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ABSTRACT

Application of Distance Covariance to Extremes and Time Series and Inference for Linear

Preferential Attachment Networks

Phyllis Wan

This thesis covers four topics: i) Measuring dependence in time series through distance

covariance; ii) Testing goodness-of-fit of time series models; iii) Threshold selection for mul-

tivariate heavy-tailed data; and iv) Inference for linear preferential attachment networks.

Topic i) studies a dependence measure based on characteristic functions, called distance

covariance, in time series settings. Distance covariance recently gathered popularity for its

ability to detect nonlinear dependence. In particular, we characterize a general family of

such dependence measures and use them to measure lagged serial and cross dependence in

stationary time series. Assuming strong mixing, we establish the relevant asymptotic theory

for the sample auto- and cross- distance correlation functions.

Topic ii) proposes a goodness-of-fit test for general classes of time series model by applying

the auto-distance covariance function (ADCV) to the fitted residuals. Under the correct

model assumption, the limit distribution for the ADCV of the residuals differs from that

of an i.i.d. sequence by a correction term. This adjustment has essentially the same form

regardless of the model specification.

Topic iii) considers data in the multivariate regular varying setting where the radial part

R is asymptotically independent of the angular part Θ as R goes to infinity. The goal is to

estimate the limiting distribution of Θ given R→∞, which characterizes the tail dependence

of the data. A typical strategy is to look at the angular components of the data for which

the radial parts exceed some threshold. We propose an algorithm to select the threshold

based on distance covariance statistics and a subsampling scheme.



Topic iv) investigates inference questions related to the linear preferential attachment

model for network data. Preferential attachment is an appealing mechanism based on the

intuition “the rich get richer” and produces the well-observed power-law behavior in net-

works. We provide methods for fitting such a model under two data scenarios, when the

network formation is given, and when only a single-time snapshot of the network is observed.
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Overview

This thesis is a compilation of four papers concerning problems in time series, extreme

value theory and network analysis. Three of the four papers explore the usage of distance

covariance, a dependence measure that recently rose to popularity for its ability to detect

nonlinear dependence. The fourth paper considers inference methods for a network model.

In this introduction, we provide an overview of the problems and our contributions.

0.1 Distance correlation in time series setting

In time series analysis, the autocorrelation function (ACF) is perhaps the most used depen-

dence measure to assess serial dependence. It provides a measure of linear dependence and

is closely linked with the class of ARMA models. On the other hand, the ACF gives only

a partial description of dependence. As seen with financial time series, when the data are

uncorrelated but dependent, the ACF is often non-informative. In this case, the dependence

only becomes visible by examining the ACF applied to the absolute values or squares of the

time series. In Chapter 1, we consider the application of distance correlation, in place of

linear correlation, to measure dependences in time series.

The intuition of distance covariance is based on the property that two random vec-

tors X ∈ Rp and Y ∈ Rq are independent if and only if ϕX,Y (s, t) = ϕX(s)ϕY (t), where

ϕX,Y (s, t), ϕX(s), ϕY (t) denote the joint and marginal characteristic functions of (X, Y ). The

distance covariance between X and Y is defined as

T (X, Y ;µ) =

∫
Rp+q

∣∣ϕX,Y (s, t)− ϕX(s)ϕY (t)
∣∣2 µ(ds, dt) , (s, t) ∈ Rp+q,

where µ is a suitable measure. It is easy to see that if µ has a positive Lebesgue density

on Rp+q, X and Y are independent if and only if T (X, Y ;µ) = 0. Given observations

1



{(Xi, Yi), i = 1, . . . , n}, the sample version of the distance covariance is given by

T̂ (X, Y ;µ) =

∫
Rp+q

∣∣ϕ̂X,Y (s, t)− ϕ̂X(s) ϕ̂Y (t)
∣∣2 µ(ds, dt) , (s, t) ∈ Rp+q,

where ϕ̂X,Y , ϕ̂X , ϕ̂Y are the corresponding joint and marginal empirical characteristic func-

tions. When µ = µ1×µ2 and is symmetric about the origin, it can be shown that T̂ (X, Y ;µ)

has a V -statistic form and can be obtained in O(n2) computation.

The concept of distance covariance was first proposed by Feuerverger (1993) for uni-

variate variables X and Y . It was later christened with its current name and brought to

popularity in a series of papers by Székely and co-authors (see, for example, Székely et al.

(2007)). It was first applied to time series setting when Zhou (2012) introduced the auto-

distance covariance function. Most literature on distance covariance focus on the specific

weight measure µ(s, t) ∝ |s|−p−1|t|−q−1, which has the advantage of being scale and rotation

invariant.

In Chapter 1, we consider the general form of distance covariance and apply it to sta-

tionary univariate and multivariate time series. For time series {Xt}, serial dependence is

measured auto-distance covariance functions. For bivariate time series {(Xt, Yt)}, cross de-

pendence is measured using cross-distance covariance functions. We establish the asymptotic

results for these statistics under strong mixing.

The work in this chapter was published in Davis et al. (2018):

R.A. Davis, M. Matsui, T. Mikosch, and P. Wan. Applications of distance covariance to

time series. Bernoulli, 24(4A):3087–3116, 2018.

0.2 Goodness-of-fit testing for time series models

In many statistical modeling frameworks, goodness-of-fit tests are often administered to the

residuals. In Chapter 2, we apply the auto-distance covariance function (ADCV) to the

fitted residuals to assess goodness-of-fit for general classes of time series models.

It is known that the sequence of fitted residuals generally admits a different serial de-

pendence than the sequence of iid innovations. Let T̂h(Z;µ) be the sample ADCV of an iid
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sequence {Zt, 1 ≤ t ≤ n} at lag h. From the results in Chapter 1,

nT̂h(Z;µ)
d→
∫
|Gh(s, t)|2µ(ds, dt),

where Gh is a centered Gaussian process. Let T̂h(Ẑ;µ) be the sample ADCV in which the

iid sequence is replaced by the residuals {Ẑt, 1 ≤ t ≤ n}. We show that

nT̂h(Ẑ;µ)
d→
∫
|Gh(s, t) + ξ(s, t)|2µ(ds, dt).

We demonstrate through simulations that the impact of the correction term ξ(s, t) is non-

trivial. This implies that adjustments are necessary when using this statistic to evaluate the

goodness-of-fit of the model. Otherwise, an improper model may be accepted based on an

incorrect threshold for the test statistics. Given a sequence of observations from the time

series, the limit can be approximated through a parametric bootstrap.

A manuscript containing the results in this chapter is currently under development.

0.3 Threshold selection for multivariate heavy-tailed

data

Regular variation is a typical assumption for modeling multivariate heavy-tailed data. A

random vector X ∈ Rd is multivariate regularly varying if the polar coordinates (R,Θ) =

(‖X‖,X/‖X‖), where ‖ · ‖ is some norm, satisfy the conditions:

(a) R has a univariate Pareto-like tail;

(b) P(Θ ∈ ·|R > r) converges weakly to a probability measure S(·) as r →∞.

Here the limit S characterizes the tail dependence and is often the quantity of interest.

To estimate S, a common strategy is to look at the angular components Θ of the data for

which the radial parts R exceed some threshold. A large class of methods has been proposed

in the literature to model these exceedances. The choice of threshold, however, has scarcely

been discussed.
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In order to select the threshold, the dependence between R and Θ needs to be charac-

terized. Linear correlation proves to be inadequate for this task for two reasons. First, R is

heavy-tailed and often does not possess a second moment, thus violating the assumption for

linear correlation. Second, Θ can be of multiple dimensions. In Chapter 3, we propose to

use distance covariance for this purpose. Given a sequence of thresholds {rn}, we formally

test the independence between R and Θ conditional on R > rn, using distance covariance.

Our approach to this problem is based on the following two steps.

First, as n → ∞, (Ri,Θi)1{Ri>rn}, i = 1, . . . , n, forms a triangular array. We generalize

the limit theory of distance covariance in Chapter 1 to a triangular array setting. The results

are given for both iid and weakly dependent data.

Second, the test of independence statistics are summarized in the form of p-values for

different thresholds. To select an optimal threshold, we propose an algorithm which deter-

mines the change point from which the mean of the p-value distribution deviates from 0.5,

the mean of its distribution under the null. This is done by subsampling the data and using

a wild binary segmentation change point detection procedure. The subsampling scheme al-

lows the method to be applicable to a wide range of weakly dependent data and also avoids

the heavy computation in the calculation of distance covariance, a typical limitation for this

measure.

The research in chapter will appear in a forthcoming paper, Wan and Davis (2018):

P. Wan and R.A. Davis. Threshold selection for multivariate heavy-tailed data. Extremes.

2018.

0.4 Inference for preferential attachment model

Lastly, we turn our attention to another data type – networks. We are interested in the

power-law behavior of the degree distributions observed in many networks, most notably in

social networks. A discrete distribution D is said to possess a power law if

P(D = i) ∼ c · i−α, c > 0.
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In other words, D is heavy-tailed. The study of power laws has always been of interest.

In a network, the nodes with large degrees represent the individuals with large number of

connections and hence are likely to be influential. If a network exhibits power laws in its

degree distributions, the occurrence of nodes with large degrees is non-negligible.

Preferential attachment is a natural and appealing mechanism that models such behavior.

It is based on the intuition of the rich get richer, that a connection is more likely to be made

to an individual with many existing connections than one with less. Such models produce

networks with the empirically observed power-law property and have been implemented

empirically for many networks. However, until recently, few studies have focused on its

mathematical properties and no rigorous estimation procedure has been proposed.

In Chapter 4, we bridge this gap by considering fitting a 5-parameter linear preferential

model to directed networks. We proposed inference methods under two data scenarios. In the

case where full history of the network formation is given, we derive the maximum likelihood

estimator of the parameters and show strong consistency and asymptotical normality. In the

case where only a single-time snapshot of the network is available, we propose an estimation

method which combines method of moments with an approximation to the likelihood. The

resulting estimator is also strongly consistent and performs quite well compared to the MLE

estimator. We illustrate both estimation procedures through simulated data and explore the

usage of this model in a real data example.

This work was published in Wan et al. (2017):

P. Wan, T. Wang, R.A. Davis, and S.I. Resnick. Fitting the linear preferential attachment

model. Electron. J. Statist., 11:3738–3780, 2017.
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Chapter 1

Applications of distance correlation to

time series

1.1 Introduction

In time series analysis, modeling serial dependence is typically the overriding objective. In

order to achieve this goal, it is necessary to formulate a measure of dependence and this

may depend on the features in the data that one is trying to capture. The autocorrelation

function (ACF), which provides a measure of linear dependence, is perhaps the most used

dependence measure in time series. It is closely linked with the class of ARMA models and

provides guidance in both model selection and model confirmation. On the other hand,

the ACF gives only a partial description of serial dependence. As seen with financial time

series, data are typically uncorrelated but dependent so that the ACF is non-informative.

In this case, the dependence becomes visible by examining the ACF applied to the absolute

values or squares of the time series. In this chapter we consider the application of distance

correlation in a time series setting, which can overcome some of the limitations of other

dependence measures.

In recent years, the notions of distance covariance and correlation have become rather

popular in applied statistics. Given vectors X and Y with values in Rp and Rq, the distance

covariance between X and Y with respect to a suitable measure µ on Rp+q is given by

T (X, Y ;µ) =

∫
Rp+q

∣∣ϕX,Y (s, t)− ϕX(s)ϕY (t)
∣∣2 µ(ds, dt) , (1.1)
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where the characteristic function of any random vector Z ∈ Rd is denoted by ϕZ(t) =

E[e i〈t,Z〉], t ∈ Rd . The distance correlation is the corresponding version of T standardized

to values in [0, 1]. The quantity T (X, Y ;µ) is zero if and only if ϕX,Y = ϕX ϕY , µ-a.e.

In many situations, for example when µ has a positive Lebesgue density on Rp+q, we may

conclude that X and Y are independent if and only if T (X, Y ;µ) = 0. An empirical version

Tn(X, Y ;µ) of T (X, Y ;µ) is obtained if the characteristic functions in (1.1) are replaced by

their corresponding empirical versions. Then one can build a test for independence between

X and Y based on the distribution of Tn under the null hypothesis that X and Y are

independent.

The use of empirical characteristic functions for univariate and multivariate sequences

for inference purposes has a long history. In the 1970s and 1980s, Feuerverger and Mureika

(1977), Csörgő (1981a,b,c) and many others proved fundamental asymptotic results for iid

sequences, including Donsker-type theory for the empirical characteristic function. Statis-

ticians have applied these methods for goodness-of-fit tests, changepoint detection, testing

for independence, etc.; see for example Meintanis and coworkers (Meintanis and Iliopoulos

(2008), Hlávka et al. (2011), Meintanis et al. (2015)), and the references therein. The lat-

ter authors employed the empirical distance covariance for finite measures µ. Feuerverger

(1993) was the first to apply statistics of the form (1.1) for general measures. In particular,

he advocated the infinite measure

µ(ds, dt) = |s|−2|t|−2ds dt

for testing independence of univariate data. A series of papers by Székely et al.1 (Székely

et al. (2007), Székely and Rizzo (2009, 2014), see also the references therein) developed

asymptotic techniques for the empirical distance covariance and correlation of iid sequences

for the infinite measure µ given by

µ(ds, dt) = cp,q|s|−α−p|t|−α−qds dt, (1.2)

1They appeared to have coined the terms distance covariance and correlation.
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where cp,q is a constant (see (1.15)) and α ∈ (0, 2). With this choice of µ, the distance

correlation, T (X, Y ;µ)/(T (X,X;µ)T (Y, Y ;µ))1/2 is invariant relative to scale and orthogo-

nal transformations, two desirable properties for measures of dependence. As a consequence

this choice of measure is perhaps the most common. However, there are other choices of

measures for µ that are also useful depending on the context.

Dueck et al. (2014) studied the affinely invariant distance covariance given by T̃ (X, Y ;µ)

= T (Σ−1
X X,Σ−1

Y Y ), where ΣX ,ΣY are the respective covariance matrices of X and Y and µ is

given by (1.2). They showed that the empirical version of T̃ (X, Y ;µ)/
√
T̃ (X,X;µ)T̃ (Y, Y ;µ),

where ΣX and ΣY are estimated by their empirical counterparts, is strongly consistent. In

addition, they provide explicit expressions in terms of special functions of the limit in the

case when X, Y are multivariate normal. Further progress on this topic has been achieved in

Sejdinovic et al. (2013) and Lyons (2013), who generalized distance correlation to a metric

space.

In this chapter we are interested in the empirical distance covariance and correlation ap-

plied to a stationary sequence ((Xt, Yt)) to study serial dependence, where Xt and Yt assume

values in Rp and Rq, respectively. We aim at an analog to the autocorrelation and auto-

covariance functions of classical time series analysis in terms of lagged distance correlation

and distance covariance. Specifically we consider the lagged-distance covariance function

T (X0, Yh;µ), h ∈ Z, and its standardized version that takes values in [0, 1]. We refer to these

quantities as the auto- and cross-distance covariance and correlation functions. We provide

asymptotic theory for the empirical auto- and cross-distance covariance and correlation func-

tions under mild conditions. Under ergodicity we prove consistency and under α-mixing,

we derive the weak limits of the empirical auto- and cross-distance covariance functions for

both cases when X0 and Yh are independent and dependent.

From a modeling perspective, distance correlation has limited value in providing a clear

description of the nature of the dependence in the time series. To this end, it may be

difficult to find a time series model that produces a desired distance correlation. In contrast,

one could always find an autoregressive (or more generally ARMA) process that matches

8



the ACF for an arbitrary number of lags. The theme in this chapter will be to view the

distance correlation more as a tool for testing independence rather than actually measuring

dependence.

The literature on distance correlation for dependent sequences is sparse. To the best of

our knowledge, Zhou (2012) was the first to study the auto-distance covariance and its empir-

ical analog for stationary sequences. In particular, he proved limit theory for Tn(X0, Xh;µ)

under so-called physical dependence measure conditions on (Xt) and independence of X0

and Xh. Fokianos and Pitsillou (2017) developed limit theory for a Ljung-Box-type statistic

based on pairwise distance covariance Tn(Xi, Xj;µ) of a sample from a stationary sequence.

In both papers, the measure µ is given by (1.2). The latter paper uses ideas from Hong

(1999). He applied the empirical characteristic function of a strongly mixing time series

for testing various hypotheses on the dependence structure of a time series; he called it a

generalized spectral approach. His test statistic bears some resemblance with the distance

covariance: it is an integral of the weighted squared difference between the Fourier transform

of the sequence cov(e iuX0 , e ivXh) and an empirical analog weighted by the density of a finite

measure µ.

Typically, a crucial and final step in checking the quality of a fitted time series model is

to examine the residuals for lack of serial dependence. The distance correlation can be used

in this regard. However, as first pointed out in his discussion, Rémillard (2009) indicated

that the behavior of the distance correlation when applied to the residuals of a fitted AR(1)

process need not have the same limit distribution as that of the distance correlation based

on the corresponding iid noise. We provide a rigorous proof of this result for a general AR(p)

process with finite variance under certain conditions on the measure µ. Interestingly, the

conditions preclude the use of the standard weight function (1.2) used in Székely et al. (2007).

In contrast, if the noise sequence is heavy-tailed and belongs to the domain of attraction of

a stable distribution with index β ∈ (0, 2), the distance correlation functions for both the

residuals from the fitted model and the iid noise sequence coincide.

The chapter is organized as follows. In Section 1.2 we commence with some basic results
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for distance covariance. We give conditions on the moments of X and Y and the measure µ,

which ensure that the integrals T (X, Y ;µ) in (1.1) are well-defined. We provide alternative

representations of T (X, Y ;µ) and consider various examples of finite and infinite measures

µ. Section 1.3 is devoted to the empirical auto- and cross-distance covariance and correlation

functions. Our main results on the asymptotic theory of these functions are provided in Sec-

tion 1.3.1. Among them are an a.s. consistency result (Theorem 1.3.1) under the assumption

of ergodicity and asymptotic normality under a strong mixing condition (Theorem 1.3.2).

Another main result (Theorem 1.4.2) is concerned with the asymptotic behavior of the em-

pirical auto-distance covariance function of the residuals of an autoregressive process for

both the finite and infinite variance cases. In Section 1.5, we provide a small study of the

empirical auto-distance correlation functions derived from simulated and real-life dependent

data of moderate sample size. The proofs of Lemma 1.4.1 and Theorem 1.4.2, which are

significant but very technical, are relegated to Section ??.

1.2 Distance covariance for stationary time series

1.2.1 Conditions for existence

From (1.1), the distance covariance between two vectors X and Y is the squared L2-distance

between the joint characteristic function of (X, Y ) and the product of the marginal charac-

teristic functions of X and Y with respect to a measure µ on Rp+q. Throughout we assume

that µ is finite on sets bounded away from the origin, i.e., on sets of the form

Dc
δ = {(s, t) : |s| ∧ |t| > δ} , δ > 0 . (1.3)

In what follows, we interpret (s, t) as a concatenated vector in Rp+q equipped with the

natural norm |(s, t)|Rp×Rq =
√
|s|2 + |t|2. We suppress the dependence of the norm | · | on

the dimension. The symbol c stands for any positive constant, whose value may change

from line to line, but is not of particular interest. Clearly if X and Y are independent,

T (X, Y ;µ) = 0. On the other hand, if µ is an infinite measure, and X and Y are dependent,
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extra conditions are needed to ensure that T (X, Y ;µ) is finite. This is the content of the

following lemma.

Lemma 1.2.1. Let X and Y be two possibly dependent random vectors and one of the

following conditions is satisfied:

1. µ is a finite measure on Rp+q.

2. µ is an infinite measure on Rp+q, finite on the sets Dc
δ, δ > 0, such that∫

Rp+q
(1 ∧ |s|α) (1 ∧ |t|α)µ(ds, dt) <∞ (1.4)

and E[|X|α] + E[|Y |α] <∞ for some α ∈ (0, 2].

3. µ is infinite in a neighborhood of the origin and for some α ∈ (0, 2], E[|X|α]+E[|Y |α] <

∞ and ∫
Rp+q

1 ∧ |(s, t)|α µ(ds, dt) <∞ . (1.5)

Then T (X, Y ;µ) is finite.

Remark 1.2.2. If µ = µ1 × µ2 for some measures µ1 and µ2 on Rp and Rq, respectively,

and if µ is finite on the sets Dc
δ then it suffices for (1.4) to verify that∫

|s|≤1

|s|α µ1(ds) +

∫
|t|≤1

|t|α µ2(dt) <∞ .

Proof. (1) Since the integrand in T (X, Y ;µ) is uniformly bounded the statement is trivial.

(2) By (1.3), µ(Dc
δ) < ∞ for any δ > 0. Therefore it remains to verify the integrability of

|ϕX,Y (s, t) − ϕX(s)ϕY (t)|2 on one of the sets Dδ. We consider only the case |s| ∨ |t| ≤ 1;

the cases when |s| ≤ 1, |t| > 1 and |s| > 1, |t| ≤ 1 are similar. An application of the

Cauchy-Schwarz inequality yields

|ϕX,Y (s, t)− ϕX(s)ϕY (t)|2 ≤ (1− |ϕX(s)|2) (1− |ϕY (t)|2) . (1.6)

Since 1 − |ϕX(s)|2 =
∫
Rp
(
1 − cos〈s, x〉

)
P(X −X ′ ∈ dx) for an independent copy X ′ of X,

a Taylor expansion and the fact that X,X ′ have finite αth moments yield for α ∈ (0, 2] and
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some constant c > 0,

1− |ϕX(s)|2 ≤
∫
Rp

(
2 ∧ |〈s, x〉|2

)
P(X −X ′ ∈ dx)

≤ 2

∫
|〈s,x〉|≤

√
2

|〈s, x〉/
√

2|α P(X −X ′ ∈ dx) + 2P(|〈s,X −X ′〉| >
√

2)

≤ c |s|α E[|X −X ′|α] <∞ . (1.7)

In the last step we used Markov’s inequality and the fact that |〈s, x〉| ≤ |s| |x|. A corre-

sponding bound holds for 1− |ϕY (t)|2. Now, T (X, Y ;µ) <∞ follows from (1.4) and (1.6).

(3) By (1.5), µ({(s, t) : |(s, t)| > 1}) is finite. Therefore we need to show integrability of

|ϕX,Y (s, t) − ϕX(s)ϕY (t)|2 only for |(s, t)| ≤ 1. Using the arguments from part (2) and the

finiteness of the αth moments, we have

|ϕX,Y (s, t)− ϕX(s)ϕY (t)|2 ≤ c (|s|α + |t|α) ≤ c |(s, t)|α .

Now integrability of the left-hand side at the origin with respect to µ is ensured by (1.5).

1.2.2 Alternative representations and examples

If µ = µ1 × µ2 for measures µ1 and µ2 on Rp and Rq we write for x ∈ Rp and y ∈ Rq,

µ̂(x, y) =

∫
Rp+q

cos(〈s, x〉+ 〈t, y〉)µ(ds, dt) ,

µ̂1(x) =

∫
Rp

cos〈s, x〉µ1(ds) , µ̂2(y) =

∫
Rq

cos〈t, y〉µ2(dt) ,

for the real parts of the Fourier transforms with respect to µ, µ1, µ2, respectively. We assume

that these transforms are well-defined. Let (X ′, Y ′) be an independent copy of (X, Y ), and

let Y ′′ and Y ′′′ be independent copies of Y which are also independent of (X, Y ), (X ′, Y ′).

We have

T (X, Y ;µ) =

∫
Rp+q

E
[
e i〈s,X−X

′〉+i〈t,Y−Y ′〉 + e i〈s,X−X
′〉 e i〈t,Y

′′−Y ′′′〉

−e i〈s,X−X′〉+i〈t,Y−Y ′′〉 − e −i〈s,X−X′〉−i〈t,Y−Y ′′〉
]
µ(ds, dt) . (1.8)

Notice that the complex-valued trigonometric functions under the expected value may be

replaced by their real parts. We intend to interchange the integral with respect to µ and the

expectation.
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Finite measure µ

For a finite measure on Rp+q, we may apply Fubini’s theorem directly and interchange

integration with expectation to obtain

T (X, Y ;µ) = E
[
µ̂(X −X ′, Y − Y ′)] + E[µ̂(X −X ′, Y ′′ − Y ′′′)]

−2E[µ̂(X −X ′, Y − Y ′′)
]
. (1.9)

If µ = µ1 × µ2 we also have

T (X, Y ;µ) = E[µ̂1(X −X ′) µ̂2(Y − Y ′)] + E[µ̂1(X −X ′)]E[µ̂2(Y − Y ′)]

−2E[µ̂1(X −X ′) µ̂2(Y − Y ′′)] .

Infinite measure µ

We consider an infinite measure µ on Rp+q which is finite on Dc
δ for any δ > 0. We assume

that T (X, Y ;µ) is finite and µ = µ1 × µ2. In this case, we cannot pass from (1.8) to (1.9)

because the Fourier transform µ̂ is not defined as a Lebesgue integral. We have

T (X, Y ;µ) =

∫
Rp+q

(
E[COS(s, t)] + E[SIN(s, t)]

)
µ(ds, dt) , (1.10)

where

COS(s, t) = cos(〈s,X −X ′〉) cos(〈t, Y − Y ′〉) + cos(〈s,X −X ′〉) cos(〈t, Y ′′ − Y ′′′〉)

−2 cos(〈t,X −X ′〉) cos(〈s, Y − Y ′′〉) ,

SIN(s, t) = − sin(〈s,X −X ′〉) sin(〈t, Y − Y ′〉)− sin(〈s,X −X ′〉) sin(〈t, Y ′′ − Y ′′′〉)

+2 sin(〈t,X −X ′〉) sin(〈s, Y − Y ′′〉) .

Using the fact that

cosu cos v = 1− (1− cosu)− (1− cos v) + (1− cosu)(1− cos v) ,

calculation shows that

E
[
COS(s, t)] = E

[
(1− cos(〈s,X −X ′〉)) (1− cos(〈t, Y − Y ′〉))
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+(1− cos(〈s,X −X ′〉)) (1− cos(〈t, Y ′′ − Y ′′′〉))

−2 (1− cos(〈t,X −X ′〉)) (1− cos(〈s, Y − Y ′′〉))
]
.

A Taylor series argument shows that for α ∈ (0, 2],

E[|COS(s, t)|] ≤ c
(
E
[
(1 ∧ |〈s,X −X ′〉/

√
2|α) (1 ∧ |〈t, Y − Y ′〉/

√
2|α)

]
+E
[
1 ∧ |〈s,X −X ′〉/

√
2|α
]
E
[
1 ∧ |〈t, Y − Y ′〉/

√
2|α
]

+E
[
(1 ∧ |〈t,X −X ′〉/

√
2|α) (1 ∧ |〈s, Y − Y ′′〉/

√
2|α
∣∣]) .

Under condition (1.4) the right-hand side is integrable with respect to µ if

E[|X|α + |Y |α + |X|α |Y |α] <∞ . (1.11)

An application of Fubini’s theorem yields∫
Rp+q

E[COS(s, t)]µ(ds, dt)

= E
[ ∫

Rp+q

(
(1− cos(〈s,X −X ′〉)) (1− cos(〈t, Y − Y ′〉))

+(1− cos(〈s,X −X ′〉)) (1− cos(〈t, Y ′′ − Y ′′′〉))

−2 (1− cos(〈t,X −X ′〉)) (1− cos(〈s, Y − Y ′′〉))
)
µ(ds, dt)

]
.

If we assume that the restrictions µ1, µ2 of µ to Rp and Rq are symmetric about the origin then

we have E
[
SIN(s, t)

]
= −E

[
SIN(−s, t)

]
= −E

[
SIN(s,−t)

]
. Together with the symmetry

property of µ this implies that
∫
Rp+q E

[
SIN(s, t)

]
µ(ds, dt) = 0.

We summarize these arguments. For any measure ν on Rd we write

ν̃(s) =

∫
Rd

(1− cos〈s, x〉) ν(dx) , s ∈ Rd .

Lemma 1.2.3. Assume (1.4) and (1.11) for some α ∈ (0, 2]. If µ1, µ2 are symmetric about

the origin and µ = µ1 × µ2 then

T (X, Y ;µ) = E[µ̃1(X −X ′) µ̃2(Y − Y ′)] + E[µ̃1(X −X ′)]E[µ̃2(Y − Y ′)]

−2E[µ̃1(X −X ′)µ̃2(Y − Y ′′)] . (1.12)
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Remark 1.2.4. For further use, we mention the alternative representation of (1.12):

T (X, Y ;µ) = cov
(
µ̃1(X −X ′), µ̃2(Y − Y ′)

)
−2 cov

(
E[µ̃1(X −X ′) | X] ,E[µ̃2(Y − Y ′) | Y ]

)
. (1.13)

Examples

Example 1.2.5. Assume that µ has density w on Rp+q given by

w(s, t) = cp,q |s|−α−p |t|−α−q , s ∈ Rp , t ∈ Rq , (1.14)

for some positive constant cp,q = cpcq. For any d ≥ 1 and α ∈ (0, 2), one can choose cd such

that ∫
Rd

(1− cos〈s, x〉) cd |s|−α−d ds = |x|α . (1.15)

Under the additional moment assumption (1.11) we obtain from (1.12)

T (X, Y ;µ) = E[|X −X ′|α |Y − Y ′|α] + E[|X −X ′|α]E[Y − Y ′|α]

− 2E[|X −X ′|α |Y − Y ′′|α] . (1.16)

This is the distance covariance introduced by Székely et al. (2007).

The distance covariance T (X, Y ;µ) introduced in (1.16) has several good properties. It is

homogeneous under positive scaling and is also invariant under orthonormal transformations

of X and Y . Some of these properties are shared with other distance covariances when µ

is infinite. We illustrate this for a Lévy measure µ on Rp+q, i.e., it satisfies (1.5) for α = 2.

In particular, µ is finite on sets bounded away from zero. Via the Lévy-Khintchine formula,

a Lévy measure µ corresponds to an Rp+q-valued infinitely divisible random vector (Z1, Z2)

(with Z1 assuming values in Rp and Z2 in Rq) and characteristic function

ϕZ1,Z2(x, y) = exp
{
−
∫
Rp+q

(
e i〈s,x〉+i〈t,y〉 − 1

−(i〈x, s〉+ i〈y, t〉)1(|(s, t)| ≤ 1)
)
µ(ds, dt)

}
. (1.17)
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Lemma 1.2.6. Assume that there exists an α ∈ (0, 2] such that E[|X|α] +E[|Y |α] <∞ and

µ is a symmetric Lévy measure corresponding to (1.17) such that (1.5) holds. Then

T (X, Y ;µ) = ReE
[
− logϕZ1,Z2(X −X ′, Y − Y ′)− logϕZ1,Z2(X −X ′, Y ′′ − Y ′′′)

+2 logϕZ1,Z2(X −X ′, Y − Y ′′)
]
. (1.18)

Remark 1.2.7. We observe that (1.18) always vanishes if Z1 and Z2 are independent.

Proof. By the symmetry of the random vectors in (1.8) and the measure µ, we have

Re

∫
Rp+q

E
[
e i〈s,X−X

′〉+i〈t,Y−Y ′〉 − 1
]
µ(ds, dt)

= Re

∫
Rp+q

E
[
e i〈s,X−X

′〉+i〈t,Y−Y ′〉 − 1

−(i〈s,X −X ′〉+ i〈t, Y − Y ′〉) 1
(
|(s, t)| ≤ 1

)]
µ(ds, dt)

= ReE
[
− logϕZ1,Z2(X −X ′, Y − Y ′)

]
.

The last step is justified if we can interchange the integral and the expected value. Therefore

we have to verify that the following integral is finite:∫
Rp+q

E
[∣∣∣e i〈s,X−X′〉+i〈t,Y−Y ′〉 − 1− (i〈s,X −X ′〉+ i〈t, Y − Y ′〉) 1

(
|(s, t)| ≤ 1

)∣∣∣]µ(ds, dt) .

The integrals over the disjoint sets {(s, t) : |(s, t)| ≤ 1} and {(s, t) : |(s, t)| > 1} are denoted

by I1 and I2, respectively. The quantity I2 is bounded since the integrand is bounded and µ

is finite on sets bounded away from zero. A Taylor expansion shows for α ∈ (0, 2],

I1 ≤ c

∫
|(s,t)|≤1

E
[
2 ∧ (|〈s,X −X ′〉|+ |〈t, Y − Y ′〉|)2

]
µ(ds, dt)

≤ c (E|X|α] + E|Y |α])

∫
|(s,t)|≤1

1 ∧ |(s, t)|α µ(ds, dt)

and the right-hand side is finite by assumption.

Proceeding in the same way as above for the remaining expressions in (1.8), the lemma

is proved.

Example 1.2.8. Assume that µ is a probability measure of a random vector (Z1, Z2) in Rp+q

and that Z1 and Z2 are independent. Then

T (X, Y ;µ) = E[ϕZ1(X −X ′)ϕZ2(Y − Y ′)] + E[ϕZ1(X −X ′)]E[ϕZ2(Y
′′ − Y ′′′)]
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−2E[ϕZ1(X −X ′)ϕZ2(Y − Y ′′)] .

For example, consider independent symmetric Z1 and Z2 with multivariate β-stable distribu-

tions in Rp and Rq, respectively, for some β ∈ (0, 2]. They have joint characteristic function

given by ϕZ1,Z2(x, y) = e −(|x|β+|y|β). Therefore

T (X, Y ;µ) = E[e −(|X−X′|β+|Y−Y ′|β)] + E[e −|X−X
′|β ]E[e −|Y−Y

′|β ]

−2E[e −(|X−X′|β+|Y−Y ′′|β)] . (1.19)

Example 1.2.9. Assume that X and Y are integer-valued. Consider the spectral densities w1

and w2 on [−π, π] of two real-valued second-order stationary processes and assume µ(s, t) =

w1(s)w2(t). Denote the covariance functions on the integers corresponding to w1 and w2 by

γ1 and γ2, respectively. We have the well-known relation∫ π

−π
e itk wi(t) dt =

∫ π

−π
cos(tk) wi(t) dt = γi(k) , k ∈ Z ,

where we also exploit the symmetry of the functions wi. If we restrict integration in (1.8) to

[−π, π]2 we obtain, abusing notation,

T (X, Y ;µ) = E[γ1(X −X ′) γ2(Y − Y ′)] + E[γ1(X −X ′)]E[γ2(Y − Y ′)]

−2E[γ1(X −X ′) γ2(Y − Y ′′)] .

The spectral density of a stationary process may have singularities (e.g. for fractional ARMA

processes) but this density is integrable on [−π, π]. If w1, w2 are positive Lebesgue a.e. on

[0, π] then T (X, Y ;µ) = 0 if and only if X, Y are independent. Indeed, the characteristic

function of an integer-valued random variable is periodic with period 2π.

Example 1.2.10. To illustrate (1.18) we consider a symmetric α-stable vector (Z1, Z2) for

α ∈ (0, 2) with log-characteristic function

− logϕZ1,Z2(x, y) =

∫
Sp+q−1

|〈s, x〉+ 〈t, y〉|αm(ds, dt)

and m is a finite symmetric measure on the unit sphere Sp+q−1 of Rp+q. Then we have

T (X, Y ;µ) =

∫
Sp+q−1

E
[
|〈s,X −X ′〉+ 〈t, Y − Y ′〉|α + |〈s,X −X ′〉+ 〈t, Y ′′ − Y ′′′〉|α
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−2 |〈s,X −X ′〉+ 〈t, Y ′ − Y ′′〉|α
]
m(ds, dt) .

A special case is the sub-Gaussian α/2-stable random vectors with characteristic function

− logϕZ1,Z2(x, y) = |(x, y)′Σ(x, y)|α/2 , where Σ is the covariance matrix of an Rp+q-valued

random vector and we write (x, y) for the concatanation of any x ∈ Rp and y ∈ Rq. Then

T (X, Y ;µ) = E
[
|(X −X ′, Y − Y ′)′Σ (X −X ′, Y − Y ′)|α/2

+[|(X −X ′, Y ′′ − Y ′′′)′Σ (X −X ′, Y ′′ − Y ′′′)|α/2

−2[|(X −X ′, Y − Y ′′)′Σ (X −X ′, Y − Y ′′)|α/2
]
.

In particular, if Σ is block-diagonal with Σ1 a p × p covariance matrix and Σ2 a q × q

covariance matrix, we have

T (X, Y ;µ) = E
[
|(X −X ′)′Σ1 (X −X ′) + (Y − Y ′)′Σ2(Y − Y ′)|α/2

+|(X −X ′)′Σ1 (X −X ′) + (Y ′′ − Y ′′′)′Σ2(Y ′′ − Y ′′′)|α/2

−2|(X −X ′)′Σ1 (X −X ′) + (Y − Y ′′)′Σ2(Y − Y ′′)|α/2
]
,

and if Σ is the identity matrix,

T (X, Y ;µ) = E
[∣∣ |X −X ′|2 + |Y − Y ′|2

∣∣α/2 +
∣∣ |X −X ′|2 + |Y ′′ − Y ′′′|2

∣∣α/2
−2
∣∣ |X −X ′|2 + |Y − Y ′′|2

∣∣α/2] . (1.20)

We notice that for these examples, T (X, Y ;µ) is scale homogeneous, i.e., T (cX, cY ;µ) =

|c|αT (X, Y ;µ), and (1.20) is invariant under orthonormal transformations, i.e., T (RX,SY ;µ) =

T (X, Y ;µ) for orthonormal matrices R and S, properties also enjoyed by the weight function

in Example 1.2.5.

