αq

αp

∂2

∂αp∂αj
Rt(α)− αj

αp

∂2

∂αq∂αp
Rt(α)

− ∂

∂αq

(
αj
αp

)
∂

∂αp
Rt(α) +

αqαj
α2
p

∂2

∂αp∂αp
Rt(α). (A.5)

After summing (A.5) over the groups t ∈ {1, . . . ,K}, weighted by the group probabilities

π1, . . . , πK , evaluated at α = α0, we obtain (A1).

Next, we examine the asymptotics of the profile estimator α̂. From A.15 of [Wang and

Yang, 2007] and under Assumptions 2–5, we have

sup
α∈Θc

sup
1≤j≤p

∣∣∣∣∣ ∂∂αj {Qt(α)−Rt(α)
}
− 1

nt

nt∑
i=1

ξα,i,j,t

∣∣∣∣∣ = o
(
n
−1/2
t

)
(A.6)

almost surely, with ξα,i,j,t = 2{gt(uα,ti)− Yti} ∂
∂αj

gt(uα,ti)− ∂
∂αj

Rt(α), and furthermore

sup
α∈Θc

sup
1≤j≤p

∣∣∣∣ ∂∂αj {Qt(α)−Rt(α)
}∣∣∣∣ = o(1),

sup
α∈Θc

sup
1≤q,j≤p

∣∣∣∣ ∂2

∂αq∂αj
{Qt(α)−Rt(α)}

∣∣∣∣ = o(1),

(A.7)

almost surely for each group t ∈ {1, . . . ,K}.

Now, we will prove that the estimated score of Q(α−p) =
∑K

t=1 π̂tQt(α−p), where π̂t =∑n
i=1 I(Ti = t)/n, evaluated at α−p = α0,−p, is represented up to o(n−1/2) almost surely,

by a sum of mean-zero independent random variables, which we denote by ηi ∈ Rp−1,

i ∈ {1, . . . , n}, where n =
∑K

t=1 nt. Let us denote the estimated score function by Ψ̂(α−p) =

∂
∂α>−p

Q(α−p), where α−p ∈ Rp−1. We will show

sup
1≤j≤p−1

∣∣∣∣∣Ψ̂j(α0,−p)−
1

n

n∑
i=1

ηi,j

∣∣∣∣∣ = o(n−1/2), (A.8)

almost surely where Ψ̂j(α−p) ∈ R is the jth component of the score function Ψ̂(α−p)

and ηi,j ∈ R is the jth component of the random variable ηi. Now, in order to employ

the result (A.6), we first consider the score function defined on the set Θc, i.e., Ψ̂j(α),

instead of the “pth component removed” score function defined on Rp−1, Ψ̂j(α−p). We
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will show that, for some mean-zero independent random variables, which we will denote by

ξ∗α,i,j , i ∈ {1, . . . , n}, j ∈ {1, . . . , p},

sup
α∈Θc

sup
1≤j≤p

∣∣∣∣∣ ∂∂αj {Q(α)−R(α)} − 1

n

n∑
i=1

ξ∗α,i,j

∣∣∣∣∣ = o(n−1/2) (A.9)

is satisfied almost surely. Let us set the desired mean-zero independent random variable

ξ∗α,i,j to be ξ∗α,i,j =
∑K

t=1 ξ
∗
α,i,j,t, where

ξ∗α,i,j,t =

[
2{gt(uα,i)− Yi}

∂

∂αj
gt(uα,i)−

∂

∂αj
Rt(α)

]
I(Ti = t),

which must satisfy the following:

sup
α∈Θc

sup
1≤j≤p

∣∣∣∣ K∑
t=1

πt

[
∂

∂αj
Qt(α)− ∂

∂αj
Rt(α)

]
− 1

n

n∑
i=1

K∑
t=1

ξ∗α,i,j,t

∣∣∣∣ = o(n−1/2). (A.10)

We can write ∣∣∣∣∣
K∑
t=1

πt

[
∂

∂αj
Qt(α)− ∂

∂αj
Rt(α)

]
− 1

n

K∑
t=1

n∑
i=1

ξ∗α,i,j,t

∣∣∣∣∣
=

∣∣∣∣∣
K∑
t=1

πt

[
∂

∂αj
Qt(α)− ∂

∂αj
Rt(α)− 1

πt

nt
n

1

nt

nt∑
i=1

ξα,i,j,t

]∣∣∣∣∣ ,
where ξα,i,j,t is defined in (A.6). Therefore, applying the continuous mapping theorem and

Slutsky’s theorem to (A.6) leads to the desired result (A.10).

