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ABSTRACT

Application of Distance Covariance to Extremes and Time Series and Inference for Linear

Preferential Attachment Networks

Phyllis Wan

This thesis covers four topics: 1) Measuring dependence in time series through distance
covariance; ii) Testing goodness-of-fit of time series models; iii) Threshold selection for mul-
tivariate heavy-tailed data; and iv) Inference for linear preferential attachment networks.

Topic 1) studies a dependence measure based on characteristic functions, called distance
covariance, in time series settings. Distance covariance recently gathered popularity for its
ability to detect nonlinear dependence. In particular, we characterize a general family of
such dependence measures and use them to measure lagged serial and cross dependence in
stationary time series. Assuming strong mixing, we establish the relevant asymptotic theory
for the sample auto- and cross- distance correlation functions.

Topic ii) proposes a goodness-of-fit test for general classes of time series model by applying
the auto-distance covariance function (ADCV) to the fitted residuals. Under the correct
model assumption, the limit distribution for the ADCV of the residuals differs from that
of an i.i.d. sequence by a correction term. This adjustment has essentially the same form
regardless of the model specification.

Topic iii) considers data in the multivariate regular varying setting where the radial part
R is asymptotically independent of the angular part © as R goes to infinity. The goal is to
estimate the limiting distribution of © given R — oo, which characterizes the tail dependence
of the data. A typical strategy is to look at the angular components of the data for which
the radial parts exceed some threshold. We propose an algorithm to select the threshold

based on distance covariance statistics and a subsampling scheme.



Topic iv) investigates inference questions related to the linear preferential attachment
model for network data. Preferential attachment is an appealing mechanism based on the
intuition “the rich get richer” and produces the well-observed power-law behavior in net-
works. We provide methods for fitting such a model under two data scenarios, when the

network formation is given, and when only a single-time snapshot of the network is observed.
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Overview

This thesis is a compilation of four papers concerning problems in time series, extreme
value theory and network analysis. Three of the four papers explore the usage of distance
covariance, a dependence measure that recently rose to popularity for its ability to detect
nonlinear dependence. The fourth paper considers inference methods for a network model.

In this introduction, we provide an overview of the problems and our contributions.

0.1 Distance correlation in time series setting

In time series analysis, the autocorrelation function (ACF) is perhaps the most used depen-
dence measure to assess serial dependence. It provides a measure of linear dependence and
is closely linked with the class of ARMA models. On the other hand, the ACF gives only
a partial description of dependence. As seen with financial time series, when the data are
uncorrelated but dependent, the ACF is often non-informative. In this case, the dependence
only becomes visible by examining the ACF applied to the absolute values or squares of the
time series. In Chapter 1, we consider the application of distance correlation, in place of
linear correlation, to measure dependences in time series.

The intuition of distance covariance is based on the property that two random vec-
tors X € R? and Y € RY are independent if and only if pxy(s,t) = px(s) ¢y (t), where
oxy(s,t), px(s), py(t) denote the joint and marginal characteristic functions of (X, Y’). The
distance covariance between X and Y is defined as

T(X,Y;p) = /RPM |Q0X7y(8,t) —ox(s) gpy(t)‘zlu(dg,dt), (s,t) € RPTY,
where o is a suitable measure. It is easy to see that if u has a positive Lebesgue density

on R X and Y are independent if and only if T'(X,Y;u) = 0. Given observations
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{(X;,Y;),i=1,...,n}, the sample version of the distance covariance is given by

A

PV = [ [exr(si) = ox(9) prl0 ulds,dt). (5.0) € R,

where ©x v, 9x, ¢y are the corresponding joint and marginal empirical characteristic func-
tions. When p = 1 X o and is symmetric about the origin, it can be shown that T(X Y )
has a V-statistic form and can be obtained in O(n?) computation.

The concept of distance covariance was first proposed by Feuerverger (1993) for uni-
variate variables X and Y. It was later christened with its current name and brought to
popularity in a series of papers by Székely and co-authors (see, for example, Székely et al.
(2007)). It was first applied to time series setting when Zhou (2012) introduced the auto-
distance covariance function. Most literature on distance covariance focus on the specific
weight measure ju(s, t) oc |s|P7|¢|797!, which has the advantage of being scale and rotation
invariant.

In Chapter 1, we consider the general form of distance covariance and apply it to sta-
tionary univariate and multivariate time series. For time series {X,}, serial dependence is
measured auto-distance covariance functions. For bivariate time series {(X,Y;)}, cross de-
pendence is measured using cross-distance covariance functions. We establish the asymptotic
results for these statistics under strong mixing.

The work in this chapter was published in Davis et al. (2018):

R.A. Davis, M. Matsui, T. Mikosch, and P. Wan. Applications of distance covariance to
time series. Bernoulli, 24(/A):3087-3116, 2018.

0.2 (Goodness-of-fit testing for time series models

In many statistical modeling frameworks, goodness-of-fit tests are often administered to the
residuals. In Chapter 2, we apply the auto-distance covariance function (ADCV) to the
fitted residuals to assess goodness-of-fit for general classes of time series models.

It is known that the sequence of fitted residuals generally admits a different serial de-

pendence than the sequence of iid innovations. Let Th(Z ; i) be the sample ADCV of an iid
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sequence {Z;,1 <t < n} at lag h. From the results in Chapter 1,

nTy(Z: ) i>/|Gh(s,t)|2u(ds,dt),

where G, is a centered Gaussian process. Let Th(Z; i) be the sample ADCV in which the

iid sequence is replaced by the residuals {Zt, 1 <t <n}. We show that

e / (Ga(s,£) + (s, D)2l ds, db).

We demonstrate through simulations that the impact of the correction term &(s, ) is non-
trivial. This implies that adjustments are necessary when using this statistic to evaluate the
goodness-of-fit of the model. Otherwise, an improper model may be accepted based on an
incorrect threshold for the test statistics. Given a sequence of observations from the time
series, the limit can be approximated through a parametric bootstrap.

A manuscript containing the results in this chapter is currently under development.

0.3 Threshold selection for multivariate heavy-tailed

data

Regular variation is a typical assumption for modeling multivariate heavy-tailed data. A
random vector X € R? is multivariate reqularly varying if the polar coordinates (R, ©) =

(IIX|I, X/{|X]|), where || - || is some norm, satisfy the conditions:

(a) R has a univariate Pareto-like tail;

(b) P(® € :|R > r) converges weakly to a probability measure S(-) as r — oo.

Here the limit S characterizes the tail dependence and is often the quantity of interest.

To estimate S, a common strategy is to look at the angular components © of the data for
which the radial parts R exceed some threshold. A large class of methods has been proposed
in the literature to model these exceedances. The choice of threshold, however, has scarcely

been discussed.



In order to select the threshold, the dependence between R and ® needs to be charac-
terized. Linear correlation proves to be inadequate for this task for two reasons. First, R is
heavy-tailed and often does not possess a second moment, thus violating the assumption for
linear correlation. Second, ® can be of multiple dimensions. In Chapter 3, we propose to
use distance covariance for this purpose. Given a sequence of thresholds {r,}, we formally
test the independence between R and © conditional on R > r,, using distance covariance.
Our approach to this problem is based on the following two steps.

First, as n — 00, (R;, ©;)1(gr,>r,}, @ = 1,...,n, forms a triangular array. We generalize
the limit theory of distance covariance in Chapter 1 to a triangular array setting. The results
are given for both iid and weakly dependent data.

Second, the test of independence statistics are summarized in the form of p-values for
different thresholds. To select an optimal threshold, we propose an algorithm which deter-
mines the change point from which the mean of the p-value distribution deviates from 0.5,
the mean of its distribution under the null. This is done by subsampling the data and using
a wild binary segmentation change point detection procedure. The subsampling scheme al-
lows the method to be applicable to a wide range of weakly dependent data and also avoids
the heavy computation in the calculation of distance covariance, a typical limitation for this
measure.

The research in chapter will appear in a forthcoming paper, Wan and Davis (2018):

P. Wan and R.A. Davis. Threshold selection for multivariate heavy-tailed data. Extremes.
2018.

0.4 Inference for preferential attachment model

Lastly, we turn our attention to another data type — networks. We are interested in the
power-law behavior of the degree distributions observed in many networks, most notably in

social networks. A discrete distribution D is said to possess a power law if



In other words, D is heavy-tailed. The study of power laws has always been of interest.
In a network, the nodes with large degrees represent the individuals with large number of
connections and hence are likely to be influential. If a network exhibits power laws in its
degree distributions, the occurrence of nodes with large degrees is non-negligible.

Preferential attachment is a natural and appealing mechanism that models such behavior.
It is based on the intuition of the rich get richer, that a connection is more likely to be made
to an individual with many existing connections than one with less. Such models produce
networks with the empirically observed power-law property and have been implemented
empirically for many networks. However, until recently, few studies have focused on its
mathematical properties and no rigorous estimation procedure has been proposed.

In Chapter 4, we bridge this gap by considering fitting a 5-parameter linear preferential
model to directed networks. We proposed inference methods under two data scenarios. In the
case where full history of the network formation is given, we derive the maximum likelihood
estimator of the parameters and show strong consistency and asymptotical normality. In the
case where only a single-time snapshot of the network is available, we propose an estimation
method which combines method of moments with an approximation to the likelihood. The
resulting estimator is also strongly consistent and performs quite well compared to the MLE
estimator. We illustrate both estimation procedures through simulated data and explore the

usage of this model in a real data example.

This work was published in Wan et al. (2017):

P. Wan, T. Wang, R.A. Davis, and S.I. Resnick. Fitting the linear preferential attachment
model. Electron. J. Statist., 11:3738-3780, 2017.



Chapter 1

Applications of distance correlation to

time series

1.1 Introduction

In time series analysis, modeling serial dependence is typically the overriding objective. In
order to achieve this goal, it is necessary to formulate a measure of dependence and this
may depend on the features in the data that one is trying to capture. The autocorrelation
function (ACF), which provides a measure of linear dependence, is perhaps the most used
dependence measure in time series. It is closely linked with the class of ARMA models and
provides guidance in both model selection and model confirmation. On the other hand,
the ACF gives only a partial description of serial dependence. As seen with financial time
series, data are typically uncorrelated but dependent so that the ACF is non-informative.
In this case, the dependence becomes visible by examining the ACF applied to the absolute
values or squares of the time series. In this chapter we consider the application of distance
correlation in a time series setting, which can overcome some of the limitations of other
dependence measures.

In recent years, the notions of distance covariance and correlation have become rather
popular in applied statistics. Given vectors X and Y with values in R? and R?, the distance
covariance between X and Y with respect to a suitable measure p on RP™? is given by

TCYin) = [ fowrlst) = x()or (@) utds, ), (1.1)

Rp+a



where the characteristic function of any random vector Z € R? is denoted by ¢z(t) =
E[ei<t’Z>], t € R%. The distance correlation is the corresponding version of 7' standardized
to values in [0,1]. The quantity T'(X,Y;p) is zero if and only if pxy = ¢x ¢y, pae.
In many situations, for example when p has a positive Lebesgue density on RP™?, we may
conclude that X and Y are independent if and only if T'(X,Y; ) = 0. An empirical version
T.(X,Y;n) of T(X,Y; ) is obtained if the characteristic functions in (1.1) are replaced by
their corresponding empirical versions. Then one can build a test for independence between
X and Y based on the distribution of 7,, under the null hypothesis that X and Y are
independent.

The use of empirical characteristic functions for univariate and multivariate sequences
for inference purposes has a long history. In the 1970s and 1980s, Feuerverger and Mureika
(1977), Csorgé (1981a,b,c) and many others proved fundamental asymptotic results for iid
sequences, including Donsker-type theory for the empirical characteristic function. Statis-
ticians have applied these methods for goodness-of-fit tests, changepoint detection, testing
for independence, etc.; see for example Meintanis and coworkers (Meintanis and Iliopoulos
(2008), Hlavka et al. (2011), Meintanis et al. (2015)), and the references therein. The lat-
ter authors employed the empirical distance covariance for finite measures p. Feuerverger
(1993) was the first to apply statistics of the form (1.1) for general measures. In particular,

he advocated the infinite measure
p(ds, dt) = |s|~2[t| 2ds dt

for testing independence of univariate data. A series of papers by Székely et al.! (Székely
et al. (2007), Székely and Rizzo (2009, 2014), see also the references therein) developed
asymptotic techniques for the empirical distance covariance and correlation of iid sequences

for the infinite measure p given by

p(ds, dt) = ¢, qls| 7P|t ds dt, (1.2)

IThey appeared to have coined the terms distance covariance and correlation.



where ¢, , is a constant (see (1.15)) and o € (0,2). With this choice of y, the distance
correlation, T(X, Y u)/(T(X, X; u)T(Y,Y; 1))"/? is invariant relative to scale and orthogo-
nal transformations, two desirable properties for measures of dependence. As a consequence
this choice of measure is perhaps the most common. However, there are other choices of
measures for g that are also useful depending on the context.

Dueck et al. (2014) studied the affinely invariant distance covariance given by T'(X,Y’; i)

= T(E)}IX , E{,IY), where Y x, 2y are the respective covariance matrices of X and Y and p is

given by (1.2). They showed that the empirical version of T(X,Y’; ,u)/\/T(X, X )T(Y,Y; ),
where X x and Yy are estimated by their empirical counterparts, is strongly consistent. In
addition, they provide explicit expressions in terms of special functions of the limit in the
case when X, Y are multivariate normal. Further progress on this topic has been achieved in
Sejdinovic et al. (2013) and Lyons (2013), who generalized distance correlation to a metric
space.

In this chapter we are interested in the empirical distance covariance and correlation ap-
plied to a stationary sequence ((X3,Y;)) to study serial dependence, where X; and Y; assume
values in R? and R, respectively. We aim at an analog to the autocorrelation and auto-
covariance functions of classical time series analysis in terms of lagged distance correlation
and distance covariance. Specifically we consider the lagged-distance covariance function
T(Xo,Yn; 1), h € Z, and its standardized version that takes values in [0, 1]. We refer to these
quantities as the auto- and cross-distance covariance and correlation functions. We provide
asymptotic theory for the empirical auto- and cross-distance covariance and correlation func-
tions under mild conditions. Under ergodicity we prove consistency and under a-mixing,
we derive the weak limits of the empirical auto- and cross-distance covariance functions for
both cases when X, and Y} are independent and dependent.

From a modeling perspective, distance correlation has limited value in providing a clear
description of the nature of the dependence in the time series. To this end, it may be
difficult to find a time series model that produces a desired distance correlation. In contrast,

one could always find an autoregressive (or more generally ARMA) process that matches



the ACF for an arbitrary number of lags. The theme in this chapter will be to view the
distance correlation more as a tool for testing independence rather than actually measuring
dependence.

The literature on distance correlation for dependent sequences is sparse. To the best of
our knowledge, Zhou (2012) was the first to study the auto-distance covariance and its empir-
ical analog for stationary sequences. In particular, he proved limit theory for T,,(Xo, Xp; )
under so-called physical dependence measure conditions on (X;) and independence of X
and Xj,. Fokianos and Pitsillou (2017) developed limit theory for a Ljung-Box-type statistic
based on pairwise distance covariance T,,(X;, X;; 1) of a sample from a stationary sequence.
In both papers, the measure p is given by (1.2). The latter paper uses ideas from Hong
(1999). He applied the empirical characteristic function of a strongly mixing time series
for testing various hypotheses on the dependence structure of a time series; he called it a
generalized spectral approach. His test statistic bears some resemblance with the distance
covariance: it is an integral of the weighted squared difference between the Fourier transform
of the sequence cov(e X0 e®Xr) and an empirical analog weighted by the density of a finite
measure fi.

Typically, a crucial and final step in checking the quality of a fitted time series model is
to examine the residuals for lack of serial dependence. The distance correlation can be used
in this regard. However, as first pointed out in his discussion, Rémillard (2009) indicated
that the behavior of the distance correlation when applied to the residuals of a fitted AR(1)
process need not have the same limit distribution as that of the distance correlation based
on the corresponding iid noise. We provide a rigorous proof of this result for a general AR(p)
process with finite variance under certain conditions on the measure u. Interestingly, the
conditions preclude the use of the standard weight function (1.2) used in Székely et al. (2007).
In contrast, if the noise sequence is heavy-tailed and belongs to the domain of attraction of
a stable distribution with index 5 € (0,2), the distance correlation functions for both the
residuals from the fitted model and the iid noise sequence coincide.

The chapter is organized as follows. In Section 1.2 we commence with some basic results



for distance covariance. We give conditions on the moments of X and Y and the measure g,
which ensure that the integrals T'(X,Y; ) in (1.1) are well-defined. We provide alternative
representations of T'(X,Y’; 1) and consider various examples of finite and infinite measures
. Section 1.3 is devoted to the empirical auto- and cross-distance covariance and correlation
functions. Our main results on the asymptotic theory of these functions are provided in Sec-
tion 1.3.1. Among them are an a.s. consistency result (Theorem 1.3.1) under the assumption
of ergodicity and asymptotic normality under a strong mixing condition (Theorem 1.3.2).
Another main result (Theorem 1.4.2) is concerned with the asymptotic behavior of the em-
pirical auto-distance covariance function of the residuals of an autoregressive process for
both the finite and infinite variance cases. In Section 1.5, we provide a small study of the
empirical auto-distance correlation functions derived from simulated and real-life dependent
data of moderate sample size. The proofs of Lemma 1.4.1 and Theorem 1.4.2, which are

significant but very technical, are relegated to Section ?7.

1.2 Distance covariance for stationary time series

1.2.1 Conditions for existence

From (1.1), the distance covariance between two vectors X and Y is the squared L?-distance
between the joint characteristic function of (X,Y") and the product of the marginal charac-
teristic functions of X and Y with respect to a measure p on RPT?, Throughout we assume

that p is finite on sets bounded away from the origin, i.e., on sets of the form
D§ ={(s,t) : |s| A|t| > 0}, 0>0. (1.3)

In what follows, we interpret (s,t) as a concatenated vector in RPTY equipped with the
natural norm |(s,t)|gexrs = +/|8[% + [t[2. We suppress the dependence of the norm | - | on
the dimension. The symbol ¢ stands for any positive constant, whose value may change
from line to line, but is not of particular interest. Clearly if X and Y are independent,

T(X,Y;u) =0. On the other hand, if y is an infinite measure, and X and Y are dependent,

10



extra conditions are needed to ensure that 7'(X,Y’; u) is finite. This is the content of the

following lemma.

Lemma 1.2.1. Let X and Y be two possibly dependent random vectors and one of the

following conditions is satisfied:

1. p is a finite measure on RPHY,

2. w is an infinite measure on RPT4, finite on the sets D§, § > 0, such that

/Rwa A LsI%) (1A 18]7) pu(ds, dt) < oo (1.4)

and E[| X|*] + E[|Y]*] < oo for some a € (0,2].
3. is infinite in a neighborhood of the origin and for some a € (0,2], E[|.X|*]+E[|Y]|*] <

oo and

/ LA (s, 8)|° p(ds, dt) < 0o (1.5)
Rp+aq
Then T(X,Y; ) is finite.

Remark 1.2.2. If ;4 = py X po for some measures p; and pe on RP and RY, respectively,
and if p is finite on the sets DS then it suffices for (1.4) to verify that
[ dslmntas) [ e ) < oo
ls|<1 ltl<1
Proof. (1) Since the integrand in T'(X,Y’; i) is uniformly bounded the statement is trivial.
(2) By (1.3), u(D§) < oo for any 6 > 0. Therefore it remains to verify the integrability of
lox.y (s, t) — px(s) py(t)]* on one of the sets Ds. We consider only the case |s| V |t] < 1;
the cases when |s| < 1, |[t| > 1 and |s| > 1, |[{| < 1 are similar. An application of the

Cauchy-Schwarz inequality yields

loxy (s,8) — px(s)ey (1)* < (1= lox(s)*) (1 = lev (D). (1.6)

Since 1 — |px(s)* = [5, (1 — cos(s,z)) P(X — X' € dz) for an independent copy X’ of X,

a Taylor expansion and the fact that X, X’ have finite ath moments yield for a € (0,2] and
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some constant ¢ > 0,

L= lex(@F < [ (Al o)) PO - X € do

IN

2/ (s, 2) VI P(X — X' € da) + 2P(|(s, X — X')| > v/3)
[(s,2)|<v2

< cls|E[|X — X'|*] < 00. (1.7)
In the last step we used Markov’s inequality and the fact that |(s,x)| < |s||z|. A corre-
sponding bound holds for 1 — |y (t)|>. Now, T(X,Y; ) < oo follows from (1.4) and (1.6).
(3) By (1.5), pu({(s,t) : |(s,t)| > 1}) is finite. Therefore we need to show integrability of
lox.y (s, t) — ox(s)py(t)]* only for |(s,t)| < 1. Using the arguments from part (2) and the
finiteness of the ath moments, we have

lxy(s,t) — ox(s)y (0] < e (ls|* + [t]*) < cl(s, )|

Now integrability of the left-hand side at the origin with respect to u is ensured by (1.5). O

1.2.2 Alternative representations and examples

If = p1 X po for measures p; and pe on R? and RY we write for z € RP and y € RY,
o) = [ cosllso) + (t)) lds.db),
Rp+a

(@) = [ costs.o)mlds). i) = [ costt) ),

for the real parts of the Fourier transforms with respect to u, p1, p2, respectively. We assume
that these transforms are well-defined. Let (X', Y”) be an independent copy of (X,Y'), and
let Y” and Y be independent copies of Y which are also independent of (X,Y), (X', Y").
We have

T(X,Y;p) = / E[ei<s,X—X’)+i<t,Y—Y’) 1 i(sX=XT) ity —Y"")
Rpr+aq
LS X=XNHY =Y —ils X=XO=iY Y | (g ) | (1.8)
Notice that the complex-valued trigonometric functions under the expected value may be

replaced by their real parts. We intend to interchange the integral with respect to p and the

expectation.

12



Finite measure p

For a finite measure on RPTY, we may apply Fubini’s theorem directly and interchange

integration with expectation to obtain
T(X,Y;pn) = IE[,&(X - XY =Y+ E[X - X Y"-Y")]
—2E[uX - XY —=Y")]. (1.9)
If = py X pe we also have

TX.Y;p) = Elu(X —X') ae(Y = Y)] +E[n(X — XE[a(Y —Y7)]

—2E[n (X = X') (Y = Y")].

Infinite measure p

We consider an infinite measure p on RPT? which is finite on D§ for any § > 0. We assume
that T(X,Y; ) is finite and g = g1y X po. In this case, we cannot pass from (1.8) to (1.9)

because the Fourier transform ji is not defined as a Lebesgue integral. We have
TX,Y:p) = / (E[COS(s, #)] + E[SIN(s,1)]) u(ds, dt) (1.10)
Rpr+gq
where

COS(s,t) = cos({s, X — X")) cos((t,Y —Y")) + cos({s, X — X)) cos({t,Y" —Y"))
—2 cos({t, X — X)) cos({s,Y —Y")),
SIN(s,t) = —sin({s,X — X)) sin({t,Y —Y")) —sin((s, X — X)) sin((t,Y" = Y"))

+2 sin({t, X — X)) sin({s, Y = Y")).
Using the fact that
cosu cosv =1 — (1 —cosu) — (1 —cosv) + (1 —cosu)(1 — cosv),
calculation shows that

E[COS(s,t)] = E[(1—cos({s,X —X"))) (1 —cos({t,Y —Y")))
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+(1 —cos({s, X — X)) (1 — cos({t,Y" —Y")))

—2 (1 —cos({t, X — X)) (1 — cos((s,Y —=Y")))] .
A Taylor series argument shows that for a € (0, 2],

E[ICOS(s, )] < ¢ (B[(1A (s, X = X)/V2I) (1A (Y = Y)/v21%)]
+E[LA (s, X — X)/V2[*]E[1A[(t,Y = Y")/V2]°]

FE[(LA |, X — X')/V2%) (LA |(s,Y — Y">/\/§|au) .
Under condition (1.4) the right-hand side is integrable with respect to p if
E[X|*+|Y]* 4+ | X]|* Y]] < 00. (1.11)
An application of Fubini’s theorem yields

/ E[COS(s,t)] u(ds, dt)
Rp+a
_ E[/}RM (1~ cos((s, X — X)) (1 = cos((t. ¥ — ¥"))
+(1 —cos({s, X — X"))) (1 — cos((t,Y" —=Y"")))
“2(1 = cos({t, X — X)) (1 — cos({(s,Y — y”)))) 1(ds, dt)] .
If we assume that the restrictions py, o of 1 to RP and R? are symmetric about the origin then
we have E[SIN(s,t)] = —E[SIN(—s,t)] = —E[SIN(s, —t)] . Together with the symmetry

property of z this implies that [,., E[SIN(s, )] p(ds, dt) = 0.

We summarize these arguments. For any measure v on R? we write

v(s) = /Rd(l — cos(s, z)) v(dx), s€RY,

Lemma 1.2.3. Assume (1.4) and (1.11) for some o € (0,2]. If py, pio are symmetric about

the origin and p = jy X o then

TX,Yip) = Eli(X = X) i(Y = Y)] + E[fn (X — X)]E[fi(Y — Y7)]

—2E[jiy (X — X')jin(Y — Y")]. (1.12)
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Remark 1.2.4. For further use, we mention the alternative representation of (1.12):
T(Xa Y: M) = COV(,ELl(X - X,)v ﬂQ(Y - Y/))
~2cov (B[ (X — X) | X],E[ia(Y =Y') | Y]).  (113)
Examples

Example 1.2.5. Assume that p has density w on RPT given by
w(s,t) =cpqls| P77, se€RP teRY, (1.14)

for some positive constant ¢, , = cpc,. For any d > 1 and o € (0,2), one can choose c¢q such

that

/ (1 — cos(s,x))cq|s|™* 4ds = |z|*. (1.15)
Rd
Under the additional moment assumption (1.11) we obtain from (1.12)

T(X,Yip) = E|X - X*[Y = Y|*] + E[[X - X'|*|E[Y — V|

— 2E[|X = X'|*|Y = Y"|Y]. (1.16)
This is the distance covariance introduced by Székely et al. (2007).

The distance covariance T'(X,Y’; u) introduced in (1.16) has several good properties. It is
homogeneous under positive scaling and is also invariant under orthonormal transformations
of X and Y. Some of these properties are shared with other distance covariances when pu
is infinite. We illustrate this for a Lévy measure p on RP1? ie., it satisfies (1.5) for a = 2.
In particular, u is finite on sets bounded away from zero. Via the Lévy-Khintchine formula,
a Lévy measure  corresponds to an RPT2-valued infinitely divisible random vector (77, Zs)

(with Z; assuming values in R? and Z, in R?) and characteristic function

PZ1,25 (SE, 3/) = exp{ — / <e i(s,@)+ity) _ 1
Rr+a

—(ilw, s) +ily, ))1(|(s,1)] < 1)) ,u(ds,dt)}. (1.17)

15



Lemma 1.2.6. Assume that there exists an o € (0,2] such that E[| X|*] + E[|Y]*] < 00 and

W is a symmetric Lévy measure corresponding to (1.17) such that (1.5) holds. Then
T(X,Y;u) = ReE[ —logwz 2,(X = XY =Y')—logpz 2 (X - XY -Y")
+210ggDZI7ZZ(X—X/,Y—Y”) . (118)
Remark 1.2.7. We observe that (1.18) always vanishes if Z; and Z, are independent.
Proof. By the symmetry of the random vectors in (1.8) and the measure p, we have
Re/ ]E[e (s, X—X")+i(t,Y -Y') 1 IU(dS,dt)
Rp+a
_ Re/ E[ei(s,X—X’>+i(t,Y—Y’> 1
Rpr+a
—(ils, X — X'y +it,Y —Y")1(|(s, )] < 1)] u(ds, dt)
= ReE[—logyz 7 (X - XY -Y')].

The last step is justified if we can interchange the integral and the expected value. Therefore

we have to verify that the following integral is finite:

..

The integrals over the disjoint sets {(s,t) : [(s,t)] < 1} and {(s,t) : |(s,t)| > 1} are denoted

e U X=XNHAY YY) 1 (s, X — X') +i(t,Y —Y")) 1(|(s,t)| < 1)H w(ds, dt) .

by I; and I, respectively. The quantity I is bounded since the integrand is bounded and p

is finite on sets bounded away from zero. A Taylor expansion shows for a € (0, 2],

L o< c/ E[2 A (|(s,X — X+ |6, Y — Y'Y)?] u(ds, dt)
[(s,t)|<1

< C(IEIXIO‘]vLEIYI‘”‘])/ LA (s, )" plds, dt)

I(s,t)|<1

and the right-hand side is finite by assumption.
Proceeding in the same way as above for the remaining expressions in (1.8), the lemma

is proved. O

Example 1.2.8. Assume that p is a probability measure of a random vector (Zy, Zy) in RPTY

and that Z; and Zy are independent. Then
T<X: Y; N) = E[szl (X - X/) ¥z, (Y - Y/)] + E[QOZ1 (X - X/)] E[¢Z2 (Y” - Y”/)]
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_QE[90Z1 (X - X/) ¥z, (Y - Y”)] :

For example, consider independent symmetric Zy and Zo with multivariate B-stable distribu-
tions in R? and RY, respectively, for some 8 € (0,2]. They have joint characteristic function

gwen by ¢z, z,(x,y) = e ~="+W?) " Therefore

L) = Ele—(X=XP+y-y?) —IX=XP) g Y -YI?
T(X,Y;p) = Ele |+ E[e | Ele ]

—2E[e ~(IX= X1+ =Y"17) (1.19)

Example 1.2.9. Assume that X andY are integer-valued. Consider the spectral densities wy
and we on [—m, 7| of two real-valued second-order stationary processes and assume ju(s,t) =
wi(s)we(t). Denote the covariance functions on the integers corresponding to wy and wq by
v1 and s, respectively. We have the well-known relation

/ e (t) dt = / cos(tk) w;(t) dt = ~;(k), keZ,
where we also exploit the symmetry of the functions w;. If we restrict integration in (1.8) to

[—m, 7]? we obtain, abusing notation,

T(X,Y;p) = Em(X = X)%l =Y +EMX - X)E[(Y - Y)]

—2E[Mm (X = X)(Y =Y.