1.3 The empirical distance covariance function of a

stationary sequence

In this section we consider the empirical distance covariance for a stationary time series

((Xt, Yt)) with generic element (X, Y ) where X and Y assume values in Rp and Rq, respec-
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tively. The empirical distance covariance is given by

Tn(X, Y ;µ) =

∫
Rp+q

∣∣ϕnX,Y (s, t)− ϕnX(s)ϕnY (t)
∣∣2 µ(ds, dt) ,

where the empirical characteristic function is given by ϕnX,Y (s, t) =
1

n

∑n
j=1 e

i 〈s,Xj〉+i 〈t,Yj〉 ,

n ≥ 1 , and ϕnX(s) = ϕnX,Y (s, 0) and ϕnY (s) = ϕnX,Y (0, t).

1.3.1 Asymptotic results for the empirical distance correlation

Under the conditions of Lemma 1.2.1 that ensure the finiteness of T (X, Y ;µ), we show that

Tn is consistent for stationary ergodic time series; see (Samorodnitsky, 2016, Chapter 2) for

a definition of ergodicity.

Theorem 1.3.1. Consider a stationary ergodic time series ((Xj, Yj))j=1,2,... with values in

Rp+q and assume one of the three conditions in Lemma 1.2.1 are satisfied. Then

Tn(X, Y ;µ)
a.s.→ T (X, Y ;µ), as n→∞.

Proof. For (s, t) ∈ Rp+q the difference between the joint characteristic function with the

product characteristic function and the empirical analog are given by

C(s, t) = ϕX,Y (s, t)− ϕX(s)ϕY (t) and Cn(s, t) = ϕnX,Y (s, t)− ϕnX(s)ϕnY (t) .

Each of the processes ϕnX,Y , ϕnX , ϕnY is a sample mean of iid bounded continuous processes

defined on Rp+q. Consider the compact set

Kδ = {(s, t) ∈ Rp+q : δ ≤ |s| ∧ |t| , |s| ∨ |t| ≤ 1/δ} (1.21)

for small δ > 0. By the ergodic theorem on C(Kδ), the space of continuous functions on Kδ,

ϕnX,Y
a.s.→ ϕX,Y as n→∞; see Krengel (1985). Hence∫

Kδ

|Cn(s, t)|2 µ(ds, dt)
a.s.→
∫
Kδ

|C(s, t)|2 µ(ds, dt) , n→∞ .

It remains to show that

lim
δ↓0

lim sup
n→∞

∫
Kc
δ

|Cn(s, t)|2 µ(ds, dt) = 0 a.s.
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If µ is a finite measure we have

lim
δ↓0

lim sup
n→∞

∫
Kc
δ

|Cn(s, t)|2µ(ds, dt) ≤ c lim
δ↓0

µ(Kc
δ) = 0 .

Now assume that µ is infinite on the axes or at zero and (1.4) holds. We apply inequality

(1.6) under the assumption that (X, Y ) has the empirical probability measure of the sample

(Xj, Yj), j = 1, . . . , n. Since the empirical measure has all moments finite we obtain from

(1.7) that for α ∈ (0, 2],

1− |ϕnX(s)|2 ≤ c |s|α En,X [|X −X ′|α] = c |s|α n−2
∑

1≤k,l≤n

|Xk −Xl|α ,

where X,X ′ are independent and each of them has the empirical distribution of the X-

sample. The right-hand side is a U -statistic which converges a.s. to E[|X −X ′|α] as n→∞

provided this moment is finite. This follows from the ergodic theorem for U -statistics; see

Aaronson et al. (1996). The same argument as for part (2) of Lemma 1.2.1 implies that on

Kc
δ ,

|Cn(s, t)|2 ≤ cEn,X [|X −X ′|α]En,Y [|Y − Y ′|α] (1 ∧ |s|α) (1 ∧ |t|α) .

By the ergodic theorem,

lim sup
n→∞

∫
Kc
δ

|Cn(s, t)|2µ(ds, dt) ≤ cE[|X −X ′|α]E[|Y − Y ′|α]

∫
Kc
δ

(1 ∧ |s|α)(1 ∧ |t|α)µ(ds, dt)

almost surely, and the latter integral converges to zero as δ ↓ 0 by assumption.

If the measure µ is infinite at zero and (1.5) holds the proof is analogous.

In order to prove weak convergence of Tn we assume that the sequence ((Xi, Yi)) with

values in Rp+q is α-mixing with rate function (αh); see (Doukhan, 1994, p. 18) and (Ibragimov

and Linnik, 1971, p. 305) for the definition. We have the following result.

Theorem 1.3.2. Assume that ((Xj, Yj)) is a strictly stationary sequence with values in Rp+q

such that
∑

h α
1/r
h <∞ for some r > 1. Set u = 2r/(r − 1) and write X = (X(1), . . . , X(p))

and Y = (Y (1), . . . , Y (q)).
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1. Assume that X0 and Y0 are independent and for some α ∈ (u/2, u], ε ∈ [0, 1/2) and

α′ ≤ min(2, α), the following hold:

E[|X|α + |Y |α] <∞, E
[ p∏
l=1

|X(l)|α
]
<∞ , E

[ q∏
l=1

|Y (l)|α
]
<∞ , (1.22)

and ∫
Rp+q

(1 ∧ |s|α′(1+ε)/u)(1 ∧ |t|α′(1+ε)/u)µ(ds, dt) <∞ . (1.23)

Then

nTn(X, Y ;µ)
d→ ‖G‖2

µ =

∫
Rp+q
|G(s, t)|2 µ(ds, dt) , (1.24)

where G is a complex-valued mean-zero Gaussian process whose covariance structure

is given in (1.29) with h = 0 and depends on the dependence structure of ((Xt, Yt)).

2. Assume that X0 and Y0 are dependent and for some α ∈ (u/2, u], ε ∈ [0, 1/2) and for

α′ ≤ min(2, α) the following hold:

E[|X|2α + |Y |2α] <∞, E
[
(1 ∨

p∏
l=1

|X(l)|α)(1 ∨
q∏

k=1

|Y (k)|α)
]
<∞ , (1.25)

and ∫
Rp+q

(1 ∧ |s|α′(1+ε)/u)(1 ∧ |t|α′(1+ε)/u)µ(ds, dt) <∞ . (1.26)

Then

√
n (Tn(X, Y ;µ)− T (X, Y ;µ))

d→ G′µ =

∫
Rp+q

G′(s, t)µ(ds, dt) , (1.27)

where G′(s, t) = 2Re{G(s, t)C(s, t)} is a mean-zero Gaussian process.

The proof of Theorem 1.3.2 is given in Section 1.6.

Remark 1.3.3. We notice that (1.23) and (1.26) are always satisfied if µ is a finite measure.

Remark 1.3.4. If (Xi) and (Yi) are two independent iid sequences then the statement of

Theorem 1.3.2(1) remains valid if for some α ∈ (0, 2], E[|X|α] + E[|Y |α] <∞ and∫
Rp+q

(1 ∧ |s|α)(1 ∧ |t|α)µ(ds, dt) <∞ . (1.28)
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Remark 1.3.5. The distribution of the limit variable in (1.24) is generally not tractable.

Therefore one must use numerical or resampling methods for determining the quantiles of

nTn(X, Y ;µ). On the other hand, the limit distribution in (1.27) is normally distributed

with mean 0 and variance σ2
µ that can be easily calculated from the covariance function

of G(s, t) and C(s, t). Notice that if C(s, t) = 0, the limit random variable in (1.27) is 0

and part (1) of the theorem applies. Again resampling or subsampling methods must be

employed to determine quantiles of nTn.

1.3.2 Testing serial dependence for multivariate time series

Define the cross-distance covariance function (CDCVF) of a strictly stationary sequence

((Xt, Yt)) by

TX,Yµ (h) = T (X0, Yh;µ) , h ∈ Z ,

and the auto-distance covariance function (ADCVF) of a stationary sequence (Xt) by

TXµ (h) = TX,Xµ (h) , h ∈ Z .

Here and in what follows, we assume that µ = µ1 × µ2 for suitable measures µ1 on Rp and

µ2 on Rq. In the case of an ADCVF we also assume µ1 = µ2. The empirical versions TXn,µ

and TX,Yn,µ are defined correspondingly. For example, for integer h ≥ 0, one needs to replace

ϕnX,Y (s, t) in the definition of Tn(X, Y ;µ) by

ϕnX0,Yh
(s, t) =

1

n

n−h∑
j=1

e i 〈s,Xj〉+i 〈t,Yj+h〉, s ∈ Rp , t ∈ Rq , n ≥ h+ 1 ,

with the corresponding modifications for the marginal empirical characteristic functions.

For finite h, the change from the upper summation limit n to n− h has no influence on the

asymptotic theory.

We also introduce the corresponding cross-distance correlation function (CDCF) and

auto-distance correlation function (ADCF) respectively:

RX,Y
µ (h) =

TX,Yµ (h)√
TXµ (0)T Yµ (0)

and RX
µ (h) =

TXµ (h)

TXµ (0)
, h ∈ Z .
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The quantities RX,Y
µ (h) assume values in [0, 1], with the two endpoints representing indepen-

dence and complete dependence. The empirical CDCF RX.Y
n,µ and ADCF RX

n,µ are defined by

replacing the distance covariances TX,Yµ (h) by the corresponding empirical versions TX,Yn,µ (h).

The empirical ADCV was examined in Zhou (2012) and Fokianos and Pitsillou (2017) as

an alternative tool for testing serial dependence, in the way that it also captures non-linear

dependence. They always choose the measure µ = µ1 × µ1 with density (1.14).

In contrast to the autocorrelation and cross-correlation functions of standard stationary

time series models (such as ARMA, GARCH) it is in general complicated (or impossible) to

provide explicit (and tractable) expressions for TXµ (h) and TX,Yµ (h) or even to say anything

about the rate of decay of these quantities when h → ∞. However, in view of (1.13) we

observe that

TXµ (h) = cov
(
µ̃1(X0 −X ′0), µ̃1(Xh −X ′h)

)
−2 cov

(
E[µ̃1(X0 −X ′0) | X0] ,E[µ̃1(Xh −X ′0) | Xh]

)
.

While this is not the autocovariance function of a stationary process, it is possible to bound

each of the terms in case (Xt) is α-mixing with rate function (αh). In this case, one may

use bounds for the autocovariance functions of the stationary series (µ̃1(Xt − X ′t)) and

(E[µ̃1(Xt − X ′0) | Xt]) which inherit α-mixing from (Xt) with the same rate function. For

example, a standard inequality (Doukhan (1994), Section 1.2.2, Theorem 3(a)) yields that

TXµ (h) ≤ c α
1/r
h

(
E[(µ̃1(X0 −X ′0))u]

)2/u
for positive c and r > 0 such that r−1 + 2u−1 = 1. If

µ̃1 is bounded we also have TXµ (h) ≤ c αh for some positive constant. Similar bounds can be

found for TX,Yµ (h) provided ((Xt, Yt)) is α-mixing.

Next we give an example where the ADCVF can be calculated explicitly.

Example 1.3.6. Consider a univariate strictly stationary Gaussian time series (Xt) with

mean zero, variance σ2 and autocovariance function γX . We choose a Gaussian probabil-

ity measure µ which leads to the relation (1.19). Choose N1, N2, N3 iid N(0, 2)-distributed

independent of the independent quantities (X0, Xh), (X
′
0, X

′
h), X

′′
h . Then for h ≥ 0,

TXµ (h) = E
[
e iN1(X0−X′0)+iN2(Xh−X′h)

]
+
(
E
[
e iN1(X0−X′0)

])2 − 2E
[
e iN1(X0−X′0)+iN2(Xh−X′′h )

]
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= E
[
e i (N1X0+N2Xh)−i(N1X′0+N2X′h)

]
+
(
E
[
e iN1(X0−X′0)

])2

−2E
[
e i (N1X0+N2Xh)−i(N1X′0+N2X′′h )

]
= E

[
e iN3

(
N2

1σ
2+N2

2σ
2+2γX(h)N1N2

)1/2]
+
(
E
[
e iN3(N2

1σ
2)1/2

])2

−2E
[
e iN3

(
N2

1σ
2+N2

2σ
2+γX(h)N1N2

)1/2]
= E

[
e −
(
N2

1σ
2+N2

2σ
2+2γX(h)N1N2

)]
+
(
E
[
e −N

2
1σ

2])2 − 2E
[
e −
(
N2

1σ
2+N2

2σ
2+γX(h)N1N2

)]
.

For the evaluation of this expression we focus on the first term, the other cases being similar.

Observing that σ2 ± γX(h) are the eigenvalues of the covariance matrix σ2 γX(h)

γX(h) σ2

 ,

calculation shows that

N2
1σ

2 +N2
2σ

2 + 2γX(h)N1N2
d
= N2

1 (σ2 − γX(h)) +N2
2 (σ2 + γX(h)) .

Now the moment generating function of a χ2-distributed random variable yields

E
[
e −
(
N2

1σ
2+N2

2σ
2+2γX(h)N1N2

)]
=
(
1 + 4(σ2 − γX(h))

)−1/2 (
1 + 4(σ2 + γX(h))

)−1/2
.

Proceeding in a similar fashion, we obtain

TXµ (h) =
(
1 + 4(σ2 − γX(h))

)−1/2 (
1 + 4(σ2 + γX(h))

)−1/2
+ (1 + 4σ2)−1

−2
(
1 + 4(σ2 − γX(h)/2)

)−1/2 (
1 + 4(σ2 + γX(h)/2)

)−1/2
.

If γX(h) → 0 as h → ∞ Taylor expansions yield TXµ (h) ∼ 4γ2
X(h)/(1 + 4σ2)3. A similar

result was given in Fokianos and Pitsillou (2017), where they derived an explicit expression

for TXµ (h) for a stationary Gaussian process (Xt) with weight function (1.2).

If ((Xt, Yt)) is strictly stationary and ergodic then ((Xt, Yt+h)) is a strictly stationary

ergodic sequence for every integer h. Then Theorem 1.3.1 applies.

Corollary 1.3.7. Under the conditions of Theorem 1.3.1, for h ≥ 0,

TX,Yn,µ (h)
a.s.→ TX,Yµ (h) and TXn,µ(h)

a.s.→ TXµ (h) ,
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and

RX,Y
n,µ (h)

a.s.→ RX,Y
µ (h) and RX

n,µ(h)
a.s.→ RX

µ (h) .

Applying Theorem 1.3.2 and Theorem 1.3.1, we also have the following weak dependence

result under α-mixing. Zhou (2012) proved the corresponding result under conditions on the

so-called physical dependence measure.

Corollary 1.3.8. Assume that X0 and Yh are independent for some h ≥ 0 and the sequence

((Xt, Yt)) satisfies the conditions of Theorem 1.3.2. Then

nTX,Yn,µ (h)
d→ ‖Gh‖2

µ and nRX,Y
n,µ (h)

d→
‖Gh‖2

µ√
TXµ (0)T Yµ (0)

,

where Gh is a centered Gaussian process on Rp+q.

Remark 1.3.9. From the proof of Theorem 1.3.2 (the central limit theorem for the multi-

variate empirical characteristic function) it follows that Gh has covariance function

Γ((s, t), (s′, t′)) = cov(Gh(s, t), Gh(s
′, t′))

=
∑
j∈Z

E
[(
e i 〈s,X0〉 − ϕX(s)

)(
e i 〈t,Yh〉 − ϕY (t)

)
×
(
e −i 〈s

′,Xj〉 − ϕX(−s′)
)(
e −i 〈t

′,Yj+h〉 − ϕY (−t′)
)]
. (1.29)

In the special case when (Xt) and (Yt) are independent sequences Gh is the same across all

h with covariance function

Γ((s, t), (s′, t′)) =
(
ϕX(s− s′)− ϕX(s)ϕX(s′)

)(
ϕY (t− t′)− ϕY (t)ϕY (t′)

)
.

Since Gh is centered Gaussian its squared L2-norm ‖Gh‖2
µ has a weighted χ2-distribution;

see Kuo (1975), Chapter 1. The distribution of ‖Gh‖2
µ is not tractable and therefore one

needs resampling methods for determining its quantiles.

Remark 1.3.10. Corollary 1.3.8 can be extended to the joint convergence of the function

nTX,Yn,µ (h) at finitely many lags h, provided X0 and Yh are independent for these lags.

Remark 1.3.11. Corollary 1.3.8 does not apply when X0 and Yh are dependent. Then

nTX,Yn,µ (h)→∞ a.s. and nRX,Y
n,µ (h)→∞ a.s.
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1.4 Auto-distance covariance of fitted residuals from

AR(p) process

An often important problem in time series is to assess the goodness-of-fit of a particular

model. As an illustration, consider a causal autoregressive process of order p (AR(p)) given

by the difference equations,

Xt =

p∑
k=1

φkXt−k + Zt , t = 0,±1, . . . ,

where (Zt) is an iid sequence with a finite moment E|Z|κ <∞ for some κ > 0. It is further

assumed Zt has mean 0 if κ ≥ 1. It is often convenient to write the AR(p) process in

the form, Zt = Xt − φTXt−1 , where φ = (φ1, . . . , φp)
T , p ≥ 1 and Xt = (Xt, . . . , Xt−p+1)T .

Since the process is assumed causal, we can write Xt =
∑∞

j=0 ψj Zt−j for absolutely summable

constants (ψj); see Brockwell and Davis (1991), p. 85. For convenience, we also write ψj = 0

for j < 0 and ψ0 = 1.

The least-squares estimator φ̂ of φ satisfies the relation

φ̂− φ = Γ−1
n,p

1

n

n∑
t=p+1

Xt−1 Zt , where Γn,p =
1

n

n∑
t=p+1

XT
t−1Xt−1 .

If σ2 = var(Zt) <∞, we have by the ergodic theorem,

Γn,p
a.s.→ Γp =

(
γX(j − k)

)
1≤j,k≤p , where γX(h) = cov(X0, Xh) , h ∈ Z . (1.30)

Causality of the process implies that the partial sum
∑n

t=p+1 Xt−1 Zt is a martingale and

applying the martingale central limit theorem yields

√
n
(
φ̂− φ

) d→ Q , (1.31)

where Q is N(0, σ2Γ−1
p ) distributed.

The residuals of the fitted model are given by

Ẑt = Xt − φ̂
T

Xt−1 =
(
φ− φ̂

)T
Xt−1 + Zt , t = p+ 1, . . . , n . (1.32)
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For convenience, we set Ẑt = 0, t = 1, . . . , p since this choice does not influence the asymp-

totic theory. Each of the residuals Ẑt depends on the estimated parameters and hence the

residual process exhibits serial dependence. Nevertheless, we might expect the test statistic

based on the distance covariance function of the residuals, given by

T Ẑn,µ(h) =

∫
R
|CẐ

n (s, t)|2 µ(ds, dt),

to behave in a similar fashion for the true noise sequence (Zt). If the model is a good fit, then

we would not expect T Ẑn,µ(h) to be extraordinarily large. As observed by Rémillard (2009),

the limit distributions for T Ẑn,µ(h) and TZn,µ(h) are not the same. As might be expected, the

residuals, which are fitted to the actual data, tend to have smaller distance covariance than

the true noise terms for lags less than p, if the model is correct. As a result, one can fashion

a goodness-of-fit test based on applying the distance covariance statistics to the residuals.

In the following theorem, we show that the distance covariance based on the residuals has

a different limit than the distance covariance based on the actual noise, if the process has a

finite variance. So in applying a goodness-of-fit test, one must make an adjustment to the

limit distribution. Interestingly, if the noise has heavy-tails, the limits based on the residuals

and the noise terms are the same and no adjustment is necessary.

For the formulation of the next result we need some auxiliary limit theory; the proofs

are given in Section 1.7.

Lemma 1.4.1. Consider an iid sequence (Zt) with finite variance. Let

CZ
n (s, t) = ϕnZ0,Zh

(s, t)− ϕnZ(s)ϕnZ(t) .

1. For every h ≥ 0,

√
n
(
CZ
n , φ̂− φ

) d→ (Gh,Q) ,

where the convergence is in C(K)×Rp, K ⊂ R2 is a compact set, Gh is the limit process

of CZ
n with covariance structure specified in Remark 1.3.9 for the sequence ((Zt, Zt+h)),

Q is the limit in (4.2), (Gh,Q) are mean-zero and jointly Gaussian with covariance
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matrix

cov(Gh(s, t),Q) = −ϕ′Z(s)ϕ′Z(t) Γ−1
p Ψh , s, t ∈ R , (1.33)

where Ψh = (ψh−j)j=1,...,p and ϕ′Z is the first derivative of ϕZ.

2. For every h ≥ 0,

√
n
(
CZ
n , C

Ẑ
n − CZ

n

) d→ (Gh, ξh) ,

where (Gh,Q) are specified in (4.4) and

ξh(s, t) = tϕZ(t)ϕ′Z(s)ΨT
hQ, (s, t) ∈ K , (1.34)

the convergence is in C(K,R2), K ⊂ R2 is a compact set. In particular, we have

√
nCẐ

n
d→ Gh + ξh , (1.35)

in C(K) for K ⊂ R2 compact.

Now we can formulate the following result; the proof is given in the Section ??.

Theorem 1.4.2. Consider a causal AR(p) process with iid noise (Zt). Assume µ satisfies∫
R2

[
(1 ∧ |s|2) (1 ∧ |t|2)µ(ds, dt) + (s2 + t2) 1(|s| ∧ |t| > 1)µ(ds, dt) <∞. (1.36)

1. If σ2 = Var(Z) <∞, then

nT Ẑn,µ(h)
d→ ‖Gh + ξh‖2

µ and nRẐ
n,µ(h)

d→
‖Gh + ξh‖2

µ

TZµ (0)
, (1.37)

where (Gh, ξh) are jointly Gaussian limit random fields on R2. The covariance structure

of Gh is specified in Remark 1.3.9 for the sequence ((Zt, Zt+h)), ξh and the joint limit

structure of (Gh, ξh) are given in Lemma 1.4.1.

2. Assume that Z is in the domain of attraction of a stable law of index α ∈ (0, 2), i.e.,

P(|Z| > x) = x−αL(x) for x > 0, L(·) is a slowly varying function at ∞, and

P(Z > x)

P(|Z| > x)
→ p and

P(Z < −x)

P(|Z| > x)
→ 1− p
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as x→∞ for some p ∈ [0, 1] (Feller (1971), p. 313). Then we have

nT Ẑn,µ(h)
d→ ‖Gh‖2

µ and nRẐ
n,µ(h)

d→
‖Gh‖2

µ

TZµ (0)
, (1.38)

where Gh is a Gaussian limit random field on R2. The covariance structure of Gh is

specified in Remark 1.3.9 for the sequence ((Zt, Zt+h)).

Remark 1.4.3. Rémillard (2009) mentioned that TZn,µ(h) and T Ẑn,µ(h) for an AR(1) process

have distinct limit processes and he also suggested the limiting structure in (1.37).

Remark 1.4.4. The limit in (1.37) can be extended to cover ARMA processes and some

non-linear processes that are invertible. This is the subject of Chapter 2.

The structure of the limit process in (1.37) is rather implicit. In applications, one needs

to rely on resampling methods. Relation (1.37) can be extended to a joint convergence result

for finitely many lags h but the dependence structure of the limiting vectors is even more

involved. Condition (1.36) holds for probability measures µ = µ1 × µ1 on R2 with finite

second moment but it does not hold for the benchmark measure µ = µ1 × µ1 described in

(1.14). A reason for this is that ‖ξh‖2
µ is in general not well defined in this case. If Zt has

characteristic function ϕZ then by virtue of (4.5), ‖ξh‖2
µ is finite a.s. if and only if∫ ∞

−∞
|tϕZ(t)|2µ1(dt)

∫ ∞
−∞
|ϕ′Z(s)|2µ1(ds) <∞ .

Now assume that Zt has a density function f and choose µ1(dt) = c1t
−2dt. Then by

Plancherel’s identity, the first integral becomes∫ ∞
−∞
|ϕZ(t)|2 dt = c

∫ ∞
−∞

f 2(t) dt .

If one chooses f to be a symmetric gamma distribution with shape parameter δ ∈ (0, 1/2),

i.e., f(z) = .5βδ|z|δ−1e −|z|β/Γ(δ), then the integral
∫∞
−∞ f

2(t)dt is infinity and hence the limit

random variable in (1.37) cannot be finite.

AR simulation. We illustrate the results of Theorem 1.4.2. First, we generate independent

replications of a time series (Xt)t=1,...,1000 from a causal AR(10) model with Zt ∼ N(0, 1)
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and

φ = (−0.140, 0.038, 0.304, 0.078, 0.069, 0.013, 0.019, 0.039, 0.148,−0.062).

In this and the following examples, we choose the weight measure µ = µ1 × µ2, where µi is

the N(0, 0.5)-distribution and hence (1.36) is satisfied. From the independent replications of

the simulated residuals we approximate the limit distribution ‖Gh+ξh‖2
µ / T

Z
µ (0) of nRẐ

n,µ(h)

by the corresponding empirical distribution.

The left graph in Figure 1.1 shows the box-plots for nRẐ
n,µ(h) based on 1000 replications

from the AR(10) model, each with sample size n = 1000. As seen from the plots, the

distribution at each lag is heavily skewed. In the right panel of Figure 1.1, we compare the

empirical 5%, 50%, 95% quantiles of nRẐ
n,µ(h) to those of nRZ

n,µ(h), the scaled ADCF of

iid noise, all of which have the same limit, ‖Gh‖2
µ / T

Z
µ (0). The asymptotic variance of the

ADCF of the residuals is smaller than that of iid noise at initial lags, and gradually increases

at larger lags to the values in the iid case. This behavior is similar to that of the ACF of

the residuals of an AR process; see for example Chapter 9.4 of Brockwell and Davis (1991).

Theorem 1.4.2 provides a visual tool for testing the goodness-of-fit of an AR(p) model,

by examining the serial dependence of the residuals after model fitting. Under the null

hypothesis, we expect nRẐ
n,µ(h) to be well bounded by the 95% quantiles of the limit distri-

bution ‖Gh+ ξh‖2
µ / T

Z
µ (0). For a single time series, this quantity can be approximated using

a parametric bootstrap (generating an AR(10) process from the estimated parameters and

residuals); see for example Politis et al. (1999). In the right graph of Figure 1.1 we overlay

the empirical 5%, 50%, 95% quantiles of nRẐ
n,µ(h) estimated from one particular realization

of the time series. As can be seen in the graph, the parametric bootstrap provides a good

approximation to the actual quantiles found via simulation. On the other hand, the quan-

tiles found by simply bootstrapping the residuals provides a rather poor approximation, at

least for the first 10 lags.

We now consider the same AR(10) model as before, but with noise having a t-distribution

with 1.5 degrees of freedom. (Here the noise is in the domain of attraction of a stable distri-
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Figure 1.1: Distribution of nRẐ
n,µ(h), n = 1000 for the residuals of an AR(10) process with

N(0, 1) innovations. Left: Box-plots from 1000 independent replications. Right: 5%, 50%,

95% empirical quantiles of nRẐ
n,µ(h) based on simulated residuals, on resampled residuals

and on iid noise, respectively. The weight measure is µ = µ1× µ2, with each µi ∼ N(0, 0.5).
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Figure 1.2: Distribution of nRẐ
n,µ(h) for residuals of AR process with t1.5 innovations. Left:

lag-wise box-plots. Right panel: empirical 5%, 50%, 95% quantiles from simulated residuals,
empirical quantiles from resampled residuals, and empirical quantiles from iid noise. The
weight measure is µ = µ1 × µ2, with each µi ∼ N(0, 0.5).

bution with index 1.5.) The left graph of Figure 1.2 shows the box-plots of n RẐ
n,µ(h) based

on 1000 replications, and the right graph shows the 5%, 50%, 95% quantiles of nRẐ
n,µ(h) and

nRZ
n,µ(h), both of which have the same limit distribution ‖Gh‖2

µ / T
Z
µ (0). In this case, the

quantiles of ‖Gh‖2
µ / T

Z
µ (0) can be approximated naively by bootstrapping the fitted residu-

als (Ẑt) of the AR model. The left graph of Figure 1.2 overlays the 5%, 50%, 95% quantiles

from bootstrapping with those from the simulations. The agreement is reasonably good.

We next provide an empirical example illustrating the limitation of using the measure in

(1.14). Again, we use the same AR(10) model as before, but with noise now generated from

the symmetric gamma distribution with δ = .2, β = .5. The corresponding pair of graphs

with boxplots and quantiles for nRẐ
n,µ(h) is displayed in Figure 1.3. Notice now that the
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box plots for the sampling distribution of the distance correlation for the first 10 lags are

rather spread out compared to those at lags greater than 10. In particular, the sampling

behavior of these distance correlations is directly opposite of what we observed in Figure 1.1

where a finite measure was used. To further illustrate this disparity, the plot on the right

in Figure 1.3 displays the 95%, 50%, 5% quantiles for the companion box plots (the dotted

lines are the corresponding quantiles for iid noise with the Gamma(0.2,0.4) distribution).

Now, compared to quantiles of distance correlation based on the iid noise, we see a stark

difference. The median for the estimates based on the residuals using the weight function in

(1.14) is nearly the same as the 95% quantile for the noise at lags 1-10. This illustrates the

problem with using (1.14) as a weight function applied to the residuals.
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Figure 1.3: Distribution of nRẐ
n,µ(h), n = 1000 for residuals of AR process with a symmetric

Gamma(0.2,0.5) noise. Left: box-plots from 500 independent replications. Right panel:
empirical 5%, 50%, 95% quantiles from simulated residuals and from iid noise. The measure
µ is given by (1.14).

1.5 Data Examples

1.5.1 Amazon daily returns

In this example, we consider the daily stock returns of Amazon from 05/16/1997 to 06/16/2004.

Denoting the series by (Xt), Figure 1.4 shows the ACF of (Xt), (X2
t ), (|Xt|) and ADCF of

(Xt) with weight measure µ(ds, dt) = s−2t−2dsdt. In the right panel, we compare the ADCF

with the 5%, 50%, 95% confidence bounds of the ADCF for iid data, approximated by the
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corresponding empirical quantiles from 1000 random permutations. With most financial time

series, which are typically uncorrelated, serial dependence can be detected by examining the

ACF of the absolute values and squares. Interestingly for the Amazon data, the ACF of the

squared data also fails to pick up any signal. On the other hand, the ADCF has no trouble

detecting serial dependence without having to resort to applying any transformation.
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Figure 1.4: ACF and ADCF of daily stock returns of Amazon (Xt) from 05/16/1997 to
06/16/2004. Upper left: ACF of (Xt); Upper right: ACF of (X2

t ); Lower left: ACF of (|Xt|);
Lower right: ADCF of (Xt), the 5%, 50%, 95% confidence bounds of ADCF from randomly
permuting the data.

1.5.2 Wind speed data

For the next example we consider the daily averages of wind speeds at Kilkenny’s synoptic

meteorological station in Ireland. The time series consists of 6226 observations from 1/1/1961

to 1/17/1978, after which a square root transformation has been applied to stabilize the

variance. This transformation has also been suggested in previous studies (see, for example,

Haslett and Raftery (1989)). The ACF of the data, displayed in Figure 1.5, suggests a

possible AR model for the data. An AR(9) model was found to provide the best fit (in

terms of minimizing AICC among all AR models) to the data. The ACF of the residuals
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(see upper right panel in Figure 1.5) shows that the serial correlation has been successfully

removed. The ACF of the squared residuals and ADCF of the residuals are also plotted in the

bottom panels Figure 1.5. For computation of the ADCF, we used the N(0,.5) distribution

for the weight measure, which satisfies the condition (1.36). The ADCF of the residuals

is well bounded by the confidence bounds for the ADCF of iid noise, shown by the dotted

line in the plot. Without adjusting these bounds for the residuals, one would be tempted

to conclude that the AR model is a good fit. However, the adjusted bounds for the ADCF

of residuals, represented by the solid line in the plot and computed using a parametric

bootstrap, suggest that some ADCF values among the first 8 lags are in fact larger than

expected. Hence this sheds some doubt on the validity of an AR(9) model with iid noise for

this data. A similar conclusion can be reached by inspecting the ACF of the squares of the

residuals (see lower left panel in Figure 1.5).

One potential remedy for the lack of fit of the AR(9) model, is to consider a GARCH(1,1)

model applied to the residuals. The GARCH model performs well in devolatilizing the

AR-fitted residuals and no trace of a signal could be detected through the ACF of the

GARCH-residuals applied to the squares and absolute values. The ADCF of the devolatilized

residuals, seen in Figure 1.6, still presents some evidence of dependence. Here the confidence

bounds plotted are for iid observations, obtained from 1000 random permutations of the

GARCH-residuals and as such do not include an adjustment factor. Ultimately, a periodic

AR model, which allows for periodicity in both the AR parameters and white noise variance

might be a more desirable model.

1.6 Proof of Theorem 1.3.2

The proof follows from the following lemma.

Lemma 1.6.1. Assume that
∑

h α
1/r
h < ∞ for some r > 1 and set u = 2r/(r − 1). We

also assume the moment conditions (1.22) (or (1.25)) for some α > 0 if X0 and Y0 are
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Figure 1.5: ACF and ADCF of Kilkenny wind speed time series and AR(9) fitted residuals.
Upper left: ACF of the series. Upper right: ACF of the residuals. Lower left: ACF of the
residual squares. Lower right: ADCF of the residuals, the 5%, 50%, 95% confidence bounds
of ADCF for fitted residuals from 1000 parametric bootstraps, and that for iid noise from
1000 random permutations.
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Figure 1.6: ADCF of the residuals of Kilkenny wind speed time series from AR(9)-GARCH
fitting and the 5%, 50%, 95% confidence bounds of ADCF for iid noise from 1000 random
permutations.

independent (dependent).

1. For α ≤ 2 there exists a constant c > 0 such that for ε ∈ [0, 1/2),

nE[|Cn(s, t)− C(s, t)|2] ≤ c
(
1 ∧ |s|α(1+ε)/u

) (
1 ∧ |t|α(1+ε)/u

)
, n ≥ 1 . (1.39)

2. If α ∈ (u/2, u] then
√
n(ϕnX,Y − ϕX,Y )

d→ G on compact sets K ⊂ Rp+q for some

complex-valued mean-zero Gaussian field G.
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Remark 1.6.2. Notice that C(s, t) = 0 when X0 and Y0 are independent.

Proof. (1) We focus on the proof under the assumption of independence. At the end, we

indicate the changes necessary when X0 and Y0 are dependent.

We write

Uk = e i〈s,Xk〉 − ϕX(s) , Vk = e i〈t,Yk〉 − ϕY (t) , k ≥ 1 ,

where we suppress the dependence of Uk and Vk on s and t, respectively. Then

nE[|Cn(s, t)|2] = nE
∣∣∣ 1
n

n∑
k=1

Uk Vk −
1

n

n∑
k=1

Uk
1

n

n∑
l=1

Vl

∣∣∣2
≤ 2nE

[∣∣∣ 1
n

n∑
k=1

Uk Vk

∣∣∣2]+ 2nE
[∣∣∣ 1
n

n∑
k=1

Uk
1

n

n∑
l=1

Vl

∣∣∣2] =: 2 (I1 + I2) .

We have by stationarity

I1 = E[|U0V0|2] + 2
n−1∑
h=1

(1− h/n) ReE[U0V0 UhVh] .

Since U0 and V0 are independent E[U0V0] = 0. In view of the α-mixing condition (see

Doukhan (1994), Section 1.2.2, Theorem 3(a)) we have

∣∣ReE[U0V0 UhVh]
∣∣ ≤ c α

1/r
h (E[|U0V0|u])2/u (1.40)

= c α
1/r
h (E[|U0|u])2/u(E[|V0|u])2/u

≤ c α
1/r
h (E[|U0|2])2/u(E[|V0|2])2/u .

In the last step we used that u = 2r/(r − 1) > 2 and that max(|U0|, |V0|) ≤ 2. We have for

α ∈ (0, 2]

E[|U0|2] = 1− |ϕX(s)|2 ≤ E[1 ∧ |〈s,X −X ′〉|α] ≤ c
(
1 ∧ |s|α

)
.

Therefore and since
∑

h α
1/r
h <∞ we have I1 ≤ c

(
1 ∧ |s|α

)2/u (
1 ∧ |t|α

)2/u
.

Now we turn to I2. By the Cauchy-Schwarz inequality and since | 1
n

∑n
k=1 Uk| and

| 1
n

∑n
k=1 Vk| are bounded by 2 we have

I2 ≤ 2n
(
E
∣∣∣ 1
n

n∑
k=1

Uk

∣∣∣4)1/2 (
E
∣∣∣ 1
n

n∑
k=1

Vk

∣∣∣4)1/2

36



≤ c
(
nE
∣∣∣ 1
n

n∑
k=1

Uk

∣∣∣2+δ)1/2 (
nE
∣∣∣ 1
n

n∑
k=1

Vk

∣∣∣2+δ)1/2

,

for any δ ∈ [0, 2]. In view of Lemma 18.5.1 in Ibragimov and Linnik (1971) we have for

δ ∈ [0, 1),

I2 ≤ c
(
nE
∣∣∣ 1
n

n∑
k=1

Uk

∣∣∣2)(2+δ)/4 (
nE
∣∣∣ 1
n

n∑
k=1

Vk

∣∣∣2)(2+δ)/4

,

Similar arguments as for I1 show that

I2 ≤ c
(
1 ∧ |s|α(2+δ)/4

)2/u (
1 ∧ |t|α(2+δ)/4

)2/u
.

Combining the bounds for I1 and I2, we arrive at (1.39).

Now we indicate the changes necessary when X0 and Y0 are dependent. We use the notation

above and, additionally, write W̃k = UkVk − C(s, t). We have

Cn(s, t)− C(s, t) =
1

n

n∑
k=1

W̃k −
1

n

n∑
k=1

Uk
1

n

n∑
l=1

Vl .

Then

nE[|Cn(s, t)− C(s, t)|2] ≤ 2nE
[∣∣∣ 1
n

n∑
k=1

W̃k

∣∣∣2]+ 2nE
[∣∣∣ 1
n

n∑
k=1

Uk
1

n

n∑
l=1

Vl

∣∣∣2] = 2 (I ′1 + I2) .