Next, we will show (A.8), the result corresponding to the “pth component removed”

estimated score function, Ψ̂(α−p) on Rp−1. Considering the linear operator ∂
∂αj
− αj

αp

∂
∂αp

,

we note that by the chain rule,(
∂

∂αj
− αj
αp

∂

∂αp

)
{Q(α)−Q(α)} = Ψ̂j(α−p)−Ψj(α−p),

for j ∈ {1, . . . , p−1}, where Ψj(α−p) denotes the jth component of the gradient of R(α−p).

If we set the approximation variable ηi,j of (A.8) to be

ηi,j = ξ∗α,i,j −
αj
αp
ξ∗α,i,p

=

K∑
t=1

[
2{gt(uα,i)− Yi}

{
∂

∂αj
gt(uα,i)−

αj
αp

∂

∂αp
gt(uα,i)

}
+

∂

∂αj
Rt(α)− αj

αp

∂

∂αp
Rt(α)

]
I(Ti = t),

(A.11)
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then we can show

sup
α∈Θc

sup
1≤j≤p−1

∣∣∣∣∣
(

∂

∂αj
− αj
αp

∂

∂αp

)
{Q(α)−R(α)} − 1

n

n∑
i=1

ηi,j

∣∣∣∣∣
≤ sup
α∈Θc

sup
1≤j≤p−1

∣∣∣∣∣ ∂∂αj (Q(α)−R(α)
)
− 1

n

n∑
i=1

ξ∗α,i,j

∣∣∣∣∣
+ sup
α∈Θc

αj
αp

∣∣∣∣∣ ∂∂αp (Q(α)−R(α)
)
− 1

n

n∑
i=1

ξ∗α,i,p

∣∣∣∣∣ = o(n−1/2),

(A.12)

by the triangle inequality and the result of (A.9). Since Ψj(α−p) is evaluated at the mini-

mum α0,−p, we have

Ψj(α0,−p) =

(
∂

∂αj
− αj
αp

∂

∂αp

)
{Q(α)}

∣∣∣∣
α=α0

= 0, (A.13)

by the local convexity under Assumption 1. Then we obtain the desired result of (A.8), by

(A.12) and (A.13).

The uniform consistency of the observed Hessian, Ĥ(α) = ∂2

∂α−p∂α>−p
Q(α−p), to the

population Hessian H(α−p) of (A.1) follows directly from the results of (A.7) under As-

sumptions 2–5, with applications of the continuous mapping theorem.

Finally, we prove the main result. Consider the random variable Ψ̂j(α0,−p) introduced

in (A.8), and the following parametrization: for each component j ∈ {1, . . . , p− 1}

fj(s) = Ψ̂j

(
sα̂−p + (1− s)α0,−p

)
, s ∈ [0, 1].

Taking the derivative with respect to t, we have by the chain rule

d

dt
fj(s) =

p−1∑
m=1

∂

∂αm
Ψ̂j

(
sα̂−p + (1− s)α0,−p

)(
α̂m − α0,m

)
.