The spectral density of a stationary process may have singularities (e.qg. for fractional ARMA
processes) but this density is integrable on [—m,w|. If wy,ws are positive Lebesque a.e. on

[0, 7] then T(X,Y;n) = 0 if and only if X,Y are independent. Indeed, the characteristic

function of an integer-valued random variable is periodic with period 27.

Example 1.2.10. To illustrate (1.18) we consider a symmetric a-stable vector (Zy, Zs) for
a € (0,2) with log-characteristic function
~loggnaley) = [ s} + ()l mds,do)
Sp+q—1
and m is a finite symmetric measure on the unit sphere SPT4=1 of RPT4. Then we have

T(X,Y;p) =/ E[[(s, X — X)+ £,V =Y+ [(s, X = X') + (£, Y = Y")|*

Sp+q—1
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—2[(s, X = X"y + (t,Y' = Y")|*] m(ds, dt).

A special case is the sub-Gaussian «/2-stable random vectors with characteristic function

—log ¢z, 72, (x,y) = |(z,9)'S(x,y)|*/?, where ¥ is the covariance matriz of an RP1-valued

random vector and we write (x,y) for the concatanation of any v € RP and y € R?. Then
T(X,Yip) = E[(X - XY -Y)S(X - XY - Y)*?
LI = XYY (X XY Y
—2(X - XY = Y)S(X - XY =Y

In particular, if ¥ is block-diagonal with X1 a p X p covariance matrix and Yo a q X q

covariance matriz, we have

T(X,Y;p) = E[J(X = X)VE (X = X))+ (Y = Y)S(Y — Y)|*/2
HI(X = X8 (X = X))+ (Y =YY Sy(Y = Y")|or2

—2)(X = XYE (X = X)) + (Y =YY (Y = Y")[*?],

and if X 1s the identity matriz,

a/2 o/2

T(X,Y;p) = E[[|IX = XP+]Y =YP|"" + ][I X =X+ [y =Y"]

2 |X = X' 4 Y — Y|V (1.20)
We notice that for these examples, T(X,Y ;) is scale homogeneous, i.e., T(cX,cY;p) =
lc|“T(X,Y; 1), and (1.20) is invariant under orthonormal transformations, i.e., T(RX, SY; u) =

T(X,Y; ) for orthonormal matrices R and S, properties also enjoyed by the weight function

m Bxample 1.2.5.

1.3 The empirical distance covariance function of a
stationary sequence

In this section we consider the empirical distance covariance for a stationary time series

((X%,Y;)) with generic element (X,Y) where X and Y assume values in R” and R?, respec-
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tively. The empirical distance covariance is given by
n n n 2
LY = [ [ekolst) = o () O nds.di).
Rp+a

1 A .
where the empirical characteristic function is given by ¢% y(s,t) = - > i1 e (s Xi)+i (BY5)

n>1,and ¢%(s) = % y(s,0) and ¢3.(s) = ¥ (0,1).

1.3.1 Asymptotic results for the empirical distance correlation

Under the conditions of Lemma 1.2.1 that ensure the finiteness of T'(X,Y’; i), we show that
T, is consistent for stationary ergodic time series; see (Samorodnitsky, 2016, Chapter 2) for

a definition of ergodicity.

Theorem 1.3.1. Consider a stationary ergodic time series ((X;,Y;))j=12,.. with values in

RPTY and assume one of the three conditions in Lemma 1.2.1 are satisfied. Then
T,(X,Y;u) 23 T(X,Y; 1), asn— oo.

Proof. For (s,t) € RP*Y the difference between the joint characteristic function with the

product characteristic function and the empirical analog are given by

Cls:t) = pxy(s,t) =px(s)py(t) and  Cu(s,1) = i y(s,t) = ¢k (s)py (1)

Each of the processes ¢% v, %, ¢y is a sample mean of iid bounded continuous processes

defined on RP*%. Consider the compact set
Ks ={(s,t) e RFT1: 5 < |s| A Jt],|s| V |t| < 1/6} (1.21)

for small 6 > 0. By the ergodic theorem on C(Kj), the space of continuous functions on K,
Pxy ¥ pxy asn — oo; see Krengel (1985). Hence
[ (Gl ntds.dn) 5 [ |l 0P ulds.dt), 0 oo,
Ky Ks
It remains to show that

lim lim sup / O (s, ) plds, dt) = 0 as.
K

00 pnooo c
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If i1 is a finite measure we have

. i 2 < g N =0.
lgglhzn_)solip/[( |Cy (s, 1) p(ds, dt) < clgg)lu(Ka) 0

Now assume that g is infinite on the axes or at zero and (1.4) holds. We apply inequality

c
6

(1.6) under the assumption that (X,Y") has the empirical probability measure of the sample
(X;,Y;), j =1,...,n. Since the empirical measure has all moments finite we obtain from
(1.7) that for a € (0, 2],
L= % (s)]* < els|Bax[[X = X'"T =cls|*n™? ) [Xp = X)|*,
1<k,I<n

where X, X’ are independent and each of them has the empirical distribution of the X-
sample. The right-hand side is a U-statistic which converges a.s. to E[|X — X'|*] as n — oo
provided this moment is finite. This follows from the ergodic theorem for U-statistics; see

Aaronson et al. (1996). The same argument as for part (2) of Lemma 1.2.1 implies that on

K3,

[Ca(s, )" < cBnx[|X — X" Eny [[Y = YT (LA [s%) (LA [t%).

By the ergodic theorem,
limsup/ (s, t)*p(ds, dt) < cE[IX — X' E[]Y — Y] / (LA [s|*) (XA [ pulds, dt)
n—00 K c

H K
almost surely, and the latter integral converges to zero as ¢ | 0 by assumption.

If the measure p is infinite at zero and (1.5) holds the proof is analogous. [

In order to prove weak convergence of T,, we assume that the sequence ((X;,Y;)) with
values in RP"7 is a-mixing with rate function (ay); see (Doukhan, 1994, p. 18) and (Ibragimov

and Linnik, 1971, p. 305) for the definition. We have the following result.

Theorem 1.3.2. Assume that ((X;,Y;)) is a strictly stationary sequence with values in RP*?

1/r

such that Y, ;" < 0o for some r > 1. Set u=2r/(r — 1) and write X = (XU, ..., X®)

and Y = (Y . Y@),
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1. Assume that Xy and Yy are independent and for some a € (u/2,u], € € [0,1/2) and

o < min(2,«a), the following hold:
E[|X|* + Y]] < oo, E[f[p((”m <00, E[ﬁn/(“m <oo, (122
=1 =1
and
/R . (1A 8] A Y (1A A+ pu(ds, dt) < oo (1.23)
Then
nTo(X, Y1) % G2 = /RW G, )2 ju(ds, dt), (1.24)

where G 1s a complex-valued mean-zero Gaussian process whose covariance structure
is given in (1.29) with h =0 and depends on the dependence structure of ((X¢, Y3)).
2. Assume that X and Yy are dependent and for some « € (u/2,ul, € € [0,1/2) and for

o < min(2,«a) the following hold:

E[|X[* 4 |Y]*] < oo, E[(l Vv f[ X D) (1 v f[ yY(’“>|°‘)} <00, (1.25)
=1 k=1
and
/R . (1A |5 AT/ (1A (]2 OF9/%Y 1i(ds, dt) < 0o (1.26)
Then
Vi (Tu(X, Y ) = T(X, Y ) % G, = é ) G'(s,t) p(ds, dt) (1.27)

where G'(s,t) = 2Re{G(s,t)C(s,t)} is a mean-zero Gaussian process.
The proof of Theorem 1.3.2 is given in Section 1.6.
Remark 1.3.3. We notice that (1.23) and (1.26) are always satisfied if x is a finite measure.

Remark 1.3.4. If (X;) and (Y;) are two independent iid sequences then the statement of
Theorem 1.3.2(1) remains valid if for some « € (0, 2], E[|X|*] + E[|Y|*] < co and

/Rpﬂ(l A ||V A [EY) p(ds, dt) < oo (1.28)
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Remark 1.3.5. The distribution of the limit variable in (1.24) is generally not tractable.
Therefore one must use numerical or resampling methods for determining the quantiles of
nT,(X,Y;u). On the other hand, the limit distribution in (1.27) is normally distributed
with mean 0 and variance ai that can be easily calculated from the covariance function
of G(s,t) and C(s,t). Notice that if C(s,t) = 0, the limit random variable in (1.27) is 0
and part (1) of the theorem applies. Again resampling or subsampling methods must be

employed to determine quantiles of nT},.

1.3.2 Testing serial dependence for multivariate time series

Define the cross-distance covariance function (CDCVF) of a strictly stationary sequence

((X:,Y?)) by
TXY(h) = T(Xo, Yisn), heL,
and the auto-distance covariance function (ADCVF) of a stationary sequence (X;) by
TX(h) =T, (h), hel.

Here and in what follows, we assume that u = p; X po for suitable measures p; on RP and
po on RY. In the case of an ADCVF we also assume j; = po. The empirical versions T?fu

are defined correspondingly. For example, for integer h > 0, one needs to replace

XY
and T

Py (s,1) in the definition of T,,(X,Y; ) by

Z i(s,X;) +th]+h> seRP teR!, n>h+1,

SOXO Yh s,t)

3IH

with the corresponding modifications for the marginal empirical characteristic functions.
For finite h, the change from the upper summation limit n to n — A has no influence on the
asymptotic theory.

We also introduce the corresponding cross-distance correlation function (CDCF) and

auto-distance correlation function (ADCF) respectively:

XY Tf’y(h) X T;f((h)
RXY(h) = and  RX(h) = . heZ.
C 0 mono Ty
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The quantities Rff’y(h) assume values in [0, 1], with the two endpoints representing indepen-
dence and complete dependence. The empirical CDCF Rffl}/ and ADCF Ri ., are defined by
replacing the distance covariances Tf’y(h) by the corresponding empirical versions Tfhy(h).

The empirical ADCV was examined in Zhou (2012) and Fokianos and Pitsillou (2017) as
an alternative tool for testing serial dependence, in the way that it also captures non-linear
dependence. They always choose the measure p = py x pg with density (1.14).

In contrast to the autocorrelation and cross-correlation functions of standard stationary
time series models (such as ARMA, GARCH) it is in general complicated (or impossible) to
provide explicit (and tractable) expressions for T;X(h) and T;%* (h) or even to say anything
about the rate of decay of these quantities when h — oco. However, in view of (1.13) we

observe that

TX(h) = cov(in(Xo—Xp), (X — X))

—2 cov(E[fin (Xo — Xg) | Xo] . E[fun (X — Xg) | Xa]) -

While this is not the autocovariance function of a stationary process, it is possible to bound
each of the terms in case (X;) is a-mixing with rate function (ay,). In this case, one may
use bounds for the autocovariance functions of the stationary series (fi;(X; — X/)) and
(E[f: (X — X{) | Xi]) which inherit a-mixing from (X;) with the same rate function. For

example, a standard inequality (Doukhan (1994), Section 1.2.2, Theorem 3(a)) yields that

(
TX(h) < cay” (E[(u(Xo — X(’)))“])Q/u for positive ¢ and r > 0 such that r=' +2u~' = 1. If
1 is bounded we also have T/f( (h) < cay, for some positive constant. Similar bounds can be
found for T, (h) provided ((X;,Y};)) is a-mixing.

Next we give an example where the ADCVF can be calculated explicitly.

Example 1.3.6. Consider a univariate strictly stationary Gaussian time series (X;) with

mean zero, variance o>

and autocovariance function vx. We choose a Gaussian probabil-
ity measure (1 which leads to the relation (1.19). Choose Ny, Na, N3 iid N(0,2)-distributed

independent of the independent quantities (Xo, Xp), (X(, X},), X). Then for h > 0,

Tf(h) — ]E[eiNl(Xo*X('))JriNz(Xh*X;L)} +(E[eiNﬂXofX(’))])?_QE[eiN1(XofX(’))+iN2(thX}’L’)}
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= Ele!MXotNeX)—iNXg+N2X)] (R [ez‘M(Xo—Xé)D?
—2 [ f (M XoFN2Xo) i Xg N2 X))

_ ]E[6iN3(N1202+N2202+27X(h)N1N2)1/2} 1 (E[eiMaviot)/2))?

g E[e N (Ve Nz omn)

— ]E[e *(Nfaz+N§az+2wx(h)NlNg)] + (E [e _Nggz])Q B 2E[e 7(N1202+N302+7X(h)N1N2)] '

For the evaluation of this expression we focus on the first term, the other cases being similar.

Observing that o* & vx(h) are the eigenvalues of the covariance matriz
o?  yx(h)
x(h) o

calculation shows that
N262 4+ N202 4 2yx (h)Ni Ny £ N2(02 — vx(h)) + N2(o2 + vx ().
Now the moment generating function of a x?-distributed random variable yields
e~ (Vo M 2NN ] = (14 (0% — (1) (14 (07 ().

Proceeding in a similar fashion, we obtain

—-1/2

TX(h) = (1+4(0% = yx(h) ™" (1 +4(0 +x(R)) ™" + (1 + 40?) !

=2 (1440 =7 (0)/2) 7 (1+4(0* + 7x (h)/2) .

If yx(h) = 0 as h — oo Taylor expansions yield T (h) ~ 4v%(h)/(1 + 40?)®. A similar
result was given in Fokianos and Pitsillou (2017), where they derived an explicit expression

for TX(h) for a stationary Gaussian process (X;) with weight function (1.2).

If ((X:,Y;)) is strictly stationary and ergodic then ((Xy,Yi.p)) is a strictly stationary

ergodic sequence for every integer h. Then Theorem 1.3.1 applies.
Corollary 1.3.7. Under the conditions of Theorem 1.3.1, for h > 0,
XY a.s. XY X a.s. X
T (h) =T (h) and T, (h) =T (h),
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and

Rif(h)‘ffRf’Y(h) and Riu(h)‘ffRX(h).

o

Applying Theorem 1.3.2 and Theorem 1.3.1, we also have the following weak dependence
result under a-mixing. Zhou (2012) proved the corresponding result under conditions on the

so-called physical dependence measure.

Corollary 1.3.8. Assume that Xy and Y}, are independent for some h > 0 and the sequence
(X4, Yy)) satisfies the conditions of Theorem 1.3.2. Then

a2
anﬁY(h) < ”GhHi and ”Ri(:/(h) 4 |Gl |

TX(0) T, (0)

where Gy, 1s a centered Gaussian process on RPTY,

Remark 1.3.9. From the proof of Theorem 1.3.2 (the central limit theorem for the multi-
variate empirical characteristic function) it follows that G, has covariance function
[((s,t),(s,t) = cov(Gp(s,t),Gp(s', 1))
= ZE[(€i<s,Xo> — ox(9)) (6i<t7Yh> — oy (1))

JEZ.

v (e —i(sX;) ¢X<_S/)) (6 i (t"Yj4n) _ @y(—t’))} . (1.29)

In the special case when (X;) and (Y;) are independent sequences Gy, is the same across all

h with covariance function

L((s,1), (s, 1) = (ex(s — ') — ox(s)ex(s)) (v (t = ') — oy (v (1)) .

Since G, is centered Gaussian its squared L*-norm [|Gy||% has a weighted x*-distribution;
see Kuo (1975), Chapter 1. The distribution of ||Gp[? is not tractable and therefore one

needs resampling methods for determining its quantiles.

Remark 1.3.10. Corollary 1.3.8 can be extended to the joint convergence of the function

nTrff/’}/(h) at finitely many lags h, provided X, and Y}, are independent for these lags.

Remark 1.3.11. Corollary 1.3.8 does not apply when X, and Y}, are dependent. Then

nT,5Y (h) = co as. and n R)Y (h) — oo a.s.
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1.4 Auto-distance covariance of fitted residuals from
AR(p) process

An often important problem in time series is to assess the goodness-of-fit of a particular
model. As an illustration, consider a causal autoregressive process of order p (AR(p)) given

by the difference equations,

p
Xo=) Xt Zi, t=0%L..,

k=1
where (Z;) is an iid sequence with a finite moment E|Z|* < oo for some x > 0. It is further
assumed Z; has mean 0 if k > 1. It is often convenient to write the AR(p) process in
the form, Z;, = X; — ¢" X,_1, where ¢ = (¢1,...,¢,)T, p>1and X; = (Xp, ..., X p1)”.
Since the process is assumed causal, we can write X; = Z;’io Y; Z,_; for absolutely summable
constants (1;); see Brockwell and Davis (1991), p. 85. For convenience, we also write ¢); = 0
for j < 0 and ¢y = 1.
The least-squares estimator c?ﬁ of ¢ satisfies the relation
$— =T 1 i X, 17, where Ty, =~ i XTI Xy
o t=p+1 o t=p+1

If 0% = var(Z;) < oo, we have by the ergodic theorem,

a

Lop 5Ty =(yx(j — k>)1§j,k§p’ where vx(h) = cov(Xo, X3),h € Z. (1.30)

Causality of the process implies that the partial sum Z?:p .1 X¢-1Z; is a martingale and

applying the martingale central limit theorem yields

Vi (p—¢) % Q, (1.31)

where Q is N(0,0°T' ") distributed.

The residuals of the fitted model are given by

Zt:Xt_¢ Xt—1:(¢_¢) Xt—1+Ztu tzp—i-l,,n (132)
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For convenience, we set Z =0,t=1,...,p since this choice does not influence the asymp-
totic theory. Each of the residuals Z depends on the estimated parameters and hence the
residual process exhibits serial dependence. Nevertheless, we might expect the test statistic

based on the distance covariance function of the residuals, given by

77,0 = [ 16 (.00 s, do),
R

to behave in a similar fashion for the true noise sequence (Z;). If the model is a good fit, then
we would not expect TZ ,.(h) to be extraordinarily large. As observed by Rémillard (2009),
the limit distributions for TZ .(h) and T (h) are not the same. As might be expected, the
residuals, which are fitted to the actual data, tend to have smaller distance covariance than
the true noise terms for lags less than p, if the model is correct. As a result, one can fashion
a goodness-of-fit test based on applying the distance covariance statistics to the residuals.
In the following theorem, we show that the distance covariance based on the residuals has
a different limit than the distance covariance based on the actual noise, if the process has a
finite variance. So in applying a goodness-of-fit test, one must make an adjustment to the
limit distribution. Interestingly, if the noise has heavy-tails, the limits based on the residuals
and the noise terms are the same and no adjustment is necessary.

For the formulation of the next result we need some auxiliary limit theory; the proofs

are given in Section 1.7.
Lemma 1.4.1. Consider an iid sequence (Z;) with finite variance. Let
Crl (5,) = ¢y, 7,(5,1) — @ (s) @ (1) -
1. For every h > 0,
Vi (CZ 6~ ¢) % (G, Q).

where the convergence is in C(K)xRP, K C R? is a compact set, Gy, is the limit process
of CZ with covariance structure specified in Remark 1.3.9 for the sequence ((Z;, Zi11,)),

Q is the limit in (4.2), (Gh, Q) are mean-zero and jointly Gaussian with covariance
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matrixc
cov(Gp(s,1), Q) = =@ (s) @ (t) Ty, s,t € R, (1.33)

.....

2. For every h > 0,
\/E(Cf,CnZ —C7) 4 (Gh, &),
where (G, Q) are specified in (4.4) and
(s, t) = toz(t) @7 (s) 04 Q,  (s,t) €K, (1.34)
the convergence is in C(K,R?), K C R? is a compact set. In particular, we have
VnCZ 4 G+ &, (1.35)
in C(K) for K C R* compact.
Now we can formulate the following result; the proof is given in the Section ?7.
Theorem 1.4.2. Consider a causal AR(p) process with iid noise (Z;). Assume u satisfies
/R2 [(AA]s]?) (LA JE?) plds, dt) + (s* 4+ 2) 1(]s| A |t] > 1)u(ds, dt) < oo. (1.36)
1. If 0 = Var(Z) < oo, then

a Gh+ &l

Z d Z
nTr,(h) = G+ &l and  nRI,(h) = 70y (1.37)

where (G, &) are jointly Gaussian limit random fields on R?. The covariance structure
of Gy, is specified in Remark 1.3.9 for the sequence ((Zy, Ziin)), & and the joint limit
structure of (G, &) are given in Lemma 1.4.1.

2. Assume that Z is in the domain of attraction of a stable law of index o € (0,2), i.e.,

P(|Z| > z) = 2=*L(x) for x > 0, L(-) is a slowly varying function at oo, and



as x — 0o for some p € [0,1] (Feller (1971), p. 313). Then we have

nTZ (h) S |Gu2  and  nRZ,(h) S 10 (1.38)

where Gy, is a Gaussian limit random field on R%. The covariance structure of Gy, is

specified in Remark 1.5.9 for the sequence ((Zy, Ziin))-

Remark 1.4.3. Rémillard (2009) mentioned that 7,7, (h) and Tgu(h) for an AR(1) process

have distinct limit processes and he also suggested the limiting structure in (1.37).

Remark 1.4.4. The limit in (1.37) can be extended to cover ARMA processes and some

non-linear processes that are invertible. This is the subject of Chapter 2.

The structure of the limit process in (1.37) is rather implicit. In applications, one needs
to rely on resampling methods. Relation (1.37) can be extended to a joint convergence result
for finitely many lags h but the dependence structure of the limiting vectors is even more
involved. Condition (1.36) holds for probability measures u = p; x p; on R? with finite
second moment but it does not hold for the benchmark measure p = p; X p; described in
(1.14). A reason for this is that ||, ]|” is in general not well defined in this case. If Z; has
characteristic function ¢z then by virtue of (4.5), ||&4]|? is finite a.s. if and only if

[ ttezPuman) [ I 6)mas) < 0.
Now assume that Z; has a density function f and choose py(dt) = cit72dt. Then by

Plancherel’s identity, the first integral becomes

| leatvipa=c [ paa.

If one chooses f to be a symmetric gamma distribution with shape parameter ¢ € (0,1/2),
Le., f(z) = .58°z]°"'e %18 /T(9), then the integral [°°_ f2(t)dt is infinity and hence the limit

random variable in (1.37) cannot be finite.

AR simulation. We illustrate the results of Theorem 1.4.2. First, we generate independent

replications of a time series (X¢)i=1.. 1000 from a causal AR(10) model with Z; ~ N(0,1)

.....
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and

¢ = (—0.140,0.038,0.304,0.078,0.069, 0.013,0.019, 0.039, 0.148, —0.062).

In this and the following examples, we choose the weight measure = p; X po, where p; is
the N(0, 0.5)-distribution and hence (1.36) is satisfied. From the independent replications of
the simulated residuals we approximate the limit distribution |G, +&[% / T/7(0) of n RTZ; L(h)
by the corresponding empirical distribution.

The left graph in Figure 1.1 shows the box-plots for n RZ ,.(h) based on 1000 replications
from the AR(10) model, each with sample size n = 1000. As seen from the plots, the
distribution at each lag is heavily skewed. In the right panel of Figure 1.1, we compare the
empirical 5%, 50%, 95% quantiles of nRiu(h) to those of n R” ,(h), the scaled ADCF of
iid noise, all of which have the same limit, ||Gy||% /T/7(0). The asymptotic variance of the
ADCEF of the residuals is smaller than that of iid noise at initial lags, and gradually increases
at larger lags to the values in the iid case. This behavior is similar to that of the ACF of
the residuals of an AR process; see for example Chapter 9.4 of Brockwell and Davis (1991).

Theorem 1.4.2 provides a visual tool for testing the goodness-of-fit of an AR(p) model,
by examining the serial dependence of the residuals after model fitting. Under the null
hypothesis, we expect n Ri ,.(R) to be well bounded by the 95% quantiles of the limit distri-
bution [|Gp, +&|% / T7(0). For a single time series, this quantity can be approximated using
a parametric bootstrap (generating an AR(10) process from the estimated parameters and
residuals); see for example Politis et al. (1999). In the right graph of Figure 1.1 we overlay
the empirical 5%, 50%, 95% quantiles of n RZ ,.(h) estimated from one particular realization
of the time series. As can be seen in the graph, the parametric bootstrap provides a good
approximation to the actual quantiles found via simulation. On the other hand, the quan-
tiles found by simply bootstrapping the residuals provides a rather poor approximation, at
least for the first 10 lags.

We now consider the same AR(10) model as before, but with noise having a ¢-distribution

with 1.5 degrees of freedom. (Here the noise is in the domain of attraction of a stable distri-
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Figure 1.1: Distribution of n R/ ,(h), n = 1000 for the residuals of an AR(10) process with
N(0,1) innovations. Left: Box-plots from 1000 independent replications. Right: 5%, 50%,
95% empirical quantiles of nRiu(h) based on simulated residuals, on resampled residuals
and on iid noise, respectively. The weight measure is p = g X g, with each p; ~ N(0,0.5).
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Figure 1.2: Distribution of n R7 ,(h) for residuals of AR process with t; 5 innovations. Left:
lag-wise box-plots. Right panel: empirical 5%, 50%, 95% quantiles from simulated residuals,
empirical quantiles from resampled residuals, and empirical quantiles from iid noise. The
weight measure is g = py X o, with each u; ~ N(0,0.5).

bution with index 1.5.) The left graph of Figure 1.2 shows the box-plots of n RTZZ”(h) based
on 1000 replications, and the right graph shows the 5%, 50%, 95% quantiles of n Riu(h) and
nR7 ,(h), both of which have the same limit distribution |Gy || /T7(0). In this case, the
quantiles of [|Gp||% /T7(0) can be approximated naively by bootstrapping the fitted residu-
als (Z) of the AR model. The left graph of Figure 1.2 overlays the 5%, 50%, 95% quantiles
from bootstrapping with those from the simulations. The agreement is reasonably good.
We next provide an empirical example illustrating the limitation of using the measure in
(1.14). Again, we use the same AR(10) model as before, but with noise now generated from
the symmetric gamma distribution with 6 = .2, 5 = .5. The corresponding pair of graphs

with boxplots and quantiles for nRTZ; u<h) is displayed in Figure 1.3. Notice now that the
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box plots for the sampling distribution of the distance correlation for the first 10 lags are
rather spread out compared to those at lags greater than 10. In particular, the sampling
behavior of these distance correlations is directly opposite of what we observed in Figure 1.1
where a finite measure was used. To further illustrate this disparity, the plot on the right
in Figure 1.3 displays the 95%, 50%, 5% quantiles for the companion box plots (the dotted
lines are the corresponding quantiles for iid noise with the Gamma(0.2,0.4) distribution).
Now, compared to quantiles of distance correlation based on the iid noise, we see a stark
difference. The median for the estimates based on the residuals using the weight function in
(1.14) is nearly the same as the 95% quantile for the noise at lags 1-10. This illustrates the

problem with using (1.14) as a weight function applied to the residuals.

015 0.20

ADCF
ADCF

1 nggaaggggaéégaggéé; °l

I
-
05 0.10 0.15 0.20

0.05 0.10

k-

k-

k-
0.00

A B B e e e e B B B B
1 2 3 45 6 7 8 910 12 14 16 18 20 5 10 15 20

lag lag

Figure 1.3: Distribution of n R7 ,(h), n = 1000 for residuals of AR process with a symmetric
Gamma(0.2,0.5) noise. Left: box-plots from 500 independent replications. Right panel:
empirical 5%, 50%, 95% quantiles from simulated residuals and from iid noise. The measure
 is given by (1.14).

1.5 Data Examples

1.5.1 Amazon daily returns

In this example, we consider the daily stock returns of Amazon from 05/16,/1997 to 06/16,/2004.
Denoting the series by (X;), Figure 1.4 shows the ACF of (X}), (X?), (|X;|) and ADCF of
(X;) with weight measure p(ds,dt) = s~2t~2dsdt. In the right panel, we compare the ADCF
with the 5%, 50%, 95% confidence bounds of the ADCF for iid data, approximated by the
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corresponding empirical quantiles from 1000 random permutations. With most financial time
series, which are typically uncorrelated, serial dependence can be detected by examining the
ACF of the absolute values and squares. Interestingly for the Amazon data, the ACF of the
squared data also fails to pick up any signal. On the other hand, the ADCF has no trouble

detecting serial dependence without having to resort to applying any transformation.

05 000 005 010 015 0.20
-005 000 005 010 015 020

00

05 000 005 010 015 020
ADCF
0. 0.02 004 006 008 0.10
L
o [

Figure 1.4: ACF and ADCF of daily stock returns of Amazon (X;) from 05/16/1997 to
06/16/2004. Upper left: ACF of (X;); Upper right: ACF of (X?); Lower left: ACF of (| X;]);
Lower right: ADCF of (X;), the 5%, 50%, 95% confidence bounds of ADCF from randomly
permuting the data.

1.5.2 Wind speed data

For the next example we consider the daily averages of wind speeds at Kilkenny’s synoptic
meteorological station in Ireland. The time series consists of 6226 observations from 1/1/1961
to 1/17/1978, after which a square root transformation has been applied to stabilize the
variance. This transformation has also been suggested in previous studies (see, for example,
Haslett and Raftery (1989)). The ACF of the data, displayed in Figure 1.5, suggests a
possible AR model for the data. An AR(9) model was found to provide the best fit (in

terms of minimizing AICC among all AR models) to the data. The ACF of the residuals
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(see upper right panel in Figure 1.5) shows that the serial correlation has been successfully
removed. The ACF of the squared residuals and ADCF of the residuals are also plotted in the
bottom panels Figure 1.5. For computation of the ADCF, we used the N(0,.5) distribution
for the weight measure, which satisfies the condition (1.36). The ADCF of the residuals
is well bounded by the confidence bounds for the ADCF of iid noise, shown by the dotted
line in the plot. Without adjusting these bounds for the residuals, one would be tempted
to conclude that the AR model is a good fit. However, the adjusted bounds for the ADCF
of residuals, represented by the solid line in the plot and computed using a parametric
bootstrap, suggest that some ADCF values among the first 8 lags are in fact larger than
expected. Hence this sheds some doubt on the validity of an AR(9) model with iid noise for
this data. A similar conclusion can be reached by inspecting the ACF of the squares of the
residuals (see lower left panel in Figure 1.5).

