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Abstract 

Extreme heat and its impacts in a changing climate 

Ethan D. Coffel 

 

Climate change has already increased the frequency, intensity, and duration of heat waves 

around the world. In the coming decades, this trend will continue and likely accelerate, exposing 

much of the world’s population to historically unprecedented conditions. In some regions, 

extreme temperatures (as indexed by the annual maximum temperature) are projected to increase 

at a faster rate than mean daily maximum temperatures. This dissertation shows that under a high 

emissions scenario, by 2060 – 2080 models project that the most extreme temperatures could 

warm by 1 – 2°C more than the warm season average in some regions. This amplified warming 

of the most extreme temperatures is most pronounced in the eastern U.S., Europe, eastern China, 

and parts of the Amazon rainforest, and may have substantial implications for heat risk in these 

regions. This dissertation explores the physical mechanisms driving the projected amplified 

warming of extremes in climate models and assesses the associated uncertainty. It shows that the 

amplification is linked to reductions in cloud cover, increased net surface shortwave radiation, 

and general surface drying as represented by declines in the evaporative fraction.  

In addition to rising temperatures, atmospheric humidity has been observed to increase in 

recent decades and models project this trend to continue. As a result, joint heat-humidity metrics 

indicating heat stress are likely to rapidly increase in the future. This dissertation explores how 

extreme wet bulb temperatures may change throughout the century and assesses the risk of 

exceeding a fundamental human heat tolerance limit that has been proposed in prior research. It 

then combines climate data with spatially explicit population projections to estimate the future 

population exposure to unprecedented wet bulb temperatures. Several regions stand out as being 



 
 

at particular risk: India, the coastal Middle East, and parts of West Africa are likely to experience 

extremely high wet bulb temperatures in the future, and rapidly growing populations in these 

regions will result in large increases in exposure to dangerous heat stress. In some areas, it is 

possible that wet bulb temperatures could occasionally exceed the proposed human tolerance 

limit by 2080 under a high emissions scenario, but limiting emissions to a moderate trajectory 

eliminates this risk. Nevertheless, even with emissions reductions, large portions of the world’s 

population are projected to experience unprecedented heat and humidity in the future. 

The projected changes in extreme temperatures will have a variety of impacts on 

infrastructure and other human systems. This dissertation explores how more frequent and severe 

hot conditions will impact aircraft takeoff performance by reducing air density and limiting the 

payload capacity of commercial aircraft. It uses performance models constructed for a variety of 

aircraft types and projected temperatures to assess the payload reductions that may be required in 

the future. These payload limits, along with sea level rise, changes in storm patterns, increased 

atmospheric turbulence, and other effects of climate change, stand to have significant economic 

and operational impacts on the aviation industry.  

Finally, this dissertation discusses evidence-based adaptation strategies to reduce the 

impacts of extreme heat in urban areas. It reviews a body of literature showing that effective 

strategies exist to both lower urban temperatures on a large scale and drastically reduce heat-

related mortality during heat waves. Many adaptation techniques are not costly, but have yet to 

be widely implemented. Given the rapid increases in climate impacts that are projected in the 

coming decades, it will be essential to rigorously assess the cost-effectiveness of adaptation 

techniques and implement the most efficient strategies in both high- and low-income areas.
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Introduction
 

Climate change is rapidly disrupting both the natural environment and human systems 

and will continue to do so throughout the 21st century. Many types of extreme weather events 

including heat waves, droughts, and floods are becoming both more intense and more frequent, 

resulting in unprecedented human impacts across the world. Through early 2018, the globe has 

warmed by approximately 1°C, with some regions – notably the Arctic – warming significantly 

more. There is currently little sign of the drastic emissions reductions that would be required to 

restrict warming to under 2°C as agreed to in the Paris Climate Accord in December, 2015. 

Weather disasters cost the United States over $300 billion in 20171, and weather-related damages 

are likely to continue rising due to development in vulnerable areas and increasingly frequent 

extreme events. Accordingly, it is essential that we understand the impacts that climate change 

will have on human and natural systems and consider adaptation strategies that can reduce our 

climate vulnerability.  

A key threat from climate change is increasingly frequent and severe heat waves, and this 

dissertation will explore both the physical causes and potential impacts of increased heat and 

humidity. It will begin with an investigation of the amplified warming of the most extreme 

temperatures as compared to the mean, as well as the mechanisms driving the projected spatial 

variation in warming rates (Chapter 1). With that physical basis, it will then discuss rapid 

projected increases in population exposure to dangerous heat stress (Chapter 2), and present a 

case study that merges climate projections with system-specific data – here from aviation – to 

quantify the impact of climate change on aircraft takeoff performance (Chapter 3). It will 

conclude with an overview of potential adaptation strategies that have been shown to reduce heat 
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risk in urban areas (Chapter 4). Before considering these research questions, this dissertation 

discusses changing patterns of extreme weather and some of the methods used in climate impacts 

work. 

Extreme events 

 In many regions, climate change will likely be first manifest by increasingly frequent and 

severe extreme weather events. There is robust evidence that many forms of extreme weather 

will increase in intensity and frequency as the planet warms2, and attribution studies already 

show clear and strong links between anthropogenic warming and recent heat waves3, heavy 

precipitation events4, and droughts5. This section will review recent trends and future projections 

in a variety of forms of extreme weather. 

Recent extreme events have been linked to climate change both statistically and through 

physical mechanisms. Statistical attribution has advanced greatly in recent years, facilitated by 

increased computing power and more efficient computational methods of comparing the 

historical likelihood of an event to its likelihood today. Such methods generally use model 

simulations of a pre-industrial climate to examine the statistics of an extreme event absent 

anthropogenic greenhouse forcing, and then compare these statistics to those found using a 

model with present-day forcing5. This method allows for an assessment of whether statistically 

significant changes in event frequency or intensity have occurred.  

While the ability to statistically attribute individual events to climate change is recent, our 

understanding of the physical mechanisms driving changes in climate extremes is long-standing 

and robust. Such mechanisms can be classified as primarily thermodynamic – changes in the 

radiation budget, surface moisture, atmospheric humidity, and turbulent fluxes – or dynamic 

changes in the large-scale atmospheric circulation. Thus far, evidence suggests that 
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thermodynamic factors are the primary drivers of changes in extreme event frequency and 

intensity, although circulation changes may become increasingly important drivers as the climate 

continues to warm6–8.  

Heat waves are intensifying due to rising background temperatures driven by increased 

net surface radiation resulting from greenhouse gas forcing, which allows for larger sensible heat 

fluxes during atmospheric circulation regimes that produce clear skies and heightened local 

radiative input. Under such conditions, the surface dries through evapotranspiration and 

incoming energy is partitioned preferentially towards sensible heat flux, further raising 

temperatures in a positive feedback9. In addition, large-scale drying (as evidenced by declining 

precipitation minus evapotranspiration)10 and reductions in the cloud cover fraction11 are 

occurring in parts of the world – especially in southern and central Europe – which are both 

further increasing radiative input at the surface and decreasing latent heat fluxes, allowing for 

enhanced warming. There is some evidence for changes in Northern Hemisphere atmospheric 

circulation such that regimes conducive to heat waves are becoming more likely6, but so far this 

dynamic process is likely secondary to thermodynamic changes in modifying the statistics of 

extreme heat events.  

Cold extremes have become much less frequent across the world due to overall warming, 

and this trend is likely to continue12. However, it has been argued that wintertime changes in the 

northern hemisphere atmospheric circulation are favoring anomalous cold air excursions from 

the Arctic into the mid-latitudes13; these air masses are still warming, however, decreasing the 

overall occurrence of abnormally cold extremes. Regions which are projected to have declining 

winter snow cover are also projected to experience more rapid warming of wintertime 
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temperatures than the globe as a whole14, likely due to the snow-albedo feedback enhancing 

warming as snow cover becomes less extensive15 and surface albedo declines.  

Warmer air holds more moisture according to the Clausius-Clapeyron relation, and 

observed increases in specific humidity have been attributed to warming16. Due to this higher 

background humidity, dynamical processes that result in precipitation – moisture convergence 

and convection – can generally produce larger precipitation totals17,18. Hurricane Harvey in 2017 

is an example; while there is little evidence that the storm’s path or intensity were affected by 

warming, its rainfall was likely substantially higher than it would have been in the pre-industrial 

climate4. While there are large uncertainties surrounding projected changes in seasonal and 

annual mean precipitation in some regions, there is generally agreement that precipitation 

variability19 is likely to rise in many parts of the world, leading to some regions having a larger 

fraction of annual precipitation fall during extremes20 which can lead to large increases in the 

frequency and intensity of wet seasons (as shown in Figure 0.1 in the Nile river basin). 
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Figure 0.1: Projected fraction of future (2061 – 2085) years that are wet (> 90th percentile 
historical precipitation) or dry (< 10th percentile historical precipitation) in the Nile Basin under 
RCP 8.5 as compared to 1981 – 2005. Most CMIP5 models project an increase in the frequency 
of wet years and a decline in dry years, but due to temperature increases these models also 
project an increase in the frequency of concurrently hot and dry years. From Coffel, Keith, Lesk, 
Bower, Lee, Horton, (2018), in preparation. 

  

Droughts are likely to increase in frequency and intensity in some regions10. Rising 

temperatures alone (that is absent changes in cloud cover, humidity and wind) increase potential 

evapotranspiration and can deplete soil moisture; this can lead to drought even without 

exceptional precipitation deficits21,22. Higher temperatures also result in more evaporative losses 

from reservoirs and rivers, and the projected widespread decline in snow cover will sharply limit 
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the ability of snow pack to store water23. Some parts of the world are likely to be at increased 

risk of long-term drought due to both local land-atmosphere coupling and large-scale circulation 

changes24,25. 

 There is strong theoretical evidence that the strongest tropical cyclones may become 

more intense – even as the total number of tropical cyclones remains relatively steady – as air 

and sea surface temperatures rise26. Less evidence exists for possible changes in the frequency or 

intensity of mid-latitude storms27,28, but such storms (and tropical cyclones as well) will likely 

produce more precipitation due to increased atmospheric moisture content, and all coastal storms 

will carry increased risks of flooding due to sea level rise29. There is robust evidence for changes 

in the mid-latitude storm track28,30–32 which may impact regional precipitation patterns. 

 Taken together, climate change is either directly or indirectly intensifying most forms of 

extreme weather, except for cold. While there are still many outstanding research questions 

concerning how and why extremes will change in the future, there is very high confidence that 

the impacts of heat waves, floods, and droughts will increase in the coming decades. As the 

climate will continue to change in the coming decades regardless of emissions reductions, it is 

essential that we consider how to assess the relationships and the uncertainties between projected 

physical changes and potential disruption to ecosystems and human society. 

 

Climate impacts  

Research attention has increasingly turned to the effects of climate change on both human 

and natural systems, due to both an increased appreciation of the severity and breadth of the 

likely impacts and an improved ability to study region-specific changes. Climate impacts result 

both from direct physical damage caused by extreme events as well as from disruption due to 
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changes in mean temperatures or the seasonality and magnitude of precipitation. In addition, 

downstream effects of changing weather patterns and extremes on human societies may include 

increased conflict33 and migration34,35, the accelerated spread of vector-borne illness36, and 

reduced economic performance37, among many others. Investigating such impacts requires multi-

disciplinary research merging climate science, economics, and other fields, and is only beginning 

to be explored.  

 Sea level rise is among the largest threats that climate change poses to society. 

Substantial uncertainties remain in the projected rate of sea level rise due to difficulty observing 

and modeling ice dynamics and melt processes in Antarctica and Greenland. However, sea levels 

have risen by nearly 1/3 meter in some parts of the world38, and the trend in 21st century sea level 

rise projections has been upward in recent years as research has increasingly focused on 

instabilities that may lead to rapid ice loss from the world’s largest ice sheets. The IPCC AR5 

report suggests a worst case scenario of approximately 1 meter of sea level rise by 210039; recent 

studies have suggested that higher amounts are possible40,41, although models still struggle to 

reproduce known ice-sheet processes, leading to high uncertainty in the timing and magnitude of 

sea level projections42,43. In the near future sea level rise is likely to be experienced as a rapidly 

increasing coastal flood risk; even modest coastal storms may produce severe flooding in many 

regions due to the higher baseline water levels29. By the second half of the 21st century, coastal 

retreat may be necessary in some areas44. 

 Human heat exposure is likely to be a severe and widespread threat from warming. Heat 

waves have killed tens of thousands of people in recent years, damaged crops45, disrupted 

infrastructure46, and reduced economic performance37,47. While crops and infrastructure are 

primarily affected by temperature, human health impacts depend on both temperature and 
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humidity. Research has proposed that when the wet bulb temperature exceeds the human skin 

temperature, about 35°C, the body will be unable to shed heat without artificial cooling, 

representing a theoretical limit to human tolerance to heat48. This threshold is almost never 

reached in the current climate, but Chapter 2 of this dissertation will show – and other research 

has confirmed49,50 – that wet bulb temperatures approaching or exceeding 35°C are possible by 

the end of the 21st century. Health impacts from widespread exposure to such extreme heat stress 

are largely unknown, but recent heat waves with far lower wet bulb temperatures have caused 

substantial mortality, suggesting that heat-related illness and death could dramatically increase in 

the future51. Such heat is especially likely to occur in densely populated, rapidly growing, and 

currently low-income parts of northern India and West Africa, compounding the risk. However, 

as Chapter 4 will discuss, evidence-based adaptation strategies exist that can reduce the impacts 

of heat, especially in cities, which are particularly susceptible to heat waves due to the urban heat 

island effect. Aggressive adaptation efforts applied across the world have the potential to 

significantly reduce heat-related mortality, but thus far such measures have mostly been taken in 

a small number of mostly high-income regions.  

 Increasingly frequent climate extremes – especially heat and drought – coupled with 

changing seasonal climate patterns may have serious implications for agricultural production and 

global food supply stability. A substantial portion of historical crop yield variability has been 

attributed to climate52, and high temperatures and moisture shortages are known to severely 

reduce the yields of major crops53,54. Rain-fed crops are particularly at risk; high temperatures 

increase evaporative demand, leading to moisture shortages which then allow leaf temperatures 

to rise. The existence of large-scale climate teleconnections introduces systemic risk into the 

food system – climate-induced crop failure in one region can increase food prices around the 
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world. Recent research has shown that ENSO teleconnections can result in unfavorable weather 

conditions affecting multiple agricultural breadbaskets during the same year55. Climate change is 

also likely to exacerbate multiple breadbasket risk, increasing the frequency of simultaneous hot 

and dry seasons around the world due to warming alone, regardless of changes in precipitation. 

Estimates of maize yield declines by mid-century range from 20 – 40% after accounting for 

potential changes in the spatial distribution of cropping56, and declines are larger if cropping 

areas are assumed constant. Other major crops may experience similarly severe yield declines in 

the future. The effects of CO2 fertilization on crops – whereby higher atmospheric CO2 

concentrations improve plant growth – present a significant source of uncertainty in estimating 

future agricultural productivity. Assessing the effects of fertilization requires process-based crop 

models; such models vary widely in sophistication but generally demonstrate that for some 

crops, fertilization may reduce the harmful effects of modest levels of warming, but cannot 

compensate for the larger temperature increases possible by the second half of the 21st century57. 

As a result, it is possible that some regions in the mid-latitudes may experience improved crop 

performance in the coming decades, but then have yields begin to decline as the harmful effects 

of warming exceeds the benefits of increased CO2 concentrations. 

 Recent research has also shown that migration, conflict, and nation-level economic 

performance respond to fluctuations in temperature. Asylum applications rise during warm 

years35, potentially due to the effects of heat, drought, and agricultural failure on local food and 

water security34. Conflict at a variety of scales, from inter-personal to war, is more likely at 

higher temperatures58, and recent humanitarian crises – notably the war in Syria33 – occurred in 

the context of severe drought and environmental stress. Labor productivity declines as 

temperatures rise, even for indoor workers59; in some locations, especially in the tropics, outdoor 
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work may be sharply curtailed during the hottest parts of the year due to heat stress60 and its 

related health consequences61 in the future. These societal impacts, coupled with the damaging 

effects of warming and extreme weather on infrastructure, public health, and ecosystems62, are 

likely to combine to reduce future global economic output by a significantly larger sum than 

would be required to reduce greenhouse gas emissions and mitigate the effects of climate 

change63. It is also possible that climate change may prove difficult to reverse even with potential 

future reductions in greenhouse gas concentrations64.  

 

Downscaling, bias correction, and uncertainty 

Using global coupled earth system models to assess regional climate impacts often 

requires techniques to relate relatively course model output to localized regions. Many climate 

models are run at resolutions of 1 – 2° latitude/longitude, limiting their ability to directly resolve 

small scale but essential climate processes including convection, cloud formation, and turbulent 

fluxes, in addition to orographic and coastal effects. Impacts research often employs a variety of 

downscaling methods to increase model resolution; such techniques are classified as statistical or 

dynamical65. Statistical downscaling uses observed relationships between large-scale climate 

variables such as geopotential height, humidity, or temperature to adjust the output of global 

climate models to better match historical observations at a specific location66. These methods can 

substantially reduce model bias, especially in mountainous or coastal regions. However, they 

must be used carefully, as they have no physical constraints and can therefore produce climate 

outcomes which are not spatially or temporally consistent67. Dynamical downscaling, by 

contrast, uses a high-resolution regional climate model (RCM) run over a limited geographical 

area to produce finer climate outputs than possible with a global model. RCMs are usually forced 



11 
 

at their boundaries by the output from a global model, allowing global scale dynamics to occur 

and influence the regional climate, thereby producing both high resolution and physically 

constrained results, but at the cost of computational intensity. RCMs have been shown to 

improve climate projection quality as compared with global models in some situations, but can 

also introduce unrealistic physical behavior due to the nesting of two different model grid 

resolutions68. 