Since E[W̃0] = 0, we have by stationarity

I ′1 = E[|W̃0|2] + 2
n−1∑
h=1

(1− h/n) ReE[W̃0 W̃h] .

Observe that E[|W̃0|2] ≤ 2(E|U0|4 E|V0|4)1/2 + 2|C(s, t)|2 and

|U0|2 ≤ (|e i〈s,X0〉 − 1|+ E[|1− e i〈s,X0〉|])2

≤ c (1 ∧ (|s| |X0|)α/2)2 + c (1 ∧ (|s|α/2 E|X0|α/2))2 .

Since E[|X0|2α] < ∞ we have E[|U0|4] ≤ c (1 ∧ |s|2α) and in a similar manner, E|V0|4 ≤

c (1 ∧ |t|2α). We also have |C(s, t)|2 ≤ c (1 ∧ |s|α) (1 ∧ |t|α). Finally, we conclude that

E[|W̃0|2] ≤ c (1 ∧ |s|α) (1 ∧ |t|α) .
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With the α-mixing condition we obtain

∣∣ReE[W̃0 W̃h]
∣∣ ≤ c α

1/r
h (E[|W̃0|u])2/u ≤ c α

1/r
h (E[|W̃0|2])2/u.

This together with
∑

h α
1/r
h <∞ yields I ′1 ≤ c

(
1∧ |s|α

)2/u (
1∧ |t|α

)2/u
. The remaining term

I2 can be treated in the same way as in the independent case. Combining the bounds for I ′1

and I2, we arrive at (1.39).

(2) We need an analog of S. Csörgő’s central limit theorem (Csörgő, 1981a,b,c) for the

empirical characteristic function of an iid multivariate sequence with Gaussian limit. For ease

of notation we focus on the X-sequence; the proof for the (X, Y )-sequence is analogous and

therefore omitted. The convergence of the finite-dimensional distributions of
√
n(ϕnX − ϕX)

follows from Theorem 18.5.2 in Ibragimov and Linnik (1971) combined with the Cramér-

Wold device. We need to show tightness of the normalized empirical characteristic function

on compact sets. We use the sufficient condition of Theorem 3 in Bickel and Wichura (1971)

for multiparameter processes. We evaluate the process on cubes (s, t] =
∏p

k=1(sk, tk], where

s = (s1 . . . , sp) and t = (t1, . . . , tp) and si < ti, i = 1, . . . , p. The increment of the normalized

empirical characteristic function on (s, t] is given by

In(s, t] =
√
n(ϕnX(s, t]− ϕX(s, t])

=

√
n

n

n∑
r=1

{ ∑
k1=0,1

· · ·
∑
kp=0,1

(−1)p−
∑
j kj
( p∏
l=1

e i(sl+kl(tl−sl))X
(l)
r

−E
[ p∏
l=1

e i(sl+kl(tl−sl))X
(l)
r
])}

=:
1√
n

n∑
r=1

Wr , (1.41)

where Xr = (X
(1)
r , . . . , X

(p)
r ) and

Wr =

p∏
l=1

(e itlX
(l)
r − e islX

(l)
r )− E

[ p∏
l=1

(e itlX
(l)
r − e islX

(l)
r )
]
.

We apply the sums
∑

kj=0,1 inductively to derive (1.41). Observe that

E
[
|In(s, t]|2

]
= E[|W0|2] + 2

n−1∑
h=1

(1− h/n)ReE[W0W h] .
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By the Lipschitz property of trigonometric functions we have for some constant c > 0 and

α ∈ (0, 2],

|e islX
(l)
r − e itlX

(l)
r |2 ≤ c (1 ∧ |tl − sl|2(X(l)

r )2/4) ≤ c (1 ∧ |sl − tl|α|X(l)
r |α/4α) .

Proceeding as for (1.40) and noticing that α ≤ 2 ≤ u, we have

|E[W0W h]| ≤ c α
1/r
h (E[|W0|u])2/u

≤ α
1/r
h

p∏
l=1

|sl − tl|2α/u
(
E
[ p∏
l=1

|X(l)
0 |α

])2/u
.

Using the summability of (α
1/r
h ) and the moment condition on X0, we may conclude that

E
[
|In(s, t]|2

]
≤ c

p∏
l=1

|sl − tl|2α/u.

If 2α/u > 1 the condition of Theorem 3 in Bickel and Wichura (1971) yields that the

processes (
√
n(ϕnX − ϕX)) are tight on compact sets.

Proof of Theorem 1.3.2(1). Recall the definition of Kδ from (1.21) and that X0 and Y0 are

independent. From Lemma 1.6.1 and the continuous mapping theorem we have∫
Kδ

|
√
nCn(s, t)|2 µ(ds, dt)

d→
∫
Kδ

|G(s, t)|2 µ(ds, dt) , n→∞ .

From (1.23), (1.39) and the dominated convergence theorem, for any ε > 0, some ε ∈ (0, 1/2]

and α′ ≤ min(2, α),

lim
δ↓0

lim sup
n→∞

P

(∫
Kc
δ

|
√
nCn(s, t)|2 µ(ds, dt) > ε

)
≤ ε−1 lim

δ↓0
lim sup
n→∞

∫
Kc
δ

E[|
√
nCn(s, t)|2]µ(ds, dt)

≤ lim
δ↓0

∫
Kc
δ

c
(
1 ∧ |s|α′(1+ε)/u

) (
1 ∧ |t|α′(1+ε)/u

)
µ(ds, dt) = 0 .

Proof of Theorem 1.3.2(2). Now we assume that X0 and Y0 are dependent. We observe that

√
n (Tn(s, t;µ)− T (s, t;µ)) =

∫
Rp+q

√
n(|Cn(s, t)|2 − |C(s, t)|2)µ(ds, dt).
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In view of Lemma 1.6.1(2) and the a.s. convergence of Cn on compact sets the continuous

mapping theorem implies that for some Gaussian mean-zero process G′,∫
Kδ

√
n{(Cn(s, t)− C(s, t))Cn(s, t) + C(s, t)(Cn(s, t)− C(s, t))}µ(ds, dt)

d→
∫
Kδ

G′(s, t)µ(ds, dt) , n→∞ ,

where G′X(s, t) = 2Re{G(s, t)C(s, t)}. We have

∣∣|Cn|2 − |C|2∣∣ =
∣∣|Cn − C|2 + 2 Re (C (Cn − C))

∣∣ ≤ c |Cn − C| .

By Markov’s inequality, (1.39) and (1.23),

lim
δ↓0

lim sup
n→∞

P

(∫
Kc
δ

√
n
∣∣|Cn(s, t)|2 − |C(s, t)|2

∣∣µ(ds, dt) > ε

)
≤ c lim

δ↓0
lim sup
n→∞

∫
Kc
δ

(
nE[|Cn − C|2]

)1/2
µ(ds, dt)

≤ lim
δ↓0

∫
Kc
δ

c
(
1 ∧ |s|α′(1+ε)/u

) (
1 ∧ |t|α′(1+ε)/u

)
µ(ds, dt) = 0 .

1.7 Proof of Theorem 1.4.2

We prove the result for the residuals calculated from least square estimates (LSEs). One

may show that the same result holds for maximum likelihood and Yule-Walker estimates.

The least squares estimator φ̂ of φ satisfies the relation

φ̂− φ = Γ−1
n,p

1

n

n∑
t=p+1

Xt−1 Zt ,

where

Γn,p =
1

n

n∑
t=p+1

XT
t−1Xt−1 .

If σ2 = var(Zt) <∞, we have by the ergodic theorem,

Γn,p
a.s.→ Γp =

(
γX(j − k)

)
1≤j,k≤p , where γX(h) = cov(X0, Xh) , h ∈ Z . (4.1)
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Causality of the process implies that the partial sum
∑n

t=p+1 Xt−1 Zt is a martingale and

applying the martingale central limit theorem yields

√
n
(
φ̂− φ

) d→ Q , (4.2)

where Q is N(0, σ2Γ−1
p ) distributed.

Keeping this in mind, we start with a joint central limit theorem for CZ
n and φ̂.

Lemma 1.7.1. Consider an iid sequence (Zt) with finite variance.

1. For every h ≥ 0,
√
n
(
CZ
n , φ̂− φ

) d→ (Gh,Q) ,

where the convergence is in C(K)×Rp, K ⊂ R2 is a compact set, Gh is the limit process

of CZ
n with covariance structure specified in Remark 3.9 for the sequence ((Zt, Zt+h)),

Q is the limit in (4.2), (Gh,Q) are mean-zero and jointly Gaussian with covariance

matrix

cov(Gh(s, t),Q) = −ϕ′Z(s)ϕ′Z(t) Γ−1
p Ψh , s, t ∈ R , (4.4)

where Ψh = (ψh−j)j=1,...,p and ϕ′Z is the first derivative of ϕZ.

2. For every h ≥ 0,

√
n
(
CZ
n , C

Ẑ
n − CZ

n

) d→ (Gh, ξh) ,

where (Gh,Q) are specified in (4.4) and

ξh(s, t) = tϕZ(t)ϕ′Z(s)ΨT
hQ, (s, t) ∈ K , (4.5)

the convergence is in C(K,R2), K ⊂ R2 is a compact set. In particular, we have

√
nCẐ

n
d→ Gh + ξh . (4.6)

Proof of part (1). We observe that, uniformly for (s, t) ∈ K,

CZ
n (s, t) =

1

n

n−h∑
j=1

e isZj+itZj+h − 1

n

n−h∑
j=1

e isZj
1

n

n−h∑
j=1

e itZj+h
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=
1

n

n∑
j=1

(
e isZj − ϕZ(s)

)(
e itZj+h − ϕZ(t)

)
− 1

n

n∑
j=1

(
e isZj − ϕZ(s)

) 1

n

n∑
j=1

(
e itZj − ϕZ(t)

)
+OP(n−1) .

In view of the functional central limit theorem for the empirical characteristic function of

an iid sequence (see Csörgő (1981a,1981b)) we have uniformly for (s, t) ∈ K,

√
nCZ

n (s, t) =
1√
n

n∑
j=1

(
e isZj − ϕZ(s)

)(
e itZj+h − ϕZ(t)

)
+OP(n−1/2)

= In(s, t) +OP(n−1/2) .

Therefore it suffices to study the convergence of the finite-dimensional distributions of(
In,
√
n (φ̂−φ)

)
. In view of (4.1) it suffices to show the convergence of the finite-dimensional

distributions of
(
In, (1/

√
n)
∑n

j=1 Xj−1Zj
)
. This convergence follows by an application of

the martingale central limit theorem and the Cramér-Wold device. It remains to determine

the limiting covariance structure, taking into account the causality of the process (Xt). We

have

cov
(
In,

1√
n

n∑
j=1

Xj−1Zj
)

=
1

n
E
[ n∑
j=1

n∑
k=1

(
e isZj − ϕZ(s)

)(
e itZj+h − ϕZ(t)

)
Xk−1Zk

]
.

By causality, Xk and Zj are independent for k < j. Hence E[(e isZj − ϕZ(s))(e itZj+h −

ϕZ(t))Xl−kZl] is non-zero if and only if l = j + h and k ≤ h, resulting in

E
[(
e isZj − ϕZ(s)

)(
e itZj+h − ϕZ(t)

)
Xl−k Zl

]
= E

[
Xj+h−k

(
e isZj − ϕZ(s)

)]
E
[
Zj+h

(
e itZj+h − ϕZ(t)

)]
= ψh−k E

[
Z
(
e isZ − ϕZ(s)

)]
E
[
Z
(
e itZ − ϕZ(t)

)]
= −ψh−k iE

[
Ze isZ

]
iE
[
Ze itZ

]
= −ψh−k ϕ′Z(s)ϕ′Z(t) .

This implies (4.4).

Proof of part (2). We observe that, uniformly for (s, t) ∈ K,

CẐ
n (s, t)− CZ

n (s, t) (1.42)
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=
1

n

n∑
j=1

e isZj+itZj+h
(
e i (φ−φ̂)T (sXj−1+tXj+h−1) − 1

)
+

1

n

n∑
j=1

(
1− e i(φ−φ̂)T sXj−1

)
e isZj

1

n

n∑
j=1

e itZj+h

+
1

n

n∑
j=1

e i(φ−φ̂)T sXj−1+isZj
1

n

n∑
j=1

(
1− e i(φ−φ̂)T tXj+h−1

)
e itZj+h +OP(n−1)

= En1(s, t) + En2(s, t) + En3(s, t) +OP(n−1) . (1.43)

Write

Ẽn1(s, t) = i (φ− φ̂)T
1

n

n∑
j=1

(sXj−1 + tXj+h−1) e isZj+itZj+h .

In view of the uniform ergodic theorem, (4.2) and the causality of (Xt) we have

√
nẼn1(s, t)

d→ −iQTE
[
(sX0 + tXh) e

i(sZ1+tZh+1)
]

(1.44)

= −tϕZ(t)ϕ′Z(s)ΨT
hQ = ξh(s, t) ,

where the convergence is in C(K). By virtue of part (1) and the mapping theorem we have

the joint convergence
√
n(CZ

n , Ẽn1)
d→ (Gh, ξh) in C(K,R2). Denoting the sup-norm in C(K)

by ‖ · ‖, it remains to show that
√
n
(
‖En2‖+ ‖En3‖+ ‖En1− Ẽn1‖

) P→ 0 . The proof for En2

and En3 is analogous to (1.44) by observing that the limiting expectation is zero. We have

by a Taylor expansion for some positive constant c,

√
n‖En1(s, t)− Ẽn1(s, t)‖ ≤ c

∣∣√n(φ− φ̂)
∣∣2 sup

(s,t)∈K

1

n3/2

n∑
j=1

∣∣sXj−1 + tXj+h−1

∣∣2 P→ 0 .

In the last step we used the uniform ergodic theorem and (4.2).

Proof of Theorem 1.4.2(1). We proceed as in the proof of Theorem 1.3.2. By virtue of (4.6)

and the continuous mapping theorem we have∫
Kδ

|
√
nCẐ

n (s, t)|2 µ(ds, dt)
d→
∫
Kδ

|G(s, t) + ξh(s, t)|2 µ(ds, dt) , n→∞ .

Thus it remains to show that

lim
δ↓0

lim sup
n→∞

P
(∫

Kc
δ

|
√
nCẐ

n (s, t)|2µ(ds, dt) > ε
)

= 0 , ε > 0 . (1.45)
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Following the lines of the proof of Theorem 1.3.2, we have

lim
δ↓0

lim sup
n→∞

∫
Kc
δ

E[|
√
nCZ

n (s, t)|2]µ(ds, dt) = 0 ;

see also Remark 3.4. Thus it suffices to show

lim
δ↓0

lim sup
n→∞

P
(∫

Kc
δ

|
√
n(CẐ

n (s, t)− CZ
n (s, t))|2µ(ds, dt) > ε

)
= 0 , ε > 0 .

For convenience we redefine

CZ
n =

1

n

n−h∑
j=p+1

e isZj+itZj+h − 1

n

n−h∑
j=p+1

e isZj
1

n

n−h∑
j=p+1

e itZj+h .

This version does not change previous results for CZ
n .

Using telescoping sums, we have for n̄ = n− p− h,

n̄

n
(CẐ

n (s, t)− CZ
n (s, t))

=
1

n̄

n−h∑
j=p+1

AjBj −
1

n̄

n−h∑
j=p+1

Aj
1

n̄

n−h∑
j=p+1

Bj −
1

n̄

n−h∑
j=p+1

Uj

n−h∑
j=p+1

Bj −
1

n̄

n−h∑
j=p+1

Vj

n−h∑
j=p+1

Aj

+
1

n̄

n−h∑
j=p+1

UjBj +
1

n̄

n−h∑
j=p+1

VjAj =:
6∑
j=1

Inj(s, t),

where, suppressing the dependence on s, t in the notation,

Uj = e isZj − ϕZ(s) , Vj = e itZj+h − ϕZ(t) ,

Aj = e isZj (e is(φ−φ̂)′Xj−1 − 1) , Bj = e itZj+h (e is(φ−φ̂)′Xj+h−1 − 1).

Write Kn = |
√
n(φ− φ̂)| and c > 0 for any positive constant which may differ from line to

line. By Taylor expansions we have

n |In1(s, t)|2 ≤
(√n
n̄

n−h∑
j=p+1

|AjBj|
)2

≤ c
(√n
n̄

n−h∑
j=p+1

(1 ∧ |s| |φ− φ̂| |Xj−1|) (1 ∧ |t| |φ− φ̂||Xj+h−1|)
)2

≤ c
(

min
(
|s t|K2

n

1

n̄3/2

n−h∑
j=p+1

|Xj−1Xj+h−1| , |s|Kn
1

n̄

n−h∑
j=p+1

|Xj−1| ,
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|t|Kn
1

n̄

n−h∑
j=p+1

|Xj+h−1|
))2

.

The quantities Kn are stochastically bounded. From ergodic theory (see Example 2.19 in

Samorodnitsky (2016)), n−1
∑n

j=1 |Xj| = OP(1) and n−3/2
∑n

j=1 |Xj Xj+h| = oP(1). Hence

n |In1(s, t)|2 ≤ min(s2, t2, (st)2)OP(1) ≤
(
(1 ∧ s2) (1 ∧ t2) + (s2 + t2)1(|s| ∧ |t| ≥ 1)

)
OP(1),

where the term OP(1) does not depend on s and t. Thus we conclude for k = 1 that

lim
δ↓0

lim sup
n→∞

P
(
n

∫
Kc
δ

|Ink(s, t)|2 µ(ds, dt) > ε
)

= 0 , ε > 0 . (1.46)

A similar argument yields

n |In2(s, t)|2 ≤

(√
n

n̄2

n−h∑
j,k=p+1

|Aj| |Bk|

)2

≤

(√
n

n̄2

n−h∑
j,k=p+1

(1 ∧ |s| |φ− φ̂| |Xj−1|)(1 ∧ |t| |φ− φ̂| |Xk+h−1|)

)2

≤ c

(
min

(
|st|K2

n

1

n̄5/2

n−h∑
j,k=p+1

|Xj−1Xk+h−1|,

|s|Kn
1

n̄

n−h∑
j=p+1

|Xj−1| , |t|Kn
1

n̄

n−h∑
k=p+1

|Xk+h−1|
))2

≤ min(s2, t2, (st)2)OP(1).

Then (1.46) holds for k = 2. Taylor expansions also yield

n |In3(s, t)|2 ≤

(√
n

n̄2

n−h∑
j,k=p+1

|Uj| |Bk|

)2

≤ c

(√
n

n̄2

n−h∑
j,k=p+1

(1 ∧ 1

2
|s| (|Zj|+ E|Z|))(1 ∧ |t| |φ− φ̂| |Xk+h−1|)

)2

≤ min(t2, (st)2)OP(1).

This proves (1.46) for k = 3. By a symmetry argument but with the corresponding bound

min(s2, (st)2)OP(1) , (1.46) for k = 4 follows as well. By Taylor expansion, we also have

n |In5(s, t)|2 ≤

(√
n

n̄

n−h∑
j=p+1

|Uj| |Bj|

)2
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≤ c

(√
n

n̄

n−h∑
j=p+1

(1 ∧ 1

2
|s| (|Zj|+ E|Z|))(1 ∧ |t| |φ− φ̂| |Xj+h−1|)

)2

≤ min(t2, (st)2)OP(1).

We may conclude that (1.46) holds for k = 5. The case k = 6 follows in a similar way with

the corresponding bound min(s2, (st)2)OP(1).

Proof of Theorem 1.4.2(2). We follow the proof of Theorem 4.2(1) by first showing that

√
nCẐ

n
d→ Gh (1.47)

in C(K) for K ⊂ R2 compact, and then (1.45). The convergence
√
nCZ

n
d→ Gh in C(K) con-

tinues to hold as in the proof of Theorem 4.2(1) since the conditions in Csörgő (1981a,1981b)

are satisfied if some moment of Z is finite. For (1.47) it suffices to show that

√
n (CẐ

n − CZ
n )

p→ 0 (1.48)

in C(K). Recalling the decomposition (1.43), we now can show directly that

sup|s|,|t|≤M
√
n|Eni(s, t)|

p→ 0 for any M > 0 and i = 1, 2, 3, which implies (1.48). We focus

only on the case i = 1 to illustrate the method; the cases i = 2, 3 are analogous. We observe

that for δ > 0,

sup
|s|,|t|≤M

√
n|En1(s, t)| ≤ sup

|s|,|t|≤M

√
n|φ− φ̂| 1

n

n−h∑
j=p+1

|sXj−1 + tXj+h−1|

≤ M n
1
δ |φ− φ̂| n−

1
δ
− 1

2

n∑
j=1

|Xj| . (1.49)

On the other hand, under the conditions of Theorem 4.2(2) Hannan and Kanter (1977)

showed for δ > α,

n1/δ (φ− φ̂)
a.s.→ 0.

For α ∈ (1, 2), E[|X|] < ∞ and since we can choose δ = 2 such that 1/δ + 1/2 = 1. The

ergodic theorem finally yields that the right-hand side in (1.49) converges to zero a.s. As

regards the case α ∈ (0, 1], we have E[|X|α−γ] <∞ for any small γ and

E
[∣∣n−1/δ−1/2

n∑
j=1

|Xj|
∣∣α−γ] ≤ n− (α−γ)(1/δ+1/2)+1 E[|X|α−γ]→ 0.
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If we choose δ close to α and γ close to zero the right-hand side in (1.49) converges to zero

in probability.

Using the same bounds as in part (1), but writing this time Kn = n1/δ|φ− φ̂|, we have

n |In1(s, t)|2 ≤ c
(

min
(
|s t|K2

n n
−1/2−2/δ

n∑
j=1

|Xj−1Xj+h−1| , |s|Kn n
−1/δ−1/2

n∑
j=0

|Xj|,

|t|Kn n
−1/δ−1/2

n∑
j=0

|Xj|
))2

≤ c min( |s t|2, |s|2, |t|2 ) max
(
K2
n n
−1/2−2/δ

n∑
j=1

|Xj−1Xj+h−1|,

Kn n
−1/δ−1/2

n∑
j=0

|Xj|
)2

.

The same argument as above shows that n−1/δ−1/2
∑n

j=0 |Xj| = OP(1) for δ close to α.

Since 2|Xj−1Xj+h−1| ≤ X2
j−1 +X2

j+h−1 a similar argument shows that

n−1/2−2/δ
∑n

j=1 |Xj−1Xj+h−1| = OP(1). These facts establish (1.46) for k = 1. The same

arguments show that bounds analogous to part (1) can be derived for n |Ink(s, t)|2 for k =

2, . . . , 6. We omit further details.
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Chapter 2

Goodness-of-fit testing for time series

models via distance covariance

2.1 Introduction

Let {Xj, j ∈ Z} be a stationary time series of random variables with finite mean and variance.

Given consecutive observations of this time series X1, . . . , Xn, we are interested in whether

the sequence can plausibly be viewed as generated from a parametric model, more precisely,

whether {Xj} is generated from the recursion

Xj := f(X−∞:j, Zj;β), (2.1)

where Xn1:n2 denotes the sequence {Xj, n1 ≤ j ≤ n2}, the Zj’s are iid with finite second

moments, and β ∈ Rd is the parameter vector. The objective of this chapter is to provide a

validity check of the model (2.1) by inspecting the residuals.

A typical assumption for time series models is that the recursion (2.1) is casual and

invertible, that is,

Xj = g(Z−∞:j;β)

and

Zj = Zj(β) = h(X−∞:j;β) (2.2)

for some functions g and h. Here we write Zj(β) to indicate its dependency on β. Given

the observations X1:n, let β̂ be an estimator of β. Then the innovations {Zj} can be
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approximated by

Z̃j := Zj(β̂) = h(X−∞:j; β̂), (2.3)

the residuals based on the infinite sequence {Xj, j ≤ n}. If the recursion (2.1) describes the

generating mechanism of {Xj}, one would expect {Z̃j} to inherit the properties of {Zj}. In

reality, we do not observe Xj for j ≤ 0 and instead rely on the estimated residuals

Ẑj := h(Y−∞:j; β̂), j = 1, . . . , n, (2.4)

where {Yj} is the infinite sequence with Yj = Xj, 1 ≤ j ≤ n and Yj = 0 for j ≤ 0. If the

time series {Xj} is stationary and ergodic, the influence of X−∞:0 in (2.3) becomes negligible

for large j and Ẑj and Z̃j become indistinguishable.

While Ẑ1, . . . , Ẑn are derived to approximate the iid innovation {Zj}, the sequence itself

is not iid since they are functions of β̂. This has been noted for specific time series models in

the literature. For example, for ARMA model, corrections have been proposed for statistics

based on the residuals, see Section 9.4 of Brockwell and Davis (1991). For the heteroscedastic

GARCH models, the moment sum process of the residuals were studied in Kulperger and

Yu (2005). Still, if the model assumption is true, {Ẑj} should possess a serial dependence

structure consistent with the model.

In this chapter, we evaluate the serial dependence of residuals using distance covariance.

Distance covariance is a usefull dependence measure with the ability to detect both linear

and nonlinear dependence. It is zero if and only if independence occurs. We study the auto-

distance covariance function (ADCV) of the residuals and derive its limit when the model is

correctly specified. We show that the limiting distribution of the ADCV of {Ẑj} differs from

that of its iid counterpart {Zj} and quantify the difference. This is an extension of Section

4 of Davis et al. (2018) (i.e., Section 1.4 of this thesis) which considered this problem for

AR processes.

The remainder of the chapter is structured as follows. An introduction to distance

correlation and ADCV along with some historical remarks are given in Section 2.2. In

Section 2.3, we provide the limit result for the ADCV of the residuals for a general class of
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time series models. Two points regarding implementing theory are discussed in Section 2.4.

We then apply the result to ARMA and GARCH models in Section 2.5 and 2.6 and illustrate

with simulation studies. A simulated example where the data does not conform with the

model is also demonstrated in Section 2.7.

2.2 Distance covariance

Let X ∈ Rp and Y ∈ Rq be two random vectors, potentially of different dimensions. Then

X ⊥⊥ Y ⇐⇒ ϕX,Y (s, t) = ϕX(s)ϕY (t),

where ϕX,Y (s, t), ϕX(s), ϕY (t) denote the joint and marginal characteristic functions of (X, Y ).

The distance covariance between X and Y is defined as

T (X, Y ;µ) =

∫
Rp+q

∣∣ϕX,Y (s, t)− ϕX(s)ϕY (t)
∣∣2 µ(ds, dt) , (s, t) ∈ Rp+q,

where µ is a suitable measure on Rp+q. In order to ensure that T (X, Y ;µ) is well-defined,

one of the following conditions is assumed to be satisfied (Davis et al., 2018):

1. µ is a finite measure;

2. µ is an infinite measure such that∫
Rp+q

(1 ∧ |s|α)(1 ∧ |t|α)µ(ds, dt) <∞

and

E[|XY |α + |X|α + |Y |α] <∞, for some α ∈ (0, 2].

If µ has a positive Lebesgue density on Rp+q, then X and Y are independent if and only if

T (X, Y ;µ) = 0.

For a stationary series {Xj}, the auto-distance covariance (ADCV) is given by

Th(X;µ) := T (X0, Xh;µ) =

∫
R2

∣∣ϕX0,Xh(s, t)− ϕX(s)ϕX(t)
∣∣2 µ(ds, dt) , (s, t) ∈ R2.
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Given observations {Xj, 1 ≤ j ≤ n}, the ADCV can be estimated by its sample version

T̂h(X;µ) :=

∫
R2

∣∣CX
n (s, t)

∣∣2 µ(ds, dt) , (s, t) ∈ R2,

where

CX
n (s, t) :=

1

n

n−h∑
j=1

e isXj+itXj+h − 1

n

n−h∑
j=1

e isXj
1

n

n−h∑
j=1

e itXj+h .

If we assume that µ = µ1×µ2 and is symmetric about the origin, then under the conditions

where Th(X;µ) exists, T̂h(X;µ) is computable in a alternative V -statistic like form, see

Section 2.2 of Davis et al. (2018) for details. It can be shown that if the Xj’s are iid, the

process
√
nCX

n (s, t) converges weakly,

√
nCX

n
d→ Gh on C(K), (2.5)

for compact set K ⊂ R2, and

nT̂h(X;µ)
d→
∫
|Gh|2µ(ds, dt),

where Gh is a zero-mean Gaussian process with covariance structure

Γ((s, t), (s′, t′)) = cov(Gh(s, t), Gh(s
′, t′))

= E
[(
e i 〈s,X0〉 − ϕX(s)

)(
e i 〈t,Xh〉 − ϕX(t)

)
×
(
e −i 〈s

′,X0〉 − ϕX(−s′)
)(
e −i 〈t

′,Xh〉 − ϕX(−t′)
)]
.

The concept of distance covariance was first proposed by Feuerverger (1993) for bivariate

context and later brought to popularity by Székely et al. (2007). The idea of ADCV was

first introduced by Zhou (2012). For distance covariance in time series context, we refer to

Davis et al. (2018) (i.e., Chapter 1 of this thesis) for theory in a general framework.

Most literature on distance covariance focus on the specific weight measure µ(s, t) with

density proportional to |s|−p−1|t|−q−1. This distance covariance has the advantage of being

scale and rotational invariant, but imposes moment constraints on the variable sevaluated.

In our case, as will be shown in Section 2.3, we require a finite measure for µ and shall use

a Gaussian measure. In this case T̂h(X;µ) has the computable form

T̂h(X;µ) =
1

(n− h)2

n−h∑
i,j=1

µ̂(Xi −Xj, Xi+h −Xj+h)
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+
1

(n− h)4

n−h∑
i,j,k,l=1

µ̂(Xi −Xj, Xk+h −Xl+h)

−2
1

(n− h)3

n−h∑
i,j,k=1

µ̂(Xi −Xj, Xi+h −Xk+h),

where µ̂(x, y) =
∫

exp(isx+ ity)µ(ds, dt) is the Fourier transform with respect to µ.

It should be noted that the concept of distance covariance is closely related to Hilbert-

Schmidt Independence Criterion (HSIC), see Gretton et al. (2005). For example, the distance

covariance with Gaussian measure coincides with the HSIC with Gaussian kernel. In a recent

(unpublished) work, Zhu and Li use HSIC for testing the cross dependence between two time

series.

2.3 General result

Let X1, . . . , Xn be the observed sequence from a stationary time series {Xj} generated from

(2.1), and let Ẑ1, . . . , Ẑn be the estimated residual calculated through (2.4). In this section,

we examine the ADCV of the residuals

T̂h(Ẑ;µ) := ‖CẐ
n ‖2

µ =

∫
|CẐ

n |2µ(ds, dt),

where

CẐ
n (s, t) :=

1

n

n−h∑
j=1

e isẐj+itẐj+h − 1

n

n−h∑
j=1

e isẐj
1

n

n−h∑
j=1

e itẐj+h .

To provide the limiting result for T̂h(Ẑ;µ), we require the following assumptions.

(M1) Let Fj be the σ-algebra generated by {Xk, k ≤ j}. We assume that the parameter

estimate β̂ is of the form

√
n(β̂ − β) =

1√
n

n∑
j=1

m(X−∞:j;β) + op(1),

where m is a vector-valued function of the infinite sequence X−∞:j such that

E[m(X−∞:j;β)|Fj−1] = 0, E|m(X−∞:0;β)|2 <∞.
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This representation can be readily found in most likelihood-based estimators, for ex-

ample, the Yule-Walker estimator for AR processes, quasi-MLE for GARCH processes,

etc. By the martingale central limit theorem, this implies that

√
n(β̂ − β)

d→ Q,

for a random Gaussian vector Q.

(M2) Assume that the function h in the invertible representation (2.2) is continuously dif-

ferentiable, and writing

Lj(β) :=
∂

∂β
h(X−∞:j;β), (2.6)

we have

E‖L0(β)‖2 <∞.

(M3) Assume the estimated residuals based on the finite sequence of observations, Ẑj, is

close to the fitted residuals based on the infinite sequence, Z̃j, such that

1√
n

n∑
j=1

|Ẑj − Z̃j|k = op(1), k = 1, 2.

Theorem 2.3.1. Let X1, . . . , Xn be a sequence of observations generated from a causal

and invertible time series model (2.1). Let β̂ be an estimator of β and let Ẑ1, . . . , Ẑn be

the estimated residuals calculated through (2.4) satisfying conditions (M1)–(M3). Further

assume that the weight measure µ satisfies∫
R2

[
(1 ∧ |s|2) (1 ∧ |t|2) + (s2 + t2) 1(|s| ∧ |t| > 1)

]
µ(ds, dt) <∞. (2.7)

Then

nT̂h(Ẑ;µ)
d→ ‖Gh + ξh‖2

µ,

where Gh is the limiting distribution for nT̂h(Z;µ), the ADCV based on the iid innovations

Z1, . . . , Zn, and the correction term is given by

ξh(s, t) := itQTE
[(
eisZ0 − ϕZ(s)

)
eitZhLh(β)

]
, (2.8)

with Q being the limit distribution of
√
n(β̂ − β) and Lh as defined in (2.6).

The proof of the theorem is provided in Section 2.8.
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2.4 Two notes on implementation

2.4.1 Auto-distance correlation function (ADCF)

Distance correlation, analogous to linear correlation, is the normalized version of distance

covariance, defined as

R(X, Y ;µ) :=
T (X, Y ;µ)√

T (X,X;µ)T (Y, Y ;µ)
∈ [0, 1].

The auto-distance correlation function (ADCF) of a stationary series {Xj} at lag h is given

by

Rh(X;µ) := R(X0, Xh;µ),

and its sample version R̂h(X;µ) can defined similarly. It can be shown that the ADCF for

the residuals from an AR(p) model has the limiting distribution (Davis et al., 2018):

nR̂h(Ẑ;µ)
d→
‖Gh + ξh‖2

µ

T0(Z;µ)
, (2.9)

and the result can be easily generalized to other models. In the following examples, we shall

use ADCF in place of ADCV.

2.4.2 Parametric bootstrap

The limit in (2.9) is not distribution-free and generally intractable. In order to use the

result, we propose to approximate the limit through parametric bootstrap, described in the

following.

Given observations X1, . . . , Xn, let β̂ be the parameter estimate and Ẑ1, . . . , Ẑn be the

estimated residuals. A set of bootstrapped residuals can be obtained as follows:

1. Sample iid Z∗1 , . . . , Z
∗
n from the empirical distribution of {Ẑj}, i.e., with replacement

from Ẑ1, . . . , Ẑn.

2. Generate X∗1 , . . . , X
∗
n from the time series model with parameter value β̂ and residual

sequence Z∗1 , . . . , Z
∗
n.
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3. Re-fit the time series model. Obtained the parameter estimate β̂∗ and the estimated

residuals Ẑ∗1 , . . . , Ẑ
∗
n.

Let nR̂h(Ẑ
∗, µ) be the ADCF calculated from the bootstrapped residuals Ẑ∗1 , . . . , Ẑ

∗
n. This

procedure is repeated B times to obtain nR̂
(1)
h (Ẑ∗, µ), . . . , nR̂

(B)
h (Ẑ∗, µ). When the sample

size n is large, the empirical distribution of {nR̂(b)
h (Ẑ∗, µ)} provides an approximation for the

limiting distribution of nR̂h(Ẑ;µ). The theoretical convergence of the bootstrapped ADCF

is currently under investigation.

2.5 Example: ARMA(p,q)

Consider the causal, invertible ARMA(p, q) process that follows the recursion

Xt =

p∑
i=1

φiXt−i + Zt +

q∑
j=1

θjZt−j, (2.10)

where β = (φ1, . . . , φp, θ1, . . . , θq)
T is the vector of parameters and {Zt} is the sequence

of mean 0 and uncorrelated innovation. Denote the AR and MA polynomials by φ(z) =

1−
∑p

i=1 φiz
i and θ(z) = 1 +

∑q
j=1 θjz

j, and let B be the backward operator, i.e.,

BXt = Xt−1,

then the recursion (2.10) can be represented by

φ(B)Xt = θ(B)Zt.

It follows from invertibility that φ(z)/θ(z) has the power series expansion

φ(z)

θ(z)
=
∞∑
j=0

πj(β)zi,

where
∑∞

j=0 |πj(β)| <∞, and

Zt = Zt(β) =
∞∑
j=0

πj(β)Xt−j.

55



Given an estimate of the parameters β̂, the residuals based on the infinite sequence {X−∞:n}

are given by

Z̃t := Zt(β̂) =
∞∑
j=0

πj(β̂)Xt−j.

Based on the observed data X1, . . . , Xn, the estimate residuals are

Ẑt =
t−1∑
j=0

πj(β̂)Xt−j. (2.11)

One choice for β̂ is the pseudo-MLE based on Gaussian likelihood

L(β, σ2) ∝ σ−n|Σ|−1/2 exp{ 1

2σ2
XT
nΣ−1Xn},

where Xn = (X1, . . . , Xn)T and the covariance Σ = Σ(β) := Var(Xn)/σ2 is independent of

σ2. The pseudo-MLE β̂ and σ̂2 are taken to be the values that maximize L(β, σ2). It can be

shown that β̂ is consistent and asymptotically normal even for non-Gaussian Zt (Brockwell

and Davis, 1991).

We have the following result for the ADCV of ARMA residuals.

Corollary 2.5.1. Let {Xt, 1 ≤ j ≤ n} be observations from a causal and invertible ARMA(p,q)

time series and {Ẑt, 1 ≤ t ≤ n} be the estimated residuals defined in (2.11). Assume that µ

satisfies (2.7), then

nT̂h(Ẑ;µ)
d→ ‖Gh + ξh‖2

µ,

where (Gh, ξh) is a joint Gaussian process defined in R2 with Gh as specified in (2.5) and ξh

in (2.8).