One potential remedy for the lack of fit of the AR(9) model, is to consider a GARCH(1,1)
model applied to the residuals. The GARCH model performs well in devolatilizing the
AR-fitted residuals and no trace of a signal could be detected through the ACF of the
GARCH-residuals applied to the squares and absolute values. The ADCF of the devolatilized
residuals, seen in Figure 1.6, still presents some evidence of dependence. Here the confidence
bounds plotted are for iid observations, obtained from 1000 random permutations of the
GARCH-residuals and as such do not include an adjustment factor. Ultimately, a periodic
AR model, which allows for periodicity in both the AR parameters and white noise variance

might be a more desirable model.

1.6 Proof of Theorem 1.3.2

The proof follows from the following lemma.
Lemma 1.6.1. Assume that ), oz,ll/r < oo for some r > 1 and set u = 2r/(r — 1). We

also assume the moment conditions (1.22) (or (1.25)) for some o > 0 if Xy and Yy are
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Figure 1.5: ACF and ADCF of Kilkenny wind speed time series and AR(9) fitted residuals.
Upper left: ACF of the series. Upper right: ACF of the residuals. Lower left: ACF of the
residual squares. Lower right: ADCF of the residuals, the 5%, 50%, 95% confidence bounds
of ADCF for fitted residuals from 1000 parametric bootstraps, and that for iid noise from
1000 random permutations.
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Figure 1.6: ADCF of the residuals of Kilkenny wind speed time series from AR(9)-GARCH
fitting and the 5%, 50%, 95% confidence bounds of ADCF for iid noise from 1000 random
permutations.

independent (dependent).
1. For a <2 there exists a constant ¢ > 0 such that for e € [0,1/2),
nE[|Cu(s,t) — C(s,1)[*] < e (LA |s[*F/) (1A [¢] 0T n>1. (1.39)

2. If a € (u/2,u] then \/n(¢%y — vxy) 2 G on compact sets K C RP* for some

complex-valued mean-zero Gaussian field G.
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Remark 1.6.2. Notice that C(s,t) = 0 when X, and Yj are independent.

Proof. (1) We focus on the proof under the assumption of independence. At the end, we
indicate the changes necessary when X, and Y| are dependent.

We write
U, = e"=Xe) — vx(s), Vi = e Yk — vy (1), kE>1,

where we suppress the dependence of Uy and V,, on s and ¢, respectively. Then
nE[|C(s, )2 = nE’liUk Vi — lzn:Uklzn:vg
o = e A

2nEH%;Uka‘2} +2nEH%;Uk%;VI)2] — 2([, + In).

We have by stationarity

2

IN

n—1
L = E[UVol’] +2) (1 —h/n)ReE[UpVo UnVi -
h=1
Since Uy and V; are independent E[UyVy] = 0. In view of the a-mixing condition (see

Doukhan (1994), Section 1.2.2, Theorem 3(a)) we have
IReE[UVo UnVal| < ca/" (BUVo|"])?™ (1.40)
= cop/" (B[|Ug|"))*/" (B[ Vo[
< cal" E[UP)(EVol)"

In the last step we used that u = 2r/(r — 1) > 2 and that max(|Up|, |Vo]) < 2. We have for
a € (0,2]

E[|Ub] = 1 ex ()P S E[LA](s, X = X7)[*] < e (LA |s]°).

Therefore and since ), a}/r < oo we have I; < c (1A |3|0‘)2/u (1A |t|a)2/u.
Now we turn to I,. By the Cauchy-Schwarz inequality and since |%ZZ:1 Uk| and
| L34 1 Vil are bounded by 2 we have

1 n
I, < 2n(E‘—§jUk
n
k=1

4> 1/2

4N 1/2 1 <&
) (v
k=1
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1 <& 2+3\ 1/2
< c(nE|- )
< c(n nZUk

Y

2+3y 1/2 1 <
) (e
it
for any 6 € [0,2]. In view of Lemma 18.5.1 in Ibragimov and Linnik (1971) we have for
6 €0,1),

2+48)/4

1 & 2\ (2+6)/4 1 N
s oG El)" " Gl S
2= nEnZUk nEnZVk ;
k=1 Pt
Similar arguments as for /; show that
I < c(LAJs| @) (La oo ).

Combining the bounds for I; and I, we arrive at (1.39).

Now we indicate the changes necessary when X and Y|, are dependent. We use the notation

above and, additionally, write W, =UV, — C (s,t). We have

e~ 1« ] —
Culs,t) = Cls.t) = = > W=~ > Ui > Vi
k=1 k=1 =1

Then
nE[|Co(s,t) — C(s,8)2] < QnEH%ZWkH v ZnEH% ZUk% Zvﬂ — 2|+ I).
k=1 k=1 =1

Since E[WO] = 0, we have by stationarity

n—1

I = E[[WolY] +2Y (1 —h/n)ReE[W, W]
h=1

Observe that E[|[Wo|?] < 2(E|Uo|[* E[Vp|*)/2 + 2|C (s, t)|? and

U < (le™™X — 1 + E[1 — e"%]))?

< (LA (sl X)) + e (LA (Is]*2 ELXo|*/2))%.

Since E[|X([**] < oo we have E[|Uy|*] < ¢(1 A |s[**) and in a similar manner, E|Vp|? <

c (1 AJt]**). We also have |C(s,t)]* < ¢ (1 A|s|*) (1 A [t|*). Finally, we conclude that

E[[Wol?] < c(1A]s|®) (LA]H*).
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With the a-mixing condition we obtain
ReEIWo W] < cay” (BWol)" < cay/" (B[ Wol)".

This together with », oz}/r < oo yields I] < ¢ (1A |s|0‘)2/u (1A |t|a)2/u . The remaining term
I, can be treated in the same way as in the independent case. Combining the bounds for I]

and I, we arrive at (1.39).

(2) We need an analog of S. Csorgd’s central limit theorem (Csorgd, 1981a,b,c) for the
empirical characteristic function of an iid multivariate sequence with Gaussian limit. For ease
of notation we focus on the X-sequence; the proof for the (X,Y)-sequence is analogous and
therefore omitted. The convergence of the finite-dimensional distributions of v/n(¢% — ¢x)
follows from Theorem 18.5.2 in Ibragimov and Linnik (1971) combined with the Cramér-
Wold device. We need to show tightness of the normalized empirical characteristic function
on compact sets. We use the sufficient condition of Theorem 3 in Bickel and Wichura (1971)
for multiparameter processes. We evaluate the process on cubes (s, t] = [[7_; (s, tx], where
s=(s1...,8p)andt = (t1,...,t,) and s; < t;, i = 1,...,p. The increment of the normalized

empirical characteristic function on (s, t] is given by

In(s, 1] = V(@ (s, 1] — px(s,1])
_ \/_2{2 Z pzjk Hezsl+kltl s) XY

=1 k=01  kp=0,1 =1
' 1
—E[ e z(sz+kl(tz—sl))Xﬁl)} ) } = — Wr ) (1'41)

where X, = (Xﬁl), . ,Xr(p)) and

p

p
() (l) ) )
it X 51 Xy it} X, 181 X
O | ! |
=1

=1

We apply the sums ij:m inductively to derive (1.41). Observe that

E[|L,(s,4]%] = E[[Wy|?] + 2 iu — h/n)Re E[W, W].
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By the Lipschitz property of trigonometric functions we have for some constant ¢ > 0 and

€ (0,2],
, —)
e — e X < (1A Jt - siP(XD)/4) < ¢ (1A Ls — [ XP) /4.
Proceeding as for (1.40) and noticing that o < 2 < u, we have

EWo W]l < coz,ll/r( [|W|“])2/u

1/7’H |Sl tl|2a/u H 2/“

IA
S

Using the summability of (oz,ll/ ") and the moment condition on Xy, we may conclude that
E[|L.(s, t]]? <cH\sl—tl2°‘/“

If 2ac/u > 1 the condition of Theorem 3 in Bickel and Wichura (1971) yields that the

processes (v/n(¢% — ¢x)) are tight on compact sets. O

Proof of Theorem 1.3.2(1). Recall the definition of K from (1.21) and that Xy and Yj are
independent. From Lemma 1.6.1 and the continuous mapping theorem we have
| WGk (s P ulds.de) S [ |G 0F nds.dt). 0 oc.
Ks K
From (1.23), (1.39) and the dominated convergence theorem, for any € > 0, some € € (0,1/2]

and o/ < min(2, o),

n—oo

lim lim sup P </ v/ Cy(s,t)|? p(ds, dt) > 5)
310 K

IN

n—oo

= limlimsup / E[|/RC, (s, )|2] p(ds, dt)
;

IN

lim [ ¢(1A |S|al(1+€)/u) (1A |t|°‘/(1+6)/“),u(ds, dt) =0.

]

Proof of Theorem 1.3.2(2). Now we assume that X, and Y are dependent. We observe that

Vi (Tu(s, i) = T(s, t50) = | VlICa(s D2 = 1C(s, D)) p(ds, dt).

Rpr+a
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In view of Lemma 1.6.1(2) and the a.s. convergence of C,, on compact sets the continuous

mapping theorem implies that for some Gaussian mean-zero process G’,

i V{(Cpn(s,t) — C(s,1))Cp(s,t) + C(s,t)(Cn(s, t) — C(s, 1)} u(ds, dt)

N G'(s,t) u(ds, dt), n— 0o,
Ks

where G’ X (s,t) = 2Re{G(s,t)C(s,t)}. We have
ICo]* = |CPP| = |ICh — CPP +2Re (C (C, — C))| < ¢|C, — C.
By Markov’s inequality, (1.39) and (1.23),

lgg)llimsupIP’ (/ V| [Cu(s, 0> = |C (s, t)[*| u(ds, dt) > 5)
K§

n—oo

< N e /2
cl{gghmsup/}{ (nE[|C, — C|]) """ p(ds, dt)

n c
— 00 §

< léiﬁ)l c(1A |3|a/(1+6)/“) (1A |t]o‘,(1+€)/“) p(ds,dt) =0.
K

1.7 Proof of Theorem 1.4.2

We prove the result for the residuals calculated from least square estimates (LSEs). One
may show that the same result holds for maximum likelihood and Yule-Walker estimates.
The least squares estimator 35 of ¢ satisfies the relation
$-¢ = 111 i X, 12
- n,p n t—1 ty
t=p+1
where
L, — - Y X/ X
np T E Z t—143—1 -
t=p+1

If 0% = var(Z;) < oo, we have by the ergodic theorem,

Ly 3T, = (yx(j — k>)1gj,k§p’ where yx(h) = cov(Xo, Xp) ,h € Z. (4.1)
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Causality of the process implies that the partial sum Z?:p .1 X¢-1Z; is a martingale and

applying the martingale central limit theorem yields

= d
where Q is N(0,0°T' ") distributed.
Keeping this in mind, we start with a joint central limit theorem for CZ and c?b

Lemma 1.7.1. Consider an iid sequence (Z;) with finite variance.

1. For every h > 0,
Vi (CZ ¢ —¢) 5 (G1, Q).
where the convergence is in C(K)xRP, K C R? is a compact set, Gy, is the limit process
of CZ with covariance structure specified in Remark 3.9 for the sequence ((Z;, Zii1,)),
Q is the limit in (4.2), (Gh, Q) are mean-zero and jointly Gaussian with covariance

matrix
cov(Gh(s,t),Q) = =@y (s) @y (t) T, 10, s,teR, (4.4)

where Wy, = (Yp—j)j=1
2. For every h > 0,

» and @', is the first derivative of ¢z.

.....

\/E(CT?,CE — Cf) i (Gh7€h>7
where (Gp, Q) are specified in (4.4) and

En(s,t) = tpz(t) ¢y (s)07 Q, (s,t) € K, (4.5)

the convergence is in C(K,R?), K C R? is a compact set. In particular, we have
VnCt % G+, (4.6)

Proof of part (1). We observe that, uniformly for (s,t) € K,

n—h

1 1 n—h 1 n—h
CZ S t — eiSZj+ith+h _ E eiSZj_ E 6ith+h
n n n
J=1 j=1

Jj=1
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_ Z isZ; )(6 WZ4n QOZ(t))

__Z stJ_SDZ nz th )+OIP’( )

7j=1
In view of the functional central limit theorem for the empirical characteristic function of

an iid sequence (see Csorgé (1981a,1981b)) we have uniformly for (s,t) € K,

VRCHe) = 723 Z " 0 (5)) (M — (1)) + Op(n )
= In(s,t) + Op(n=4?).

Therefore it suffices to study the convergence of the finite-dimensional distributions of
(In,v/n (p— ®)). In view of (4.1) it suffices to show the convergence of the finite-dimensional
distributions of (I, (1/y/n) > i1 X;_1Z;). This convergence follows by an application of
the martingale central limit theorem and the Cramér-Wold device. It remains to determine
the limiting covariance structure, taking into account the causality of the process (X;). We

have

n n

1 © 1 .
COV(In, % ZXj,le) = HE[ (6 182 __ SOZ(3>) (6 WZjpn _ @Z(t))kaIZk] )
j=1

j=1 k=1
By causality, X; and Z; are independent for k < j. Hence E[(e™% — @ (s))(eZith —

0z (t))X;_x 7] is non-zero if and only if [ = j + h and k < h, resulting in

E[(e™% = 0z(s) (e"5*" = ¢5(t)) X 2]

= E[Xjinr(e™ = 02(5)) E[Zjsn (e ™54 — pz(1))]
= UnsB[Z(e™ —02(5)) [ B[Z(e™ = p2(1))]
e gz
=~k () P4 (1) .
This implies (4.4). 0

Proof of part (2). We observe that, uniformly for (s,t) € K,

C#(s,1) — C%(s,1) (1.42)
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n
_ l Z o 5ZititZjyn (ei(¢—$)T(sz_1+txj+h,1) . 1)
n
7j=1

n n

S (1o
j=1 =

1 n n

. ~ . 1 . SNT .
4= 6z(¢—¢)Tsz,1+stj_ 1 — ez(¢—¢) X h—1 ethj+h + 19) n—l

= Eu(s,t) + Ena(s,t) + Eps(s,t) + Op(nt). (1.43)

Write

n

E ) &b 1 isZ;+itZ;

Jj=1

In view of the uniform ergodic theorem, (4.2) and the causality of (X;) we have

ViEay(s,t) % —iQTE[(sXo + X)) e 67+ 7n)] (1.44)

= —tpz ()P (s)UTQ = &(s, 1),

where the convergence is in C(K). By virtue of part (1) and the mapping theorem we have
the joint convergence /n(CZ, En) A (Gh, &) in C(K,R?). Denoting the sup-norm in C(K)
by || - ||, it remains to show that /7 (|| Bnall + | Bus|l + | Ent — Enil) 5 0. The proof for E,»
and F,3 is analogous to (1.44) by observing that the limiting expectation is zero. We have

by a Taylor expansion for some positive constant c,

n

- - 1
Vi|Eni(s,t) — Ea(s,t)]] < ¢ ’\/ﬁ((ﬁ - ¢)’2 sup — Z !sz_l + X ih1 5o,

n
(s;t)eK =1

In the last step we used the uniform ergodic theorem and (4.2). ]

Proof of Theorem 1.4.2(1). We proceed as in the proof of Theorem 1.3.2. By virtue of (4.6)
and the continuous mapping theorem we have
| WaCHs. 0P utds.dn S [ (GG, + s 0P utds.dt), 0 oo,
K Ks

Thus it remains to show that

limlimsup]P’(/ V/RCZ(s, 1) 2u(ds, dt) > 5) =0, e>0. (1.45)
00 nooo K

c
&
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Following the lines of the proof of Theorem 1.3.2, we have

l(siigllimsup/ E[vnCZ(s,t)|?] u(ds,dt) = 0;
n—00 <

see also Remark 3.4. Thus it suffices to show
=0, e>0.

/C VA(CE(s,1) = CZ(s, 1)) Pulds, dt) > ¢

lifn lim sup ]P’(

n—oo
For convenience we redefine
1 n—~h 1 n—nh n—~h
ng_ § : €ZSZ+Zth+h__ 2 : estj_ § 6u‘,Z
n n . n .
Jj=p+1 J=p+1

J=p+1

This version does not change previous results for C#

Using telescoping sums, we have forn =n—p—h

=(CZ(s,t) = CZ(s,1))
n
1 n—h 1 n—h 1 n—h 1 n—h n—h 1 n—h
SEPILVEES SR D WD STD IS S 3D o
J=p+1 Jj=p+1 J=p+1 Jj=p+1  j=p+l1 Jj=p+1  j=p+1
n—h n—h 6
+E Z Uij + P Z V?AJ = Z]n](s,t),
Jj=p+1 Jj=p+1 Jj=1
where, suppressing the dependence on s, ¢ in the notation
Up = "5 —py(s),  Vi=e"D+m —opy(t),
A 0 157; (eis(¢7($)/XJ,1 —1), B; = o itZ; (eis(qﬁf(’ﬁ)’XjJrh,l —1).

i =
Write K, = |\/n(¢ — @)| and ¢ > 0 for any positive constant which may differ from line to

line. By Taylor expansions we have

Z|AB|)

n (s, ) < (
J=p+1

(LA L5l = 11X, 1]) (LA IH] 16 — Bl X4 1]))

n—h
< c(@
n
Jj=p+1
1 n—h
< c(m1n(|st|K23—/2 Z | X1 Xjinaal, [s| K - Z | X1l
j=p+1 j=p+1
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1 n—h 9
[t K — > ‘Xﬂhfl’)) :

Jj=p+1
The quantities K, are stochastically bounded. From ergodic theory (see Example 2.19 in
Samorodnitsky (2016)), n=' 3°7 | |X;| = Op(1) and n=3/?2 > =1 | X Xjn| = op(1). Hence

n L (s, 0)]* < min(s®, %, (st)*) Op(1) < (LA S%) (LAE) + (s* + 2)1(]s| A [t] > 1)) Op(1),
where the term Op(1) does not depend on s and ¢. Thus we conclude for k = 1 that

1im1imsup]P’<n / |L (s, ) u(ds, dt) > 5) =0, e>0. (1.46)
K5

60 nooo

A similar argument yields

n—h 2
n|L(s, H)]* < (ﬁ > |Aj||Bk|>

=2
n
Jsk=p+1

n—h 2
Vi . N
. (n_ S (A8l 16— B XD A 16 — & [ Xeonal)
jk=p+1
1 n—h
< ¢ (min (\st!KgW Z | X1 Xiena1l,
J,k=p+1
1 n—nh 1 n—nh 2
|S|Kn5 Z | Xl ‘t|Kn% Z ‘Xk+h1|>)
Jj=p+1 k=p+1

< min(s? 2, (st)*) Op(1).

Then (1.46) holds for k = 2. Taylor expansions also yield

n—h 2
n

Jyk=p+1

\/— n—h 1 ?

< ¢ (n_;’ > (LA SIs (1251 + EIZD)A AT ¢ — 4] !Xk+h1|)>
J-k=p+1

< min(#?, (st)%) Op(1).

This proves (1.46) for £ = 3. By a symmetry argument but with the corresponding bound

min(s?, (st)?) Op(1) , (1.46) for k = 4 follows as well. By Taylor expansion, we also have

2
\/ﬁ n—nh
n|Ls(s, t))? < (7 Z |U;| By

Jj=p+1
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n—h 2
< ¢ (% Z (1A %\5| (1Z;| +EIZ) ANt 1§ — | !Xj+h—1|>>
< min(#?, (st)*) Op(1).

We may conclude that (1.46) holds for £ = 5. The case k = 6 follows in a similar way with

the corresponding bound min(s?, (st)?) Op(1). O
Proof of Theorem 1.4.2(2). We follow the proof of Theorem 4.2(1) by first showing that
Yo iyen (1.47)

in C(K) for K C R? compact, and then (1.45). The convergence v/n C? % Gy in C(K) con-
tinues to hold as in the proof of Theorem 4.2(1) since the conditions in Csorg6 (1981a,1981b)

are satisfied if some moment of 7 is finite. For (1.47) it suffices to show that
Vn(CZ—c%) 5 (1.48)

in C(K). Recalling the decomposition (1.43), we now can show directly that
SUD|g | jt1<ar VT Eni(5,1)] 20 for any M > 0 and i = 1,2, 3, which implies (1.48). We focus
only on the case ¢ = 1 to illustrate the method; the cases i = 2, 3 are analogous. We observe

that for o > 0,

n—h
~ 1
sup  /n|En(s,t)] < sup /n|¢p— | = Z sXj1 +t Xjn-1]
sl it <M sl it <M n =
< Mnilp—ol n5i72 Y |Xy]. (1.49)
j=1

On the other hand, under the conditions of Theorem 4.2(2) Hannan and Kanter (1977)
showed for 0 > a,

n'/% (¢ — @) %3 0.
For a € (1,2), E[|X]] < oo and since we can choose 6 = 2 such that 1/0 + 1/2 = 1. The
ergodic theorem finally yields that the right-hand side in (1.49) converges to zero a.s. As

regards the case a € (0, 1], we have E[|X|*77] < oo for any small v and

E[}n71/571/2 Z |XjH0l—’Y:| <n (a—v)(1/64+1/2)+1 E[‘x‘af'y] 0.
j=1
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If we choose d close to « and v close to zero the right-hand side in (1.49) converges to zero
in probability.
Using the same bounds as in part (1), but writing this time K,, = n'/®|¢ — (Aﬁ|7 we have

(s, )2 < c(min (st K20 220N X Xl || K V7123 x5,
j=1 §=0

t| K, n1/0-1/2 Z |XJ|)>2

§=0
n
< cmin(fstf, [P, [12) max (K202 30X X ),
j=1

n

Ky V71237 1))

J=0

2

The same argument as above shows that n='/2=1/2 3% | X;| = Op(1) for § close to a.
Since 2| X;_1 X p1] < ij,l + X32+h—1 a similar argument shows that
n~1/2=2/8 > =1 | X1 Xj4n1] = Op(1). These facts establish (1.46) for & = 1. The same
arguments show that bounds analogous to part (1) can be derived for n |l (s,t)|? for k =

2,...,6. We omit further details. n
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Chapter 2

Goodness-of-fit testing for time series

models via distance covariance

2.1 Introduction

Let {X,,j € Z} be a stationary time series of random variables with finite mean and variance.
Given consecutive observations of this time series Xy, ..., X,,, we are interested in whether
the sequence can plausibly be viewed as generated from a parametric model, more precisely,

whether {X,} is generated from the recursion
Xj = [ (X, 25 B), (2.1)

where X,,,.,, denotes the sequence {X;,ny < j < ny}, the Z;’s are iid with finite second
moments, and 3 € R? is the parameter vector. The objective of this chapter is to provide a
validity check of the model (2.1) by inspecting the residuals.

A typical assumption for time series models is that the recursion (2.1) is casual and

invertible, that is,
Xj = g(Z—oo:j; /6)
and

Z; = Z;(B) = h(X_w; B) (2.2)

for some functions ¢ and h. Here we write Z;(3) to indicate its dependency on 8. Given

the observations Xi.,, let B be an estimator of @. Then the innovations {Z;} can be
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approximated by

~ ~ A

Z; = Z;(B) = h(X_ws B), (2.3)

the residuals based on the infinite sequence {Xj, j < n}. If the recursion (2.1) describes the
generating mechanism of {X;}, one would expect {Z;} to inherit the properties of {Z;}. In

reality, we do not observe X; for j < 0 and instead rely on the estimated residuals

A A

Zj = h(Y—oo:j;/B)7 J=1...,n, (24)

where {Y}} is the infinite sequence with ¥; = X;, 1 < j <mn and Y; = 0 for j < 0. If the
time series { X} is stationary and ergodic, the influence of X_ . in (2.3) becomes negligible
for large 7 and Zj and Zj become indistinguishable.

While Zl, ceey Z, are derived to approximate the iid innovation {Z;}, the sequence itself
is not iid since they are functions of B This has been noted for specific time series models in
the literature. For example, for ARMA model, corrections have been proposed for statistics
based on the residuals, see Section 9.4 of Brockwell and Davis (1991). For the heteroscedastic
GARCH models, the moment sum process of the residuals were studied in Kulperger and
Yu (2005). Still, if the model assumption is true, {ZJ} should possess a serial dependence
structure consistent with the model.

In this chapter, we evaluate the serial dependence of residuals using distance covariance.
Distance covariance is a usefull dependence measure with the ability to detect both linear
and nonlinear dependence. It is zero if and only if independence occurs. We study the auto-
distance covariance function (ADCV) of the residuals and derive its limit when the model is
correctly specified. We show that the limiting distribution of the ADCV of {Z;} differs from
that of its iid counterpart {Z;} and quantify the difference. This is an extension of Section
4 of Davis et al. (2018) (i.e., Section 1.4 of this thesis) which considered this problem for
AR processes.

The remainder of the chapter is structured as follows. An introduction to distance
correlation and ADCV along with some historical remarks are given in Section 2.2. In

Section 2.3, we provide the limit result for the ADCV of the residuals for a general class of
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time series models. T'wo points regarding implementing theory are discussed in Section 2.4.
We then apply the result to ARMA and GARCH models in Section 2.5 and 2.6 and illustrate
with simulation studies. A simulated example where the data does not conform with the

model is also demonstrated in Section 2.7.

2.2 Distance covariance
Let X € R and Y € R? be two random vectors, potentially of different dimensions. Then

XL1Y <= opxy(st)=ex(s)ey(t),

where @ x v (s,t), px(s), py(t) denote the joint and marginal characteristic functions of (X,Y).

The distance covariance between X and Y is defined as

TCCYin) = [ fowrlst) — ex(&)er @ uds.de), (5.0) € B

Rpr+aq

where p is a suitable measure on RP™7. In order to ensure that T(X,Y’; ) is well-defined,

one of the following conditions is assumed to be satisfied (Davis et al., 2018):

1. p is a finite measure;

2. p is an infinite measure such that

/Rp+q<1 ALs*) (LA [E*)p(ds, dt) < oo

and

E[|XY|* 4+ | X|* +|Y]*] < 0o, for some « € (0,2].

If 11 has a positive Lebesgue density on RP*9, then X and Y are independent if and only if
T(X,Y;p) =0,

For a stationary series {X;}, the auto-distance covariance (ADCV) is given by

Th(X; N) = T<X07 X :U’) - /RQ ’gOXo,Xh(& t) - (pX(S) (:DX@)‘Q :u(dS? dt) ) (57 t) € R%
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Given observations {X;,1 < j <n}, the ADCV can be estimated by its sample version

B(Xi) = [ |CX .0 nldsdt), (s.0) € B,

where
n— n— ne
1 h 1 h 1 h
C’i{(s?t) —— § 628Xj+’lth+h _ § 628Xj_ E :elth"'h.
n n n
Jj=1 j=1 j=1

If we assume that © = py X pus and is symmetric about the origin, then under the conditions
where Tj,(X; p) exists, T, n(X; 1) is computable in a alternative V-statistic like form, see
Section 2.2 of Davis et al. (2018) for details. It can be shown that if the X;’s are iid, the

process 1/nC=X (s, t) converges weakly,
VX % Gy on C(K), (2.5)
for compact set K C R?, and
n(Xi) % [ |G a(ds. db),
where (G, is a zero-mean Gaussian process with covariance structure
L((s,t),(s',t) = cov(Gu(s,t),Gr(s,t))
= B[ — () (¢ — (1)

(70— () (e~ — o (~1))]

The concept of distance covariance was first proposed by Feuerverger (1993) for bivariate
context and later brought to popularity by Székely et al. (2007). The idea of ADCV was
first introduced by Zhou (2012). For distance covariance in time series context, we refer to
Davis et al. (2018) (i.e., Chapter 1 of this thesis) for theory in a general framework.

Most literature on distance covariance focus on the specific weight measure p(s,t) with
density proportional to |s|™P~![t|79"!. This distance covariance has the advantage of being
scale and rotational invariant, but imposes moment constraints on the variable sevaluated.
In our case, as will be shown in Section 2.3, we require a finite measure for x and shall use

a Gaussian measure. In this case Th(X ; 1) has the computable form

n—h

R 1 A

Th(X5pn) = CEDE E (X — X5, Xign — Xjgn)
ij=1
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n—nh

1 N
+m > X = X, Xin — Xign)

i,7,k,l=1

n—h
1 N
_2—(n ~h) > (X = X, Xin — Xign),

i,jk=1
where fi(z,y) = [exp(isz + ity)u(ds,dt) is the Fourier transform with respect to p.

It should be noted that the concept of distance covariance is closely related to Hilbert-
Schmidt Independence Criterion (HSIC), see Gretton et al. (2005). For example, the distance
covariance with Gaussian measure coincides with the HSIC with Gaussian kernel. In a recent
(unpublished) work, Zhu and Li use HSIC for testing the cross dependence between two time

series.

2.3 General result

Let X7, ..., X, be the observed sequence from a stationary time series {X;} generated from
(2.1), and let Zy,..., Z, be the estimated residual calculated through (2.4). In this section,

we examine the ADCV of the residuals

Ti(Z; ) = ||C7|2 = / C7Pu(ds, dv),

where
n—nh n—nh n—nh
1 1 1
C’g(s’t) — E estj+thj+h _ E estj_ 2 :e“&ZJ’-Hz.
n n n
J=1 j=1 j=1

To provide the limiting result for 7] h(Z ; i), we require the following assumptions.

(M1) Let F; be the o-algebra generated by {X;,k < j}. We assume that the parameter

estimate ,é is of the form
1 n
V(B - B) = == > m(Xooxi B) + 0p(1)
j=1
where m is a vector-valued function of the infinite sequence X_..; such that

Em(X_w;; B)|Fj-1] =0, Em(X_.0;8)|* < 0.
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This representation can be readily found in most likelihood-based estimators, for ex-
ample, the Yule-Walker estimator for AR processes, quasi-MLE for GARCH processes,

etc. By the martingale central limit theorem, this implies that

V(B -8) 4 Qq,

for a random Gaussian vector Q.
(M2) Assume that the function h in the invertible representation (2.2) is continuously dif-

ferentiable, and writing

Lj(8) = 5h(XwsiB) 26)

we have

E[|Lo(B)[|* < oco.