In addition to downscaling, climate impact studies often employ a form of bias 

correction. Climate models generally contain biases in simulated temperature, precipitation, and 

other variables when compared with historical observations. Model bias arises for a variety of 

reasons, primarily the need to parameterize un-resolved climate processes. Biases are highly 

variable in space and time, affecting both the simulated mean climate and the climate variability. 

In addition, bias can vary in different parts of a variable’s distribution – temperature bias, for 

instance, is often greatest at the highest and lowest values (Figure 0.2).  

 

Figure 0.2: Multi-model mean bias in New York City daily maximum temperature across 27 
CMIP5 models as compared to NCEP II Reanalysis in 1985 – 2005. Bias varies significantly 
across the temperature distribution, with the most extreme temperatures (> 90th percentile or < 
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10th percentile) having the largest biases. Similar biases are found using station data. From 
Coffel, Horton, 201569. 

 

Bias correction techniques are often used alongside downscaling methods to create 

localized projections of absolute temperature or precipitation. These techniques range from 

simple adjustment of the distribution mean (the delta method) to more sophisticated methods that 

attempt to reshape the modeled variable distribution such that it matches observations70. As with 

statistical downscaling, such techniques can produce non-physical results and so must be used 

with care. 

 

Uncertainty analysis 

Due to the substantial and in some cases irreducible uncertainties inherent in climate 

projections, careful treatment of inter-model, inter-emissions scenario, and internal variability is 

essential to ensure that a robust range of plausible climate outcomes is presented. Much impacts 

research focuses on multi-model or ensemble mean results, without assessing the variability 

across models and ensemble members. Such a focus on the mean can mask drastic uncertainty in 

the magnitude and even direction of projected changes in climate variables.  

It is sometimes useful to isolate the component of uncertainty which is intrinsic to the 

climate system and thus irreducible – as opposed to variation resulting from differences in model 

construction and parameterization schemes, which may decline as models continue to improve, 

or differences in emissions scenarios which depend on human choices. This irreducible 

uncertainty results primarily from internal variability, or chaotic behavior within the climate 

system, and can in some cases represents 10 – 50% of total uncertainty (Figure 0.3). Internal 

variability can be explored using multiple ensemble members of the same model – such as are 
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available through the NCAR Large Ensemble Community Project (LENS)71 – allowing climate 

variation resulting solely from perturbed initial conditions to be assessed.  

 

Figure 0.3: Fraction of total uncertainty resulting from internal variability in projections of the 
year after which air temperatures below -10°C will never again occur. Internal variability makes 
up approximately 10% of total variability region-wide, but up to 50% in some model grid cells. 
Generally, inter-model variability is the largest contributor to uncertainty. The K-Value is an  
estimated parameter related to the heat transfer rate through tree bark; variation in the parameter 
accounts for about 15% of total uncertainty, as shown in the bar plot. The other colors on the bar 
plot show variation due to emissions scenario (RCP), model variability (Model), and internal 
variability (Internal). From Lesk, Coffel, et al, 201762. 

 

Climate impacts research is increasingly considering uncertainty and in particular the 

worst-case outcomes that may result from any combination of emissions, climate sensitivity, or 

impacted system sensitivity being higher than expected. Presentation of the full range of possible 

climate outcomes is essential to facilitate realistic adaptation planning62, and understanding the 

sources of uncertainty helps assess the degree to which it may be reduced through technical and 

scientific advances.  

 

Dissertation overview 
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This dissertation will focus primarily on how the causes and impacts of extreme heat may 

change in the future. Chapter 1 will describe the mechanisms that are leading to amplified 

warming of the most extreme temperatures as compared to the warm season average, investigate 

the physical processes driving this accelerated warming of extremes, and demonstrate its impacts 

on heat wave risk. Chapter 2 will investigate the joint risk of heat and humidity – referred to in 

this dissertation as heat stress – in the context of projected population growth, and assess the risk 

of some regions experiencing heat stress conditions beyond human tolerance. Chapter 3 will 

consider a specific impact of rising temperatures: the decline in aircraft takeoff performance due 

to lower air density in hot conditions, and the associated implications for airline operations. 

Finally, Chapter 4 will review adaptation strategies to reduce the impacts of extreme heat in 

urban areas, and a concluding section will focus on promising future research directions to 

improve our understanding of the impacts of climate change. 
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Chapter 1 The amplified warming of extreme 
temperatures14,72

 

Coffel, E. D., Mankin, J. S., Winter, J. M., & Horton, R. M. The amplified warming of extreme 
temperatures. In preparation. 

Horton, R. M., Coffel, E. D., Winter, J. M., & Bader, D. A. (2015). Projected changes in extreme 
temperature events based on the NARCCAP model suite. Geophysical Research Letters, 
42(18), 7722–7731. https://doi.org/10.1002/2015GL064914 

Introduction 

The rate of climate change varies regionally and seasonally. The continents are warming 

faster than the oceans, due to the high heat capacity of water. Arctic amplification is warming the 

northern polar region at approximately twice the rate of the planet as a whole73, due in part to the 

ice-albedo and snow-albedo feedbacks, stable stratification, increases in water vapor and clouds, 

and regional atmospheric circulation changes. Some regions, like the U.S. Southeast, have seen 

slowed warming in the past several decades due to aerosol emissions74, dynamical processes, and 

natural variability75. Many parts of the world are projected to experience faster warming during 

the warm season than during other parts of the year, likely due to surface drying and land-

atmosphere feedbacks76. In addition, in some areas the hottest days are projected to warm more 

than the warm season average. Other regions may experience enhanced warming of the coldest 

wintertime temperatures77, due in part to the snow-albedo feedback associated with reduced 

snow cover.  

Seasonal variations in warming rates are critical to potential future climate impacts. 

Projected rapid rises in wintertime minimum temperatures pose risks to ecosystems by, for 

example, potentially allowing pests to survive and spread62,78,79, while amplified summertime 

warming raises the risk of extreme heat and associated impacts, including human mortality51,80 
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and other health concerns61, agricultural losses to both livestock and crops53,81, increased energy 

consumption and infrastructure damage82,83, and reduced economic performance37,59. 

Prior research has suggested that the hottest temperatures will rise faster than daily-mean 

temperatures in some parts of the world in both global77,84,85 and regional (Figure 1.1) climate 

models, even after accounting for potentially faster warming of the warm season as compared 

with the annual mean. In this chapter, this phenomena is quantified as the difference between 

projected warming of the annual maximum temperature (TXx) and the warm season mean daily 

maximum temperature (Tx) and is referred to as TXx amplification. Previous research has noted 

the asymmetric nature of changes to the temperature distribution in some areas, and increased 

temperature variability has been proposed to explain it84,86,87, but so far this increased variability 

has not been observed88. This chapter will show that most of the warming amplification is linked 

to seasonal and sub-seasonal variation in warming rates that gives rise to changes in the shape of 

the temperature distribution in many locations, especially in the mid-latitudes. 
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Figure 1.1: Projected change in mean daily maximum temperature (Tx) vs. change in annual 
maximum temperature (TXx) across the NARCCAP89 regional climate models in the U.S. 
Northeast (a-b) and Southwest (c-d) in summer (JJA) and winter (DJF). In the Northeast, most 
models show extremes increasing more than the mean in both seasons, while in the Southwest 
this is true only in winter. From Horton, Coffel, et. al., 201514. 
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This chapter will first discuss the spatial distribution of the projected TXx amplification, 

and then identify the physical mechanisms that help to explain it in central Europe, the eastern 

United States, eastern China, and the Amazon rainforest. Prior work14 using regional models has 

shown that TXx amplification in the U.S. does not occur alongside more intense synoptic 

conditions favorable to heat waves, as represented by positive 500 hPa geopotential height 

anomalies (Figure 1.2); anomalies during future heat waves are projected to have little change, 

even though future heat wave temperatures are projected to rise more than mean temperatures.  

 

Figure 1.2: (left) 500 hPa geopotential height anomaly composited over each single hottest day 
per year in the Northeast U.S. (region shown in black box) between 1981 – 1998. (right) Change 
in the 500 hPa anomaly composited over the hottest days per year in the same region in 2051 – 
2068 vs 1981 – 1998. Results using the NARCCAP89 model suite. From Horton, Coffel, et. al., 
201514. 

 

This chapter will instead show that reductions in cloud cover coupled with surface drying 

result in increased net surface shortwave radiation and a preferential partitioning of increased 

energy input (due to greenhouse forcing) into sensible, as opposed to latent, heat flux in these 

regions. These changes increase the likelihood and the strength of a positive feedback between 

the land and the atmosphere in which temperature rise leads to increased evaporation, drying the 

surface and raising temperatures further9. As a result of this process, the warm season is 

projected to warm more than other parts of the year, and the highest daily temperatures are 
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projected to warm more than the warm season. This chapter will also demonstrate that this 

enhanced warm season warming substantially increases the recurrence frequency of historically 

extreme temperatures in some regions beyond what would be expected due to global mean 

warming alone. Finally, it will emphasize the importance of understanding the physical 

mechanisms driving projected temperature changes, as the strong dependence of warming on 

cloud and land-atmosphere interaction processes suggests substantial uncertainty in the 

magnitude of temperature projections and resulting heat risk. 

 

Data and methods 

This chapter uses 25 coupled climate models from the Coupled Model Intercomparison 

Project Phase 5 (CMIP5)90 suite to project daily maximum temperatures (using the tasmax 

variable), along with monthly mean total column soil moisture (variable: mrso), sensible and 

latent heat fluxes (variables: hfss, hfls), surface radiation (variables: rsds, rsus, rlds, rlus), and 

cloud fraction (variable: clt) (Table 1). All models are forced with Representative Concentration 

Pathway 8.5 (RCP 8.5), a high-emissions scenario91. The chapter presents the forced response as 

the “projected change,” which is defined as the difference between the future (2061 – 2079) and 

historical (1985 – 2004) period climatologies. These data are compared with the NCEP II92 and 

ERA-Interim reanalysis products, also covering 1985 - 2004. All data are placed on a common 

2° x 2° grid using linear interpolation to facilitate spatial comparison. Analyses are focused on 

the four regions that are most robustly projected to experience TXx amplification: the eastern 

United States, central Europe, the Amazon rainforest, and eastern China (Figure 1.3). 
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Figure 1.3: Selected regions. 

 

 The projected change (future minus historical) due to anthropogenic forcing is calculated 

for each variable, model, and grid cell. TXx amplification is calculated as the difference between 

the change in the annual maximum temperature and the mean daily maximum temperature 

during the local warm season. The Bowen ratio is calculated as , and the evaporative fraction 

is calculated as 
( )

, where 𝑆𝐻 and 𝐿𝐻 are the sensible heat flux and latent heat flux, 

respectively. Bowen ratios greater than 100 are discarded (large values can be caused either by 

anomalous model heat fluxes or by the ratio growing large due to a small value of the 

denominator, latent heat flux). All projected changes are spatially averaged over each of the four 

selected regions. Multi-model robustness is assessed by showing the median change at each grid 

cell across all 25 models, and models are considered to be in agreement when more than 75% 

project the same direction of change. 

 Linear correlations between seasonally-averaged temperature and Bowen ratio are 

calculated for each model (and reanalysis) and each grid cell over the 1985 to 2004 historical 
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period. Regional mean correlations are then calculated by averaging over all grid cells in the 

region bounds.  

 Linear fits between variables are computed over all values within 2 standard deviations of 

the variable’s mean; values outside of this range are considered outliers. Adjusted R2 values are 

displayed to indicate fit robustness. 

Monthly mean total column soil moisture change is calculated for each model separately 

by computing the change for each land grid cell in a region and averaging over the region’s grid 

cells. The multi-model median change is then computed across all models. Snow mass change is 

computed similarly, but only grid cells with historical non-zero mean DJF snow cover in the 

ERA-Interim Land dataset are used to eliminate small snow totals which erroneously appear over 

large areas in certain models.  

 

Results and discussion 

Enhanced warming of extreme temperatures has two primary causes: the warm season 

warming more than the rest of the year, and the annual maximum temperature warming more 

than mean daily maximum temperatures during the warm season. Figure 1.4b demonstrates these 

two drivers of asymmetric temperature change in central Europe. Tx in the warm season (JJA) is 

projected to increase by 1 – 2°C more than the other seasons of the year, and TXx is projected to 

rise approximately 0.5 – 1°C more than warm season Tx. In all regions, warm season Tx is 

projected to rise by 2 – 8°C, making the amplification a substantial addition to the projected 

seasonal warming. 

In most regions of the world, warming of the warm season Tx is projected to account for 

nearly all TXx change as shown in Figure 1.4a. In the eastern U.S., central Europe, eastern 
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China, and parts of the Amazon rainforest, however, models project that TXx will increase more 

than warm season Tx; in these four regions, warm season Tx change accounts for only 75 – 85% 

of total TXx change.  

 
Figure 1.4: (a) Multi-model median fraction of annual maximum temperature (TXx) warming 
accounted for by warm season mean daily maximum temperature (Tx) change in 2060 – 2079 vs. 
1985 – 2004 under RCP 8.5 across 25 CMIP5 models. (b) Demonstration of the effects of 
seasonal warming variability on the future temperature distribution in central Europe. The warm 
season warms more than the rest of the year, and TXx warms even more than the warm season, 
leading to amplified warming of the highest temperatures. From Coffel, Mankin, Winter, Horton, 
(2018), in preparation. 

 

Moisture availability plays an important role in controlling temperatures during the warm 

season in these regions. Figure 1.5 shows the correlation between Bowen ratio and seasonal 

mean daily maximum temperature across the year in the CMIP5 models and NCEP II and ERA-

Interim reanalysis products. Correlations are stronger during the warm season than during other 

parts of the year, especially in the eastern U.S. and central Europe. These higher correlations are 

due to generally higher warm season Bowen ratios than in other seasons, indicating a relatively 

more moisture-limited near-surface environment and thus more temperature response to changes 

in moisture availability.  
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Figure 1.5: Historical (1985 – 2004; blue) and future (2060 – 2079; red) correlation between 
warm season Tx and Bowen ratio across 25 CMIP5 models. ERA-Interim (shown with an X) and 
NCEP II (shown with a circle) reanalysis products are plotted alongside the historical model 
distribution. In the eastern U.S., central Europe, and the Amazon, correlations during the warm 
season are higher than during other parts of the year, indicating a more moisture limited 
environment. Red lettering on the x-axis indicates the local warm season. From Coffel, Mankin, 
Winter, Horton, (2018), in preparation. 

 

In addition to the stronger correlation between Bowen ratio and temperature during the 

warm season, these regions also have stronger land-atmosphere coupling as indicated by the 

correlation between soil moisture and Bowen ratio (Figure 1.6). This stronger coupling indicates 

that dry conditions will have more of an effect on the partitioning of energy into sensible and 

latent heat flux during the warm season than during the rest of the year; coupled with the higher 

correlation between Bowen ratio and temperature during the warm season (shown in Figure 1.5), 

warm season temperatures are seen to be generally more sensitive to changes in surface moisture 

content than during the rest of the year and thus will be influenced more by the warm season 

drying that is projected in the future. 
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Figure 1.6: Historical (1985 – 2004) correlation between total column soil moisture and Bowen 
ratio in CMIP5 models (boxplots) and the NCEP II (open circle) and ERA-Interim (X) reanalysis 
products. Local warm seasons represented by red lettering on the x-axis. Red crosses indicate 
outlier models. From Coffel, Mankin, Winter, Horton, (2018), in preparation. 

 

TXx amplification occurs in the context of this heightened warm season sensitivity of 

temperature to surface moisture. Figure 1.7a shows TXx amplification across the globe; the four 

selected regions are among the few large areas that are projected to have TXx warm more than 

the warm season. The null hypothesis, that TXx amplification is caused by random noise, is 

unlikely due to the statistical significance of the TXx amplification signal and the cross-model 

agreement on the spatial distribution and coherency of amplification; non-hatched areas in Figure 

1.7a indicate that at least 75% of models agree on the direction of amplification and that the 

amplification is statistically significant (P < 0.05). The regions that see positive TXx 

amplification are the same that have low fractions of TXx warming explained by Tx warming in 

Figure 1.4a. The multi-model median amplification is approximately 1°C in all regions. Figure 

1.7b-e show how TXx change varies with warm season Tx change across models in the four 

regions. TXx change tracks closely with warm season Tx warming (R2 > 0.8 in all regions), but 

all regions also have a positive slope, indicating that projected TXx rises at a faster rate than 

warm season Tx across models; in Europe, for instance, a model that projects 1°C more Tx 

warming would project 1.25°C more TXx change. In all regions, almost all models fall above the 
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1-to-1 line, confirming that there is robust cross-model agreement on the existence and 

magnitude of TXx amplification. Only Greenland, Antarctica, and small parts of Siberia are 

projected to have significant negative TXx amplification – meaning that TXx increases less than 

the warm season on average.  
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Figure 1.7: (a): Multi-model median difference between projected TXx warming and warm 
season Tx warming in 2061 – 2085 vs 1981 – 2005 under RCP 8.5 across 25 CMIP5 models. 
Hatching indicates that the difference is not significantly different from zero (K-S test, 95%) or 
that less than 75% of models agree on the direction of amplification. (b-e): Projected warm 
season Tx change vs. TXx change in four selected regions. Models generally project TXx to 
warm more than warm season Tx. From Coffel, Mankin, Winter, Horton, (2018), in preparation. 