Since Ψ̂j(α̂−p) = 0 by the definition of α̂−p, it follows that fj(1) − fj(0) = Ψ̂j(α̂−p) −

Ψ̂j(α0,−p) = −Ψ̂j(α0,−p). Therefore, for any particular j = 1, . . . , p − 1, there exists

s∗j ∈ [0, 1] by the mean value theorem, such that

− Ψ̂j(α0,−p) =

[
∂

∂α1
Ψ̂j

(
s∗j α̂−p + (1− s∗j )α0,−p

)
,

. . . ,
∂

∂αp−1
Ψ̂j

(
s∗j α̂−p + (1− s∗j )α0,−p

) ][
α̂−p −α0,−p

]
,
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which is just[
∂2

∂α1∂αj
Q̂
(
s∗j α̂−p + (1− s∗j )α0,−p

)
,

. . . ,
∂2

∂αp−1∂αj
Q̂
(
s∗j α̂−p + (1− s∗j )α0,−p

)][
α̂−p −α0,−p

]
, (A.14)

where

[
α̂−p − α0,−p

]
is a p − 1 dimensional random vector. Writing (A.14) in matrix

notation, we have

− Ψ̂(α0,−p) =

[
∂2

∂αq∂αj
Q̂
(
s∗j α̂−p + (1− s∗j )α0,−p

)]p−1

j,q=1

[
α̂−p −α0,−p

]
. (A.15)

Then, by (A.15) one can write

√
n(α̂−p −α0,−p) = −

{[
∂2

∂αq∂αj
Q̂
(
s∗j α̂−p + (1− s∗j )α0,−p

)]p−1

j,q=1

}−1
√
nΨ̂(α0,−p).

(A.16)

Meanwhile, by (A.8), for each component j ∈ {1, . . . , p− 1} of Ψ̂(α0,−p), we can write

Ψ̂j(α0,−p) =
1

n

n∑
i=1

ηi,j + o(n−1/2), (A.17)

almost surely with E(ηi,j) = 0. The variance-covariance matrix of the random vector

ηi =
[
ηi,1, . . . , ηi,p−1

]> ∈ Rp−1 evaluated at α−p = α0,−p, where ηi,j are specified in (A.11),

is given in (A2), where it is denoted by Wα0,−p . From (A.17), the central limit theorem

ensures that
√
nΨ̂(α0,−p) → N (0,Wα0,−p) in distribution. Now, by the representation of

(A.16) together with an application of Slutsky’s theorem on the observed Hessian, we obtain
√
n(α̂0,−p −α0,−p)→ N (0,Σα0,−p) in distribution, where Σα0,−p = H−1

α0,−p
Wα0,−pH

−1
α0,−p

,

which is the desired result of Theorem 2.

A.4 Table for Section 2.6.3 Coverage probability of asymp-

totic 95% confidence intervals
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ω = 0 (single-crossing) ω = 1 (multiple-crossing)

n α1 α2 α3 α4 α5 α1 α2 α3 α4 α5

100 Coverage 0.61 0.56 0.56 0.57 0.60 0.57 0.57 0.49 0.50 0.49

200 Coverage 0.69 0.71 0.70 0.66 0.67 0.77 0.70 0.70 0.67 0.66

400 Coverage 0.80 0.81 0.81 0.79 0.81 0.84 0.82 0.78 0.74 0.73

800 Coverage 0.89 0.89 0.87 0.89 0.90 0.90 0.90 0.86 0.81 0.81

1600 Coverage 0.93 0.93 0.94 0.93 0.94 0.92 0.89 0.87 0.85 0.83

3200 Coverage 0.94 0.93 0.95 0.96 0.94 0.92 0.91 0.89 0.81 0.81

6400 Coverage 0.95 0.94 0.94 0.92 0.92 0.93 0.95 0.87 0.86 0.84

Table A.1: The proportion of time (“Coverage”) that the asymptotic 95% confidence interval

contains the true value of αj , j ∈ {1, . . . , 5}, for contrast functions with a single crossing

