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ABSTRACT 

Targeting neurons with small molecule probes: from imaging to modulation 

Umed Boltaev 

Our body is governed through a complex network of diverse set of synapses created by many 

different neurons, which extend throughout the body. A great progress has been made to monitor and 

modulate these cells using genetic methods in limited settings, while chemical approaches have not 

achieved comparable successful results. Yet given the versatility of chemical probes, it has been 

important to create platforms which would allow us to generate compounds with characteristics of 

neuronal targeting and modulation. 

In our effort to modulate neurons and their synapses, a platform of assays was developed to find 

agonists and modulators of the brain derived neurotrophic factor, BDNF, and its receptor, TrkB, which is a 

central signaling system for neurogenesis and synaptic plasticity. These assays were used to evaluate 

reported TrkB agonists and perform a high throughput screen. In addition, an alternative approach in the 

form of phage display targeting TrkB was employed, since TrkB proved to be a challenging target for 

identification of small molecule agonist or modulator. 

To visualize different parts as well as various types of neurons, two different platforms were 

developed. A diversity oriented fluorescent library coupled with high content screening provided an 

opportunity to identify probes that could specifically stain neurons and synapses. In the second approach 

a new phage display method was developed that could identify probes with the ability to bind to neuronal 

cell surface markers. The developed platforms that we developed have a great potential to generate 

promising probes for vast array of applications. 
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1 Chapter I: Toward Pharmacological Modulation of the 

TrkB Receptor Tyrosine Kinase 

1.1 Introduction 

1.1.1 Importance of the BDNF-TrkB system. 

Brain derived-neurotrophic factor (BDNF) and its main receptor, tropomyosin related kinase 

(TrkB), has emerged as one of the key players in neuroplasticity during development and maintenance of 

the nervous system. Being a member of neurotrophic factor and Trk receptors (TrkA, TrkB, and TrkC) 

family, the interest in understanding and influencing this system has been high as the number of 

publications on BDNF and its receptor has increased exponentially since 2000, reaching 1,828 

publications in 2017 (1). BDNF release and TrkB activation have been reported to affect genesis and 

function of neurons and synapses via modulation of transcription, translation, and trafficking of proteins 

(slow time scale, hours-days), as well as modulation of ion channels and G-protein-coupled receptors 

(GPCRs) (rapid events, from seconds) (2, 3). These molecular effects are generally thought to underlie 

the cellular, circuit-level, and physiological consequences of the BDNF/TrkB signaling system activation. 

Hence the role of BDNF in neuroplasticity, mood disorders, and neurodegenerative diseases has been 

actively studied.  

1.1.1.1 Neuroplasticity 

BDNF has been recognized as a central molecule for inducing and regulating neuroplasticity in 

the brain (4). The evidence for these BDNF activities has come from the observation of increased BDNF 

expression in the hippocampus upon electrical induction of long-term potentiation (LTP) (5) and enhanced 

transition of short-term potentiation to long-term potentiation upon exogeneous BDNF application on a 

neuronal circuit. (6). Moreover, neuron activity-dependent BDNF secretion has been associated with LTP 

(7). In other words, the BDNF-TrkB system itself has the power to induce LTP in the brain, rendering this 

system to be sufficient to induce synaptic modulation. On the other hand, knocking out or scavenging 

BDNF by recombinant TrkB extracellular domain in the hippocampus has shown to lead to impairment in 

LTP induction, which was rescued by exogeneous BDNF (8, 9). Interestingly, a single-nucleotide 
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Val66Met BDNF polymorphism has been shown to decrease activity dependent release of BDNF in 

humans (10) and induce impairments in synaptic and cognitive functions (11). Furthermore, humans 

carrying this mutation have demonstrated to display increased risk of fear generalization (12). Thus, 

BDNF has been shown to be necessary to induce LTP, making the BDNF-TrkB system an important 

target to modulate neuroplasticity. 

Perhaps one of the most dramatic examples of the BDNF trophic effect has been demonstrated in 

visual cortex. During the formation of the visual cortex, synaptic connections segregate into eye-specific 

patches, called ocular dominance columns, based on competing signal input from the eye. BDNF infusion 

into primary visual cortex, but not nerve growth factor (NGF, a TrkA ligand) or neurotrophin-3 (NT3, TrkC 

and partial TrkB ligand), has inhibited formation of ocular dominance columns and orientation selectivity 

within infusion area without affecting other areas. In other words, exogenous BDNF has competed with 

activity-released BDNF and disrupted formation of the synapses based on the competing signals coming 

from the eyes (13). Thus, TrkB activation could support synaptogenesis and could be required for 

synaptic plasticity. Similar activity has been shown in the formation of glutamatergic synapses in the 

hippocampus (14), which in turn underlie memory (15) and cognitive enhancements (4, 11). 

In addition to synaptic modulation, BDNF has been shown to rescue neurons and induce 

neurogenesis. For instance, BDNF treatment of the eye and visual cortex has significantly reduced 

ganglion cell loss following injury to the optic nerve in adult cats (16). Intraventricular infusion of BDNF 

into adult rats has induced formation of new neurons in the olfactory bulb, striatum, septum, and even in 

the thalamus and hypothalamus (17, 18), while TrkB knockout in hippocampal progenitor cells has 

drastically reduced the number of new neurons in postnatal and adult mice (19). TrkB activation has led 

to enhanced neurogenesis of different neurochemical cell types in several areas of the adult murine brain 

(20, 21). In addition, mice with TrkB knockout in the cortex has resulted in reduced dendritic arborization, 

layer thinning, and progressive elimination of neurons in the somatosensory and visual cortices (22). 

Given the number of functions BDNF-TrkB activity has been reported to exert in the central 

nervous system (CNS), it should not be surprising that this system has important implications in various 

diseases of CNS, including mood disorders and neurodegenerative diseases. 
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1.1.1.2 Depression and Mood disorders 

Therapeutic efficacy of common antidepressants like fluoxetine has been associated with the 

ability to induce neuroplasticity in relevant circuits (23), and moreover to influence activity of the BDNF-

TrkB system. Indeed, chronic administration of fluoxetine and other selective serotonin reuptake inhibitors 

has resulted in an increased phosphorylated state of TrkB in the hippocampus and prefrontal cortex (24). 

Deletion of TrkB in newborn neurons has inhibited the effects of antidepressants (19) and increased 

anxiety-like behavior in mice (25). In addition, BDNF infusion into different brain areas of mice or rats has 

shown antidepressant (26–28) and anxiolytic effects (29) and has influenced other mood conditions (30) 

by inducing synaptic plasticity (31, 32). Furthermore, one of the mechanistic models for the fast-acting 

antidepressant effect of ketamine has invoked activity-dependent release of BDNF as the required 

downstream effect of ketamine administration (33). 

An example of BDNF-TrkB’s effect on neuroplasticity has been demonstrated in the visual cortex 

once again. Chronic treatment with fluoxetine has led to rewiring of the adult visual cortical system and 

effective reversal of vision loss in amblyopic animals through TrkB activation (34). Systemic fluoxetine 

administration or cortical infusion of BDNF has been capable of inducing plasticity seen only during the 

critical postnatal developmental period, enabling recovery of lost function, most likely via visual cortex 

rewiring. 

Collectively this data has indicated that the BDNF-TrkB signaling system has been necessary for 

antidepressant activity, and thus has questioned the previously held monoamine hypothesis of 

depression pathogenesis. It has been believed that adrenergic and serotonergic activity is impaired in 

depression. However, a number of studies have indicated that the lack of plasticity has been more crucial 

in the development of depression and other disorders (35). Hence, the neurotrophin hypothesis has been 

proposed, which has stated that the induction of neuroplasticity through the neurotrophic factor system 

could have the potential to treat mood disorders (31). 

1.1.1.3 Neurodegenerative diseases 

BDNF, as a prominent neurotrophin, has also been pursued as an experimental treatment of 

neurodegenerative diseases (36, 37). Huntingtin protein, a protein that is linked to the cause of 

Huntington’s disease, has been found to regulate expression and trafficking of BDNF (38), where 
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mutation in huntingtin has suppressed BDNF expression and disrupted normal transport of BDNF and 

TrkB. Delivery of BDNF into the striatum has been shown to attenuate progression of Huntington’s 

disease in animal models (38). 

BDNF has also been found to play a role in Alzheimer’s disease. BDNF levels have been found to 

be reduced in parietal cortices and hippocampi in postmortem brains of Alzheimer’s disease patients (39), 

and it has been suggested that amyloid-beta peptides have led to truncation of the TrkB receptor and 

reduction of TrkB signaling (40). Lentiviral delivery of GFP-tagged BDNF into the enthorhinal cortex of 

aged monkeys has been reported to significantly ameliorate visuospatial performance compared to the 

vehicle-GFP treated controls (41), indicating the ability of BDNF to improve some symptoms of 

Alzheimer’s disease, likely through induction of neuronal plasticity in the central nervous system (CNS), 

thus counteracting progression of the disease. 

BDNF along with other neurotrophins and growth factors has also been explored in the context of 

neurological disorders. For example, BDNF treatment of the eye and visual cortex significantly reduced 

ganglion cell loss following injury of the optic nerve in adult cats as noted above (16). Moreover, BDNF 

has been shown to induce recovery of movement after spinal cord injury (42). 

1.1.2 Signaling of BDNF-TrkB 

1.1.2.1 Receptor structure 

Based on sequence analysis TrkB has been classified as a membrane protein with a ligand 

binding domain in the extracellular domain and tyrosine kinase in the intracellular domain (Figure 1.1.1). 

The extracellular domain contains a leucine-rich repeat and two Ig-like domains, which could be carrying 

cell adhesion function, and the ligand binding immunoglobulin like domain is located at 301-379 aa. 

Multiple glycosylation sites have been predicted on TrkB and resolved on a related receptor TrkA (43). 