 

Figure 1.8 shows the projected warm season change in four large-scale variables related 

to both warm season warming and TXx amplification: cloud fraction (a), sensible heat flux (b), 

net surface shortwave radiation (c), and evaporative fraction (d). These variables are correlated 

with each other; reduced cloud fraction increases net surface shortwave radiation, and a lower 

evaporative fraction signals that net surface radiative energy is preferentially partitioned into 

sensible heat flux as opposed to latent. In the four selected regions, models robustly project 

general drying; Europe has the most pronounced signal, with a 5 – 10% reduction in cloud cover, 

substantial increases in net surface shortwave radiation, an evaporative fraction decline of 

approximately 0.1, and increases in sensible heat flux of 10 – 20 W/m2. China and the eastern 

U.S. are projected to have reduced cloud cover and more net surface shortwave radiation, but 

little change in evaporative fraction and smaller increases in sensible heat flux of less than 5 

W/m2. The Amazon has a sharp east-west gradient in projected change; drying increases closer 

to the Atlantic coast, but the entire region is projected to have reduced cloud cover and increased 

net surface shortwave radiation. The general drying trends projected in the four selected regions, 

coupled with the heightened sensitivity of temperature to surface moisture content during the 

warm season, contribute to the faster Tx warming that models project during the warm season as 

compared to the rest of the year. However, the warm season drying does not spatially correspond 

to projected TXx amplification. 
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Figure 1.8: Multi-model median projected changes for the local warm season. Hatching shows 
regions with less than 75% model agreement on the direction of change. (a) Cloud fraction; (b) 
Sensible heat flux; (c) Net surface shortwave radiation; (d) Evaporative fraction. From Coffel, 
Mankin, Winter, Horton, (2018), in preparation. 

 

At the daily scale, however, the amplification of evaporative fraction (defined as the 

change in evaporative fraction on the TXx day as compared to the change in the warm season 

mean) shows strong spatial correspondence with TXx amplification across the CMIP5 model 

ensemble. This spatial correspondence is examined by linearly regressing TXx amplification 

against evaporative fraction amplification over model grid cells. Regressions are performed for 

each model independently for the entire globe and for subsets of the globe in different climate 

zones. Climate zones are based on the mean warm season evaporative fraction and defined as 

follows: arid (mean warm season evaporative fraction of 0 – 0.1), semi-arid (0.1 – 0.33), 

temperate (0.33 – 0.75), and tropical (0.75 – 1). Figure 1.9 shows the regression slopes for each 
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of 22 models. Nearly all models show significant negative slopes over the full globe and for each 

climate zone, indicating that as evaporative fraction amplification becomes more negative 

(relative drying of the TXx day as compared to the warm season) in a grid cell, TXx 

amplification in that grid cell becomes more positive. However, the multi-model mean and 

median slopes differ between climate zones, with stronger relationships in arid and semi-arid 

regions than in temperature and tropical areas. These differences are due to the fact that at lower 

starting evaporative fractions, a decline represents a larger relative change, which allows for a 

larger increase in sensible heat flux and thus temperature. The dashed gray line in Figure 1.9 

shows a cubic fit through the multi-model median slopes, demonstrating the non-linear 

relationship between evaporative fraction and temperature. 
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Figure 1.9: Linear regression slopes across grid cell evaporative fraction amplification and TXx 
amplification for each model over the full globe and each climate zone. Brown fill indicates a 
statistically significant (P < 0.05) regression coefficient. Green lines show the multi-model 
median, and red lines show the multi-model mean. The grey dashed line shows a cubic fit 
through the multi-model median slopes. From Coffel, Mankin, Winter, Horton, (2018), in 
preparation. 
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 Evaporative fraction amplification also accounts for the magnitude of TXx amplification 

across the suite of CMIP5 models. Figure 1.10 shows the relationship between regionally 

averaged evaporative fraction amplification and regionally averaged TXx amplification across 22 

models. All four selected regions show significant linear relationships (P < 0.05), with 

correlations ranging from -0.5 to -0.75. These results demonstrate that relative drying on the day 

of TXx controls both the occurrence and magnitude of TXx amplification within models and also 

modulates the magnitude of TXx amplification across the suite of models. 
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Figure 1.10: Relationships between regionally averaged evaporative fraction amplification and 
regionally averaged TXx amplification across CMIP5 models. Dashed blue lines indicate a 
significant linear relationship (P < 0.05) across models, and linear correlations are shown for 
each region. EF amplification substantially controls the magnitude of TXx amplification across 
models for all regions. From Coffel, Mankin, Winter, Horton, (2018), in preparation. 

 

While evaporative fraction decline is associated with TXx amplification, this drying is 

not associated with a decline in wet bulb temperature. Figure 1.11 shows the multi-model median 

projected change in wet bulb temperature on the day of TXx. There is robust model agreement 

that the wet bulb temperature will see spatially consistent increases of 2 – 3°C across the globe. 

These increases occur even in regions that are drying and projected to have TXx amplification, 

indicating that the decline in evaporative fraction does not reduce surface specific humidity 

enough to offset the rise in temperature and prevent the wet bulb temperature from climbing. 

 

Figure 1.11: Projected change in the wet bulb temperature on the TXx day in 2061 – 2085 vs. 
1981 – 2005 under RCP 8.5. Despite spatial variation in the magnitude of TXx change, wet bulb 
temperature change is spatially consistent, showing the modulating effect of humidity.  
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Figure 1.12: Multi-model median projected difference between annual minimum temperature 
(TNn) change and mean daily minimum temperature (Tn) change in 2060 – 2079 vs 1985 – 2004 
across 25 CMIP5 models under RCP 8.5. Hatching indicates that less than 75% of models agree 
on the sign of amplification. 

Amplification is also projected for extreme low temperatures. Figure 1.12 shows the 

multi-model median projected difference between warming of the annual minimum temperature 

(TNn) and the annual mean daily minimum temperature (Tn). In much of the Northern 

Hemisphere, TNn is projected to warm by at least 3°C more than Tn. There are strong linkages 

between wintertime (Dec – Feb, DJF) snow mass declines and TNn amplification. Figure 1.13a 

shows multi-model median projected DJF snow mass declines of 50% or more across much of 

the mid-latitudes. Snow mass is historically spatially correlated with DJF Tn anomalies in all 

regions with regular DJF snow cover; Figure 1.13b shows linear fits between normalized (for 
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each grid cell) historical DJF snow mass anomalies and historical normalized DJF Tn anomalies 

in the NCEP II and ERA-Interim reanalysis products and across 25 CMIP5 models. Most models 

have comparable temperature responses to snow as compared with reanalysis, with more snow 

mass corresponding to negative temperature anomalies. Three models, however, stand out as 

having a positive slope: FGOALS-G2, Hadgem2-CC, and Hadgem2-ES. Projected TNn 

amplification is also spatially associated with snow mass decline; Figure 1.13c shows that grid 

cells with high levels of TNn amplification also have large declines in snow mass across models. 

Reductions in surface albedo associated with snow melt likely contribute to this TNn 

amplification. 
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Figure 1.13: (a): Multi-model median projected DJF snow mass change in 2060 – 2079 as 
compared to 1985 – 2004. Hatched regions show less than 75% model agreement on the 
direction of change. (b): Relationships between normalized monthly-mean snow mass anomaly 
and normalized monthly-mean Tn anomaly in DJF between 1985 – 2004, averaged across all 
Northern Hemisphere grid cells. Gray lines show 23 CMIP5 models, and blue and orange lines 
show the NCEP II and ERA-Interim reanalyses. (c): Multi-model median projected snow mass 
change for grid cells with different levels of TNn amplification. Error bars show the standard 
deviation across all grid cells with the same level of TNn amplification. Filled markers indicate 
that at least 75% of grid cells with a given level of TNn amplification have the same direction of 
snow mass change. 
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Prior studies have shown that seasonal warming can explain most of the projected change 

in heat wave statistics76. We find that in most locations that is the case, but in four key regions – 

the eastern U.S., central Europe, the Amazon rainforest, and eastern China – the most extreme 

temperatures increase significantly more than the warm season overall. Previous research has 

proposed increased daily temperature variability as a driver of the projected asymmetric warming 

of extremes86,93, but no significant changes in temperature variability have been observed so 

far88. This chapter, however, shows that most extreme temperature warming can be attributed to 

seasonal mean temperature changes, but in some regions, the most extreme temperatures are 

increasing substantially more than the season on average. This increased warming of extremes is 

due to land-atmosphere interactions that create a positive feedback between surface drying and 

temperature rise during the warm season as a whole and particularly in the short-term heat waves 

during which the annual maximum temperature occurs. 

The increased warming of the warm season (as compared to the rest of the year) has a 

substantial effect on the occurrence frequency of historically extreme temperatures. In central 

Europe, the amplified summertime warming is projected to result in 10 days per month above the 

historical, seasonal 95th percentile Tx, and 4 days in spring, (March – May; Figure 1.14) by 2060 

– 2079. Historically, 1 – 2 days per month would be expected to exceed the 95th percentile. In the 

eastern U.S., this figure is 17 days per month in the summer, and 8 days in the spring. In the 

Amazon, where temperature variability is lower, the warm season (September – November) is 

projected to experience 27 days per month above the historical, seasonal 95th percentile Tx, and 

22 days in December – February, when slower warming is expected. The projected TXx 

amplification will occur on top of this heightened warm season warming, further increasing 

temperatures during heat waves by 1 – 2°C.  
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Figure 1.14: Multi-model mean projected number of days per month in 2060 – 2079 above the 
local historical (1981 – 2009) 95th percentile Tx (using the historical temperature distribution 
from the ERA-Interim reanalysis) as a function of seasonal mean Tx increase in December – 
February (DJF), March – May (MAM), June – August (JJA), and September – November 
(SON). Colored, dashed lines show the multi-model mean projected seasonal warming and 
corresponding recurrence frequency. Dashed gray line shows the multi-model mean projected 
regional, annual mean warming. 

 

This chapter shows that TXx amplification is linked to reduced cloud cover and surface 

drying in all four selected regions. The projected reduction in cloud fraction leads to increased 

net surface shortwave radiation, increasing surface turbulent fluxes. This energy input is then 
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partitioned into sensible and latent heat fluxes according to the near-surface moisture content. In 

addition to the large-scale positive feedback between generally declining surface moisture and 

rising temperatures, short-term variations of this feedback may also occur. During heat waves, 

high temperatures increase evapotranspiration and dry the soil, which results in an increasing 

Bowen ratio and still higher temperatures9. It is likely this short term process contributes to TXx 

amplification and that it is made more likely by generally drier and less cloudy conditions.  

The strength of warm-season land-atmosphere coupling is also observed to vary 

seasonally in both reanalysis and the CMIP5 models, with the eastern U.S., central Europe, and 

the Amazon experiencing a stronger relationship between soil moisture and the Bowen ratio 

during the warm months than during the rest of the year. Given the links that this chapter 

demonstrates between surface moisture content and TXx amplification, this uncertainty in model 

representation of the relationships between Bowen ratio, soil moisture, and temperature may 

have substantial effects on projected future heat risk. Models generally underestimate the 

correlation between soil moisture and Bowen ratio as compared to the NCEP II and ERA-Interim 

reanalyses (Figure 1.6), indicating that Bowen ratio and thus temperature response to surface 

drying may be greater than projected by most CMIP5 models. Similarly, reanalysis-based 

correlation between Bowen ratio and Tx is generally larger than in models globally and in the 

eastern U.S. (Figure 1.5), again suggesting that real-world temperature responses to rising 

Bowen ratios may be larger than anticipated. 

TXx amplification, and warm season warming more generally, depend on changes in 

cloud cover and surface moisture availability. These variables are driven by small-scale 

processes which are parameterized in climate models and generally poorly constrained. In the 

four regions analyzed here, models robustly project a decline in cloud fraction and a 
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corresponding increase in net surface shortwave radiation, but model variability in the magnitude 

of the projected change is large and has a substantial impact on projected TXx amplification. 

These results show that extreme temperature projections cannot be separated from projections of 

hydrological change; the two are highly interdependent, and uncertainties in one translate into 

uncertainties in the other. Furthermore, the relation between extreme heat and surface moisture 

point to correlated climate risks – climate outcomes in these two variables are likely to be either 

both worse, or both better, than projected. If a region falls in the high range of projected drying, 

it is also likely to fall in the high range of TXx amplification. This fact underscores the 

importance of understanding the physical processes that are driving the projected TXx 

amplification as a way to evaluate model performance and constrain the uncertainties in 

projected warming and drying. 

An unexplored factor in this chapter is vegetation cover and its response to climate 

change. Vegetation cover and type play a role in modulating regional evapotranspiration and thus 

Bowen ratios, soil moisture levels, and the strength of land-atmosphere coupling94. Models range 

from having no vegetation representation to incorporating sophisticated biosphere simulations 

that are coupled with their land-surface and atmosphere models95,96. Future research could 

analyze the extent to which vegetation affects monthly mean and daily extreme temperatures in 

observations and models, as well as the projected response of vegetation type and cover to 

warming and associated feedbacks. In addition, prior work has shown that intensive agriculture 

and irrigation can dampen the most extreme temperatures due to increased local 

evapotranspiration97; this process is not represented in models and could have an impact on TXx 

amplification in some regions. 
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Future work could also investigate whether there are regions which experience amplified 

warming of joint heat-humidity variables like the wet bulb temperature. Such metrics are 

relevant for human health, and may behave differently from temperature alone. In addition, the 

relative drying projected on the TXx day could be framed in terms of the rate of soil moisture 

depletion on dry days preceding the TXx event; due to higher background temperatures, this 

depletion rate will likely rise in the future, allowing heat waves to intensify more quickly and 

become more intense than in the historical climate. 

Amplified warming of extreme cold temperatures is projected in regions that have 

historically had wintertime snow cover. This snow cover is projected to decline by 50% or more 

in much of the northern hemisphere, and the projected amplification is spatially correlated with 

this snow loss. Wintertime minimum temperatures are important for many ecosystems, as they 

act to control forest pests62,78 and other invasive species in some areas. They also have significant 

implications for a variety of human activities. 

Given the wide range of impacts on human activity and natural ecosystems caused by 

both extreme heat and decreased cold, TXx and TNn amplification may prove important in 

driving temperature-related climate impacts in the regions identified in this chapter. Constraining 

the uncertainty surrounding amplification will require improved understanding of hydrological 

change and its effects on cloud cover, vegetation, and land-atmosphere feedbacks. 
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Chapter 2 Temperature and humidity based projections of a 
rapid rise in global heat stress exposure during the 21st 
century98 

Coffel, E. D., Horton, R. M., & de Sherbinin, A. (2018). Temperature and humidity based 
projections of a rapid rise in global heat stress exposure during the 21st century. 
Environmental Research Letters, 13(1), 14001. https://doi.org/10.1088/1748-9326/aaa00e 

Introduction 

 The beginning of the 21st century has seen a variety of extreme heat impacts, from the 

2003 European heat wave which was responsible for tens of thousands of additional deaths36 to 

the 2010 Russian heat wave which was responsible for a rise in global food prices99,100. More 

recently, extreme temperatures occurred in Australia in 2012 and 2013, the U.S. Southwest in 

2013, in India, Pakistan, and other parts of the Middle East in 2015 and 2016101,102, and again in 

central Europe in the summer of 2017. Recent attribution studies have suggested that such 

extreme heat events have already been made more likely due to anthropogenic warming2,3,103,104. 

Furthermore, a large body of research now supports the expectation that as the climate continues 

to warm during the 21st century, the frequency, magnitude, and duration of extreme heat events 

will increase, as will population exposure to them85,105,106. In many parts of the world, seasonal 

warming variation may result in the hottest temperatures rising more than the annual mean76,77,84, 

for reasons explored in Chapter 1, including declines in aerosols, changes in cloud cover and 

type, and surface drying9. Some research has also suggested that dynamical changes may affect 

the statistics of circulation regimes favorable to heat wave initiation107. A wide variety of studies 

show that extreme temperatures directly endanger human life51, decrease agricultural yields108, 

compromise ecosystems62,78, damage infrastructure46,69, and impair economic growth47,59. 
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Human health impacts depend on both temperature and humidity. The human body is 

efficient at shedding heat through evaporative cooling, even in high air temperatures, if moisture 

levels are low. However, in hot and humid conditions the efficiency of evaporative cooling slows 

and the body may become unable to maintain a stable core temperature. A variety of heat stress 

indices are used to measure the potential impact of heat on humans. The most common index is 

the wet bulb globe temperature (WBGT), which is a weighted average of the dry bulb, wet bulb, 

and mean radiant (globe) temperatures and has a long history of use in the military, athletics, and 

workplace safety109. The WBGT has been shown to have increased along with temperature over 

the past four decades110,111. However, recent research has focused on the standard wet bulb 

temperature as an indicator of dangerous heat-humidity combinations, and that metric is used in 

this chapter. The wet bulb temperature is a physically relevant quantity defined as the 

temperature that an air parcel would reach through evaporative cooling once fully saturated. 

When the outside wet bulb temperature exceeds the body’s skin temperature, about 35°C, 

evaporative cooling will be significantly less effective and the body will likely accumulate heat. 

Prior research has considered this wet bulb temperature threshold to be the limit of human 

tolerance to heat stress, as in theory a person would eventually suffer heat illness in the absence 

of artificial cooling48–50.  