(ω = 0), and contrasts functions with multiple crossings (ω = 1), with varying n(= n1 +n2,

where 2n1 = 3n2)
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Appendix B

Appendix for Chapter 3

B.1 A justification for the equivalence between MCA and

SIMML under a linear link restriction

With the K = 2 treatment groups, for sample data and each given α, in order to represent

the treatment t-specific linear link function that consists of an intercept and a slope (note,

we consider a special case of the constrained SIMML in which the link function is restricted

to be linear), we can define the nt × 2 design matrix Zα,t for the tth treatment group,

t = 1, 2, whose ith row is
[
1,α>Xti

]
, i = 1, . . . , nt. Then, the “smoother” S∗ is given by

the projection matrix

S∗ =

Zα,1
Zα,2



Zα,1
Zα,2

> Zα,1
Zα,2



−1 Zα,1

Zα,2

> ,
and similarly, the “smoother” S∗∗ is given by

S∗∗ =

Zα,1 0

0 Zα,2



Zα,1 0

0 Zα,2

> Zα,1 0

0 Zα,2



−1 Zα,1 0

0 Zα,2

> ,
and therefore, Sα = S(∗∗)

α − S(∗)
α . The constrained SIMML minimizes ‖Y − SαY ‖2 over α.

On the other hand, the design matrix under the working model of the MCA (3.3) is
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given by

−0.5Zα,1

+0.5Zα,2


n×2

. The corresponding “smoother” is given by

S(MCA)
α =

−0.5Zα,1

+0.5Zα,2



−0.5Zα,1

+0.5Zα,2

> −0.5Zα,1

+0.5Zα,2



−1 −0.5Zα,1

+0.5Zα,2

>

Then the MCA minimizes the squared error criterion ‖Y − S(MCA)
α Y ‖2 over α. It can

be verified that S(MCA)
α = Sα by simple algebra, implying that the two approaches minimize

the same criterion (up to a scale, that depends on the identifiability conditions on α), for

the case where K = 2 and the link function in model (3.6) is linear.

B.2 Proof

B.2.1 Proof of Theorem 3

Proof. For each α the criterion (3.7) as a function of g = (g1, . . . , gK) can be given as∑K
t=1 πtE

(
Y − gt

(
α>X

)
| T = t

)2
. For each u = α>X, consider the minimization of the

Lagrangian:

H(g;λ) =

K∑
t=1

πtE (Y − gt (u) | u, T = t)2 + λ

K∑
t=1

πtgt(u)

with respect to gt ∈ L2, where L2 denotes the L2 space of functions, holding the other

components {gt′ , t′ 6= t} fixed, where λ > 0 is the Lagrange multiplier. The stationary

condition is obtained by setting the Fréchet derivative to 0. Denote by ∂tH(g;λ; ηt) the

directional derivative with respect to gt in the direction ηt ∈ L2. The stationary point can

be formulated as

∂tH(g;λ; ηt) = 2E ((gt −Rt + λ)ηt) = 0,

where Rt = Y −
∑

t′ 6=t gt′ is the partial residual for gt. Using iterated expectations, the

condition above can be rewritten as

E ((gt + λ− E (Rt | u))ηt) = 0.

Since gt + λ − E (Rt | u) ∈ L2, hence, we can compute the derivative in the direction

ηt = gt + λ− E (Rt | u), giving E (gt + λ− E (Rt | u))2 = 0, hence,

gt = E (Rt | u)− λ, t = 1, . . . ,K, a.s.. (B.1)
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Similarly, taking derivative with respect to λ and set it to 0, we obtain

λ =
K∑
t=1

πtE (Y | u, T = t) = E (Y | u) .

Solving the system of equation (B.1), we have gt(u) = E (Y | u, T = t) − E (Y | u), t =

1, . . . ,K, almost surely. ∇H(g;λ)(u) = (∂H/∂g1(u), . . . , ∂H/∂gI(u), ∂H/∂λ), where

∂H/∂gt’s are the Fréchet derivatives of H at gt, t = 1, . . . ,K. Then, setting ∇H(g;λ)(u)

to 0 for all u to obtain the unique critical point yields the following system of solutions:

gt(u) = E (Y | u, T = t) − λ, t = 1, . . . ,K, and λ =
∑K

t=1 πtE (Y | u, T = t) = E (Y | u),

almost surely. Therefore, we have gt(u) = E (Y | u, T = t)−E (Y | u), t = 1, . . . ,K, almost

surely.