Following the ligand binding site, a transmembrane domain, a juxtamembrane region, and tyrosine kinase 

domain has been identified. Despite crystallography studies of the BDNF binding site, the extracellular 

domain of TrkA (43, 44), and the intracellular tyrosine kinase domain (45), the full structure of the receptor  

remains to be elucidated. Apart from location of the transmembrane region at 431-454 aa and the 

signaling tyrosine residue at 516 aa in the juxtamembrane region, little has been known about structural 

conformation at 382-532 aa and what conformational changes would TrkB undergo to become active. 
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This part of the protein most likely has played crucial roles in receptor activation as it likely transduces 

conformational changes upon ligand binding (46).  

In addition to the full length form of TrkB, neurons have been reported to produce the truncated 

isoform, TrkB.t1, which lacks the cytosolic tyrosine kinase domain and has been regarded as the 

dominant-negative isoform (47, 48), which regulates BDNF signaling. The later notion has been 

supported by the inhibition of BDNF-induced downstream pathways by TrkB.t1, since it has been able to 

bind BDNF without inducing enzymatic kinase activity. It has also been shown to scavenge BDNF for 

storage or degradation in glial cells. However, TrkB.t1 has been reported to induce BDNF-independent 

cytoskeletal changes in glia (49). Interestingly full length TrkB and TrkB.t1 mutually could inhibit each 

other’s activity. 

1.1.2.2 Receptor activation 

BDNF and other neurotrophins are 

present as dimers at physiological 

conditions and concentrations. Upon 

binding, BDNF mediates TrkB dimerization 

and conformational changes. This leads to 

autophosphorylation of the TrkB intracellular 

domain at several tyrosine residues(3, 50, 

51). Among them Y516, Y706/Y707, and 

Y816 are found to be important for signal 

transduction. After the receptor activation 

SHC adapter protein (SHC1) protein is 

recruited to the pY516 residue and 

phosphorylated by TrkB (52), which leads to 

activation of the extracellular signal-

regulated kinase (ERK) and protein kinase 

B (Akt) signaling cascades (Figure 1.1.1). 

These pathways have been associated with differentiation, proliferation, and pro-survival signaling (53, 

 

Figure 1.1.1 TrkB structure and signaling 
BDNF (red structure) and TrkB (grey structure) complex 
formed on the cell surface leads to phosphorylation (℗ symbol) 
of TrkB, ERK, Akt, and PLCγ through recruitment of adapter 
proteins (SHC1, FRS2, GRB1, GAB1) and intermediate 
kinases (RAF, MEK, PI3K, PDK). Phosphorylated ERK and Akt 
through gene regulation and translation induce neuronal 
growth and survival. PLCγ through second messengers (DAG, 
IP3, Ca2+) activates PKC and CAMK kinase pathways, which 
leads synaptic plasticity and other trophic effects of BDNF. 
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54). Phospholipase C (PLCγ) has been shown to directly bind phosphorylated TrkB at pY816 site and to 

be activated by the receptor and trigger Protein Kinase C/Ca2+ signaling. These pathways account for 

anti-apoptotic signaling, local protein synthesis and gene regulation that ultimately lead to increased 

neurogenesis, neuronal growth and differentiation, synaptogenesis, synaptic plasticity, and other 

physiological effects of BDNF(55) (Figure 1.1.1). 

BDNF-induced TrkB activation has been reported to initiate internalization of the BDNF-TrkB 

signaling complex through clathrin-coated pits and by macropinocytosis (50). These created endosomes 

would still contain active TrkB, forming ‘signaling endosomes’, and have been shown to be retrogradely 

transported to the cell soma and nucleus (for the axonal receptors). Retrograde transport velocity has 

been estimated to be at 1 µm/s (56), which has corresponded to the velocity of axonal active transport 

(0.1-2 µm/s) (57). This transportation is believed to transduce the trophic signal from the axonal terminal 

to the cell soma and deliver BDNF to the cell body from peripheral application. 

To summarize, TrkB activation could be characterized at the receptor (e.g. receptor 

phosphorylation and internalization) or its downstream targets and physiological consequences (e.g. LTP 

induction, gene expression, neurite outgrowth, and cell survival).  

1.1.3 TrkB agonists 

1.1.3.1 BDNF Pharmacokinetics 

Given the importance of TrkB activity in brain plasticity and development, as well as its role in 

various brain disorders and diseases, many different attempts have been made to modulate the BDNF-

TrkB system. The first step would have to be to evaluate BDNF itself as a potential therapeutic agent.  

A pharmacokinetic study of parenteral administration of radioiodinated BDNF into adult Sprague-

Dawley rats has revealed a BDNF plasma half-life to be 0.92 min with a higher non-specific binding to 

brain and nerve capillaries compared to other neurotrophins (58). In another study, intravenous injection 

of BDNF radiolabeled with 3H into Sprague-Dawley rats has demonstrated a plasma half-life of 2.72 min 

with rapid degradation measured with trichloroacetic acid precipitation, while BDNF conjugated to 

monoclonal antibody to transferrin receptor has shown a half-life of 12 min with slower degradation. 

Control protein, 14C labeled rat serum albumin, has produced a 382 min half-life with no detectable 
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degradation. Non-conjugated BDNF has been found to be bound to capillaries and with little BBB 

penetration, while conjugated BDNF has shown higher BBB penetration (59). 

Subcutaneous (s.c.) BDNF administration to Wistar rats has resulted in a plasma half-life of 3h 

measured by ELISA and has rescued choline acetyltransferase expressing neurons in sciatic and facial 

nerve axotomized rats (60). Human trials of s.c. injection of recombinant methionyl BDNF has increased 

colonic transit, relieved constipation, and has demonstrated a plasma half-life of BDNF to be on average 

7h, with 2.9-14.2 h range measured by ELISA (61).  

A pharmacokinetic study of intrathecal administration of methionyl BDNF into sheep spinal cord at 

lumbar level demonstrated 3 and 2 phase decay of BDNF concentration at injection and cranial sites 

respectively. First phase of the decay has shown a half-life of BDNF at 3.8-8.8 min, while at the second 

phase half-life has been measured to be 3.8 h. It has been hypothesized that first phase decay was a 

distribution phase of the injected BDNF, while the second phase appeared due to transient binding of 

BDNF to the meninges. Moreover, free distribution of the BDNF in spinal cord parenchyma could be 

observed, while in the grey matter BDNF has been detectable exclusively in the perinuclear space of 

motor neurons, suggestive of retrograde transport (62). These results prompted human trials. In phase I/II 

trial of amyotrophic lateral sclerosis (ALS) treatment with intrathecal delivery of recombinant methionyl 

BDNF or placebo, the measured concentration of BDNF in lumbar cerebrospinal fluid (CSF) obtained 

between day 11 and 24 has been 40 ng/ml at the lowest dose infusion rate (25 µg/day) (63). Lumbar-to-

cisternal CSF ratio ranged from 2:1 to 20:1 in 17 individuals with average of 4:1 ratio , which would be in 

agreement with bulk dilution of the compounds in the CSF (64). Serum concentration of BDNF have been 

measured to be < 5ng/ml at any injected doses (63). In phase III clinical trials of ALS treatment, 

intrathecal delivery of recombinant methionyl BDNF to 1135 patients has shown no significant 

improvements over placebo in forced vital capacity test, survival, walking speed, or respiratory events 

(65). Lack of success in clinical trials of BDNF could be attributed to the pharmacokinetic properties of 

BDNF or to dosage of BDNF, where positive in vivo results with BDNF were observed at 5-10 mg/kg in 

mice, while human dosage were at 25-100 µg/kg, with max tolerance of 150 µg/kg (66). 

Even though direct BDNF injection did not produce anticipated treatment outcome, a lot of effort 

has been put to increase bioavailability of the BDNF since pharmacokinetics of intravenous (i.v.) injected 
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BDNF seem to be the primary cause of lack of functional improvements (36, 67, 68). In particular, viral-

based (AAV, or lentivirus, adenovirus) and cell-based (genetically engineered bone marrow stem cells, 

fibroblast, neural stem cell) delivery systems have been tested in animal models of different diseases 

(Parkinson’s, Huntington’s, Alzheimer’s, epilepsy) and injuries (CNS lesion, spinal cord injury). 

Alternatively, polymer scaffolds, like polyethylene glycol chain conjugation, poly(lactic-co-glycolic acid) 

microsphere binding, and agarose hydrogel association, have been used to deliver and release BDNF 

into the targeted tissue (68).  

Converting BDNF into pharmaceuticals has faced many challenges and would require more 

modifications and testing before moving into human trials. On the other hand, developing small molecule 

agonists and modulators should provide more control over pharmacokinetics and pharmacological profile 

(e.g. efficacy and signaling bias), which could allow for a wider range of therapeutic options. 

1.1.3.2 TrkB small molecule agonists 

Development of TrkB small molecule agonists and modulators has been of great importance (69). 

In recent years, several small molecule agonists have been reported to activate TrkB in living cells in vitro 

including 7,8-dihydroxyflavone (7,8-DHF) (70), deoxygedunin (71), LM22a-4 (72), 

desmethylasterriquinone B1 (DMAQ-B1) (73), amitriptyline (74), and deprenyl (75).  

1.1.3.2.1 7,8-Dihydroxyflavone  

The most studied TrkB agonist, 

7,8-DHF (Figure 1.1.2), has been 

identified in a screen of 2000 

biologically active compounds based 

on their anti-apoptotic activity in a TrkB 

expressing cell line treated with 

staurosporine (apoptosis inducing 

agent and non-specific kinase inhibitor, 

Figure 1.1.2 (76, 77)). It has been reported to induce TrkB dimerization, rescue neurons from kainic acid 

induced toxicity, and exhibit neuroprotective properties in an animal model of Parkinson’s disease. A 4’-

dimethylamino-7,8-dihydroxyflavone derivative has been reported to be a more potent and efficacious in 

  

Figure 1.1.2 Structure of 7,8-DHF, staurosporine, and K252a 
7,8-Dihydroxyflavone, a reported TrkB agonist. Staurosporine, a 
non-selective kinase inhibitor and apoptosis inducing agent. K252a, 
a Trk family selective kinase inhibitor derived from staurosporine.  
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TrkB activation promoting neurogenesis in the dentate gyrus and demonstrating antidepressant activity 

(78). Intracerebroventricular administration of 7,8-DHF dampened the development of the “depressive” 

phenotype in vulnerable animals with decreased serum BDNF (79). 7,8-DHF has been shown to activate 

TrkB in amygdala at 5 mg/kg intraperitoneal injection and enhanced fear acquisition and extinction (80). 