Wet bulb temperatures approaching 35°C almost never occur in the current climate112, 

and thus there is little real-world data on human health outcomes at the societal level during such 

extreme conditions. However, recent heat waves with lower wet bulb temperatures between 29°C 

and 31°C have caused tens of thousands of deaths102,113, and empirical evidence suggests that 

most physical labor becomes unsafe at wet bulb temperatures above 32°C60,114. Morbidity and 

mortality can also increase in populations exposed to warm, but not extreme, temperature 
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conditions, as will be commonplace in many areas by the second half of the 21st century115.The 

impact of heat stress on human society depends both on the severity of heat waves and the 

number and vulnerability of people exposed to them. Currently, some regions most at risk for 

extreme wet bulb temperatures – Northeast India, East China, West Africa, and the Southeast 

U.S. – are some of the world’s most densely populated. In Northeast India and West Africa many 

people work outdoors and air conditioning, safe water, and medical treatment are not necessarily 

available. These factors make heat stress much more dangerous, especially for children, the 

elderly, and people with pre-existing health conditions. Population density is expected to rise 

dramatically in India and West Africa over the 21st century116, increasing the number of people 

exposed to extreme heat at the same time as climate change makes high wet bulb temperature 

events more severe. In addition, continued urbanization will place more people in metropolitan 

areas affected by the urban heat island, which can raise air temperatures by several degrees 

Celsius117. As a result, regardless of whether wet bulb temperatures regularly reach 35°C, 

extreme heat is poised to become one of the most significant and directly observable impacts of 

climate change in the coming decades. Global economic impacts can be expected, affecting 

agriculture, construction, energy demand, emergency services, recreation, and the 

military37,47,59,118.  

Recent research has increasingly focused on heat stress as a human health risk114. The 

return period of high heat stress events has declined119 and in the future the frequency of these 

events may increase the most in the tropics and parts of the mid latitudes that are already 

hot110,120. Two studies have shown that wet bulb temperatures could reach 35°C this century in 

some locations in the Middle East and India49,50. This chapter presents the first global analysis of 

population exposure to extreme wet bulb temperatures using 18 general circulation models 
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(GCMs) from the CMIP590 suite under two representative concentration pathways (RCP 4.5 & 

RCP 8.5) along with five spatially explicit population projections121 from the shared 

socioeconomic pathways (SSP) project122. Future daily air and wet bulb temperatures are 

calculated by adding projected monthly changes from the CMIP5 GCMs onto a present-day air 

and wet bulb temperature distribution provided by the NCEP Reanalysis II123. The rise in 

exposure is partitioned into components driven by population increase, climate change, and a 

combination of the two, and the uncertainty associated with each is quantified. 

 

Data and methods 

In this chapter, the daily maximum wet bulb temperature is calculated for the NCEP 

Reanalysis II123 and 18 CMIP5 GCMs using the daily maximum air temperature, daily mean 

specific humidity, and daily mean surface pressure using the algorithm described in Davies-

Jones (2008)124, implemented by Buzan (2015)114, and ported to Matlab by Dr. Robert Kopp 

(Rutgers, 2016). Wet bulb temperature is normally estimated using a Skew-T diagram, and there 

is no analytical method to calculate it. Two primary empirical methods are used to estimate wet 

bulb temperature, one provided by Stull (2011)125 and another provided by Davies-Jones 

(2008)124. This chapter uses the Davies-Jones method, as it is known to be more accurate at high 

wet bulb temperatures114. However, the simpler Stull (2011) empirical formula is reproduced 

here (Equation 2.1) to demonstrate the dependence of the wet bulb temperature on dry bulb 

temperature and relative humidity. 

 

Equation 2.1: Calculation of wet bulb temperature (TW) using relative humidity (RH) and dry 
bulb temperature (T). Taken from Stull (2011)125. 
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The wet bulb temperature used here is different from the wet bulb globe temperature 

(WBGT) which is commonly used as a heat stress index. WBGT is defined as a weighted 

average of the wet bulb, dry bulb (standard air temperature), and globe temperature (mean 

radiative temperature, measured with a thermometer in the center of a black sphere). The heat 

index, commonly used to communicate heat stress in public weather reports, is also defined 

using an empirical formula and depends on temperature and relative humidity126. 

The reanalysis and GCM data are re-gridded using linear interpolation to a 2°x2° 

resolution to facilitate spatial comparison. Using the daily maximum temperature as opposed to a 

six-hourly time step in wet bulb temperature calculations prevents an underestimation of the 

daily maximum temperature due to it falling in between two of the time steps. 

  Future changes in monthly-mean daily maximum temperature and wet bulb temperature, 

relative to 1985 – 2005, are calculated at each grid cell for each GCM and emission scenario in 

each year between 2020 and 2080. These projected monthly changes are added to the historical 

daily maximum temperatures and wet bulb temperatures taken from the NCEP Reanalysis II for 

the period 1985 – 2005, generating a set of daily future projections which retain reanalysis-based 

historical daily variability and spatial patterns. This method eliminates GCM mean bias, although 

such mean biases may affect the warming simulated by GCMs and thus the projections used 

here. Variations in the spatial distribution, seasonality, or sub-monthly variability of warming 

could act to either increase or decrease projected future wet bulb temperatures. In addition, any 

errors in the original reanalysis will be retained. However, given the need for projections of 

absolute wet bulb temperature, this method may be preferable to bias-correcting GCM 

temperature and humidity data, as such corrections can produce non-physical results. The NCEP 

Reanalysis II is most accurate in regions with dense observational weather data; NCEP II 
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historical period wet bulb temperatures are compared with daily maximum wet bulb 

temperatures computed using observed station data in a variety of countries, some with dense 

station data networks (such as the U.S. or Germany) and others with sparse ground observations 

(such as Nigeria and parts of rural Brazil) (Figure 2.1). The bias between NCEP II and station 

data is between 0 and negative 3°C (indicating that the NCEP II is too cool), with most regions 

experiencing biases closer to negative 1°C. These negative biases suggest that the wet bulb 

temperature projections used in this chapter may be somewhat conservative in these regions. No 

bias correction is applied to the NCEP II dataset due to varying and uncertain quality and 

consistency in observed station data. 

 

Figure 2.1: Mean bias in daily maximum wet bulb temperature between regionally-aggregated 
weather station data and the NCEP Reanalysis II. All available weather station records between 
2010 and 2017 are used, and bias is calculated for each NCEP grid cell using the stations 
geographically contained within the grid cell region. Error bars show the mean difference in the 
standard deviation bias across daily wet bulb temperatures from each NCEP II grid cell and all 
corresponding stations, averaged across all grid cells in the specified country between each 
station’s time series and that for the corresponding NCEP grid cell. Filled markers indicate a 
statistically significant mean bias (Student t-test, 95th percentile). 
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 The relative frequency of future heat events for each GCM grid cell is calculated as the 

mean number of days per year during 2060 – 2080 which exceed the mean annual maximum 

temperature and wet bulb temperature for the same GCM during the modeled 1985 – 2005 

period.  

 Spatially explicit population projections consistent with the SSP project121 are up-scaled 

to a 2°x2° degree latitude/longitude grid to match the GCM resolution, and population exposure 

to wet bulb temperature thresholds are calculated for each GCM separately at a daily time 

resolution. If the GCM wet bulb temperature at a given grid cell exceeds a threshold value (e.g a 

wet bulb of 32°C or 35°C) on a given day, the grid cell is considered exposed, and the population 

total for that grid cell is added to the person-day exposure count. The annual exposure totals (in 

person-days) can count the same people multiple times, and indeed do as much of the exposure 

to high wet bulb temperatures occurs in the same grid cells repeatedly. 

 

Figure 2.2: Projected global population through 2080 under the five shared socioeconomic 
pathway (SSP) scenarios. 
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The population exposure values are decomposed into three components: the population 

effect, the climate effect, and the combined effect. The population effect is calculated as the 

exposure in person-days that would result from a changing population under a constant climate. 

The historical daily maximum wet bulb temperatures (1985 – 2005) are used to select exposed 

grid cells, and mean population exposure for each decade is computed using decadal population 

means from the five SSP scenarios. Uncertainty in the population effect is estimated by taking 

the full range across the five SSPs, and this is displayed as the error bar on the population effect 

bars in Figure 2.7b-c. The climate effect is the exposure that results from rising temperatures 

alone, holding population constant (using SSP estimated population data from 2010). 

Uncertainty in the climate effect is calculated by taking the 10th – 90th percentile range across the 

18 GCMs (so as to reduce the effect of outlier temperature change projections in several GCMs). 

The combined effect is calculated as the total population exposure minus the population and 

climate effects, and the uncertainty bars show the 10th – 90th percentile range across five SSPs 

and 18 GCMs. This represents the exposure that results from both rising populations and rising 

temperatures. 

 

Results and discussion 

The changes in wet bulb temperatures are expected to be smaller, more spatially uniform, 

and have less inter-GCM variation than for air temperatures, as GCMs that project the largest 

increases in air temperature also project the largest decreases in relative humidity (even with 

increases in specific humidity), producing a stabilizing effect on wet bulb temperature 

projections127. By 2070 – 2080, global multi-GCM mean increases in annual maximum wet bulb 

temperature across the tropics and mid-latitudes of 2 – 3°C are projected (Figure 2.3d-e), with an 
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inter-GCM range from 1 – 2.5°C under RCP 4.5 and 2 – 4.5°C under RCP 8.5. These projected 

increases are similar to those found in other studies focused on regional wet bulb temperature 

changes49,50. 

 

Figure 2.3: Top panel (a-c): changes in annual maximum air temperature in 2060 – 2080 relative 
to 1985 – 2005 under RCP 4.5 (a) and RCP 8.5 (b). Panel (c) shows the range in projected annual 
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maximum temperature increase spatially averaged over land for both emission scenarios over all 
18 CMIP5 GCMs. Bottom panel (d-f): same as (a-c) except for annual maximum wet bulb 
temperature. Air temperatures increase at a faster rate and have more spatial variability than wet 
bulb temperatures, in part due to the dependence of wet bulb temperature on humidity. 

 

Annual maximum wet bulb temperatures are projected to increase by approximately the 

same amount as mean daily maximum wet bulb temperatures across the tropics and mid-latitudes 

(Figure 2.4). This stands in contrast to annual maximum air temperatures, which are projected to 

increase by 1 – 2°C more than mean daily maximum temperatures in many regions, notably in 

the eastern U.S., much of Europe, parts of South America, and eastern China (see Chapter 1). 

This difference between changes in mean and extreme air temperatures aligns with previous 

research76,77,84,128 and may be driven by land-atmosphere interactions and dynamical 

changes9,85,107.  

As global mean temperatures warm, it is expected, and has been observed, that 

atmospheric specific humidity levels will rise in accordance with the Clausius-Clapeyron 

relation16, with the largest increases in specific humidity expected over the oceans. Four regions 

particularly vulnerable to heat stress, the eastern U.S., northeastern India, eastern China, and 

West Africa, have different climates and synoptic patterns during heat waves which affect the 

relative importance of temperature and humidity as contributors to extreme wet bulb 

temperatures. On the days with the highest wet bulb temperatures, specific humidity increases of 

10 – 15% (relative to high wet bulb temperature days in the historical period) are projected 

across all four regions. However, increases in temperature on the days with the highest wet bulb 

temperatures range from 1 – 2°C in India to 3 – 4°C in the eastern U.S., West Africa, and eastern 

China (Figure 2.4), driving the regional differences in wet bulb temperature change. 
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Figure 2.4: Projected change in air temperature (°C) and specific humidity (percent) on the 100 
highest wet bulb days in 2060-2080 relative to 1985-2005 for each GCM (un-filled circles) and 
the multi-GCM mean (filled circles) for RCP 4.5 (blue) and RCP 8.5 (red). Multi-model mean 
temperature and specific humidity changes are relatively consistent in the four regions despite 
differences in geography and synoptic patterns during heat stress events.  

 

Populations are to a large extent adapted to their local climates. To assess how wet bulb 

temperatures will change relative to historical conditions, the number of days per year that may 

exceed the historical annual maximum air and wet bulb temperatures are projected. By 2060 – 

2080, most regions within 30° latitude of the equator may experience between 25 and 150 days 

per year that exceed the historical once-per-year maximum air temperature, and 25 – 250 days 

per year that exceed historical once-per-year maximum wet bulb temperature (Figure 2.5). In the 

mid-latitudes, these numbers are somewhat lower at 25 – 40 days per year for both air and wet 

bulb temperature, due to higher baseline variability. These results suggest a radical 

transformation of tropical and sub-tropical heat environments, with much of the year being spent 

above the highest historical wet bulb temperatures. As the duration of heat exposure is essential 
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in determining health impacts, more research is needed into the potential mortality response 

associated with long duration (months) heat exposure interspersed with unprecedented extreme 

heat waves. 

 

Figure 2.5: The number of days per year which exceed the historical (1985 – 2005) mean annual 
maximum temperature (top row) and wet bulb temperature (bottom row) in 2060 – 2080. Maps 
show results under RCP 8.5, and (b, d) show the variation with latitude of the number of days per 
year under both RCP 4.5 and RCP 8.5, excluding water grid cells. Wet bulb temperatures exceed 
the historical mean annual maximum more frequently than air temperatures due to lower 
variability, especially in the tropics. 

 

Substantial population growth is expected throughout the 21st century, especially in the 

developing world (Figure 2.2). Much of this growth is anticipated to occur in regions that 

experience high wet bulb temperatures, resulting in large increases in the number of people 
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exposed to dangerous heat conditions. Annual exposure in person-days (one person exposed on 

one day) to high wet bulb temperatures in each decade through 2080 is estimated using the SSP 

population projections (Figure 2.7). The possible range of exposure outcomes is quantified by 

combining 18 GCMs and five SSPs under two emissions scenarios, assuming that the uncertainty 

resulting from GCM variability, future emissions trajectories, and population growth are equally 

irreducible in the context of present-day decision-making. These results include repeat exposures 

(see Figure 2.6 for the spatial distribution of exposure), and as the highest wet bulb temperatures 

are concentrated in a few regions, the same populations will likely bear the brunt of the world’s 

most extreme heat. 

 

Figure 2.6: Multi-GCM mean number of days in 2070 – 2080 with wet bulb temperatures above 
32°C (top row) and 35°C (bottom row). Left panels show results under RCP 4.5 and right panels 
under RCP 8.5. Wet bulb temperatures above 35°C are limited to small geographic areas, even 
under RCP 8.5, but some of these regions – in particular northeastern India and eastern China – 
are densely populated. RCP 4.5 completely avoids wet bulb temperatures of 35°C through 2080. 
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Exposure to extreme wet bulb temperatures depends heavily on future greenhouse gas 

emissions. Figure 2.7a shows the projected mean annual exposure to wet bulb temperatures from 

30 – 35°C across 18 GCMs and five SSPs under RCP 4.5 and RCP 8.5. Projected exposure under 

the two emissions scenarios sharply diverges above wet bulb temperatures of approximately 

32°C, the temperature above which most sustained labor becomes impossible60,114, with 

differences in exposure person-days of several orders of magnitude. Figure 2.7b, c show 

projected exposure to wet bulb temperatures above 32°C, above the highest commonly 

experienced in the historical climate. By the 2070s annual exposure to wet bulb temperatures of 

at least 32°C may increase by a factor of 5 – 10 (relative to 2020; 32°C wet bulb temperatures 

are extremely rare in the 1985 – 2005 period) to around 750 million person days under RCP 8.5 

and 250 million person days under RCP 4.5 (Figure 2.7b, c). Under the RCP 8.5 scenario, in any 

given year during the 2070s projections suggest that there is a greater than 33% chance of a wet 

bulb temperature above 34°C occurring in at least one model grid cell, and a greater than 15% 

chance for a wet bulb temperature above 35°C. These extreme wet bulb temperatures are 

concentrated in small parts of India, China, and the Amazon, but due to the high population 

densities in India and China, these results suggest multi-model mean annual exposure to wet bulb 

temperatures of 35°C or higher to be approximately a million person-days by the 2070s under 

RCP 8.5. The uncertainty range in exposure at all thresholds results mostly from differences in 

projected warming and moistening between GCMs and emissions scenarios, with a smaller 

contribution from population variation among SSPs.  
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Figure 2.7: Global population exposure to varying wet bulb temperature thresholds, in mean 
number of person-days per year. (a): Global mean annual exposure under RCP 4.5 and RCP 8.5 
in 2070 – 2080 to wet bulb temperatures from 30 – 35°C. Error bars show the full range across 
18 GCMs and five SSPs. Exposure to wet bulb temperatures above 30°C is reduced by several 
orders of magnitude in RCP 4.5 as compared to RCP 8.5. Right: mean global annual exposure to 
wet bulb temperatures exceeding 32°C, approximately the upper limit at which sustained 
physical labor is possible60 and above anything experienced in the historical climate. RCP 4.5 is 
shown on top (b), and RCP 8.5 on bottom (c). Exposure is separated into a population effect 
(constant climate but changing population), climate effect (constant population but changing 
climate), and a combined effect (result of changing population and changing climate). Total 
exposure is the sum of these three components. Error bars on total exposure show the 10th – 90th 
percentile range across 18 GCMs and five SSPs. 

 

Global population exposure is divided into three components106: the population effect, or 

the additional exposure driven entirely by population growth (a constant climate but growing 

population); the climate effect, the exposure driven by climate change (constant population but 

changing climate); and the combined effect, or the exposure that results from changing 

population and changing climate in the same location (e.g. the additional exposure that results 
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from both population growth and climate change). The combined effect is equal to the total 

exposure minus the population and climate effects. Globally, the population effect is near zero as 

wet bulb temperatures of 31°C and higher are rare in the current climate and would remain so 

without warming. However, the combined effect comprises a substantial portion of increased 

exposure, indicating that while climate change is the dominant factor in increasing future 

exposure, population growth in hot regions also plays an important role. Increased heat stress 

may result in migration out of the hottest regions; the population projections used here do not 

consider this possibility. 

Recent research suggests that there is no fundamental cap on wet bulb temperature129–131. 