The proof of Corollary 2.5.1 is given in Section 2.9.

Remark 2.5.2. In the case where the distribution of Zt is in the domain of attraction of

a α-stable law with α ∈ (0, 2), and the parameter estimator β̂ has convergence rate faster

than n−1/2, i.e.,

an(β̂ − β) = Op(1), for some an = o(n−1/2),
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(Davis, 1996), the ADCV of the residuals has limit

nT̂h(Ẑ;µ)
d→ ‖Gh‖2

µ,

where the correction term ξh disappears. For a proof, see Theorem 4.2 of Davis et al. (2018).

2.5.1 Simulation

We generate time series of length n = 2000 from an ARMA(2,2) model with standard normal

innovations and parameter values

β = (φ1, φ2, θ1, θ2) = (1.2,−0.32,−0.2,−0.48).

For each simulation, an ARMA(2,2) model is fitted to the data. In Figure 2.1, we compare

the empirical 5% and 95% quantiles for the ADCF of

a) iid innovations from 1000 independent simulations;

b) estimated residuals from 1000 independent simulations;

c) estimated residuals from 1000 independent parametric bootstrap samples from one

realization of {Xt}.

In order to satisfy the requirement (2.7), the ADCFs are evaluated using the Gaussian

weight measure N(0, 0.52). Confirming the results in Theorem 2.3.1 and Corollary 2.5.1, the

simulated quantiles of R̂h(Ẑ;µ) differ significantly from that of R̂h(Z;µ), especially when

h is small. Given one realization of the time series, the quantiles estimated by parametric

boostrap correctly capture this effect.
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Figure 2.1: Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) estimated
residuals; c) bootstrapped residuals; from a ARMA(2,2) model.

2.6 Example: GARCH(p,q)

In this section, we consider a GARCH(p,q) model,

Xt = σtZt,

where the Zt’s are iid innovations with mean 0 and variance 1 and

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j, α0 > 0, αi ≥ 0, βj ≥ 0. (2.12)

Let θ = (α0, α1, . . . , αp, β1, . . . , βq) denote the parameter vector. We write the conditional

variance σ2
t = σ2

t (θ) to denote it as a function of θ.

Iterating the recursion in (2.12) gives

σ2
t (θ) = c0(θ) +

∞∑
i=1

ci(θ)X2
t−i,

for suitably defined functions ci’s (Berkes et al., 2003). Given an estimator θ̂, an estimator

for σ2
t (θ) based on {Xj, j ≤ t} can be written as

σ̃2
t := σ2

t (θ̂n) = c0(θ̂n) +
∞∑
i=1

ci(θ̂n)X2
t−i,
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and the unobserved residuals are given by

Z̃t = Xt/σ̃t.

In practice, σ̃2
t can be approximated by the truncated version

σ̂2
t (θ̂n) := c0(θ̂n) +

t∑
i=1

ci(θ̂n)X2
t−i,

and the estimated residual Ẑt is given by

Ẑt = Xt/σ̂t. (2.13)

Define the parameter space by

Θ = {u = (s0, s1, . . . , sp, t1, . . . , tq) : t1 + · · ·+ tq ≤ ρ0, u ≤ min(u) ≤ max(u) ≤ ū},

for some 0 < u < ū, 0 < ρ0 < 1 and qu < ρ0, and assume the following conditions:

(Q1) The true value θ lies in the interior of Θ.

(Q2) For some ζ > 0,

lim
x→0

x−ζP{|Z0| ≤ x} = 0.

(Q3) For some δ > 0,

E|Z0|4+δ <∞.

(Q4) The GARCH(p, q) representation is minimal, i.e., the polynomials A(z) =
∑p

i=1 αiz
i

and B(z) = 1−
∑p

j=1 βjz
j do not have common roots.

Given observations {Xt, 1 ≤ t ≤ n}, Berkes et al. (2003) proposed a quasi-maximum likeli-

hood estimator given by

θ̂n := arg maxu∈Θ

n∑
t=1

lt(u),

where

lt(u) := −1

2
log σ̂2

t (u)− X2
t

2σ̂2
t (u)

.

Provided that (Q1)–(Q4) are satisfied, the quasi-MLE θ̂n is consistent and asymptotically

normal.

For the ADCV of the residuals based on θ̂n, we have the following result.
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Corollary 2.6.1. Let {Xt, 1 ≤ j ≤ n} be observations from a GARCH(p,q) time series and

{Ẑt, 1 ≤ t ≤ n} be the estimated residuals defined in (2.13). Assume that (Q1)–(Q4) holds

and that µ satisfies (2.7), we have

nT̂h(Ẑ;µ)
d→ ‖Gh + ξh‖2

µ,

where (Gh, ξh) is a joint Gaussian process defined in R2 with Gh as specified in (2.5) and ξh

in (2.8).

The proof of Corollary 2.6.1 is given in Section 2.10.

2.6.1 Simulation

We generate time series of length n = 2000 from a GARCH(1,1) model with parameter

values

β = (α0, α1, β1) = (0.5, 0.1, 0.8).

For each simulation, a GARCH(1,1) model is fitted to the data. In Figure 2.2, we compare

the empirical 5% and 95% quantiles for the ADCF of

a) iid innovations from 1000 independent simulations;

b) estimated residuals from 1000 independent simulations;

c) estimated residuals from 1000 independent parametric bootstrap samples from one

realization of {Xt}.

Again the ADCFs are based on the Gaussian weight measure N(0, 0.52). The difference

between the quantiles of R̂h(Ẑ;µ) and R̂h(Z;µ) can be observed. For the GARCH model,

the correction has the opposite effect than in the ARMA model – the ADCF for residuals

are larger than that for iid variables, especially for small lags.
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Figure 2.2: Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) estimated
residuals; c) bootstrapped residuals; from a GARCH(1,1) model.

2.7 Example: Non-causal AR(1)

In this section, we consider an example where the model is wrongly specified. We generate

time series of length n = 2000 from a non-causal AR(1) model with φ = 1.67 and t-

distributed noise with degree of freedom 2.5. Then we fit a causal AR(1) model, where

|φ| < 1, to the data and obtain the corresponding residuals. Again the ADCF is evaluated

using the Gaussian weight measure N(0, 0.52) and in Figure 2.3, we plot the 5% and 95%

ADCF quantiles of:

a) estimated residuals from 1000 independent simulations;

b) estimated residuals from 1000 independent parametric bootstrap samples from one

realization of {Xt}.

The ADCFs of the bootstrapped residuals provide an approximation for the limiting

distribution of the ADCF of the residuals given the model is correctly specified. In this

case, the ADCFs of the estimated residuals significantly differ from the quantiles of that of

the bootstrapped residuals. This indicates the time series does not come from the assumed

causal AR model.
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Figure 2.3: Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) boot-
strapped residuals; from non-causal AR(1) data fitted with a causal AR(1) model.

In the following appendices, we provide proofs to Theorem 2.3.1 and Corollaries 2.5.1

and 2.6.1. Throughout the proofs, c denotes a general constant whose value may change

from line to line.

2.8 Proof of Theorem 2.3.1

Proof. The proof proceeds in the following steps with the aids of Propositions 2.8.1, 2.8.2

and 2.8.3. Write

nT̂h(Ẑ;µ) =: ‖
√
nCẐ

n ‖2
µ = ‖

√
nCẐ

n −
√
nCZ

n +
√
nCZ

n ‖2
µ,

where

CẐ
n (s, t) :=

1

n

n−h∑
j=1

eisẐj+itẐj+h − 1

n

n−h∑
j=1

eisẐj
1

n

n−h∑
j=1

eitẐj+h

and

CZ
n (s, t) :=

1

n

n−h∑
j=1

eisZj+itZj+h − 1

n

n−h∑
j=1

eisZj
1

n

n−h∑
j=1

eitZj+h .

We first show in Proposition 2.8.1 that

(
√
n(CẐ

n − CZ
n ),
√
nCZ

n )
d→ (ξh, Gh), on C(K),
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where K is any compact set R2. This implies

√
nCẐ

n
d→ ξh +Gh, on C(K).

For δ ∈ (0, 1), define the compact set

Kδ = {(s, t)|δ ≤ s ≤ 1/δ, δ ≤ t ≤ 1/δ}.

It follows from the continuous mapping theorem that

n

∫
Kδ

|CẐ
n |2µ(ds, dt)

d→
∫
Kδ

|Gh + ξh|2µ(ds, dt).

To complete the proof, it remains to justify that we can take δ ↓ 0. For this it suffices to

show that for any ε > 0,

lim
δ→0

lim sup
n→∞

P

(∫
Kc
δ

|
√
nCẐ

n |2µ(ds, dt) > ε

)
= 0,

and

lim
δ→0

P

(∫
Kc
δ

|Gh + ξh|2µ(ds, dt) > ε

)
= 0.

These are shown in Propositions 2.8.2 and 2.8.3, respectively.

Proposition 2.8.1. Given the conditions (M1)–(M3),

(
√
n(CẐ

n − CZ
n ),
√
nCZ

n )
d→ (ξh, Gh), on C(K),

for any compact K ⊂ R2.

Proof. We first consider the marginal convergence of
√
n(CẐ

n − CZ
n ). Denote

En(s, t) :=
1√
n

n−h∑
j=1

(
e isẐj+itẐj+h − e isZj+itZj+h

)
,

then

√
n(CẐ

n (s, t)− CZ
n (s, t)) =

1√
n

n−h∑
j=1

(
e isẐj+itẐj+h − e isZj+itZj+h

)
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− 1√
n

n−h∑
j=1

(
e isẐj − e isZj

) 1

n

n−h∑
j=1

e itZj+h

− 1

n

n−h∑
j=1

e isẐj
1√
n

n−h∑
j=1

(
e itẐj+h − e itZj+h

)
= En(s, t)− En(s, 0)

1

n

n−h∑
j=1

e itZj+h − En(0, t)
1

n

n−h∑
j=1

e isẐj .

We now derive the limit of En(s, t). For fixed s and t,

En(s, t) =
1√
n

n−h∑
j=1

e isZj+itZj+h
(
e is(Ẑj−Zj)+it(Ẑj+h−Zj+h) − 1

)
=

1

n

n−h∑
j=1

e isZj+itZj+h(is
√
n(Ẑj − Zj) + it

√
n(Ẑj+h − Zj+h)) + op(1),

=
1

n

n−h∑
j=1

e isZj+itZj+h(is
√
n(Ẑj − Z̃j) + it

√
n(Ẑj+h − Z̃j+h))

+
1

n

n−h∑
j=1

e isZj+itZj+h(is
√
n(Z̃j − Zj) + it

√
n(Z̃j+h − Zj+h)) + op(1)

=: En1(s, t) + En2(s, t) + op(1).

By assumption (M3),

|En1(s, t)| ≤ |s| 1√
n

n−h∑
j=1

|Ẑj − Z̃j|+ |t|
1√
n

n−h∑
j=1

|Ẑj+h − Z̃j+h|
p→ 0.

It follows from a Taylor expansion that

En2(s, t) =
√
n(β̂ − β)T

1

n

n−h∑
j=1

e isZj+itZj+h (isLj(β
∗) + itLj+h(β

∗)) ,

where β∗ = β+ ε(β̂−β) for some ε ∈ [0, 1]. Since Lj(β) is stationary and ergodic, it follows

from the ergodic theorem (see, for example, Corollary 2.1.8 of Samorodnitsky (2016)) that

1

n

n−h∑
j=1

e isZj+itZj+h (isLj(β) + itLj+h(β))
p→ E

[
e isZj+itZj+h (isLj(β) + itLj+h(β))

]
=: Ch(s, t).

Hence, for fixed (s, t),

En(s, t)
d→ QTCh(s, t).
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Note that

1

n

n−h∑
j=1

e itZj+h
p→ ϕZ(t),

and

1

n

n−h∑
j=1

e isẐj =
1

n

n−h∑
j=1

e isZj +
1√
n
En(s, 0)

p→ ϕZ(s).

We have, for fixed (s, t),

√
n(CẐ

n − CZ
n )

d→ QT (Ch(s, t)−Ch(s, 0)ϕZ(t)−Ch(0, t)ϕZ(s)) .

To further simplify the above expression, notice that Lj(β) is a function of X−∞:j and

independent of Zj+h by causality. Hence

Ch(s, t) = E
[
e isZj isLj(β)

]
E
[
e itZj+h

]
+ E

[
e isZj+itZj+hitLj+h(β)

]
= Ch(s, 0)ϕZ(t) + E

[
e isZj+itZj+hitLj+h(β)

]
,

and

QT (Ch(s, t)−Ch(s, 0)ϕZ(t)−Ch(0, t)ϕZ(s))

= QT
(
E
[
e isZj+itZj+hitLj+h(β)

]
− E

[
e itZj+hitLj+h(β)

]
ϕZ(s)

)
= ξh(s, t).

This justifies the marginal convergence of
√
n(CẐ

n − CZ
n ) for fixed (s, t).

For the joint convergence of
√
n(CẐ

n − CZ
n ) and

√
nCZ

n , we recall assumption (M1)

√
n(β̂ − β) =

1√
n

n∑
j=1

m(X−∞:j;β) + op(1)

and also note from the proof of Theorem 1 in Davis et al. (2018) that

√
nCZ

n =
1√
n

n∑
j=1

(eisZj − ϕZ(s))(eitZj+h − ϕZ(t)) + op(1)
d→ Gh, on C(K).

By martingale central limit theorem,(
1√
n

n∑
j=1

m(X−∞:j;β),
1√
n

n−h∑
j=1

(eisZj − ϕZ(s))(eitZj+h − ϕZ(t))

)
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converges jointly to (Q, Gh). This implies the joint convergence of
√
n(β̂ − β) and

√
nCZ

n .

Since ξh is non-random and continuous, the joint convergence
√
nCZ

n and
√
nCẐ

n −
√
nCZ

n

also follows.

Proposition 2.8.2. Under the conditions of Theorem 3.1,

lim
δ→0

lim sup
n→∞

P

(∫
Kc
δ

|
√
nCẐ

n |2µ(ds, dt) > ε

)
= 0.

Proof. Using telescoping sums, CẐ
n − CZ

n has the following decomposition,

CẐ
n − CZ

n =
1

n

n−h∑
j=1

AjBj −
1

n

n−h∑
j=1

Aj
1

n

n−h∑
j=1

Bj −
1

n

n−h∑
j=1

Uj
1

n

n−h∑
j=1

Bj −
1

n

n−h∑
j=1

Vj
1

n

n−h∑
j=1

Aj

+
1

n

n−h∑
j=1

UjBj +
1

n

n−h∑
j=1

VjAj =:
6∑

k=1

Ink(s, t),

where

Uj = eisZj − ϕZ(s), Vj = eitZj+h − ϕZ(t), Aj = eisẐj − eisZj , Bj = eitẐj+h − eitZj+h .

From a Taylor expansion,

n|In1(s, t)|2 ≤

(
1√
n

n−h∑
j=1

|AjBj|

)2

≤

(
1√
n

n−h∑
j=1

|eis(Ẑj−Zj) − 1||eit(Ẑj+h−Zj+h) − 1|

)2

≤ c

(
1√
n

n−h∑
j=1

(
1 ∧ |s||Ẑj − Zj|

)(
1 ∧ |t||Ẑj+h − Zj+h|

))2

≤ c min

|s|2( 1√
n

n−h∑
j=1

|Ẑj − Zj|

)2

, |t|2
(

1√
n

n−h∑
j=1

|Ẑj+h − Zj+h|

)2

,

|st|2
(

1√
n

n−h∑
j=1

|Ẑj − Zj||Ẑj+h − Zj+h|

)2


≤ c min

|s|2( 1√
n

n−h∑
j=1

|Ẑj − Zj|

)2

, |t|2
(

1√
n

n−h∑
j=1

|Ẑj+h − Zj+h|

)2

,
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|st|2
(

1√
n

n−h∑
j=1

|Ẑj − Zj|2
1√
n

n−h∑
j=1

|Ẑj+h − Zj+h|2
))

For k = 1, 2,

1√
n

n−h∑
j=1

|Ẑj − Zj|k ≤ c

(
1√
n

n−h∑
j=1

|Ẑj − Z̃j|k +
1√
n

n−h∑
j=1

|Z̃j − Zj|k
)

≤ op(1) + c
1

n(k−1)/2
‖
√
n(β̂ − β)‖k 1

n

n−h∑
j=1

‖Lj(β
∗)‖k

= Op(1).

Therefore

n|In1(s, t)|2 ≤ min(|s|2, |t|2, |st|2)Op(1) ≤
(
(1∧|s|2) (1∧|t|2) + (s2 + t2) 1(|s|∧ |t| > 1)

)
Op(1),

where the Op(1) term does not depend on (s, t). This implies that

lim
δ→0

lim sup
n→∞

P

(∫
Kc
δ

n|In1(s, t)|2µ(ds, dt) > ε

)
= 0.

Similar arguments show that n|In2(s, t)|2 is bounded by min(|s|2, |t|2, |st|2)Op(1), n|In3(s, t)|2

and n|In5(s, t)|2 are bounded by min(|t|2, |st|2)Op(1), and n|In4(s, t)|2 and n|In6(s, t)|2 are

bounded by min(|s|2, |st|2)Op(1), and the result of the proposition follows.

Proposition 2.8.3. Under the conditions of Theorem 3.1,

lim
δ→0

P

(∫
Kc
δ

|Gh + ξh|2µ(ds, dt) > ε

)
= 0.

Proof. Note that

|ξ(s, t)|2 ≤ c|t|2‖Q‖2E
∣∣eisZ0 − ϕZ(s)

∣∣2 E|Lh(β)|2

≤ c|t|2‖Q‖2E
[(

1 ∧ |s|2
)

(Z0 + E|Z|)2]E|Lh(β)|2

≤ |t|2
(
1 ∧ |s|2

)
Op(1).

This implies

lim
δ→0

P

(∫
Kc
δ

|ξh|2µ(ds, dt) > ε

)
= 0.
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On the other hand, it was shown in Davis et al. (2018) that
∫
|Gh|2µ(ds, dt) exists as the

limit of nT̂h(Z;µ),. Hence

lim
δ→0

P

(∫
Kc
δ

|Gh|2µ(ds, dt) > ε

)
= 0,

and the proposition is proved.

2.9 Proof of Corollary 2.5.1

Proof. In the following we verify conditions (M1), (M2), (M3) in Theorem 2.3.1.

(M1): It can be shown that the pseudo-MLE for β satisfies the representation in (M1). We

refer to Chapter 10.8 of Brockwell and Davis (1991) for details.

(M2): From

Zt =
φ(B)

θ(B)
Xt =: h(X−∞:t,β),

we have

∂

∂φi
h(X−∞:t,β) =

Bi

θ(B)
Xt =

1

θ(B)
Xt−i, i = 1, . . . , p,

while

∂

∂θi
h(X−∞:t,β) =

Bjφ(B)

(θ(B))2
Xt =

Bj

θ(B)
Zt =

1

θ(B)
Zt−j, j = 1, . . . , q.

Hence

L0(β) =
∂

∂β
h(X−∞:0;β) =

1

θ(B)
(X−1, . . . , X−p, Z−1, . . . , Z−q)

T .

By the definition of invertibility, there exists a power series for 1/θ(z) such that

1

θ(z)
=
∞∑
j=0

ξj(β)zj,

with
∑∞

j=0 |ξj(β)| <∞. Therefore

E‖L0(β)‖2 ≤ p

∞∑
j=0

|ξj(β)|2E|X0|2 + q

∞∑
k=0

|ξj(β)|2E|Z0|2 <∞.

(M3): Note that

Z̃t − Ẑt =
∞∑
j=t

πj(β̂)Xt−j.
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For k = 1, 2,

1√
n

n∑
t=1

∣∣∣Z̃t − Ẑt∣∣∣k ≤ 1√
n

n∑
t=1

∞∑
j=t

∣∣∣πj(β̂)Xt−j

∣∣∣k =
∞∑
j=0

|πj(β̂)|k 1√
n

j∧n∑
t=1

|Xt−j|k .

For any m < n,

1√
n

n∑
t=1

∣∣∣Z̃t − Ẑt∣∣∣k ≤ m∑
j=0

|πj(β̂)|k 1√
n

m∑
t=1

|Xt−j|k +
∞∑

j=m+1

|πj(β̂)|k 1√
n

n∑
t=1

|Xt−j|k =: I1 + I2.(2.14)

Consider the coefficients πj(β̂)’s. By causality, the power series

φ(z)

θ(z)
=
∞∑
j=0

πj(β)zj

converges for all |z| < 1 + ε for some ε > 0. Then there exists a compact set Cβ containing

β such that for any β̂ ∈ Cβ,
∑∞

j=0 πj(β̂)zj converges for all |z| < 1 + ε/2. In particular,

πj(β̂)(1 + ε/4)j → 0, j →∞,

and there exists K > 0 such that

|πj(β̂)| ≤ K(1 + ε/4)−j.

It follows that
∞∑
j=0

|πj(β̂)|k <∞, k = 1, 2.

Now for (2.14), I1 converges to zero in probability for fixed m, while I2 converges to zero

uniformly as m→∞. This implies that

1√
n

n∑
t=1

∣∣∣Z̃t − Ẑt∣∣∣k p→ 0, k = 1, 2.

2.10 Proof of Corollary 2.6.1

Proof. In the following we verify conditions (M1), (M2), (M3) in Theorem 2.3.1.
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(M1): Given conditions (Q1)–(Q4), Berkes et al. (2003) showed that θ̂n has limiting distri-

bution

√
n(θ̂n − θ) =

1√
n

n∑
t=1

1

2
(1− Z2

t )

〈
∂ log σ2

t (θ)

∂θ
,B−1

0

〉
+ op(1)

d→ N(0,B−1
0 A0B

−1
0 ),

where

A0 = cov

[
∂l0(θ)

∂θ

]
, B0 = E

[
∂2l0(θ)

∂θ2

]
.

(M2): We have

Zt(θ) = h(X−∞:j,θ) =
Xt

σt(θ)
,

and

L0(θ) =
∂

∂θ
h(X−∞:0;θ) = − X0

2σ3
0(θ)

∂σ2
0(θ)

∂θ
= −1

2
Z0
∂ log σ2

0(θ)

∂θ
.

Lemma 3.1 of Kulperger and Yu (2005) showed that

E
(

sup
u∈Θ

∣∣∣∣∂ log σ2
t (u)

∂u

∣∣∣∣)k <∞, for any k > 0.

Hence

E‖L0(θ)‖2 = E
∣∣∣∣12Z0

∂ log σ2
0(θ)

∂θ

∣∣∣∣2 ≤ 1

4

(
E|Z0|4E

∣∣∣∣∂ log σ2
0(θ)

∂θ

∣∣∣∣4
)1/2

<∞.

(M3): Theorem 1.3 and Lemma 3.5 of Kulperger and Yu (2005) show, respectively, that

1√
n

n∑
t=1

|Ẑt − Z̃t| = op(1),

and
n∑
t=1

|Ẑt − Z̃t| = Op(1).

Hence

1√
n

n∑
t=1

|Ẑt − Z̃t|2 ≤
1√
n

n∑
t=1

|Ẑt − Z̃t|
n∑
t=1

|Ẑt − Z̃t| = op(1).
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2.11 Conclusion

In this chapter, we examined the serial dependence of estimated residuals for time series

models via the auto-distance covariance function (ADCV) and derived the asymptotic result

for general classes of time series models. We showed theoretically that the limiting behavior

differs from the ADCV for iid innovations by a correction term. This indicated that ad-

justments should be made when testing the goodness-of-fit of the model by inspecting the

serial dependence of residuals. We illustrated the result on simulated examples of ARMA

and GARCH processes and discover that the adjustments could be in either direction – the

quantiles of ADCV for residuals could be larger or smaller than that for iid innovations. We

also studied an example when a non-causal AR process is incorrectly fitted with a causal

model and showed that ADCV correctly detected model misspecification when applied to

the residuals.
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Chapter 3

Threshold selection for multivariate

heavy-tailed data

3.1 Introduction

For multivariate heavy-tailed data, the principal objective is often to study dependence in

the ‘tail’ of the distribution. To achieve this goal, the assumption of multivariate regular

variation is typically used as a starting point. A random vector X ∈ Rd is said to be

multivariate regularly varying if the polar coordinates (R,Θ) = (‖X‖,X/‖X‖), where ‖ · ‖

is some norm, satisfy the conditions

(a) R is univariate regularly varying, i.e., P(R > r) = L(r)r−α, where L(·) is a slowly

varying function at infinity;

(b) P(Θ ∈ ·|R > r) converges weakly to a measure S(·) as r →∞.

The α is referred to as the index of the regular variation, while the S is called the angu-

lar distribution and characterizes the limiting tail dependence. There are other equivalent

definitions of regular variation (Resnick, 2002), but this one is the most convenient for our

purposes.

Given observations {Xi}ni=1 and their corresponding polar coordinates {(Ri,Θi)}ni=1, a

straightforward procedure for estimating S is to look at angular components of the data for

which the radii are greater than a large threshold r0, that is, Θi for which Ri > r0. In most

studies, one takes r0 to be a large empirical quantile of R. While there has been extensive
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research on choosing a threshold for which the distribution of R is regularly varying (i.e.,

limit condition (a)), little research has been devoted to ensuring the threshold is large enough

for the independence of Θ and R to be reasonable (i.e., limit condition (b)). To this end,

de Haan and de Ronde (1998) fit a parametric extreme value distribution model to each

marginal and examined the parameter stability plot of each coordinate. The Stǎricǎ plot

(Stǎricǎ, 1999) looked at the joint tail empirical measure, but was, in some way, equivalent

to only examining the extremal behavior of R. Resnick (2007) suggested an automatic

threshold selection from the Stǎricǎ plot but observed that the thresholds were sometimes

systematically underestimated. In their study of the threshold based inference for parametric

max-stable processes, Jeon and Smith (2014) suggested choosing the threshold by minimizing

the MSE of the estimated parameters.

In this chapter, we propose an algorithm which selects the threshold for modeling S. Our

motivation is the implied property that (R,Θ) given R > r become independent as r →∞.

Given a sequence of candidate threshold levels, we test the degree of dependence between

R and Θ for the truncated data above each level. The dependence measure we use is the

distance covariance introduced by Székely et al. (2007). This measure has the ability to

account for various types of dependence and to be applicable to data in higher dimensions.

The resulting test statistics are given in the form of p-values and are compared across all

levels through a subsampling scheme. This enables us to extract more information from the

test statistics while not overloading the computational burden.

The remainder of the chapter is organized as follows. We first provide some theoretical

background on multivariate regular variation in Section 3.2. The distance covariance and

its theoretical properties are introduced in Section 3.3. Applying this dependence measure

in our conditioning setting, we propose a test statistic and prove relevant theoretical results

in Section 3.4. Our proposed algorithm for threshold selection is presented in Section 3.5,

and illustrated on simulated and real examples in Section 3.6. The chapter concludes with

a discussion.
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3.2 Multivariate regular variation and problem set-up

One way to approach multivariate heavy-tailed data is through the notion of multivariate

regular variation. For a detailed review, see, for example, Chapter 6 of Resnick (2007). Let

X = (X1, . . . , Xd) be a d-dimensional random variable defined on the cone Rd
+ = [0,∞)\{0}.

Define the polar coordinate transformation

T (X) = (‖X‖,X/‖X‖) =: (R,Θ), (3.1)

where ‖ · ‖ denotes some norm. Then X is regularly varying if and only if there exists a

probability measure S(·) on Sd−1, the unit sphere in Rd, and a function b(t)→∞, such that

tP [(R/b(t),Θ) ∈ ·] v→ να × S, t→∞, on (0,∞)× Sd−1, (3.2)

where
v→ denotes vague convergence, and να is a measure defined on (0,∞] such that

να(x,∞] = x−α, x > 0.

Here b(t) can be chosen as the 1− t−1-quantile, i.e.,

b(t) = inf{s|P(R ≤ s) ≥ 1− t−1}.

The convergence (3.2) implies that

P
[(

R

r
,Θ

)
∈ ·
∣∣∣∣R > r

]
w→ να × S, r →∞, on [1,∞)× Sd−1, (3.3)

where
w→ denotes weak convergence. In other words, given that R > r for r large, the

conditional distribution of R/r and Θ are independent in the limit. In view of (3.3), we

restrict the measure να to [1,∞) throughout the remainder of the chapter. The angular

measure S characterizes the tail dependence structure of X. If S is concentrated on {ei, i =

1, . . . d}, where ei = (0, . . . , 0, 1, 0, . . . , 0), then the components of X are asymptotically

independent in the tail, a case known as asymptotic independence. If S has mass lying in

the subspace {(t1, . . . , td) ∈ Sd−1|ti > 0, tj > 0, i 6= j}, then an extreme observation in the

Xi direction implicates a positive probability of an extreme observation in the Xj direction,
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a case known as asymptotic dependence. Hence the estimation of S from observations is an

important problem, and often the primary goal, in multivariate heavy-tailed modeling.

The following convergence is implied from (3.3):

P(Θ ∈ ·|R > r)
w→ S(·), r →∞. (3.4)

This suggests estimating S using the angular data (Θi) whose radial parts satisfy Ri > r0

for r0 large. The motivation behind our method is to seek r0 such that when R > r0, R

and Θ are virtually independent. Given a candidate threshold sequence {rk}, we formally

test the independence between (Ri,Θi) among the observations satisfying Ri > rk. The

use of Pearson’s correlation as the dependence measure is unsuitable in this case, for two

reasons. First, correlation is only applicable to univariate random variables, whereas Θ lies

on the sphere of dimension d− 1. Second, correlation only describes the linear relationship

between two random variables, thus having zero correlation is not a sufficient condition for

independence. Instead, we use a more powerful dependence measure, the distance covariance,

which is introduced in the next section.

3.3 Distance covariance

In this section, we briefly review the definition and some properties of the distance covariance.

More detailed descriptions and proofs can be found in Székely et al. (2007) and Davis et al.

(2018).

Let X ∈ Rp and Y ∈ Rq be two random vectors, then the distance covariance between

X and Y is defined as

T (X, Y ;µ) =

∫
Rp+q

∣∣ϕX,Y (s, t)− ϕX(s)ϕY (t)
∣∣2 µ(ds, dt) , (s, t) ∈ Rp+q, (3.5)

where ϕX,Y (s, t), ϕX(s), ϕY (t) denote the joint and marginal characteristic functions of (X, Y )

and µ is a suitable measure on Rp+q. In order to ensure that T (X, Y ;µ) is well-defined, one

of the following conditions is assumed to be satisfied throughout the paper (Davis et al.,

2018):
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1. µ is a finite measure on Rp+q;

2. µ is an infinite measure on Rp+q such that∫
Rp+q

(1 ∧ |s|α)(1 ∧ |t|α)µ(ds, dt) <∞

and

E[|XY |α + |X|α + |Y |α] <∞

for some α ∈ (0, 2].

One advantage of distance covariance over, say, Pearson’s covariance, is that, if µ has a

positive Lebesgue density on Rp+q, then X and Y are independent if and only if T (X, Y ;µ) =

0. Another attractive property of this dependence measure is that it readily applies to

random vectors of different dimensions.

To estimate T (X, Y ;µ) from observations (X1, Y1), . . . , (Xn, Yn), define the empirical

distance covariance

Tn(X, Y ;µ) =

∫
Rp+q

∣∣ϕ̂X,Y (s, t)− ϕ̂X(s) ϕ̂Y (t)
∣∣2 µ(ds, dt) ,

where ϕ̂X,Y (s, t) =
1

n

∑n
j=1 e

i 〈s,Xj〉+i 〈t,Yj〉 and ϕ̂X(s) = ϕ̂X,Y (s, 0), ϕ̂Y (t) = ϕ̂X,Y (0, t) are the

respective empirical characteristic functions. If we assume that µ = µ1×µ2 and is symmetric

about the origin, then under the conditions where T (X, Y ;µ) exists, Tn(X, Y ;µ) also has

the computable form

Tn(X, Y ;µ) =
1

n2

n∑
i,j=1

µ̃1(Xi −Xj) µ̃2(Yi − Yj)

+
1

n4

n∑
i,j,k,l=1

µ̃1(Xi −Xj)µ̃2(Yk − Yl) −
2

n3

n∑
i,j,k=1

µ̃1(Xi −Xj)µ̃2(Yi − Yk),

where µ̃(x) =
∫

(1− cos〈s, x〉)µ(ds) (Davis et al., 2018).

The most popular choice of µ, first mentioned by Feuerverger (1993) and then more

extensively studied by Székely et al. (2007), is

µ(ds, dt) = cp,q|s|−κ−p|t|−κ−qds dt . (3.6)
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where cp,q is as defined in Lemma 1 of Székely et al. (2007). This choice of µ gives µ̃(x)µ̃(y) =

|x|κ|y|κ. Moreover, this is the only choice of µ for which the distance covariance is invariant

relative to scale and orthogonal transformations. Note that in order for the integral (3.5) to

exist, it is required that

E[|X|κ|Y |κ + |X|κ + |Y |κ] <∞.

We will utilize the described weight measure (3.6) with κ = 1 in our simulations and data

analyses in Section 3.6, but applied to the log transformation on R to ensure that the moment

condition is satisfied.

As detailed in Davis et al. (2018), if the sequence {(Xi, Yi)} is stationary and ergodic,

then

Tn(X, Y ;µ)
a.s.→ T (X, Y ;µ). (3.7)

Further, if X and Y are independent, then under an α-mixing condition,

nTn(X, Y ;µ)
d→
∫
Rp+q
|G(s, t)|2µ(s, t) (3.8)

for some centered Gaussian field G. On the other hand, if X and Y are dependent, then

√
n(Tn(X, Y ;µ)− T (X, Y ;µ))

d→ G′µ

for some non-trivial limit G′µ, implying that nTn(X, Y ;µ) diverges as n → ∞. Naturally

one can devise a test of independence between X and Y using the statistic nTn(X, Y ;µ):

the null hypothesis of independence is rejected at level χ if nTn(X, Y ;µ) > c, where c is the

upper χ-quantile of
∫
Rp+q |G(s, t)|2µ(s, t).

In practice, the distribution
∫
Rp+q |G(s, t)|2µ(s, t) is intractable and is typically approx-

imated through bootstrap. Hence the main drawback of using distance covariance is the

computation burden it brings for large sample size: the computation of a single distance co-

variance statistic requires O(n2) operations, while finding the cut-off values via resampling

requires much more additional computation. Our method, however, overcomes this problem

through subsampling the data, as will be described in Section 3.5.
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3.4 Theoretical results

Let {Xi}ni=1 be iid observations in Rd from a multivariate regularly varying distribution X

satisfying (3.1) and (3.3), and {(Ri,Θi)}ni=1 be their polar coordinate transformations. Given

a threshold rn, we measure the dependence between R/rn and Θ conditional on R > rn by

the empirical distance covariance of (R/rn,Θ) on the set {R > rn}:

Tn :=

∫
Rd+1

|Cn(s, t)|2µ(ds, dt), (3.9)

with

Cn(s, t) := ϕ̂ R
rn
,Θ|rn(s, t)− ϕ̂ R

rn
|rn(s)ϕ̂Θ|rn(t),

where ϕ̂ R
rn
,Θ|rn is the conditional empirical characteristic function of (R/rn,Θ),

ϕ̂ R
rn
,Θ|rn(s, t) =

1∑n
j=1 1{Rj>rn}

n∑
j=1

eisRj/rn+itTΘj1{Rj>rn}, s ∈ R, t = (t1, . . . , td)
T ∈ Rd,

and ϕ̂ R
rn
|rn , ϕ̂Θ|rn are the corresponding empirical conditional marginal characteristic func-

tions,

ϕ̂ R
rn
|rn(s) = ϕ̂ R

rn
,Θ|rn(s, 0), ϕ̂Θ|rn(t) = ϕ̂ R

rn
,Θ|rn(0, t).

In this section, we establish the limiting results (3.7) and (3.8) adapted to the conditional

distance covariance. For ease of notation, let

pn := P(R > rn) , p̂n :=
1

n

n∑
j=1

1{Rj>rn}

be the theoretical and empirical probability of exceedance, and let

ϕ R
rn
,Θ|rn(s, t) := E

[
eisR/rn+itTΘ|R > rn

]
=

E
[
eisR/rn+itTΘ1R>rn

]
pn

,

and

ϕ R
rn
|rn(s) := ϕ R

rn
,Θ|rn(s, 0), ϕΘ|rn(t) := ϕ R

rn
,Θ|rn(0, t),

be the theoretical conditional joint and marginal characteristic functions.
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Recall from (3.3) that as n→∞, R/rn and Θ become asymptotically independent and

converge to να and S respectively. Denote the characteristic functions of the corresponding

limit distributions by

ϕR(s) :=

∫ ∞
1

exp(isr)αr−α−1dr = lim
n→∞

ϕ R
rn
|rn(s), (3.10)

ϕΘ(t) :=

∫
Sd−1

exp(itθ)S(dθ) = lim
n→∞

ϕΘ|rn(t). (3.11)

We have the following results.

Theorem 3.4.1. 1. Let X1, . . . ,Xn be iid observations generated from X, where X is

multivariate regularly varying with index α > 1. Let Tn be the conditional empirical

distance covariance between the angular and radial component defined in (3.9). Further

assume that npn →∞ and the weight measure µ satisfies∫
Rd+1

(1 ∧ |s|β)(1 ∧ |t|2)µ(ds, dt) <∞, (3.12)

for some 1 < β < 2 ∧ α. Then

Tn
p→ 0.