B.2.2 Proof of Lemma 1

Proof. Since β̄
∑K

t=1 ct = 0, one can write C(X) =
∑K

t=1 ct(βt − β̄)>X, where the main

effect µ(X) was canceled out, under model (3.19), βt − β̄, t ∈ {1, . . . ,K}, can be uniquely

expressed in terms of coordinates, say γt ∈ RK−1, with respect to the basis Φ; i.e., βt− β̄ =

Φγt, t ∈ {1, . . . ,K}. Then C(X) =
∑K

t=1 ct (Φγt)
>X =

∑K
t=1 ct(βt − β̄)>ΦΦ>X =∑K

t=1 ctβ
>
t ΦΦ>X.

On the other hand, under model (3.19), C(Φ>X) =
∑K

t=1 ctE
(
Y | Φ>X,T = t

)
=∑K

t=1 ct(βt − β̄)>ΨxΦ(Φ>ΨxΦ)−1Φ>X, where Ψx = cov(X), and note that µ(X) was

canceled out, due to
∑K

t=1 ct = 0. Since X is “scaled”, we have cov(X) = Ip. Therefore,

C(Φ>X) =
∑K

t=1 ctβ
>
t ΦΦ>X. Hence, the two expressions agree with each other.

B.2.3 Proof of Lemma 2

Proof. Conditioning on X, model (3.26) is written as

E


Y1

Y2

...

YK


K×1

=


X>ξ1 0 . . . 0

0 X>ξ1 . . . 0
...

...
. . .

...

0 0 . . . X>ξ1


K×K


γ∗1

γ∗2
...

γ∗K


K×1

, (B.2)

subject to the identifiability constraint (3.24) π>γ∗ = 0 in matrix-vector notation, where

π := [π1, . . . , πK ]> and γ∗ := [γ∗1 , . . . γ
∗
K ]>. In (B.2), Yt denotes the treatment t-specific
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outcome, t ∈ {1, . . . ,K}. Let γ ∈ RK denote the unconstrained least squares solution for

equation (B.2). In terms of the population parameters of model (3.19), we have

γ =


cov(X>ξ1, Y1)

...

cov(X>ξ1, YK)


K×1

=


ξ>1 β1 + cov(X>ξ1, µ(X))

...

ξ>1 βK + cov(X>ξ1, µ(X))


K×1

. (B.3)

The constrained solution γ∗ in (B.2) can be obtained by a linear projection approach

available in linear model and regression books (e.g., [Seber and Lee, 2012]), however, we

present the derivation for completeness. For convenience, let us write the K × K design

matrix of (B.2) by D. Suppose γ∗0 is any vector satisfying π>γ∗ = 0. Let us consider

the “shifted” response vector adjusted by Dγ∗0 , i.e., Ỹ = [Y1, . . . , YK ]> −Dγ∗0 , and the

corresponding “shifted” parameter γ̃∗ = γ∗ − γ∗0 , to write

Ỹ = Dγ̃∗ + ε, (B.4)

where ε ∈ RK is a mean-zero noise. In (B.4), the constraint π>γ̃∗ = π>γ∗ − π>γ∗0 = 0 is

still satisfied. Let us define Ω = C(D), the span of D. We can write model Ỹ = θ + ε,

where θ ∈ Ω. Since D is full-rank, it follows that π>(D>D)−1D>θ = π>γ̃∗ = 0. Let us

write π>1 = π>(D>D)−1D>. The subspace of interest, which we denote by ω, corresponds

to the space of mean responses specified by solutions γ∗ satisfying the constraint (3.24), i.e.,