~

(M3) Assume the estimated residuals based on the finite sequence of observations, Z;, is
close to the fitted residuals based on the infinite sequence, Zj, such that
1 .5 =
— N 1Zi = Zj)F = 0,(1), k=12
Theorem 2.3.1. Let X;,...,X, be a sequence of observations generated from a causal

and invertible time series model (2.1). Let B be an estimator of B and let Zisens Zn be
the estimated residuals calculated through (2.4) satisfying conditions (M1)-(M3). Further

assume that the weight measure u satisfies
/R2 [(1 As) (LA P 4 (82 +2) 1(|s| A Jt] > 1)]u(ds,dt) < 00. (2.7)
Then
nTi(Z: 1) > |G + Gl

where Gy, is the limiting distribution for nTh(Z; i), the ADCV based on the iid innovations

Z1y .oy Ly, and the correction term s given by
&n(s,t) = itQ"E [(e"7 — pz(s)) " Lu(B)] , (2.8)
with Q being the limit distribution of /n(B — B) and Ly, as defined in (2.6).
The proof of the theorem is provided in Section 2.8.
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2.4 Two notes on implementation

2.4.1 Auto-distance correlation function (ADCF)

Distance correlation, analogous to linear correlation, is the normalized version of distance

covariance, defined as

T(X,Y; )

R(X,Y;p) == V(X X I (Y. Y )

€ [0,1].

The auto-distance correlation function (ADCF) of a stationary series {X,} at lag h is given
by
Ba(X5 1) 1= R(Xo, Xp; p),

and its sample version R, (X; ) can defined similarly. It can be shown that the ADCF for

the residuals from an AR(p) model has the limiting distribution (Davis et al., 2018):

5 o IGh &l
Z; —F 2.

and the result can be easily generalized to other models. In the following examples, we shall

use ADCF in place of ADCV.

2.4.2 Parametric bootstrap

The limit in (2.9) is not distribution-free and generally intractable. In order to use the
result, we propose to approximate the limit through parametric bootstrap, described in the
following.

Given observations Xi,..., X, let B be the parameter estimate and Zl, cee Z, be the

estimated residuals. A set of bootstrapped residuals can be obtained as follows:

1. Sample iid Z7,..., Z} from the empirical distribution of {Zj}, i.e., with replacement

from Zl, ceey Zn.
2. Generate X7, ..., X" from the time series model with parameter value 8 and residual
sequence 2y, ..., Z;.
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3. Re-fit the time series model. Obtained the parameter estimate ,é* and the estimated

residuals 27, ..., Z;.

~

Let nRh(Z*, 1) be the ADCF calculated from the bootstrapped residuals Zf, ..., Z*. This
procedure is repeated B times to obtain nfi,(ll)(Z*, [, .. ,an(lB)(ZA*,u). When the sample
size n is large, the empirical distribution of {nli’éb) (Z * 1)} provides an approximation for the

limiting distribution of n}?h(z ;1t). The theoretical convergence of the bootstrapped ADCF

is currently under investigation.

2.5 Example: ARMA (p,q)

Consider the causal, invertible ARMA (p, q) process that follows the recursion

p q
Xy = Z 0iXi—i + Ze + Z 052, (2.10)
=1 j=1
where B = (¢1,...,¢p,01,...,0,)7 is the vector of parameters and {Z;} is the sequence

of mean 0 and uncorrelated innovation. Denote the AR and MA polynomials by ¢(z) =

1—37" ¢zt and 0(2) = 1+ 379, 0;27, and let B be the backward operator, i.e.,
BX; = X; 1,

then the recursion (2.10) can be represented by
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Given an estimate of the parameters B, the residuals based on the infinite sequence {X .., }
are given by
(o)

Zo=2(8) =Y m(B)Xe.

7=0
Based on the observed data Xi,..., X, the estimate residuals are

t—1

Zy =Y m(B)X.;. (2.11)

J=0

One choice for 3 is the pseudo-MLE based on Gaussian likelihood
1
L(B,0%) o< o~ B| /2 eXp{ﬁXZZ’an},
o

where X,, = (X1,..., X,,)T and the covariance ¥ = X(3) := Var(X,,)/o? is independent of
o%. The pseudo-MLE B and 62 are taken to be the values that maximize L(3,0?). It can be
shown that B is consistent and asymptotically normal even for non-Gaussian Z; (Brockwell
and Davis, 1991).

We have the following result for the ADCV of ARMA residuals.

Corollary 2.5.1. Let {X;,1 < j < n} be observations from a causal and invertible ARMA (p,q)
time series and {Z,,1 <t < n} be the estimated residuals defined in (2.11). Assume that j
satisfies (2.7), then

nn(Z; 1) = G+ &l

where (G, &) is a joint Gaussian process defined in R? with Gy, as specified in (2.5) and &,
in (2.8).

The proof of Corollary 2.5.1 is given in Section 2.9.

Remark 2.5.2. In the case where the distribution of Z; is in the domain of attraction of
a a-stable law with a € (0,2), and the parameter estimator B has convergence rate faster

-1/2
)

than n ie.,

an(B — B) = 0,(1), for some a, = o(n~?),

o6



(Davis, 1996), the ADCV of the residuals has limit
A A d 2
nTh(Z; ) = |Gl

where the correction term &, disappears. For a proof, see Theorem 4.2 of Davis et al. (2018).

2.5.1 Simulation

We generate time series of length n = 2000 from an ARMA (2,2) model with standard normal

innovations and parameter values
B = (¢1,¢9,01,02) = (1.2, -0.32, —0.2, —0.48).

For each simulation, an ARMA(2,2) model is fitted to the data. In Figure 2.1, we compare
the empirical 5% and 95% quantiles for the ADCF of

a) iid innovations from 1000 independent simulations;
b) estimated residuals from 1000 independent simulations;
c) estimated residuals from 1000 independent parametric bootstrap samples from one

realization of {X;}.

In order to satisfy the requirement (2.7), the ADCFs are evaluated using the Gaussian
weight measure N(0,0.5?). Confirming the results in Theorem 2.3.1 and Corollary 2.5.1, the
simulated quantiles of Rj,(Z; ) differ significantly from that of Ry, (Z; ), especially when
h is small. Given one realization of the time series, the quantiles estimated by parametric

boostrap correctly capture this effect.
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ARMA(2,2)

-~ iid
-- sim
boot

ADCF

0.000 0.001 0.002 0.003 0.004 0.005
/£

Lag

Figure 2.1: Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) estimated
residuals; ¢) bootstrapped residuals; from a ARMA(2,2) model.

2.6 Example: GARCH(p,q)
In this section, we consider a GARCH(p,q) model,
Xy = 04y,

where the Z;’s are iid innovations with mean 0 and variance 1 and

p q
ol =00+ Y XP +Y Biot . apg>0,0>0, 8 >0. (2.12)
i=1 j=1
Let 6 = (ap, a1, ...,0p, b1, ..,5,;) denote the parameter vector. We write the conditional

variance o7 = 02(0) to denote it as a function of 6.

Iterating the recursion in (2.12) gives

72(0) = o(6) + 3 ci(6)X2

~

for suitably defined functions ¢;’s (Berkes et al., 2003). Given an estimator 8, an estimator

for 07(0) based on {X;,j <t} can be written as

o0

67 = 03(0,) = co(0) + Y (@) X7,
=1

o8



and the unobserved residuals are given by
Zy = X, /6.
In practice, 52 can be approximated by the truncated version
52(0,) = ca0,) + 3 (0.2,
i=1
and the estimated residual Z, is given by
Z, = X,/6,. (2.13)
Define the parameter space by
O ={u="_(50,51,---38p,t1,...,tg) 1 t1+ -+ t; < po,u < min(u) < max(u) < u},
for some 0 < u < u, 0 < pg <1 and qu < py, and assume the following conditions:

(Q1) The true value  lies in the interior of ©.
(Q2) For some ¢ > 0,

lim 2 P{|Zo| < 2} = 0.
z—0

(Q3) For some 6 > 0,

E| Zo|* ™ < oo.

4) The GARCH representation is minimal, i.e., the polynomials A(z) = Y7 . ;2"
(Q4) P, q) Tep , i.e., the poly i1

and B(z) = 1—>"_, 827 do not have common roots.

Given observations {X;,1 <t < n}, Berkes et al. (2003) proposed a quasi-maximum likeli-

hood estimator given by

A~

0, = argmax, g Z li(u),

t=1
where
X7
202 (u)
Provided that (Q1)—(Q4) are satisfied, the quasi-MLE 6,, is consistent and asymptotically

normal.

For the ADCV of the residuals based on ,,, we have the following result.
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Corollary 2.6.1. Let {X;,1 < j < n} be observations from a GARCH(p,q) time series and
{Z,,1 <t < n} be the estimated residuals defined in (2.13). Assume that (Q1)-(Q4) holds

and that p satisfies (2.7), we have
(7 1) 5 G+ &l

where (G, &) is a joint Gaussian process defined in R? with Gy, as specified in (2.5) and &,
in (2.8).

The proof of Corollary 2.6.1 is given in Section 2.10.

2.6.1 Simulation

We generate time series of length n = 2000 from a GARCH(1,1) model with parameter

values

B = (ap, oy, f1) = (0.5,0.1,0.8).

For each simulation, a GARCH(1,1) model is fitted to the data. In Figure 2.2, we compare
the empirical 5% and 95% quantiles for the ADCF of

a) iid innovations from 1000 independent simulations;
b) estimated residuals from 1000 independent simulations;
c) estimated residuals from 1000 independent parametric bootstrap samples from one

realization of {X;}.

Again the ADCFs are based on the Gaussian weight measure N(0,0.5%). The difference
between the quantiles of Ry,(Z; 1) and Ry,(Z; 1) can be observed. For the GARCH model,
the correction has the opposite effect than in the ARMA model — the ADCF for residuals

are larger than that for iid variables, especially for small lags.
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GARCH(1,1)

0.020
|

-~ iid
-- sim
boot

ADCF
0.010 0.015
| |

0.005
|

0.000
;
;
\

Lag

Figure 2.2: Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) estimated
residuals; ¢) bootstrapped residuals; from a GARCH(1,1) model.

2.7 Example: Non-causal AR(1)

In this section, we consider an example where the model is wrongly specified. We generate
time series of length n» = 2000 from a non-causal AR(1) model with ¢ = 1.67 and t-
distributed noise with degree of freedom 2.5. Then we fit a causal AR(1) model, where
|¢| < 1, to the data and obtain the corresponding residuals. Again the ADCF is evaluated
using the Gaussian weight measure N(0,0.5%) and in Figure 2.3, we plot the 5% and 95%
ADCF quantiles of:

a) estimated residuals from 1000 independent simulations;
b) estimated residuals from 1000 independent parametric bootstrap samples from one

realization of {X;}.

The ADCFs of the bootstrapped residuals provide an approximation for the limiting
distribution of the ADCF of the residuals given the model is correctly specified. In this
case, the ADCF's of the estimated residuals significantly differ from the quantiles of that of
the bootstrapped residuals. This indicates the time series does not come from the assumed

causal AR model.
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Non-causal AR(1)

-~ iid
boot

ADCF
| |
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Lag

Figure 2.3: Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) boot-
strapped residuals; from non-causal AR(1) data fitted with a causal AR(1) model.

In the following appendices, we provide proofs to Theorem 2.3.1 and Corollaries 2.5.1
and 2.6.1. Throughout the proofs, ¢ denotes a general constant whose value may change

from line to line.

2.8 Proof of Theorem 2.3.1

Proof. The proof proceeds in the following steps with the aids of Propositions 2.8.1, 2.8.2
and 2.8.3. Write

nTh(Z; 1) = |VnCZ|2 = ||VnCZ —/nCZ + /nCZ|?,

where
. 1 n—h . . 1 n—h 1 n—h .
05(87 t) = E eiSZj+ith+h _ - E eiSZj_ eith+h
J=1 J=1 J=1
and
1 n—h 1 n—h 1 n—h
Cf(s,t) = § eiSZjJ’_ith«b»h _ § eiSZj_ eith+h'
J=1 J=1 J=1

We first show in Proposition 2.8.1 that

(Vr(CZ — CZ),\/nC?) % (6,G),  on C(K),
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where K is any compact set R?. This implies
VnC? 4 ¢ + Gy, on C(K).
For ¢ € (0, 1), define the compact set
Ks ={(s,t)]0 <s<1/5, 6 <t <1/6}.
It follows from the continuous mapping theorem that

Tg/'|cfﬁuoﬂadw-i G + &4 2ulds, db).
Ks Ks

To complete the proof, it remains to justify that we can take ¢ | 0. For this it suffices to

show that for any € > 0,

lim lim sup P (/ |\/ﬁCf\2,u(ds,dt) > 8) =0,
KP

00 psoo ¢

lim P (/
6—0 K

These are shown in Propositions 2.8.2 and 2.8.3, respectively.

and

|Gh -+ §h|2u(d8, dt) > €> = 0.

c
é

Proposition 2.8.1. Given the conditions (M1)-(MS3),

(Vn(CF = C2). VnCE) 5 (6.Ga). on C(K),
for any compact K C R?.

Proof. We first consider the marginal convergence of \/ﬁ(Cf — C%). Denote

1 n—h . R
Eo(s,t) == — (6 isZj+itZ;n _ ez‘szj+z‘tzj+h> ’
Vi i
then
. 1 n—nh R R
\/E(Of(s, t) — Cf(sa t) = — (6 isZjtitZin _ eist+ith+h>
n
j=1
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j= j=1
n—h n—h
_l eist 1 (e ZtZJ+h eitZ]+h)
"= v
1 n—h 1 n—h
= F . - itZ o 157
) = Bals, 00 Y e 4 — By(0,0) -3
Jj=1 j=1
We now derive the limit of E,(s,t). For fixed s and t,
1 n—h A R
E,(s,t) = — e 182 +itZjin (e i8(Zj—Zj)+it(Zj4n—Zj4n) _ 1)
o = Tl

- _Z sz (isy/m(Zy — Z;) + it Zyen — Zjen)) + 0p(1),
= _Z isZ; +’tzﬂ+h(zs\/_( )+Zt\/_( j+h ]+h))

4+ Z wZititlien (js\/n(Z; — Z;) + itN'n(Zjpn — Zien)) + 0p(1)

=: Enl(s,t) + Ena(s,t) + op(1).

By assumption (M3),

A

n—h
|n1(3t|<!|\/—Z|Z Z|+\t|TZ|Z' n— Zjnl = 0.

It follows from a Taylor expansion that

n—h

Z e 1825+t Zjpn (isL;(B") + itL;1n(8Y)),

J=1

- 1
Bolst) = V(B )
where 8* = B+ E(,é — B) for some € € [0, 1]. Since L;(8) is stationary and ergodic, it follows
from the ergodic theorem (see, for example, Corollary 2.1.8 of Samorodnitsky (2016)) that
1 n—h

= et (isLy(B) + itLyn(8)) 2 E [e "%+ (isLy(B8) + itLyn(8))] =: Chls,1).

n <
Jj=1

Hence, for fixed (s,t),
E,(s,t) % QTCy(s,1).
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Note that

1 n—h
=) e B pg(t),
n <
7j=1
and
1 n—h n—h
isZj _ isZj L | 0) =
nZe nZe ~|—\/_ n(5,0) = @z(s)
7j=1 7=1

We have, for fixed (s, t),
Vi(CF = CZ) % QT (Culs, 1) — Cils,0)p2(t) — Ci(0,)p1(s)).

To further simplify the above expression, notice that L;(3) is a function of X_.; and

independent of Z;; by causality. Hence

Cu(s,t) = E[e®%isL;(B)] E [e"%+"] + E [e T 1itL; 1, (8)]

= Cu(s,0)pz(t) +E [e =/ 7mnitL; 0 (B)]
and

Q" (Ci(s,t) = Ci(s,0)pz(t) — Cu(0, )¢z (s))
= Q' (E [e™"iritL; 1 (B)] — E [e"7+itL; i (8)] ¢2(s))

= Sh(S,t).

This justifies the marginal convergence of \/ﬁ(C’nZ — CZ) for fixed (s,1).

For the joint convergence of \/ﬁ(Cf — %) and /nC?#, we recall assumption (M1)
1 n
V(B —B) = 7n Zm(X—oo:j; B) +op(1)
j=1
and also note from the proof of Theorem 1 in Davis et al. (2018) that
VnC? = = i(eiszj — @z(8)) (e — (1)) + 0,(1) % G, on C(K).
n \/ﬁ = P )

By martingale central limit theorem,

h

n

-

1

(% Z m(X_...;: B), (€7 — g (s)) (7t — W(ﬂ))

J
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converges jointly to (Q, Gp). This implies the joint convergence of \/ﬁ(,é — B) and /nC?.
Since &, is non-random and continuous, the joint convergence /nC% and /nCZ — \/nC%

also follows.

Proposition 2.8.2. Under the conditions of Theorem 3.1,

(lsimo lim sup P (/ |\/ﬁCf|2,u(ds,dt) > 5) =0.
— c
5

n—o0

Proof. Using telescoping sums, C’f — C7Z has the following decomposition,

c?-c? = —ZAB— ZA ZB——ZU ZB——ZV ZA

] 1

—|—% Z Uij —+ % ZV}AJ =: Z[nk(87t>7
j=1 j=1 k=1

isZ; itZ; _ isZ; isZ; _ itZ; itZ;
U =¢€"% —@y(s), V;=e"t —py(t), Aj=e% - B =e"ith — "%ith,

From a Taylor expansion,
1 n—h 2
nlLu(s, )P < (_Z|Aij’>
1 n—h . . 2
- Z |€iS(Zj—Z]') _ 1||67:t(Zj+h_Zj+h) _ 1|>
(\/ﬁ j=1
1 n—h 2
< o= (1nlslz - 2)) (1A|t||2j+h—zj+h|))
(ﬁ Jj=1
1 n—h 2 1 n—h
s (=312 = 2l ) P (== S 12w — Zpal
0 J j \/ﬁ; J J
| 2
|st|? (\/ﬁz Z; — Z,||Z; Zj+h|>
1 n—h 2 1 n—h 2
< ¢ min | [s? ( Jn |1Z; — Zj|> [t (%;Mﬂh - Zj+h|> ’
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n—h n—h
1 A 1 N
|st|” <— | Zj — ZHQ—n | Zjn — Zj+h|2>>

For k=1, 2,

N
o
A/
Bl
it
S
I
N
BES
+
Bl
it
N
I
N
-
SN—

n—~h
1 ~
— > 1z -z
NZD =

IA

1 ) 1 n—h
op(1) + ¢ m”x/ﬁ(ﬁ - 5)||kﬁ Z:; IL;(85)]1*

= 0,(1).
Therefore
n L (s, 1)1 < min([s]?, [£]%, st[*)Op(1) < (LA s]*) (LA[E) + (s* +17) L(Is| A [t] > 1)) O, (1),
where the O,(1) term does not depend on (s,¢). This implies that

lim lim sup P (/
=0 nooco K

Similar arguments show that n|l,s(s, t)]? is bounded by min(|s|?, [¢|?,|st]*)O,(1), n|l.s(s,t)|?

n| L (s, ) u(ds, dt) > 8) =0.

c
8

and n|l,5(s,t)|? are bounded by min([t|?,|st|*)O,(1), and n|L4(s,t)|* and n|Le(s,t)|* are

bounded by min(|s|?,|st|*)O,(1), and the result of the proposition follows. O

Proposition 2.8.3. Under the conditions of Theorem 3.1,
lim P </ |G, + &) u(ds, dt) > 5) = 0.
Proof. Note that

€D < tPIQIPE [ — oz ()| E[Lu(8)[?

ctPIQIPE [(1 A |s?) (Zo + E|Z|)*] E[Ly(8)?

N

IA

[t1* (LA [s[*) Op(D).

This implies

lim P (/ 60 2p(ds, dt) > g> 0.
6—0 K¢
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On the other hand, it was shown in Davis et al. (2018) that [ |Gp|?u(ds, dt) exists as the

lim PP (/ |Gy 2 (ds, dt) > 8) =0,
6—0 g

and the proposition is proved. O

limit of nT},(Z; ), Hence

2.9 Proof of Corollary 2.5.1

Proof. In the following we verify conditions (M1), (M2), (M3) in Theorem 2.3.1.
(M1): It can be shown that the pseudo-MLE for 3 satisfies the representation in (M1). We
refer to Chapter 10.8 of Brockwell and Davis (1991) for details.

(M2): From
_¢B) _
Zt - @Xt - h(X—oo:taﬂ)v
we have
0 B! 1 .
agbih(X—oo:th) - MXt: th—h 1= 17"‘7p7
while
0 B Bj¢(B) B Bi 1 ' .
26, (Xeot: B) = (H(B))th = G(B)Zt = H(B)Zt_J’ ji=1,...,q.
Hence
0 1 T
LO(B) = %h(X—oo 076) Q(B) (X—17 s 7X—p7 Z—17 SRR Z—q) :

By the definition of invertibility, there exists a power series for 1/6(z) such that

1 o0
O IEL

7=0

with 3777 |€;(8)] < co. Therefore
E[Lo(@)* <p D IGBIPEIXo* +9 D I(B)E| Zf* < oo
= k=0

(M3): Note that
S
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For k=1, 2,

JjAn

Zlﬂj |k\/—Z|Xt ]|

n ~ ok 1

1 n
—>\Z- 2| < —=
Vi

For any m < n,

th

n
t=1 j=t

§jm |§r§]&]w+§jm]|ﬁ%§]&ﬁﬁ:1ﬁw2m>
t=1

J=m+1

Consider the coefficients Wj(,é)’s. By causality, the power series
TR
0(z)
=0
converges for all |z| < 1+ € for some € > 0. Then there exists a compact set Cg containing

B such that for any 8 € Cpg, > im0 7;(8)27 converges for all |z| < 1+ ¢/2. In particular,
m(B)(1+€/4)) =0, j— oo,
and there exists K > 0 such that
i (B)] < K(1+€/4)7

It follows that
SIn@)F <oo, k=12
§=0

Now for (2.14), I; converges to zero in probability for fixed m, while I, converges to zero

uniformly as m — oo. This implies that

1 |~ ok
=2 |42
Vnis

50, k=1,2.

2.10 Proof of Corollary 2.6.1

Proof. In the following we verify conditions (M1), (M2), (M3) in Theorem 2.3.1.
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(M1): Given conditions (Q1)-(Q4), Berkes et al. (2003) showed that 6, has limiting distri-

bution
. 1 1 log 07(6
V6, —0) = —>"-(1-22) <a°g—Ut(),Bol> +0,(1) 4 N(0,B;'AoByY),
n ‘= 2 00
where
dly(6 0%1,(0
Aozcov{ g;)l, BO:E[ 800(2 >1
(M2):  We have
Xi
Z:(0) = h(X_o.j,0) = :
t( ) ( J ) O't(O)
and
0 Xo 00%(0) 1, Ologoi(0)
Lo(0) = —h(X_.0;0 = ——Jy————>.
0(8) = 5ghlX-oc0:6) = 203(0) 06 27° 96
Lemma 3.1 of Kulperger and Yu (2005) showed that
log 0 g
]E(sup %g—at(u)> < oo, forany k > 0.
u€eo ou
Hence

1/2
1, dlogo2(0)|? . dlogo2(0) |
2 1 0 1 1 0
E||Lo(6)| _E‘QZO O < (E2lE | < 0.

(M3): Theorem 1.3 and Lemma 3.5 of Kulperger and Yu (2005) show, respectively, that
LS 1z 2l =o,)
— t — 4| = op(l),
U=

and
Z |2 — Zi| = O,(1).
t=1

Hence

1 no ~ 1 no ~ no ~
=Y NG=ZP < =D 12— 20 Y 12— Zi] = 0,(1).
\/ﬁ \/ﬁ t=1 t=1

t=1
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2.11 Conclusion

In this chapter, we examined the serial dependence of estimated residuals for time series
models via the auto-distance covariance function (ADCV) and derived the asymptotic result
for general classes of time series models. We showed theoretically that the limiting behavior
differs from the ADCV for iid innovations by a correction term. This indicated that ad-
justments should be made when testing the goodness-of-fit of the model by inspecting the
serial dependence of residuals. We illustrated the result on simulated examples of ARMA
and GARCH processes and discover that the adjustments could be in either direction — the
quantiles of ADCV for residuals could be larger or smaller than that for iid innovations. We
also studied an example when a non-causal AR process is incorrectly fitted with a causal
model and showed that ADCV correctly detected model misspecification when applied to

the residuals.
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Chapter 3

Threshold selection for multivariate

heavy-tailed data

3.1 Introduction

For multivariate heavy-tailed data, the principal objective is often to study dependence in
the ‘tail’ of the distribution. To achieve this goal, the assumption of multivariate regular
variation is typically used as a starting point. A random vector X € R? is said to be
multivariate regularly varying if the polar coordinates (R, ®) = (||X||, X/[|X]]), where || - ||

is some norm, satisfy the conditions

(a) R is univariate regularly varying, i.e., P(R > r) = L(r)r—®, where L(-) is a slowly
varying function at infinity;

(b) P(® € -|R > r) converges weakly to a measure S(-) as r — oc.

The « is referred to as the index of the regular variation, while the S is called the angu-
lar distribution and characterizes the limiting tail dependence. There are other equivalent
definitions of regular variation (Resnick, 2002), but this one is the most convenient for our
purposes.

Given observations {X;}" , and their corresponding polar coordinates {(R;, ®;)},, a
straightforward procedure for estimating S is to look at angular components of the data for
which the radii are greater than a large threshold rq, that is, ©; for which R; > r¢. In most

studies, one takes ry to be a large empirical quantile of R. While there has been extensive
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research on choosing a threshold for which the distribution of R is regularly varying (i.e.,
limit condition (a)), little research has been devoted to ensuring the threshold is large enough
for the independence of © and R to be reasonable (i.e., limit condition (b)). To this end,
de Haan and de Ronde (1998) fit a parametric extreme value distribution model to each
marginal and examined the parameter stability plot of each coordinate. The Starica plot
(Starica, 1999) looked at the joint tail empirical measure, but was, in some way, equivalent
to only examining the extremal behavior of R. Resnick (2007) suggested an automatic
threshold selection from the Starica plot but observed that the thresholds were sometimes
systematically underestimated. In their study of the threshold based inference for parametric
max-stable processes, Jeon and Smith (2014) suggested choosing the threshold by minimizing
the MSE of the estimated parameters.

In this chapter, we propose an algorithm which selects the threshold for modeling S. Our
motivation is the implied property that (R, ®) given R > r become independent as r — oo.
Given a sequence of candidate threshold levels, we test the degree of dependence between
R and O for the truncated data above each level. The dependence measure we use is the
distance covariance introduced by Székely et al. (2007). This measure has the ability to
account for various types of dependence and to be applicable to data in higher dimensions.
The resulting test statistics are given in the form of p-values and are compared across all
levels through a subsampling scheme. This enables us to extract more information from the
test statistics while not overloading the computational burden.

The remainder of the chapter is organized as follows. We first provide some theoretical
background on multivariate regular variation in Section 3.2. The distance covariance and
its theoretical properties are introduced in Section 3.3. Applying this dependence measure
in our conditioning setting, we propose a test statistic and prove relevant theoretical results
in Section 3.4. Our proposed algorithm for threshold selection is presented in Section 3.5,
and illustrated on simulated and real examples in Section 3.6. The chapter concludes with

a discussion.
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3.2 Multivariate regular variation and problem set-up

One way to approach multivariate heavy-tailed data is through the notion of multivariate
regular variation. For a detailed review, see, for example, Chapter 6 of Resnick (2007). Let
X = (X1, ..., Xq4) be a d-dimensional random variable defined on the cone R% = [0, 00)\{0}.

Define the polar coordinate transformation
T(X) = (X[, X/[[X]) =: (R, ©), (3.1)

where || - || denotes some norm. Then X is regularly varying if and only if there exists a

probability measure S(-) on S¢71, the unit sphere in R?, and a function b(t) — oo, such that
tP[(R/b(t),®) €] B vy xS, t—o00, on(0,00) xS (3.2)
where % denotes vague convergence, and v, is a measure defined on (0, cc] such that
Vo(z, 00l =277, x>0.
Here b(t) can be chosen as the 1 — t~!-quantile, i.e.,
b(t) = inf{s|P(R<s)>1—t"'}.
The convergence (3.2) implies that

(o) e

where 5 denotes weak convergence. In other words, given that R > r for r large, the

R > 7"] B vyxS, r—o00, onl[loo) xS, (3.3)

conditional distribution of R/r and ©® are independent in the limit. In view of (3.3), we
restrict the measure v, to [1,00) throughout the remainder of the chapter. The angular
measure S characterizes the tail dependence structure of X. If S is concentrated on {e;,i =
1,...d}, where e; = (0,...,0,1,0,...,0), then the components of X are asymptotically
independent in the tail, a case known as asymptotic independence. If S has mass lying in
the subspace {(t1,...,tq) € S*'|t; > 0,t; > 0,7 # j}, then an extreme observation in the

X, direction implicates a positive probability of an extreme observation in the X; direction,
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a case known as asymptotic dependence. Hence the estimation of S from observations is an
important problem, and often the primary goal, in multivariate heavy-tailed modeling.

The following convergence is implied from (3.3):
POc |R>r) 3 S(), r— oo (3.4)

This suggests estimating S using the angular data (©;) whose radial parts satisfy R; > rg
for ry large. The motivation behind our method is to seek ry such that when R > rg, R
and © are virtually independent. Given a candidate threshold sequence {ry}, we formally
test the independence between (R;, ®;) among the observations satisfying R; > ry. The
use of Pearson’s correlation as the dependence measure is unsuitable in this case, for two
reasons. First, correlation is only applicable to univariate random variables, whereas © lies
on the sphere of dimension d — 1. Second, correlation only describes the linear relationship
between two random variables, thus having zero correlation is not a sufficient condition for
independence. Instead, we use a more powerful dependence measure, the distance covariance,

which is introduced in the next section.

3.3 Distance covariance

In this section, we briefly review the definition and some properties of the distance covariance.
More detailed descriptions and proofs can be found in Székely et al. (2007) and Davis et al.
(2018).

Let X € RP and Y € R? be two random vectors, then the distance covariance between

X and Y is defined as

T<X7 Y; //“) = / |30X,Y(S’ t) - QDX(S) @Y(t)‘z :u(dS? dt) ’ (37 t) € Rp_m? (35)

Rp+a
where px v (s,t), px(s), py(t) denote the joint and marginal characteristic functions of (X, Y)
and p is a suitable measure on RP*4. In order to ensure that T'(X,Y’; i) is well-defined, one
of the following conditions is assumed to be satisfied throughout the paper (Davis et al.,

2018):
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1. p is a finite measure on RPTY;

2. p is an infinite measure on RP*? such that

/Rm(l A sV (LA [t u(ds, dt) < oo

and

E[|XY|* + | X[+ |Y]|Y] < o0
for some a € (0,2].