However, further research into the development of convection at high wet bulb temperatures and 

tropical thermodynamics, including changes in vertical potential temperature profiles, extreme 

SSTs, and SST gradients, is warranted, as is further evaluation of GCM simulations of expected 

physical processes in a warmer future climate. It is possible that achieving high wet bulb 

temperatures may depend on strong local atmospheric subsidence inhibiting convection, but this 

process may not be well represented in GCMs; higher resolution, convection-resolving models 

could help resolve this question. Recent research has hinted at the possibility that shifts in 

dynamic (e.g. atmospheric blocking) and thermodynamic (e.g. soil moisture) processes poorly 

simulated by GCMs may be modifying the statistics of extreme temperatures, but the 

implications for extreme wet bulb temperatures remain unexplored. In general there is a negative 

correlation between warming and relative humidity change over interior continents127 as dryer 

conditions result in more efficient warming of the air. However, research suggests that some 

localized heat stress hot spots, especially in the coastal Middle East, may result from the 

interaction of hot desert air masses with onshore moisture advection from warm bodies of 
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water49; these processes occur at too small a scale to be captured by GCMs, potentially adding a 

conservative bias to these results if they occur in other regions in the future. Further research is 

also needed into regional influences on heat, such as topography, local synoptic patterns, and the 

urban heat island effect, and whether variability of wet bulb temperatures may change on a daily 

timescale. In addition, given that small differences in wet bulb temperature can lead to large 

differences in population exposure to dangerous heat, GCM bias may have an important effect 

on projected results; advanced methods of GCM bias correction132 could be tested and compared 

with the reanalysis-based projection method presented here. 

This initial exploration of a potentially transformative risk factor for humans only 

considers population exposure. However, the impacts of heat on humans depend on both 

exposure and vulnerability, with the latter depending on many other factors including population 

age, degree and type of pre-existing health conditions, acclimatization, adaptive capacity, access 

to air conditioning, emergency response to severe heat waves, and economic and sociocultural 

factors that influence behavior133. In addition, research has shown that relatively simple 

adaptation strategies such as early warning of heat waves, public education campaigns on the 

dangers of heat, and social check-ups on vulnerable people can drastically reduce the death toll 

on hot days113,134. Each dimension of vulnerability will shape the impacts of heat stress events in 

distinct ways, pointing at the need for deeper epidemiological and economic analyses. This 

chapter also only considers heat stress at a 2° spatial resolution – the urban heat island and other 

localized climate effects could result in locally higher wet bulb temperatures than are represented 

by the grid cell-average.  

There is high uncertainty in the population projections that we consider in this study, and 

the five SSPs are not independent from future emission scenarios (i.e. higher population is likely 
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associated with higher emissions). However, as a warming climate is by far the largest 

contributor to increasing heat exposure, changes in the future population trajectory are projected 

to have a second-order effect. The SSPs may offer a means of exploring potentially critical 

correlations between heat, population density, vulnerability, and the potential for adaptation. 

Furthermore, the potential for non-linear increases in impacts at the highest wet bulb 

temperatures suggest the need for further research into the characteristics of heat events, such as 

duration and potential correlation with co-hazards such as air pollution, dehydration, and sun 

exposure. The effects of rapid increases in wet bulb temperature on ecosystems and wildlife, 

especially large mammals, should also be considered. 

The results presented in this chapter suggest that exposure to extreme wet bulb 

temperatures will rapidly increase throughout the 21st century and potentially beyond, depending 

on future greenhouse gas emissions. Given the number of people who may be exposed to 

dangerous heat across the world, failure to adopt both mitigation and adaptation measures is 

likely to result in suffering, economic damage, and increased heat-related mortality. 
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Table 2.1: CMIP5 models used to calculate wet bulb temperature. 

Model Organization Native Resolution 
ACCESS1-0 Commonwealth Scientific and Industrial 

Research Organisation 
1.25° x 1.875° 

ACCESS1-3 Commonwealth Scientific and Industrial 
Research Organisation 

1.25° x 1.875° 

BCC-CSM1-1-
M 

Beijing Climate Center 2.7906° x 2.8125°  

BNU-ESM College of Global Change and Earth 
System Science, Beijing, Normal 
University 

2.7906° x 2.8125° 

CANESM-2 Canadian Centre for Climate Modelling 
and Analysis 

2.7906° x 2.8125° 

CSIRO-MK3-6-
0 

Commonwealth Scientific and Industrial 
Research Organisation 

1.8653° x 1.875° 

CNRM-CM5 Centre National de Recherches 
Meteorologiques / Centre Europeen de 
Recherche et Formation Avancee en 
Calcul Scientifique 

1.4008° x 1.40625° 

FGOALS-G2 State Key Laboratory for Numerical 
Modeling for Atmospheric Science and 
Geophysical Fluid Dynamics 

2.7906° x 2.8125° 

GFDL-CM3 NOAA Geophysical Fluid Dynamics 
Laboratory 

2.0° x 2.5° 

GFDL-ESM2G NOAA Geophysical Fluid Dynamics 
Laboratory 

2.0225° x 2.0° 

GFDL-ESM2M NOAA Geophysical Fluid Dynamics 
Laboratory 

2.0225° x 2.5° 

HADGEM2-CC Met Office Hadley Center 1.25° x 1.875° 
HADGEM2-ES Met Office Hadley Center 1.25° x 1.875° 
IPSL-CM5A-
MR 

Institut Pierre-Simon Laplace 1.2676° x 2.5° 

IPSL-CM5B-LR Institut Pierre-Simon Laplace 1.8947° x 3.75° 
MIROC5 International Centre for Earth Simulation 1.4008° x 1.40625° 
MRI-CGCM3 Meteorological Research Institute 1.12148° x 1.125° 
NORESM1-M Norwegian Climate Centre 1.8947° x 2.5° 
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Chapter 3 The impacts of rising temperatures on aircraft 
takeoff performance46,69 

Coffel, E. D., & Horton, R. M. (2015). Climate Change and the Impact of Extreme Temperatures 
on Aviation. Weather, Climate, and Society, 7(1), 94–102. https://doi.org/10.1175/WCAS-
D-14-00026.1 

Coffel, E. D., Thompson, T. R., & Horton, R. M. (2017). The impacts of rising temperatures on 
aircraft takeoff performance. Climatic Change, 144(2), 381–388. 
https://doi.org/10.1007/s10584-017-2018-9 

Introduction 

Global mean surface temperatures have increased by approximately 1°C above pre-

industrial levels, with most of that change occurring after 1980135. As air temperature increases at 

constant pressure, air expands and becomes less dense. The lift generated by an airplane wing is 

a function of the mass flux across the wing surface; at lower air densities, a higher airspeed is 

required to produce a given lifting force136. For a given runway and aircraft, there is a 

temperature threshold above which takeoff at the aircraft’s maximum takeoff weight (MTOW) is 

impossible due to runway length or performance limits on tire speed or braking energy. Above 

this threshold temperature, a weight restriction – entailing the removal of passengers, cargo, and 

fuel – must be imposed to permit takeoff69,137,138. 

Weather is a leading cause of disruption to flight operations139,140, either through direct 

impacts on airport capacity and flight routes or through cascading delays across the aviation 

system141. However, the study of the potential impacts of climate change on aviation is relatively 

recent142. Prior work has suggested that both turbulence143,144 and trans-Atlantic flight times145 

may increase due to a strengthening and shifting mid-latitude jet stream. Climate change may 

also result in more extreme precipitation events17,146, altered mid-latitude storm tracks30,147, and 

changes in hurricane frequency and intensity26,148, among other disruptions to prevailing weather 
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patterns. Sea-level rise is also likely to threaten low-lying coastal airports around the 

world29,149,150. Little work has explored these potential risks in detail in the context of the 

aviation sector, and they present fertile ground for future research. 

 This chapter focuses on one potential impact of climate change: an increase in weight 

restriction due to higher temperatures. The warming resulting from anthropogenic climate 

change to date (~1°C) has raised the mean airport density altitude (i.e. the altitude associated 

with air at a given pressure at standard atmospheric conditions) by approximately 100 feet, and 

expected additional warming of 1 – 3°C by the end of the century39 will result in further 

increases of additional hundreds of feet. Prior work (Coffel and Horton, 2015) has shown that the 

frequency of days on which a Boeing 737-800 requires weight restriction is likely to increase by 

100 – 300% at several airports in the U.S. in the coming decades69. This chapter expands on 

these results by building performance models for five common commercial aircraft, the Boeing 

737-800, Airbus A320, Boeing 787-8, Boeing 777-300, and Airbus A380, and calculating the 

change in the magnitude and frequency of weight restriction events at 19 airports (see Table 3.1 

and Table 3.2 for airport and aircraft information). Air traffic is heavily concentrated in a 

relatively small number of cities, and these selected locations represent the most common 

climates, elevations, and runway conditions found at the world’s busiest airports. Here, weight 

restriction at a variety of takeoff weights (TOW) in both historical and future climate conditions 

is calculated. This analysis demonstrates a method which could be combined with aviation 

industry operational data to dynamically predict the weight restriction burden for an airline, 

taking into account fleets of diverse aircraft and daily schedules at different airports. 

 

Data and methods 
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Future hourly airport temperatures are projected using 27 general circulation models 

(GCMs) from the CMIP590 model suite under both the RCP 4.5 and RCP 8.5 emissions 

scenarios91, using the single grid cell that includes each selected airport. Sub-daily temperatures 

were approximated by linearly interpolating between the daily minimum and maximum 

temperatures. The resolution of the CMIP5 GCMs vary, but in most cases are approximately 200 

km; this relatively large grid cell size results in local temperature bias, especially in coastal or 

mountainous areas where climate varies at small spatial scales. In addition, GCMs tend to 

compress the temperature distribution, making cold extremes too warm and hot extremes too 

cool. These biases are identified and corrected using airport station daily maximum and 

minimum temperature records from the NOAA-NCEI Global Historical Climatology Network 

(GHCN). Some airports do not have a full temperature record in the GHCN, and in some cities 

the stations with the longest and most reliable records are not at the airport. In these cases, all 

stations for the city are averaged for the time periods for which they are available.  

Using raw GCM temperature data, the mean temperature bias as compared with 

observations across the 19 airport stations is -1.81°C. To correct the GCM bias, a decile-specific 

correction procedure is applied to the GCM data using the GHCN observations as a reference. 

Both the observed and the GCM temperature data for the full historical period are divided into 

deciles and then the mean bias between each GCM and the observed data is calculated for each 

decile. Then, the decile thresholds for the future GCM temperature distribution are calculated, 

and the bias correction is applied by subtracting the same decile bias for future GCM 

temperatures. This correction substantially reduces the error across the temperature distribution, 

including in the top two deciles of particular relevance for this study, with a resulting mean error 

of 0.38°C (see Figure 3.1).  
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Figure 3.1: The GCM bias compared with airport station data at each decile in the daily 
maximum (left) and daily minimum (right) temperature distributions at each selected airport. All 
plots show data for the historical period from 1985 – 2005. The top row shows the multi-model 
mean across 27 un-corrected GCMs, and the bottom row shows bias-corrected GCM data. Each 
gray line represents an airport, and the solid black line represents the mean across all 19 airports. 

 

 

While global mean temperatures are projected to rise by 2 – 4°C by 2100 relative to pre-

industrial times, changes over land will be larger39,151. Changes in extremes may be larger still, 

with annual maximum airport temperatures projected to increase by 4 – 8°C77 resulting in 

substantial fractions of the year being spent above the historical annual maximum temperature, 
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especially in the tropics where variability is lower152. The frequency and severity of extreme heat 

events have already increased due to climate change99,153, and future mean warming and potential 

changes in temperature variability77,84–86 are very likely to further enhance the risk of 

unprecedented heat waves.  

Aircraft performance data is obtained from publicly available “Airplane characteristics 

for airport planning” documents which are produced by manufacturers for all commercial aircraft 

types154. These documents specify performance for several different outside air temperatures 

(starting at 15°C and reaching as high as 50°C) and for airport elevations of 0, 2,000, 4,000, 

6,000, and 8,000 feet. To estimate performance curves for temperatures outside or between the 

ranges presented in the documents, the aviation-standard lapse rate of 2°C/1,000 feet is used with 

the higher elevation curves (e.g. if the highest presented temperature is 30°C, we estimate sea-

level performance at 34°C using the curve for a 2,000 foot elevation at 30°C). Using these data, 

three-dimensional surfaces relating temperature and TOW to required takeoff runway length for 

each aircraft type and airport elevation are fitted; Figure 3.2 shows fitted surfaces and weight 

restriction characteristics. Using the appropriate surface for each aircraft and airport, weight 

restriction can be calculated at any air temperature and departure weight. 

Weight restriction can be partitioned into payload reduction (i.e. passengers and/or cargo) 

and fuel weight reduction. When payload is reduced, less fuel is required to carry that payload, 

and less still is required to carry that reduced fuel load. Thus the required payload reduction is 

less than the total weight restriction. The Base Of Aircraft Data155 (BADA) aircraft 

performance155 model is used to estimate the mean partitioning of a weight restriction for a 

Boeing 737-800. The partitioning calculation involves three steps:  (1) for different TOWs, the 

total trip fuel is calculated from the BADA equations for cruise and from BADA performance 
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tables for climb and descent; (2) from these values, the change in fuel required as the TOW 

varies is determined; and (3) the change in fuel per 10,000 kg (22,046 lbs) change in TOW is 

averaged over a range of TOWs to get an approximate value of the fuel added per unit change in 

TOW. 

This method estimates that each pound of weight restriction translates into approximately 

0.83 lbs of payload and 0.17 lbs of fuel. This relationship is non-linear and depends on the 

aircraft type, initial TOW, and the atmospheric temperature profile.  For example, over trip 

distances of 1,000 – 3,000 nautical miles for the Boeing 737-800, the fuel portion may vary from 

12% to 22% of the weight restriction, corresponding to payload portions of 88% to 78% of the 

weight restriction.  The 83% / 17% aggregate estimate of the partition used in this chapter could 

be refined for more detailed analyses. 
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Figure 3.2: (left): Performance surfaces and weight restriction data for the Boeing 737-800, 
Airbus A320, and Boeing 777-300. Surface colors indicate runway length in feet required for 
takeoff. Data restricted to plausible runway lengths between 6,000 ft. and 16,000 ft. (right): 
Required weight restriction at a given temperature on a given runway. Similar models were 
constructed for all aircraft. 

 

To calculate weight restriction for a given airport and aircraft at a specified TOW, the 

required takeoff runway length is first found using the appropriate fitted performance surface. If 

this runway length exceeds what is available at the departure airport, the aircraft must be weight 

restricted; the maximum allowable TOW can then be calculated by moving along the 
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performance surface at the departure-time air temperature until the required runway length is less 

than that of the airport’s longest runway. The difference between the initial target TOW and the 

maximum TOW that allows for takeoff on the available runway at the departure-time air 

temperature is the required weight restriction. 

 

Results and discussion 

The aviation system, including aircraft and ground operations, has been developed 

largely based on the climate background of the 1920-1970 period. As temperatures begin to 

regularly exceed historical bounds, a variety of impacts are likely, from increased weight 

restrictions to a higher risk of heat stress for outdoor airport workers48,49. Figure 3.3 shows 

historical and projected annual maximum temperature trends as well as the projected mean 

number of days per year that exceed the historical average annual maximum temperature at two 

selected airports, New York’s LaGuardia (LGA) and Dubai, UAE (DXB) under the RCP 4.5 and 

8.5 scenarios. Similar projections were made for all 19 airports. Rising temperatures will result 

in rapid increases in the number of days that exceed the historical annual maximum 

temperature156; in most cities this frequency may rise to between 10 and 50 days per year by 

2060 – 2080.  
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Figure 3.3: Left column: historical and projected annual maximum temperatures at New York’s 
LaGuardia (LGA) and Dubai (DXB). The thick black line shows station data and the green line 
is the bias-corrected multi-GCM mean. The blue line shows bias-corrected multi-GCM mean 
projections under RCP 4.5, and the red line under RCP 8.5. The shaded regions show ±1 
standard deviation across the 27 GCMs, and the dashed gray lines show linear temperatures 
trends. The thick horizontal dashed black line shows the historical annual maximum temperature 
based on historical GCM data. Right column: mean number of days per year that exceed the 
historical annual maximum temperature under the RCP 4.5 (blue) and RCP 8.5 (red) emissions 
scenarios. Shaded regions show ±1 standard deviation across the 27 GCMs. Similar projections 
were made for all airports. 

 

Because air traffic volume varies across airports and may change in the future, weight 

restriction statistics are computed as if there were one takeoff of each aircraft type during each of 

the 24 hours in every day across all airports. In Figure 3.4, the mean payload reduction is 

calculated for several airport/aircraft pairs at the time of the daily maximum temperature on all 

days requiring some weight restriction from MTOW (Figure 3.4a). Figure 3.4b shows the change 

in the number of days per year exceeding a specified weight restriction threshold, and Figure 

3.4c shows the change in the number of days per year experiencing various levels of weight 

restriction. The changes in mean payload shown in panel (a) vary considerably, but most 
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aircraft/airport pairs see 5 – 10% increases in payload reduction. Large changes are seen in the 

frequency of particular levels of weight restriction, with increases by a factor of 1.5 – 4 common 

by 2060 – 2080; the weight restriction threshold with the maximum frequency change is shown.  