ω = N (π>1 ) ∩Ω. Furthermore, we can write ω⊥ ∩Ω = C(HΩπ1), i.e., by the span of the

matrix HΩπ1, in which HΩπ1 = D(D>D)−1D>D(D>D)−1π = D(D>D)−1π. Then,

we can write the projection matrix onto the space of interest ω, i.e., Hω = HΩ −Hω⊥∩Ω

by

Hω = D(D>D)−1D> −D(D>D)−1π>(π(D>D)−1π>)−1π(D>D)−1D>, (B.5)

which leads to the following identity

Dγ∗ −Dγ∗0 = Hωθ

= D(D>D)−1D>(Dγ −Dγ∗0)

−D(D>D)−1π>(π(D>D)−1π>)−1π(D>D)−1D>(Dγ −Dγ∗0)

= Dγ −Dγ∗0 −D(D>D)−1π>(π(D>D)−1π>)−1πγ,

(B.6)
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where the left hand side is from (B.4). Canceling Dγ∗0 and multiplying by (D>D)−1D>

on the both sides of (B.6), we can obtain the form of the constrained least squares solution

γ∗

γ∗ = γ − (D>D)−1π>(π(D>D)−1π>)−1πγ, (B.7)

where the second term on the right-hand side is a length-K vector[
1K ⊗

(
ξ>1 β̄ + cov(X>ξ1, µ(X))

)]
,

1K denotes the vector of ones of lengthK, and γ is given in (B.3). The term cov(X>ξ1, µ(X))

cancels out in (B.7), and the constrained solution in (B.2) is γ∗t = ξ>1 (βt − β̄), t ∈

{1, . . . ,K}.
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Appendix C

Appendix for Chapter 4

C.1 Derivation of the updating rule

To obtain the expression ∆j in (4.3), we will minimize the objective function in a small

neighborhood of the current α, say at α̃, for the (j, L)th block, with ∆j := αj − α̃j and

∆L := αL − α̃L, by the following local linear approximation of the regression model

Q(α) ≈
∥∥∥R− ĝ′α ∗ (Xj∆j +XL∆L)

∥∥∥2
. (C.1)

Then the update rule for the (j, L)th block is
{
αnew
j ← α̃j + ∆̂j , αnew

L ← α̃L + ∆̂L

}
,

where
[
∆̂j , ∆̂L

]>
is the constrained minimizer of the approximated objective (C.1) over

[∆j ,∆L]> ∈ R2, under the constraint (4.4). After substituting ∆L in (C.1) by −∆jSjL in

(4.4), we take derivative of (C.1) with respect to ∆j , set it to 0, and solve the estimating

equation for ∆j(
R− ĝ′α ∗ (Xj − SjLXL)∆j

)> (
−ĝ′α ∗ (Xj − SjLXL)

)
= 0,

and solving for ∆j gives the expression (4.3).

C.2 Some computational notes 1

In this subsection, we focus on the constrained estimation of β in model (4.5), under the

orthogonality (identifiability) constraint α ⊥ β, given each candidate α, that we discussed
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in Section 5.4. Let us denote the “âth component removed” α by α(−â) ∈ Rp−1. Similarly,

let us also denote the “âth component removed” β by β(−â) ∈ Rp−1. Given α(−â), the

orthogonality constraints will be satisfied, if we set the âth component of β by

βâ =

p∑
j 6=â,j=1

αjβj (C.2)

The estimation is performed on
{
α(−â),β(−â)

}
, and the remaining components are deter-

mined by the identifiability constraint αâ = 1 in (4.1) and by equation (C.2). Let us denote

the p× (p− 1) Jacobian transformation matrix from β(−â) ∈ Rp−1 to the full vector β ∈ Rp

by J =
[
β(−1) Ip−1

]>
, where we set â to be 1 (i.e., the first component of α) for the ease

of illustration without loss of generality. Depending on what actual â is, the structure of J

will be changed accordingly (i.e., the âth row of J should be the vector β(−â)>). Taking the

approach of [Lian and Liang, 2016], the asymptotic first-order condition for optimizing β

under the constraint (C.2) for each α is given in the form of a penalized estimating function

J> [(In − Sα) (Y −Xβ)X] + J>
[
p′λ2(|β|)sgn(β)