One advantage of distance covariance over, say, Pearson’s covariance, is that, if © has a
positive Lebesgue density on RP*?, then X and Y are independent if and only if T(X,Y’; u) =
0. Another attractive property of this dependence measure is that it readily applies to
random vectors of different dimensions.

To estimate T'(X,Y;u) from observations (Xi,Y7),...,(X,,Y,), define the empirical

distance covariance
. . . 2
LY = [ (oxr(s.t) = ex(s) o) ulds, ),
Rp+aq

1 . .
where ¢x vy (s,t) = —> 7 € (X)) + Y5 and Gx(s) = Pxy(s,0), ¢y (t) = pxy(0,t) are the
n
respective empirical characteristic functions. If we assume that @ = p; X 2 and is symmetric
about the origin, then under the conditions where T(X,Y; u) exists, T,,(X,Y; u) also has

the computable form

n

1 ~
TAX.Yip) = — > in(Xi— X)) f(Y; - Y))

ij=1

Z (X X%~ V) — o 3 (X~ X)) (Y - Vo),

gkl irj, k=1
where ji(z) = [(1 — cos(s,z)) u(ds) (Davis et al., 2018).
The most popular choice of p, first mentioned by Feuerverger (1993) and then more
extensively studied by Székely et al. (2007), is

p(ds, dt) = cpq|s| " 7PIt| 7" Yds dt . (3.6)

76



where ¢, , is as defined in Lemma 1 of Székely et al. (2007). This choice of y gives fi(x)i(y) =
|z|*|y|®. Moreover, this is the only choice of p for which the distance covariance is invariant
relative to scale and orthogonal transformations. Note that in order for the integral (3.5) to
exist, it is required that

E[ XY™+ X"+ [Y]7] < o0

We will utilize the described weight measure (3.6) with £ = 1 in our simulations and data
analyses in Section 3.6, but applied to the log transformation on R to ensure that the moment
condition is satisfied.

As detailed in Davis et al. (2018), if the sequence {(X;,Y;)} is stationary and ergodic,
then

a.s

T.(X,Y;n) = T(X,Y; 1. (3.7)

Further, if X and Y are independent, then under an a-mixing condition,

nT(X,Yi0) 5 [ |G(s,)Puls,t) (3.8)

Rp+a

for some centered Gaussian field G. On the other hand, if X and Y are dependent, then
VI(TA(X, Y1) = T(X, Y5 )) 5 G,

for some non-trivial limit G, implying that nT;,(X,Y; u) diverges as n — oo. Naturally
one can devise a test of independence between X and Y using the statistic n 7, (X, Y u):
the null hypothesis of independence is rejected at level x if nT,,(X,Y; ) > ¢, where ¢ is the
upper x-quantile of [p,., |G(s, t)[*u(s,t).

In practice, the distribution [g,,, |G(s,t)|*u(s,t) is intractable and is typically approx-
imated through bootstrap. Hence the main drawback of using distance covariance is the
computation burden it brings for large sample size: the computation of a single distance co-
variance statistic requires O(n?) operations, while finding the cut-off values via resampling
requires much more additional computation. Our method, however, overcomes this problem

through subsampling the data, as will be described in Section 3.5.
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3.4 Theoretical results

Let {X;}", be iid observations in R? from a multivariate regularly varying distribution X
satisfying (3.1) and (3.3), and {(R;, ©;)}!, be their polar coordinate transformations. Given
a threshold r,, we measure the dependence between R/r, and © conditional on R > r, by

the empirical distance covariance of (R/r,, ®) on the set {R > r,}:

T, = / (s, O)2pds, dt), (3.9)
RdJrl

with
Cn(s,1) =@ 1 oy, (5:1) = P 1y, (5)Pelr, (1),
where $ & g, is the conditional empirical characteristic function of (R/r,, ©),

1 n
eiSRj /Tn +itT@j

n LR >ra) seR, t= (tla"'atd>T€Rd7
j=1 l{Rj>Tn} j=1

(ﬁ%,@\rn(‘g?t) = Z

and ¢ r s PO, AT€ the corresponding empirical conditional marginal characteristic func-
tions,
B 1a(8) = £ 0 (5.0, Boin, (1) = @1 g1, (0.,

In this section, we establish the limiting results (3.7) and (3.8) adapted to the conditional

distance covariance. For ease of notation, let
. A . 1 -
Pn = ]P)(R > Tn) ) Pn = E Zl 1{Rj>7'n}
J:

be the theoretical and empirical probability of exceedance, and let

E [eisR/rnJritT@lR
H=F isR/rp+itT © R _ o
PR o, (Sv ) = € | >Tn| = D )
n n

and
Sp%h"n(s) = @%,@Vn(sv O)a PO|rn (t> = @%,e\rn (07t)a

be the theoretical conditional joint and marginal characteristic functions.
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Recall from (3.3) that as n — oo, R/r, and ® become asymptotically independent and
converge to v, and S respectively. Denote the characteristic functions of the corresponding

limit distributions by

vr(s) = / exp(isr)ar * ldr = lim . (s), (3.10)
1

n—oo ™n
vo(t) = / exp(itf)S(df) = lim pgy., (). (3.11)
§d—1 n—oo
We have the following results.

Theorem 3.4.1. 1. Let Xy,...,X,, be iid observations generated from X, where X is
multivariate regularly varying with index o > 1. Let T,, be the conditional empirical
distance covariance between the angular and radial component defined in (3.9). Further

assume that np, — oo and the weight measure u satisfies

/Rdﬂu A LsIP) (1A [ER)u(ds, dt) < oo, (3.12)

for some 1 < 8 <2Aa«a. Then

T, 2 0.
2. In addition, if {r,} satisfies
i [ 10 e (5:) = 0y, (oon, (OFuldsd) 50, (313
R n ™n
then
npn Ty -5 1Q(s, )2 u(ds, dt), (3.14)
Rd+1

where Q) is a centered Gaussian process with covariance function

cov(Q(s, 1), Q(s', 1)) = (or(s— ') —or(s)pr(—5)) (et —t') —po(t)pe(—1)) (3.15)
with g, pe as defined in (3.10) and (3.11).

Remark 3.4.2. In the case where X s reqularly varying with index o < 1, similar results

hold if we replace R/r, with log(R/r,) for which all moments exist.
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The proof of the theorem is delayed to Section 3.8. In the following remark, we discuss

certain sufficient conditions for assumption (3.13).

Remark 3.4.3. Assume that 1 = j11 X e, where i1, pto are measures on R and R?, respec-
tively, and symmetric about the origin. From Section 2.2 of Davis et al. (2018), condition

(3.13) is equivalent to

R R _ , ,
npn (Ewr— e - @R >,
R OR i N
+E[/L1(— — T—)|R, R > Tn] E[,UQ(@ -0 )|R, R > ’T’n]
_ R R " /
~2B[ji (-~ )ji(© — O)|R, R > 1] ) > 0, (3.16)

where

fi(x) = /(1 —cos(z7's)) ps(ds), i=1,2.

Let Pr g, denote the conditional joint distribution of (R/ry, ©) given R > r, and P&, , Peyy,

be the respective conditional marginals. Then (3.16) can be expressed as

npn / / (T — T') fin(© — ©)
(1,00)xS4=1 J(1,00)xSd—1

(Pﬁ@m (dT,d®)Px g, (dT',dE)
+Pr, (dT)Pey, (dO)Pr , (dT")Pey, (dO')

~2Px o, (AT,d®)Px , (dT')Poy,, (d@'))

- / (T = T') jia(© — ©)
(1,00)xS4=1 J(1,00) xS4~1
Vitbn (P g, (AT, dO) = s, (dT)Pe,, (d6))
Vitpr (Pa gy, (dT',d6') = P, (dT")Poy,, (16))

0, (3.17)

where (R',©"), (R",©") are iid copies of (R, ®). One way to verify (3.17) is to assume a
second-order like condition on the distribution of (R,®). For example, assume that

Pﬁyelrn _Va X S
A(rn)

5 x,  on|l,00) xS
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where x is a signed measure such that x([r,o0] x B) is finite for all r > 1 and B Borel
set in SL the unit sphere in RY, and the scalar function A(t) — 0 ast — oo. When
the components of X are asymptotically independent, this is equivalent to the second order

condition for multivariate reqular variation (Resnick, 2002). If we choose the sequence 1,

such that \/np, — oo and \/np,A(r,) — 0, then

Pr oy, (() = Pry,, (1) X Pop,(-)
VpnA(ry,) — A(T‘:)

P g ((+) = va X S((+) (P, () = va()) X Py, ()
= VAl ( A(ry) B Alry)

() % (Poi () = SO\
A(r,) ) -0

on [1,00] x S¥1. In the case where py, o are finite measures, fiy, fia are bounded and (3.17)

15 satisfied since the integrand can be written as

w0 [ [ / (T = T') fis(© — @)
(1,00)xSd—1 (1,00)xSd—1

Py g, (dT.d0) = Py, (dT)Poy, <d@>]
A(rn)
Pri,@lrn (dT",d®") — Pri\rn (dT") Poyy, (d©")
] A(Tng

— 0.
In the special case that |A| € RV, for p <0, (3.17) is met provided r,, is chosen such that

O(nﬁmpﬁﬁ) <r, < o(ni), for some € > 0.

When the measures i, o are infinite, (3.13) can be verified in specific cases. This is

illustrated in the following example.

Example 3.4.4. Let X follow a bivariate logistic distribution, i.e., X has cdf
P(X; < 21, Xa < 3) = exp(—(z; /" +2,7)), v €(0,1). (3.18)

Then X has asymptotically independent components if and only if v = 1. It can be shown

-1

L as Ty, — 00.

that X is regularly varying with index o = 1, t.e., p, = P(R > r,) ~ r
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Using the Li-norm, ||(z1,2z2)|| = |z1] + |xe|, the polar coordinate transform is (R,©) =

(X1 + X2, X1 /(X1 + X3))€ (0,00) x [0,1] and the pdf of (R, ©) is

fro(r,6) = r2(O(1—0)"" (0i+(1_e>i)” (a0 )

(rl (5 +a-077) - 77_1) .

We now consider the case of the infinite weight measure p given in (3.6) with k = 1 and
derive the condition on the sequence {ry} for which the conditions of Theorem 3.4.1 hold.

First observe that

1

pantd) = -0 (17 ooty )
(e (v am0) -2

1 — ~y+1 1 1 —2
S Y 001 - 0)) (9*; (1 e)w)” . asn— o0, (3.19)

= Jr(t)fe(0),

and

15 o1, (1:0) = fr(®)fo(0)

Tn
< fr()fo(t) ( P R 1‘
N e N IR ﬁ)
< r0e0) (0 (57w @m0 ) et (-0 ) )

< ™3 fort>1and @€ 0,1],

where ¢ denotes a generic a constant whose value may change from line to line throughout

the proof, and the last inequality comes from the facts that

1 1\ 27—2 Y
9(1—9)g}1 and (9—;+(1_9)—;)” g(l) < o0
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Letting

fri,e\rn (t’ 6) - frﬂh”n (t)f@|7'n (0)
hn(t,0) = —= = ;

we have

max(// t0|dtd6// log(#) t&)\dtd&)
< / / [t (2, 0)|dtd0

. // fr oy, (8:0) = fr(t) fo(0)

dtde

t=lr—1

+/0 /1 ’fT(t)fer"i = ‘dtd@
+/01/1°° fon. () fa () fr(t)

t— 1
where the first term can be bounded by

1 o)
/ / ct~2dtdf < oo,
0o J1

and the other terms can be bounded in the same way. Since R has infinite first moment, we

dtdo,

apply the distance correlation to log R and ©. The integral in (3.17) is bounded by

npn// // | logt —log t'|[0 — 6'||huy(t,0)|| b (t', 6)|dtdOdt A’

< —3// // (|logt| + [logt'|)|hn(t, 0)||ha(t', 0)|dtdOdt do’

< %(// | log(t) t0|dtd9) (// t0|dtd0)§c%,
n /rn

which converges to zero if n = o(r3). Therefore if {r,} is chosen such that r, = o(n) and

n = o(r3), then Theorem 3.4.1 holds.

The result in Theorem 3.4.1 can be generalized from iid to a regularly varying time series
setting, which we present in the next theorem. For a multivariate stationary time series
{X;} and h > 1, set Y}, = (Xo,...,Xy). Then {X;} is regularly varying if

P(S(,’_th < ') _U) *< )
Pl Xl > 1)

33

T — 00,



(h+1)d (h+1)d

for some non-null measure g on R, =R \{0}, R = R U {#o0}, with the property

h+1)d

that i} (tC) = t~u;(C) for any t > 0 and Borel set C' C R, See, for example, page

979 of Davis and Mikosch (2009). It follows easily that

Pz (Xo,Xp) €1) o
P(Xol > 2)

pn (), (3.20)

where

=(h+1)d

pn(D) = C - ({s € R : (s1,80) € D}).

Assume that {X;} is a-mixing. We assume the following conditions between {X;} and the
sequence of threshold {r,}, which can be verified for various time series models (Davis and

Mikosch, 2009).

(M) Assume p; ' =P~ }(||X;]| > r,) = o(n'/?) and that there exists a sequence {l,}
such that [,, — oo, l,p, — 0, and
i)
1
( ) Z o — 0 for some & € (0,1); (3.21)

Pn/ = 0
ii)
lim lim sup — Z]P’ 1Xo|| > 7, IX;]| > 70) = 0; (3.22)

h—oo  noo —h
iii)
npnoy, — 0. (3.23)
Theorem 3.4.5. Let {X;} be a multivariate reqularly varying time series with tail index
a > 1 and a-mizing with coefficients {aptr>0. Assume the same conditions for the weight

measure i and the sequence of thresholds {r,} in Theorem 3.4.1, i.e., (3.12), (3.13) hold,
and that condition (M) holds. Then

npn Ty > Q' (s, ) [2u(ds, dt),

Rd+1

where Q' is a centered Gaussian process. In particular,

T, 2 0.
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The proof of Theorem 3.4.5 is given in Section 3.9.

Note that the limiting distributions () in Theorem 3.4.1 and @’ in Theorem 3.4.5 are
both intractable. In practice, quantiles of the distributions are calculated using resampling
methods. While in the iid case this can be done straightforwardly, in the weakly dependent
case one needs to apply the block bootstrap or stationary bootstrap to obtain the desired
result (see Davis et al. (2012)). In the following section, we present a threshold selection
framework with a subsampling scheme that does not require independence between the

observations.

3.5 Threshold selection

In this section, we propose a procedure to select the threshold for estimating the spectral
measure S from observations Xy, ---,X,,. Let us first consider the case where a specific
threshold 7, is given. Then (3.9) specifies the empirical distance covariance between R/r,

and © conditional on R > r,. Under the assumption (3.13), we have from Theorem 3.4.1,

npnTy — Q(s, 1) u(ds, dt),

Rd+1
where np,, is the number of observations such that R; > r,. In practice, the limit distribution
J1QP (s, t) is intractable, but one can resort to bootstrapping. Consider the hypothesis

testing framework:

Hy : R/r, and © are independent with respect to P[-|R > r,];

H, : R/r, and © are not independent with respect to P[-|R > r,].
Define the p-value for testing Hy versus H; to be

pv =P (/R+ 1Q(s, t)[2u(ds, dt) > u) (3.24)

u:nﬁnTn
Under Hy, pv follows U(0,1). Under Hy, np,T, diverges and pv should be sufficiently small.
Now consider a decreasing sequence of candidate thresholds {7y }. From (3.24), a sequence

of p-values {pvy}, each corresponding to a threshold rg, can be obtained. Our goal is

85



to find the smallest threshold r* such that conditional on R > r*, © can reasonably be
considered independent of R. Note that the puv,’s are not independent for each k since they
are computed from the same set of data. Conventional multiple testing procedures, such
as Bonferroni correction, are problematic to implement for dependent p-values. To counter
these limitations, we propose an intuitive and direct method based on subsampling.

The idea is outlined as follows: For a fixed level r;, we choose a subsample of size ny
from the conditional empirical cdf F%’@m of (R;/rg, ©;) with R; > ry, ¢ =1,...,n. For this
subsample, we compute the distance covariance 7). To compute a p-value of T}, ; under
the assumption that the conditional empirical distribution is a product of the conditional

marginals, we take a large number (L) of subsamples of size ny from

Fi gy, (d0,dr) = Foyy, (d0) P, (dr),

"
and calculate the value Trgf,l,l = 1,...,L for each subsample. The p-value of T, pvg,
is then the empirical p-value of T, relative the {T,(Ll;c}lzl 1. This process, starting with
an initial subsample of n; from F £ o, is repeated m times, which produces m estimates
{pv,gj )}jzlwm of the pvy, which are independent conditional on the original sample. These
are then averaged
1 & .
pUy = m ;pvfj).

So for the sequence of levels {r.}, we produce a sequence of independent p-values {pv, }.

Our choice of threshold r at which (©, R)|R > r are independent (and dependent oth-
erwise) will be based on an examination of the path of the mean p-values, {pv,}. Note the

following two observations:

o If R and © are independent given R > 714, then the pv,il), cee pv,gm) will be iid and

approximately U(0, 1)-distributed, so that pv, should center around 0.5.
e If R and © are dependent given R > ry, then the pv,(f )’s will be well below 0.5 (closer

to 0), and so will po,.

By studying the sequence {pv, }, which we call the mean p-value path, we choose the thresh-

old to be the smallest r; such that pv, is around 0.5 for [ < k. A well-suited change-point
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method for our situation is the CUSUM algorithm, by Page (1954), which detects the changes
in mean in a sequence by looking at mean-corrected partial sums. In our algorithm, we use a
spline fitting method that is based on the CUSUM approach called wild binary segmentation
(WBS), proposed by Fryzlewicz (2014). The WBS procedure uses the CUSUM statistics of
subsamples and fits a piecewise constant spline to {pv,}. In our setting, we may choose 74
to be the knot of the spline after which the fitted value is comfortably below 0.5.

There are several advantages to using the subsampling scheme. First, recall that the p-
value path {pvy}, which is obtained from the whole data set, has complicated serial structure
and varies greatly from each realization. In contrast, the mean p-values pv,, from subsampling
are conditionally independent and will center around 0.5 with small variance when the total
sample size n and the number of subsample m is large. This, in turns, helps to present a
justifiable estimation for the threshold. Second, the calculation of distance covariance can be
extremely slow for moderate sample size. Using smaller sample sizes for the subsamples, our
computational burden is greatly reduced. In addition, this procedure is amenable to parallel
computing, reducing the computation time even further. Third, the subsampling makes it
possible to accommodate stationary but dependent data, waiving the stringent independent
assumption.

The idea of looking at the mean p-value path is inspired by Mallik et al. (2011), which used
the mean of p-values from multiple independent tests to detect change points in population

means.

3.6 Data Illustration

In this section, we demonstrate our threshold selection method through simulated and real
data examples.

In practice, we set the sequence of thresholds {7} to be the upper quantiles of R cor-
responding to {qx}, a pre-specified sequence. The subsample size n;, at each threshold ry, is

set as ng = ng - g for some ng << n. This is designed such that for any r;, each subsample
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is a no/n fraction of all the eligible data points with R > r;. Then the choice of {n,} boils
down to the choice of ng, which should reflect the following considerations: i) ny should be
large enough to ensure good resolution of p-values at all levels; ii) ng/n should be sufficient
small such that the subsamples do not contain too much overlap in observations; iii) larger
ng requires heavier computation for the distance correlation. In our examples, where the
total sample size n ranges from 3000 to 20000, we find ny between 500 and 1000 to be a
suitable choice. The number of subsamples m can be set as large as computation capacity
allows. In our examples, we take m = 60.

For all the examples, we choose the weight function u for distance covariance to be (3.6)
with k = 1, and the number of replications used to calculate each p-value is L = 200. To
ensure that the moment conditions are met, the distance correlation is applied to the log of

the radial part R in all examples.

3.6.1 Simulated data with known threshold

To illustrate our methodology, we simulate observations from a distribution with a known
threshold for which R and © become independent.

Let R be the absolute value of a t-distribution with 2 degrees of freedom and ©;, 0, be
independent random variables such that ©; ~ U(0, 1), ©y ~ Beta(3,3). Set

@1, ifR>?"0,2,
O|R =

O, it R <rga,
where rq5 is the upper 20%-quantile of R. Then R and © are independent given R > r
if and only if r > rgs. Let (X1, Xs2) = (RO, Ri(1 — ©;)), i = 1,...,n, be the simulated
observations. We generate n = 10000 iid observations from this distribution. Figures 3.1a,
3.1b and 3.1c show the data in Cartesian and polar coordinates. Our goal is to recover the
tail angular distribution by choosing the appropriate threshold.
A sequence of candidate thresholds {74} is selected to be the empirical upper quantiles

of R corresponding to {gx}, 150 equidistant points between 0.01 and 0.4. We apply the
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procedure described in Section 3.5 to the data. For each ry, the mean p-value pv,, is calculated
using m = 60 random subsamples, each of size ny = 500 - ¢, from the observations with
R; > r. Figure 3.1d shows the mean p-value path. For the WBS algorithm, we set the
threshold to be the largest ry such that for all thresholds r (quantile level ¢) such that r < ry
(¢ > q), the fitted spline of the p-value stays below 0.45'. The threshold levels chosen is
20.4%, which are in good agreement with the true independence level 0.2. The empirical
cdfs of the truncated ©,’s corresponding to the chosen thresholds is shown in Figure 3.1e.

We can see that the true tail angular cdf (i.e., U(0,1)) is accurately recovered.

3.6.2 Simulated logistic data

We simulate data from a bivariate logistic distribution, which is bivariate regularly varying.
Recall from Example 3.4.4 that (X, X3) follows a bivariate logistic distribution if it has cdf
(3.18). In this example, we set v = 0.8 and generate n = 10000 iid observations from this
distribution. Similar to the previous example, for each threshold 7, corresponding to the
upper ¢, quantile, where {g;} is chosen to be the 150 equidistant points between 0.01 and
0.3. The mean p-value pv;, is calculated using m = 60 random subsamples of size n; = 500- gy
from the observations with R; > r.

Figures 3.2a , 3.2b and 3.2c¢ show the scatterplots of the data. Here the L;-norm is used
to transform the data into polar coordinates. Our algorithms suggests using 7.4% of the
data to estimate the angular distribution. The estimated cdf of the angular distribution is
shown with the theoretical limiting cdf, derived from (3.19), in Figure 3.2e. So even though
R and © are not independent for any threshold 7, our procedures produce good estimates

of the limiting distribution of ©.

LOf course, other selection rules can be used. For example, a more conservative approach would be
choosing the threshold as the largest r; such that for » > rp, the fitted spline of the p-value stays above
0.45.
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Figure 3.1: (a) scatterplot of (X;1, X;2); (b) scatterplot of (X1, X;2) in log-log scale; (c)
scatterplot of (R;,©;); (d) mean p-value path (black triangles), fitted WBS spline (blue
line), and the chosen threshold quantile (red vertical line); (e) estimated cdf of © using the
threshold chosen, compared with the truth (black dotted).

3.6.3 Real data

In this example, we look at the following exchange rate returns relative to the US dollar:
Deutsche mark (DEM), British pound (GBP), Canadian dollar (CAD), and Swiss franc
(CHF). The time spans for the data are 1990-01-01 to 1998-12-31 with a total of 3287 days
of observations. We examine the pairs GBP/CHF, CAD/CHF, DEM/CHF and estimate
the angular density in the tail for each pair. Figures 3.3a-3.3c present the scatter plots of
the data. The marginals of the observations are standardized using the rank transformation

proposed in Joe et al. (1992):

Z; =1/log{n/(Rank(X;) — .5)}, i=1,...,n.
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Figure 3.2: (a) scatterplot of (X;1, X;2); (b) scatterplot of (X1, X;2) in log-log scale; (c)
scatterplot of (R;,©;); (d) mean p-value path (black triangles), fitted WBS spline (blue
line), and the chosen threshold quantile (red vertical line); (e) estimated cdf of © using the
threshold chosen, compared with the theoretical limiting cdf (black dotted).

Again {qx} is chosen to be the 150 equidistant points between 0.01 and 0.3, and the mean
p-value pu,, is calculated using m = 60 random subsamples of size n;, = 500 - ¢ from the
observations with R; > r;. Note that while it may not be reasonable to view the observations
as iid, the subsampling scheme can still be applied to choose the threshold of independence
between R and ©.

The mean p-value paths are shown in Figures 3.4a—3.4c. The threshold levels selected
for the three pairs are 9.6%, 7.4%, 16%, respectively. Figures 3.3d-3.3f show the shape of
the estimated angular densities for each pairs. As expected, the tails of the two central

European exchange rates, DEM and CHF, are highly dependent. In contrast, that of CAD
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Figure 3.3: Analysis of the paired exchange rate returns: CHF/DEM, CHF/GBP,
CHF/CAD with respect to USD between 1990-01-01 to 1998-12-31. (a)—(c): Scatter plots
of the standardized paired exchange rate returns; (d)—(f): Estimated angular densities using
the estimated thresholds chosen.

and CHF are almost independent.

3.6.4 Simulated non-regularly varying data

In this example, we generate data from a model which is not regularly varying. Let R be a

random variable from the standard Pareto distribution:

P(R>r)=r"" r>1.
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Let ©1, 03 be independent random variables such that ©; ~ U(0,0.5), 5 ~ U(0.5,1). Set

ol O, if log R € (2k, 2k + 1] for some integer k,
R~

O,, if log R € (2k + 1,2k + 2] for some integer k.

For any positive integer k, it can be verify that

1 —e!
2k\
P(@ S (0,05)|R >e ) = 1——ﬂ’
while
P(© 2k+1 el —e?

Hence P(© € :|R > r) does not convergence as r — oo and X = (RO, R(1 — 0)) is not
regularly varying.

Let (X1, Xio) = (Ri©;, Ri(1 —6;)), i =1,...,n, be iid observations from this distribu-
tion, where n = 20000. Figures 3.5a, 3.5b and 3.5¢ show the data in Cartesian and polar
coordinates. We apply our threshold selection algorithm to the data, with the threshold
upper quantile levels g, chosen as the 150 equidistant points between 0.01 and 0.2. The
mean p-value pv,, is calculated using m = 60 random subsamples of size n; = 500 - g from
the observations with R; > r,. This is shown in Figure 3.5d.

In this model, the radial part R is regularly varying, but © and R are dependent given
R > r for any r. We expect the mean p-values to be well below 0.5, as are observed. No
threshold is selected by the algorithm. This suggests that our technique can potentially be
used to detect misspecified models from the regular variation assumption, especially in the
scenario where the heavy-tailedness of R is observed but dependence between R and O is

suspected.

3.7 Discussion

In this chapter, we propose a threshold selection procedure for multivariate regular variation,

for which R and © are approximately independent for R beyond the threshold. While our
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scatterplot of (R;,©;); (d) mean p-value path (black triangles), fitted WBS spline (blue
line), and the chosen threshold quantile (red vertical line).

problem is set in the multivariate heavy-tailed setting and we utilize distance covariance as
our measure of dependence, our algorithm is essentially a change point detection method
based on p-values generated through subsampling schemes. Hence this may be generalized
to other problem settings and potentially incorporates other dependence measures. Though
we have proposed an automatic selection for the threshold based on the fitted mean p-value
path, we would like to emphasize that, like the Hill plot, this should be viewed as a visual
tool rather than an optimal selection criterion. The final threshold should be based on the
proposed procedure in conjunction with visual inspection of the p-value path.

We note that the choice of norm in the polar coordinate transformation (3.1) may result

in significant differences in the choice of thresholds, which indicates the rate of convergence
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to the limit spectral density. This is especially evident in the near ‘asymptotic independence’
case, where the mass of the angular distribution concentrates on the axes.

As an illustration, we simulated iid observations {(X, Xi2)}iz1,. » from the bivariate
logistic distribution, where the cdf is given in (3.18), with v = 0.95 and n = 10000. We apply
the polar coordinate transformation with respect to the L,-norm for p = 0.2,1,5. Note that
in the case of p = 0.2, L,, is only a quasi-norm as it does not satisfy the triangular inequality.
However, it can be shown that (3.4) holds and the limiting angular distribution exists for
bivariate logistic distribution. We compare the threshold selection results in Figure 3.6.
Note that in the cases of the L, and Ls-norms, the threshold levels are chosen to be upper
5% and 12%, respectively, while in the case of the Lgs-norm, it is not possible to select the
threshold as the dependence between R and © at all levels were shown to be significant.
Indeed, this can be seen in Figure 3.7, where we compare the histogram of X7 /(X7 + X?)
given || X||, is large across three levels of truncations, 2%, 5% and 12%, together with the
theoretical limiting density curve. For the Ljo-norm, the limiting angular density is poorly
approximated by the truncated data for all levels. For the other two norms, the truncated
observations according to the selected threshold provide decent approximations to the true
limiting density of the angular component. One possible explanation for this is that under
the Lgo-norm, the threshold is concave and hence observations on the diagonal are much
easier to be classified as “extremes” than those near the axis. As a result, the estimator of
the angular density uses more observations near the diagonal, which may not be, in fact,
close enough to the limit. This choice of norm is an interesting topic and is the subject of

ongoing research.

3.8 Proof of Theorem 3.4.1

Note from the definition of the empirical distance covariance in (3.9), the integrand can be
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Note that El, Egl, EQQ are averages of iid zero-mean random variables and Eg is non-random.
We first prove the second part of Theorem 3.4.1. The first part of Theorem 3.4.1 follows

easily in a similar fashion.

Proof of Theorem 3.4.1(2). In order to show (3.14), it suffices to establish that

2
b, / (@) | EnPu(ds, dt) / 1Q(s, 1) 2u(ds, dt), (3.25)
Rd+1 \Pn Rd+1

and

20, (3.26)

2
Rd+1 \ Pn

where (3.26) can be implied by

2 2
M / (ﬁ) | Eu[?u(ds, dt) + nip,, / (ﬁ) | B[P u(ds, dt) 5 0. (3.27)
Rd+1 \ Pn Rd+1 \ Pn

Notice that

2 2 1 1
<—0(1)+ -0(1) — 0.