In six different publications it has caused various improvements in animal models of Alzheimer’s disease 

(81–86), while one publication has claimed no significant effect of 7,8-dihydroxyflavone on Alzheimer-

associated phenotypes (87). 

Subsequent studies have demonstrated direct binding of 7,8-DHF to the TrkB extracellular 

domain by surface plasmon resonance and tryptophan fluorescence quenching. It has also been reported 

that the agonistic activity of 7,8-DHF at TrkB in cultured rat cortical and hippocampal cultures depended 

on day in vitro culturing of the cells with the highest activity at DIV 13 (88). In rodents in vivo systemic 

administration of this compound has been shown to have antidepressant effects in mice (89) and improve 

motor function in Huntington disease models (90). All in all, approximately 100 papers have been 

published since the initial report of BDNF mimetic property of 7,8-DHF. 

However, in addition to agonistic activity at TrkB, 7,8-DHF has been reported to possess 

antioxidant activity. 7,8-DHF has been found to be a potent antioxidant, it has inhibited lipoperoxidation of 

lysosomal membranes (EC50 around 30 µM) (91), bromobenzene-induced hepatotoxicity in mice (100-

200 mg/kg) (92), and preventing H2O2-induced DNA damage in-vitro at 40 µM (93). It has also been 

shown to activate Akt in wild type CHO cells (93). In addition, it has been shown to rescue immortalized 

hippocampal cells that do not express TrkB from glutamate, H2O2, and menadione-induced oxidative 

stress (94). It has been shown to induce aortic dilation through TrkB-independent endothelial nitric oxide 

cGMP and Ca2+ signaling pathways (EC50 24 µM) (95). It should be noted that these antioxidant 

activities of 7,8-DHF have been detected at high concentrations 

(20-100 µM). 

1.1.3.2.2 Desmethylasterriquinone B1 

DMAQ-B1 (Figure 1.1.3) has been reported to activate 

TrkA, TrkB, and TrkC in CHO cells transfected with these receptors 

(73). It has demonstrated a short period of TrkA activation with 

 

Figure 1.1.3 Structure of DMAQ-B1 
DMAQ-B1, a reported Trk family 
receptor agonist. 
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maximal induced response at 3 min. It has also activated TrkB in rat cortical culture at 5 and 20 µM within 

10 min of incubation. However, DMAQ-B1 has also induced ERK and Akt phosphorylation in wild-type 

CHO cells at 20 µM within a 10 min treatment and has induced cell death at active concentration in rat 

cortical neurons (73). 

It has initially been identified as an insulin receptor (IR) agonist through screening of 50,000 

mixtures of synthetic and natural products by assaying for tyrosine kinase activity of IR expressed in CHO 

cells (96). It has been reported to activate IR with similar efficacy as insulin and EC50 at 3-6 µM. 

Moreover, at 2 µM DMAQ-B1 increases insulin potency and efficacy. It has also induced PI-3K and Akt 

phosphorylation in CHO. However, it activates other RTKs, like insulin-like growth factor receptor (IGF-IR) 

and epidermal growth factor receptor (EGFR), with lower potency and efficacy.  

1.1.3.2.3 LM22a-4 

 

Figure 1.1.4 Structure of LM series 
LM series compounds, reported TrkB agonist derived from BDNF structure modeling  

 

Another series of compounds referenced as LM (named after the authors, Longo and Massa) has 

been developed through in-silico screening of more than 1,000,000 available compounds for structural 

resemblance to the BDNF loop IIb consisting of the SKGQL amino acid sequence (72). Several 

compounds (Figure 1.1.4) identified from the screen have been reported to activate TrkB and 

downstream targets in NIH-3T3 cells, while LM22a-4 has also shown activation of TrkB in mouse 

hippocampal neuronal culture (72). Further in vivo studies of LM22a-4 have demonstrated BDNF-related 

activities. For example, LM22a-4 has induced spinal cord injury recovery by reducing apoptosis in mice 

(97). LM22a-4 has improved recovery of motor functions in mice that suffered from artificially induced 

stroke without significant change in angiogenesis, dendritic arborization, axonal sprouting, glial scar 

formation, or neuroinflammation (98). Interestingly, LM22a-4 treatment has shown increased rescue of 

dendritic spine density of medium spiny neurons in mouse models of Huntington’s diseases (99). In a 



11 
 

mouse model of Rett syndrome, LM22a-4 has rescued wild-type levels of TrkB phosphorylation in the 

medulla and pons and restored wild-type breathing frequency, eliminated spontaneous apneas in resting 

animals, improved hippocampal-dependent object location memory and restored hippocampal long-term 

potentiation (LTP) (100–102). 

1.1.3.2.4 Other compounds 

Deoxygedunin (Figure 1.1.5) has 

been identified as TrkB agonists along with 

7,8-DHF. It has been described as orally 

available agent able to activate TrkB in 

mouse brain and even prevent degeneration 

of vestibular ganglion in BDNF double 

knockout mice (71). It has also 

demonstrated anti-depressant and learning 

enhancement effects. Deoxygedunin was shown to promote axon regeneration (103). In Parkinson’s 

disease animal models, it has rescued behavioral performances of the animals and decreased the extent 

of dopaminergic neuron loss (104). 

Another TrkB agonist contender discovered in the same screen as 7,8-DHF and deoxygedunin 

has been amitriptyline, one of the oldest tricyclic antidepressant agents (105)(Figure 1.1.5), which has 

also been reported to have activity at TrkB and neuroprotective properties at 500 nM in vitro (74). It has 

induced TrkB phosphorylation and increased neurogenesis in the dentate gyrus in an Alzheimer’s disease 

mouse model (106), potentiated BDNF-TrkB signaling and supported mitochondrial integrity and 

functionality in a Huntington’s disease mouse model (107). It has induced TrkB phosphorylation in dorsal 

root ganglion explant at 10 µM which has also appeared to be toxic (108). However, amitriptyline has not 

induced TrkB in fibroblast or rat primary hippocampal and cortical neuronal culture in another 

independent lab (109). 

Deprenyl, a monoamine oxidase inhibitor type antidepressant (110) (Figure 1.1.5), has been 

reported to induce TrkB phosphorylation in the SH-SY5Y cell line at 100 µM, however, neither ERK nor 

Akt have been found to be activated (75). Of downstream TrkB targets, only PI3K has been reported to 

     

Figure 1.1.5 Structure of deoxygedunin, amitriptyline, deprenyl 
Deoxygedunin, a reported TrkB agonist. Amitriptyline, a 
tricyclic antidepressant and reported TrkB agonist. Deprenyl, a 
selective irreversible monoamine oxidase inhibitor and 
reported TrkB agonist. 
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be phosphorylated in response to deprenyl stimulation. No other report on deprenyl activity has been 

published to date. 

1.1.3.3 TrkB peptide agonists 

An alternative approach to finding TrkB agonists has been to use part of the BDNF sequence with 

certain structural constraints to mimic BDNF tertiary structure. The available crystal structure of BDNF 

has been used to select an appropriate region as a basis for peptide synthesis. Based on a sequence of 

BDNF loop II, a 12-mer peptide flanked with Cys for cyclization, CEKVPVSKGQLKQC, has been selected 

to identify potent peptide sequence for TrkB activation (111). Modification of the sequence has led to a 

development of a shorter peptide, CVPVSKGQLC, which has been further altered to give a more 

constrained conformation by cyclizing the monomer and dimerizing through Cys-Cys and Glu-Lys 

coupling respectively, named tricyclic dimeric peptide 6, or TDP6 (112). This peptide has demonstrated 

neuroprotective properties and induced TrkB and ERK phosphorylation in primary oligodendrocyte culture 

but not to the same level of efficacy as BDNF (113).  

Another peptide has been designed based on the neurotrophin sequence and the hypothesis that 

neurotrophins have not been able to promote axonal growth in the presence of myelination inhibition 

through interaction with p75NTR receptor (114). Constraining the peptide to the BDNF sequence that 

selectively interacts with TrkB and not p75 may yield a TrkB agonist that would promote myelination and 

axonal growth even in the presence of p75. As a start, the N terminus sequence has been synthesized as 

a cyclic peptide, N-Ac-CSRRGEC-NH2, to antagonize TrkB and confirm competitive binding to the 

receptor, which has been shown by inhibition of neurite growth in vitro with IC100 at 125 µM. Then, a 

tandem repeat approach has been used to dimerize the peptide to N-Ac-CSRRGELAASRRGELC-NH2 

and thereby turning it into a TrkB agonist, which promoted axonal growth in vivo with EC100 at 6 µM. 

However, this peptide has not been active in the CellSensor assay (see below) (115). 

Another attempt to create a BDNF mimetic peptide has used BDNF structural analysis yielding 6 

sequences originating from sequences of BDNF loops. Peptides based on these sequences have been 

synthesized as tetrameric dendrimers coupled to a lysine backbone (116). Out of these peptides, two 

peptides, Betrofin 3 (RGIDKRHWNSQ) and Betrofin 4 (SYVRALTMDSKKRIGWR) have induced ERK and 

Akt phosphorylation, neurite outgrowth, and neuronal survival in primary cerebellar granule neurons. 
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Betrofin3 has also been reported to cause differentiation of embryonic stem cells into cardiomyocytes 

(117). 

Going smaller in scale, five tetra peptides based on different regions of BDNF have been  

synthesized and tested for TrkB agonism in hippocampal neuronal culture with arguably positive results 

(118). Peptide B-3, Ac-SKKR-NH2, and B-5, Ac-IKRG-NH2, have been found to be partial agonist and 

partial antagonist of BDNF respectively. 