 

Figure 3.4: Weight restriction statistics for selected aircraft/airport pairs. The left panels show 
mean payload reduction on days requiring weight restriction; the black bars indicate the middle 
99.3%, and red crosses indicate outliers. The middle column shows the mean number of days per 
year that require at least the specified payload restriction threshold; the green shaded region 
shows ±1 standard deviation across all 27 GCMs.  The third column shows the change in the 
number of days per year requiring different amounts of payload reduction in 2060 – 2080 vs. 
1985 – 2005; the error bars show ±1 standard deviation across all 27 GCMs. All projections are 
made using a combination of both the RCP 4.5 and RCP 8.5 emissions scenarios; weight 
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restriction projections under both scenarios are combined into one distribution, showing the full 
range of plausible future outcomes. 

 

Weight restriction is heavily dependent on TOW. If a flight is scheduled to depart well 

below its MTOW, weight restriction will likely not be needed, even at high temperatures. The 

distribution of TOWs depends on the specifics of airline operations including route distance, 

cargo and passenger loads, and fuel reserves, and is difficult to estimate. Instead, weight 

restriction is modeled at TOW intervals spaced between each aircraft’s operating empty weight 

(OEW, the weight of the airframe with no payload and limited fuel) and MTOW. Figure 3.6 

shows weight restriction calculated at the time of the daily maximum temperature. The left 

panels show the percentage of flights requiring some restriction, and the right panels show the 

restriction magnitude as a percentage of total fuel and payload capacity. Both panels show the 

historical period (1985 – 2005) and RCP 8.5 in 2060 – 2080. Climate-related increases in the 

percentage of flights requiring some weight restriction range from 1 – 10 percentage points, with 

declines in total payload and fuel capacity of 0.5 – 1.5 percentage points. A small change in the 

total aircraft fuel and payload weight represents a large decrease in capacity when aggregated 

across an airline’s fleet. For example, a 0.5% decrease from MTOW for a Boeing 737-800 

equates to about 722 lbs, or 3 passengers using the airline-standard 220 lbs passenger mean 

weight. For a normal aircraft configuration of approximately 160 passengers this is nearly 2% of 

passenger capacity. Such a decrease can have a substantial impact on airline costs. 

While the projected change in weight restriction is relatively consistent across aircraft, 

the total impact of restriction varies. The large Boeing 777-300 and 787-8 are projected to 

experience the greatest impacts from weight restriction; for an aircraft departing near MTOW, by 

mid- to late-century total fuel and payload capacity may be reduced by 3 – 5% with 30 – 40% of 
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flights experiencing some restriction. The Airbus A320 and Boeing 737-800 are less impacted; 

when departing near MTOW, approximately 5 – 10% of flights may experience some restriction, 

sacrificing on average 0.5% of their fuel and payload capacity. This is due in part to aircraft 

design characteristics as well as the fact that most of the world’s commercial airports (and those 

simulated here) have far longer runways than are required by these mid-sized aircraft, even at 

high temperatures. The A380 is also expected to experience little weight restriction except at 

extremely high air temperatures, in part due to its exclusive operation at large airports. 

The weight restriction burden varies significantly between airports (Figure 3.5).  

 
Figure 3.5: The percentage of total flights departing at the time of daily maximum temperature 
requiring some weight restriction at all selected airports. Data are shown for the future period, 
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2060 – 2080, under the RCP 8.5 emissions scenario. Different airports experience widely varying 
frequencies of weight restriction due to their runway length, elevation, and climate. The 
horizontal axis labels show airport codes; see Table 3.1 for corresponding airport information. 

 

At New York’s LaGuardia (LGA), a Boeing 737-800 near its MTOW may be weight-

restricted approximately 50% of the time when departing at the time of the daily highest 

temperature and see weight reductions of close to 3.5% of fuel and payload capacity. Similarly, a 

Boeing 777-300 near MTOW departing from Dubai (DXB) at the time of the daily highest 

temperature may be weight-restricted about 55% of the time, with weight reductions of up to 

6.5% of fuel and payload capacity. The averages over all 19 airports shown in Figure 3.6 are 

lower, as they demonstrate the system-wide impact of weight restriction, including airports 

which are minimally affected such as London (LHR), Paris (CDG), and New York (JFK). 
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Figure 3.6: Weight restriction as a function of TOW in the historical period (blue, 1985 – 2005) 
and the future (red, 2060 – 2080) under RCP 8.5. Weight is restriction calculated at the time of 
highest daily air temperature at each of the 19 selected airports and then averaged. The left 
column shows the percentage of flights with some weight restriction, and the right column shows 
the restriction as a percentage of total fuel and payload capacity. The shaded region shows ±1 
standard deviation across 27 GCMs. 
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Technological change, including improvements in engine performance and airframe 

efficiency, will likely ameliorate the effects of rising temperatures to some degree. In addition, 

the vast majority of weight restriction will occur near the time of highest temperature; in some 

locations, it may prove feasible to reschedule some flights, especially those with high TOWs, to 

cooler hours of the day (this is already done at some airports157). Airports could also lengthen 

runways, although such projects are expensive and politically difficult. However, even with 

adaptation, potentially including new aircraft designs, takeoff performance will still likely be 

lower than it would have been given no climate change due to both the effects of reduced air 

density and degraded engine performance and thrust at higher temperatures. This fact is true of 

all climate impacts: even if they can be adapted to, they still have a cost. A variety of climate 

impacts on the aviation industry are likely to occur in the coming decades, and the sooner 

climate change is incorporated into mid- and long-range plans the more effective adaptation 

efforts can be. 
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Table 3.1: Airport info using IATA codes, taken from official airport charts. Runway length and 
airport elevation are incorporated into weight restriction calculations. 
Airport code Location Maximum runway 

length(feet) 

Elevation (feet) 

PHX Phoenix, AZ, U.S. 11,489 1,111 

DEN Denver, CO, U.S. 16,000 5,321 

LGA New York, NY, U.S. 7,003 11 

DCA Washington, DC, U.S 7,170 11 

ORD Chicago, IL, U.S. 13,000 672 

ATL Atlanta, GA, U.S. 12,390 1,018 

JFK New York, NY, U.S. 14,511 12 

LAX Los Angeles, CA, 

U.S. 

12,091 120 

IAH Houston, TX, U.S. 12,001 95 

MIA Miami, FL, U.S. 13,016 7 

DXB Dubai, United Arab 

Emirates 

13,147 62 

LHR London, UK 12,800 83 

BKK Bangkok, Thailand 13,100 1 

PEK Beijing, China 12,400 116 

SHA Shanghai, China 13,100 13 

HKG Hong Kong 12,400 28 

CDG Paris, France 13,700 400 

MAD Madrid, Spain 14,200 2,000 

TLV Tel Aviv, Israel 12,000 135 
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Table 3.2: Weight and selected performance surface parameters for each aircraft. Operational 
empty weight (OEW) indicates the weight of the aircraft with no payload and minimal fuel. 
Maximum takeoff weight (MTOW) is the highest allowable weight at takeoff. Fuel and payload 
capacity is equal to MTOW minus OEW. Performance surfaces were fit using Matlab, and the fit 
selections for each dimension (temperature, TOW), were selected to best represent performance 
data within real-world temperatures and weights. 

Aircraft Operational 

empty weight 

(1,000s lbs) 

Maximum takeoff 

weight (1,000s 

lbs) 

Fuel & 

payload 

capacity 

(1,000s lbs) 

Surface model 

Boeing 737-800 91 174 83 2nd degree in 

temperature, 3rd 

degree in TOW 

Boeing 787-8 260 502 242 2nd degree in 

temperature, 3rd 

degree in TOW 

Boeing 777-300 299 660 361 3rd degree in 

temperature, 2rd 

degree in TOW 

Airbus A320 93 174 81 2nd degree in 

temperature, 3rd 

degree in TOW 

Airbus A380 610 1,260 650 2nd degree in 

temperature, 3rd 

degree in TOW 
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Chapter 4 Adaptation to heat in urban areas158 

Coffel, E. D., Sherbinin, A. de, Horton, R. M., Lane, K., Kienberger, S., & Wilhelmi, O. (2017). 
The Science of Adaptation to Extreme Heat. In T. Frank & Z. Zommers (Eds.), Resilience - 
The Science of Adaptation to Climate Change. Elsevier. In press. 

Introduction 

In recent years, research has focused on extreme heat as a serious risk to human 

health51,61,159–161, agriculture52,53,81,120, infrastructure46,69,143–145, and economic performance37,59,81. 

Recent heat waves, which have been responsible for tens of thousands of additional deaths and 

damage to infrastructure and agriculture99, have been linked to climate change3,103–105,162, and the 

IPCC has concluded that the frequency, severity, and duration of extreme heat events is very 

likely to increase worldwide in the future39. The substantial impacts that result from present-day 

heat waves serves as a warning that future extreme temperatures are likely to cause increased 

harm to people around the world, in rural and urban areas, and in low- and high-income 

countries163. Adaptation to reduce these impacts is essential, and scientific research plays a key 

role in determining which strategies are most effective in varying climatic and societal 

conditions, as well the best methods of targeting adaptation to the most vulnerable populations. 

This chapter will review research surrounding adaptation strategies to extreme heat. It will not 

present new scientific research, but will address methods of reducing the impacts of the 

increased temperatures and heat stress that are described in Chapters 1 and 2. This chapter will 

first consider drivers of local variation in projections of future heat, the urban heat island effect, 

and urban microclimates, and then turn to population vulnerability, the health impacts of heat 

stress, and the interaction with air quality and infrastructure. Subsequent sections address 

adaptation strategies informed by science and human behavior, which is a critical element in 

responses to extreme heat. A concluding section addresses the importance of using evidence-
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based adaptation strategies in developing heat-related adaptation initiatives so as to improve the 

cost-effectiveness and efficacy of these strategies and to reduce the risk of mal-adaptation. 

 

Heat projections 

Climate change resulting from greenhouse gas emissions is expected to result in a mean 

global temperature increase of 1.5 – 4°C by the end of the 21st century 39. Warming will likely 

continue into the 22nd century depending on how rapidly net emissions of greenhouse gases and 

other radiatively important agents like aerosols are reduced, as well as the success of potential 

negative emissions technology. Temperature changes over land will be larger than the global 

mean151, with more warming expected over high latitude land masses than tropical ones. There is 

also evidence that the most extreme temperatures may increase more than the mean in some 

regions77,84,85.  

 Climate change has already resulted in 0.8 – 1°C of warming as compared with pre-

industrial times135. This upward shift in the temperature distribution has been manifest as 

increases in the frequency, duration, and intensity of heat waves164–166, as well as a rise in the 

global land area coverage of above average temperatures156. Extreme heat events have intensified 

due to changes in the mean temperature alone128; there is some evidence, however, that 

temperature variability may also increase in the future due to a variety of physical 

processes27,86,107, although this has not yet been observed on a global scale88 and may be 

accounted for by varied rates of mean temperature change76.  

Climate change will intensify the hottest heat events, but an equally serious effect will be 

to drastically increase the frequency of temperatures that are currently considered severe167,168. In 

the tropics, where temperature variability is lowest, by mid- to late-century a large portion of the 
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year may be spent above the current average annual maximum temperature85, resulting in 

significant increases in exposure to extreme heat events such as the heat wave that struck India in 

2015102. The mid-latitudes too will see significant changes; recent research projects that the 

number of days exceeding the annual maximum temperature could increase by a factor of 10 – 

20 in cities across the United States77 by mid-century (2050 – 2070). As an example, this means 

that Baltimore, MD, could potentially experience 15 – 20 days above the current average once-

per-year hottest temperature of 37°C. These changes in the frequency of extreme events will 

occur rapidly in the coming decades, regardless of emissions reductions. 

 While many impacts of heat depend on temperature alone, human health and wellbeing 

also depend on humidity. The human body is highly efficient at controlling its core temperature 

through evaporative cooling as long as relative humidity is low. However, as relative humidity 

rises, thermal regulation becomes difficult and the risk of physiological stress is amplified. A 

variety of metrics are used to estimate the combined impacts of temperature and humidity. The 

most commonly reported heat stress indicator is the heat index, or the “feels like” temperature, 

which is widely presented in weather reports in the United States, for example. There are many 

variations of the heat index algorithm169, but all are based on empirical formulae calibrated to 

relate temperature and humidity conditions to physiological impacts170. This task requires that 

the index include assumptions about body type, clothing, wind, and activity level – varying these 

parameters can have a substantial impact on potential heat risk, making the heat index a 

problematic general heat stress index.  

 The wet-bulb globe temperature (WBGT) is the most widely used heat stress index in 

workplace safety, athletics, and the military109. It is a weighted average of the dry bulb, wet bulb, 

and globe (also known as the mean radiant temperature and is measured using a thermometer 
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inside of a black sphere) temperatures, and can be measured directly or estimated using an 

empirical model. There is extensive calibration data relating WBGT thresholds to levels of heat 

risk; however, as with the heat index, differences in clothing, activity level, and other individual 

factors can substantially degrade its ability to predict heat illness. Research suggests that most 

heat stress indices perform similarly in predicting heat-related mortality, likely due to their 

strong correlation with temperature171.  

Other, less widely used indices exist, such as the apparent temperature172, HUMIDEX173, 

the environmental stress index (ESI)174, and the human thermal comfort index (HTCI)175. A more 

physically based measure is the wet bulb temperature, which represents the lowest temperature 

that can be achieved through evaporative cooling alone. While there is little empirical evidence 

relating wet bulb temperature to heat stress impacts, the direct relationship between wet bulb 

temperature and evaporative cooling makes it relevant to human health since the body sheds heat 

through the evaporation of sweat. Recent research has posited that when the wet bulb 

temperature exceeds the skin temperature, the body will no longer lose heat through evaporative 

cooling, and heat illness will occur with prolonged exposure. This wet bulb temperature 

threshold, about 35°C, may pose a fundamental limit to heat adaptation48, although in practice 

those exerting themselves outdoors, exposed to sunlight, and those more vulnerable to heat 

would be unable to tolerate the heat at much lower temperature and humidity combinations. 

 Climate change has been linked to a rise in the WBGT since the 1970s111, and there is 

evidence that wet bulb temperatures could regularly approach the 35°C limit by late century in 

certain densely populated regions49,50. Thus far, the literature on heat stress and heat-induced 

mortality has focused on the effects of high air temperatures176, which in many locations are 

strongly correlated with high wet bulb temperatures and other measures of heat stress. However, 
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the possibility of reaching wet bulb temperatures of 35°C indicates an urgent need for research 

into the effects of extreme heat and humidity on human health, and whether temperature alone 

may not be a sufficient predictor of heat illness in the future if mortality begins to respond non-

linearly to extreme heat and humidity. In addition, livestock and other large animals may be 

severely affected by rising temperatures, potentially with impacts on agriculture and food supply. 

 

Microclimates and the urban heat island 

Temperatures can vary across small spatial scales, resulting in different levels of heat 

exposure between neighborhoods within a city or, to a lesser extent, between localized regions in 

rural areas. These microclimates have a variety of causes, including land cover177, vegetation, 

material use, local air quality178, and localized weather associated with topography and coastal 

effects. In addition, development patterns and socioeconomic conditions can result in large 

differences in heat stress vulnerability between or within neighborhoods179. In many high-income 

cities, dense development, lack of vegetation, and scarce open space are linked to higher 

temperatures. These areas also are often occupied by people with fewer economic and social 

resources to cope with heat175. By focusing on both climate and social microenvironments, heat 

adaptation strategies can be targeted to the most at-risk populations. 

The urban heat island (UHI) effect is a long studied phenomena180 which can amplify 

temperatures in metropolitan areas by 1-4°C during the day and up to 10°C at night. The UHI is 

observed in long term temperature records and is large enough to necessitate a correction factor 

in calculations of global mean temperature181. There are five key physical causes of the UHI, the 

most important of which is the loss of convective efficiency between the surface and the lower 

atmosphere117 in urban areas due to the reduced surface friction over smooth, paved city 
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landscapes. Other drivers of the UHI are reduced evaporative cooling in cities due to lower levels 

of vegetation cover, enhanced energy absorption due to reduced albedo, increased energy storage 

by artificial materials, and direct waste heat release from buildings, industry, and vehicles. 

Approximately 50% of the world’s population lives in urban areas182; given the strong 

warming effect of the UHI – especially with regard to nighttime temperatures – mitigating urban 

warming could substantially reduce global heat exposure179. Effective mitigation of the UHI will 

require localized adaptation, as the relative importance of the physical drivers listed above 

depends on the background climate and the characteristics of the city, and each physical driver 

can be combated through different adaptation strategies. Most research on the UHI to date has 

focused on high-income cities; more work is needed to quantify the effect and causes of the UHI 

in low- and middle-income countries, as well as the influence of local air pollution on urban 

temperatures183. A first-ever global estimate of the UHI across all major cities using land surface 

temperature data found that the biggest factor in determining the degree of UHI is the size of 

city, and that many tropical cities experience more than a 3°C nighttime temperature differential 

between urban and surrounding rural areas184.  

  

Population vulnerability 

Vulnerability to heat stress and mortality during heat waves varies widely among 

populations185,186. The elderly187 and those with pre-existing health conditions – especially 

limited mobility, obesity, and serious mental illness134 – are more susceptible to heat illness and 

death. However, the young (including infants188), too, are vulnerable to heat. Early heat stress 

research focused on military training and athletics109,189, and those performing rigorous physical 

labor or wearing confining clothes can experience heat illness, no matter their age190. Some 
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classes of medications, such as antipsychotics, can impair thermoregulation, potentially 

increasing risk during hot weather191. Research also suggests that heat illness can have profound 

and long-lasting health impacts, contributing to a higher risk of future illness and early 

mortality192.  

Experience from recent heat waves has shown that social isolation is a major risk factor 

for heat illness; in the 1995 Chicago heat wave, many deaths occurred in single-person 

households in neighborhoods without convenient public transportation or strong community 

structures193; these regions also have decreased community cohesiveness, with higher crime 

rates, declining population levels, more empty housing stock, and reduced levels of business and 

other street activities194. Many studies in the United States have also found that African-

Americans are at higher risk of heat illness195, likely reflecting lower access to air conditioning 

and greater baseline health challenges due to higher rates of poverty. 