Npn n

Pn 4
Pn

2
1 11 r
E _ —E‘ {R1> n} _ 1

n Pn

Hence p,/pn — 1 and for (3.25) and (3.27), it is equivalent to prove that

o [ 1BsPutds.d) S [ QG0 Putds,de) (3.25)
Re+1

Rd+1

and
npn/ | B2 pu(ds, dt) + npn/ | Espu(ds, dt) 5 0. (3.29)
Rd+1 Rd+1

We will show the convergence (3.28) in Proposition 3.8.1. By (3.13),

npn/ | B |?u(ds, dt) — 0.
]Rd""l

So that (3.29) holds provided

npn/ | B2 u(ds, dt) 2 0, (3.30)
Rd+1

which follows in a similar fashion as Proposition 3.8.1.
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Proposition 3.8.1. Assume u satisfies

/RM“ AlsI?) (LA ) p(ds, dt) < oo

and that np, — 0o as n — oo, then

npn /d |E1 | pu(ds, dt) 4 1Q(s, 1) 1u(ds, dt),
Ri+1

Ra+1

where @ is a centered Gaussian process with covariance function (3.15).

Proof of Proposition 3.8.1. We first show that

VipnEr 5 Q(s,t),  on C(R) (3.31)

which can be implied by the finite distributional convergence of \/np, E: (s,t) and its tightness
on C(RHY).
Write

Uy L
N fz( S Tl o (5:0) = 1, ()01 1)) =R

where Y},’s are iid random variables with mean 0. For fixed (s, t), note that

E U nvn 2 ]E’]- 1>T
Var(Yin) = E|Yia|> = |1—1|(1—|—0(1)) = el o) < 0.
Pn Pn
On the other hand, any § > 0,
E|U1n‘/1n|2+5 E1 Ri>ry _
B[ = =g — (1 +ol) < cﬁmo(m = 0(p;"?)

Then we can apply the central limit theorem for triangular arrays by checking the Lyapounov

condition (see, e.g., Billingsley (1995)) for the Yj,’s:

S E|Y,[2H O(np?) .
P 5 :O((npn)

(o)) T O

It follows easily that for fixed (s, 1),

N[>

) — 0.

N A Q(s,1).
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The finite-dimensional distribution can be obtained using the Cramér-Wold device and the

covariance function can be verified through calculations.

We now show the tightness of , /npnﬁl. Note that

] 1 n (eist/'rn . S0%‘7%(8)) (eitT@j _ 90@|Tn (t)) ]-{Rj>’f‘n}
E1($7 t) = E Z p

Jj=1

~ (P20 (5:8) = 921, (5)p0p (1)

1 n zsR Jrn4itT ej]-{R )
_ (52 ° e

eist /Tn ]—{R Sl

- ( 2- o - - ¢£rn(s)> ©olr, (t)

1 n zt QJI{R N ﬁ
= i ()=
(AT 02 o9

n

=: En + E12 + E13-

Without loss of generality, we show the tightness for w/nan}l and that of \/nanlg and
\ /nan13 follows from the same argument.
First we introduce some notation following that from Bickel and Wichura (1971). Fix

(s,1), (s, ') € R where s < s’ and t < t'. Let B be the subset of R%™! of the form

d

B = ((s,t), (s, t)] = (s, 8] x [ [ (tw 1] € R*.

k=1
For ease of notation, we suppress the dependence of B on (s, t), (',t'). Define the increment
of the stochastic process EH on B to be

En(B) = %Z Z Z Z (_1)d+1—z].zj

7j=1 20=0,1 21=0,1 zq=0,1
By (s4 208 = 8),t1 4+ 2ty —t1), ... tg + za(ty — ta)) .

From a sufficient condition of Theorem 3 of Bickel and Wichura (1971), the tightness of
/npnE1 is implied if the following statement holds for any (s,t), (s',t') and corresponding
B,
) d
E|\/npnEn(B)|* < c|s — §'|° H It), — t,|°, for some B > 1.
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It follows that

|y, (£0(8))[

o LR>ra)
= nan Z e Z ( d+1 2057 Z ez s+2zo(s'—s))R;/r H ez(tk+zk —t5))O UL >y
20=0,1 zq=0,1 Pn
d 2
=Y (FyHEESE (ei(mO(sus))R/r) Hei(tk+2k(t§€tk))@kM]
z0=0,1 2q4=0,1 k=1 Pn
Ly : LR, >ra}
= n nE - iSRj/?“j _ iS,Rj/Tj itk@jk _ it;ﬁ@jk i >Tn
B |- > (el — o) T (e — eiom) 1A
J=1 k=1
d 1 2
_F (eisR/T L R/r H it,Or eit;c@k) {R>T"n}]
. 1
_ pnvar ((ezsR/rj . GZS,R/W) H(ezthk o ezt;Gk)M> (332)
_ Pn
d 2
< E (eisR/r - 13 R/r H ztk@k _ eit;“@k) R>r,
k=1

From a Taylor series argument,
e — e P <c(In|z—2']?) <c(IA|r—2'|°) <clz—2')°, for any B € (0,2].

Hence for any 8 € (1,2 A av),

~ 2 d d
E’\/_nann(B)‘ < ds— 5Pt — 6B | (R/r)? [T 1OPIR > 1,
k=1 k=1

d
< ds—=s1" ]It -l
k=1

since |Oy|?’s are bounded and sup, E[(R/r,)?|R > 1,] < oo by the regular variation assump-
tion. This proves the tightness.

Define the bounded set
Ks ={(s,t)] 0 < |s| <1/4,6 < |t| <1/}, ford < .5.
Then, using (3.31), we have from the continuous mapping theorem,

npn /K By Pu(ds, dt) S | |1Q(s, t)|2u(ds, db). (3.33)

Ks

102



On the other hand, for any # < 2 A «, we have

]E|Vnan1|2
2
~ npE|- z(Ume_E[_UWD
n\ pa Pn
< ElUinVin = BUjVinl*
N Pn
E in 'n2
< CE|UjnVinl” (3.34)
P
| isR;/r 2 itT®; 2
CE ||l —pn, ()] 7 = Porn, (O] Linorny
a Pn
2 T 2 2
cE (‘eZSRJ/Tn_l} —l—‘SOR‘T —1‘ ) (e“ ®; —i—‘g&em(t)—l‘ ) 1{Rj>rn}1
<
Pn
2
cE (1 A SRJ l1 AR S 1D (1 AtO,2 +E [1 A0, > 1]) 1{Rj>rn}]
<
Pn
B
cE (m By [ By | DY B 1D <1/\ tO,2 + E [mu@jmg > 1}) 1{Rj>rn}}
<
Pn
[ R, |” R p R 2
cE[(IA[s]?) (|52 +E{|E] [£>1]) QA RP) 1z
S L
Pn
< CcE[(1A|s/P(|R;/ral® + B[ R/rol?|R > r])) (LA E2) R > 7]

IN

c(1A|s|P) (1 A|t)?).
Therefore for any € > 0,

lim lim sup P [npn/ | B4 u(ds, dt) > 6]
5

00 psoo

—

1 -
- hm lim sup/ E|/np. | u(ds, dt)
€ .

é

n—o0

€ 6=0 poo

1
Lim limsup/ e(1 A [sP)(1 A [112)u(ds, dt)
5

0

by the dominated convergence theorem. This combined with (3.33) shows the convergence of

np,, [ 1B u(ds, dt) to [ |Q(s,t)|*u(ds, dt), and hence completes the proof of the proposition.

]
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Proof of Theorem 3.4.1(2) (cont.) Now it remains to show (3.30). Similar to the proof of

Proposition 3.8.1, we can show that
Viba By 5 Q
for a centered Gaussian process (', and
Ey 5 0.
Hence

V nan2 = nanmEm 0.

The argument then follows similarly from the continuous mapping theorem and bounding

the tail integrals. O
Proof of Theorem 3.4.1(1). Similar to the proof of Theorem 3.4.1(2), it suffices to show that
/|Ei|2u(ds,dt) 50, i=1,2,3. (3.35)

The convergence (3.35) for i = 1,2 follows trivially from the more general results (3.28) and

(3.30) in the proof of Theorem 3.4.1(2). Hence it suffices to show

/|E3]2u(ds,dt) -0, (3.36)

where we recall that Ej 1= P g, (8:1) — @ r . (8)per,(t) is non-random.
Let Pﬂ,@m(') =P [(%, @) € \% > 1] and Pr, , Poyr, be the corresponding marginal
measures. Then from (3.3),
Pz oy, = P Pojr, = Vo X S —vax § =0,
and hence for fixed (s, 1),
Eg(s, t) = /6iST+itT® (Pﬁ,@hn — PﬂlrnPGVn)(dT’ d@) — 0.

For any < 2 A «, using the same argument in (3.34),

- E|UjnVinl \*
B = ('p—') < (LA LsP) LA ).

Then (3.36) follows from (3.12) and dominated convergence. This concludes the proof.
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3.9 Proof of Theorem 3.4.5

Following the same notation and steps as the proof of Theorem 3.4.1 in Section 3.8, it suffices

to prove the following convergences for the mixing case:

Pn ( )
[ B Patsd) b [ Qs Pulds.do (3.39)
RdJrl Rd+1
and
npn/ | 5% pu(ds, dt) 5 0. (3.39)
Rd+1

We prove (3.37) and (3.38) in Propositions 3.9.2 and 3.9.3, respectively. The proof of (3.39)
follows in a similar fashion. The proofs of both propositions rely on the following lemma.
Throughout this proof we make use of the results that if {Z,} is stationary and a-mixing

with coefficient {ay4,}, then
\cov(Zy, Z)| < cal) (E|ZO|2/(1’5))1_6, for any ¢ € (0,1), (3.40)
see Section 1.2.2, Theorem 3(a) of Doukhan (1994).

Lemma 3.9.1. Let {X;} be a multivariate stationary time series that is regqularly varying
and a-mizing with mizing coefficient {ay}. For a sequence r, — 00, set p, = P(||Xo]|| > ).
Let f1, f2 be bounded functions which vanish outside @d\Bl(O), where By(0) is the unit open

ball {x|||x|| < 1}, with sets of discontinuity of measure zero. Set,

05 (0(2) 21 (). 0o
t=1 " n

Assume that condition (M) holds for {ay} and {r,}. Then

(SW, ST 4 N0, x), (3.41)
where the covariance matriz [Sij]i j=12 = [02(fi, f})]ij=1.2 with

o’ (fr, f2) == o0 (1, f2) + 2 on(fr, fo) (3.42)

h=1
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and
or(f1, f2) = /flfzduh, h > 0. (3.43)

In particular,

The proof of Lemma 3.9.1 is provided after the proofs of the propositions.

Proposition 3.9.2. Assume that condition (M) holds, then

Proof. We have

ﬁn 1 = 1 R;>rp 1 &
l=) (¥ - 1) = oo 2. (Lmory = pa).
n j=1

=\

Apply Lemma 3.9.1 to f(x) = 1yjx|>1} and the result follows. ]

Proposition 3.9.3. Assume that condition (M) holds, and that v and {r,} satisfies (3.12)

and (3.13), respectively, then

o [ BsPuds.d) S [ Q0 Pulds. ),
Rd+1 Rd+1

where Q' is a centered Gaussian process.

Proof. Let us first establish the convergence of /np,Ey(s,t) for fixed (s,t). Take

fix) = Re{(eisllxn _ E[@islle’HXH > 1]) (eitX/HXH _ ]E[eitx/”xH’HXH > 1]) 1”x”>1}

fo(x) = Im{(eiSHXH _ E[eisllxll|||x|| > 1}) (eitx/llxll _ E[eitx/llxll|||x|| > 1}) 1”x”>1}'
Then from Lemma 3.9.1,

(S, ST = /npa(Re{ Ei(s, 1)}, Im{Ey(5,)}) > N(0, %),

where the covariance structure ¥ can be derived from (3.42) and (3.43). This implies that

Vi Fi (s, 1) A Q'(s,t),
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where Q)'(s,t) is a zero-mean complex normal process with covariance matrix ¥y; + Yoo and
relation matrix X1y — Yoo + (X120 + Xo1).

The finite-dimensional distributional convergence of \/np,E; to a @/ (s,t) can be general-
ized using the Cramér-Wold device and we omit the calculation of the covariance structure.
The tightness condition for the functional convergence follows the same arguments in the
proof of Proposition 3.8.1 from Bickel and Wichura (1971), with equality (3.32) replaced
by a variance calculation of the sum of a-mixing components using the inequality (3.40)
and condition (3.33) is verified through the same argument. This completes the proof of
Proposition 3.9.3.

O

of Lemma 3.9.1. The proof follows from that of Theorem 3.2 in Davis and Mikosch (2009).
Here we outline the sketch of the proof and detail only the parts that differ from their proof.

By the vague convergence in (3.20), we have

25(r (2] foom o 2[5 (2)] - [
ii)
Pinvar {fi (}7"(_:)] B p_nE [fQ <)r(:)1 ~Pn (pinE {fi (%)})2 - /fiZdMO = oo (fi, fi);

iif)
pincov [f (XO) f]( n)} — /fz‘fjd/ubh = ar(fi, [;).

Let us first consider the marginal convergence of \/%WS,@ for © = 1,2. Without loss of

generality, we suppress the dependency on ¢ and set
X X
() (%)
TTL rn

I vVar i = 207, 1) and cov (Yin, Yinr) — 02(F. f).

n n

Then
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We also have the following two results for |cov(Yin, Y(ni1)n)l:

ln

1
lim lim sup Z —[cov(Yin, Yiit1)n)]

h—oo psoo

h—oo psoo 4
j=h

j=h "
In In 2
1 X X 1 X
< a3 solr(50) 1 ()| Sz ()
—0  n—oo i=h Pn T'n Tn i=h DPn Tn
In In
. . C C 2
< lim limsup ) o B (Lolrd) (Lo 1) + > - (ELgxo)or,)

n n

j=h

ln
< lim limsup Y pi]p(uxon > 7 [1X5] > 720) + Clupn
j=h

h—oo  poo n

= 0

from condition (3.22), and

[e.9] o0

) 1 . 1
lim Y —cov(Yin, Yyine)| < lim - —

pn n—o0

ol ()1 3)

1-6
BN X, ) |20
LBt (E (%)

=€ 2/(1-5)\ 179
lim > o} (B (L))

n—00
J=ln

o
lim E calp?

j:ln

IN

IN

IN

= 0

from condition (3.21).

(3.44)

(3.45)

We apply the same technique of small/large blocks as used in Davis and Mikosch (2009).

Let m,, and [, be the sizes of big and small blocks, respectively, where [,, < m,, < n. Let

Iy = {(k—=1)m,+1,... . km,} and Jg, = {(k—1)mp+1, ..., (k=1)m,+l,}, k= 1,...,n/m,,

be the index sets of big and small blocks respectively. Set L = i\ Jgn, ie., I, are the big

blocks with the first [, observations removed. For simplicity, we set m,, := 1/p, and assume

that the number of big blocks n/m, = np, is integer-valued. The non-integer case can be

generalized without additional difficulties.
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Denote
Su(B) ==Y Vi,

then

npn npn npn

ijmzsnu:n): Sulin) = 3 Sulin) + > S0l

k=1 =1 k=1

Bl

it suffices to show the following:

 be iid copies of S’n(fln). To prove the convergence of ﬁsn(l :n),

.....

npn npn

Z S, (Iyn) and Z S, (Ixn) has the same limiting distribution, (3.46)

N npn

NPn

Z S (Jien) 20, (3.47)

\/@
and
Ly Si(T) 5 MO 1) (3.48)
i
The statement (3.46) holds if
nppay, — 0, asn — oo. (3.49)

This follows from the same argument in equation (6.2) in Davis and Mikosch (2009).

For condition (3.47), it suffices to show that

npn
—V Sp(Jkn) | — 0.
e (3 50m)

k=1

Note that

nPn npp—1
h
—Var (ZS J;m> < Var(S,(Jin))+2 Z (1———)|cov(Sn(J1n), Su(Jtht1)n))| =t PitPa.

"Pn k=1 b1 npn
We have
ln,
limsup P, = limsup Var (Z Y;n>
n—00 n—00 =1
ln—1
Var (Y1, < Yin, Yiittim
< limsup Lpn Var(Yin) +23 (1 _)!COV( 1, Y1)
n—00 Pn = ln DPn
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h—1

V Yn . . cov YT“ Y . "
< limsuplnpnM+ lim lim sup 2lnpn§ :| ( 1 (+1) )|

n—00 Pn h—00 500 P D
In—1
< |cov(Yin, Yiiin

+ lim limsup 2[,,p, E | (Y3 (5+1) )|

h—o00  psoo — DPn

]:

where the last step follows from dominated convergence and (3.44). And for the other term,

npp—1

P< 23 > Y Jeov(Yen, Vi)
h=1 s€Jin t€J(ht1)n
npp—1 h/pn
< 2> b Y [eov(Vin, Vs
h=1  k=h/pn—ln+1
g 3 it
k=1/pn—ln+1 Pn
SRR PREALLLCD )
b Dn

Note that 1/p, = m,, is the size of big blocks I,’s and 1/p, — I, + 1 = m,, — [,, + 1 is the
distance between consecutive small blocks (Jiy,, J(z+1)n)’s. The last limit follows from (3.45).

To finish the proof, we need to establish the central limit theorem in (3.48). Note the
gn(fln)’s are iid with Egn(fln) = 0. We now calculate its variance. Recall that 1/p, — [, is

the size of I, the big block with small block removed. Then

Var <§n(f1n)>

1/pn—ln
= Var Z Yin
7=1
1 1/pn—ln—1
= (p_ — ln)Var(Yj,) + 2 Z (1/pn — b — k)cov(Yiy, Y(kr-i-l)n)
n k=1

h
1 I, +k\ 1
= (— —l,)Var(Yj,) + 2 E + E + E (1 — ) —cov(Yin, Yikti)n)

Pn 1/pn ) Pn
= Io+[1—|—[2—|—[3
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Here

1
hm [0 = hm (1 - lnpn)p_var(y;n) = Ug(fv f)>

n—oo n—oo
and . ,
cov(Yin, Y| n
lim 1, = lim 23" (1= pu(la + k) ( 1p (1)) =2 oi(f. f)
k=1 " k=1

We also have

I
. Yin, Yet1)n
lim limsup |/5| < lim limsup Z [cov(Yin, Ykt —0

li
h—=00 nooo h—o0 noo k—ht1 Pn

from (3.44), and

= Yin: Yetn
lim Z lcov(Y1 (k-+1) )l —0

n—o0 Pn
=,

n—oo
from (3.45). Therefore

lim Var (Sn(fm)> = lim o+ lim lim I, = 02(f, f) +2iaz(f, ) = 2(f, f)

n—o0 n— 00 h—o00 n—00 .
=1

as defined. To show that this infinite sum converges, it suffices to show that

D m{ X)Xl > 1, x| > 1}) < oo,
h=1
This follows from (3.22) in condition (M), for if

> (G x)xl > 1, x| > 13) = oo,

then

l l
1 n n
limSUPp—ZP(HXoH >, 1Kl > ) 2 1i7§gi£fZP(l|Xo|| > T, (1K > 7l [[Xol| > )

n—oo n j:h j:h
o0
> D p({(xx)[x] > LX) > 1}) = oo,
j=h
which leads to a contradiction.

To apply the central limit theorem, we verify the Lindeberg’s condition,

2
1/pn*ln

O T 2
E[(Sn(11n>> 1{|Sn(fm>\>em}] < E DD Y| Ysdusesmn)
j=1
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< E [c(l/pn - ln)21{|§n(fm>\>em}]

1 _
< cgP 150 (Tin)| > /s

1 Var [gn(fm)] o 1 .
< - L - = - )
= R e, (np?l)_)

This completes the proof for the convergence of \/n#ﬂSn(l ‘n).

The joint convergence of (S,(LI), 87(12))7’ follows from the same line of argument together

1
NG
with the Cramer-Wold device. In particular,

1 . .
—cov (S, 8D = o*(fi, f;), i,5=1,2.
npr,

This completes the proof of the lemma. n

Remark 3.9.4. Lemma 3.9.1 itself is a more general result of independent interest. The
result can be generalized for functions f; defined on Rd\{O} with compact support. In this
case, condition (3.22) should be modified to

ln

1
lim limsup — Z]P’(HXoH > ery, || X;]| > er,) =0

h—oo poco n 7
J=h

for some € > 0, where support(f) C Ed\BE(O). Also, as seen during the proof of the lemma,

the conditions on py, l,, and oy can be further relazed.
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Chapter 4

Fitting the linear preferential

attachment model

4.1 Introduction

The preferential attachment mechanism, in which edges and nodes are added to the network
based on probabilistic rules, provides an appealing description for the evolution of a network.
The rule for how edges connect nodes depends on node degree; large degree nodes attract
more edges. The idea is applicable to both directed and undirected graphs and is often the
basis for studying social networks, collaborator and citation networks, and recommender
networks. Elementary descriptions of the preferential attachment model can be found in
Easley and Kleinberg (2010) while more mathematical treatments are available in Durrett
(2010), van der Hofstad (2017), Bhamidi (2007). Also see Kolaczyk and Cséardi (2014) for
a statistical survey of methods for network data, Rinaldo et al. (2013) for consideration
of statistics of an undirected network and Yan et al. (2016) for asymptotics of a directed
exponential random graph models. Limit theory for estimates of an undirected preferential
attachment model was considered in Gao and van der Vaart (2017).

For many networks, empirical evidence supports the hypothesis that in- and out-degree
distributions follow a power law. This property has been shown to hold in linear preferential
attachment models, which makes preferential attachment an attractive choice for network

modeling Durrett (2010), van der Hofstad (2017), Krapivsky et al. (2001), Krapivsky and
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Redner (2001), Bollobas et al. (2003). While the marginal degree power laws in a simple
linear preferential attachment model were established in Krapivsky et al. (2001), Krapivsky
and Redner (2001), Bollobés et al. (2003), the joint regular variation (see Resnick (2008,
2007)) which is akin to a joint power law, was only recently established (Samorodnitsky et al.,
2016, Resnick and Samorodnitsky, 2015). In addition, it was shown in Wang and Resnick
(2016) that the joint probability mass function of the in- and out-degrees is multivariate
regularly varying. This is a key result as the degrees of a network are integer-valued.

In this chapter, we discuss methods of fitting a simple linear preferential attachment
model, which is parametrized by @ = («, 8,7, 6in, dout). The first three parameters, «, 3,7,
correspond to probabilities of the 3 scenarios for adding an edge and hence sum to 1, i.e.,
a+ B+~ = 1. The other two, d;, and oy, are tuning parameters related to growth rates.
The tail indices of the marginal power laws for the in- and out-degrees can be expressed as
explicit functions of @ (see (4.5) and (4.6) below). The graph G(n) = (V(n), E(n)), where
V(n) is the set of nodes and E(n) is the set of edges at the nth iteration, evolves based
on postulates that describe how new edges and nodes are formed. This construction of the
network is Markov in the sense that the probabilistic rules for obtaining G(n+ 1) once G(n)
is known do not require prior knowledge of earlier stages of the construction.

The Markov structure of the model allows us to construct a likelihood function based on
observing G(ng),G(ng + 1),...,G(ng + n). After deriving the likelihood function, we show
that it has a unique maximum at = (&, B,&,(gin,gom) and that the resulting maximum
likelihood estimator is strongly consistent and asymptotically normal. The normality is
proved using a martingale central limit theorem applied to the score function. The limiting
distribution also reveals that (&, B,&), Oin, and oy are asymptotically independent. From
these results, asymptotic properties of the MLE for the power law indices can be derived.

For some network data, only a snapshot of the nodes and edges is available at a single
point in time, that is, only G(n) is available for some n. In such cases, we propose an
estimation procedure for the parameters of the network using an approximation to the like-

lihood and method of moments. This also produces strongly consistent estimators. These
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estimators perform reasonably well compared to the MLE where the entire evolution of the
network is known but predictably there is some loss of efficiency.

We illustrate the estimation procedure for both scenarios using simulated data. Simu-
lation plays an important role in the process of modeling networks since it provides a way
to assess the performance of model fitting procedures in the idealized setting of knowing
the true model. Also, after fitting a model to real data, simulation provides a check on the
quality of fit. Departures from model assumptions can often be detected via simulation of
multiple realizations from the fitted network. Hence it is important to have efficient simula-
tion algorithms for producing realizations of the preferential attachment network for a given
set of parameter values. We adopt a simulation method, learned from Joyjit Roy, that was
inspired by Atwood et al. (2015) and is similar to that of Tonelli et al. (2010).

Our fitting methods are implemented in a real data setting using the Dutch Wiki talk
network (Kunegis, 2013). While one should not expect the simple 5-parameter (later ex-
tended to 7-parameter) linear preferential attachment model to fully explain a network with
millions of edges, it does provide a reasonable fit to the tail behavior of the degree distri-
butions. We are also able to detect important structural features in the network through
fitting the model over separate time intervals.

Often it is difficult to believe in the existence of a true model, especially one whose
parameters remain constant over time. Allowing, as we do, a preferential attachment model
with only a few parameters and no possibility for node removal may seem simplistic and
unrealistic for social network data. Of course, preferential attachment is only one mechanism
for network formation and evidence for its use in fields outside data networks is mixed (Jones
and Handcock, 2003a,b) and we restrict attention to linear preferential attachment. Even
imperfect models have the potential to capture salient properties in the data, such as heavy-
tailedness of the in-degree and out-degree distributions, and to identify departures from
model assumptions. While maximum likelihood estimation is essentially the gold standard
for cases when the underlying model is a good representation of the data, it may perform

poorly in case the model is far from being appropriate. In Wan et al. (2018), we consider
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a semi-parametric estimation approach for network models that exhibit heavy-tailed degree
distributions. This alternative estimation methodology borrows ideas from extreme value
theory.

The rest of the chapter is structured as follows. In Section 4.2, we formulate the linear
preferential attachment network model and present an efficient simulation method for the
network. Section 4.3 gives parameter estimators when either the full history is known or
when only a single snapshot in time is available. We test these estimators against simulated

data in Section 4.5 and then explore the Wiki talk network in Section 4.6.

4.2 Model specification and simulation

In this section, we present the linear preferential attachment model in detail and provide a

fast simulation algorithm for the network.

4.2.1 The linear preferential attachment model

The directed edge preferential attachment model (Bollobés et al., 2003, Krapivsky and Red-
ner, 2001) constructs a growing directed random graph G(n) = (V(n), E(n)) whose dynamics
depend on five non-negative real numbers «, 5,7, i, and 0oy, where a + 54+ v = 1 and
Oin, 0ot > 0. To avoid degenerate situations, assume that each of the numbers «, 3,7 is
strictly smaller than 1. We obtain a new graph G(n) by adding one edge to the existing
graph G(n — 1) and index the constructed graphs by the number n of edges in E(n). We
start with an arbitrary initial finite directed graph G(ng) with at least one node and ng edges.
For n > ng, G(n) = (V(n), E(n)) is a graph with |E(n)| = n edges and a random number
|V (n)] = N(n) of nodes. If u € V(n), Dl(:)(u) and Di(:) (u) denote the in- and out-degree of
u respectively in G(n). There are three scenarios that we call the «, § and ~y-schemes, which
are activated by flipping a 3-sided coin whose outcomes are 1,2, 3 with probabilities «, 3, 7.
More formally, we have an iid sequence of multinomial random variables {J,,,n > ng} with

cells labelled 1,2,3 and cell probabilities «, 3,y. Then the graph G(n) is obtained from
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G(n — 1) as follows.

a-scheme [B-scheme ~-scheme

e If J, = 1 (with probability «), append to G(n—1) a new node v € V(n)\V(n—1) and
an edge (v, w) leading from v to an existing node w € V(n — 1). Choose the existing

node w € V(n — 1) with probability depending on its in-degree in G(n — 1):

DI (w) + by,
P[choose w € V(n —1)] = n—1+0,Nn—-1)

(4.1)

o If J, = 2 (with probability /), add a directed edge (v,w) to E(n —1) with v €
V(n—1)=V(n) and w € V(n — 1) = V(n) and the existing nodes v, w are chosen

independently from the nodes of G(n — 1) with probabilities

Dy (v) + Sou )( Diy ™ (w) + 6in )

o out
Plchoose (v, w)] = (n — 14+ duN(n—1))\n—1+0;, N(n—1)

e If J, = 3 (with probability 7), append to G(n — 1) a new node w € V(n)\ V(n —1)
and an edge (v,w) leading from the existing node v € V(n — 1) to the new node w.