2. In addition, if {rn} satisfies

npn

∫
Rd+1

|ϕ R
rn
,Θ|rn(s, t)− ϕ R

rn
|rn(s)ϕΘ|rn(t)|2µ(ds, dt)→ 0, (3.13)

then

np̂nTn
d→
∫
Rd+1

|Q(s, t)|2µ(ds, dt), (3.14)

where Q is a centered Gaussian process with covariance function

cov(Q(s, t), Q(s′, t′)) = (ϕR(s−s′)−ϕR(s)ϕR(−s′))(ϕΘ(t− t′)−ϕΘ(t)ϕΘ(−t′)) (3.15)

with ϕR, ϕΘ as defined in (3.10) and (3.11).

Remark 3.4.2. In the case where X is regularly varying with index α ≤ 1, similar results

hold if we replace R/rn with log(R/rn) for which all moments exist.
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The proof of the theorem is delayed to Section 3.8. In the following remark, we discuss

certain sufficient conditions for assumption (3.13).

Remark 3.4.3. Assume that µ = µ1 × µ2, where µ1, µ2 are measures on R and Rd, respec-

tively, and symmetric about the origin. From Section 2.2 of Davis et al. (2018), condition

(3.13) is equivalent to

npn

(
E[µ̃1(

R

rn
− R′

rn
) µ̃2(Θ−Θ′)|R,R′ > rn]

+E[µ̃1(
R

rn
− R′

rn
)|R,R′ > rn]E[µ̃2(Θ−Θ′)|R,R′ > rn]

−2E[µ̃1(
R

rn
− R′

rn
)µ̃2(Θ−Θ′′)|R,R′ > rn]

)
→ 0, (3.16)

where

µ̃i(x) =

∫
(1− cos(xT s))µi(ds), i = 1, 2.

Let P R
rn
,Θ|rn denote the conditional joint distribution of (R/rn,Θ) given R > rn and P R

rn
|rn , PΘ|rn

be the respective conditional marginals. Then (3.16) can be expressed as

npn

∫
(1,∞)×Sd−1

∫
(1,∞)×Sd−1

µ̃1(T − T ′) µ̃2(Θ−Θ′)(
P R
rn
,Θ|rn(dT, dΘ)P R

rn
,Θ|rn(dT ′, dΘ′)

+P R
rn
|rn(dT )PΘ|rn(dΘ)P R

rn
|rn(dT ′)PΘ|rn(dΘ′)

−2P R
rn
,Θ|rn(dT, dΘ)P R

rn
|rn(dT ′)PΘ|rn(dΘ′)

)
=

∫
(1,∞)×Sd−1

∫
(1,∞)×Sd−1

µ̃1(T − T ′) µ̃2(Θ−Θ′)

√
npn

(
P R
rn
,Θ|rn(dT, dΘ)− P R

rn
|rn(dT )PΘ|rn(dΘ)

)
√
npn

(
P R
rn
,Θ|rn(dT ′, dΘ′)− P R

rn
|rn(dT ′)PΘ|rn(dΘ′)

)
→ 0, (3.17)

where (R′,Θ′), (R′′,Θ′′) are iid copies of (R,Θ). One way to verify (3.17) is to assume a

second-order like condition on the distribution of (R,Θ). For example, assume that

P R
rn
,Θ|rn − να × S
A(rn)

w→ χ, on [1,∞)× Sd−1,

80



where χ is a signed measure such that χ([r,∞] × B) is finite for all r ≥ 1 and B Borel

set in Sd−1, the unit sphere in Rd, and the scalar function A(t) → 0 as t → ∞. When

the components of X are asymptotically independent, this is equivalent to the second order

condition for multivariate regular variation (Resnick, 2002). If we choose the sequence rn

such that
√
npn →∞ and

√
npnA(rn)→ 0, then

√
npnA(rn)

P R
rn
,Θ|rn((·, ·))− P R

rn
|rn(·)× PΘ|rn(·)

A(rn)

=
√
npnA(rn)

(
P R
rn
,Θ|rn((·, ·))− να × S((·, ·))

A(rn)
−

(
P R
rn
|rn(·)− να(·)

)
× PΘ|rn(·)

A(rn)

−
να(·)× (PΘ|rn(·)− S(·))

A(rn)

)
w→ 0

on [1,∞]×Sd−1. In the case where µ1, µ2 are finite measures, µ̃1, µ̃2 are bounded and (3.17)

is satisfied since the integrand can be written as

npnA
2(rn)

∫
(1,∞)×Sd−1

[∫
(1,∞)×Sd−1

µ̃1(T − T ′) µ̃2(Θ−Θ′)

P R
rn
,Θ|rn(dT, dΘ)− P R

rn
|rn(dT )PΘ|rn(dΘ)

A(rn)

]
P R
rn
,Θ|rn(dT ′, dΘ′)− P R

rn
|rn(dT ′)PΘ|rn(dΘ′)

A(rn)
→ 0.

In the special case that |A| ∈ RVρ for ρ < 0, (3.17) is met provided rn is chosen such that

O(n
1

α+2|ρ|+ε) ≤ rn ≤ o(n
1
α ), for some ε > 0.

When the measures µ1, µ2 are infinite, (3.13) can be verified in specific cases. This is

illustrated in the following example.

Example 3.4.4. Let X follow a bivariate logistic distribution, i.e., X has cdf

P(X1 < x1, X2 < x2) = exp(−(x
−1/γ
1 + x

−1/γ
2 )γ), γ ∈ (0, 1). (3.18)

Then X has asymptotically independent components if and only if γ = 1. It can be shown

that X is regularly varying with index α = 1, i.e., pn = P(R > rn) ∼ r−1
n as rn → ∞.
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Using the L1-norm, ‖(x1, x2)‖ = |x1| + |x2|, the polar coordinate transform is (R,Θ) =

(X1 +X2, X1/(X1 +X2))∈ (0,∞)× [0, 1] and the pdf of (R,Θ) is

fR,Θ(r, θ) = r−2 (θ(1− θ))−
γ+1
γ

(
θ−

1
γ + (1− θ)−

1
γ

)γ−2

e
−r−1

(
θ
− 1
γ +(1−θ)−

1
γ

)γ
(
r−1
(
θ−

1
γ + (1− θ)−

1
γ

)γ
− γ − 1

γ

)
.

We now consider the case of the infinite weight measure µ given in (3.6) with κ = 1 and

derive the condition on the sequence {rk} for which the conditions of Theorem 3.4.1 hold.

First observe that

f R
rn
,Θ|rn(t, θ) = t−2 (θ(1− θ))−

γ+1
γ

(
θ−

1
γ + (1− θ)−

1
γ

)γ−2

e
−r−1

n t−1

(
θ
− 1
γ +(1−θ)−

1
γ

)γ
(
r−1
n t−1

(
θ−

1
γ + (1− θ)−

1
γ

)γ
− γ − 1

γ

)
→ t−2 1− γ

γ
(θ(1− θ))−

γ+1
γ

(
θ−

1
γ + (1− θ)−

1
γ

)γ−2

, as n→∞, (3.19)

=: fT (t)fΘ(θ),

and

rn

∣∣∣f R
rn
,Θ|rn(t, θ)− fT (t)fΘ(θ)

∣∣∣
≤ fT (t)fΘ(θ)

(
rn

∣∣∣∣∣e−r−1
n t−1

(
θ
− 1
γ +(1−θ)−

1
γ

)γ
− 1

∣∣∣∣∣
+e
−r−1

n t−1

(
θ
− 1
γ +(1−θ)−

1
γ

)γ
t−1
(
θ−

1
γ + (1− θ)−

1
γ

)γ γ

1− γ

)

≤ fT (t)fΘ(θ)

(
t−1
(
θ−

1
γ + (1− θ)−

1
γ

)γ
+ t−1

(
θ−

1
γ + (1− θ)−

1
γ

)γ γ

1− γ

)
≤ t−3

(
θ−

1
γ + (1− θ)−

1
γ

)2γ−2 1

1− γ
≤ ct−3, for t ≥ 1 and θ ∈ [0, 1],

where c denotes a generic a constant whose value may change from line to line throughout

the proof, and the last inequality comes from the facts that

θ(1− θ) ≤ 1

4
and

(
θ−

1
γ + (1− θ)−

1
γ

)2γ−2

≤
(

1

2

) 2−2γ
γ

<∞.
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Letting

hn(t, θ) :=
f R
rn
,Θ|rn(t, θ)− f R

rn
|rn(t)fΘ|rn(θ)

r−1
n

,

we have

max

(∫ 1

0

∫ ∞
1

|hn(t, θ)|dtdθ,
∫ 1

0

∫ ∞
1

| log(t)hn(t, θ)|dtdθ
)

≤
∫ 1

0

∫ ∞
1

|thn(t, θ)|dtdθ

≤
∫ 1

0

∫ ∞
1

∣∣∣∣∣f R
rn
,Θ|rn(t, θ)− fT (t)fΘ(θ)

t−1r−1
n

∣∣∣∣∣ dtdθ
+

∫ 1

0

∫ ∞
1

∣∣∣∣fT (t)
fΘ|rn(θ)− fΘ(θ)

t−1r−1
n

∣∣∣∣ dtdθ
+

∫ 1

0

∫ ∞
1

∣∣∣∣∣fΘ|rn(θ)
f R
rn
|rn(t)− fT (t)

t−1r−1
n

∣∣∣∣∣ dtdθ,
where the first term can be bounded by∫ 1

0

∫ ∞
1

ct−2dtdθ <∞,

and the other terms can be bounded in the same way. Since R has infinite first moment, we

apply the distance correlation to logR and Θ. The integral in (3.17) is bounded by

npn
r2
n

∫ 1

0

∫ ∞
1

∫ 1

0

∫ ∞
1

| log t− log t′||θ − θ′||hn(t, θ)||hn(t′, θ′)|dtdθdt′dθ′

≤ c
n

r3
n

∫ 1

0

∫ ∞
1

∫ 1

0

∫ ∞
1

(| log t|+ | log t′|)|hn(t, θ)||hn(t′, θ′)|dtdθdt′dθ′

≤ c
n

r3
n

(∫ 1

0

∫ ∞
1

| log(t)hn(t, θ)|dtdθ
)(∫ 1

0

∫ ∞
1

|hn(t, θ)|dtdθ
)
≤ c

n

r3
n

,

which converges to zero if n = o(r3
n). Therefore if {rn} is chosen such that rn = o(n) and

n = o(r3
n), then Theorem 3.4.1 holds.

The result in Theorem 3.4.1 can be generalized from iid to a regularly varying time series

setting, which we present in the next theorem. For a multivariate stationary time series

{Xt} and h ≥ 1, set Yh = (X0, . . . ,Xh). Then {Xt} is regularly varying if

P(x−1Yh ∈ ·)
P(x−1‖X0‖ > 1)

v→ µ∗h(·), x→∞,
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for some non-null measure µ∗h on R(h+1)d

0 = R(h+1)d\{0}, R = R ∪ {±∞}, with the property

that µ∗h(tC) = t−αµ∗h(C) for any t > 0 and Borel set C ⊂ R(h+1)d

0 . See, for example, page

979 of Davis and Mikosch (2009). It follows easily that

P(x−1(X0,Xh) ∈ ·)
P(‖X0‖ > x)

v→ µh(·), (3.20)

where

µh(D) = C · µ∗h({s ∈ R(h+1)d
: (s1, sh) ∈ D}).

Assume that {Xt} is α-mixing. We assume the following conditions between {Xt} and the

sequence of threshold {rn}, which can be verified for various time series models (Davis and

Mikosch, 2009).

(M) Assume p−1
n = P−1(‖X1‖ > rn) = o(n1/3) and that there exists a sequence {ln}

such that ln →∞, lnpn → 0, and

i) (
1

pn

)δ ∞∑
h=ln

αδh → 0 for some δ ∈ (0, 1); (3.21)

ii)

lim
h→∞

lim sup
n→∞

1

pn

ln∑
j=h

P(‖X0‖ > rn, ‖Xj‖ > rn) = 0; (3.22)

iii)

npnαln → 0. (3.23)

Theorem 3.4.5. Let {Xt} be a multivariate regularly varying time series with tail index

α > 1 and α-mixing with coefficients {αh}h≥0. Assume the same conditions for the weight

measure µ and the sequence of thresholds {rn} in Theorem 3.4.1, i.e., (3.12), (3.13) hold,

and that condition (M) holds. Then

np̂nTn
d→
∫
Rd+1

|Q′(s, t)|2µ(ds, dt),

where Q′ is a centered Gaussian process. In particular,

Tn
p→ 0.
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The proof of Theorem 3.4.5 is given in Section 3.9.

Note that the limiting distributions Q in Theorem 3.4.1 and Q′ in Theorem 3.4.5 are

both intractable. In practice, quantiles of the distributions are calculated using resampling

methods. While in the iid case this can be done straightforwardly, in the weakly dependent

case one needs to apply the block bootstrap or stationary bootstrap to obtain the desired

result (see Davis et al. (2012)). In the following section, we present a threshold selection

framework with a subsampling scheme that does not require independence between the

observations.

3.5 Threshold selection

In this section, we propose a procedure to select the threshold for estimating the spectral

measure S from observations X1, · · · ,Xn. Let us first consider the case where a specific

threshold rn is given. Then (3.9) specifies the empirical distance covariance between R/rn

and Θ conditional on R > rn. Under the assumption (3.13), we have from Theorem 3.4.1,

np̂nTn →
∫
Rd+1

|Q(s, t)|2µ(ds, dt),

where np̂n is the number of observations such that Ri > rn. In practice, the limit distribution∫
|Q|2µ(s, t) is intractable, but one can resort to bootstrapping. Consider the hypothesis

testing framework:

H0 : R/rn and Θ are independent with respect to P[·|R > rn];

H1 : R/rn and Θ are not independent with respect to P[·|R > rn].

Define the p-value for testing H0 versus H1 to be

pv = P
(∫

Rd+1

|Q(s, t)|2µ(ds, dt) > u

)∣∣∣∣
u=np̂nTn

. (3.24)

Under H0, pv follows U(0, 1). Under H1, np̂nTn diverges and pv should be sufficiently small.

Now consider a decreasing sequence of candidate thresholds {rk}. From (3.24), a sequence

of p-values {pvk}, each corresponding to a threshold rk, can be obtained. Our goal is
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to find the smallest threshold r∗ such that conditional on R > r∗, Θ can reasonably be

considered independent of R. Note that the pvk’s are not independent for each k since they

are computed from the same set of data. Conventional multiple testing procedures, such

as Bonferroni correction, are problematic to implement for dependent p-values. To counter

these limitations, we propose an intuitive and direct method based on subsampling.

The idea is outlined as follows: For a fixed level rk, we choose a subsample of size nk

from the conditional empirical cdf F̂ R
rn
,Θ|rk of (Ri/rk,Θi) with Ri > rk, i = 1, . . . , n. For this

subsample, we compute the distance covariance Tn,k. To compute a p-value of Tn,k under

the assumption that the conditional empirical distribution is a product of the conditional

marginals, we take a large number (L) of subsamples of size nk from

F̃ R
rn
,Θ|rk(dθ, dr) = F̂Θ|rk(dθ)F̂ R

rn
|rk(dr),

and calculate the value T̃
(l)
n,k, l = 1, . . . , L for each subsample. The p-value of Tn,k, pvk,

is then the empirical p-value of Tn,k relative the {T̃ (l)
n,k}l=1,...,L. This process, starting with

an initial subsample of nk from F̂ R
rn
,Θ|rk is repeated m times, which produces m estimates

{pv(j)
k }j=1,...,m of the pvk, which are independent conditional on the original sample. These

are then averaged

pvk =
1

m

m∑
j=1

pv
(j)
k .

So for the sequence of levels {rk}, we produce a sequence of independent p-values {pvk}.

Our choice of threshold r at which (Θ, R)|R > r are independent (and dependent oth-

erwise) will be based on an examination of the path of the mean p-values, {pvk}. Note the

following two observations:

• If R and Θ are independent given R > rk, then the pv
(1)
k , . . . , pv

(m)
k will be iid and

approximately U(0, 1)-distributed, so that pvk should center around 0.5.

• If R and Θ are dependent given R > rk, then the pv
(j)
k ’s will be well below 0.5 (closer

to 0), and so will pvk.

By studying the sequence {pvk}, which we call the mean p-value path, we choose the thresh-

old to be the smallest rk such that pvl is around 0.5 for l < k. A well-suited change-point
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method for our situation is the CUSUM algorithm, by Page (1954), which detects the changes

in mean in a sequence by looking at mean-corrected partial sums. In our algorithm, we use a

spline fitting method that is based on the CUSUM approach called wild binary segmentation

(WBS), proposed by Fryzlewicz (2014). The WBS procedure uses the CUSUM statistics of

subsamples and fits a piecewise constant spline to {pvk}. In our setting, we may choose rk

to be the knot of the spline after which the fitted value is comfortably below 0.5.

There are several advantages to using the subsampling scheme. First, recall that the p-

value path {pvk}, which is obtained from the whole data set, has complicated serial structure

and varies greatly from each realization. In contrast, the mean p-values pvk from subsampling

are conditionally independent and will center around 0.5 with small variance when the total

sample size n and the number of subsample m is large. This, in turns, helps to present a

justifiable estimation for the threshold. Second, the calculation of distance covariance can be

extremely slow for moderate sample size. Using smaller sample sizes for the subsamples, our

computational burden is greatly reduced. In addition, this procedure is amenable to parallel

computing, reducing the computation time even further. Third, the subsampling makes it

possible to accommodate stationary but dependent data, waiving the stringent independent

assumption.

The idea of looking at the mean p-value path is inspired by Mallik et al. (2011), which used

the mean of p-values from multiple independent tests to detect change points in population

means.

3.6 Data Illustration

In this section, we demonstrate our threshold selection method through simulated and real

data examples.

In practice, we set the sequence of thresholds {rk} to be the upper quantiles of R cor-

responding to {qk}, a pre-specified sequence. The subsample size nk at each threshold rk is

set as nk = n0 · qk for some n0 << n. This is designed such that for any rk, each subsample
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is a n0/n fraction of all the eligible data points with R > rk. Then the choice of {nk} boils

down to the choice of n0, which should reflect the following considerations: i) n0 should be

large enough to ensure good resolution of p-values at all levels; ii) n0/n should be sufficient

small such that the subsamples do not contain too much overlap in observations; iii) larger

n0 requires heavier computation for the distance correlation. In our examples, where the

total sample size n ranges from 3000 to 20000, we find n0 between 500 and 1000 to be a

suitable choice. The number of subsamples m can be set as large as computation capacity

allows. In our examples, we take m = 60.

For all the examples, we choose the weight function µ for distance covariance to be (3.6)

with κ = 1, and the number of replications used to calculate each p-value is L = 200. To

ensure that the moment conditions are met, the distance correlation is applied to the log of

the radial part R in all examples.

3.6.1 Simulated data with known threshold

To illustrate our methodology, we simulate observations from a distribution with a known

threshold for which R and Θ become independent.

Let R be the absolute value of a t-distribution with 2 degrees of freedom and Θ1,Θ2 be

independent random variables such that Θ1 ∼ U(0, 1), Θ2 ∼ Beta(3, 3). Set

Θ|R =


Θ1, if R > r0.2,

Θ2, if R ≤ r0.2,

where r0.2 is the upper 20%-quantile of R. Then R and Θ are independent given R > r

if and only if r ≥ r0.2. Let (Xi1, Xi2) = (RiΘi, Ri(1 − Θi)), i = 1, . . . , n, be the simulated

observations. We generate n = 10000 iid observations from this distribution. Figures 3.1a,

3.1b and 3.1c show the data in Cartesian and polar coordinates. Our goal is to recover the

tail angular distribution by choosing the appropriate threshold.

A sequence of candidate thresholds {rk} is selected to be the empirical upper quantiles

of R corresponding to {qk}, 150 equidistant points between 0.01 and 0.4. We apply the
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procedure described in Section 3.5 to the data. For each rk, the mean p-value pvk is calculated

using m = 60 random subsamples, each of size nk = 500 · qk, from the observations with

Ri > rk. Figure 3.1d shows the mean p-value path. For the WBS algorithm, we set the

threshold to be the largest rk such that for all thresholds r (quantile level q) such that r < rk

(q > qk), the fitted spline of the p-value stays below 0.451. The threshold levels chosen is

20.4%, which are in good agreement with the true independence level 0.2. The empirical

cdfs of the truncated Θi’s corresponding to the chosen thresholds is shown in Figure 3.1e.

We can see that the true tail angular cdf (i.e., U(0, 1)) is accurately recovered.

3.6.2 Simulated logistic data

We simulate data from a bivariate logistic distribution, which is bivariate regularly varying.

Recall from Example 3.4.4 that (X1, X2) follows a bivariate logistic distribution if it has cdf

(3.18). In this example, we set γ = 0.8 and generate n = 10000 iid observations from this

distribution. Similar to the previous example, for each threshold rk corresponding to the

upper qk quantile, where {qk} is chosen to be the 150 equidistant points between 0.01 and

0.3. The mean p-value pvk is calculated using m = 60 random subsamples of size nk = 500·qk

from the observations with Ri > rk.

Figures 3.2a , 3.2b and 3.2c show the scatterplots of the data. Here the L1-norm is used

to transform the data into polar coordinates. Our algorithms suggests using 7.4% of the

data to estimate the angular distribution. The estimated cdf of the angular distribution is

shown with the theoretical limiting cdf, derived from (3.19), in Figure 3.2e. So even though

R and Θ are not independent for any threshold rk, our procedures produce good estimates

of the limiting distribution of Θ.

1Of course, other selection rules can be used. For example, a more conservative approach would be
choosing the threshold as the largest rk such that for r > rk, the fitted spline of the p-value stays above
0.45.
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Figure 3.1: (a) scatterplot of (Xi1, Xi2); (b) scatterplot of (Xi1, Xi2) in log-log scale; (c)
scatterplot of (Ri,Θi); (d) mean p-value path (black triangles), fitted WBS spline (blue
line), and the chosen threshold quantile (red vertical line); (e) estimated cdf of Θ using the
threshold chosen, compared with the truth (black dotted).

3.6.3 Real data

In this example, we look at the following exchange rate returns relative to the US dollar:

Deutsche mark (DEM), British pound (GBP), Canadian dollar (CAD), and Swiss franc

(CHF). The time spans for the data are 1990-01-01 to 1998-12-31 with a total of 3287 days

of observations. We examine the pairs GBP/CHF, CAD/CHF, DEM/CHF and estimate

the angular density in the tail for each pair. Figures 3.3a–3.3c present the scatter plots of

the data. The marginals of the observations are standardized using the rank transformation

proposed in Joe et al. (1992):

Zi = 1/ log{n/(Rank(Xi)− .5)}, i = 1, . . . , n.

90
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Figure 3.2: (a) scatterplot of (Xi1, Xi2); (b) scatterplot of (Xi1, Xi2) in log-log scale; (c)
scatterplot of (Ri,Θi); (d) mean p-value path (black triangles), fitted WBS spline (blue
line), and the chosen threshold quantile (red vertical line); (e) estimated cdf of Θ using the
threshold chosen, compared with the theoretical limiting cdf (black dotted).

Again {qk} is chosen to be the 150 equidistant points between 0.01 and 0.3, and the mean

p-value pvk is calculated using m = 60 random subsamples of size nk = 500 · qk from the

observations with Ri > rk. Note that while it may not be reasonable to view the observations

as iid, the subsampling scheme can still be applied to choose the threshold of independence

between R and Θ.

The mean p-value paths are shown in Figures 3.4a–3.4c. The threshold levels selected

for the three pairs are 9.6%, 7.4%, 16%, respectively. Figures 3.3d–3.3f show the shape of

the estimated angular densities for each pairs. As expected, the tails of the two central

European exchange rates, DEM and CHF, are highly dependent. In contrast, that of CAD

91



●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●●

●

●

●

●

●●●

●
●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●●

●

● ●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●
● ●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●
● ●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

● ●

●

●● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●●

●

●

●

●
●

●

●
●●

●

●
●●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

● ●
● ●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●●

●● ●

●

●

●●

●

●

●

●

●● ●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●●●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

● ●●

●●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●●
●●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●
● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

● ●●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●● ●

●●
●●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●● ●

●

●●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

● ●

●
●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

0.
01

0.
02

0.
03

GBP

C
H

F

(a)

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●
● ●

●

●

●

●

●● ●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

● ●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●
●● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

● ● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ● ●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●
●● ●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●
●

● ●

●

● ● ●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
● ●

●

●

●

●
●

●

●
●●

●

●
●●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●●
● ●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●
● ●

●

● ●

●

●

●

●●

● ●●

●

●

●●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

●● ●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

● ●
●●

●

●

● ●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

● ●●
●

● ●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●● ●

●

●

●

●

● ●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●●●

●●
●●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
● ● ●

●

● ●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

● ●

●
●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

0.000 0.005 0.010 0.015

0.
00

0.
01

0.
02

0.
03

CAD

C
H

F
(b)

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●
● ●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●●●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●●

●

●
●● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●●

● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

● ●

●

●● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●
●●

●

●

●

●
●

●

●
●●

●

●
●●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●●
●●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

● ●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●
●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●
●

● ●●

● ●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

● ●

●●

●

●

●

●●
●●

●

●

● ●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

● ● ●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●● ●

●

●

●

●

●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●●●

● ●
●●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●● ●

●

●●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

0.000 0.010 0.020 0.030

0.
00

0.
01

0.
02

0.
03

DEM

C
H

F

(c)

GBP/CHF

Theta

D
en

si
ty

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

(d)

CAD/CHF

Theta

D
en

si
ty

0.0 0.5 1.0 1.5

0
1

2
3

4
5

(e)

DEM/CHF

Theta
D

en
si

ty

0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

1.
2

(f)

Figure 3.3: Analysis of the paired exchange rate returns: CHF/DEM, CHF/GBP,
CHF/CAD with respect to USD between 1990-01-01 to 1998-12-31. (a)–(c): Scatter plots
of the standardized paired exchange rate returns; (d)–(f): Estimated angular densities using
the estimated thresholds chosen.

and CHF are almost independent.

3.6.4 Simulated non-regularly varying data

In this example, we generate data from a model which is not regularly varying. Let R be a

random variable from the standard Pareto distribution:

P(R > r) = r−1, r ≥ 1.
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Figure 3.4: Analysis of the paired exchange rate returns: CHF/DEM, CHF/GBP,
CHF/CAD with respect to USD between 1990-01-01 to 1998-12-31. (a)–(c): mean p-value
paths (black triangles), fitted WBS splines (blue lines) and the chosen threshold quantiles
(red vertical line).
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Let Θ1,Θ2 be independent random variables such that Θ1 ∼ U(0, 0.5), Θ2 ∼ U(0.5, 1). Set

Θ|R ∼


Θ1, if logR ∈ (2k, 2k + 1] for some integer k,

Θ2, if logR ∈ (2k + 1, 2k + 2] for some integer k.

For any positive integer k, it can be verify that

P(Θ ∈ (0, 0.5)|R > e2k) =
1− e−1

1− e−2
,

while

P(Θ ∈ (0, 0.5)|R > e2k+1) =
e−1 − e−2

1− e−2
.

Hence P(Θ ∈ ·|R > r) does not convergence as r → ∞ and X = (RΘ, R(1 − Θ)) is not

regularly varying.

Let (Xi1, Xi2) = (RiΘi, Ri(1 − Θi)), i = 1, . . . , n, be iid observations from this distribu-

tion, where n = 20000. Figures 3.5a, 3.5b and 3.5c show the data in Cartesian and polar

coordinates. We apply our threshold selection algorithm to the data, with the threshold

upper quantile levels qk chosen as the 150 equidistant points between 0.01 and 0.2. The

mean p-value pvk is calculated using m = 60 random subsamples of size nk = 500 · qk from

the observations with Ri > rk. This is shown in Figure 3.5d.

In this model, the radial part R is regularly varying, but Θ and R are dependent given

R > r for any r. We expect the mean p-values to be well below 0.5, as are observed. No

threshold is selected by the algorithm. This suggests that our technique can potentially be

used to detect misspecified models from the regular variation assumption, especially in the

scenario where the heavy-tailedness of R is observed but dependence between R and Θ is

suspected.

3.7 Discussion

In this chapter, we propose a threshold selection procedure for multivariate regular variation,

for which R and Θ are approximately independent for R beyond the threshold. While our
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Figure 3.5: (a) scatterplot of (Xi1, Xi2); (b) scatterplot of (Xi1, Xi2) in log-log scale; (c)
scatterplot of (Ri,Θi); (d) mean p-value path (black triangles), fitted WBS spline (blue
line), and the chosen threshold quantile (red vertical line).

problem is set in the multivariate heavy-tailed setting and we utilize distance covariance as

our measure of dependence, our algorithm is essentially a change point detection method

based on p-values generated through subsampling schemes. Hence this may be generalized

to other problem settings and potentially incorporates other dependence measures. Though

we have proposed an automatic selection for the threshold based on the fitted mean p-value

path, we would like to emphasize that, like the Hill plot, this should be viewed as a visual

tool rather than an optimal selection criterion. The final threshold should be based on the

proposed procedure in conjunction with visual inspection of the p-value path.

We note that the choice of norm in the polar coordinate transformation (3.1) may result

in significant differences in the choice of thresholds, which indicates the rate of convergence
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to the limit spectral density. This is especially evident in the near ‘asymptotic independence’

case, where the mass of the angular distribution concentrates on the axes.

As an illustration, we simulated iid observations {(Xi1, Xi2)}i=1,...,n from the bivariate

logistic distribution, where the cdf is given in (3.18), with γ = 0.95 and n = 10000. We apply

the polar coordinate transformation with respect to the Lp-norm for p = 0.2, 1, 5. Note that

in the case of p = 0.2, Lp is only a quasi-norm as it does not satisfy the triangular inequality.

However, it can be shown that (3.4) holds and the limiting angular distribution exists for

bivariate logistic distribution. We compare the threshold selection results in Figure 3.6.

Note that in the cases of the L1 and L5-norms, the threshold levels are chosen to be upper

5% and 12%, respectively, while in the case of the L0.2-norm, it is not possible to select the

threshold as the dependence between R and Θ at all levels were shown to be significant.

Indeed, this can be seen in Figure 3.7, where we compare the histogram of Xp
1/(X

p
1 + Xp

2 )

given ‖X‖p is large across three levels of truncations, 2%, 5% and 12%, together with the

theoretical limiting density curve. For the L0.2-norm, the limiting angular density is poorly

approximated by the truncated data for all levels. For the other two norms, the truncated

observations according to the selected threshold provide decent approximations to the true

limiting density of the angular component. One possible explanation for this is that under

the L0.2-norm, the threshold is concave and hence observations on the diagonal are much

easier to be classified as “extremes” than those near the axis. As a result, the estimator of

the angular density uses more observations near the diagonal, which may not be, in fact,

close enough to the limit. This choice of norm is an interesting topic and is the subject of

ongoing research.

3.8 Proof of Theorem 3.4.1

Note from the definition of the empirical distance covariance in (3.9), the integrand can be
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Figure 3.6: Simulated logistic data of sample size n = 10000 with γ = 0.95. Threshold
selection algorithm applied under the L0.2-, L1- and L5-norms: mean p-value paths (black
triangles), fitted WBS splines (blue lines) and the chosen threshold quantiles (red vertical
line).

expressed as

Cn(s, t) =
1

np̂n

n∑
j=1

eisRj/rn+itTΘj1{Rj>rn}

− 1

np̂n

n∑
j=1

eisRj/rn1{Rj>rn}
1

np̂n

n∑
k=1

eit
TΘk1{Rk>rn}

=
1

np̂n

n∑
j=1

(
eisRj/rn − ϕ R

rn
|rn(s)

)(
eit

TΘj − ϕΘ|rn(t)
)

1{Rj>rn}

− 1

np̂n

n∑
j=1

(
eisRj/rn − ϕ R

rn
|rn(s)

)
1{Rj>rn}

1

np̂n

n∑
k=1

(
eit

TΘk − ϕΘ|rn(t)
)

1{Rk>rn}.
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Figure 3.7: Simulated logistic data of sample size n = 10000 with γ = 0.95. Histogram of
Xp

1/(X
p
1 +Xp

2 ) for truncated levels 2%, 5% and 12% for p = 0.2, 1, 5.

Writing Ujn =
(
eisRj/rn − ϕ R

rn
|rn(s)

)
1{Rj>rn}, Vjn =

(
eit

TΘj − ϕΘ|rn(t)
)

1{Rj>rn}, we have

Cn(s, t) =
pn
p̂n

1

n

n∑
j=1

UjnVjn
pn

−
(
pn
p̂n

)2
1

n

n∑
j=1

Ujn
pn

1

n

n∑
k=1

Vkn
pn

.

Since EUjn = EVjn = 0 and EUjnVjn/pn = ϕ R
rn
,Θ|rn(s, t)− ϕ R

rn
|rn(s)ϕΘ|rn(t), it is convenient

to mean correct the summands and obtain

Cn(s, t) =
pn
p̂n

1

n

n∑
j=1

(
UjnVjn
pn

−
(
ϕ R
rn
,Θ|rn(s, t)− ϕ R

rn
|rn(s)ϕΘ|rn(t)

))

−
(
pn
p̂n

)2
1

n

n∑
j=1

Ujn
pn

1

n

n∑
k=1

Vkn
pn

+
pn
p̂n

(ϕ R
rn
,Θ|rn(s, t)− ϕ R

rn
|rn(s)ϕΘ|rn(t))

=:

(
pn
p̂n

)
Ẽ1 −

(
pn
p̂n

)2

Ẽ21Ẽ22 +

(
pn
p̂n

)
Ẽ3

=:

(
pn
p̂n

)
Ẽ1 −

(
pn
p̂n

)2

Ẽ2 +

(
pn
p̂n

)
Ẽ3
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Note that Ẽ1, Ẽ21, Ẽ22 are averages of iid zero-mean random variables and Ẽ3 is non-random.

We first prove the second part of Theorem 3.4.1. The first part of Theorem 3.4.1 follows

easily in a similar fashion.

Proof of Theorem 3.4.1(2). In order to show (3.14), it suffices to establish that

np̂n

∫
Rd+1

(
pn
p̂n

)2

|Ẽ1|2µ(ds, dt)
d→
∫
Rd+1

|Q(s, t)|2µ(ds, dt), (3.25)

and ∣∣∣∣∣np̂nTn − np̂n
∫
Rd+1

(
pn
p̂n

)2

|Ẽ1|2µ(ds, dt)

∣∣∣∣∣ p→ 0, (3.26)

where (3.26) can be implied by

np̂n

∫
Rd+1

(
pn
p̂n

)2

|Ẽ2|2µ(ds, dt) + np̂n

∫
Rd+1

(
pn
p̂n

)2

|Ẽ3|2µ(ds, dt)
p→ 0. (3.27)

Notice that

E
∣∣∣∣ p̂npn − 1

∣∣∣∣2 = E

∣∣∣∣∣ 1n
n∑
j=1

(
1{Rj>rn}

pn
− 1

)∣∣∣∣∣
2

=
1

n
E
∣∣∣∣1{R1>rn}

pn
− 1

∣∣∣∣2 ≤ 1

npn
O(1) +

1

n
O(1)→ 0.

Hence p̂n/pn
p→ 1 and for (3.25) and (3.27), it is equivalent to prove that

npn

∫
Rd+1

|Ẽ1|2µ(ds, dt)
d→
∫
Rd+1

|Q(s, t)|2µ(ds, dt) (3.28)

and

npn

∫
Rd+1

|Ẽ2|2µ(ds, dt) + npn

∫
Rd+1

|Ẽ3|2µ(ds, dt)
p→ 0. (3.29)

We will show the convergence (3.28) in Proposition 3.8.1. By (3.13),

npn

∫
Rd+1

|Ẽ3|2µ(ds, dt)→ 0.

So that (3.29) holds provided

npn

∫
Rd+1

|Ẽ2|2µ(ds, dt)
p→ 0, (3.30)

which follows in a similar fashion as Proposition 3.8.1.
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Proposition 3.8.1. Assume µ satisfies∫
Rd+1

(1 ∧ |s|β)(1 ∧ |t|2)µ(ds, dt) <∞,

and that npn →∞ as n→∞, then

npn

∫
Rd+1

|Ẽ1|2µ(ds, dt)
d→
∫
Rd+1

|Q(s, t)|2µ(ds, dt),

where Q is a centered Gaussian process with covariance function (3.15).

Proof of Proposition 3.8.1. We first show that

√
npnẼ1

d→ Q(s, t), on C(Rd+1) (3.31)

which can be implied by the finite distributional convergence of
√
npnẼ1(s, t) and its tightness

on C(Rd+1).

Write

√
npnẼ1 =

1√
n

n∑
j=1

(
UjnVjn√

pn
−√pn(ϕ R

rn
,Θ|rn(s, t)− ϕ R

rn
|rn(s)ϕΘ|rn(t))

)
=:

1√
n

n∑
j=1

Yjn,

where Yjn’s are iid random variables with mean 0. For fixed (s, t), note that

Var(Y1n) = E|Y1n|2 =
E|U1nV1n|2

pn
(1 + o(1)) =

E1{R1>rn}

pn
O(1) <∞.

On the other hand, any δ > 0,

E|Y1n|2+δ =
E|U1nV1n|2+δ

p
1+δ/2
n

(1 + o(1)) ≤ c
E1{R1>rn}

p
1+δ/2
n

(1 + o(1)) = O(p−δ/2n )

Then we can apply the central limit theorem for triangular arrays by checking the Lyapounov

condition (see, e.g., Billingsley (1995)) for the Yjn’s:∑n
j=1 E|Yjn|2+δ(

Var
(∑n

j=1 Yjn

)) 2+δ
2

=
O(np

− δ
2

n )

n1+ δ
2 Var(Y1n)1+ δ

2

= O((npn)−
δ
2 )→ 0.

It follows easily that for fixed (s, t),

√
npnẼ1

d→ Q(s, t).
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The finite-dimensional distribution can be obtained using the Cramér-Wold device and the

covariance function can be verified through calculations.