1.1.3.3.1 TrkB antagonists 

Generating TrkB antagonist may have potential use as 

pharmaceutics to treat some mood disorders as well as cancer. One 

approach to find antagonists could be finding a peptide that would 

compete with BDNF in binding to TrkB. The rational starting point 

would be BDNF sequences itself. As a direct approach to find BDNF 

sequence responsible for TrkB binding and activation, BDNF has been 

enzymatically cleaved into six subsequences and tested for inhibition 

of BDNF-induced TrkB phosphorylation (119). A BDNF specific sequence from region next to loop 3, 

NPMGYTKEG, has emerged as potent antagonist. This cyclic peptide of the Cys-flanked sequence has 

been named Cyclotraxin B and found to be potent antagonist with IC50 at 12 pM. It has exhibited 

anxiolytic effects in mice similar to diazepam but showed no antidepressant activity. 

Continuing in-silico screening approaches, the N-terminal region of NT4 in the complex with TrkB-

d5 has been modelled for BDNF-TrkB interactions (120). Using docking algorithms 12 compounds were 

selected for testing on cells. As the result two compounds have shown full inhibition of TrkB activity with 

an IC50 at 200 µM. Further modifications have yielded the ANA-12 compound (Figure 1.1.6) with biphasic 

inhibition curve displaying IC50 50 nM and 50 µM. In vivo testing of ANA-12 has revealed anxiolytic and 

antidepressant activities. 

BDNF mimetics in the form of cyclic pentapeptide monomer or dimer with VSK sequence core, b-

Ala or Gly as 4th amino acid, and (1S,2S)-2-aminocyclohexanoic acid (BAc6c), or (S)-2-carboxylate-

azetidine (Azg), or 19 (S)- and (R)-2-carboxylate-2-methylazetidine as 5th amino acid mimicking loop 2, 

and cyclo[Asp-Ser-Lys-Lys-Arg-BAc6c] and cyclo[Asp-Ser-Lys-Lys- Arg-Azg] mimicking loop 4 have been 

 

Figure 1.1.6 Structure of ANA-12 
ANA-12, a reported TrkB 
antagonist derived from BDNF 
structure modeling. 
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synthesized and shown to be TrkB antagonist by inhibiting BDNF-induced TrkB activation in rat cortical 

neuronal culture at 100 µM (121). 

 

1.1.3.3.2 Phage display efforts 

Utilization of phage display has been yet another approach to find small molecule agonists, 

modulators, or antagonists of TrkB. This approach has been based on library of phages that display 

peptides or protein on the capsid proteins. By presenting a phage library to the target, these peptides may 

specifically bind phage to this target in the process called biopanning. Collected bound phages have 

usually been amplified and presented in the next round of biopanning. A phage library has been 

sequenced to identify peptides that bind to the target. Before development of next generation sequencing 

that enables sequencing the whole phage library, the Sanger sequencing of randomly selected phages 

has been used limiting the information on sequences in different fractions of the biopanning process. To 

account for background binding two approaches have been employed: consecutive biopanning, where 

phage library has been biopanned against background (e.g. plate, tube, cells lacking the target) before 

biopanned against the target, and parallel biopanning, where same library has been biopanned against 

target and background. In the consecutive biopanning approach, phages with specific binding to the 

background are assumed to be depleted before the rest of the phage are presented to the target, thus 

creating a library with phage that should be specific to the target. In parallel biopanning approach, the 

phage library collected from target has been used for the next round. Target specific peptides then have 

been identified through comparison of the sequences collected from both target and background 

biopannings. Parallel biopanning could only be used with next generation sequencing, since the 

sequences of whole library has been required for comparable elimination of non-specific peptides.  

In one report, a phage display with consecutive biopanning has been used to find sequences of 

peptides that bind to TrkB, employing TrkB-expressing NIH 3T3 cells and bacteriophage f1 CX9C library 

(122). After four rounds of selection 20 peptides have been identified through the Sanger sequencing. Out 

of 20 peptides, only one peptide, CSMAHPYFARC named C1, has been characterized more thoroughly, 

which has demonstrated antagonism of BDNF induced NIH 3T3 proliferation. 



15 
 

Another phage display using T7 phages with random peptide sequences (no constraints have 

been described) has been performed on recombinant TrkB-Fc chimera constructed as a pseudo-receptor 

dimer immobilized on Dynabeads (123). After 5 rounds of selection, BM17 peptide with 

NVRPRICRVRKWTLCF sequence has been selected for characterization and modification. This peptide 

has bound to TrkB with Kd at 17 nM, while it’s modified version, BM17d99 with KSLPRMCRVRKWRLCF 

sequence has had Kd at 0.45 nM. Dimerization of BM17d99(K1N/K11R) has produced a peptide that 

induced TrkB phosphorylation with EC50 at 10 nM and lower efficacy than BDNF. 

A surprising discovery has been made in the course of in vivo phage display of cardiac 

vasculature using pSKAN Phagemid Display System with CX6C in young and aged mice. A peptide, 

ψO40, with ARRGQA sequence collected from aged mice has been found to be highly homologous to 

BDNF N-terminus at 5-9 positions. Through this discovery it has been determined that the truncated form 

of TrkB is upregulated in the aged mice heart. 

1.1.4 Reproducibility of TrkB agonists  

Discoveries of TrkB agonist have seemed to be successful. However, there have been a number 

of reports, which show that in vitro and in vivo activity of these compounds as TrkB agonists could not be 

reproduced. For example, no TrkB, ERK, or Akt activation has been detected in CHO-TrkB cells (see 

below) and neurons in the presence 7,8-DHF, LM22a-4, or amitriptyline (115, 124). In another instance, 

7,8-DHF has failed to alleviate learning and memory impairments in the Alzheimer’s disease mouse 

model (87). In addition, the lack of reproducibility of these has been highlighted at conferences. Given this 

conflicting information, independent characterization of the reported agonist has become important. 

 

1.2 Results 

1.2.1 Overview 

To thoroughly characterize potential TrkB agonists and modulators and address the 

reproducibility issue, a platform of various assays was developed during the course of the presented 

work. Specifically, several different cell lines expressing TrkB have been established, including primary 

neuronal culture. Using these cell lines, several cell-based assays have been developed and acquired, 

that reported on activation of TrkB and its downstream targets, as well as on TrkB-dependent gene 
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expression. These assays were then used to characterize reported agonists as well as to provide an 

opportunity to perform an independent high throughput screening of the small molecule library in 

collaboration with Dr. Holson (Broad Institute). The results of our efforts have been published in Science 

Signaling (125). 

In addition to the developed assays, a new screening platform was developed based on phage 

display of the short cyclic peptides in collaboration with Dr. Teesalu (Sanford Burnham Prebys Medical 

Discovery Institute, SBP MRI), which aimed at finding peptides that would exhibit affinity to BDNF-TrkB 

complex, an alternative approach to the previously reported phage display efforts (see above).  

1.2.2 Established cell lines 

1.2.2.1 Neurons  

To test endogenously expressed TrkB, primary neuron culturing was developed. Following Dr. 

Waites (Columbia University Medical Center, CUMC) protocol and assistance, cortical neuronal cultures 

(CNC) were prepared from E18 rat pups’ cortices. These cultures were grown beyond 12 days in vitro 

(DIV 12) up to DIV25, a time period when neurons are considered to be fully mature. Typically, mature 

cells would create long processes overlapping with each other, creating synaptic connections. CNC 

contained different neuronal and glial subtypes which expressed TrkB (Figure 1.2.1). TrkB was expressed 

in full length and truncated forms (Figure 1.2.7). 

A 

 

B 

 

C 

 

Figure 1.2.1 CNC characterization by immunofluorescence 
A. CNC stained with neuronal marker b3-Tubulin (green), astrocytic marker GFAP (red), and Hoechst nuclear stain 
(blue) to confirm the presence of neurons, astrocytes, and other cell types (not stained) in the culture (scale 50 
µm). B. CNC stained for TrkB (green) and neuronal marker b3-Tubulin (red) to demonstrate presence of TrkB in 
neurons. C. CNC stained for TrkB (green) and GFAP (red), to show expression of TrkB in astrocytes and other 
cells (not labeled). Scale bar for B and C 50 µm. 
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1.2.2.2 HEK-TrkB 

In order to have reliable TrkB activation in the context of human cells, a HEK cell line stably 

expressing TrkB was acquired from Dr. Chao (NYU). Functional activity of the receptor at several 

Control 
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60 min 

 

180 min 

 

Figure 1.2.2 TrkB internalization in HEK-TrkB cells 
BDNF induced TrkB internalization in HEK-TrkB, which could be observed at different time points as the formation 
of vesicles (puncta stained with TrkB antibody). Excess TrkB remained on the cell surface (coronal staining by 
TrkB antibody). 
 

 

Figure 1.2.3 SH-SY5Y culturing conditions in 96-well plates 
SH-SY5Y cells seeded at different conditions in a 96-well plate to find optimal conditions for the developed assays. 
Scale bar is 100 µm.  
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signaling levels was verified by the assays developed in our laboratory (see below). Moreover, BDNF-

induced TrkB internalization could be detected through immunofluorescence (IF) (Figure 1.2.2).  

1.2.2.3 SH-SY5Y 

To test endogenously expressed human TrkB, an SH-SY5Y cell line based protocol was 

developed. Human bone marrow derived SH-SY5Y could be differentiated using retinoic acid into neuron-

like cells, which express TrkB. Using standard protocols, SH-SY5Y was used to test reported agonists. 