Choose the existing node v € V(n — 1) with probability

pl-t) Sou
Plchoose v € V(n —1)] = - iuj_ 5(U3]\—/i_(n_t 1)’

(4.2)

Note that this construction allows the possibility of having self loops in the case where
Jn = 2, but the proportion of edges that are self loops goes to 0 as n — oo. Also, multiple

edges are allowed between two nodes.
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4.2.2 Power law of degree distributions

Given an observed network with n edges, let N;;(n) denote the number of nodes with in-
degree i and out-degree j. If the network is generated from the linear preferential attachment
model described above, then from Bollobas et al. (2003), there exists a proper probability

distribution {f;;} such that almost surely

Nij(n) Pij
— fij =t ; — 00. 4.3
Consider the limiting marginal in-degree distribution pi* := 3 ;i pij- It is calculated from
(Bollobés et al., 2003, Equation (3.10)) that
in __ o
Po = 1 + aq (5111)5111’
and for ¢ > 1,
in __ F(Z + 5m)F(1 + 5in + aq (5in)_1) ( O./éin + Yy )
pz B F(Z + 1 + 5in + al(éin)_l)r(l + 5in) 1 + al(éin)éin a1 (5in) ’
where
a—+p
A)i= —— A>0.
aN = 5y
Moreover, pi* satisfies
pr o= Zpij ~ Cipt "™ as ¢ — 00, as long as ady, +v > 0, (4.4)

J=0
for some finite positive constant C},, where the power index

14+ din(a+7)

lin = 1 4.5
a+p (4:5)

Similarly, the limiting marginal out-degree distribution has the same property:

p;-’“t = Zpij ~ Cougt ™ as j — 0o, as long as You + a > 0,

i=0
for Cyy positive and
L+ dout (a0 +

bows = 1+ a+y) (4.6)

B+
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Algorithm 1: Simulating a directed edge preferential attachment network

Algorithm
Input: «, 3, §in, dout, the parameter values; G(ng) = (V(no), E(no)), the
initialization graph; n, the targeted number edges
Output: G(n) = (V(n), E(n)), the resulted graph
t < nyg
while ¢t < n do
N(t) < [V ()]
Generate U ~ Uniform(0,1)
if U < a then
v < N(t)+1
v « Node Sample(E(t), 2, 6i,)
V(t) < Append(V (t), N(t) + 1)
Ise if a < U < a+ (8 then
v <~ Node_Sample(E(t), 1, dour)
v <+ Node Sample(E(t),2, 6i,)
Ise if U > a + [ then
v « Node_Sample(E(t), 1, dou)
v N(t) +1
V(t) + Append(V(t), N(t) + 1)
E(t+1) + Append(E(t), (v, v?))
t«—t+1

end
return G(n) = (V(n), E(n))

@

@

Function Node_Sample

Input: E(t), the edge list up to time ¢; j = 1,2, the node to be sample,
representing outgoing and incoming nodes, respectively; 0 € {din, dout }, the
offset parameter

Output: the sampled node, v

Generate W ~ Uniform(0,t + N(t)0)

if W <t then

©)
‘ U 4= U
else if W > ¢ then

| v [0

return v
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4.2.3 Simulation algorithm

We describe an efficient simulation procedure for the preferential attachment network given
the parameter values («, 3,7, 0in, Oout), Where a + 3+ v = 1. The simulation cost of the
algorithm is linear in time. This algorithm, which was provided by Joyjit Roy during his
graduate work at Cornell University, is presented below for completeness. Note that this
simulation algorithm is specifically designed for the case where the preferential attachment
probabilities (4.1)—(4.2) are linear in the degrees. A similar idea for the simulation of the
Yule-Simon process appeared in Tonelli et al. (2010). Efficient simulation methods for the
case where the preferential attachment probabilities are non-linear are studied in Atwood
et al. (2015), where their algorithm trades some efficiency for the flexibility to model non-
linear preferential attachment.

Using the notation from the introduction, at time ¢ = 0, we initiate with an arbitrary
graph G(ng) = (V(ng), E(ng)) of ny edges, where the elements of F(ng) are represented in
form of (v§1),v§2>) € V(ng) x V(ng), i =1,...,n9, with vi(l),vi@) denoting the outgoing and
incoming vertices of the edge, respectively. To grow the network, we update the network at
each stage from G(n — 1) to G(n) by adding a new edge (vg), vr(?)). Assume that the nodes
are labeled using positive integers starting from 1 according to the time order in which they
are created, and let the random number N(n) = |V (n)| denote the total number of nodes in
G(n).

Let us consider the situation where an existing node is to be chosen from V(n) as the
vertex of the new edge. Naively sampling from the multinomial distribution requires O(N(n))
evaluations, where N(n) increases linearly with n. Therefore the total cost to simulate a
network of n edges is O(n?). This is significantly burdensome when n is large, which is
usually the case for observed networks. Algorithm 1 describes a simulation algorithm which
uses the alias method (Kronmal and Jr., 1979) for node sampling. Here sampling an existing
node from V'(n) requires only constant execution time, regardless of n. Hence the cost to
simulate G(n) is only O(n). This method allows generation of a graph with 107 nodes on a

personal laptop in less than 5 seconds.
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To see that the algorithm indeed produces the intended network, it suffices to consider the
case of sampling an existing node from V' (n — 1) as the incoming vertex of the new edge. In
the function Node_Sample in Algorithm 1, we generate W ~ Uniform(0,n — 1+ N(n—1)d;,)
and set

; W—-(n-1
V 4— Uﬁ/{)/] liwen1y + ’V%-‘ Liwsn_1)-

Then

—i—IP’( W_én_l)—‘:w>IP’(W>n—1)
B Di(r?_l)(w) n—1
~  n—1 n—1+Nmn-1)d,
1 N(n—l)éin
+
Nn—1)n—1+N(n—1),
Dl V(w) + 0,

which corresponds to the desired selection probability (4.1).

4.3 Parameter estimation: MLE based on the full
network history

In this section, we estimate the preferential attachment parameter vector @ = (a, 3, din, dout)
under two assumptions about what data is available. In the first scenario, the full evolution
of the network is observed, from which the likelihood function can be computed. The
resulting MLE is strongly consistent and asymptotically normal. For the second scenario,
the data only consist of one snapshot of the network with n edges, without the knowledge
of the network history that produced these edges. For this scenario we give an estimation
approach through approximating the score function and moment matching, which produces
parameter estimators that are also strongly consistent but less efficient than those based on

the full evolution of the network. In both cases, the estimators are uniquely determined.
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4.3.1 Likelihood calculation

Assume the network begins with the graph G(ng) (consisting of 1y edges) and then evolves
according to the description in Section 4.2.1 with parameters (o, 5, din, dout ), Where 0y, Sous >
0 and «, 8 are non-negative probabilities. The ~ is implicitly defined by v =1 —a — 3. To
avoid trivial cases, we will also assume «, 3,7 < 1 for the rest of the chapter. For MLE
estimation we restrict the parameter space for i, dou; to be [e, K], for some sufficiently
small € > 0 and large K. In particular, the true value of d;,, dous is assumed to be contained
n (¢, K). Let e, = (vgl),vt ) be the newly created edge when the random graph evolves
from G(t—1) to G(t). We sometimes refer to ¢ as the time rather than the number of edges.

Assume we observe the initial graph G(no) and the edges {e;};", ,; in the order of their

formation. For t =ng+ 1,...,n, the values of the following variables are known:

e N(t), the number of nodes in graph G(t);
o Di(ﬁ*l) (v), D(tfl)(v), the in- and out-degree of node v in G(t — 1), for all v € V (¢t — 1);

out

e J;, the scenario under which e; is created.

Then the likelihood function is

L(a, B, in; dous| G(no), (€)= no+1)
(e )
o\ E 1+ dinN(t—1)
T (AR (B e )
. t—14+ 0Nt —1)/\t =1+ 6ouN(t —1)

n DD (M Lis=3)
< I ((1—a—@) o {07 ) + So (4.7)

t=no+1 t =14 GouN(t —1)

and the log likelihood function is

log L(cv, B, 6in, dous| G(10), (€1)i=ny11) (4.8)
= loga Z 1{Jt }—i—logﬁ Z 1{Jt }—l—logl—a— Z ].{Jt =3}
t=ngp+1 t=nop+1 t=ngp+1
+ Z log (D(t 2 2)) +5in) 1iciion
t=no+1
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+ Z 10g< el 1)) + 5out> lije2an

t=nog+1
Z log(t — 14 6N (t — 1)) 11,2
t=ng+1
Z log(t -1+ 5outN<t - 1>>1{Jt6{2,3}}-
t=nog+1

The score functions for «, 3, din, dout are calculated as follows:
a n
a log L(Oé, /87 5ina 50ut| G(?’Lo), (et)t:no-i—l)

Oa
= - Z Lij=1) — Z Lis,=3}, (4.9)

t no+1 t no+1

0
an log L( «, 57 5ina 50ut’ G(”O)a (et)?:no—i-l)

B
Z 1ig=2y — Z 1i5,=3), (4.10)

t no+1 t no+1

0
05 log L(O-/y Bv 5in; 50ut| G(TL()), (et)?:no—l—l)

1
= > Lineqr 2y

2
t=ng+1 D( )(U( ))+5m

. N(t—1)
- Z 1ie02)), (4.11)
A T T 6N (1)

log L(Oé, 67 6in> 6out| G(TL()), (et>?:n0+1>
a5out

n

1

= 1

Z t—1 1 {J:€{2,3}}
t=ng+1 Dc()ut )(UYS )) + 50ut

S NE-1)
t— 1+ 6o N (t — 1) et

t=nog+1

Note that the score functions (4.9), (4.10) for a and f do not depend on dy, and Joyut.
One can show that the Hessian matrix of the log-likelihood for («, ) is positive definite.

Setting (4.9) and (4.10) to zero gives the unique MLE estimates for a and g,

~MLE
= 1 4.12
a . § L= (4.12)
t= n0+1
BMLE — § 1)— 4.13
n—no t=no+1 { a ( )
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These estimates are strongly consistent by applying the strong law of large numbers for the
{J:} sequence.

Next, consider the first term of the score function for d;, in (4.11), and we have

1
Z D.(tfl)(vg)) e 1ienon

o0 n

1

i+ {Dt D) the{12}}
=0 - no+1

Observe that {lel 1)(vt( ) =1,J; € {1, 2}} describes the event that the in-degree of node
v§2)€ V(t —1)isi at time ¢t — 1 and is augmented to i + 1 at time ¢. For each ¢ > 1, such an
event happens at some stage t € {ng+ 1,10+ 2,...,n} only for those nodes with in-degree
<7 at time ny and in-degree > ¢ at time n. Let N;j(n) denote the number of nodes with
in-degree ¢ and out-degree j at time n, and N;®(n) and N2 (n) to be the number of nodes
with in-degree equal to 7 and greater than i, respectively, i.e.,
N"(n) = Y Ny(n), NZ(n) => N(n)
=0 k>i

Then

Z 1{D§§*1)(vt(?)):z‘,Jte{Lz}} = NUi(n) = NZj(no), i>1.

On the other hand, when i = 0, {D (= 1)( ) =0,J; € {1, 2}} occurs for some ¢ if and only

if all of the following three events happen:

(i) v has in-degree > 0 at time n
(ii) v,§2) does not have in-degree > 0 at time ng;
(iii) vt@) was not created under the y-scheme (otherwise it would have been born with

in-degree 1).

This implies:

Z {D(t D ({2 O,JtE{l,Q}} = Nglo( ) >0 nO Z l{Jt =3}

t=no+1 t=no+1
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since there are, in total, Zf:no +1 1{j,=3) nodes created under the y-scheme. Therefore,

n [e.e] n

1
Z t—1), (2 {Jee{1,2}}
t=nop+1 Dl(n )(Ut( )) + 5in

v N=i Je{l, 2}}

in

) —|— 51n 6in

=0

Setting the score function (4.11) for d;, to 0 and dividing both sides by n — ng leads to

L M) — NE(no)
1 (3 _ 1
1 & N(t - 1)
- 1 =0 4.15
n—ng 2 t— 14 6 N(t — 1) etz = 5 (4.15)
t=no+1

where the only unknown parameter is d;,. In Section 4.3.2, we show that the solution to
(4.15) actually maximizes the likelihood function in 6;,. Similarly, the MLE for d,, can be

solved from

1 iNsl;-t(n) — N (no) 2 2otnest a1y
n—"no .7 + 50ut 50ut

n

1 N(t—1)
- § 1 =0
n—no = t— 14 6ouN(t—1) {Jeef23}) ’

J=0

where N2 (n) is defined in the same fashion as NZ%(n).

Remark 4.3.1. The arguments leading to (4.14) allow us to rewrite the likelihood function
(4.7):

L<057 67 5in7 5out| G(”O)a (et)?:nngl)

— qt=ngt Lg=1y ﬁZ?:nOH 11y,—2} (1—a-— 5)2?:n0+1 115,=3)

n

) T (=14 6N (t — 1)) Hne02 (£ — 14 G, N (t — 1))~ ety

t=nog+1
u s (t=1) . (2) ( 1) (1)
DY i seq1,2 pli-Y Jre{2,3
X H HH_(;W){W i)=i, e }}HJ+5out{ @i)=jnef2,3)}
t=no+1 Li=0

— t=ng+1 L=} BZ?:"OH 115,=2} (1—a-— ﬂ)zt:no-kl 1{5,=3}
X H [t =1+ 65Nt — 1)) et (t =14 Gy N (E — 1)) H17ee23h
t=nop+1
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5m1{Jt 3} 5;u1t{Jt 1}} % H Z—i—(5 N“’ n H ] +60m ij_t n)—Ngljet(no)'
=0 7=0
Hence by the factorization theorem, N(no), (Ji)iepyi1, (NZ(n) — NZi(ng))iz0, (N2¥'(n) —

Nﬁ?t(no))jzo are sufficient statistics for (a, B, i, Oout)-

4.3.2 Consistency of MLE

We remarked after (4.12) and (4.13) that &M“F and SMLE converge almost surely to a and
B. We now prove that the MLE of (i, doyt) is also strongly consistent. Note that if we
initiate the network with G(ng) (for both ng and N(ng) finite), then almost surely for all
i,j 20,

N2, (ng) < N(no) 0 N2 (no) < N(n)

n n n - n

— 0, asn — oo,

and (n —ng)/n — 1. In other words, ng, N%(ng), N23*(ng) are all o(n). So for simplicity,
we assume that the graph is initiated with finitely many nodes and no edges, that is, ng = 0
and N(0) > 1. In particular, these assumptions imply the sum of the in-degrees at time n
is equal to n.

Let W, (+), ®,(:) be the functional forms of the terms in the log-likelihood function (4.8)

involving 0, and d,y respectively, normalized by 1/n, i.e.,

> Nn(n ) log \ —
U, (N) = >;L( ) log(i + \) — S Z 123y
i=0 t=1
1 n
- Z log (t — 1+ AN(t — 1)) Lyequy)
N°‘“( ) log 1 &
B, (1) = S log(j ) = =5 D L
§=0 t=1

1 n
T Z log (t =1+ puN(t — 1)) Lseq3))-

t=1

The following theorem gives the consistency of the MLE of ¢;,, and gyt .

Theorem 4.3.2. Suppose din, 0ur € (€, K) C (0,00). Define

n) = argmax W, (\), OMEE — §MLE(p) .— argmax @, (u).

e<ASK e<u<K

GMLE _ §MLE(
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Then these are the MLE estimators of d;,, 0wt and they are strongly consistent; that is,

SMLE a.s, SMLE a.s.
O 5 = Oin, Ot = douts n — 00.

Proof of Theorem 4.3.2. We only verify the consistency of 6MLE since similar arguments

apply to OMLE Define

out

ZUNB()/n A3 1 1 N(t—1)
L(\) = U (\) = >t SR 1S St 1 .

=0 t=1

Let us consider a limit version of ,,:

_ = pi;li(din) i

= N0 T 41
where P (0in) := > 4o; Pi(0n) with pi(6in) := pj* as defined in (4.4), and
_ _afh
wl) = i A0

Here we write p%n(éin) to emphasize the dependence on é;,. In Lemmas 4.7.1 and 4.7.2,
provided in Section 4.7, it is shown that ¢ (-) has a unique zero at d;,, where 1)(\) > 0 when

A < 0y and (X)) < 0 when A > 6, and
S;ipl%(A) — v\ = 0. (4.17)

Since 1 is continuous, for any £ > 0 arbitrarily small, there exists €, > 0 such that () > e,

for A € [¢,0im — k] and P(N) < —¢g, for X € [6iy + K, K]. From (4.17),

P (EIN,.g s.t.sup sup [P, (A) — (M) < 5,{/2> =1 (4.18)

>Ny Ac[e,K]
Note supye(e i [¥n(A) — ()] < &,/2 implies
Un(A) = P(A) = Jup [n(A) =(A)] = ex —ex/2 > 0, A€ e, 0m — k),
and |
PYn(A) < (X)) + Ail[l%] V(X)) = (V)| < —ew+6e4/2 <0, A€ (6im+ K, K].
These jointly indicate that &, — x < 6MLE < 6, + k. Hence (4.18) implies
P(lim |GMLE _ 5.1 < m) =1,

n—oo

OMLE 2%y 5. . O

? m

for arbitrary x > 0. That is
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4.3.3 Asymptotic normality of MLE

In the following theorem, we establish the asymptotic normality for the MLE estimator

V\MLE _ (~MLE AQMLE
0, , B

= (& SMLE §MLE)

) Yin out

Theorem 4.3.3. Let éﬁ“E be the MLE estimator for @, the parameter vector of the pref-

erential attachment model. Then

Va(0MEE —9) 4 N (0,5(8)),

where _ .
1-8 1
a(l—a—p) l1—a—p 0 0
1 11—« O O
2_1<0) — 1(9) = 1-a—p B(l—a=p) , (419)
0 0 I; 0
O 0 O Iout
with
> in 1—p)?
I o= Z_p_>z2_lz_ (o + B)( 5)2, (4.20)

Iout =

i P a (v +BA)(-p)
=0 (.] + 50ut)2 5(27ut (1 + 5out(1 - 6))2
In particular, 1(0) is the asymptotic Fisher information matriz for the parameters, and

hence the MLE estimator is efficient.

Remark 4.3.4. From Theorem 4.5.3, the estimators (aMEE, BMLE), 5%LE, and 5%5E are

asymptotically independent.

Proof of Theorem 4.3.3. We first show the limiting distributions for the MLE’s, i.e. (&MLE  gMLE),

OMLE and $MLE From (4.12) and (4.13),

out

n

. 5 1
(GMLE MLE) _ - Z (Lg=1ys Lismay) s

t=1

where {J;} is a sequence of iid random variables. Hence the limiting distribution of the pair
<(34M LE BM LE ) follows directly from standard central limit theorem for sums of independent

random variables.
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Next we show the asymptotic normality for 511\11“‘5 ; the argument for (ij)\ﬁtLE is similar.
Recall from (4.11) that the score function for d;, can be written as
a n
96 10gL(O‘75a5ina50u‘c) = Zut(é)a
in 5 —1
where u; is defined by
1 N(t—1)
0) = 1 — 1 : 4.21
w0 = D ) g e T T g e (420

The MLE estimator Slj‘f LE can be obtained by solving >, u;(d) = 0. By a Taylor expansion

of Z?:l ut(5)7
0 = D uw (") = 3" w(G) + (G0 = ) 3 (), (4.22)
t=1 t=1 t=1

where 1, denotes the derivative of u; and 07, = &, + E(OMEE — §,,) for some & € [0,1]. An

elementary transformation of (4.22) gives

N 1 n
n1/2(5£1“E — 0m) = (— - ) (n_1/2 ut(&n)) )
nil Z?:l ut((sl*n> ;

n'2(6MLE _ sy & N(0, 1Y),

» Hin

To establish

where [, is as defined in (4.19), it suffices to show the following two results:

(i) n'/? > iy U (Oin) t N(0, In),
(i) n7t o0 w(6) 2 T
These are proved in Lemmas 4.7.3 and 4.7.4 in the Section 4.7.1, respectively.

To establish the joint asymptotic normality of the MLE estimator éi\f LE " denote the joint

score function vector for @ by

%logL(O) =1 8,(0) = (Su(a), Su(B), Su(Bin), Su(Gous))”

where S, (), Sp(58), Sn(din), Sn(dout) are the score functions for «, 3, din, dous, respectively. A

multivariate Taylor expansion gives
0=S5, (ég“E) = S,(0)+8, (é;;) (ég“E . 0) , (4.23)
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where S,, denotes the Hessian matrix of the log-likelihood function log L(8), and é;“l =
0+¢€o (éﬁ“E — 9) for some vector € € [0,1]*, where “0” denotes the Hadamard product.

From Remark 4.3.1, the likelihood function L(@) can be factored into

L<0) = fl (Oé, B)f2(5in>f3(6out)-

Hence
[ 2 log Ln(07) 82 log Ly, (6%) ]
Oa? 0adp 0 0

1 92 log L, (6% 02 log Ln(65) 0 0
Ly - | B S | L) (e
n n 8% log L, (6%)

0 0 952 0

0 0 0 52 1o§5§n(é;)

as implied in the previous part of the proof, where I(0) (defined in (4.19)) is positive semi-
definite.

Note that (S,(a),Sn(5)), Sn(0m), Sn(dout) are pairwise uncorrelated. As an example,

observe that
Olog L(0) Olog L(0
E[Sn(a)sn(&n)] = / aoz( ) 55,( )L(O)dx

_ /310gf1(a75)310gfz(51n)
B dav 90w

- dfi(a, B) 0 f2(0m)
= [P OR ) 5 x

L(0)dx

fl (O[, B)fQ(éin)f?)(éout)dX

= 9005,
= 0 = E[Sn()]E[Sn(d)]

Using the Cramér-Wold device, the joint convergence of S,,(0) follows easily, i.e.,
n128,(0) % N(0,1(6)).

From here, the result of the theorem follows from (4.23) and (4.24). O

4.4 Parameter estimation based on one snapshot

Based only on the single snapshot G(n), we propose a parameter estimation procedure. We

assume that the choice of the snapshot does not depend on any endogenous information
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related to the network. The snapshot merely represents a point in time where the data is
available. Since no information on the initial graph G(ng) is available, we merely assume ng
and N (ng) are fixed and n — oo.

Among the sufficient statistics for (o, 5, din, dous) derived in Remark 4.3.1, (Ni;i(n))po’

(Ng‘;t(n))Po are computable from G(n), but the (J;)}, are not. However, when n is large,

we can use the following approximations according to the proof of Lemma 4.7.2:

1 n
- Z lij—sy = 1—a—3,

t=no+1
and
1 < N(t) 1-8
— —————— Loy R~ (a4 f)————.
n t—mot1 t+ 6111N(t) {Jte{1,2}} 1+ 5in(1 _ ﬁ)

Substituting in (4.15), we estimate d;, in terms of o and /5 by solving

— No(n)/n 1-a-8 (a+p)(1-5)
7+ Oin Jin 1+ (1 - 5)5in

= 0. (4.25)

=0
Note that a strongly consistent estimator of 5 can be obtained directly from G(n):

f=1- N0 s

3.

To obtain an estimate for a, we make use of the recursive formula for {pi"} in (4.36a):

(OZ + 5)511’1 in
(1 + T (1= B)om Py = @, (4.26)
and replace p by N*(n)/n for large n,
(o + B)oin Ny (n)
(1 Fa ) e e (4.27)

Plug the strongly consistent estimator 3 into (4.25) and (4.27), and we claim that solving

the system of equations:

o0

Nyw/n 1-a=jf (a+B1-5) _
; i+0m din 1 +(1— B)ém =0, (4.28a)
(1 + (C¥+ﬁ~)§in ) Nén(n) _ (428b)
1+ (1—5)dw n

gives the unique solution (&, gin) which is strongly consistent for (a, o).
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Theorem 4.4.1. The solution (&,0;,) to the system of equations in (4.28) is unique and
strongly consistent for (o, 0;,), i.e.

& a.s. a’ 5,”1 a.s. 5“7/

The proof of Theorem 4.4.1 is given in Section 4.8.

The parameters 50ut and 7 can be estimated by a mirror argument. We summarize the

estimation procedure for («, 3,7, din, dout) from the snapshot G(n) as follows:

1. Estimate 8 by § =1— N(n)/n.
2. Obtain 62 by solving (i.e., matching (4.28a) and (4.28b))

Nln 1 n + B
2: u+&&1—@)= NP(n) o
— Oin 1 == 1+(1-B)din
3. Estimate o by i
i NOT(n) + ~
« = in 50 N ﬁ
1 . NO (TL) 5in
n 1+(1-B)80.
4. Obtain 43, by solving
> NO¥(n) 3 S L
>J A 6 (1 + 6out<]- - /8)) = Nougzn) S
S~ n G L T
5. Estimate v by
N(()yut(n) =
B T + /8 2
7 = -

Ngut (n) 50

out

1-=5 1+(1-3)30,

Note that even though all three estimators a°, 3, 7° are strongly consistent and hence &° +

B+ 70 22 1, Step 1-5 do not necessarily imply the strict equality

A+ B +7° =
We recommend adding the following two steps for a re-normalization to overcome this defect.

6. Re-normalize the probabilities

oo (2085, 2020)

al + 75 al+7
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7. Plug & into (4.28a) to update the estimate of dy,, i.e., solve for b, from

iNi;;(n)/n_ l—a—-§ (@+p)(1-p) _
i=0 Z.—i_gin Sin 1+ (1 _B)Sin

Similarly, solve for gout from

SN )/ 1-5-8 (F+B01-5H)
=0 ] + Sout gout 1 + (1 - B)Sout

4.5 Simulation study

We now apply the estimation procedures described in Sections 4.3 and 4.4 to simulated data,
which allows us to compare the estimation results using the full history of the network with
that using just one snapshot. Algorithm 1 is used to simulate realizations of the preferential

attachment network.

4.5.1 MLE

For the scenario of observing the full history of the network, we simulated 5000 independent
replications of the preferential attachment network with 10° edges under the true parameter

values

0 = (a,B,6m, 0out) = (0.3, 0.5, 2, 1). (4.29)

For each realization, the MLE estimate of the parameters was computed and standardized

) Vi ((6207); - (6),)

7]

: (4.30)

where (én)l and (0); denote the i-th components of OA% LE and @ respectively, and 62 is the

i-th diagonal component of the matrix 3 := 2(OMLE) The explicit formula for the entries
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Figure 4.1: Normal QQ-plots in black for normalized estimates in (4.30) under 5000 repli-
cations of a preferential attachment network with 10° edges and 6 = (0.3,0.5,2,1). The
fitted lines in blue are the traditional qqg-lines (given by R) used to check normality of the
estimates. The red dashed line represents the y = x line in all plots.

of X is

GMLE (1 . dMLE)

_QMLE BMLE

0

0

where, see (4.19) and (4.20),

_GMLEGMLE 0 0

BMLE (1 _ BMLE) 0 0

A

0 It 0

m

0 I}

o

. R 2
| _ GMLE _ GMLE <&MLE +BMLE> (1 _ BMLE)

Jyout (n>/n aMLE

(i)

(1 4 MLB(] BMLE))Q

(1 _ dMLE) (1 _ BMLE)Q

(1+ 831 — pree))’

?

By the strong consistency of the MLEs combined with Lemma 4.7.2, we have that Ity 3
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Figure 4.2: Normal QQ-plots for the normalized estimates in (4.31) under 5000 replications
of a preferential attachment network with 10° edges and @ = (0.3,0.5,2,1). The fitted lines
in blue are the traditional qg-lines used to check normality of the estimates. The red dashed
line represents the y = x line in all plots.

The QQ-plots of the normalized MLEs are shown in Figure 4.1, all of which line up quite
well with the y = x line (the red dashed line). This is consistent with the asymptotic theory
described in Theorem 4.3.3. Confidence intervals for @ can be obtained using this theorem.

Given a single realization, an approximate (1 — ¢)-confidence interval for (0); is

AMLE o -
(0, 77)i £ 29 - fori=1,...,4,

where z./ is the upper /2 quantile of N(0,1).

4.5.2 One snapshot

We used the same simulated data as in Section 4.5.1 to obtain parameter estimates 6,, :=
(&, B, b, Sout) through only the final snapshot, i.e., the set of directed edges without times-

tamps, following the procedure described at the end of Section 4.4. For the purpose of
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comparison with MLE, Figure 4.2 gives the QQ-plots for the normalized estimates from the
snapshots using the same standardizations for the MLEs, i.e.,

Vi ((6,): - (0):)

o7

L oi=1,....4, (4.31)

where (0,); denotes the i-th components of 8,. Again, the fitted lines in blue are the
traditional QQ-lines and the red dashed lines are the y = x line. The QQ-plot for B exhibits

BMLE "since the two estimates are identical.

the same shape as for

From Figure 4.2, we see that the snapshot estimates of all four parameters are consistent
and approximately normal, i.e., the QQ-plots are linear. However, the slopes of the QQ-lines
for &, din, dout are much steeper than the diagonal line, indicating a loss of efficiency for 6,
compared with 0,. Indeed the estimator variance is inflated for all parameters except for
B, where /3 coincides with the true MLE. This is as expected since knowing only the final
snapshot provides far less information than the whole network history.

Recall that for a consistent estimator 7;, of a one-dimensional parameter 6 constructed

from a random sample of size n, the asymptotic relative efficiencies (ARE) of T,, is defined

by

. Var(y/nT?)
ARE(T),) := lim —————=
RE(T) n=00 Var(y/nT,)’

where T denotes the asymptotically efficient estimator. We may compute the ARE’s for
the snapshot parameter estimates

nVar(aMLP)  Var(aMLF)

ARE(&) = lim — R —— ~ 0.398,
@ n—oo  nVar(@) Var(&)
~ SMLE Var(SMLE
ARE(3,) = Tim Y00 ™7)  Varln ™) ) 599

n—oo  pVar(dy,) - @(Sm)

_ SMLE Var(SMLE
ARE(5y) = Tim Y00 ™)  Varlou™) 996
n—=o0 nVar(Jout) Var(dout)

where Var denotes the sample variance of the parameter estimate based on the 5000 repli-
cations. Note that ARE(fS) = 1 since 3 = SMLE,
Given a single realization, the variances of the snapshot estimates can be estimated

through resampling as follows. Using the estimated parameter én, simulate 10* independent
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bootstrap replicates of the network with n = 10° edges. For each simulated network, the

snapshot estimate, é; = <d*, B, Si*n, S;kut>, is computed. The sample variance of these 10*
snapshot estimates can then be used as an approximation for the variance of 6, so that

assuming asymptotic normality, a (1 — ¢)-confidence interval for € can be approximated by
(0,); £ 2.9 Var ((é;)z) fori=1,...,4,

where z./, is the upper /2 quantile of N(0,1).

4.5.3 Sensitivity test

Now we investigate the sensitivity of our estimates while values of the parameters (n, «, 3, din, dout )
are allowed to vary. First consider the impact of n, the number of edges in the network. To do

so we held the parameters fixed with values given by (4.29): («a, £, din, dout) = (0.3, 0.5, 2, 1)
and varied the value of n. The QQ-plots (not presented) for standardized estimates using
both full MLE and one-snapshot methods were produced to check the asymptotic normality.
When n = 500, 1000, diagnostics revealed departures from normality for both the MLE and

the snapshot estimates. However, after increasing n to 10000, estimates obtained from both
approaches appeared normally distributed as expected.

For each value of n in Table 4.1, 5000 replicates of the network with n edges and parame-
ters @ = (0.3,0.5,2, 1) were generated. For each realization, the MLE’s 0MLE were computed
using the full history of the network and the one-snapshot estimates 6,, were obtained using
the 7-step snapshot method proposed in Section 4.4, pretending that only the last snapshot
G(n) was available. The mean for these two estimators were recorded in Table 4.1. There
is little bias for both estimates of a and (3, even for small values of n. On the other hand,
there is some bias for estimated d;, and d,y for n < 5000. The magnitude of the biases for
both types of estimates decrease as n increases. Also the ARE’s of the snapshot estimator
stay within a narrow band as n increases.