We now show the tightness of
√
npnẼ1. Note that

Ẽ1(s, t) =
1

n

n∑
j=1

(
eisRj/rn − ϕ R

rn
|rn(s)

)(
eit

TΘj − ϕΘ|rn(t)
)

1{Rj>rn}

pn

−
(
ϕ R
rn
,Θ|rn(s, t)− ϕ R

rn
|rn(s)ϕΘ|rn(t)

)
=

(
1

n

n∑
j=1

eisRj/rn+itTΘj1{Rj>rn}

pn
− ϕ R

rn
,Θ|rn(s, t)

)

−

(
1

n

n∑
j=1

eisRj/rn1{Rj>rn}

pn
− ϕ R

rn
|rn(s)

)
ϕΘ|rn(t)

−

(
1

n

n∑
j=1

eit
TΘj1{Rj>rn}

pn
− ϕΘ|rn(t)

p̂n
pn

)
ϕ R
rn
|rn(s)

=: Ẽ11 + Ẽ12 + Ẽ13.

Without loss of generality, we show the tightness for
√
npnẼ11 and that of

√
npnẼ12 and

√
npnẼ13 follows from the same argument.

First we introduce some notation following that from Bickel and Wichura (1971). Fix

(s, t), (s′, t′) ∈ Rd+1 where s < s′ and t < t′. Let B be the subset of Rd+1 of the form

B := ((s, t), (s′, t′)] = (s, s′]×
d∏

k=1

(tk, t
′
k] ⊂ Rd+1.

For ease of notation, we suppress the dependence of B on (s, t), (s′, t′). Define the increment

of the stochastic process Ẽ11 on B to be

Ẽ11(B) :=
1

n

n∑
j=1

∑
z0=0,1

∑
z1=0,1

· · ·
∑
zd=0,1

(−1)d+1−
∑
j zj

Ẽ11 (s+ z0(s′ − s), t1 + z1(t′1 − t1), . . . , td + zd(t
′
d − td)) .

From a sufficient condition of Theorem 3 of Bickel and Wichura (1971), the tightness of

√
npnẼ1 is implied if the following statement holds for any (s, t), (s′, t′) and corresponding

B,

E|√npnẼ11(B)|2 ≤ c|s− s′|β
d∏

k=1

|tk − t′k|β, for some β > 1.
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It follows that

E
∣∣∣√npn (Ẽ11(B)

)∣∣∣2
= npnE

∣∣∣∣∣ ∑
z0=0,1

· · ·
∑
zd=0,1

(−1)d+1−
∑
j zj

1

n

n∑
j=1

ei(s+z0(s′−s))Rj/r
d∏

k=1

ei(tk+zk(t′k−tk))Θjk
1{Rj>rn}

pn

−
∑
z0=0,1

· · ·
∑
zd=0,1

(−1)d+1−
∑
j zjE

[(
ei(s+z0(s′−s))R/r

) d∏
k=1

ei(tk+zk(t′k−tk))Θk
1{R>rn}
pn

]∣∣∣∣∣
2

= npnE

∣∣∣∣∣ 1n
n∑
j=1

(eisRj/rj − eis′Rj/rj)
d∏

k=1

(eitkΘjk − eit′kΘjk)
1{Rj>rn}

pn

−E

[
(eisR/r − eis′R/r)

d∏
k=1

(eitkΘk − eit′kΘk)
1{R>rn}
pn

]∣∣∣∣∣
2

= pnVar

(
(eisR/rj − eis′R/rj)

d∏
k=1

(eitkΘk − eit′kΘk)
1{R>rn}
pn

)
(3.32)

≤ E

∣∣∣∣∣(eisR/r − eis′R/r)
d∏

k=1

(eitkΘk − eit′kΘk)

∣∣∣∣∣
2
∣∣∣∣∣∣R > rn

 .
From a Taylor series argument,

|eix − eix′ |2 ≤ c
(
1 ∧ |x− x′|2

)
≤ c

(
1 ∧ |x− x′|β

)
≤ c|x− x′|β, for any β ∈ (0, 2].

Hence for any β ∈ (1, 2 ∧ α),

E
∣∣∣√npnẼ11(B)

∣∣∣2 ≤ c|s− s′|β
d∏

k=1

|ti − t′i|βE

[
(R/rn)β

d∏
k=1

|Θk|β|R > rn

]

< c|s− s′|β
d∏

k=1

|ti − t′i|β,

since |Θk|β’s are bounded and supnE[(R/rn)β|R > rn] <∞ by the regular variation assump-

tion. This proves the tightness.

Define the bounded set

Kδ = {(s, t)| δ < |s| < 1/δ, δ < |t| < 1/δ}, for δ < .5.

Then, using (3.31), we have from the continuous mapping theorem,

npn

∫
Kδ

|Ẽ1|2µ(ds, dt)
d→
∫
Kδ

|Q(s, t)|2µ(ds, dt). (3.33)
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On the other hand, for any β < 2 ∧ α, we have

E|√npnẼ1|2

= npnE

∣∣∣∣∣ 1n
n∑
j=1

(
UjnVjn
pn

− E
[
UjnVjn
pn

])∣∣∣∣∣
2

≤ E|UjnVjn − EUjnVjn|2

pn

≤ cE|UjnVjn|2

pn
(3.34)

=

cE
[∣∣∣eisRj/rn − ϕ R

rn
|rn(s)

∣∣∣2 ∣∣∣eitTΘj − ϕΘ|rn(t)
∣∣∣2 1{Rj>rn}

]
pn

≤
cE
[(∣∣eisRj/rn − 1

∣∣2 +
∣∣∣ϕ R

rn
|rn(s)− 1

∣∣∣2)(∣∣∣eitTΘj − 1
∣∣∣2 +

∣∣ϕΘ|rn(t)− 1
∣∣2)1{Rj>rn}

]
pn

≤
cE
[(

1 ∧
∣∣∣ sRjrn ∣∣∣2 + E

[
1 ∧

∣∣∣ sRjrn ∣∣∣2 | Rrn > 1

])(
1 ∧ |tΘj|2 + E

[
1 ∧ |tΘj|2| Rrn > 1

])
1{Rj>rn}

]
pn

≤
cE
[(

1 ∧
∣∣∣ sRjrn ∣∣∣β + E

[
1 ∧

∣∣∣ sRjrn ∣∣∣β | Rrn > 1

])(
1 ∧ |tΘj|2 + E

[
1 ∧ |tΘj|2| Rrn > 1

])
1{Rj>rn}

]
pn

≤
cE
[(

1 ∧ |s|β
)(∣∣∣Rjrn ∣∣∣β + E

[∣∣∣ Rrn ∣∣∣β | Rrn > 1

])
(1 ∧ |t|2) 1{Rj>rn}

]
pn

≤ cE
[(

1 ∧ |s|β(|Rj/rn|β + E[|R/rn|β|R > rn])
) (

1 ∧ |t|2
)
|R > rn

]
≤ c(1 ∧ |s|β)(1 ∧ |t|2).

Therefore for any ε > 0,

lim
δ→0

lim sup
n→∞

P

[
npn

∫
Kc
δ

|Ẽ1|2µ(ds, dt) > ε

]
≤ 1

ε
lim
δ→0

lim sup
n→∞

∫
Kc
δ

E|√npnẼ1|2µ(ds, dt)

≤ 1

ε
lim
δ→0

lim sup
n→∞

∫
Kc
δ

c(1 ∧ |s|β)(1 ∧ |t|2)µ(ds, dt)

→ 0

by the dominated convergence theorem. This combined with (3.33) shows the convergence of

npn
∫
|Ẽ1|2µ(ds, dt) to

∫
|Q(s, t)|2µ(ds, dt), and hence completes the proof of the proposition.
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Proof of Theorem 3.4.1(2) (cont.) Now it remains to show (3.30). Similar to the proof of

Proposition 3.8.1, we can show that

√
npnẼ21

d→ Q′

for a centered Gaussian process Q′, and

Ẽ22
p→ 0.

Hence

√
npnẼ2 =

√
npnẼ21Ẽ22

p→ 0.

The argument then follows similarly from the continuous mapping theorem and bounding

the tail integrals.

Proof of Theorem 3.4.1(1). Similar to the proof of Theorem 3.4.1(2), it suffices to show that∫
|Ẽi|2µ(ds, dt)

p→ 0, i = 1, 2, 3. (3.35)

The convergence (3.35) for i = 1, 2 follows trivially from the more general results (3.28) and

(3.30) in the proof of Theorem 3.4.1(2). Hence it suffices to show∫
|Ẽ3|2µ(ds, dt)→ 0, (3.36)

where we recall that Ẽ3 := ϕ R
rn
,Θ|rn(s, t)− ϕ R

rn
|rn(s)ϕΘ|rn(t) is non-random.

Let P R
rn
,Θ|rn(·) = P

[(
R
rn
,Θ
)
∈ ·| R

rn
> 1
]

and P R
rn
|rn , PΘ|rn be the corresponding marginal

measures. Then from (3.3),

P R
rn
,Θ|rn − P R

rn
|rnPΘ|rn

v→ να × S − να × S = 0,

and hence for fixed (s, t),

Ẽ3(s, t) =

∫
eisT+itTΘ (P R

rn
,Θ|rn − P R

rn
|rnPΘ|rn)(dT, dΘ)→ 0.

For any β < 2 ∧ α, using the same argument in (3.34),

|Ẽ3|2 =

(
E|UjnVjn|

pn

)2

≤ c(1 ∧ |s|β)(1 ∧ |t|2).

Then (3.36) follows from (3.12) and dominated convergence. This concludes the proof.
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3.9 Proof of Theorem 3.4.5

Following the same notation and steps as the proof of Theorem 3.4.1 in Section 3.8, it suffices

to prove the following convergences for the mixing case:

p̂n
pn

p→ 1, (3.37)

npn

∫
Rd+1

|Ẽ1|2µ(ds, dt)
d→
∫
Rd+1

|Q′(s, t)|2µ(ds, dt) (3.38)

and

npn

∫
Rd+1

|Ẽ2|2µ(ds, dt)
p→ 0. (3.39)

We prove (3.37) and (3.38) in Propositions 3.9.2 and 3.9.3, respectively. The proof of (3.39)

follows in a similar fashion. The proofs of both propositions rely on the following lemma.

Throughout this proof we make use of the results that if {Zt} is stationary and α-mixing

with coefficient {αh}, then

|cov(Z0, Zh)| ≤ cαδh
(
E|Z0|2/(1−δ)

)1−δ
, for any δ ∈ (0, 1), (3.40)

see Section 1.2.2, Theorem 3(a) of Doukhan (1994).

Lemma 3.9.1. Let {Xt} be a multivariate stationary time series that is regularly varying

and α-mixing with mixing coefficient {αh}. For a sequence rn →∞, set pn = P(‖X0‖ > rn).

Let f1, f2 be bounded functions which vanish outside Rd\B1(0), where B1(0) is the unit open

ball {x|‖x‖ < 1}, with sets of discontinuity of measure zero. Set,

S(i)
n =

n∑
t=1

(
fi

(
Xt

rn

)
− Efi

(
X0

rn

))
, i = 1, 2.

Assume that condition (M) holds for {αh} and {rn}. Then

1
√
npn

(S(1)
n , S(2)

n )T
d→ N(0,Σ), (3.41)

where the covariance matrix [Σij]i,j=1,2 = [σ2(fi, fj)]i,j=1,2 with

σ2(f1, f2) := σ2
0(f1, f2) + 2

∞∑
h=1

σ2
h(f1, f2) (3.42)
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and

σ2
h(f1, f2) =

∫
f1f2dµh, h ≥ 0. (3.43)

In particular,

1

npn
(S(1)

n , S(2)
n )T

p→ 0.

The proof of Lemma 3.9.1 is provided after the proofs of the propositions.

Proposition 3.9.2. Assume that condition (M) holds, then

p̂n
pn

p→ 1,

Proof. We have

p̂n
pn
− 1 =

1

n

n∑
j=1

(
1{Rj>rn}

pn
− 1

)
=

1

npn

n∑
j=1

(1{Rj>rn} − pn).

Apply Lemma 3.9.1 to f(x) = 1{‖x‖>1} and the result follows.

Proposition 3.9.3. Assume that condition (M) holds, and that µ and {rn} satisfies (3.12)

and (3.13), respectively, then

npn

∫
Rd+1

|Ẽ1|2µ(ds, dt)
d→
∫
Rd+1

|Q′(s, t)|2µ(ds, dt),

where Q′ is a centered Gaussian process.

Proof. Let us first establish the convergence of
√
npnẼ1(s, t) for fixed (s, t). Take

f1(x) = Re
{(
eis‖x‖ − E[eis‖x‖|‖x‖ > 1]

) (
eitx/‖x‖ − E[eitx/‖x‖|‖x‖ > 1]

)
1‖x‖>1

}
f2(x) = Im

{(
eis‖x‖ − E[eis‖x‖|‖x‖ > 1]

) (
eitx/‖x‖ − E[eitx/‖x‖|‖x‖ > 1]

)
1‖x‖>1

}
.

Then from Lemma 3.9.1,

1
√
npn

(S(1)
n , S(2)

n )T =
√
npn(Re{Ẽ1(s, t)}, Im{Ẽ1(s, t)}) d→ N(0,Σ),

where the covariance structure Σ can be derived from (3.42) and (3.43). This implies that

√
npnẼ1(s, t)

d→ Q′(s, t),
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where Q′(s, t) is a zero-mean complex normal process with covariance matrix Σ11 + Σ22 and

relation matrix Σ11 − Σ22 + i(Σ12 + Σ21).

The finite-dimensional distributional convergence of
√
np̂nẼ1 to a Q′(s, t) can be general-

ized using the Cramér-Wold device and we omit the calculation of the covariance structure.

The tightness condition for the functional convergence follows the same arguments in the

proof of Proposition 3.8.1 from Bickel and Wichura (1971), with equality (3.32) replaced

by a variance calculation of the sum of α-mixing components using the inequality (3.40)

and condition (3.33) is verified through the same argument. This completes the proof of

Proposition 3.9.3.

of Lemma 3.9.1. The proof follows from that of Theorem 3.2 in Davis and Mikosch (2009).

Here we outline the sketch of the proof and detail only the parts that differ from their proof.

By the vague convergence in (3.20), we have

i)

1

pn
E
[
fi

(
X0

rn

)]
→
∫
fidµ0 and

1

pn
E
[
f 2
i

(
X0

rn

)]
→
∫
f 2
i dµ0;

ii)

1

pn
Var

[
fi

(
X0

rn

)]
=

1

pn
E
[
f 2
i

(
X0

rn

)]
− pn

(
1

pn
E
[
fi

(
X0

rn

)])2

→
∫
f 2
i dµ0 = σ2

0(fi, fi);

iii)

1

pn
cov

[
fi

(
X0

rn

)
, fj

(
Xh

rn

)]
→

∫
fifjdµh = σ2

h(fi, fj).

Let us first consider the marginal convergence of 1√
npn

S
(i)
n for i = 1, 2. Without loss of

generality, we suppress the dependency on i and set

Ytn := f

(
Xt

rn

)
− Ef

(
X0

rn

)
.

Then

1

pn
Var [Y1n]→ σ2

0(f, f) and
1

pn
cov
(
Y1n, Y(h+1)n

)
→ σ2

h(f, f).
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We also have the following two results for |cov(Y1n, Y(h+1)n)|:

lim
h→∞

lim sup
n→∞

ln∑
j=h

1

pn
|cov(Y1n, Y(j+1)n)|

≤ lim
h→∞

lim sup
n→∞

ln∑
j=h

1

pn
E
∣∣∣∣f (X0

rn

)
f

(
Xj

rn

)∣∣∣∣+
ln∑
j=h

1

pn
E
(∣∣∣∣f (X0

rn

)∣∣∣∣)2

≤ lim
h→∞

lim sup
n→∞

ln∑
j=h

c

pn
E
(
1{‖X0‖>rn}

) (
1{‖Xj‖>rn}

)
+

ln∑
j=h

c

pn

(
E1{‖X0‖>rn}

)2

≤ lim
h→∞

lim sup
n→∞

ln∑
j=h

c

pn
P (‖X0‖ > rn, ‖Xj‖ > rn) + clnpn

= 0 (3.44)

from condition (3.22), and

lim
n→∞

∞∑
j=ln

1

pn
|cov(Y1n, Y(j+1)n)| ≤ lim

n→∞

∞∑
j=ln

1

pn

∣∣∣∣cov

[
f

(
X0

rn

)
, f

(
Xj

rn

)]∣∣∣∣
≤ lim

n→∞

∞∑
j=ln

1

pn
αδj

(
E
∣∣∣∣f (X0

rn

)∣∣∣∣2/(1−δ)
)1−δ

≤ lim
n→∞

∞∑
j=ln

c

pn
αδj

(
E
(
1{‖X0‖>rn}

)2/(1−δ)
)1−δ

≤ lim
n→∞

∞∑
j=ln

cαδjp
−δ
n

= 0 (3.45)

from condition (3.21).

We apply the same technique of small/large blocks as used in Davis and Mikosch (2009).

Let mn and ln be the sizes of big and small blocks, respectively, where ln � mn � n. Let

Ikn = {(k−1)mn+1, . . . , kmn} and Jkn = {(k−1)mn+1, . . . , (k−1)mn+ln}, k = 1, . . . , n/mn,

be the index sets of big and small blocks respectively. Set Ĩkn = Ikn\Jkn, i.e., Ĩkn are the big

blocks with the first ln observations removed. For simplicity, we set mn := 1/pn and assume

that the number of big blocks n/mn = npn is integer-valued. The non-integer case can be

generalized without additional difficulties.
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Denote

Sn(B) :=
∑
t∈B

Ytn,

then
n∑
t=1

Ytn = Sn(1 : n) =

npn∑
k=1

Sn(Ikn) =

npn∑
k=1

Sn(Ĩkn) +

npn∑
k=1

Sn(Jkn).

Let {S̃n(Ĩkn)}k=1,...,npn be iid copies of S̃n(Ĩ1n). To prove the convergence of 1√
npn

Sn(1 : n),

it suffices to show the following:

1
√
npn

npn∑
k=1

S̃n(Ĩkn) and
1
√
npn

npn∑
k=1

Sn(Ĩkn) has the same limiting distribution, (3.46)

1
√
npn

npn∑
k=1

Sn(Jkn)
p→ 0, (3.47)

and

1
√
npn

npn∑
k=1

S̃n(Ĩkn)
d→ N(0, σ2(f, f)). (3.48)

The statement (3.46) holds if

npnαln → 0, as n→∞. (3.49)

This follows from the same argument in equation (6.2) in Davis and Mikosch (2009).

For condition (3.47), it suffices to show that

1

npn
Var

(
npn∑
k=1

Sn(Jkn)

)
→ 0.

Note that

1

npn
Var

(
npn∑
k=1

Sn(Jkn)

)
≤ Var(Sn(J1n))+2

npn−1∑
h=1

(1− h

npn
)|cov(Sn(J1n), Sn(J(h+1)n))| =: P1+P2.

We have

lim sup
n→∞

P1 = lim sup
n→∞

Var

(
ln∑
j=1

Yjn

)

≤ lim sup
n→∞

lnpn

(
Var(Y1n)

pn
+ 2

ln−1∑
j=1

(1− j

ln
)
|cov(Y1n, Y(j+1)n)|

pn

)
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≤ lim sup
n→∞

lnpn
Var(Y1n)

pn
+ lim

h→∞
lim sup
n→∞

2lnpn

h−1∑
j=1

|cov(Y1n, Y(j+1)n)|
pn

+ lim
h→∞

lim sup
n→∞

2lnpn

ln−1∑
j=h

|cov(Y1n, Y(j+1)n)|
pn

= 0

where the last step follows from dominated convergence and (3.44). And for the other term,

P2 ≤ 2

npn−1∑
h=1

∑
s∈J1n

∑
t∈J(h+1)n

|cov(Ysn, Ytn)|

≤ 2

npn−1∑
h=1

ln

h/pn∑
k=h/pn−ln+1

∣∣cov(Y1n, Y(k+1)n)
∣∣

≤ 2lnpn

∞∑
k=1/pn−ln+1

∣∣cov(Y1n, Y(k+1)n)
∣∣

pn

≤ 2lnpn

∞∑
k=ln+1

∣∣cov(Y1n, Y(k+1)n)
∣∣

pn
→ 0.

Note that 1/pn = mn is the size of big blocks Ikn’s and 1/pn − ln + 1 = mn − ln + 1 is the

distance between consecutive small blocks (Jkn, J(k+1)n)’s. The last limit follows from (3.45).

To finish the proof, we need to establish the central limit theorem in (3.48). Note the

S̃n(Ĩln)’s are iid with ES̃n(Ĩln) = 0. We now calculate its variance. Recall that 1/pn − ln is

the size of Ĩ1n, the big block with small block removed. Then

Var
(
S̃n(Ĩ1n)

)
= Var

1/pn−ln∑
j=1

Yjn


= (

1

pn
− ln)Var(Yjn) + 2

1/pn−ln−1∑
k=1

(1/pn − ln − k)cov(Y1n, Y(k+1)n)

= (
1

pn
− ln)Var(Yjn) + 2

 h∑
k=1

+
ln∑

k=h+1

+

1/pn−ln−1∑
k=ln+1

(1− ln + k

1/pn

)
1

pn
cov(Y1n, Y(k+1)n)

:= I0 + I1 + I2 + I3.
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Here

lim
n→∞

I0 = lim
n→∞

(1− lnpn)
1

pn
Var(Yjn) = σ2

0(f, f),

and

lim
n→∞

I1 = lim
n→∞

2
h∑
k=1

(1− pn(ln + k))
cov(Y1n, Y(k+1)n)

pn
= 2

h∑
k=1

σ2
k(f, f).

We also have

lim
h→∞

lim sup
n→∞

|I2| ≤ lim
h→∞

lim sup
n→∞

ln∑
k=h+1

|cov(Y1n, Y(k+1)n)|
pn

= 0

from (3.44), and

lim
n→∞

|I3| ≤ lim
n→∞

∞∑
k=ln

|cov(Y1n, Y(k+1)n)|
pn

= 0

from (3.45). Therefore

lim
n→∞

Var
(
S̃n(Ĩ1n)

)
= lim

n→∞
I0 + lim

h→∞
lim
n→∞

I1 = σ2
0(f, f) + 2

∞∑
k=1

σ2
k(f, f) =: σ2(f, f)

as defined. To show that this infinite sum converges, it suffices to show that

∞∑
h=1

µh({(x,x′)|‖x‖ > 1, ‖x′‖ > 1}) <∞.

This follows from (3.22) in condition (M), for if

∞∑
h=1

µh({(x,x′)|‖x‖ > 1, ‖x′‖ > 1}) =∞,

then

lim sup
n→∞

1

pn

ln∑
j=h

P(‖X0‖ > rn, ‖Xj‖ > rn) ≥ lim inf
n→∞

ln∑
j=h

P(‖X0‖ > rn, ‖Xj‖ > rn|‖X0‖ > rn)

≥
∞∑
j=h

µj({(x,x′)|‖x‖ > 1, ‖x′‖ > 1}) =∞,

which leads to a contradiction.

To apply the central limit theorem, we verify the Lindeberg’s condition,

E
[
(S̃n(Ĩ1n))21{|S̃n(Ĩ1n)|>ε√npn}

]
≤ E

1/pn−ln∑
j=1

Yjn

2

1{|S̃n(Ĩ1n)|>ε√npn}


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≤ E
[
c(1/pn − ln)21{|S̃n(Ĩ1n)|>ε√npn}

]
≤ c

1

p2
n

P
[
|S̃n(Ĩ1n)| > ε

√
npn

]
≤ c

1

p2
n

Var
[
S̃n(Ĩ1n)

]
ε2npn

= O(
1

np3
n

)→ 0.

This completes the proof for the convergence of 1√
npn

Sn(1 : n).

The joint convergence of 1√
npn

(S
(1)
n , S

(2)
n )T follows from the same line of argument together

with the Crámer-Wold device. In particular,

1

npn
cov
(
S(i)
n , S

(j)
n

)
= σ2(fi, fj), i, j = 1, 2.

This completes the proof of the lemma.

Remark 3.9.4. Lemma 3.9.1 itself is a more general result of independent interest. The

result can be generalized for functions fi defined on Rd\{0} with compact support. In this

case, condition (3.22) should be modified to

lim
h→∞

lim sup
n→∞

1

pn

ln∑
j=h

P(‖X0‖ > εrn, ‖Xj‖ > εrn) = 0

for some ε > 0, where support(f) ⊆ Rd\Bε(0). Also, as seen during the proof of the lemma,

the conditions on pn, ln, and αt can be further relaxed.
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Chapter 4

Fitting the linear preferential

attachment model

4.1 Introduction

The preferential attachment mechanism, in which edges and nodes are added to the network

based on probabilistic rules, provides an appealing description for the evolution of a network.

The rule for how edges connect nodes depends on node degree; large degree nodes attract

more edges. The idea is applicable to both directed and undirected graphs and is often the

basis for studying social networks, collaborator and citation networks, and recommender

networks. Elementary descriptions of the preferential attachment model can be found in

Easley and Kleinberg (2010) while more mathematical treatments are available in Durrett

(2010), van der Hofstad (2017), Bhamidi (2007). Also see Kolaczyk and Csárdi (2014) for

a statistical survey of methods for network data, Rinaldo et al. (2013) for consideration

of statistics of an undirected network and Yan et al. (2016) for asymptotics of a directed

exponential random graph models. Limit theory for estimates of an undirected preferential

attachment model was considered in Gao and van der Vaart (2017).

For many networks, empirical evidence supports the hypothesis that in- and out-degree

distributions follow a power law. This property has been shown to hold in linear preferential

attachment models, which makes preferential attachment an attractive choice for network

modeling Durrett (2010), van der Hofstad (2017), Krapivsky et al. (2001), Krapivsky and
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Redner (2001), Bollobás et al. (2003). While the marginal degree power laws in a simple

linear preferential attachment model were established in Krapivsky et al. (2001), Krapivsky

and Redner (2001), Bollobás et al. (2003), the joint regular variation (see Resnick (2008,

2007)) which is akin to a joint power law, was only recently established (Samorodnitsky et al.,

2016, Resnick and Samorodnitsky, 2015). In addition, it was shown in Wang and Resnick

(2016) that the joint probability mass function of the in- and out-degrees is multivariate

regularly varying. This is a key result as the degrees of a network are integer-valued.

In this chapter, we discuss methods of fitting a simple linear preferential attachment

model, which is parametrized by θ = (α, β, γ, δin, δout). The first three parameters, α, β, γ,

correspond to probabilities of the 3 scenarios for adding an edge and hence sum to 1, i.e.,

α + β + γ = 1. The other two, δin and δout, are tuning parameters related to growth rates.

The tail indices of the marginal power laws for the in- and out-degrees can be expressed as

explicit functions of θ (see (4.5) and (4.6) below). The graph G(n) = (V (n), E(n)), where

V (n) is the set of nodes and E(n) is the set of edges at the nth iteration, evolves based

on postulates that describe how new edges and nodes are formed. This construction of the

network is Markov in the sense that the probabilistic rules for obtaining G(n+ 1) once G(n)

is known do not require prior knowledge of earlier stages of the construction.

The Markov structure of the model allows us to construct a likelihood function based on

observing G(n0), G(n0 + 1), . . . , G(n0 + n). After deriving the likelihood function, we show

that it has a unique maximum at θ̂ = (α̂, β̂, γ̂, δ̂in, δ̂out) and that the resulting maximum

likelihood estimator is strongly consistent and asymptotically normal. The normality is

proved using a martingale central limit theorem applied to the score function. The limiting

distribution also reveals that (α̂, β̂, γ̂), δ̂in, and δ̂out are asymptotically independent. From

these results, asymptotic properties of the MLE for the power law indices can be derived.

For some network data, only a snapshot of the nodes and edges is available at a single

point in time, that is, only G(n) is available for some n. In such cases, we propose an

estimation procedure for the parameters of the network using an approximation to the like-

lihood and method of moments. This also produces strongly consistent estimators. These
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estimators perform reasonably well compared to the MLE where the entire evolution of the

network is known but predictably there is some loss of efficiency.

We illustrate the estimation procedure for both scenarios using simulated data. Simu-

lation plays an important role in the process of modeling networks since it provides a way

to assess the performance of model fitting procedures in the idealized setting of knowing

the true model. Also, after fitting a model to real data, simulation provides a check on the

quality of fit. Departures from model assumptions can often be detected via simulation of

multiple realizations from the fitted network. Hence it is important to have efficient simula-

tion algorithms for producing realizations of the preferential attachment network for a given

set of parameter values. We adopt a simulation method, learned from Joyjit Roy, that was

inspired by Atwood et al. (2015) and is similar to that of Tonelli et al. (2010).

Our fitting methods are implemented in a real data setting using the Dutch Wiki talk

network (Kunegis, 2013). While one should not expect the simple 5-parameter (later ex-

tended to 7-parameter) linear preferential attachment model to fully explain a network with

millions of edges, it does provide a reasonable fit to the tail behavior of the degree distri-

butions. We are also able to detect important structural features in the network through

fitting the model over separate time intervals.

Often it is difficult to believe in the existence of a true model, especially one whose

parameters remain constant over time. Allowing, as we do, a preferential attachment model

with only a few parameters and no possibility for node removal may seem simplistic and

unrealistic for social network data. Of course, preferential attachment is only one mechanism

for network formation and evidence for its use in fields outside data networks is mixed (Jones

and Handcock, 2003a,b) and we restrict attention to linear preferential attachment. Even

imperfect models have the potential to capture salient properties in the data, such as heavy-

tailedness of the in-degree and out-degree distributions, and to identify departures from

model assumptions. While maximum likelihood estimation is essentially the gold standard

for cases when the underlying model is a good representation of the data, it may perform

poorly in case the model is far from being appropriate. In Wan et al. (2018), we consider
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a semi-parametric estimation approach for network models that exhibit heavy-tailed degree

distributions. This alternative estimation methodology borrows ideas from extreme value

theory.

The rest of the chapter is structured as follows. In Section 4.2, we formulate the linear

preferential attachment network model and present an efficient simulation method for the

network. Section 4.3 gives parameter estimators when either the full history is known or

when only a single snapshot in time is available. We test these estimators against simulated

data in Section 4.5 and then explore the Wiki talk network in Section 4.6.

4.2 Model specification and simulation

In this section, we present the linear preferential attachment model in detail and provide a

fast simulation algorithm for the network.

4.2.1 The linear preferential attachment model

The directed edge preferential attachment model (Bollobás et al., 2003, Krapivsky and Red-

ner, 2001) constructs a growing directed random graph G(n) = (V (n), E(n)) whose dynamics

depend on five non-negative real numbers α, β, γ, δin and δout, where α + β + γ = 1 and

δin, δout > 0. To avoid degenerate situations, assume that each of the numbers α, β, γ is

strictly smaller than 1. We obtain a new graph G(n) by adding one edge to the existing

graph G(n− 1) and index the constructed graphs by the number n of edges in E(n). We

start with an arbitrary initial finite directed graph G(n0) with at least one node and n0 edges.

For n > n0, G(n) = (V (n), E(n)) is a graph with |E(n)| = n edges and a random number

|V (n)| = N(n) of nodes. If u ∈ V (n), D
(n)
in (u) and D

(n)
in (u) denote the in- and out-degree of

u respectively in G(n). There are three scenarios that we call the α, β and γ-schemes, which

are activated by flipping a 3-sided coin whose outcomes are 1, 2, 3 with probabilities α, β, γ.

More formally, we have an iid sequence of multinomial random variables {Jn, n > n0} with

cells labelled 1, 2, 3 and cell probabilities α, β, γ. Then the graph G(n) is obtained from
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G(n− 1) as follows.

v

w v

w

w

v

α-scheme β-scheme γ-scheme

• If Jn = 1 (with probability α), append to G(n−1) a new node v ∈ V (n)\V (n−1) and

an edge (v, w) leading from v to an existing node w ∈ V (n − 1). Choose the existing

node w ∈ V (n− 1) with probability depending on its in-degree in G(n− 1):

P[choose w ∈ V (n− 1)] =
D

(n−1)
in (w) + δin

n− 1 + δinN(n− 1)
. (4.1)

• If Jn = 2 (with probability β), add a directed edge (v, w) to E(n− 1) with v ∈

V (n − 1) = V (n) and w ∈ V (n − 1) = V (n) and the existing nodes v, w are chosen

independently from the nodes of G(n− 1) with probabilities

P[choose (v, w)] =
( D

(n−1)
out (v) + δout

n− 1 + δoutN(n− 1)

)( D
(n−1)
in (w) + δin

n− 1 + δinN(n− 1)

)
.

• If Jn = 3 (with probability γ), append to G(n − 1) a new node w ∈ V (n) \ V (n − 1)

and an edge (v, w) leading from the existing node v ∈ V (n − 1) to the new node w.

Choose the existing node v ∈ V (n− 1) with probability

P[choose v ∈ V (n− 1)] =
D

(n−1)
out (v) + δout

n− 1 + δoutN(n− 1)
. (4.2)

Note that this construction allows the possibility of having self loops in the case where

Jn = 2, but the proportion of edges that are self loops goes to 0 as n → ∞. Also, multiple

edges are allowed between two nodes.
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4.2.2 Power law of degree distributions

Given an observed network with n edges, let Nij(n) denote the number of nodes with in-

degree i and out-degree j. If the network is generated from the linear preferential attachment

model described above, then from Bollobás et al. (2003), there exists a proper probability

distribution {fij} such that almost surely

Nij(n)

N(n)
→ fij =:

pij
1− β

, n→∞. (4.3)

Consider the limiting marginal in-degree distribution pin
i :=

∑
j pij. It is calculated from

(Bollobás et al., 2003, Equation (3.10)) that

pin
0 =

α

1 + a1(δin)δin

,

and for i ≥ 1,

pin
i =

Γ(i+ δin)Γ(1 + δin + a1(δin)−1)

Γ(i+ 1 + δin + a1(δin)−1)Γ(1 + δin)

(
αδin

1 + a1(δin)δin

+
γ

a1(δin)

)
,

where

a1(λ) :=
α + β

1 + λ(1− β)
, λ > 0.

Moreover, pin
i satisfies

pin
i :=

∞∑
j=0

pij ∼ Cini
−ιin as i→∞, as long as αδin + γ > 0, (4.4)

for some finite positive constant Cin, where the power index

ιin = 1 +
1 + δin(α + γ)

α + β
(4.5)

Similarly, the limiting marginal out-degree distribution has the same property:

pout
j :=

∞∑
i=0

pij ∼ Couti
−ιout as j →∞, as long as γδout + α > 0,

for Cout positive and

ιout = 1 +
1 + δout(α + γ)

β + γ
. (4.6)
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Algorithm 1: Simulating a directed edge preferential attachment network

Algorithm

Input: α, β, δin, δout, the parameter values; G(n0) = (V (n0), E(n0)), the
initialization graph; n, the targeted number edges

Output: G(n) = (V (n), E(n)), the resulted graph

t← n0

while t < n do
N(t)← |V (t)|
Generate U ∼ Uniform(0, 1)
if U < α then

v(1) ← N(t) + 1

v(2) ← Node Sample(E(t), 2, δin)
V (t)← Append(V (t), N(t) + 1)

else if α ≤ U < α + β then
v(1) ← Node Sample(E(t), 1, δout)

v(2) ← Node Sample(E(t), 2, δin)

else if U ≥ α + β then
v(1) ← Node Sample(E(t), 1, δout)

v(2) ← N(t) + 1
V (t)← Append(V (t), N(t) + 1)

E(t+ 1)← Append(E(t), (v(1), v(2)))
t← t+ 1

end
return G(n) = (V (n), E(n))

Function Node Sample

Input: E(t), the edge list up to time t; j = 1, 2, the node to be sample,
representing outgoing and incoming nodes, respectively; δ ∈ {δin, δout}, the
offset parameter

Output: the sampled node, v
Generate W ∼ Uniform(0, t+N(t)δ)
if W ≤ t then

v ← v
(j)
dW e

else if W > t then
v ←

⌈
W−t
δ

⌉
return v
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4.2.3 Simulation algorithm

We describe an efficient simulation procedure for the preferential attachment network given

the parameter values (α, β, γ, δin, δout), where α + β + γ = 1. The simulation cost of the

algorithm is linear in time. This algorithm, which was provided by Joyjit Roy during his

graduate work at Cornell University, is presented below for completeness. Note that this

simulation algorithm is specifically designed for the case where the preferential attachment

probabilities (4.1)–(4.2) are linear in the degrees. A similar idea for the simulation of the

Yule-Simon process appeared in Tonelli et al. (2010). Efficient simulation methods for the

case where the preferential attachment probabilities are non-linear are studied in Atwood

et al. (2015), where their algorithm trades some efficiency for the flexibility to model non-

linear preferential attachment.

Using the notation from the introduction, at time t = 0, we initiate with an arbitrary

graph G(n0) = (V (n0), E(n0)) of n0 edges, where the elements of E(n0) are represented in

form of (v
(1)
i , v

(2)
i ) ∈ V (n0) × V (n0), i = 1, . . . , n0, with v

(1)
i , v

(2)
i denoting the outgoing and

incoming vertices of the edge, respectively. To grow the network, we update the network at

each stage from G(n− 1) to G(n) by adding a new edge (v
(1)
n , v

(2)
n ). Assume that the nodes

are labeled using positive integers starting from 1 according to the time order in which they

are created, and let the random number N(n) = |V (n)| denote the total number of nodes in

G(n).