However, to increase the throughput of the assays, optimal conditions to seed and treat the cell line in a 

96-well plate were explored. To this end, several different cell densities, treatment with BDNF, and 

surface binding agents (collagen, laminin, poly-D-lysine) were tested. Seeding the cells at 40,000/well 

provided better binding to the surface, while lower seeding density resulted in cell aggregation. BDNF 

treatment reduced the number of aggregates in the culture (Figure 1.2.3). Collagen and laminin had 

similar effect on the cells, while poly-D-lysine surface treatment resulted in cell aggregates. Furthermore,  

TrkB 

expression 

plateaued on fourth 

day of differentiation, 

while BDNF 

treatment slowed the 

rate of TrkB 

expression (Figure 

1.2.4). However, due 

to difficulties of 

subculturing and 

reported phenotypic 

changes over many 

passages SH-SY5Y 

cell assays were not 

pursued any further.  
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Figure 1.2.4 TrkB and p75 expression profile in differentiated SH-SY5Y cell 
A and C. Expression profile of TrkB and p75 in retinoic acid induced differentiated SH-
SY5Y in laminin (A) or collagen (B) covered 96-well plate. B and D. Expression profile of 
TrkB and p75 retinoic acid induced differentiated SH-SY5Y cells treated with BDNF on 
the 2nd day of the differentiation. in laminin (A) or collagen (B) covered 96-well plate. 
BDNF inhibited increase of TrkB expression over 2 days. 
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1.2.2.4 Cell lines for HTS 

To perform high throughput assays based on 

reporter gene technology, two commercially available cell 

lines were acquired. DiscoverX PathHunter® has been 

based on the reconstitution of β-galactosidase through a 

protein-protein interaction of TrkB and a downstream target 

by fusing the major fraction of β-galactosidase (EF) to the 

SH2 domain containing protein, SHC1, and a peptide 

fragment (PF) of the enzyme to the C-terminus of TrkB in 

human U2OS cells (Figure 1.2.5). Upon phosphorylation of 

TrkB, SHC1 binds to the receptor, which brings the two split 

portions of the 

enzyme in close enough proximity for enzyme reconstitution to 

occur. The enzyme activity has been recorded through a 

luminescent reaction (proprietary information). DiscoverX 

U2OS cell line expressing TrkB and p75 was used for primary 

high throughput screen.  

The Invitrogen CellSensor CHO cell line expressing 

TrkB, which reports nuclear factor of activated T-cells (NFAT) 

activation, was used as a counter screen. The Invitrogen 

CellSensor assay has been based on β-lactamase expression 

under the control of NFAT in a CHO cell line. TrkB 

phosphorylation results in PLCγ activation leading to increased 

Ca2+ level and subsequent NFAT activation (Figure 1.2.6). -

lactamase expression is quantified by a FRET interaction 

between a coumarin and fluorescein derivatives connected by 

a β-lactam ring. Upon bond cleavage by newly expressed β-

lactamase, the FRET is disrupted, leading to an increase of 

 

Figure 1.2.5 DiscoverX PathHunter assay 
scheme 
The DiscoverX PathHunter® assay 
schematic based on U2OS cell lines 
transfected with TrkB and SHC1 proteins 
fused with parts of β-galactosidase enzyme 
(EF – enzyme fragment, PF – peptide 
fragment). This assay reports on TrkB 
phosphorylation through protein-protein 
interaction of phospho-TrkB (pTrkB) and 
SHC1 proteins, which leads to reconstitution 
of the enzyme (EF+PF). The signal is 
registered as luminescence produced by 
enzymatic activity on the reporter substrate. 

 

Figure 1.2.6 Invitrogen CellSensor assay 
scheme 
The NFAT-bla-TrkB-CHO CellSensor 
assay schematic based on CHO cell line 
expressing TrkB. The assay reports on 
TrkB activation through the expression of 
the β-lactamase (LACTB) gene (BLA) 
under control of the receptor-PLCγ-NFAT 
pathway. TrkB phosphorylation results in 
PLCγ activation, leading to an increase of 
cytosolic Ca2+ concentration and 
subsequent NFAT activation (126), which 
controls expression of β-lactamase in the 
transfected construct in CHO cell line. 
Expression of β-lactamase is quantified 
by a FRET between a coumarin and 
fluorescein derivative connected by a β-
lactam system. Upon bond cleavage by 
newly expressed β-lactamase, the FRET 
is disrupted, leading to an increase of 
donor fluorescence and decrease of 
acceptor fluorescence. 
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donor fluorescence and decrease of acceptor fluorescence. Therefore, TrkB activation is directly 

correlated to the increased level of β-lactamase. TrkB functional activity was confirmed with independent 

assays developed in our laboratory (see below). 

 

1.2.3 Western Blot 

Western blot was used to characterize antibodies and expressed proteins in cell lines, as well as 

to compare results obtained in the fluorescence assays. TrkB was expressed in full length and truncated 

isoforms in CNC. The expression of truncated TrkB was higher than full length at DIV 13. Phospho-TrkB 

(pTrkB) antibody that recognizes pY816 was used to detect TrkB phosphorylation induced by BDNF and 

reported compounds. It stained a band at 140 kDa. Interestingly, the level of this band in BDNF treated 

sample was slightly heavier than in other samples. This antibody also stained other targets indicating a 

low specificity to pTrkB. On the other hand, antibodies against TrkB, phospho-ERK (pERK), ERK, 

phospho-Akt (pAkt), and Akt produced only target specific bands at the expected MW. These antibodies 

were deemed reliable to be used in the developed assays. 

It has been reported that Zn2+ transactivates TrkB through an indirect mechanism (127) in which 

Zn2+ ions inhibit the kinase CSK (C-terminal SRC kinase), thus preventing it from inhibiting the kinase 

SRC. Disinhibited SRC then phosphorylates TrkB at Tyr706–707, which in turn activates the TrkB kinase 

domain, leading to phosphorylation of other tyrosine residues required for signaling through the ERK and 

AKT pathways. SRC and TrkB have also been shown to mutually activate each other (128).  

Zn2+ in the complex with pyrithione ionophore and reported agonists were tested in CNC in an 

attempt to reproduce published results. Phospho-TrkB staining as noted above contained an unexplained 

shift in MW of pTrkB band. Activation of ERK and Akt induced by reported compound were not 

conclusive. Notably, the Zn2+ sample in the pTrkB blot was quite noisy, while in the pAkt blot Zn-induced 

response had a larger signal than that of BDNF. 

Western blot could not be used for thorough characterization of compounds, since the replication 

power of western blot was low and sample preparation was quite time consuming limiting the throughput 

capacity of the assay. To achieve higher throughput and a more robust response enzyme linked 

immunosorbent assay (ELISA) and enzyme-linked fixed-cell immunoassay (ELFI) were developed. 
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Figure 1.2.7 Western blot analysis of reported agonists in cortical neuron culture 
Representative examples of western blot analysis of lysates from primary cortical neuron cultures after 13 days in 
vitro (DIV 13) treated for 1 hour with the compounds at indicated concentrations. The blot was immunostained with 
an appropriate antibody. Molecular weight of full length TrkB in native and phosphorylated states is 140 kDa and 
highlighted with a solid rectangle on the blots, and the truncated form of TrkB with molecular weight of 90kDa is 
highlighted with a dashed rectangle. Molecular weights of ERK and AKT are 44/42 kDa and 60 kDa, respectively. 
The antibody against pTrkB stained other non-specific targets, which resulted in noisy data. Antibodies against 
pERK, ERK, pAkt, and AKT had high specificity. 

 

1.2.4 Sandwich ELISA 

To robustly detect TrkB activation, a sandwich-style ELISA was developed to detect TrkB 

phosphorylation. ELISA, a medium throughput assay, also allowed us to test multiple experimental 
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conditions with several replicates within a single plate, which is not possible using western blot. Sandwich 

ELISA was based on immobilization of the target (TrkB) on the surface of a 96-well plate using 

antibodies, and detecting the target using a different antibody. Since relevant TrkB phosphorylation 

occurs at several tyrosine residues on the receptor, it was important to detect global TrkB tyrosine 

phosphorylation. To this end, pTrkB antibodies could not be used for this purpose. To detect global TrkB 

phosphorylation, a pan phospho-Tyrosine (pY) antibody was used, while a TrkB antibody specific to the 

extracellular domain was used to capture TrkB on the surface. In addition to detecting pTrkB, it was also 

important to detect total TrkB in CNC to account for variable levels of TrkB in the samples. To develop 

this assay, it was important to find a TrkB specific antibody. 
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Figure 1.2.8 Antibody screen for sandwich ELISA 
A small screen of commercially available TrkB antibodies for TrkB capturing in ELISA. A) Several commercially 
available TrkB antibodies tested as capturing antibodies for the pTrkB sandwich ELISA using a TrkB-transfected 
HEK cell line (HEK-TrkB) and a wild-type HEK cell line (HEK-293T). A pan-phospho-tyrosine antibody was used as 
the detecting antibody. Only Sigma and Sino antibodies were found to be feasible as TrkB capturing antibodies. 
Sino Antibody for the pTrkB sandwich ELISA were used in further experiments. B) Several commercially available 
TrkB antibodies tested in the ELFI on HEK-TrkB and HEK cell lines. R&D (goat pAb), Sino (rabbit pAb), and SCBT 
(rabbit pAb) antibodies produced significant signal. R&D as capturing antibody and Sino as detecting antibody 
were used in the total TrkB sandwich ELISA in further experiments. Data for each of both independent 
experiments (n=2) is shown. 
 
 

1.2.4.1 Antibody screen for sandwich ELISA 

To find a specific TrkB antibody several commercially available antibodies were screened on 

HEK-TrkB cells. Out of seven tested in ELFI assay (see below), three antibodies were able to detect TrkB 

in HEK-TrkB cell line, only two antibodies produced necessary signal for pTrkB detection. Based on these 

results, rabbit-derived TrkB polyclonal antibody from Sino Biologicals was selected as the capturing 
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antibody for pTrkB. Goat-derived TrkB polyclonal antibody from R&D as the capturing agent and Sino 

antibody as detecting agent were selected for total TrkB 

1.2.4.2 TrkB phosphorylation in different cell lines 

To test the dynamic range of the sandwich ELISA, dose-response curves of several neurotrophic 

factors were measured in the established cell lines (Figure 1.2.9). In CNC, BDNF (EC50 =1.1 ± 0.4 nM) 

was used as the reference for full activation (or full agonism, taken as 100% efficacy). Neurotrophic factor 

4 (NT4, EC50 =1.2±0.4 nM) was determined to be a high-efficacy agonist, while NT3 (EC50 =1.7±0.7 nM) a 

low-efficacy partial agonist (maximum efficacy =16±4%) at TrkB; NGF was inactive (Figure 1.2.9A, Table 

1.1, reported EC50 values are 0.7 nM for BDNF, 4 nM for NT4, and 1.3 nM for NT3). Previously reported 

EC50 values have been 0.7 nM for BDNF, 4 nM for NT4, and 1.3 nM for NT3 (129, 130), consistent with 

our results. 