A consensus is emerging that large scale heat-related mortality events are primarily social 

disasters, which can be ameliorated through behavioral adaptation. Evidence of reduced heat risk 

can be found in France: during the 2003 European heat wave, an estimated 15,000 people died of 

heat-related illness196. After that event, heat adaptation measures were put into place at the 

national and local levels including opening cooling centers – free public spaces with air 

conditioning and water – and promoting public heat-safety awareness; in 2006, another heat 

wave occurred, and statistical comparisons to the 2003 event suggest that adaptation measures 

reduced heat-related mortality by approximately two-thirds113.  

Exposure to high temperatures during a heat wave can vary across a population due to 

socioeconomic factors197. A variety of mapping studies have helped to identify those 

neighborhoods most likely to be vulnerable to extreme heat, which can help in targeting 
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adaptation activities179,182,198. Air conditioning is the most effective way to prevent heat-related 

illness and death, and lack of air conditioning, which is closely tied to income, is a major 

vulnerability factor199. Cities in the United States with higher air conditioning prevalence have 

been found to have lower rates of heat-related mortality200, and the long-term decline in heat-

related mortality may largely be due to the increasing prevalence of air conditioning160,201. 

However, as long as electricity is supplied by fossil fuel sources, increased air conditioner use 

will worsen the underlying problem of greenhouse gas emissions.  

Housing and neighborhood characteristics also play a role in risk; during the 2003 heat 

wave in France, those living on the top floor of a building or those in buildings with little nearby 

vegetation were more likely to die, likely due to exposure to localized higher temperatures134. 

People in more vulnerable housing are often those with the least social resources, concentrating 

risk in marginalized groups of society193. In addition, areas with higher poverty levels may be 

home to more people with multiple chronic health conditions and fewer resources to prevent and 

treat illness202. These neighborhoods may also have more physical vulnerabilities. In New York 

City, for example, neighborhoods with less green space, higher surface temperatures, and more 

people needing financial assistance were associated with more excess deaths during and after 

heat waves203.   

In many urban heat events, existing resources such as cooling centers have not been 

utilized by vulnerable people for a variety of reasons including inability to get to the center, 

concerns about theft, personal safety, and the well-being of pets204, as well as concern about the 

stigma of accepting public assistance205 and preference for staying home199. Research and 

experience show that awareness of a heat warning does not necessarily translate into an 

individual taking protective action206. Close attention to public perception of heat adaptation 
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strategies and awareness of behavioral tendencies, along with effective risk communication, is 

essential to effective urban adaptation. Simply providing the opportunity to seek shelter from 

heat isn’t enough; people must be aware of the danger of heat, willing to admit their personal 

risk, and be able and motivated to seek help when they need it. 

Less research has been conducted on vulnerability in lower- and middle-income 

countries, but it is likely that similar factors apply: the elderly, those with pre-existing health 

conditions, and those without access to air conditioning or safe water are at high risk during heat 

waves. Other factors likely are important as well, especially the relationship between heat, 

drought, and water/food insecurity in low-income regions. In addition, in many low-income rural 

areas, a high proportion of the population works outdoors, making occupational exposure to heat 

stress a major concern207. 

 

Health impacts of heat stress 

Physiology 

Humans must maintain an extremely narrow core temperature range to live, but the body 

is capable of tolerating temporary high levels of heat stress208. Heat illness (hyperthermia) results 

from the body’s failure to maintain its normal core temperature, and exposure to extreme heat 

can result in a range of health impacts. Heat illness can range from fatigue, syncope, and cramps 

to heat exhaustion, which is generally reversible given prompt medical treatment, and finally to 

heat stroke, a medical emergency which can cause long-term organ damage and rapid death 

through multi-organ failure209.  

Acclimatization to a wide variety of climates is possible through technology and 

behavioral adaptation, and to some extent, physiological210 changes. Physiological adjustment to 
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heat, however, happens slowly over the course of repeated exposures, as when one relocates to a 

warmer climate; physiological change is unlikely to protect against infrequent extreme heat 

events211. The degree of acclimatization varies in different regions and for different climatic 

variables. Research has suggested that in the United States acclimatization to cold is more 

spatially uniform than for heat, as suggested by the relatively similar levels of temperature-

induced mortality in cold weather across the country. Heat has been found to produce more 

varied mortality responses, with some regions – like the hot U.S. Southwest – seeing smaller 

changes in mortality during heat waves than cooler regions under similar departures from the 

local mean temperature (e.g. a hot day reaching the 90th percentile relative to the local 

temperature distribution)200. This difference is due to different baseline temperatures and also 

may be due in part to better air conditioning coverage in hotter regions, as opposed to the 

Northeast United States or Europe, where coverage varies176. In addition, the risk of widespread 

heat illness may be greatest when temperatures rise far above the local climatologically normal 

range, which is most likely to occur in the mid-latitudes where temperature variability is greatest.  

Emergency room visits and hospital admissions for certain cardiovascular, respiratory, 

renal, and mental health212,213 conditions have been observed to spike during heat waves214,215. 

Similarly, on days with extremely high temperatures, overall mortality from natural causes is 

generally greater than what would be expected during summer. For example, a 2010 heat wave 

in Ahmedabad, Gujarat, India, a city that routinely deals with hot temperatures, resulted in 1,344 

excess deaths, or a 43% increase in all-cause mortality216. In 2015 a heat wave in India resulted 

in over 2,300 deaths217, and the severe June 2015 heat wave in Pakistan resulted in 17-fold 

increase in heat-related mortality in Karachi; this is likely an underestimate due to the challenges 
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of tracking and recording deaths in an under-resourced area101. Mortality often falls after heat 

waves end, as vulnerable people may die earlier than they would have absent the heat.  

The World Health Organization (WHO) estimates that only four countries in Africa – 

Algeria, Mauritius, Seychelles and South Africa – have high quality daily death data218. In 

countries lacking enough death data for analysis, heat-related mortality and morbidity may go 

unrecorded. Excess mortality associated with heat also occurs during hot, but not extreme, 

summer conditions219. Because there are more of these days in any given summer, substantial 

mortality may occur outside of extreme events. Rising average temperatures due to climate 

change may lead to increases in this non-extreme excess mortality as well. 

 

Historical trends and future projections of heat wave mortality 

Many studies have quantified the excess deaths attributable to heat across the world and 

have projected how these mortality rates may change in the future51,80,159–161,176,220,221. Heat-

related mortality in the United States is found to have declined throughout the 21st century160, 

likely due to the spread of air conditioning throughout the country and generally improving 

health201; however, some studies indicate that the decline has stopped222. Almost all research 

concludes that heat-related mortality is likely to substantially increase in the future196,223, due to 

both higher temperatures and much higher levels of exposure106, and that this increase will not be 

offset by declining cold-related mortality221.  

Most projections of future mortality rely on statistical models fit to historical daily 

mortality data. It is difficult to estimate the impacts of adaptation on future mortality, and there is 

some evidence that aggressive strategies to protect the most vulnerable populations can have a 

large impact113. However, there is also evidence that heat stress may begin to approach 
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fundamental limits for prolonged human tolerance48,49; it is unknown how mortality will respond 

to such thresholds, but it is reasonable to expect substantial increases without aggressive 

adaptation measures. More research into the relationship between extremely high wet bulb 

temperatures and mortality is urgently needed, as some of the world’s most densely populated 

regions in India, Africa, and the Middle East could experience wet bulb temperatures 

approaching the theoretical limit for human tolerance – 35°C – by mid- to late-century50. More 

research is also needed on the relationship between heat and other stressors outside the scope of 

this chapter such as drought, food and water insecurity, political instability, and conflict. 

The UHI results in urban populations suffering greater exposure to extreme heat, but 

research does not necessarily find that urban areas experience the highest rates of heat-related 

mortality80. While temperatures are higher in cities, urban residents may also have more access 

to air conditioning, water, and social support, especially in low-income countries with substantial 

income divides between rural and urban areas. More research is needed on mortality in rural 

areas, especially in low-income regions. 

 

Urban heat, air quality, and infrastructure 

Air quality 

Air pollution is estimated to result in the premature deaths of approximately three million 

people each year, far more than from heat directly, mostly in low- and middle-income countries 

and in both urban and rural areas224. The main emission sources that contribute to air pollution 

are electricity generation, heavy industry, vehicle engines, both natural and human biomass 

burning, and agriculture. Like heat, air pollution is a physiological stressor which can both cause 

acute illness – especially respiratory and cardiovascular conditions – as well as exacerbate 
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existing health problems. In addition, heat stress and poor air quality are often coincident, 

amplifying their impact; a substantial proportion of the deaths attributed to the 2003 European 

heat wave may have been caused by or related to air pollution225. Future particulate emissions are 

highly uncertain, but under a business as usual scenario premature air quality-related mortality 

could double by mid-century224 due to a rise in both population and emissions, especially in Asia 

and Africa. 

High air temperatures can worsen local air pollution in some cases even without 

additional emissions226. Regional ground-level ozone (O3) pollution in already polluted areas is 

correlated with temperature. High temperatures accelerate the photochemical processes that 

generate O3, and they may also increase natural biomass burning (e.g. wildfires) which may 

generate O3 precursors (possibly only when combined with anthropogenic NOx emissions)227. 

However, precipitation and humidity tend to reduce pollution through wet deposition and 

convective atmospheric venting. Most models project increases in warm-season O3 levels in 

already polluted regions and more intense O3 pollution during heat waves228, a phenomena 

known as the “climate penalty”229. However, global background O3 is projected to decrease due 

to increased atmospheric water vapor content. The effect of climate change on particulate matter 

is more uncertain230, but some studies suggest that if global aridity increases, dust and wildfire 

emissions could contribute to at least localized increases in particulate and aerosol pollution226. 

There is also evidence that climate change may increase the frequency of meteorological 

conditions favorable to poor air quality in some regions231,232. Air pollution episodes are 

associated with calm winds, low humidity, and temperature inversions, where the atmospheric 

lapse rate becomes negative near the surface, causing temperature to increase with height and 

acting as a block on vertical convective air movement. In some regions, notably China, these 
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conditions are expected to become more likely in the future due to circulation changes232. 

Precipitation helps to clear the air of particulate matter226; while more of the globe is projected to 

see precipitation increase than decrease under climate change due to increasing atmospheric 

water vapor16, even regions with more overall precipitation may see longer dry spells with a 

larger fraction of precipitation falling in a smaller number of events2,17, allowing pollution to 

accumulate. It is also possible that pollen production could increase in some regions due to a 

lengthened growing season, potentially worsening allergies and asthma for some populations233.   

 

Infrastructure 

High temperatures have strongly negative effects on urban infrastructure, affecting 

electricity generation82,234 and transportation235,236, both of which can contribute to human health 

impacts by reducing the availability of air conditioning, medical treatment, and in low-income 

countries, food  and safe water. In severe heat waves, the loss of electricity due to excessive 

demand or heat-induced equipment failure can result in the potentially dangerous loss of air 

conditioning and refrigeration83. For vulnerable populations, air conditioning can be a life-saving 

necessity during the most extreme heat, and thus maintaining electricity supply can be critical. 

Electricity demand is expected to rapidly rise due to development and population increase, 

especially in Asia and Africa237. Many of these regions are also prone to extreme heat, and since 

peak electricity load is strongly correlated with temperature (largely due to air 

conditioning)234,238, it will be important to consider resilience to increasing temperatures in the 

design of electricity transmission grids and generation equipment. 

Transportation infrastructure, including roads, railroads, and the aviation 

system46,69,143,145, can experience performance loss or failure in hot conditions239. In addition, the 
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large spatial extent of heat waves means that there is the potential for significant disruption to 

transportation networks during severe heat events. Since even localized failures can result in 

cascading delays throughout a transportation network, it will be important to consider changing 

extreme temperature events in the design of future infrastructure. 

   

Adaptation Strategies 

 A variety of adaptation strategies exist to mitigate the impacts of extreme heat and the 

UHI. Some of these practices are standard in high-income cities around the world, such as air 

conditioning access, public cooling centers, and weather forecasts warning of the dangers of heat 

waves and air pollution. Other techniques require architectural or urban design changes and are 

not yet widely used. This section presents the evidence supporting some of the most prominent 

methods to both cool urban areas and reduce the human impacts of heat. 

 

Green spaces 

Green spaces, from large parks to trees and grass, can reduce local temperatures by 1 – 

6°C during the day, in both the sun and shade, through albedo change, reduced surface heat 

storage, and increased evapotranspiration102,240–245. Trees, plants, and green spaces can also 

reduce local air pollution, improve human wellbeing in dense urban areas246,247, and increase 

property values248. Due to increased evapotranspiration, it is possible that wet bulb temperatures 

could be higher in vegetated areas; more work is needed to quantify the tradeoff between 

reduced temperatures and more humidity.  

The amount of cooling that a green space provides depends on its design, the 

characteristics of the surrounding urban area, and the local climate. Case studies of specific green 
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spaces have found some provide the strongest cooling effect during the day241, while others are 

most effective at night249 especially in regions with high building height-to-street-width ratios. 

Research in an arid city in China found that small but densely-spaced green patches were more 

efficient at reducing surface temperature than sparse but large spaces; this may be especially 

relevant in water-constrained regions250. While green spaces are generally cooler than their 

surroundings, they have been found to have little or no impact on ambient temperatures outside 

of their boundaries240,241,244. The effectiveness of a green space may be enhanced in dry climates, 

as low relative humidity allows for evaporative cooling of water transpired by plants; studies in 

humid regions have generally shown less of a green-space cooling effect251. 

The type of greenery has an impact on the effectiveness of a green space at reducing 

urban temperatures. Parks with trees may have a stronger cooling effect than those without252. 

Even single trees can reduce energy costs by providing shade on buildings; a study in 

Sacramento, CA in the United States found that each residential tree providing shade to a house 

reduces air conditioning energy use by 7% while increasing winter heating energy use by only 

2%253. However, the impact of street trees on ambient temperatures is uncertain; some studies 

have found reduced temperatures near trees, while others have found little effect241.  

Current research suggests that green spaces and urban parks are essential for wellbeing in 

dense cities and can reduce air pollution and provide limited cooling, but they are unlikely to 

substantially reduce the average temperature across large urban areas. 

 

Cool roofs 

Modifying roof color can raise the albedo and thus lower the energy absorption of a large 

building, providing a cost effective method of reducing cooling energy use in warm climates; 
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recent research has suggested that cool roofs, whether white (in color) or green (e.g. vegetation-

covered), be adopted in warm climates245,254,255. A large fraction – perhaps up to 10% – of urban 

air conditioning energy use goes towards cooling the heat added by the UHI256, and air 

conditioning units also produce substantial waste heat. A dark colored roof, the standard in the 

U.S., absorbs up to 80% of incoming solar radiation, where as a white roof reflects 50 – 80%256, 

potentially reducing building energy consumption by up to 20%257,258. Modeling studies, backed 

by empirical tests, suggest that white and green roofs applied across a city could reduce urban 

temperatures by 1 – 2°C, substantially countering the UHI259–262. Green roofs reduce ambient 

temperature mainly through evapotranspiration, while white and reflective roofs cool by raising 

the mean albedo of an urban area. The effect of both is greatest during the day, with limited 

night-time cooling260. When applied globally, one study suggests white and green roofs could 

provide the cooling equivalent of removing 1 – 4 years of current human CO2 emissions from the 

atmosphere (approximately 0.05°C in global mean cooling)263. In metropolitan regions, these 

temperature reductions account for a substantial fraction of the current UHI and could offset a 

portion of the heat effects of future climate change for large populations264. 

Green roofs are more expensive than white roofs and are less effective at raising albedo; 

however, they can reduce storm water runoff265 and can provide localized evaporative cooling259. 

Green roofs may also improve ecological connectivity, and can provide public green space if so 

configured266,267. Their cost effectiveness depends on the climate; energy savings may be 

outweighed by irrigation costs in arid regions, and by installation costs in temperate zones268. 

Green roofs may also necessitate structural modifications in some buildings, while white roofs 

may require frequent cleaning and re-painting to maintain strong albedo benefits. 
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Overall, research suggests that cool roofs are a promising approach to reducing urban 

energy use and ambient temperature, and most research suggests that white roofs are the most 

effective and cost efficient option.  

 

Building design 

The geometry and material used in urban structures affect their thermal properties. Many 

common building materials, especially those with a low albedo like concrete and asphalt, store 

heat and contribute to UHI.  

The geometry of urban streets can affect the strength of the UHI; urban canyons, or 

streets with tall buildings on each side, have reduced ventilation and generally higher 

temperatures269,270 than more open areas. The building height-to-street-width (H/W) ratio is 

correlated with the strength of the UHI; when this ratio is higher, meaning tall buildings 

surrounding narrow streets, temperature tends to drop more slowly at night. This effect is likely 

due to a decrease in radiative cooling, as more outgoing long-wave radiation is absorbed by 

surrounding buildings rather than escaping into the atmosphere270.  

New materials with retro-reflective properties offer a method of reducing radiation 

absorption by closely-spaced buildings. Retro-reflective materials reflect incoming radiation in 

the same direction from which it came; this means that incoming solar radiation can be reflected 

back to the atmosphere instead of reflecting off a surface and then being absorbed by the ground 

or a nearby building255.  