Let us consider the situation where an existing node is to be chosen from V (n) as the

vertex of the new edge. Naively sampling from the multinomial distribution requiresO(N(n))

evaluations, where N(n) increases linearly with n. Therefore the total cost to simulate a

network of n edges is O(n2). This is significantly burdensome when n is large, which is

usually the case for observed networks. Algorithm 1 describes a simulation algorithm which

uses the alias method (Kronmal and Jr., 1979) for node sampling. Here sampling an existing

node from V (n) requires only constant execution time, regardless of n. Hence the cost to

simulate G(n) is only O(n). This method allows generation of a graph with 107 nodes on a

personal laptop in less than 5 seconds.
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To see that the algorithm indeed produces the intended network, it suffices to consider the

case of sampling an existing node from V (n− 1) as the incoming vertex of the new edge. In

the function Node Sample in Algorithm 1, we generate W ∼ Uniform(0, n− 1 +N(n− 1)δin)

and set

v ← v
(j)
dW e 1{W≤n−1} +

⌈
W − (n− 1)

δin

⌉
1{W>n−1}.

Then

P (v = w) = P
(
v

(j)
dW e = w

)
P (W ≤ n− 1)

+ P
(⌈

W − (n− 1)

δin

⌉
= w

)
P (W > n− 1)

=
D

(n−1)
in (w)

n− 1

n− 1

n− 1 +N(n− 1)δin

+
1

N(n− 1)

N(n− 1)δin

n− 1 +N(n− 1)δin

=
D

(n−1)
in (w) + δin

n− 1 +N(n− 1)δin

,

which corresponds to the desired selection probability (4.1).

4.3 Parameter estimation: MLE based on the full

network history

In this section, we estimate the preferential attachment parameter vector θ = (α, β, δin, δout)

under two assumptions about what data is available. In the first scenario, the full evolution

of the network is observed, from which the likelihood function can be computed. The

resulting MLE is strongly consistent and asymptotically normal. For the second scenario,

the data only consist of one snapshot of the network with n edges, without the knowledge

of the network history that produced these edges. For this scenario we give an estimation

approach through approximating the score function and moment matching, which produces

parameter estimators that are also strongly consistent but less efficient than those based on

the full evolution of the network. In both cases, the estimators are uniquely determined.
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4.3.1 Likelihood calculation

Assume the network begins with the graph G(n0) (consisting of n0 edges) and then evolves

according to the description in Section 4.2.1 with parameters (α, β, δin, δout), where δin, δout >

0 and α, β are non-negative probabilities. The γ is implicitly defined by γ = 1− α− β. To

avoid trivial cases, we will also assume α, β, γ < 1 for the rest of the chapter. For MLE

estimation we restrict the parameter space for δin, δout to be [ε,K], for some sufficiently

small ε > 0 and large K. In particular, the true value of δin, δout is assumed to be contained

in (ε,K). Let et = (v
(1)
t , v

(2)
t ) be the newly created edge when the random graph evolves

from G(t−1) to G(t). We sometimes refer to t as the time rather than the number of edges.

Assume we observe the initial graph G(n0) and the edges {et}nt=n0+1 in the order of their

formation. For t = n0 + 1, . . . , n, the values of the following variables are known:

• N(t), the number of nodes in graph G(t);

• D(t−1)
in (v), D

(t−1)
out (v), the in- and out-degree of node v in G(t− 1), for all v ∈ V (t− 1);

• Jt, the scenario under which et is created.

Then the likelihood function is

L(α, β, δin, δout| G(n0), (et)
n
t=n0+1)

=
n∏

t=n0+1

(
α
D

(t−1)
in (v

(2)
t ) + δin

t− 1 + δinN(t− 1)

)1{Jt=1}

×
n∏

t=n0+1

(
β
( D

(t−1)
in (v

(2)
t ) + δin

t− 1 + δinN(t− 1)

)( D
(t−1)
out (v

(1)
t ) + δout

t− 1 + δoutN(t− 1)

))1{Jt=2}

×
n∏

t=n0+1

(
(1− α− β)

D
(t−1)
out (v

(1)
t ) + δout

t− 1 + δoutN(t− 1)

)1{Jt=3}

(4.7)

and the log likelihood function is

logL(α, β, δin, δout| G(n0), (et)
n
t=n0+1) (4.8)

= logα
n∑

t=n0+1

1{Jt=1} + log β
n∑

t=n0+1

1{Jt=2} + log(1− α− β)
n∑

t=n0+1

1{Jt=3}

+
n∑

t=n0+1

log
(
D

(t−1)
in (v

(2)
t ) + δin

)
1{Jt∈{1,2}}
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+
n∑

t=n0+1

log
(
D

(t−1)
out (v

(1)
t ) + δout

)
1{Jt∈{2,3}}

−
n∑

t=n0+1

log(t− 1 + δinN(t− 1))1{Jt∈{1,2}}

−
n∑

t=n0+1

log(t− 1 + δoutN(t− 1))1{Jt∈{2,3}}.

The score functions for α, β, δin, δout are calculated as follows:

∂

∂α
logL(α, β, δin, δout| G(n0), (et)

n
t=n0+1)

=
1

α

n∑
t=n0+1

1{Jt=1} −
1

1− α− β

n∑
t=n0+1

1{Jt=3}, (4.9)

∂

∂β
logL(α, β, δin, δout| G(n0), (et)

n
t=n0+1)

=
1

β

n∑
t=n0+1

1{Jt=2} −
1

1− α− β

n∑
t=n0+1

1{Jt=3}, (4.10)

∂

∂δin

logL(α, β, δin, δout| G(n0), (et)
n
t=n0+1)

=
n∑

t=n0+1

1

D
(t−1)
in (v

(2)
t ) + δin

1{Jt∈{1,2}}

−
n∑

t=n0+1

N(t− 1)

t− 1 + δinN(t− 1)
1{Jt∈{1,2}}, (4.11)

∂

∂δout

logL(α, β, δin, δout| G(n0), (et)
n
t=n0+1)

=
n∑

t=n0+1

1

D
(t−1)
out (v

(1)
t ) + δout

1{Jt∈{2,3}}

−
n∑

t=n0+1

N(t− 1)

t− 1 + δoutN(t− 1)
1{Jt∈{2,3}}.

Note that the score functions (4.9), (4.10) for α and β do not depend on δin and δout.

One can show that the Hessian matrix of the log-likelihood for (α, β) is positive definite.

Setting (4.9) and (4.10) to zero gives the unique MLE estimates for α and β,

α̂MLE =
1

n− n0

n∑
t=n0+1

1{Jt=1}, (4.12)

β̂MLE =
1

n− n0

n∑
t=n0+1

1{Jt=2}. (4.13)
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These estimates are strongly consistent by applying the strong law of large numbers for the

{Jt} sequence.

Next, consider the first term of the score function for δin in (4.11), and we have

n∑
t=n0+1

1

D
(t−1)
in (v

(2)
t ) + δin

1{Jt∈{1,2}}

=
∞∑
i=0

1

i+ δin

n∑
t=n0+1

1{
D

(t−1)
in (v

(2)
t )=i,Jt∈{1,2}

}.

Observe that
{
D

(t−1)
in (v

(2)
t ) = i, Jt ∈ {1, 2}

}
describes the event that the in-degree of node

v
(2)
t ∈ V (t− 1) is i at time t− 1 and is augmented to i+ 1 at time t. For each i ≥ 1, such an

event happens at some stage t ∈ {n0 + 1, n0 + 2, . . . , n} only for those nodes with in-degree

≤ i at time n0 and in-degree > i at time n. Let Nij(n) denote the number of nodes with

in-degree i and out-degree j at time n, and N in
i (n) and N in

>i(n) to be the number of nodes

with in-degree equal to i and greater than i, respectively, i.e.,

N in
i (n) =

∞∑
j=0

Nij(n), N in
>i(n) =

∑
k>i

N in
k (n).

Then
n∑

t=n0+1

1{
D

(t−1)
in (v

(2)
t )=i,Jt∈{1,2}

} = N in
>i(n)−N in

>i(n0), i ≥ 1.

On the other hand, when i = 0,
{
D

(t−1)
in (v

(2)
t ) = 0, Jt ∈ {1, 2}

}
occurs for some t if and only

if all of the following three events happen:

(i) v
(2)
t has in-degree > 0 at time n;

(ii) v
(2)
t does not have in-degree > 0 at time n0;

(iii) v
(2)
t was not created under the γ-scheme (otherwise it would have been born with

in-degree 1).

This implies:

n∑
t=n0+1

1{
D

(t−1)
in (v

(2)
t ) = 0,Jt∈{1,2}

} = N in
>0(n)−N in

>0(n0)−
n∑

t=n0+1

1{Jt=3},
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since there are, in total,
∑n

t=n0+1 1{Jt=3} nodes created under the γ-scheme. Therefore,

n∑
t=n0+1

1

D
(t−1)
in (v

(2)
t ) + δin

1{Jt∈{1,2}} =
∞∑
i=0

1

i+ δin

n∑
t=n0+1

1{
D

(t−1)
in (v

(2)
t )=i,Jt∈{1,2}

}

=
∞∑
i=0

N in
>i(n)−N in

>i(n0)

i+ δin

−
∑n

t=n0+1 1{Jt=3}

δin

.(4.14)

Setting the score function (4.11) for δin to 0 and dividing both sides by n− n0 leads to

1

n− n0

∞∑
i=0

N in
>i(n)−N in

>i(n0)

i+ δin

− 1

δin(n− n0)

n∑
t=n0+1

1{Jt=3}

− 1

n− n0

n∑
t=n0+1

N(t− 1)

t− 1 + δinN(t− 1)
1{Jt∈{1,2}} = 0, (4.15)

where the only unknown parameter is δin. In Section 4.3.2, we show that the solution to

(4.15) actually maximizes the likelihood function in δin. Similarly, the MLE for δout can be

solved from

1

n− n0

∞∑
j=0

Nout
>j (n)−Nout

>j (n0)

j + δout

−
1

n−n0

∑n
t=n0+1 1{Jt=1}

δout

− 1

n− n0

n∑
t=n0+1

N(t− 1)

t− 1 + δoutN(t− 1)
1{Jt∈{2,3}} = 0,

where Nout
>j (n) is defined in the same fashion as N in

>i(n).

Remark 4.3.1. The arguments leading to (4.14) allow us to rewrite the likelihood function

(4.7):

L(α, β, δin, δout| G(n0), (et)
n
t=n0+1)

= α
∑n
t=n0+1 1{Jt=1} β

∑n
t=n0+1 1{Jt=2} (1− α− β)

∑n
t=n0+1 1{Jt=3}

×
n∏

t=n0+1

(t− 1 + δinN(t− 1))−1{Jt∈{1,2}} (t− 1 + δoutN(t− 1))−1{Jt∈{2,3}}

×
n∏

t=n0+1

[
∞∏
i=0

(i+ δin)
1{D(t−1)

in
(v

(2)
t )=i,Jt∈{1,2}}

∞∏
j=0

(j + δout)
1{D(t−1)

out (v
(1)
t )=j,Jt∈{2,3}}

]

= α
∑n
t=n0+1 1{Jt=1} β

∑n
t=n0+1 1{Jt=2} (1− α− β)

∑n
t=n0+1 1{Jt=3}

×
n∏

t=n0+1

[
(t− 1 + δinN(t− 1))−1{Jt∈{1,2}} (t− 1 + δoutN(t− 1))−1{Jt∈{2,3}}
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δ
−1{Jt=3}
in δ

−1{Jt=1}
out

]
×
∞∏
i=0

(i+ δin)N
in
>i(n)−N in

>i(n0)

∞∏
j=0

(j + δout)
Nout
>j (n)−Nout

>j (n0).

Hence by the factorization theorem, N(n0), (Jt)
n
t=n0+1, (N in

>i(n) − N in
>i(n0))i≥0, (Nout

>j (n) −

Nout
>j (n0))j≥0 are sufficient statistics for (α, β, δin, δout).

4.3.2 Consistency of MLE

We remarked after (4.12) and (4.13) that α̂MLE and β̂MLE converge almost surely to α and

β. We now prove that the MLE of (δin, δout) is also strongly consistent. Note that if we

initiate the network with G(n0) (for both n0 and N(n0) finite), then almost surely for all

i, j ≥ 0,

N in
>i(n0)

n
≤ N(n0)

n
→ 0,

Nout
>j (n0)

n
≤ N(n0)

n
→ 0, as n→∞,

and (n − n0)/n → 1. In other words, n0, N in
>i(n0), Nout

>j (n0) are all o(n). So for simplicity,

we assume that the graph is initiated with finitely many nodes and no edges, that is, n0 = 0

and N(0) ≥ 1. In particular, these assumptions imply the sum of the in-degrees at time n

is equal to n.

Let Ψn(·),Φn(·) be the functional forms of the terms in the log-likelihood function (4.8)

involving δin and δout respectively, normalized by 1/n, i.e.,

Ψn(λ) :=
∞∑
i=0

N in
>i(n)

n
log(i+ λ)− log λ

n

n∑
t=1

1{Jt=3}

− 1

n

n∑
t=1

log (t− 1 + λN(t− 1)) 1{Jt∈{1,2}},

Φn(µ) :=
∞∑
j=0

Nout
>j (n)

n
log(j + µ)− log µ

n

n∑
t=1

1{Jt=1}

− 1

n

n∑
t=1

log (t− 1 + µN(t− 1)) 1{Jt∈{2,3}}.

The following theorem gives the consistency of the MLE of δin and δout.

Theorem 4.3.2. Suppose δin, δout ∈ (ε,K) ⊂ (0,∞). Define

δ̂MLE
in = δ̂MLE

in (n) := argmax
ε≤λ≤K

Ψn(λ), δ̂MLE
out = δ̂MLE

out (n) := argmax
ε≤µ≤K

Φn(µ).
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Then these are the MLE estimators of δin, δout and they are strongly consistent; that is,

δ̂MLE
in

a.s.−→ δin, δ̂MLE
out

a.s.−→ δout, n→∞.

Proof of Theorem 4.3.2. We only verify the consistency of δ̂MLE
in since similar arguments

apply to δ̂MLE
out . Define

ψn(λ) := Ψ′n(λ) =
∞∑
i=0

N in
>i(n)/n

i+ λ
−

1
n

∑n
t=1 1{Jt=3}

λ
− 1

n

n∑
t=1

N(t− 1)

t− 1 + λN(t− 1)
1{Jt∈{1,2}}.

Let us consider a limit version of ψn:

ψ(λ) :=
∞∑
i=0

pin
>i(δin)

i+ λ
− γ

λ
− (1− β)a1(λ), (4.16)

where pin
>i(δin) :=

∑
k>i p

in
k (δin) with pin

k (δin) := pin
k as defined in (4.4), and

a1(λ) :=
α + β

1 + λ(1− β)
, λ > 0.

Here we write pin
i (δin) to emphasize the dependence on δin. In Lemmas 4.7.1 and 4.7.2,

provided in Section 4.7, it is shown that ψ(·) has a unique zero at δin, where ψ(λ) > 0 when

λ < δin and ψ(λ) < 0 when λ > δin, and

sup
λ≥ε
|ψn(λ)− ψ(λ)| → 0. (4.17)

Since ψ is continuous, for any κ > 0 arbitrarily small, there exists εκ > 0 such that ψ(λ) > εκ

for λ ∈ [ε, δin − κ] and ψ(λ) < −εκ for λ ∈ [δin + κ,K]. From (4.17),

P

(
∃Nκ s.t. sup

n>Nκ

sup
λ∈[ε,K]

|ψn(λ)− ψ(λ)| < εκ/2

)
= 1. (4.18)

Note supλ∈[ε,K] |ψn(λ)− ψ(λ)| < εκ/2 implies

ψn(λ) ≥ ψ(λ)− sup
λ∈[ε,K]

|ψn(λ)− ψ(λ)| ≥ εκ − εκ/2 > 0, λ ∈ [ε, δin − κ),

and

ψn(λ) ≤ ψ(λ) + sup
λ∈[ε,K]

|ψn(λ)− ψ(λ)| ≤ −εκ + εκ/2 < 0, λ ∈ (δin + κ,K].

These jointly indicate that δin − κ ≤ δ̂MLE
in ≤ δin + κ. Hence (4.18) implies

P
(

lim
n→∞

|δ̂MLE
in − δin| ≤ κ

)
= 1,

for arbitrary κ > 0. That is, δ̂MLE
in

a.s.−→ δin.
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4.3.3 Asymptotic normality of MLE

In the following theorem, we establish the asymptotic normality for the MLE estimator

θ̂MLE
n = (α̂MLE, β̂MLE, δ̂MLE

in , δ̂MLE
out ).

Theorem 4.3.3. Let θ̂MLE
n be the MLE estimator for θ, the parameter vector of the pref-

erential attachment model. Then

√
n(θ̂MLE

n − θ)
d→ N (0,Σ(θ)) ,

where

Σ−1(θ) = I(θ) :=



1−β
α(1−α−β)

1
1−α−β 0 0

1
1−α−β

1−α
β(1−α−β)

0 0

0 0 Iin 0

0 0 0 Iout


, (4.19)

with

Iin :=
∞∑
i=0

pin>i
(i+ δin)2

− γ

δ2
in

− (α + β)(1− β)2

(1 + δin(1− β))2 , (4.20)

Iout :=
∞∑
j=0

pout>j

(j + δout)2
− α

δ2
out

− (γ + β)(1− β)2

(1 + δout(1− β))2 .

In particular, I(θ) is the asymptotic Fisher information matrix for the parameters, and

hence the MLE estimator is efficient.

Remark 4.3.4. From Theorem 4.3.3, the estimators (α̂MLE, β̂MLE), δ̂MLE
in , and δ̂MLE

out are

asymptotically independent.

Proof of Theorem 4.3.3. We first show the limiting distributions for the MLE’s, i.e. (α̂MLE, β̂MLE),

δ̂MLE
in and δ̂MLE

out . From (4.12) and (4.13),

(α̂MLE, β̂MLE) =
1

n

n∑
t=1

(
1{Jt=1},1{Jt=2}

)
,

where {Jt} is a sequence of iid random variables. Hence the limiting distribution of the pair(
α̂MLE, β̂MLE

)
follows directly from standard central limit theorem for sums of independent

random variables.
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Next we show the asymptotic normality for δ̂MLE
in ; the argument for δ̂MLE

out is similar.

Recall from (4.11) that the score function for δin can be written as

∂

∂δin

logL(α, β, δin, δout)

∣∣∣∣
δ

=:
n∑
t=1

ut(δ),

where ut is defined by

ut(δ) :=
1

D
(t−1)
in (v

(2)
t ) + δ

1{Jt∈{1,2}} −
N(t− 1)

t− 1 + δN(t− 1)
1{Jt∈{1,2}}. (4.21)

The MLE estimator δ̂MLE
in can be obtained by solving

∑n
t=1 ut(δ) = 0. By a Taylor expansion

of
∑n

t=1 ut(δ),

0 =
n∑
t=1

ut(δ̂
MLE
in ) =

n∑
t=1

ut(δin) + (δ̂MLE
in − δin)

n∑
t=1

u̇t(δ̂
∗
in), (4.22)

where u̇t denotes the derivative of ut and δ̂∗in = δin + ξ(δ̂MLE
in − δin) for some ξ ∈ [0, 1]. An

elementary transformation of (4.22) gives

n1/2(δ̂MLE
in − δin) =

(
− 1

n−1
∑n

t=1 u̇t(δ̂
∗
in)

)(
n−1/2

n∑
t=1

ut(δin)

)
.

To establish

n1/2(δ̂MLE
in − δin)

d→ N(0, I−1
in ),

where Iin is as defined in (4.19), it suffices to show the following two results:

(i) n−1/2
∑n

t=1 ut(δin)
d→ N(0, Iin),

(ii) n−1
∑n

t=1 u̇t(δ̂
∗
in)

p→ −Iin.

These are proved in Lemmas 4.7.3 and 4.7.4 in the Section 4.7.1, respectively.

To establish the joint asymptotic normality of the MLE estimator θ̂MLE
n , denote the joint

score function vector for θ by

∂

∂θ
logL(θ) =: Sn(θ) = (Sn(α), Sn(β), Sn(δin), Sn(δout))

T ,

where Sn(α), Sn(β), Sn(δin), Sn(δout) are the score functions for α, β, δin, δout, respectively. A

multivariate Taylor expansion gives

0 = Sn

(
θ̂MLE
n

)
= Sn(θ) + Ṡn

(
θ̂∗n

)(
θ̂MLE
n − θ

)
, (4.23)
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where Ṡn denotes the Hessian matrix of the log-likelihood function logL(θ), and θ̂∗n =

θ + ξ ◦
(
θ̂MLE
n − θ

)
for some vector ξ ∈ [0, 1]4, where “◦” denotes the Hadamard product.

From Remark 4.3.1, the likelihood function L(θ) can be factored into

L(θ) = f1(α, β)f2(δin)f3(δout).

Hence

1

n
Ṡn(θ̂∗n) =



∂2 logLn(θ̂∗n)
∂α2

∂2 logLn(θ̂∗n)
∂α∂β

0 0

∂2 logLn(θ̂∗n)
∂β∂α

∂2 logLn(θ̂∗n)
∂β2 0 0

0 0 ∂2 logLn(θ̂∗n)

∂δ2in
0

0 0 0 ∂2 logLn(θ̂∗n)

∂δ2out


p→ I(θ) (4.24)

as implied in the previous part of the proof, where I(θ) (defined in (4.19)) is positive semi-

definite.

Note that (Sn(α), Sn(β)), Sn(δin), Sn(δout) are pairwise uncorrelated. As an example,

observe that

E[Sn(α)Sn(δin)] =

∫
∂ logL(θ)

∂α

∂ logL(θ)

∂δin

L(θ)dx

=

∫
∂ log f1(α, β)

∂α

∂ log f2(δin)

∂δin

f1(α, β)f2(δin)f3(δout)dx

=

∫
∂f1(α, β)

∂α

∂f2(δin)

∂δin

f3(δout) dx

=
∂2

∂α∂δin

∫
L(θ)dx

= 0 = E[Sn(α)]E[Sn(δin)].

Using the Cramér-Wold device, the joint convergence of Sn(θ) follows easily, i.e.,

n−1/2Sn(θ)
d→ N(0, I(θ)).

From here, the result of the theorem follows from (4.23) and (4.24).

4.4 Parameter estimation based on one snapshot

Based only on the single snapshot G(n), we propose a parameter estimation procedure. We

assume that the choice of the snapshot does not depend on any endogenous information
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related to the network. The snapshot merely represents a point in time where the data is

available. Since no information on the initial graph G(n0) is available, we merely assume n0

and N(n0) are fixed and n→∞.

Among the sufficient statistics for (α, β, δin, δout) derived in Remark 4.3.1,
(
N in
>i(n)

)
i≥0

,(
Nout
>j (n)

)
j≥0

are computable from G(n), but the (Jt)
n
t=1 are not. However, when n is large,

we can use the following approximations according to the proof of Lemma 4.7.2:

1

n

n∑
t=n0+1

1{Jt=3} ≈ 1− α− β,

and

1

n

n∑
t=n0+1

N(t)

t+ δinN(t)
1{Jt∈{1,2}} ≈ (α + β)

1− β
1 + δin(1− β)

.

Substituting in (4.15), we estimate δin in terms of α and β by solving

∞∑
i=0

N in
>i(n)/n

i+ δin

− 1− α− β
δin

− (α + β)(1− β)

1 + (1− β)δin

= 0. (4.25)

Note that a strongly consistent estimator of β can be obtained directly from G(n):

β̃ = 1− N(n)

n

a.s.−→ β.

To obtain an estimate for α, we make use of the recursive formula for {pin
i } in (4.36a):(

1 +
(α + β)δin

1 + (1− β)δin

)
pin

0 = α, (4.26)

and replace pin
0 by N in

0 (n)/n for large n,(
1 +

(α + β)δin

1 + (1− β)δin

)
N in

0 (n)

n
= α. (4.27)

Plug the strongly consistent estimator β̃ into (4.25) and (4.27), and we claim that solving

the system of equations:

∞∑
i=0

N in
>i(n)/n

i+ δin

− 1− α− β̃
δin

− (α + β̃)(1− β̃)

1 + (1− β̃)δin

= 0, (4.28a)(
1 +

(α + β̃)δin

1 + (1− β̃)δin

)
N in

0 (n)

n
= α, (4.28b)

gives the unique solution (α̃, δ̃in) which is strongly consistent for (α, δin).
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Theorem 4.4.1. The solution (α̃, δ̃in) to the system of equations in (4.28) is unique and

strongly consistent for (α, δin), i.e.

α̃
a.s.−→ α, δ̃in

a.s.−→ δin.

The proof of Theorem 4.4.1 is given in Section 4.8.

The parameters δ̃out and γ̃ can be estimated by a mirror argument. We summarize the

estimation procedure for (α, β, γ, δin, δout) from the snapshot G(n) as follows:

1. Estimate β by β̃ = 1−N(n)/n.

2. Obtain δ̃0
in by solving (i.e., matching (4.28a) and (4.28b))

∞∑
i=1

N in
>i(n)

n

i

i+ δin

(1 + δin(1− β̃)) =

N in
0 (n)

n
+ β̃

1− N in
0 (n)

n
δin

1+(1−β̃)δin

.

3. Estimate α by

α̃0 =

N in
0 (n)

n
+ β̃

1− N in
0 (n)

n

δ̃0in
1+(1−β̃)δ̃0in

− β̃.

4. Obtain δ̃0
out by solving

∞∑
j=1

Nout
>j (n)

n

j

j + δout

(1 + δout(1− β̃)) =

Nout
0 (n)

n
+ β̃

1− Nout
0 (n)

n
δout

1+(1−β̃)δout

.

5. Estimate γ by

γ̃0 =

Nout
0 (n)

n
+ β̃

1− Nout
0 (n)

n

δ̃0out
1+(1−β̃)δ̃0out

− β̃.

Note that even though all three estimators α̃0, β̃, γ̃0 are strongly consistent and hence α̃0 +

β̃ + γ̃0 a.s.−→ 1, Step 1–5 do not necessarily imply the strict equality

α̃0 + β̃ + γ̃0 = 1.

We recommend adding the following two steps for a re-normalization to overcome this defect.

6. Re-normalize the probabilities

(α̃, β̃, γ̃) ←

(
α̃0(1− β̃)

α̃0 + γ̃0
, β̃,

γ̃0(1− β̃)

α̃0 + γ̃0

)
.
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7. Plug α̃ into (4.28a) to update the estimate of δin, i.e., solve for δ̃in from

∞∑
i=0

N in
>i(n)/n

i+ δ̃in

− 1− α̃− β̃
δ̃in

− (α̃ + β̃)(1− β̃)

1 + (1− β̃)δ̃in

= 0.

Similarly, solve for δ̃out from

∞∑
j=0

Nout
>j (n)/n

j + δ̃out

− 1− γ̃ − β̃
δ̃out

− (γ̃ + β̃)(1− β̃)

1 + (1− β̃)δ̃out

= 0.

4.5 Simulation study

We now apply the estimation procedures described in Sections 4.3 and 4.4 to simulated data,

which allows us to compare the estimation results using the full history of the network with

that using just one snapshot. Algorithm 1 is used to simulate realizations of the preferential

attachment network.

4.5.1 MLE

For the scenario of observing the full history of the network, we simulated 5000 independent

replications of the preferential attachment network with 105 edges under the true parameter

values

θ = (α, β, δin, δout) = (0.3, 0.5, 2, 1). (4.29)

For each realization, the MLE estimate of the parameters was computed and standardized

as √
n
(

(θ̂MLE
n )i − (θ)i

)
σ̂ii

, (4.30)

where (θ̂n)i and (θ)i denote the i-th components of θ̂MLE
n and θ respectively, and σ̂2

ii is the

i-th diagonal component of the matrix Σ̂ := Σ(θ̂MLE
n ). The explicit formula for the entries
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Figure 4.1: Normal QQ-plots in black for normalized estimates in (4.30) under 5000 repli-
cations of a preferential attachment network with 105 edges and θ = (0.3, 0.5, 2, 1). The
fitted lines in blue are the traditional qq-lines (given by R) used to check normality of the
estimates. The red dashed line represents the y = x line in all plots.

of Σ̂ is

Σ̂ =



α̂MLE
(
1− α̂MLE

)
−α̂MLEβ̂MLE 0 0

−α̂MLEβ̂MLE β̂MLE
(

1− β̂MLE
)

0 0

0 0 Î−1
in 0

0 0 0 Î−1
out


,

where, see (4.19) and (4.20),

Îin =
∞∑
i=0

N in
>i(n)/n(

i+ δ̂MLE
in

)2 −
1− α̂MLE − β̂MLE(

δ̂MLE
in

)2 −

(
α̂MLE + β̂MLE

)(
1− β̂MLE

)2

(
1 + δ̂MLE

in (1− β̂MLE)
)2 ,

Îout =
∞∑
j=0

Nout
>j (n)/n(

j + δ̂MLE
out

)2 −
α̂MLE(
δ̂MLE

out

)2 −

(
1− α̂MLE

) (
1− β̂MLE

)2

(
1 + δ̂MLE

out (1− β̂MLE)
)2 .

By the strong consistency of the MLEs combined with Lemma 4.7.2, we have that Σ̂
a.s.−→ Σ.
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Figure 4.2: Normal QQ-plots for the normalized estimates in (4.31) under 5000 replications
of a preferential attachment network with 105 edges and θ = (0.3, 0.5, 2, 1). The fitted lines
in blue are the traditional qq-lines used to check normality of the estimates. The red dashed
line represents the y = x line in all plots.

The QQ-plots of the normalized MLEs are shown in Figure 4.1, all of which line up quite

well with the y = x line (the red dashed line). This is consistent with the asymptotic theory

described in Theorem 4.3.3. Confidence intervals for θ can be obtained using this theorem.

Given a single realization, an approximate (1− ε)-confidence interval for (θ)i is

(θ̂MLE
n )i ± zε/2

√
σ̂2
ii

n
for i = 1, . . . , 4,

where zε/2 is the upper ε/2 quantile of N(0, 1).

4.5.2 One snapshot

We used the same simulated data as in Section 4.5.1 to obtain parameter estimates θ̃n :=

(α̃, β̃, δ̃in, δ̃out) through only the final snapshot, i.e., the set of directed edges without times-

tamps, following the procedure described at the end of Section 4.4. For the purpose of
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comparison with MLE, Figure 4.2 gives the QQ-plots for the normalized estimates from the

snapshots using the same standardizations for the MLEs, i.e.,

√
n
(

(θ̃n)i − (θ)i

)
σ̂ii

, i = 1, . . . , 4, (4.31)

where (θ̃n)i denotes the i-th components of θ̃n. Again, the fitted lines in blue are the

traditional QQ-lines and the red dashed lines are the y = x line. The QQ-plot for β̃ exhibits

the same shape as for β̂MLE, since the two estimates are identical.

From Figure 4.2, we see that the snapshot estimates of all four parameters are consistent

and approximately normal, i.e., the QQ-plots are linear. However, the slopes of the QQ-lines

for α̃, δ̃in, δ̃out are much steeper than the diagonal line, indicating a loss of efficiency for θ̃n

compared with θ̂n. Indeed the estimator variance is inflated for all parameters except for

β, where β̃ coincides with the true MLE. This is as expected since knowing only the final

snapshot provides far less information than the whole network history.

Recall that for a consistent estimator Tn of a one-dimensional parameter θ constructed

from a random sample of size n, the asymptotic relative efficiencies (ARE) of Tn is defined

by

ARE(Tn) := lim
n→∞

Var(
√
nT ∗n)

Var(
√
nTn)

,

where T ∗n denotes the asymptotically efficient estimator. We may compute the ARE’s for

the snapshot parameter estimates

ARE(α̃) = lim
n→∞

nVar(α̂MLE)

nVar(α̃)
≈ V̂ar(α̂MLE)

V̂ar(α̃)
≈ 0.398,

ARE(δ̃in) = lim
n→∞

nVar(δ̂MLE
in )

nVar(δ̃in)
≈ V̂ar(δ̂MLE

in )

V̂ar(δ̃in)
≈ 0.392,

ARE(δ̃out) = lim
n→∞

nVar(δ̂MLE
out )

nVar(δ̃out)
≈ V̂ar(δ̂MLE

out )

V̂ar(δ̃out)
≈ 0.226,

where V̂ar denotes the sample variance of the parameter estimate based on the 5000 repli-

cations. Note that ARE(β̃) = 1 since β̃ = β̂MLE.

Given a single realization, the variances of the snapshot estimates can be estimated

through resampling as follows. Using the estimated parameter θ̃n, simulate 104 independent
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bootstrap replicates of the network with n = 105 edges. For each simulated network, the

snapshot estimate, θ̃∗n :=
(
α̃∗, β̃∗, δ̃∗in, δ̃

∗
out

)
, is computed. The sample variance of these 104

snapshot estimates can then be used as an approximation for the variance of θ̃n so that

assuming asymptotic normality, a (1− ε)-confidence interval for θ can be approximated by

(θ̃n)i ± zε/2
√

V̂ar
(

(θ̃∗n)i

)
for i = 1, . . . , 4,

where zε/2 is the upper ε/2 quantile of N(0, 1).

4.5.3 Sensitivity test

Now we investigate the sensitivity of our estimates while values of the parameters (n, α, β, δin, δout)

are allowed to vary. First consider the impact of n, the number of edges in the network. To do

so we held the parameters fixed with values given by (4.29): (α, β, δin, δout) = (0.3, 0.5, 2, 1)

and varied the value of n. The QQ-plots (not presented) for standardized estimates using

both full MLE and one-snapshot methods were produced to check the asymptotic normality.

When n = 500, 1000, diagnostics revealed departures from normality for both the MLE and

the snapshot estimates. However, after increasing n to 10000, estimates obtained from both

approaches appeared normally distributed as expected.

For each value of n in Table 4.1, 5000 replicates of the network with n edges and parame-

ters θ = (0.3, 0.5, 2, 1) were generated. For each realization, the MLE’s θ̂MLE
n were computed

using the full history of the network and the one-snapshot estimates θ̃n were obtained using

the 7-step snapshot method proposed in Section 4.4, pretending that only the last snapshot

G(n) was available. The mean for these two estimators were recorded in Table 4.1. There

is little bias for both estimates of α and β, even for small values of n. On the other hand,

there is some bias for estimated δin and δout for n ≤ 5000. The magnitude of the biases for

both types of estimates decrease as n increases. Also the ARE’s of the snapshot estimator

stay within a narrow band as n increases.

Next we held (n, δin, δout) = (105, 2, 1) fixed and experimented with various values of

(α, β) in Table 4.2. For each choice of (α, β), 5000 independent realizations of the network
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n Mean(θ̂MLE
n ) Mean(θ̃n) ARE(θ̃n)

1000 (0.300, 0.500, 2.076, 1.054) (0.301, 0.500, 2.128, 1.066) (0.408, 1.000, 0.397, 0.228)
5000 (0.300, 0.500, 2.022, 1.013) (0.301, 0.500, 2.036, 1.010) (0.414, 1.000, 0.386, 0.236)
10000 (0.300, 0.500, 2.011, 1.006) (0.301, 0.500, 2.019, 1.006) (0.408, 1.000, 0.388, 0.232)
50000 (0.300, 0.500, 2.003, 1.002) (0.300, 0.500, 2.005, 1.002) (0.399, 1.000, 0.393, 0.230)
100000 (0.300, 0.500, 2.001, 1.001) (0.300, 0.500, 2.003, 1.000) (0.392, 1.000, 0.382, 0.223)

Table 4.1: Mean of θ̂MLE
n and θ̃n with ARE’s of θ̃n relative to θ̂MLE

n for θ = (0.3, 0.5, 2, 1)

under different choices of n.

were generated and the means of the MLE θ̂MLE
n and the one-snapshot estimates θ̃n were

recorded. Overall, the biases for θ̂MLE
n are remarkably small for virtually all combinations of

parameter values, except for those parameter choices where one of (α, β) is extremely small.

The biases for the snapshot estimates θ̃n exhibit a similar property, but the magnitudes of

the biases are consistently larger than those in the MLE case.

In general, the snapshot estimators are able to achieve 20%–50% efficiency over the range

of parameters considered. The loss of efficiency might be less than one would expect given

the substantial reduction in the data available to produce the snapshot estimates. It is worth

noting that in the case where (α, β) = (0.7, 0.2), the efficiencies of the snapshot estimators

for α and δin are much larger (0.73 and 0.79, respectively). A heuristic explanation for this

increase is that the parameter γ = 1 − α − β = 0.1 is relatively small. By the implicit

constraints used for the snapshot estimates, we have

α̃ + γ̃ = 1− β̃ = 1− β̂MLE = α̂MLE + γ̂MLE,

that is, the snapshot estimate of the sum α + γ is the same as the MLE for the sum. Now

if γ is small, one would expect the resulting estimates to also be small so that α̃ would be

nearly the same as α̂MLE. Hence the ARE would be close to 1. On the other hand, in the

case of a larger γ, see the bottom row of Table 4.2 in which γ = 0.6, the ARE for α is not

as large (0.42), but the ARE for δ̃out is (0.63).
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(α, β) Mean(θ̂MLE
n ) Mean(θ̃n) ARE(θ̃n)

(0.001, 0.99) (0.001, 0.990, 2.034, 1.016) (0.001, 0.990, 2.071, 1.049) (0.291, 1.000, 0.147, 0.316)
(0.01, 0.9) (0.010, 0.900, 2.004, 1.001) (0.010, 0.900, 2.008, 1.004) (0.331, 1.000, 0.207, 0.381)
(0.1, 0.8) (0.100, 0.800, 2.003, 1.001) (0.100, 0.800, 2.004, 1.002) (0.353, 1.000. 0.264, 0.216)
(0.2, 0.6) (0.200, 0.600, 2.002, 1.001) (0.200, 0.600, 2.003, 1.001) (0.364, 1.000, 0.309, 0.236)
(0.5, 0.3) (0.500, 0.300, 2.001, 1.001) (0.500, 0.300, 2.002, 1.000) (0.472, 1.000, 0.529, 0.202)
(0.7, 0.2) (0.700, 0.200, 2.002, 1.000) (0.700, 0.200, 2.002, 1.000) (0.726, 1.000, 0.793, 0.217)
(0.1, 0.3) (0.100, 0.300, 2.001, 1.001) (0.100, 0.300, 2.002, 1.000) (0.420, 1.000, 0.313, 0.629)

Table 4.2: Mean of θ̂MLE
n and θ̃n with ARE’s of θ̃n relative to θ̂MLE

n for (n, δin, δout) =

(105, 2, 1) under different choices of (α, β).