Table 1.1 EC50 values of neurotrophic factors: EC50 (ng/ml) values in primary cortical neurons. Data represents the 
mean ± SD (n = 3-7 independent experiments).  

BDNF NT4 NT3 

TrkB activation (sandwich ELISA)  29 ± 12 32.6 ± 9.9 44.7 ± 19.0 

ERK1/2 activation (ELFI) 2.6 ± 2.5 8.0 ± 10.7 4.4 ± 5.9 

AKT activation (ELFI) 2.2 ± 1.4 2.1 ± 0.7 2.3 ± 1.6 

 

K252a (Figure 1.1.2) has been a well-established Trk family inhibitor. BDNF-induced activation 

was inhibited by K252a  with an IC50 of 6 ± 4 nM (in CNC, Figure 1.2.9C) (reported IC50 is at 3 nM (131)). 

Zinc ions, administered as zinc pyrithione (ZPT), induced TrkB phosphorylation with similar efficacy to 

BDNF (Figure 1.2.9B) and was not inhibited by K252a (Figure 1.2.9C), consistent with a TrkB 

transactivation mechanism through Zn2+ mediated activation of SRC (which was not sensitive to K252a 

inhibition at the tested concentrations, see below) as reported (128).  

Similar results were obtained in the HEK-TrkB and CellSensor cell lines. BDNF induced TrkB 

phosphorylation with EC50 at 0.9 ± 0.4 nM, while NT4 EC50 was at 2 ± 1 nM and NT3 induced low-efficacy 

response with EC50 at 2.13 nM in HEK-TrkB cells. In CellSensor cells, BDNF induced TrkB 

phosphorylation with EC50 1.3 ± 0.4 nM. 

This assay produced reliable signal in all established cell lines; for example, HEK-TrkB cells 

displayed a signal-to-background ratio (S/B) of 8±1; CNC had S/B = 5±2 (Table 1.2), while the CellSensor 

CHO-TrkB cell line produced S/B 12±5. Moreover, ELISA allowed detection of statistically significant TrkB 
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activation at as low as 5-10% of BDNF efficacy in the HEK-TrkB and CellSensor cell lines (Figure 1.2.9 D 

and E)  

Table 1.2 S/B values of ELISA and ELFI in cortical neuron culture. Signal-to-background ratios of maximal responses 
to BDNF in cortical neurons culture (DIV various), data represents mean ± SD (n = 3-6).  

CNC HEK-TrkB CellSensor 

TrkB activation (sandwich ELISA) 4.6 ± 1.9 8.1 ± 1.2 12 ± 5 

ERK activation (ELFI) 2.0 ± 0.4 13 ± 7 2.0 ± 0.2 

AKT activation (ELFI) 2.3 ± 0.3 1.27 ± 0.06 6.0 ± 0.7 
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Figure 1.2.9 ELISA characterization in established cell lines 
A. Neurotrophin dose response curves measured in CNC using ELISA. BDNF was considered a full agonist of 
TrkB and all responses were scaled based on the BDNF maximal activation of TrkB. NT4 demonstrated full 
agonism at TrkB, while NT3 demonstrated partial agonism. NGF did not activate TrkB, as expected. The lowest 
statistically significant TrkB activation level could be detected at ~20% of BDNF efficacy in CNC. B. Zinc pyrithione 
(ZPT) induced TrkB phosphorylation measured by ELISA. ZPT was as efficacious as the BDNF-induced response 
(ZPT EC50 42 µM). C. K252a inhibition of TrkB phosphorylation induced by BDNF, but not by ZPT (K252a IC50 5 
nM). D. BDNF dose response curve measured in HEK-TrkB using ELISA with lowest statistically significant signal 
at 5% BDNF efficacy. E. BDNF dose response curve was measured in CellSensor CHO using ELISA with lowest 
significant signal at 10% BDNF efficacy. Data in A-C represent mean ± SD of 3 independent experiments. Data in 
D and E represent mean ± SD of a representative experiment. Two-way ANOVA was used followed by Dunnett’s t-
test (compared to DMSO): *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.  

 

1.2.5 ELFI 

Since TrkB activation induces ERK and Akt signaling cascades, it was necessary to develop 

assay for these signaling molecules as well. As in case with TrkB, phosphorylation of ERK and Akt has 

been accepted as indication of activation of these molecules. To detect activation of downstream 
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signaling cascades more reliably an ELFI was developed, similar to the immunofluorescence method, in 

which fixed cells were incubated with an antibody specific to native and phosphorylated forms of the 

target proteins (ERK1/2, Akt). The signal was developed through a chemiluminescent reaction of 

horseradish peroxidase attached to a secondary antibody and enhanced chemiluminescent (ECL) 

reagent. While ELFI is highly dependent on antibody specificity, as with the western blot assay, the 

chemiluminescent readout provided a more reliable and reproducible results than densitometric analysis 

of WB. In other words, ELFI readout could be viewed as integration of the signal from the whole lane in 

western blot. In order to measure a reliable signal, antibodies had to be highly specific to the target to be 

able to attribute the difference in signal to target response, as opposed to changes in non-specific target. 

Thus, there should be few differences between western blot and ELFI in terms of quality of the signal, but 

robustness and higher throughput of the assay would deem ELFI superior to western blot. 

1.2.5.1 Stripping and re-probing 

For normalization purposes, a possibility to detach antibodies from their target in fixed cells was 

explored. This approach would allow the detection of multiple target proteins in the same well, for 

example, both pERK and pAkt as well as total concentration of these proteins in one well. Stripping and 

re-probing of the fixed samples were reported for imaging purpose, which suggested feasibility of this 

approach for ELFI due to similarities to the immunofluorescence method. To this end, a guanidine-based 

stripping method, which was routinely used in our lab on western blots, was explored. The guanidine 

solution has unfolded protein, which strips protein of their functional activity, while removing guanidine 

causes the re-folding of some proteins into their native conformations. Thus, guanidine has acted as mild 

stripping agent. To test this approach, pERK and pAkt induced by BDNF at different concentrations were 

detected over six stripping and re-probing cycles in CNC (Figure 1.2.10 A and B). The absolute values 

fluctuated between cycles, while the relative value remained similar, the later observation being more 

crucial for quantitative assays. Moreover, stripping and re-probing could also be used for imaging. 

Staining of b3-Tubulin over two cycles did not alter the protein localization, while other targets could be 

imaged in parallel (Figure 1.2.10C). Thus, stripping and re-probing could be reliably used for detection of 

ERK and Akt activation as well as other targets if a specific antibody was present. 
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Figure 1.2.10 Stripping and re-probing in ELFI and IF 
A-B. BDNF induced ERK (A) and Akt (B) phosphorylation detected in CNC over 6 stripping and re-probing cycles 
with similar signal ratios. CNC was treated with different concentration of BDNF to test whether stripping and re-
probing cycles would alter relative readout of ERK and Akt activation. C. Fixed CNC was characterized with 
neuronal (NeuO, a neuron specific dye (132), b3-Tubulin, Neurofilament), astrocytic (GFAP), and synaptic 
(synaptophysin) markers to check if stripping and re-probing cycles alter protein localization in fixed samples. 
Stripping and re-probing cycles were performed between immunofluorescent (IF) imaging. 

 

1.2.5.2 ELFI in different cell lines 

Similar to ELISA, all established cell lines were tested for ERK and Akt phosphorylation induced 

by neurotrophins. BDNF and NT4 induced activation of Akt (Figure 1.2.11 A) and ERK (Figure 1.2.11 B) 

with similar efficacies and potencies (Table 1.1) in CNC. NT3 had lower efficacy at Akt, which is 

consistent with observed low efficacy of TrkB phosphorylation (Figure 1.2.11 A), however, it induced ERK 

activation at a level similar to BDNF (Figure 1.2.11 B). The difference in efficacies of ERK and AKT 

activation could be due to low concentrations of the adaptor proteins, like SOS1, SOS2, and GAB1, which 

are mediators of the ERK signaling cascades. Under such a scenario, the highest amount of ERK activity 

may be induced by activation of a fraction of the available receptor pool, as shown previously (133).  
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When comparing activation of TrkB and downstream signaling proteins, BDNF had a higher 

potency at ERK and Akt than at TrkB, most likely due to the amplification of downstream signals (Figure 

1.2.11 D). This result indicates that a low-level activation of TrkB would be amplified downstream and 

should be detected in our assays (lower than the statistical threshold of direct TrkB assays above). 

Interestingly, ZPT activated Akt with much higher efficacy than BDNF (Figure 1.2.11 C) while activating 

ERK with similar efficacy as compared to BDNF (Figure 1.2.11 C). 