Green facades – usually implemented with climbing plants and vines on the side of a 

building – can be an effective way of reducing local near-surface temperatures by 10°C or 

more269. In general, green facades are generally not as effective as cool roofs at reducing ambient 



95 
 

temperatures, as the sides of buildings receive less direct sunlight and thus changing their albedo 

has less thermal effect. However, as a part of a comprehensive urban-greening strategy, green 

facades can play a significant role in reducing thermal absorption by man-made structures. 

 

Urban water bodies 

Urban water bodies, whether nearby oceans, lakes, rivers, or even small ponds and 

creeks, can provide a cooling effect. The air over a body of water can be 2 – 6°C cooler than over 

the surrounding city landscape177, and regions downwind of the water body will experience some 

cooling, with many studies suggesting 1 – 2°C as a common temperature reduction271. The 

spatial extent of the cooling effect depends heavily on the size of the water body, the prevailing 

winds, and the local humidity conditions; as evaporative cooling is the dominant mechanism for 

temperature reduction, water bodies will have less effect in humid conditions272. Moving or 

spraying water has a stronger cooling effect than stationary water bodies, and even small 

fountains can substantially cool nearby areas273. Water provides increased latent and decreased 

sensible heat fluxes, which are likely to reduce air temperature during the daytime, but less so at 

night – and it should be noted that when air temperature drops below water temperature, bodies 

of water serve as strong warming influences, in some cases canceling out their daytime cooling 

effect and making them a net contributor to mean UHI274. In addition, increased evaporation can 

raise local relative humidity, and depending on the balance between temperature reduction and 

humidity increase, measures of heat stress may rise or fall near bodies of water275.  

 

Behavior 

Early warning systems 
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In recent years as the public health impacts of major heat waves have become more 

widely understood, countries have begun implementing heat wave early warning systems 

(HEWS) in an attempt to reduce heat-related mortality and prepare for climate change276,277. 

Early warning systems generally consist of a trigger, usually some combination of predicted 

extreme heat and humidity lasting for a specified duration, and a response plan once the trigger 

occurs. For early warning systems to be effective, they must be accompanied by active and 

targeted warnings for high-risk individuals278, as well as advice on what protective measures 

people should take.  

As climate change continues to intensify heat waves, early warning systems may need to 

be updated279 to reflect the changing characteristics of heat waves or changing public responses 

to extreme temperatures. Temperature-health relationships must also be monitored, especially if 

non-linear responses of mortality to heat begin to appear at extremely high temperatures. Heat 

wave early warning systems can also be improved by monitoring their performance in past heat 

waves and adapting their trigger thresholds accordingly280.  

 

Personalized heat monitoring 

Increased recognition of the localized nature of heat stress and the difficulty of predicting 

individual heat risk based on environmental conditions has spurred research into personalized 

heat exposure monitoring190,281,282. Tests of such devices have found substantial variation in 

exposure between individuals in the same neighborhood due to differences in activity level, 

clothing, and access to air conditioning197,283. Most devices have been used only to measure heat 

exposure, but some have attempted to predict heat illness. These types of monitors usually take 

the form of wearable body temperature or heart rate sensors which can alert the user when their 
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physiological parameters indicate unsafe heat exposure. More research is needed to identify and 

calibrate these physiological predictors of heat illness, as well as to test the efficacy of this 

adaptation approach in improving overall health outcomes during extreme heat events. As with 

many adaptation strategies, adopting the monitoring device is only the first step; users need to be 

trained in the proper response to a heat stress alert, and they must have the ability to seek air 

conditioning, water, and rest.  

Most research thus far has focused on high-income countries, and has generally found 

personal heat exposure to be strongly correlated with but generally less than outside air 

temperature, likely due to air conditioning. Implementing personalized monitoring in low-

income regions will likely prove more challenging, especially in rural areas where electricity 

access may be limited and equipment delivery and maintenance costs more expensive.   

 

Encouraging protective action 

Recent heat waves have shown that making cooling centers, water, and other services 

available to vulnerable populations isn’t enough; there are often a variety of reasons that people 

choose not to take protective action without active encouragement. The use of air conditioning is 

considered to be the most effective protection against heat-related illness, but many at-risk 

individuals either do not have access or are reluctant to use it due to cost or personal 

preference199. Many at-risk elderly people report checking on their friends or family during heat 

waves, a practice that may provide some protection by encouraging individuals to take protective 

actions284. In urban areas, most heat-related deaths occur at home194,199; more research is needed 

on the most effective methods of encouraging vulnerable populations to seek water and cooler 
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spaces during heat waves. Several jurisdictions have programs to check on vulnerable residents; 

however, more research to evaluate and optimize these efforts is needed. 

Optimizing interior spaces for hot weather can have significant impacts on heat 

exposure285. Shutters and blinds can be closed on windows during the day. If air conditioning is 

available, it can be used to cool a small area of the indoor space, and set to a low-cool setting to 

protect health while reducing energy use and costs. The use of fans to remove hot air during the 

day and to inject cool air during the night, as well as using shades to block sunlight during the 

hottest hours of the day, can reduce indoor temperatures in the absence of air conditioning. 

However, during periods of extreme heat, there is no evidence that fans help prevent illness and 

death among vulnerable individuals286. Informing the public about strategies to mitigate indoor 

temperatures may be an effective way to reduce heat risk in some communities. In addition, 

frequent cool showers and baths may help to provide relief287. 

 

Conclusions 

Heat is a serious health risk in the current climate and will likely impose a greater burden 

on both urban and rural populations as heat waves intensify in the future. Experience in recent 

heat waves has shown that targeted intervention strategies, especially centered around alerting at-

risk individuals to the risk of heat stress and providing them with the resources to protect 

themselves, can be highly effective at reducing mortality. Many of the heat wave adaptation 

strategies presented here have thus far been tested primarily in high-income countries; more 

research is needed on the most effective and efficient ways of implementing these and other 

evidence-based adaptation methods in low- and middle-income regions. In addition, most 

adaptation strategies thus far have focused on urban areas; while urban regions have a higher 
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heat burden due to the urban heat island, rural regions face extreme heat as well, and often have 

less access to air conditioning, safe water, and social support. More research is needed into rural 

adaptation, especially for agricultural workers in low-income countries, who may face an 

increasingly high heat risk in the future. 

 It is essential that adaptation measures be scientifically tested before being implemented 

on a large scale, especially where resources are limited. Some adaptations are much more 

effective than others, and many effective methods are not expensive. More research is also 

needed on implementation, barriers to adaptation, and the potential for co-benefits and costs of 

heat-related adaptation. Increasingly severe heat is poised to be one of the most directly 

observable impacts of climate change, as well as one with significant health impacts. 

Governments, both national and local, can reduce the burden of heat on their populations by 

implementing well-designed and tested adaptation strategies.  
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Conclusions & future work 

This dissertation has focused on extreme heat, the processes driving increasing heat wave 

risk, and some of the potential adaptation strategies to reduce the impacts on society. As 

exposure to extreme heat grows in the future, it will be increasingly essential to understand what 

regions are at highest risk and how confident we can be in assessing the full range of potential 

future climate outcomes. While the research community has made great progress in recent years 

in analyzing the impacts of climate change, there is still more work to do to assess the specific 

effects of changing extremes on ecosystems and human society. Climate impacts research is 

likely to play an increasingly important role in shaping adaptation policy around the world. 

Identifying the most serious climate risks and evaluating both the effectiveness and the 

efficiency of potential adaptation strategies will be crucial to reducing the impacts of climate 

change in the coming decades. 

The amplified warming of extreme temperatures as compared to the mean significantly 

increases projected heat wave statistics, especially in Europe. Most models agree that this 

amplification will occur, but they differ in magnitude, and the variation is linked to the projected 

change in warm season sensible heat flux and net surface shortwave radiation. These variables, 

in turn, depend on both the availability of surface moisture which controls the partitioning of 

incoming energy into sensible or latent heat flux, as well as on changes in cloud cover, aerosol 

emissions, and greenhouse gas forcing which control how much incoming radiation reaches the 

surface. The dependence of extreme temperature change on model representation of clouds and 

moisture introduces substantial projection uncertainty. In climate impact studies, it is often 

assumed that model-projected temperature changes are more reliable than for precipitation, soil 

moisture, or metrics of land-atmosphere coupling. This work suggests that projections of the 



101 
 

most extreme temperatures cannot be separated from these hydrological processes. In addition, it 

shows that somewhat different processes are driving the projected amplification of extreme 

temperature warming in different regions. While Chapter 1 suggests that surface drying is related 

to the projected TXx amplification, there are regions (e.g. southern Africa) that are projected to 

dry but not experience amplification. More work is necessary to identify the regional differences 

that lead to this result. Prior work has demonstrated that intensive agriculture can reduce the 

occurrence of extreme temperatures by increasing the near-surface evaporative fraction97, and it 

is possible that this, other land-cover changes, and/or larger scale processes are affecting 

projected amplification in some regions. In addition, it will be important to assess the interaction 

of TXx amplification with the urban heat island, as recent evidence has suggested that in some 

situations temperatures can warm more in cities than in surrounding areas288. As Chapter 1 also 

demonstrates, the coldest daily minimum temperatures are projected to increase by at least 3°C 

more than mean daily minimum temperatures in snow-covered parts of the Northern 

Hemisphere. The initial analyses presented in this dissertation suggest that this wintertime 

amplification is spatially correlated with snow decline, but more work is necessary to confirm 

whether the snow-albedo feedback is the driving process at work. 

Warmer temperatures are increasing the moisture content of the atmosphere, leading to 

rapid rises in human health-relevant joint heat-humidity metrics. Annual maximum wet bulb 

temperatures are projected to rise by 1.5 – 3.5°C by the 2070s, putting some regions at risk of 

experiencing occasional values above a theoretical limit for human tolerance. More research is 

needed to understand the health implications of such extreme levels of heat stress. Recent heat 

waves – which have resulted in thousands of heat-related deaths – have had maximum wet bulb 

temperatures of 31 to 32°C, and isolated locations have experienced values as high as 34°C. 
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However, there has never been widespread and prolonged exposure to 32°C or higher wet bulb 

temperatures, which appears likely in India, the Middle East, and parts of West Africa by the 

second half of the 21st century even under RCP 4.5. Experimental evidence suggests that 

physical labor will become difficult and dangerous at these heat stress levels60, and it is likely 

that unexpected heat-related illnesses61 will occur. A more fundamental question is whether wet 

bulb temperatures of 35°C will indeed prove to be fatal for humans after six hours of exposure, 

as proposed by Sherwood and Huber (2010)48. If so, hot and low-income regions in India, Africa, 

and the Middle East may experience larger increases in heat-related mortality and economic 

impacts than are predicted by historical heat-health relationships. Chapter 2 of this dissertation 

assesses future population exposure to dangerous heat stress. The population projections used in 

this chapter do not take into account the ways in which climate change could influence 

migration; it is plausible that in some regions heat stress or other climate impacts could 

discourage population growth, leading to lower exposure values than estimated. 

Better understanding the sources of uncertainty surrounding extreme wet bulb 

temperature events will also prove crucial. High heat stress values depend on a combination of 

extreme temperatures and high humidity levels, and small differences in wet bulb temperature 

can have large implications for the impacts of heat stress. Models vary significantly in the 

projections of wet bulb temperature change; a better understanding of the processes leading to 

this variation will help build confidence in future heat stress projections. Similarly, several 

regions – notably northern India, the coastal Middle East, eastern China, and coastal West Africa 

– emerge as particularly vulnerable to high wet bulb temperatures. Thus far little work has 

assessed the mechanisms driving extreme heat stress in these regions, whether they differ, and 

how models represent them.  
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Another important factor in any analysis of heat exposure is the urban heat island (UHI). 

The UHI can increase air temperatures by more than 2°C, and given the increasing urbanization 

of the global population, makes a large and growing contribution to heat exposure. There has 

thus far been little analysis of the urban heat island’s effect on wet bulb temperature. This effect 

will likely depend mostly on urban humidity levels, which may be elevated due to human 

activity but also reduced by the lack of evapotranspiration over paved areas. It is unknown how 

the temperature effect of the UHI interacts with modified urban humidity to change heat stress in 

cities. Agricultural intensification may also affect local heat stress levels through increases in 

evapotranspiration. Prior work has shown that agriculture has reduced temperature extremes in 

some regions97 by increasing evapotranspiration; as in urban areas, the balance between 

increased humidity and decreased temperature will determine whether heat stress rises or falls. 

The answer may prove significant for heat stress exposure in densely populated agricultural 

regions in India and China, for example. 

Heat stress is a joint hazard, in that it depends on changes in two climate variables, 

temperature and humidity. Other joint hazards include hot drought (combining temperature and 

precipitation) and coastal flooding (combining sea level rise, rainfall, and wave activity). In some 

cases, the factors involved in a joint hazard are correlated, increasing the risk of extremes in both 

variables occurring simultaneously. The best example is temperature and precipitation; in much 

of the world, higher temperatures are correlated with less precipitation. This correlation results in 

a higher risk of a season being both hot and dry than would be expected if the variables were 

independent. Coupled with the expected increase in global precipitation variability19, the risk of 

hot and dry seasons is likely to increase worldwide. Attempts to assess the impacts of joint 
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hazards and correlated extremes are relatively recent, but deserve substantial research attention 

in the coming years. 

Chapter 3 of this dissertation showed the potential impacts of rising temperatures on 

aviation operations. The aviation industry is a substantial contributor to climate change but also 

faces climate risks. In addition to the potential for increasingly frequent aircraft weight 

restrictions, clear air turbulence is increasing in intensity, and sea-level rise is likely to threaten 

many coastal airports. The impacts of climate change on specific industries, such as aviation, 

have just begun to be analyzed. There is likely substantial unreported climate risk, which in 

many cases results in financial risk, spread across the economy. As the understanding of climate 

impacts becomes more widespread, this risk will likely come under scrutiny by investors and 

governments. Developing assessment methods to quantify the potential impacts of climate 

change on infrastructure, transportation, logistics, and supply chains will be essential. Climate 

adaptation is often considered at the national level, but much adaptation work will be done 

within industries, encouraged both by regulation and financial interest. Clearly and robustly 

estimating climate impacts may encourage adaptation efforts to begin sooner rather than later, 

reducing both physical and economic impacts. 

 Adaptation strategies require robust analysis to ensure that they are in fact efficient and 

effective methods of reducing climate risk. As Chapter 4 reviewed, heat adaptation techniques 

vary widely in efficacy, and often the best strategies – such as providing social support and 

access to water and air conditioning to the most vulnerable – are among the least costly. The 

analysis of adaptation strategies has mostly been conducted in high-income countries. Adaptation 

in places with less capacity and higher societal vulnerability may be more challenging, and in 

these regions it will also be even more essential to focus on strategies that are cost- and resource-
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efficient. In addition to efficiency, it is vitally important that adaptation strategies be proven 

effective, and that they are tested in small-scale implementations before being widely adopted. It 

is always difficult to anticipate the effects of any adaptation strategy, and mal-adaptation – where 

an intervention creates a new problem or makes other, existing problems worse – is a real 

possibility. For example, building sea walls could in the short term reduce coastal flooding risk, 

but if coastal ecosystems are damaged in the process, the loss of natural flood defenses could 

outweigh the benefits of the adaptation. 

The most effective strategy for reducing urban temperatures appears to be the large-scale 

implementation of white or (in dry climates) green roofs. By increasing the albedo of urban 

areas, and in the case of green roofs increasing evapotranspiration, cool roofs substantially lower 

the amount of radiation absorbed by buildings, reducing both the energy required to cool them as 

well as the ambient air temperature. Modeling studies have found urban temperature reductions 

of 2°C or more are possible with white roofs, potentially offsetting a significant portion of 

climate change-driven temperature rise. Green roofs also produce substantial, but somewhat 

smaller, temperature reductions, as does extensive tree cover within an urban area. However, due 

to increased humidity, green roofs could increase local wet bulb temperatures; this effect has 

thus far not been studied but deserves research attention if green roofs are to be widely 

implemented. The existing analyses of the benefits of cool roofs are based on a limited number 

of modeling studies and less empirical testing. Due to the potentially large benefits of cool roofs, 

much more research and tests of large-scale implementation strategies are warranted in the near 

future. 

 Since the 2003 European heat wave, which was responsible for tens of thousands of 

excess deaths, many countries and cities have implemented heat wave response plans. The 
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centerpiece of these plans is generally education, early warning, and social and behavioral 

intervention for at-risk populations. The best predictor of heat related death both in Europe and 

the United States is social isolation. By providing assistance and support to isolated people and 

encouraging them to seek shelter from heat in public cooling centers, the death toll can be 

dramatically reduced. In France, a statistical analysis found that post-2003 policy changes may 

have reduced the heat-related death toll during a similar event by up to two-thirds. These results 

show the importance of cultural adaptation in responding to climate change. For some climate 

threats, education and behavior modification can prove cheaper and more effective at reducing 

the risk from climate extremes than physical adaptation. 

 This dissertation has investigated some of the processes driving amplified warming of the 

most extreme temperatures as compared to the mean, and assessed potential impacts of future 

extreme heat. Much work remains to understand the ways in which extreme events are changing, 

the processes driving these changes, and how human activities and natural ecosystems will be 

impacted in the coming decades. As the impacts of climate change become more widespread and 

damaging, climate impacts work will increasingly be called upon to understand the changes that 

are occurring and the processes driving them. Methods of rapidly assessing specific, regional 

changes in climate will be needed, as will a rigorous focus on the uncertainty surrounding 

climate projections. By analyzing the full range of possible climate outcomes simulated by a 

range of climate models, understanding the physical mechanisms driving these outcomes, and 

clearly communicating the sources and magnitudes of uncertainty, climate impacts science will 

facilitate clearly evaluating the climate risks that we face now and in the future. By 

understanding these risks, science will be able to inform policy more accurately.   
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