]
= 0, (C.3)

where p′λ2(|β|) := (p′λ2(|β1|), . . . , p′λ2(|βp|))>, and sgn(β) := (sgn(β1), . . . , sgn(βp))
>, and 0

is a vector of zeros of length (p− 1). Many penalty choices are available for regularizing β

(e.g., Lasso, SCAD). Given a current estimate of β, say, β̃ = (β̃1, . . . , β̃p)
>, one can perform

the local quadratic approximation (LQA) ([Fan and Li, 2001]), i.e., linearly approximate

the first derivative of the penalty at β̃, p′λ2(|βj |) ≈
{
p′λ2(|β̃j |)/|β̃j |

}
βj , j = 1, . . . , p, in

which β̃ is to be updated over iterations until convergence (the “outer” loop).

If we define the p × p penalty matrix Ω̃λ2 = diag
(
p′λ2(|β̃1|)/|β̃1|, . . . , p′λ2(|β̃p|)/|β̃p|

)
,

where the subscript, λ2, highlights its dependency. then we can perform a gradient descent

on β(−â) until convergence (the “inner” loop), as suggested by [Lian and Liang, 2016]

β̃(−â) ← β̃(−â) + κ
{
J> [(In − Sα) (Y −Xβ)X]− J>Ω̃λ2β̃

}
, (C.4)

where κ > 0 is a small number corresponding to the size of the descent. The remaining com-

ponent β̃â is determined via (C.2), for each iterative step. To select the tuning parameters,

we can choose, for example, the minimizer of BIC(λ2) = log(MSE(λ2)) + log(n)d.f.λ2/n,

over the sequence of candidate values of λ2’s. Here, d.f.λ2 is the number of nonzero
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coefficients in the estimate β̂(λ2) obtained under the regularization parameter λ2, and

MSE(λ2) = ‖
(
In − Sα

)(
Y −Xβ̂(λ2)

)
‖2/n.

C.3 Some computational notes 2

Given α, the estimation of model (4.5) can be viewed as the penalized estimation with a

zero-sum constraint (i.e., the orthogonality constraint α>β = 0), once the link functions are

represented by a set of B-spline basis functions. [Lin et al., 2014] developed an algorithm to

solve such constrained optimization problem with a L1 regularization. However, we notice

that their numerical results of the estimator are not significantly different to that of the

regular Lasso that simply ignores the zero-sum constraint, in terms of support recovery (i.e.,

the predictor selection), although the resulting regular Lasso estimator would violate the

zero-sum constraint in finite samples. In practice, we can use the regular Lasso approach for

the covariate selection, followed by refitting the unpenalized least squares problem with the

zero-sum (i.e., the orthogonality condition) with the selected variables, using the method

of Lagrange multipliers. Since the coordinate descent algorithms have been shown to be

very efficient for solving large-scale regular Lasso problems ([Friedman et al., 2007]), this

“ad-hoc” approach described in the following can save a significant amount of computing

time.

For each assumed α, regress the vector (In − Sα)Y on (In − Sα)X using the regular

Lasso, and obtain an estimate β̂, where we choose the regularization parameters by a cross-

validation. We can select the model via the Lasso (i.e., Ŝ = support(β̂)), which consists of

the (modified) predictors associated with nonzero coefficients of β̂. Then, one can solve for

β, using the method of Lagrange multipliers, that satisfies the linear equation2X̌>X̌ α̌

α̌> 0

β̌
ν

 =

2X̌> (In − Sα)Y

0

 , (C.5)

in which ν is the Lagrange multiplier, and α̌ stands for the original α with the components

selected by Ŝ only; similarly we define X̌ and β̌. Provided that

2X̌>X̌ α̌

α̌> 0

−1

exists, the

equation (C.5) can be solved immediately. We can obtain β̂ satisfying α>β̂ = 0 by setting
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the components of β̂ that correspond to Ŝ by the solution β∗ in (C.5), and those in the

complement of Ŝ by zeros.
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Appendix D

Appendix for Chapter 5

D.1 Proof

D.1.1 Proof of Theorem 4

Proof. Given αj , j = 1, . . . , p, the mean squared error criterion can be given as∑K
t=1 πtE

(
Y −

∑p
j=1 gj,t (〈αj , xj〉) | T = t

)2
, where the expectation inside is taken with

respect to the conditional distribution of (Y, T,X) given that T = t.