To provide more evidence of TrkB dependent ERK and Akt activation, K252a was used. K252a 

inhibited BDNF activity at downstream targets (Figure 1.2.11 E). To this end, K252a inhibition of ERK 

phosphorylation induced by BDNF or phorbol 12-myristate 13-acetate (PMA, PKC agonist, which can 

induce ERK phosphorylation independent from TrkB) was measured. K252a inhibited ERK activation 

induced by BDNF with IC50 at 7.5 nM, while at higher concentration K252a inhibited ERK phosphorylation 

induced by either ZPT (Zn) or PMA with much lower potency at IC50 = 130 nM. It was found that higher 

concentrations of K252a could inhibit PMA-induced ERK phosphorylation, thus allowing only a narrow 

pharmacological window of TrkB selectivity (Figure 1.2.11 E). When comparing K252 dose inhibition 

curve at TrkB and ERK downstream amplification effect could be observed, which results in lower K252a 

potency at ERK (Figure 1.2.11 F). Interestingly, K252a increased phosphorylation level of Akt with EC50 

similar to IC50 at ERK, while at higher concentration at which little pERK could be detected it inhibited Akt 

phosphorylation, resulting in a bell-shaped dose-response curve. A similar pharmacological response at 

ERK could be observed in HEK-TrkB (Figure 1.2.11 H).  

Signal-to-background ratios of ELFI for CNC were ~ 2–4 and higher for other established cell 

lines (Figure 1.2.11 G, I, and J). The HEK-TrkB cell line had an S/B for ERK around 13, while for Akt 

hardly 1.25, possibly due to different basal phosphorylated levels of ERK and Akt in these transfected  
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Figure 1.2.11 ELFI in established cell lines 
A-B. BDNF, NT4, and NT3 (partial), but not NGF, induced Akt (A) and ERK (B) phosphorylation in CNC (DIV 13) 
after 1-hour incubation. C. Zn2+ induced Akt phosphorylation with 4x higher efficacy than BDNF and ERK 
phosphorylation at similar level as BDNF (1-hour treatment, CNC DIV14). D. Comparison of the TrkB, Akt, and 
ERK activation curve induced by BDNF. BDNF displayed higher potency at phosphorylating Akt and ERK than 
TrkB in CNC (DIV 13) after 1-hour incubation. E. K252a inhibition of BDNF-induced ERK phosphorylation in CNC 
(DIV 13). Cells were preincubated with K252a for 1 hour followed by 1-hour BDNF treatment. F. Comparison of 
K252a inhibition curve at TrkB, ERK, and Akt activation induced by BDNF in CNC. K252a inhibited BDNF induced 
TrkB and ERK activation with lower potency at ERK, while it produced bell-shaped response at Akt. Data of pTrkB 
inhibition curve represent mean±SD of n=4 independent experiments, . G. BDNF dose response curve of ERK 
phosphorylation measured in HEK-TrkB using ELFI with lowest statistically significant signal at 10% BDNF 
efficacy. H. K252a dose response curve of ERK inhibition in the presence of BDNF or PMA measured using ELFI 
in HEK-TrkB and HEK-293T. IC50 at TrkB was 7.5 nM, and IC50 at unidentified kinase was 129 nM. I. BDNF dose 
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cells. CHO-TrkB cells showed an inverse trend with ERK S/B around 2 and Akt S/B closer to 6 

(Table 1.2), further suggesting cell line variability.  

1.2.6 DiscoverX PathHunter assay and U2OS-TrkB/p75 cell line 

Functional activity of TrkB was confirmed in our laboratory by detecting BDNF-induced ERK 

activation using ELFI, with EC50 at 100 ± 100 pM (mean±SD, N=4 of independent experiments) in U2OS-

TrkB/p75 (Figure 1.2.12A). As the primary screen was conducted at the Broad institute, the PathHunter 

assay was characterized at the HTS facility. BDNF induced a robust signal in the PathHunter® assay in 

U2OS-TrkB/p75 with EC50 0.37 nM, S/B 5.4 and Z’ 0.59; and in U2OS-TrkB with EC50 1.1 nM, S/B 7.2 

response curve of ERK phosphorylation measured in CellSensor CHO cells using ELFI with lowest statistically 
significant signal at 10% BDNF efficacy. J. BDNF dose response curve of ERK phosphorylation measured in 
DiscoverX U2OS-TrkB/p75 cells using ELFI with lowest statistically significant signal at 10% BDNF efficacy. Data 
in A-D represent mean ± SD of 3 independent experiments. Data in E-J represent mean ± SD of a representative 
experiment. Two-way ANOVA was used followed by Dunnett’s t-test (compared to DMSO): *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001. 
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Figure 1.2.12 DiscoverX U2OS-TrkB/p75 cells characterization 
A. BDNF and reported agonists tested in the PathHunther® assay using U2OS-TrkB/p75 cells. B. BDNF dose 
response curve of ERK phosphorylation measured in U2OS-TrkB/p75 using ELFI with lowest statistically 
significant signal at 5% BDNF efficacy. C. ANA-12 activity in PathHunter assay U2OS TrkB-p75 cells. No 
antagonistic activity was detected. D. K252a tested in PathHunter® assay to confirm TrkB dependent activation. 
Data represents mean ± SD of a representative experiment. Two-way ANOVA was used followed by Dunnett’s t-
test (compared to DMSO): *p < 0.05, ****p < 0.0001. 
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and Z’ 0.59 (using 384 well plate format), acceptable for high throughput screening (Figure 1.2.12A). 

Interestingly, BDNF EC50 measured with PathHunter® assay in U2OS-TrkB is similar to BDNF EC50 in 

CNC measured with ELISA, while EC50 in U2OS-TrkB/p75 is 3x lower. Meanwhile, BDNF EC50 at ERK in 

U2OS-TrkB/p75 measured with ELFI was similar to CNC results (Figure 1.2.12B). It was decided to 

perform the primary screen in the U2OS-TrkB/p75 cell lines to account for possible complex formed 

between TrkB and p75. To test the assay with small molecules as well as to test whether ELISA and ELFI 

assays were comparable to PathHunter® assay, reported agonists were tested. LM22a-4 and 7,8-DHF 

did not evoke any response in this assay (Figure 1.2.12B), confirming our previous ELISA and ELFI 

results (see Characterization of reported compounds section). ANA-12 also did not antagonize BDNF 

activity at TrkB (Figure 1.2.12C), while K252a inhibited activation of TrkB by BDNF at EC80 having IC50 3 

nM (Figure 1.2.12D), which was consistent with CNC ELISA results. 

 

1.2.7 Invitrogen CellSensor assay and CHO-TrkB cell line 

CellSensor was characterized by measuring BDNF and thapsigargin dose response curves 

(Figure 1.2.13A). Thapsigargin is sarco/endoplasmic reticulum Ca2+ ATPase inhibitor, which induces an 

increase in cytoplasmic Ca2+ concentration. BDNF induced β-lactamase expression with EC50 150 ± 50 

pM (mean±SD, N=7 of independent experiments), S/B >5.8 and Z’ ≥ 0.9, deemed highly feasible for high 

throughput screening. Thapsigargin with EC50 at 230 pM had a more steeper response than BDNF. To 

confirm functional activity of TrkB in these cell lines, BDNF induced phosphorylation of TrkB, ERK, Akt, 

and PLC at different time points, including the 5 hour-long CellSensor assay treatment time, and were 

measured using ELISA and ELFI with EC50 equal to 1.2 ± 0.4 nM, 0.3 ± 0.2 nM, 0.5 ± 0.3 nM, and 0.6 nM 

(one experiment was performed on PLCγ activation) respectively (Figure 1.2.13B-E, Figure 1.2.11 I and 

J). When all signaling levels are compared signal amplification was more evident in this cell line: the more 

downstream the signaling molecule, the more potent was BDNF response (Figure 1.2.13F). In other 

words, BDNF EC11 at TrkB was equal to EC28 at Akt, EC41 at PLC, EC52 at ERK, or EC90 at gene 

expression level. Thus, the CellSensor assay gave opportunity to record very low levels of TrkB 

activations that may not be significant in ELISA or ELFI. K252a could inhibit BDNF activity with IC50 114 

pM but not that of thapsigargin, which indicated a TrkB-dependent activation of the system (Figure 
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1.2.19A). Thus, the CellSensor response was in agreement with the ELISA, ELFI, and DiscoverX results 

provided. This assay gave the opportunity to assess the gene expression signaling level of TrkB 

activation as well as could be used as a reliable counter screen assay.   
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Figure 1.2.13 Invitrogen CellSensor CHO-TrkB cell line characterization 
A. Dose response curve of BDNF and thapsigargin measured in the CellSensor assay to characterize the dynamic 

range and sensitivity. B-E. BDNF dose response curves of TrkB (B), ERK (C), Akt (D), and PLC (E) 
phosphorylation at various treatment times measured using ELISA and ELFI to characterize TrkB activity in 
Invitrogen CHO-TrkB cells. F. BDNF Dose response curve at different signaling levels put together to compare 
BDNF potency. Data represents mean ± SD of N=3 for TrkB, ERK, and Akt, and a representative experiment for 

pPLC. Data of CellSensor represent mean ± SD of N = 2 independent experiments 

 

1.2.8 Characterization of reported compounds in developed assays 

With the validated assays in hand, the 

reported small molecule agonists of TrkB were 

tested over a range of different concentrations and 

treatment times. The prominent reported small 

molecule agonists, except for DMAQ-B1, did not 

induce TrkB, AKT or ERK phosphorylation in cortical 

neuron culture (Figure 1.2.15 A-B), SH-SY5Y 

(Figure 1.2.15 J-K), or HEK-TrkB (Figure 1.2.15 F-G) at any time or concentration measured; similarly no 

response was observed in the CellSensor (Figure 1.2.15I) or DiscoverX assays (Figure 1.2.12B). Most  

 

Figure 1.2.14 5E5 and its precursors, SR-III-003, SR-
III-006 
5E5, a reported TrkA activator. SR-III-003 and SR-III-
006, 5E5 precursors 
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Figure 1.2.15 Reported agonists test results 
A. Reported compounds tested at different time points for TrkB phosphorylation in CNC (DIV 15) at the reported 
concentrations. Reported small molecule agonists showed no activation of TrkB. Data represent mean ± SD of 3 
independent experiments. Two-way ANOVA was used followed by Dunnett’s t-test (compared to DMSO): *p<0.05, 
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notably, neither 7,8-DHF nor LM22A-4 induced time and/or dose-dependent TrkB, AKT, or ERK 

activation in any established cell lines in contrast to previously reported data (72, 88). 