Next we held (n, i, dous) = (10°,2,1) fixed and experimented with various values of

(cr, B) in Table 4.2. For each choice of («, /), 5000 independent realizations of the network
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n Mean(OMLE) Mean(6,,) ARE(6,,)
1000  (0.300, 0.500, 2.076, 1.054) (0.301, 0.500, 2.128, 1.066) (0.408, 1.000, 0.397, 0.228)
5000  (0.300, 0.500, 2.022, 1.013) (0.301, 0.500, 2.036, 1.010) (0.414, 1.000, 0.386, 0.236)
10000  (0.300, 0.500, 2.011, 1.006) (0.301, 0.500, 2.019, 1.006) (0.408, 1.000, 0.388, 0.232)
( ) ) )
( ) ( ) )

N N N N

50000  (0.300, 0.500, 2.003, 1.002) (0.300, 0.500, 2.005, 1.002) (0.399, 1.000, 0.393, 0.230
100000  (0.300, 0.500, 2.001, 1.001 0.300, 0.500, 2.003, 1.000) (0.392, 1.000, 0.382, 0.223

Table 4.1: Mean of MLE and 6, with ARE’s of 6, relative to 8MLF for 8 = (0.3,0.5,2,1)

under different choices of n.

were generated and the means of the MLE 8YLF and the one-snapshot estimates 6, were

recorded. Overall, the biases for 8MLE are remarkably small for virtually all combinations of
parameter values, except for those parameter choices where one of («, 3) is extremely small.
The biases for the snapshot estimates 6, exhibit a similar property, but the magnitudes of
the biases are consistently larger than those in the MLE case.

In general, the snapshot estimators are able to achieve 20%-50% efficiency over the range
of parameters considered. The loss of efficiency might be less than one would expect given
the substantial reduction in the data available to produce the snapshot estimates. It is worth
noting that in the case where (a, ) = (0.7,0.2), the efficiencies of the snapshot estimators
for o and d;, are much larger (0.73 and 0.79, respectively). A heuristic explanation for this

increase is that the parameter v = 1 — o — = 0.1 is relatively small. By the implicit

constraints used for the snapshot estimates, we have
a{_i_;y — 1_3 — 1_BMLE — OAZMLE—’—’?MLE,

that is, the snapshot estimate of the sum « + v is the same as the MLE for the sum. Now
if v is small, one would expect the resulting estimates to also be small so that & would be
nearly the same as @”%¥. Hence the ARE would be close to 1. On the other hand, in the
case of a larger v, see the bottom row of Table 4.2 in which v = 0.6, the ARE for « is not
as large (0.42), but the ARE for dyy is (0.63).
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(a, B) Mean(6MEE) Mean(6,) ARE(8,)

(0.001, 0.99) (0.001, 0.990, 2.034, 1.016) (0.001, 0.990, 2.071, 1.049) (0.291, 1.000, 0.147, 0.316)
(0.01, 0.9)  (0.010, 0.900, 2.004, 1.001) (0.010, 0.900, 2.008, 1.004) (0.331, 1.000, 0.207, 0.381)
(0.1, 0.8) (0.100, 0.800, 2.003, 1.001) (0.100, 0.800, 2.004, 1.002) (0.353, 1.000. 0.264, 0.216)
(0.2, 0.6) (0.200, 0.600, 2.002, 1.001) (0.200, 0.600, 2.003, 1.001) (0.364, 1.000, 0.309, 0.236)
(0.5, 0.3) (0.500, 0.300, 2.001, 1.001) (0.500, 0.300, 2.002, 1.000) (0.472, 1.000, 0.529, 0.202)
(0.7,0.2) (0.700, 0.200, 2.002, 1.000) (0.700, 0.200, 2.002, 1.000) (0.726, 1.000, 0.793, 0.217)
(0.1, 0.3) (0.100, 0.300, 2.001, 1.001) (0.100, 0.300, 2.002, 1.000) (0.420, 1.000, 0.313, 0.629)

Table 4.2: Mean of 8MLE and @, with ARE’s of 8, relative to OMLE for (n, 6, dous) =
(10°,2,1) under different choices of (a, 3).

4.6 Real network example

In this section, we explore fitting a preferential attachment model to a social network. As
illustration, we chose the Dutch Wiki talk network dataset, available on KONECT (Kunegis,
2013) . The nodes represent users of Dutch Wikipedia, and an edge from node A to node
B refers to user A writing a message on the talk page of user B at a certain time point.
The network consists of 225,749 nodes (users) and 1,554,699 edges (messages). All edges are
recorded with timestamps.

In order to accommodate all the edge formulation scenarios appeared in the dataset, we
extend our model by appending the following two interaction schemes (.J,, = 4, 5) in addition

to the existing three (J,, = 1,2,3) described in Section 4.2.1.

o If J,, = 4 (with probability £), append to G(n—1) two new nodes v, w € V(n)\V(n—1)
and an edge connecting them (v, w).
e If J, =5 (with probability p), append to G(n — 1) a new node v € V(n) \ V(n — 1)

with self loop (v, v).

These scenarios have been observed in other social network data, such as the network that
models Facebook wall posts, again available on KONECT (Kunegis, 2013). They occur in
small proportions and can be easily accommodated by a slight modification in the model fit-
ting procedure. The new model has parameter vector (o, 3,7, &, din, dout), and p is implicitly

defined through p =1 — (a+ 4+ v+ £). Similar to the derivations in Section 4.3, the MLE
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estimators for a, 3,7, £ are

) 1 ¢ - 1 ¢
QM — EZI{Jtzl}a pMEE — Ezl{Jt:2}7
=1 t=1

1 n R 1 n
~MLE MLE
Y = _n ;1 1{Jt=3}> § = _n ;1 1{Jt:4}7

and i, dout can be obtained through solving

i NZ(n)/n _ %lel Linepasy 1 i N(t) 1 .

X 4 din Oin n t 4+ 5mN(t) {Jt€{1,2}} )
1=0 =1

i N (n)/n L3 Yepasy li&1 I

j=0 ] + §out 5011(} n P t _.I_ 6outN(t) { te{ ’ }}

We first naively fit the linear preferential attachment model to the full network using

MLE. The MLE estimators are

(dv Bv ’3/7 év 157 Sina Sout) =

(3.08 x 107,8.55 x 107,1.39 x 107*,4.76 x 107°,3.06 x 107°,0.547,0.134).  (4.33)

To evaluate the goodness-of-fit, 20 network realizations of the same size were simulated from
the fitted model. We overlaid the empirical in- and out-degree frequencies of the original
network with that of the simulations. If the model fits the data well, the degree frequencies
of the data should lie within the range formed by that of the simulations, which gives an
informal confidence region for the degree distributions. From Figure 4.3, we see that while
the data roughly agrees with the simulations in the out-degree frequencies, the deviation in
the in-degree frequencies is noticeable.

To better understand the discrepancy in the in-degree frequencies, we examined the
link data and their timestamps and discovered bursts of messages originating from certain
nodes over small time intervals. According to Wikipedia policy (Wikipedia, 2016), certain
administrating accounts are allowed to send group messages to multiple users simultaneously.
These bursts presumably represent broadcast announcements generated from these accounts.

These administrative broadcasts can also be detected if we apply the linear preferential
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Figure 4.3: Empirical in- and out-degree frequencies of the full Wiki talk network (red) and
that from 20 realizations of the linear preferential attachment network with fitted param-
eter values (4.33) from MLE (blue). The scatter plots for the degree frequencies from the
20 simulations are overlaid together to form an informal confidence region for the degree
distribution of the fitted model

attachment model to the network in local time intervals. We divided the total time frame
down to sub-intervals of varying length each containing the formation of 10* edges. The
number 10* is chosen to ensure good asymptotics as shown in Table 4.1. This process

generated 155 networks,
G(nk,l),...,G(nk—l), ]{,’:1,,155

For each of the 155 datasets, we fit a preferential attachment model using MLE. The resulting
estimates (Sin, 5out) are plotted against the corresponding timeline on the upper left panel
of Figure 4.4. Notice that &y, exhibits large spikes at various times. Recall from (4.1), a
large value of é;, indicates that the probability of an existing node v receiving a new message
becomes less dependent on its in-degree, i.e., previous popularity. These spikes appear to be
directly related to the occurrences of group messages. This plot is truncated after the day
2016/3/16, on which a massive group message of size 48,957 was sent and the model can no
longer be fit.

We identified 37 users who have sent, at least once, 40 or more consecutive messages
in the message history. This is evidence that group messages were sent by this user. We

presume these nodes are administrative accounts; they are responsible for about 30% of the
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Figure 4.4: Local parameter estimates of the linear preferential attachment model for the
full and reduced Wiki talk network. Upper left: (Oin, Oous) for the full network. Upper right,
lower left, lower right: (0in, dout), (5,7), (&, &, p) for the reduced network, respectively.

total messages sent. Since their behavior cannot be regarded as normal social interaction,
we excluded messages from these accounts from the dataset in our analysis. We then also
removed nodes with zero in- and out-degrees.

The re-estimated parameters after the data cleaning are displayed in the other three
panels of Figure 4.4. Here all parameter estimates are quite stable through time.

The reduced network now contains 112,919 nodes and 1,086,982 edges, to which we fit the
linear preferential attachment model. The fitted parameters based on MLE for our reduced

dataset are

~ ~ ~

(:BV%&)’& 6ina 5out) =
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Figure 4.5: Empirical in- and out-degree frequencies of the reduced Wiki talk network (red)
and that from 20 realizations of the linear preferential attachment network with fitted pa-
rameter values (4.34) from MLE (blue).

(6.95 x 1072,8.96 x 1071,9.10 x 1072,1.44 x 107*,5.61 x 1072,0.174,0.257).  (4.34)

Again the degree distributions of the data and 20 simulations from the fitted model are
displayed in Figure 4.5. The out-degree distribution of the data agrees reasonably well with
the simulations. For the in-degree distribution, the fit is better than that for the entire
dataset (Figure 4.3). However, for smaller in-degrees, the fitted model over-estimates the in-
degree frequencies. We speculate that in many social networks, the out-degree is in line with
that predicted by the preferential attachment model. An individual node would be more
likely to reach out to others if having done so many times previously. For in-degrees, the
situation is complicated and may depend on a multitude of factors. For instance, the choice
of recipient may depend on the community that the sender is in, the topic being discussed
in the message, etc. As an example a group leader might send messages to his/her team on
a regular basis. Such examples violate the base assumptions of the preferential attachment
model and could result in the deviation between the data and the simulations.

Next we consider the estimation method of Section 4.4 applied to a single snapshot of
the data. In order to implement this procedure, we donned blinders and assumed that
our dataset consists only of the information of the wiki data at the last timestamp. That

is, information about administrative broadcasts, and other aspects of the data learned by
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Figure 4.6: Empirical in- and out-degree frequencies of the full Wiki talk network (red) and
that from 20 realizations of the linear preferential attachment network with fitted parameter
values (4.35) from the snapshot estimator (blue).

looking at the previous history of the data are unavailable. In particular, we would have no
knowledge of the existence of the two additional scenarios corresponding to J, = 4,5. With
this in mind, we fit the three scenario model using the methods in Section 4.4. The fitted

parameters are
(&, B4, Oins Oout) = (5.80 x 1074,8.55 x 1071, 1.45 x 107%,0.199, 0.165). (4.35)

The comparison of the degree distributions between the data and simulations from the fitted
model is displayed in Figure 4.6 and is not too dissimilar to the plots in Figure 4.3 that
are based on maximum likelihood estimation using the full network data. In particular, the
out-degree distribution is matched reasonably well, but the fitted model does a poor job of
capturing the in-degree distribution.

We see from this example that while the linear preferential attachment model is perhaps
too simplistic for the Wiki talk network dataset, it has the ability to illuminate some gross
features, such as the out-degrees, as well as to capture important structural changes such as
the group message behavior. Consequently, despite its limitation, this model may be used
as a building block for more flexible models. Modification to the existing model formulation

and more careful analysis of change points in parameters is a direction for future research.
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4.7 For the proof of Theorem 4.3.2: Lemmas 4.7.1
and 4.7.2

Lemma 4.7.1. For A > 0, the function ¥(\) in (4.16) has a unique zero at 6, and, Y(\) > 0
when A < &4, and (X)) < 0 when X > 04,.

Proof. The probabilities {pi"(\)} satisfy the recursions in i (cf. Bollobds et al. (2003)):

n 1 _ « N
in 1 _ in Y
P ()\) (1+)\+a1<>\)) - >\p0 ()\)+a1(>\)7
in 1 _

PO (1At ) = G- L) (22),

where a;(\) := (a+8)/(1+A(1 = f)). Summing the recursions in (4.36) from 0 to i, we get

(with the convention that ) ._, = 0)

i i—1
. 1 : (e} y .
g 2 k4+ A = E E+XNpl(A) + —— 4+ ——1g>11, >0,
k::opk ) < AT al()‘)> ko( AR + a(A) " ay(A) =iy 120

which can be simplified to

1 ‘ . ‘
—= > PPN+ NP = T gy, i>0. (4.37)
a(d) =

From (4.3),
Zpin()‘) = sz‘j()\) =1-7. (4.38)

Hence by rearranging (4.37), we have

%

(i )+ o = % (1 B Zp}:u)) - ﬁpw),

k=0
or equivalently,

PR = ar(\) (@ + AN)pi* () + 110y (4.39)
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Now with the help of (4.38) and (4.39), we can rewrite () in the following way:

b = %—}—(1—@@@)

o0

i;z lﬂ 7 pz 1n al Z + >\)

T4+ A A z+)\

=0

_ f: a1 (0 ) (7 + 5in)pi (5in) + 710y 7 f: P (din)ar (\) (i + A)

i+ A P i+ A

= PO (4 ()i 4+ 8) — x (V)i + V)

= po(8,) [ (ot B)(1—i(1 - B)
A t+siopp

_ (SO g a4 )
B < Z—i—)\(l a ﬁ)))//\ (1+s(1—5))2d

oo [ atd
_ C(A)/A T (4.40)

The series defining C'(\) converges absolutely for any A > 0 since

o0 n /6) 1
; +>\ +i+)\'

Z+)\ 1—21— ' Zp
1

< (1=-H1-p+7) < oo

._.

Summing over ¢ in (4.39), we get by monotone convergence

S PRO) = D) = @) DD i) e (IA Y )

The infinite series converge because p®(\) is a power law with index greater than 2; see (4.4)

and (4.5). Solving for the infinite series we get

;z‘pin(A) = %(1 —B)+ #1@) -1 (4.41)
Hence we have
(0m) i (din)
c(\) = : (1—-4i(1-p))— , (i(1—B) —1)
i<(1—p)~1 i+ A > ()1 T+ A



1=0
1 - in
T T ) L
B 1 oy 1-p B
Sl T aae T

Now recall from (4.40) that ¢()) is of the form

w0 = o0 [ i S

where C'(\) > 0 for all A > 0. Therefore 9(-) has a unique zero at d;, and ¥(\) > 0 when

A < 0y and (X)) < 0 when A > 6j,. O
We show the uniform convergence of 1, to ¢ in the next lemma.

Lemma 4.7.2. Asn — oo, for any e > 0,

sup [¢n (A) — Y (N)| == 0.

A>e
Proof. By the definition of ¢, p™, (&) is a function of d;, and is a constant with respect to
A. Hence we suppress the dependence on d;, and simply write it as p™, when considering the
difference 1, — ¢ as a function of A:

vy v = YO (% Sy~ (1-a- @))

— i+ A

" 1) (1—=758)(a+p)
__Z<t—1+>\N( 0O T =) )

t=1

‘ Zl{Jt 3} 1—Oé—ﬁ>‘

A>e T T+ A >\>
1< N(t—1) (1—5)(a+5)
hd 1 — 42
ey 271 W) et T T =y 1Y)

For the first term, note that for all ¢ > 0,

iN™ (n Z N (n)i < ZkN,;n = n,

k=i+1
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since the assumption on initial conditions implies the sum of in-degrees at n is n. Therefore

N2(n)/n <i~! for i > 1, and it then follows that

!N‘n )/n—p ‘Nm )/n—p > 1/i > P
Z i+ A <Z T+ A + Z i—l—)\+ PN

i=M+1 1=M+1

Note that the last two terms on the right side can be made arbitrarily small uniformly on
[e,00) if we choose M sufficiently large. Recall the convergence of the degree distribution
{N;j(n)/N(n)} to the probability distribution {f;;} in (4.3), we have

N2 _ N(n) NA(0) s, () gy N fu=pl, Vizo.

n n N(n) 1>0,k>i

Hence, for any fixed M,

Z|Nm n)/n = v ﬁ>0, as n — oo.
1+e€

1=0

which implies further that choosing M arbitrarily large gives

N/ =] L NE ] S v S A
SUpZ i+ A Z i+ € " Z it ite 0

Aze 0 i—0 i=M+1 =M1

The second term in (4.42) converges to 0 almost surely by strong law of large numbers, and

the third term in (4.42) can be written as

1 & N(t—1) (1-p)
n ; (t —1T+AN(E—1) 1+x1- 5)) Loetan

1 n
- E 1 _
TIN5 1+ )\ 1 — n — {Jte{m}} (a + B))' ’

which is bounded by

Iy~ NE-1) (1-8) -5 |1
Ez;t_lJr)\N(t—l)_1+/\(1—B)'+1+>\(1—ﬁ) 5;1%{12}}—(%6)‘.
We have
1y~ NE-1) (1-8)
nggﬁzt—lJr)\N(t—l)_1+>\(1_5)‘

= Ssup
A>e

1% N(t—1)/(t—1) — (1-B) ‘
(I+AN(E—=1)/(t—=1)(1+ N1-75))
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n

1
< =

Nit-1)/(t-1) - (1-F)

n
t=1

I+eNE—1)/E— 1)1 +e(l—p)]|

which converges to 0 almost surely by Cesaro convergence of random variables, since

' N(n)/n— (1 - p)
(1+eN(n)/n)(L + (1 - B))

a.s.
—

Further, by the strong law of large numbers,

1— 1 —
TN o 2y M ~ (0 m‘
=5
T 1+e(1-p)

Hence the third term of (4.42) also goes to 0 almost surely as n — oo. The result of the

lemma follows.

0, as n — oc.

1 - a.s.
n Z ey — (a+ ﬂ)| — 0, asn — oo.
t=1

4.7.1 For the proof of Theorem 4.3.3: Lemmas 4.7.3 and 4.7.4

Lemma 4.7.3. Asn — oo,

nil/z Z ut<5ln) i) N(O, Iln>

t=1

Proof. Let F,, = o(G(0),...

in the graphs. We first observe that {> "} | u;(di), Fn,n > 1} is a martingale. To see this,

note from (4.21) that |u, ()] < 2/ and

E[w; (6in)[Fi-1]

E

N(t—1)

,G(n)) be the o-field generated by the information contained

"l

Jt = 1,ft1] ]P)[Jt - 1]

1ijeq12
5 {Jie{1,2}}

in

1 DYV () 4 6,

in

Ji = 2, .7-}1] PlJ, =2] — (a+ p)

(Oé—i—ﬁ) Z D(t*1)<v)_‘_5inf}—1—|—(5inN(t_1)

veVi_1 in
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E[1¢ecqn20 | Fi-1]

N(t—1)

(4.43)

N(t—1)

IR ey wray wy rrpy




- 1 N(t—-1) o
= (a+8)| X i NG o lteNE-1D)

veVi_1

which satisfies the definition of a martingale difference. Hence

is a zero-mean, square-integrable martingale array. The convergence (4.43) follows from the
martingale central limit theory (cf. Theorem 3.2 of Hall and Heyde (1980)) if the following

three conditions can be verified:

(a) n~Y?max; [uy(6)| 2 0,

(b) n_l Zt th((Sm) £> [in’

(c) E(n~! max; u?(d;,)) is bounded in n.

Since |u(6in)| < 2/0in, we have

2
—-1/2 ) < 2
n m?X|ut(6ln)| — nl/g(sin — 07
and
n~ ' maxu} < — — 0.
t n5in

Hence conditions (a) and (c) are straightforward.

To show (b), observe that

2
1<, 1 N(t—1)
_ . — 1 _
2 ) Z (reti2y) ( DD t_H(gmN(t_l))

( (2 )) + (5in
1 i Lijeqoyn
- - 2
A (Di(ri_l)(vt(z)) + 51“)
_z Xn: 1{Jt€{1 21} N(t—1)
tl) _'_5 t—1+61nN(t_1)
N(t—1) ’
1
+ — ; {J:e{1,2}} (t — 14+ 6N (t — 1))
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Following the calculations in the proof of Lemma 4.7.2, we have for 77,

o0

TlZZNm( n)/n 112{Jt3}_>22f>(;m 52.

(i + 6in)

We then rewrite 15 as

_1¢ 1{Jte{1 2)) N(t—1)/(t—1) 1- 5
T2 - _Z 1n (2) +(5 <1+6mN(t_1)/(t_1)_1+51n(1_ﬁ)>

1 1{Jte{1 2}} 1-p
_|__
n ; DU (0 4 5, 1+ 0w(1 = B)
=: Ty + T,

where
N(t—1)/(t—1) 1-p
1+ 6, N({t—1)/(t—1) 1+6,(1—p)

I 1
T < Ezé_m

t=1
by Cesaro’s convergence and

B 1- 5 No(m)/n 11
T22 - 1 +51n(1 _/8) (; Z‘l‘ém Zl{Jt 3}>

1n

A __Lzﬁ__<m P _1)::(a+MG—BV
[+ 01— ) L+ 0u(l— B))

i+ 0n O
where the equality follows from (4.39). For T3, similar to 7}, we have
RS NE=1/(t=1) \* (1-p)
= = Z liseqion — 5
3 T 0N - 1D/(—-1)) (A +6u(1—7)

(1-3) » (a+B)(1 - B)?
T aa0- Zl{"’f{”}} (1+6n(1 = 5))*

Combining these results together,
1< o
- Z U (0m) = T3 —2(Toy + Too) + 15

= (a+B)1—-B2
Z (1 + Oin )2 B (5_2 a (14 6n(1—p))2 Iin. (4.44)

=0

This completes the proof. O]

Lemma 4.7.4. Asn — oo,



Proof. The result of this lemma can be established by showing first

1 n
= g(Gw) B — I (4.45)
L
and then
Lo~ s, 1 .
n Zut(5in) o Zut(5in) 5 0. (4.46)
t=1 t=1
We first observe that
1 i NE-1) )
Ut(é) = — (Dl(rtl_l)(vgz)) n 5) 1{Jt€{1,2}} + (t 1+ (SN(t — 1)) 1{]}56{1,2}}

N(t—1)

= —ui0) — 2 0) Sy

Recall the definition and convergence result for 75 and T3 in Lemma 4.7.3, we have

1< N(t—1) »
- Sin =T,-T; 5 0.
n;ut( )t—1+5mN(t—1) 2T

Also from (4.44),
1 n
= u}(6w) > Tin.
(g

Hence

n

1 . RS 2§ Nt = 1) -
nZut(5In) - n;ut(ém) nzut<5ln)t—1—|—5in]\7(t—1) 7

t=1 t=1

and (4.45) is established.

By construction and definition, we have oy, 5;;1, din > 0. To prove (4.46), note that

1 1
DY) 5, DUV D) + 6

in in

N(t—1) - N(t—1)
t—14+0N(t—1) t—1+0N(t-1)

e (03) — w(Gw)|] < Lineqion

+lineqiony

6in - 5‘*
< lygeqepn - .
(D5 V@) +8,) (D) + 6

(N (= 1))*(dm — 53)
t—1+4065N(t— 1)) (t—1+40,N(t—1))

R SRS <
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2|51*n — 6in|
< -

(§i>kn5in
Then
Iy N : 2 6;kn 6i 2 2
g (07,) — wf ()| = {ue(05,) — we(in)| |ue(05) + we(Oin)| < ———— | ==+ 5|
0 Oin 05 O
and
ut(din (A ) — 'LLt( in) ( )
t—1+05N(t—1) t—1+6,N(t—1)
N(t-1) N(-1) N(t—1)
< |ue(0) — we(Om) | — 57 + e (05) IS
in (t—1) in « N(—1) NG=T)
L+ 0= L+0f =7 14dn—
2005 =G| 1 9 |0 — O
< — +

050 O 0F  OF i

From Theorem 4.3.2, 6MLE ig consistent for &,, hence

p,

5 — 8| < |OMLE _ 5 | B .

We have

S Y
POSLIINES oL
t=1 t=1

IR
< - Z U (0,) — e (Oin)
e
1« X 2 N(t—1) N(t—1)
< — ul(05) — uZ(6m)| + = u (05, - — u(0in
< 23t -] + 23 i, i A
2006 = 6| /9 o\ Al0f—dw| {4 |05 — 0w
S - ~ _ ~ - - ~ _ <~ ~ - ~ O.
5i*néin 51*n 5in 5i*n5in 6in 6l*n 5i*n(5m
This proves (4.46) and completes the proof of Lemma 4.7.4. O

4.8 Proof of Theorem 4.4.1

Proof. First observe that Y, ¢N™(n) sums up to the total number of edges n, so

= V() e iNP ()
K3 1 — 1'
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We can re-write (4.28a) as
;o (Lo A/ / 1__1-B
a—i_ﬁ B <6in 22:(; Z+5m > <51n 1—{—5111(1—3))

) (i Nﬁéz)/ ;Nzi&)/n>/ (5in<1+5i(1— B)))

- ) >;(”)Hi N (146l ) = Fulow) (4.47)

and (4.28b) as

atf = (Nm( )+ﬁ) /( Ni(n)pr(fij 3)%) =1 gn(0in).

Then 0;, can be obtained by solving

fn(0) = gn(6) = 0, J € e, K].
Similar to the proof of Theorem 4.3.2, we define the limit versions of f,,, and g, as follows:

£O) = Yo+ 3 ),

06) = b +0) [ (1= ). ekl

Now we apply the re-parametrization

1 1
T I sa-p © Ll+1—5’ K1+1—5} =1 (4.48)

to f and g, such that

Note that for all n € Z:

e Set b;(n) := (i"' — (1 — 3))n, then 1 + b;(n) > 0 for all i > 1. So that f(n) > 0 on Z;

o f(n) < =i TPl < 1+ (1=K < oo,
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Meanwhile, g is also well defined and strictly positive for n € Z because
1pl > 1/(1-8) > n. (4.49)
The first inequality holds since:

py > 1/1-p) & p <1-p

«
& ——<1-8
&3 B 6in
L+ 1o
(1—=B8)(a+ B)dn

S a+f < 14 (1= ).

S a+p <1+

We know a + 8 < 1 by our model assumption, thus verifying (4.49).
Define for n € Z,

PR B S b P _1_1—77198’
") = oy T 5w (Z - (1—5))n> Y

i=1

then it follows that
hi) =0 & f)=gmn). nel
We now show that A is concave and h(n) — 0 as 7 — 0, then the uniqueness of the solution
follows.
First observe that

0 - _ & S e -
o) = 8_?72<Zl+(i‘1—(1—ﬁ))'rz>

i=1

-1
& (< Py
oo <Z 1 +bi<n>>

=1

P - 0 [~ P 2
- 2(;1%@(77)) [3_77 (;Hbi(n))]
P - 0 (-~ P
B (Z 1+ bz’(ﬁ)) on? (Z L+ bi(ﬁ)) ' (450

i=1 i=1

We now claim that

O (N P\ 0 (P NP = (- B))
On (ZHbz-(n)) ;377 <1+bi<77)) ; (L+bi(m)* (45)

i=1




82 - p>z p>z p>z ] 1 - 6))
o (i) - o () 2B am

It suffices to check:
()
on? \ 1+ b;(n)

o0

< Q.

— | —— < 00, su
an (1 +0:() Z v

sup g( P )' _ supp>l|2 - (-5
nez |0n \ 1+ bi(n) ner (1 +0i(n))?
P
< 2—-p0)sup———
= CE T my
< 2-80)0+01-p8)K)pL,
Recall (4.41), we then have
00 ) oo k—1 9]
Do =D =D > =) k=L
i=0 i=0 k>i k=0 i=0 k=0
Hence,
| ()] < s a- sy
i—1 nel 87] 1+ bz(ﬁ) i=0

= 2-8)(1+(1-pB)K)* < oo,

which implies (4.51). Equation (4.52) then follows by a similar argument. Combining (4.50),
(4.51) and (4.52) gives

0% - - 1;11 h
o = 2(;1sz‘(77)>
i - (-8 (& = (i — 1+ B)?
) (; (1+bi(n))? )(;Hbz( )) (; (14 bi(n))? >

< 0,

by the Cauchy-Schwarz inequality. Hence h is concave on Z.

From Lemma 4.7.1, 1(03,) = 0 where #(+) is as defined in (4.16). Hence we have f(d,) =
a + [ in a similar derivation to that of (4.47). Also from (4.26), we have ¢(di,) = a + 5.
Hence, i, is a solution to f(0) = g(J).
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Under the 6 — 7 reparametrization in (4.48), we have that f(ny,) = §(1m) where ny, =
din/(1 4+ 0 (1 — f3)), and also

lim f(n) = n— 1 —pin =B+ p" =lim §(n).
i £ (1) ;pm Py = +py' = limg(n)

This, along with the concavity of h, implies that 7;, is the unique solution to il(n) =0, or
equivalently, to f(n) = §(n) on Z.

Let fu(n) == fa(6(n)), Gu(n) == gn(6(n)). We can show in a similar fashion that 7 :=
Oin/(1 — dim(1 — f3)) is the unique solution to f,(n) = §u(n). Using an analogue of the
arguments in the proof of Theorem 4.7.2, we have

sup | fu(n) — fF(n)] 220, sup |gu(n) — §(n)] == 0,
nel nexl

and therefore 77 == n;,. Since & + 7 is a one-to-one transformation from [e, K] to Z, we
have that &, is the unique solution to fn(6) = gn(6) and that Oim —2 5,1, On the other hand,
& can be solved uniquely by plugging d;, into (4.47) and is also strongly consistent, which

completes the proof.
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