Given uj = 〈αj , xj〉, j = 1, . . . , p, let us write g̃ = (g1, . . . , gp), in which gj = (gj,1, . . . , gj,K)

for each j = 1, . . . , p. In the following, we closely follow the proof of Theorem 1 in [Raviku-

mar et al., 2009]. We consider the minimization of the Lagrangian:

H(g̃;λ) =
K∑
t=1

πt

E(Y − p∑
j=1

gj,t
(
uj
)
| T = t

)2

+ λ

( p∑
j=1

‖gj,t‖
)

+

p∑
j=1

τjE [gj,t(uj) | T = t]

 ,
with respect to gj,t, holding the other components {gj′,t′ , j′ 6= j, t′ 6= t} fixed, for each j and

t. The stationary condition is obtained by setting its Fréchet derivative to 0. Denote by

∂j,tH(g̃;λ; ηj,t) the directional derivative with respect to gj,t in the direction, say, ηj,t ∈ L2,

where L2 denotes the L2 space of functions. Then, the stationary point can be formulated

as

∂j,tH(g̃;λ; ηj,t) = 2
K∑
t=1

πtE ((gj,t(uj)−Rj,t + λνj,t + τj)ηj,t | T = t) = 0,

where Rj,t = Y −
∑

j′ 6=j gj′,t(uj′) is the residual for gj,t(uj); νj,t is an element of the subgra-

dient ∂‖gj,t‖, which satisfies νj,t = gj,t(uj)/‖gj,t‖ if ‖gj,t‖ 6= 0, and νj,t ∈ {s ∈ L2 | ‖s‖ ≤ 1},
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otherwise.

Using iterated expectations, the condition above can be rewritten as

E ((gj,t(uj) + λνj,t + τj − E [Rj,t | uj , T = t]) ηj,t) = 0, t = 1, . . . ,K.

Since gj,t(uj) + λνj,t + τj − E (Rj | uj , T = t) ∈ L2, we can compute the derivative in the

direction gj,t(uj) + λνj,t + τj − E (Rj | uj , T = t), implying

E (gj,t(uj) + λνj,t + τj − E (Rj | uj , T = t))2 = 0.

Therefore, we have

gj,t(uj) + λνj,t = E (Rj | uj , T = t)− τj , t = 1, . . . ,K, a.s.. (D.1)

Let Pj,t denote the right-hand side of (D.1), E (Rj | uj , T = t) − τj . If ‖gj,t‖ 6= 0, then

νj,t = gj,t(uj)/‖gj,t‖. Therefore, by (D.1), we have ‖Pj,t‖ = ‖gj,t(uj) + λgj,t(uj)/‖gj,t‖‖ =

‖gj,t‖ + λ ≥ λ. On the other hand, if ‖gj,t‖ = 0, then gj,t(uj) = 0 almost surely, and

‖νj,t‖ ≤ 1. Then, condition (D.1) implies that ‖Pj,t‖ ≤ λ. This gives us the equivalence

between ‖Pj,t‖ ≤ λ and the statement gj,t(uj) = 0 almost surely.

Taking derivative of H(g̃;λ) with respect to τj and setting it to 0, we obtain τj =∑K
t=1 πtE (Rj | uj , T = t) = E (Rj | uj), therefore Pj,t = E (Rj | uj , T = t)− E (Rj | uj).

Condition (D.1) leads to the following expression:

(1 + λ/‖gj,t‖) gj,t(uj) = Pj,t, t = 1, . . . ,K, a.s.,

if ‖Pj,t‖ > λ, and gj,t(uj) = 0, almost surely, otherwise. This gives the soft thresholding

update rule for gj,t.
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