4.6 Real network example

In this section, we explore fitting a preferential attachment model to a social network. As

illustration, we chose the Dutch Wiki talk network dataset, available on KONECT (Kunegis,

2013) . The nodes represent users of Dutch Wikipedia, and an edge from node A to node

B refers to user A writing a message on the talk page of user B at a certain time point.

The network consists of 225,749 nodes (users) and 1,554,699 edges (messages). All edges are

recorded with timestamps.

In order to accommodate all the edge formulation scenarios appeared in the dataset, we

extend our model by appending the following two interaction schemes (Jn = 4, 5) in addition

to the existing three (Jn = 1, 2, 3) described in Section 4.2.1.

• If Jn = 4 (with probability ξ), append to G(n−1) two new nodes v, w ∈ V (n)\V (n−1)

and an edge connecting them (v, w).

• If Jn = 5 (with probability ρ), append to G(n − 1) a new node v ∈ V (n) \ V (n − 1)

with self loop (v, v).

These scenarios have been observed in other social network data, such as the network that

models Facebook wall posts, again available on KONECT (Kunegis, 2013). They occur in

small proportions and can be easily accommodated by a slight modification in the model fit-

ting procedure. The new model has parameter vector (α, β, γ, ξ, δin, δout), and ρ is implicitly

defined through ρ = 1− (α+ β + γ + ξ). Similar to the derivations in Section 4.3, the MLE
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estimators for α, β, γ, ξ are

α̂MLE =
1

n

n∑
t=1

1{Jt=1}, β̂MLE =
1

n

n∑
t=1

1{Jt=2},

γ̂MLE =
1

n

n∑
t=1

1{Jt=3}, ξ̂MLE =
1

n

n∑
t=1

1{Jt=4},

and δin, δout can be obtained through solving

∞∑
i=0

N in
>i(n)/n

i+ δin

−
1
n

∑n
t=1 1{Jt∈{3,4,5}}

δin

− 1

n

n∑
t=1

N(t)

t+ δinN(t)
1{Jt∈{1,2}} = 0,

∞∑
j=0

Nout
>j (n)/n

j + δout

−
1
n

∑n
t=1 1{Jt∈{1,4,5}}

δout

− 1

n

n∑
t=1

N(t)

t+ δoutN(t)
1{Jt∈{2,3}} = 0.

We first naively fit the linear preferential attachment model to the full network using

MLE. The MLE estimators are

(α̂, β̂, γ̂, ξ̂, ρ̂, δ̂in, δ̂out) =

(3.08× 10−3, 8.55× 10−1, 1.39× 10−1, 4.76× 10−5, 3.06× 10−3, 0.547, 0.134). (4.33)

To evaluate the goodness-of-fit, 20 network realizations of the same size were simulated from

the fitted model. We overlaid the empirical in- and out-degree frequencies of the original

network with that of the simulations. If the model fits the data well, the degree frequencies

of the data should lie within the range formed by that of the simulations, which gives an

informal confidence region for the degree distributions. From Figure 4.3, we see that while

the data roughly agrees with the simulations in the out-degree frequencies, the deviation in

the in-degree frequencies is noticeable.

To better understand the discrepancy in the in-degree frequencies, we examined the

link data and their timestamps and discovered bursts of messages originating from certain

nodes over small time intervals. According to Wikipedia policy (Wikipedia, 2016), certain

administrating accounts are allowed to send group messages to multiple users simultaneously.

These bursts presumably represent broadcast announcements generated from these accounts.

These administrative broadcasts can also be detected if we apply the linear preferential
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Figure 4.3: Empirical in- and out-degree frequencies of the full Wiki talk network (red) and
that from 20 realizations of the linear preferential attachment network with fitted param-
eter values (4.33) from MLE (blue). The scatter plots for the degree frequencies from the
20 simulations are overlaid together to form an informal confidence region for the degree
distribution of the fitted model

attachment model to the network in local time intervals. We divided the total time frame

down to sub-intervals of varying length each containing the formation of 104 edges. The

number 104 is chosen to ensure good asymptotics as shown in Table 4.1. This process

generated 155 networks,

G(nk−1), . . . , G(nk − 1), k = 1, . . . , 155.

For each of the 155 datasets, we fit a preferential attachment model using MLE. The resulting

estimates (δ̂in, δ̂out) are plotted against the corresponding timeline on the upper left panel

of Figure 4.4. Notice that δ̂in exhibits large spikes at various times. Recall from (4.1), a

large value of δin indicates that the probability of an existing node v receiving a new message

becomes less dependent on its in-degree, i.e., previous popularity. These spikes appear to be

directly related to the occurrences of group messages. This plot is truncated after the day

2016/3/16, on which a massive group message of size 48,957 was sent and the model can no

longer be fit.

We identified 37 users who have sent, at least once, 40 or more consecutive messages

in the message history. This is evidence that group messages were sent by this user. We

presume these nodes are administrative accounts; they are responsible for about 30% of the
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Figure 4.4: Local parameter estimates of the linear preferential attachment model for the
full and reduced Wiki talk network. Upper left: (δ̂in, δ̂out) for the full network. Upper right,
lower left, lower right: (δ̂in, δ̂out), (β̂, γ̂), (α̂, ξ̂, ρ̂) for the reduced network, respectively.

total messages sent. Since their behavior cannot be regarded as normal social interaction,

we excluded messages from these accounts from the dataset in our analysis. We then also

removed nodes with zero in- and out-degrees.

The re-estimated parameters after the data cleaning are displayed in the other three

panels of Figure 4.4. Here all parameter estimates are quite stable through time.

The reduced network now contains 112,919 nodes and 1,086,982 edges, to which we fit the

linear preferential attachment model. The fitted parameters based on MLE for our reduced

dataset are

(α̂, β̂, γ̂, ξ̂, ρ̂, δ̂in, δ̂out) =
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Figure 4.5: Empirical in- and out-degree frequencies of the reduced Wiki talk network (red)
and that from 20 realizations of the linear preferential attachment network with fitted pa-
rameter values (4.34) from MLE (blue).

(6.95× 10−3, 8.96× 10−1, 9.10× 10−2, 1.44× 10−4, 5.61× 10−3, 0.174, 0.257). (4.34)

Again the degree distributions of the data and 20 simulations from the fitted model are

displayed in Figure 4.5. The out-degree distribution of the data agrees reasonably well with

the simulations. For the in-degree distribution, the fit is better than that for the entire

dataset (Figure 4.3). However, for smaller in-degrees, the fitted model over-estimates the in-

degree frequencies. We speculate that in many social networks, the out-degree is in line with

that predicted by the preferential attachment model. An individual node would be more

likely to reach out to others if having done so many times previously. For in-degrees, the

situation is complicated and may depend on a multitude of factors. For instance, the choice

of recipient may depend on the community that the sender is in, the topic being discussed

in the message, etc. As an example a group leader might send messages to his/her team on

a regular basis. Such examples violate the base assumptions of the preferential attachment

model and could result in the deviation between the data and the simulations.

Next we consider the estimation method of Section 4.4 applied to a single snapshot of

the data. In order to implement this procedure, we donned blinders and assumed that

our dataset consists only of the information of the wiki data at the last timestamp. That

is, information about administrative broadcasts, and other aspects of the data learned by
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Figure 4.6: Empirical in- and out-degree frequencies of the full Wiki talk network (red) and
that from 20 realizations of the linear preferential attachment network with fitted parameter
values (4.35) from the snapshot estimator (blue).

looking at the previous history of the data are unavailable. In particular, we would have no

knowledge of the existence of the two additional scenarios corresponding to Jn = 4, 5. With

this in mind, we fit the three scenario model using the methods in Section 4.4. The fitted

parameters are

(α̃, β̃, γ̃, δ̃in, δ̃out) = (5.80× 10−4, 8.55× 10−1, 1.45× 10−1, 0.199, 0.165). (4.35)

The comparison of the degree distributions between the data and simulations from the fitted

model is displayed in Figure 4.6 and is not too dissimilar to the plots in Figure 4.3 that

are based on maximum likelihood estimation using the full network data. In particular, the

out-degree distribution is matched reasonably well, but the fitted model does a poor job of

capturing the in-degree distribution.

We see from this example that while the linear preferential attachment model is perhaps

too simplistic for the Wiki talk network dataset, it has the ability to illuminate some gross

features, such as the out-degrees, as well as to capture important structural changes such as

the group message behavior. Consequently, despite its limitation, this model may be used

as a building block for more flexible models. Modification to the existing model formulation

and more careful analysis of change points in parameters is a direction for future research.
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4.7 For the proof of Theorem 4.3.2: Lemmas 4.7.1

and 4.7.2

Lemma 4.7.1. For λ > 0, the function ψ(λ) in (4.16) has a unique zero at δin and, ψ(λ) > 0

when λ < δin and ψ(λ) < 0 when λ > δin.

Proof. The probabilities {pin
i (λ)} satisfy the recursions in i (cf. Bollobás et al. (2003)):

pin
0 (λ)

(
λ+

1

a1(λ)

)
=

α

a1(λ)
, (4.36a)

pin
1 (λ)

(
1 + λ+

1

a1(λ)

)
= λpin

0 (λ) +
γ

a1(λ)
,

pin
2 (λ)

(
2 + λ+

1

a1(λ)

)
= (1 + λ)pin

1 (λ),

...

pin
i (λ)

(
i+ λ+

1

a1(λ)

)
= (i− 1 + λ)pin

i−1(λ), (i ≥ 2),

where a1(λ) := (α+β)/(1 +λ(1−β)). Summing the recursions in (4.36) from 0 to i, we get

(with the convention that
∑−1

i=0 = 0)

i∑
k=0

pin
k (λ)

(
k + λ+

1

a1(λ)

)
=

i−1∑
k=0

(k + λ)pin
k (λ) +

α

a1(λ)
+

γ

a1(λ)
1{i≥1}, i ≥ 0,

which can be simplified to

1

a1(λ)

i∑
k=0

pin
k (λ) + (i+ λ)pin

i (λ) =
1− β
a1(λ)

− γ

a1(λ)
1{i=0}, i ≥ 0. (4.37)

From (4.3),
∞∑
i=0

pin
i (λ) =

∑
i,j

pij(λ) = 1− β. (4.38)

Hence by rearranging (4.37), we have

(i+ λ)pin
i (λ) +

γ

a1(λ)
1{i=0} =

1

a1(λ)

(
1− β −

i∑
k=0

pin
k (λ)

)
=

1

a1(λ)
pin
>i(λ),

or equivalently,

pin
>i(λ) = a1(λ)(i+ λ)pin

i (λ) + γ1{i=0}. (4.39)
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Now with the help of (4.38) and (4.39), we can rewrite ψ(λ) in the following way:

ψ(λ) =
∞∑
i=0

pin
>i(δin)

i+ λ
− γ

λ
− (1− β)a1(λ)

=
∞∑
i=0

pin
>i(δin)

i+ λ
− γ

λ
−
∞∑
i=0

pin
i (δin)a1(λ)(i+ λ)

i+ λ

=
∞∑
i=0

a1(δin)(i+ δin)pin
i (δin) + γ1{i=0}

i+ λ
− γ

λ
−
∞∑
i=0

pin
i (δin)a1(λ)(i+ λ)

i+ λ

=
∞∑
i=0

pin
i (δin)

i+ λ

(
a1(δin)(i+ δin)− a1(λ)(i+ λ)

)
=

∞∑
i=0

pin
i (δin)

i+ λ

∫ δin

λ

∂

∂s

(
a1(s)(i+ s)

)
ds

=
∞∑
i=0

pin
i (δin)

i+ λ

∫ δin

λ

(α + β)(1− i(1− β))

(1 + s(1− β))2
ds

=

(
∞∑
i=0

pin
i (δin)

i+ λ
(1− i(1− β))

)∫ δin

λ

α + β

(1 + s(1− β))2
ds

= C(λ)

∫ δin

λ

α + β

(1 + s(1− β))2
ds. (4.40)

The series defining C(λ) converges absolutely for any λ > 0 since

∞∑
i=0

∣∣∣∣pin
i (δin)

i+ λ
(1− i(1− β))

∣∣∣∣ <
∞∑
i=0

pin
i (δin)

∣∣∣∣i(1− β)

i+ λ
+

1

i+ λ

∣∣∣∣
< (1− β)(1− β +

1

λ
) < ∞.

Summing over i in (4.39), we get by monotone convergence

∞∑
i=0

pin
>i(λ) =

∞∑
i=0

ipin
i (λ) = a1(λ)

∞∑
i=0

ipin
i (λ) + a1(λ)λ

∞∑
i=0

pin
i (λ) + γ.

The infinite series converge because pin
i (λ) is a power law with index greater than 2; see (4.4)

and (4.5). Solving for the infinite series we get

∞∑
i=0

ipin
i (λ) =

a1(λ)λ

1− a1(λ)
(1− β) +

γ

1− a1(λ)
= 1. (4.41)

Hence we have

C(λ) =
∑

i≤(1−β)−1

pin
i (δin)

i+ λ
(1− i(1− β))−

∑
i>(1−β)−1

pin
i (δin)

i+ λ
(i(1− β)− 1)
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>

∞∑
i=0

pin
i (δin)

(1− β)−1 + λ
(1− i(1− β))

=
1

(1− β)−1 + λ

∞∑
i=0

pin
i (δin)− 1− β

(1− β)−1 + λ

∞∑
i=0

ipin
i (δin)

=
1

(1− β)−1 + λ
(1− β)− 1− β

(1− β)−1 + λ
1 = 0.

Now recall from (4.40) that ψ(λ) is of the form

ψ(λ) = C(λ)

∫ δin

λ

α + β

(1 + s(1− β))2
ds,

where C(λ) > 0 for all λ > 0. Therefore ψ(·) has a unique zero at δin and ψ(λ) > 0 when

λ < δin and ψ(λ) < 0 when λ > δin.

We show the uniform convergence of ψn to ψ in the next lemma.

Lemma 4.7.2. As n→∞, for any ε > 0,

sup
λ≥ε
|ψn(λ)− ψ(λ)| a.s.−→ 0.

Proof. By the definition of ψ, pin
>i(δin) is a function of δin and is a constant with respect to

λ. Hence we suppress the dependence on δin and simply write it as pin
>i when considering the

difference ψn − ψ as a function of λ:

ψn(λ)− ψ(λ) =
∞∑
i=0

N in
>i(n)/n− pin

>i

i+ λ
− 1

λ

(
1

n

n∑
t=1

1{Jt=3} − (1− α− β)

)

− 1

n

n∑
t=1

(
N(t− 1)

t− 1 + λN(t− 1)
1{Jt∈{1,2}} −

(1− β)(α + β)

1 + λ(1− β)

)
.

Thus,

sup
λ≥ε
|ψn(λ)− ψ(λ)| ≤ sup

λ≥ε

∞∑
i=0

∣∣N in
>i(n)/n− pin

>i

∣∣
i+ λ

+ sup
λ≥ε

1

λ

∣∣∣∣∣ 1n
n∑
t=1

1{Jt=3} − (1− α− β)

∣∣∣∣∣
+ sup

λ≥ε

∣∣∣∣∣ 1n
n∑
t=1

N(t− 1)

t− 1 + λN(t− 1)
1{Jt∈{1,2}} −

(1− β)(α + β)

1 + λ(1− β)

∣∣∣∣∣ .(4.42)

For the first term, note that for all i ≥ 0,

iN in
>i(n) =

∞∑
k=i+1

N in
k (n)i ≤

∞∑
k=1

kN in
k (n) = n,
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since the assumption on initial conditions implies the sum of in-degrees at n is n. Therefore

N in
>i(n)/n ≤ i−1 for i ≥ 1, and it then follows that

∞∑
i=0

∣∣N in
>i(n)/n− pin

>i

∣∣
i+ λ

≤
M∑
i=0

∣∣N in
>i(n)/n− pin

>i

∣∣
i+ λ

+
∞∑

i=M+1

1/i

i+ λ
+

∞∑
i=M+1

pin
>i

i+ λ
.

Note that the last two terms on the right side can be made arbitrarily small uniformly on

[ε,∞) if we choose M sufficiently large. Recall the convergence of the degree distribution

{Nij(n)/N(n)} to the probability distribution {fij} in (4.3), we have

N in
>i(n)

n
=

N(n)

n

N in
>i(n)

N(n)

a.s.−→ (1− β)
∑

l≥0,k>i

fkl = pin
>i, ∀i ≥ 0.

Hence, for any fixed M ,

M∑
i=0

∣∣N in
>i(n)/n− pin

>i

∣∣
i+ ε

a.s.−→ 0, as n→∞.

which implies further that choosing M arbitrarily large gives

sup
λ≥ε

∞∑
i=0

∣∣N in
>i(n)/n− pin

>i

∣∣
i+ λ

≤
M∑
i=0

∣∣N in
>i(n)/n− pin

>i

∣∣
i+ ε

+
∞∑

i=M+1

1/i

i+ ε
+

∞∑
i=M+1

pin
>i

i+ ε

a.s.−→ 0.

The second term in (4.42) converges to 0 almost surely by strong law of large numbers, and

the third term in (4.42) can be written as∣∣∣∣∣ 1n
n∑
t=1

(
N(t− 1)

t− 1 + λN(t− 1)
− (1− β)

1 + λ(1− β)

)
1{Jt∈{1,2}}

+
1− β

1 + λ(1− β)

1

n

n∑
t=1

(
1{Jt∈{1,2}} − (α + β)

)∣∣∣∣∣ ,
which is bounded by∣∣∣∣∣ 1n

n∑
t=1

N(t− 1)

t− 1 + λN(t− 1)
− (1− β)

1 + λ(1− β)

∣∣∣∣∣+
1− β

1 + λ(1− β)

∣∣∣∣∣ 1n
n∑
t=1

1{Jt∈{1,2}} − (α + β)

∣∣∣∣∣ .
We have

sup
λ≥ε

∣∣∣ 1
n

n∑
t=1

N(t− 1)

t− 1 + λN(t− 1)
− (1− β)

1 + λ(1− β)

∣∣∣
= sup

λ≥ε

∣∣∣∣∣ 1n
n∑
t=1

N(t− 1)/(t− 1)− (1− β)

(1 + λN(t− 1)/(t− 1))(1 + λ(1− β))

∣∣∣∣∣
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≤ 1

n

n∑
t=1

∣∣∣∣ N(t− 1)/(t− 1)− (1− β)

(1 + εN(t− 1)/(t− 1))(1 + ε(1− β))

∣∣∣∣ ,
which converges to 0 almost surely by Cesàro convergence of random variables, since∣∣∣∣ N(n)/n− (1− β)

(1 + εN(n)/n)(1 + ε(1− β))

∣∣∣∣ a.s.−→ 0, as n→∞.

Further, by the strong law of large numbers,

sup
λ≥ε

1− β
1 + λ(1− β)

∣∣∣∣∣ 1n
n∑
t=1

1{Jt∈{1,2}} − (α + β)

∣∣∣∣∣
≤ 1− β

1 + ε(1− β)

∣∣∣∣∣ 1n
n∑
t=1

1{Jt∈{1,2}} − (α + β)

∣∣∣∣∣ a.s.−→ 0, as n→∞.

Hence the third term of (4.42) also goes to 0 almost surely as n → ∞. The result of the

lemma follows.

4.7.1 For the proof of Theorem 4.3.3: Lemmas 4.7.3 and 4.7.4

Lemma 4.7.3. As n→∞,

n−1/2

n∑
t=1

ut(δin)
d→ N(0, Iin). (4.43)

Proof. Let Fn = σ(G(0), . . . , G(n)) be the σ-field generated by the information contained

in the graphs. We first observe that {
∑n

t=1 ut(δin),Fn, n ≥ 1} is a martingale. To see this,

note from (4.21) that |ut(δ)| ≤ 2/δ and

E[ut(δin)|Ft−1]

= E

[
1

D
(t−1)
in (v

(2)
t ) + δin

1{Jt∈{1,2}}

∣∣∣∣∣Ft−1

]
− N(t− 1)

t− 1 + δinN(t− 1)
E[1{Jt∈{1,2}}|Ft−1]

= E

[
1

D
(t−1)
in (v

(2)
t ) + δin

∣∣∣∣∣ Jt = 1,Ft−1

]
P[Jt = 1]

+ E

[
1

D
(t−1)
in (v

(2)
t ) + δin

∣∣∣∣∣ Jt = 2,Ft−1

]
P[Jt = 2]− (α + β)

N(t− 1)

t− 1 + δinN(t− 1)

= (α + β)
∑
v∈Vt−1

1

D
(t−1)
in (v) + δin

D
(t−1)
in (v) + δin

t− 1 + δinN(t− 1)
− (α + β)

N(t− 1)

t− 1 + δinN(t− 1)
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= (α + β)

 ∑
v∈Vt−1

1

t− 1 + δinN(t− 1)
− N(t− 1)

t− 1 + δinN(t− 1)

 = 0,

which satisfies the definition of a martingale difference. Hence{
n−1/2

t∑
r=1

ur(δin)

}
t=1,...,n

is a zero-mean, square-integrable martingale array. The convergence (4.43) follows from the

martingale central limit theory (cf. Theorem 3.2 of Hall and Heyde (1980)) if the following

three conditions can be verified:

(a) n−1/2 maxt |ut(δin)| p→ 0,

(b) n−1
∑

t u
2
t (δin)

p→ Iin,

(c) E (n−1 maxt u
2
t (δin)) is bounded in n.

Since |ut(δin)| ≤ 2/δin, we have

n−1/2 max
t
|ut(δin)| ≤ 2

n1/2δin

→ 0,

and

n−1 max
t
u2
t ≤

4

nδ2
in

→ 0.

Hence conditions (a) and (c) are straightforward.

To show (b), observe that

1

n

n∑
t=1

u2
t (δin) =

1

n

n∑
t=1

1{Jt∈{1,2}}

(
1

D
(t−1)
in (v

(2)
t ) + δin

− N(t− 1)

t− 1 + δinN(t− 1)

)2

=
1

n

n∑
t=1

1{Jt∈{1,2}}(
D

(t−1)
in (v

(2)
t ) + δin

)2

− 2

n

n∑
t=1

1{Jt∈{1,2}}

D
(t−1)
in (v

(2)
t ) + δin

N(t− 1)

t− 1 + δinN(t− 1)

+
1

n

n∑
t=1

1{Jt∈{1,2}}

(
N(t− 1)

t− 1 + δinN(t− 1)

)2

= : T1 − 2T2 + T3.
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Following the calculations in the proof of Lemma 4.7.2, we have for T1,

T1 =
∞∑
i=0

N in
>i(n)/n

(i+ δin)2
− 1

δ2
in

1

n

n∑
t=1

1{Jt=3}
p→

∞∑
i=0

pin
>i

(i+ δin)2
− γ

δ2
in

.

We then rewrite T2 as

T2 =
1

n

n∑
t=1

1{Jt∈{1,2}}

D
(t−1)
in (v

(2)
t ) + δin

(
N(t− 1)/(t− 1)

1 + δinN(t− 1)/(t− 1)
− 1− β

1 + δin(1− β)

)
+

1

n

n∑
t=1

1{Jt∈{1,2}}

D
(t−1)
in (v

(2)
t ) + δin

1− β
1 + δin(1− β)

=: T21 + T22,

where

|T21| ≤
1

n

n∑
t=1

1

δin

∣∣∣∣ N(t− 1)/(t− 1)

1 + δinN(t− 1)/(t− 1)
− 1− β

1 + δin(1− β)

∣∣∣∣ p→ 0

by Cesàro’s convergence and

T22 =
1− β

1 + δin(1− β)

(
∞∑
i=0

N in
>i(n)/n

i+ δin

− 1

δin

1

n

n∑
t=1

1{Jt=3}

)
p→ 1− β

1 + δin(1− β)

(
∞∑
i=0

pin
>i

i+ δin

− γ

δin

)
=

(α + β)(1− β)2

(1 + δin(1− β))2
,

where the equality follows from (4.39). For T3, similar to T1, we have

T3 =
1

n

n∑
t=1

1{Jt∈{1,2}}

((
N(t− 1)/(t− 1)

1 + δinN(t− 1)/(t− 1)

)2

− (1− β)2

(1 + δin(1− β))2

)

+
(1− β)2

(1 + δin(1− β))2

1

n

n∑
t=1

1{Jt∈{1,2}}
p→ (α + β)(1− β)2

(1 + δin(1− β))2
.

Combining these results together,

1

n

n∑
t=1

u2
t (δin) = T1 − 2(T21 + T22) + T3

p→
∞∑
i=0

pin
>i

(i+ δin)2
− γ

δ2
in

− (α + β)(1− β)2

(1 + δin(1− β))2
= Iin. (4.44)

This completes the proof.

Lemma 4.7.4. As n→∞,

1

n

n∑
t=1

u̇t(δ̂
∗
in)

p→ −Iin.
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Proof. The result of this lemma can be established by showing first

1

n

n∑
t=1

u̇t(δin)
p→ −Iin (4.45)

and then ∣∣∣∣∣ 1n
n∑
t=1

u̇t(δ̂
∗
in)− 1

n

n∑
t=1

u̇t(δin)

∣∣∣∣∣ p→ 0. (4.46)

We first observe that

u̇t(δ) = −

(
1

D
(t−1)
in (v

(2)
t ) + δ

)2

1{Jt∈{1,2}} +

(
N(t− 1)

t− 1 + δN(t− 1)

)2

1{Jt∈{1,2}}

= −u2
t (δ)− 2ut(δ)

N(t− 1)

t− 1 + δN(t− 1)
.

Recall the definition and convergence result for T2 and T3 in Lemma 4.7.3, we have

1

n

n∑
t=1

ut(δin)
N(t− 1)

t− 1 + δinN(t− 1)
= T2 − T3

p→ 0.

Also from (4.44),

1

n

n∑
t=1

u2
t (δin)

p→ Iin.

Hence

1

n

n∑
t=1

u̇t(δin) = − 1

n

n∑
t=1

u2
t (δin)− 2

n

n∑
t=1

ut(δin)
N(t− 1)

t− 1 + δinN(t− 1)

p→ −Iin

and (4.45) is established.

By construction and definition, we have δ̂in, δ̂
∗
in, δin > 0. To prove (4.46), note that

|ut(δ̂∗in)− ut(δin)| ≤ 1{Jt∈{1,2}}

∣∣∣∣∣ 1

D
(t−1)
in (v

(2)
t ) + δ̂∗in

− 1

D
(t−1)
in (v

(2)
t ) + δin

∣∣∣∣∣
+1{Jt∈{1,2}}

∣∣∣∣∣ N(t− 1)

t− 1 + δ̂∗inN(t− 1)
− N(t− 1)

t− 1 + δinN(t− 1)

∣∣∣∣∣
≤ 1{Jt∈{1,2}}

∣∣∣∣∣∣ δin − δ̂∗in(
D

(t−1)
in (v

(2)
t ) + δ̂∗in

)(
D

(t−1)
in (v

(2)
t ) + δin

)
∣∣∣∣∣∣

+1{Jt∈{1,2}}

∣∣∣∣∣∣ (N(t− 1))2(δin − δ̂∗in)(
t− 1 + δ̂∗inN(t− 1)

)
(t− 1 + δinN(t− 1))

∣∣∣∣∣∣
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≤ 2|δ̂∗in − δin|
δ̂∗inδin

.

Then

|u2
t (δ̂
∗
in)− u2

t (δin)| =
∣∣∣ut(δ̂∗in)− ut(δin)

∣∣∣ ∣∣∣ut(δ̂∗in) + ut(δin)
∣∣∣ ≤ 2

∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

(
2

δ̂∗in
+

2

δin

)
,

and ∣∣∣∣∣ut(δ̂∗in N(t− 1)

t− 1 + δ̂∗inN(t− 1)
− ut(δin)

N(t− 1)

t− 1 + δinN(t− 1)

∣∣∣∣∣
≤

∣∣∣ut(δ̂∗in)− ut(δin)
∣∣∣ N(t−1)

t−1

1 + δin
N(t−1)
t−1

+
∣∣∣ut(δ̂∗in)

∣∣∣ ∣∣∣∣∣
N(t−1)
t−1

1 + δ̂∗in
N(t−1)
t−1

−
N(t−1)
t−1

1 + δin
N(t−1)
t−1

∣∣∣∣∣
≤

2
∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

1

δin

+
2

δ̂∗in

∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

.

From Theorem 4.3.2, δ̂MLE
in is consistent for δin, hence∣∣∣δ̂∗in − δin

∣∣∣ ≤ ∣∣∣δ̂MLE
in − δin

∣∣∣ p→ 0.

We have∣∣∣∣∣ 1n
n∑
t=1

u̇t(δ̂
∗
in)− 1

n

n∑
t=1

u̇t(δin)

∣∣∣∣∣
≤ 1

n

n∑
t=1

∣∣∣u̇t(δ̂∗in)− u̇t(δin)
∣∣∣

≤ 1

n

n∑
t=1

∣∣∣u2
t (δ̂
∗
in)− u2

t (δin)
∣∣∣+

2

n

n∑
t=1

∣∣∣∣∣ut(δ̂∗in)
N(t− 1)

t− 1 + δ̂∗inN(t− 1)
− ut(δin)

N(t− 1)

t− 1 + δinN(t− 1)

∣∣∣∣∣
≤

2
∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

(
2

δ̂∗in
+

2

δin

)
+

4
∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

1

δin

+
4

δ̂∗in

∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

p→ 0.

This proves (4.46) and completes the proof of Lemma 4.7.4.

4.8 Proof of Theorem 4.4.1

Proof. First observe that
∑

i iN
in
i (n) sums up to the total number of edges n, so

∞∑
i=0

N in
>i(n)

n
=

∞∑
i=0

iN in
i (n)

n
= 1.
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We can re-write (4.28a) as

α + β̃ =

(
1

δin

−
∞∑
i=0

N in
>i(n)/n

i+ δin

)/(
1

δin

− 1− β̃
1 + δin(1− β̃)

)

=

(
∞∑
i=0

N in
>i(n)/n

δin

−
∞∑
i=0

N in
>i(n)/n

i+ δin

)/(
1

δin(1 + δin(1− β̃))

)
=

∞∑
i=1

N in
>i(n)

n

i

i+ δin

(
1 + δin(1− β̃)

)
=: fn(δin), (4.47)

and (4.28b) as

α + β̃ =

(
N in

0 (n)

n
+ β̃

)/(
1− N in

0 (n)

n

δin

1 + (1− β̃)δin

)
=: gn(δin).

Then δ̃in can be obtained by solving

fn(δ)− gn(δ) = 0, δ ∈ [ε,K].

Similar to the proof of Theorem 4.3.2, we define the limit versions of fn, and gn as follows:

f(δ) :=
∞∑
i=1

pin
>i

i

i+ δ
(1 + δ(1− β)),

g(δ) :=
(
pin

0 + β
)/(

1− pin
0

δ

1 + (1− β)δ

)
, δ ∈ [ε,K].

Now we apply the re-parametrization

η :=
δ

1 + δ(1− β)
∈
[

1

ε−1 + 1− β
,

1

K−1 + 1− β

]
=: I (4.48)

to f and g, such that

f̃(η) := f(δ(η)) =
∞∑
i=1

pin
>i

1 + (i−1 − (1− β))η
,

g̃(η) := g(δ(η)) =
pin

0 + β

1− ηpin
0

.

Note that for all η ∈ I:

• Set bi(η) := (i−1 − (1− β))η, then 1 + bi(η) > 0 for all i ≥ 1. So that f̃(η) > 0 on I;

• f̃(η) ≤ 1
1−(1−β)η

∑∞
i=0 p

in
>i ≤ 1 + (1− β)K < ∞.

154



Meanwhile, g̃ is also well defined and strictly positive for η ∈ I because

1/pin
0 > 1/(1− β) > η. (4.49)

The first inequality holds since:

1/pin
0 > 1/(1− β) ⇔ pin

0 < 1− β

⇔ α

1 + (α+β)δin
1+(1−β)δin

< 1− β

⇔ α + β < 1 +
(1− β)(α + β)δin

1 + (1− β)δin

⇔ α + β < 1 + (1− β)δin.

We know α + β < 1 by our model assumption, thus verifying (4.49).

Define for η ∈ I,

h̃(η) :=
1

f̃(η)
− 1

g̃(η)
=

(
∞∑
i=1

pin
>i

1 + (i−1 − (1− β))η

)−1

− 1− ηpin
0

pin
0 + β

,

then it follows that

h̃(η) = 0 ⇔ f̃(η) = g̃(η), η ∈ I.

We now show that h̃ is concave and h̃(η)→ 0 as η → 0, then the uniqueness of the solution

follows.

First observe that

∂2

∂η2
h̃(η) =

∂2

∂η2

(
∞∑
i=1

pin
>i

1 + (i−1 − (1− β))η

)−1

=
∂2

∂η2

(
∞∑
i=1

pin
>i

1 + bi(η)

)−1

= 2

(
∞∑
i=1

pin
>i

1 + bi(η)

)−3 [
∂

∂η

(
∞∑
i=1

pin
>i

1 + bi(η)

)]2

−

(
∞∑
i=1

pin
>i

1 + bi(η)

)−2
∂2

∂η2

(
∞∑
i=1

pin
>i

1 + bi(η)

)
. (4.50)

We now claim that

∂

∂η

(
∞∑
i=1

pin
>i

1 + bi(η)

)
=

∞∑
i=1

∂

∂η

(
pin
>i

1 + bi(η)

)
= −

∞∑
i=1

pin
>i(i

−1 − (1− β))

(1 + bi(η))2
, (4.51)
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∂2

∂η2

(
∞∑
i=1

pin
>i

1 + bi(η)

)
=

∞∑
i=1

∂2

∂η2

(
pin
>i

1 + bi(η)

)
= 2

∞∑
i=1

pin
>i(i

−1 − (1− β))2

(1 + bi(η))3
. (4.52)

It suffices to check:

∞∑
i=1

sup
η∈I

∣∣∣∣ ∂∂η
(

pin
>i

1 + bi(η)

)∣∣∣∣ < ∞, ∞∑
i=1

sup
η∈I

∣∣∣∣ ∂2

∂η2

(
pin
>i

1 + bi(η)

)∣∣∣∣ < ∞.
Note that for i ≥ 1,

sup
η∈I

∣∣∣∣ ∂∂η
(

pin
>i

1 + bi(η)

)∣∣∣∣ = sup
η∈I

pin
>i|i−1 − (1− β)|

(1 + bi(η))2

≤ (2− β) sup
η∈I

pin
>i

(1 + bi(η))2

≤ (2− β)(1 + (1− β)K)2pin
>i.

Recall (4.41), we then have

∞∑
i=0

pin
>i =

∞∑
i=0

∑
k>i

pin
k =

∞∑
k=0

k−1∑
i=0

pin
k =

∞∑
k=0

kpin
k = 1.

Hence,

∞∑
i=1

sup
η∈I

∣∣∣∣ ∂∂η
(

pin
>i

1 + bi(η)

)∣∣∣∣ ≤ (2− β)(1 + (1− β)K)2

∞∑
i=0

pin
>i

= (2− β)(1 + (1− β)K)2 <∞,

which implies (4.51). Equation (4.52) then follows by a similar argument. Combining (4.50),

(4.51) and (4.52) gives

∂2

∂η2
h̃(η) = 2

(
∞∑
i=1

pin
>i

1 + bi(η)

)−3

×

( ∞∑
i=1

pin
>i(i

−1 − (1− β))

(1 + bi(η))2

)2( ∞∑
i=1

pin
>i

1 + bi(η)

)(
∞∑
i=1

pin
>i(i

−1 − 1 + β)2

(1 + bi(η))3

)
< 0,

by the Cauchy-Schwarz inequality. Hence h̃ is concave on I.

From Lemma 4.7.1, ψ(δin) = 0 where ψ(·) is as defined in (4.16). Hence we have f(δin) =

α + β in a similar derivation to that of (4.47). Also from (4.26), we have g(δin) = α + β.

Hence, δin is a solution to f(δ) = g(δ).
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Under the δ 7→ η reparametrization in (4.48), we have that f̃(ηin) = g̃(ηin) where ηin :=

δin/(1 + δin(1− β)), and also

lim
η↓0

f̃(η) =
∞∑
i=1

pin
>i = 1− pin

>0 = β + pin
0 = lim

η↓0
g̃(η).

This, along with the concavity of h̃, implies that ηin is the unique solution to h̃(η) = 0, or

equivalently, to f̃(η) = g̃(η) on I.

Let f̃n(η) := fn(δ(η)), g̃n(η) := gn(δ(η)). We can show in a similar fashion that η̃ :=

δ̃in/(1 − δ̃in(1 − β̃)) is the unique solution to f̃n(η) = g̃n(η). Using an analogue of the

arguments in the proof of Theorem 4.7.2, we have

sup
η∈I
|f̃n(η)− f̃(η)| a.s.−→ 0, sup

η∈I
|g̃n(η)− g̃(η)| a.s.−→ 0,

and therefore η̃
a.s.−→ ηin. Since δ 7→ η is a one-to-one transformation from [ε,K] to I, we

have that δ̃in is the unique solution to fn(δ) = gn(δ) and that δ̃in
a.s.−→ δin. On the other hand,

α̃ can be solved uniquely by plugging δ̃in into (4.47) and is also strongly consistent, which

completes the proof.
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S. Csörgő. Limit behaviour of the empirical characteristic function. Ann. Probab., 9:130–144,
1981a.
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