DMAQ-B1 produced weak positive signals in the assays. Even though no DMAQ-B1 induced 

TrkB phosphorylation was detected in CNC, downstream signaling activation was detected in cortical 

neurons (Figure 1.2.15 A-B). DMAQ-B1 induced maximal AKT phosphorylation at 15 min with 20% 

efficacy, but AKT phosphorylation decayed rapidly, eventually resulting in a lower level of phosphorylated 

AKT than under basal conditions, which potentially indicated toxicity of the compound. DMAQ-B1 induced 

maximal ERK phosphorylation at 15 min, as well, with 50% efficacy and showed a similar temporal profile 

as BDNF. A small amount of TrkB phosphorylation was detected in HEK-TrkB cells (maximal efficacy 

=16±2%, Figure 1.2.15C), consistent with the reported data (73). DMAQ-B1 has been reported to induce 

phosphorylation of all three Trk receptors as well as ERK and AKT kinase. However, activation of ERK 

and AKT also occurred in the absence of Trk receptors (Figure 1.2.15D). Further, the compound exhibited 

significant toxicity at concentrations (20 M) that induce Trk receptor phosphorylation (Figure 1.2.15E) 

(73). Regardless of the mechanism, which is likely complex and confounded by the toxicity, DMAQ-B1 

provided additional validation of the assays described in this report by demonstrating the ability to detect 

low levels of receptor and downstream kinase activation.  

Another validation came from the precursor of 5E5, coded as SR-III-006 (Figure 1.2.14). 5E5 has 

been reported as TrkA activator (135). SR-III-006 produced TrkB phosphorylation at 100 min treatment in 

**p<0.01, ***p<0.001, ****p<0.0001. B. Reported small molecule agonists tested for ERK and Akt activation at 
reported concentrations at different time points (CNC, DIV15). Data represent mean ± SD of 3 independent 
experiments. C. Time-course of TrkB phosphorylation in HEK-TrkB upon DMAQ-B1 treatment (sandwich ELISA, 
data represents 2 independent experiments). D. DMAQ-B1 time course response of ERK activation in HEK-TrkB 
and HEK-293 in the presence of K252a measured using ELFI. E. Toxicity of DMAQ-B1 in pulse treatment 
measured in HEK-TrkB cells using WST-1 assay. Cells were treated with DMAQ for 10 or 30 min, then washed 
and incubated in the serum-free medium for 24 h before WST-1 treatment. F. Time-course of TrkB 
phosphorylation in HEK-TrkB cells upon compound treatment at 10 µM measured in sandwich ELISA, data 
represents mean ± SD (n=2). G. Time-course of ERK phosphorylation in HEK-TrkB cells upon compound 
treatment at 10 µM measured in ELFI, data represents mean ± SD of 3 independent experiments. H. Time course 
responses of 5E5 and its precursors induced TrkB activation measured in HEK-TrkB using ELISA. I. BDNF 
induced expression of β-lactamase in the CellSensor assay while none of the reported agonists could mimic BDNF 
activity. Data represent mean ± SD of a representative experiment. Two-way ANOVA was used followed by 
Dunnett’s t-test (compared to DMSO): *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. J-K. Time-course of TrkB 
phosphorylation in retinol-differentiated human neuroblastoma SH-SY5Y cells (which express TrkB upon 
differentiation (134)) when treated with the compounds at 10 µM measured in sandwich ELISA, data represents 
mean ± SD of 3 independent experiments, 2-way ANOVA was used followed by Dunnet’s t-test (compared to 
DMSO): *p <0.05, ***p < 0.001, ****p < 0.0001. 
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HEK-TrkB (Figure 1.2.15H). However, due to its oxidative properties as well as chemically labile group 

(chloride on quinone) this compound was not thoroughly characterized. 

 

1.2.9 High throughput screen 

Based on these negative results, it was decided to perform a high-throughput screen using a 

large library of small molecule. To identify possible agonists or modulators of BDNF-induced TrkB 

activation, we performed a primary screen of 40,000 compounds from the Broad CNS Diversity Oriented 
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Figure 1.2.16 Activity of 7,8-DHF and LM22a-4 in cortical neuron culture at different conditions 
Time-course and dose-response of TrkB, AKT, and ERK1/2 phosphorylation in primary cortical neuron cultures 
after 13-19 days in vitro (DIV13-19) upon 7,8-DHF and LM22A-4 treatment (Data represents mean  ± SD of 3 
independent experiments normalized to average DMSO response, 2-way ANOVA was used followed by Dunnet’s 
t-test (compared to DMSO): *p <0.05, **p < 0.01, ****p < 0.0001). 
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Synthesis (DOS) library. This DOS library contains compounds with CNS drug-like properties, which were 

selected using in silico analysis and in vitro, cellular and in vivo assays and models (136).  

 

In collaboration with the Broad Institute, it was planned to test each compound for the ability to 

increase TrkB activation in the absence and presence of BDNF at EC15 using the DiscoverX PathHunter 

cell system in 384-well format, searching for both TrkB agonists and positive allosteric modulators. The 

screen consisted of two main stages: primary screen at Broad Institute and counter screen in our 

laboratory. The first stage further consisted of single point screen with the follow-up retest of compounds 

in dose response in the DiscoverX PathHunter assay using U2OS-TrkB/p75 cells and counter screen in 

the U2OS TrkB-null cell line. In the second stage, compounds were tested in a dose-dependent manner 

in the CellSensor assay and ELISA and ELFI on HEK-TrkB and CNC (Figure 1.2.17). Selection criterion 

of the hits was a signal higher than 3x the standard deviation of the background (BDNF at EC15 or 

DMSO). 

 

Figure 1.2.17 HTS outline 
 

1.2.9.1 Pilot screen compounds 

A pilot screen of 1600 compounds was performed to characterize the HTS assay in the context of 

compound screening. To this end, five informer DOS plates were used in allosteric and agonistic screen 

modes as duplicated plates at a 6 µM single dose. As the result, 38 compounds were found to be active 

in allosteric mode (2.4% hit rate), and 8 compounds were found to be active in agonistic mode of which 7 

Pilot Screen: Informer DOS plate (1600)
1. DiscoverX PathHunter assay on U2OS-TrkB/p75, duplicates single dose, allosteric and agonistic modes

2. Retest at dose with U2OS-TrkB/p75 in allosteric and agonistic mode
3. Counter screens in Sames Lab using ELISA and ELFI on DiscoverX U2OS-TrkB/p75, U2OS-TrkB, HEK-

TrkB, CNC 

1. Primary screen of CNS DOS libraries (40,000) at 20 µM in duplicates
2. Retest at dose with U2OS-TrkB/p75 in allosteric and agonistic mode

3. Counter screen for selectivity with DiscoverX U2OS-CHRM1 and U2OS-NRF2 cell lines

Secondary screen in:
1. CellSenor assay at dose in allosteric and agonistic mode
2. ELISA and ELFI in HEK-TrkB at dose @ 50-10-2-0.4 µM

3. ELISA in CNC @ 50-10-2-0.4 µM 
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were also active in allosteric mode. Upon retest in a dose response screen two compounds in agonistic 

mode and three compounds in allosteric mode demonstrated full activation curves. These compounds 

and their inactive enantiomers were sent to our lab for further evaluation.  

These hit compounds were tested in the DiscoverX U2OS-TrkB/p75 and U2OS-TrkB for ERK and 

Akt activation in a time-dependent manner at a 10 µM single dose using ELFI (see Pilot screen in 

Appendix). Compound K93930139 and K76756739 induced weak activation of ERK and Akt at 10 min 

treatment, which then declined at later time points in contrast to BDNF-induced activation. Next, these 

compounds were tested for TrkB activation in HEK-TrkB and CNC, which revealed no activation of the 

receptor. However, K93930139 and K76756739 induced weak activity at ERK in CNC similar to the 

DiscoverX cell lines. 

1.2.9.2 Primary screen 

The primary screen of the entire library identified 355 compounds as potential hits based on 

selection criterion (3x standard deviation above DMSO or BDNF at EC15 response), 192 of which were 

active in both duplicate plates, while 163 were active in one of them. These compounds were tested in 

duplicate plates at dose starting at 50 µM followed with 2x dilution to reach 10 different concentrations. 

Compounds were identified as hits if the induced responses met selection criteria at a 20 µM 

concentration. As the result, 52 allosteric (27% of the primary active hit list) and 29 agonistic hits (23 of 

which overlap with allosteric hits) were identified. Hits were not potent and contained most of the hits from 

pilot screen. These identified compounds were counter screened in the DiscoverX PathHunter assay 

using U2OS-CHRM1 and U2OS-NRF2 cell lines of which 22 compounds were active only at 50 µM in 

these cell lines, indicating that these compounds were more active in U2OS-TrkB/p75 cells. 

1.2.9.3 HEK-TrkB screen 

Based on these results 83 compounds were selected for further characterization using the 

secondary assays in our laboratory. The first batch of 42 compounds were tested in HEK-TrkB for TrkB 

and ERK activation (see HEK-TrkB screen in Appendix). To test for TrkB activation, ELISA was 

conducted in agonistic and allosteric mode at four serially diluted concentrations in duplicate with 30 min 

treatment time. ELFI assays for ERK activation were conducted at four concentrations in quadruplets with 

30 min treatment time. Compounds K74587389, K80786583, K74405511 were found to be weak agonists 
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and active in allosteric mode at TrkB and ERK in initial screen. K61473003 and K21249854 were active 

only in allosteric mode at TrkB and ERK level. The K32712332, K21471155, and K09140990 activities 

were inconclusive. The rest of the compounds were not active in HEK-TrkB screen. The eight promising 

compounds were retested again in HEK-TrkB and CNC for TrkB activation, but their activity was not 

reproduced (see HEK-TrkB screen on in Appendix). 

1.2.9.4 CellSensor screen 

Upon receiving the second batch of compounds, the entire 83-compound library was tested in the 

CellSensor assay (Figure 1.2.18). During the first screen cells were treated with compounds at four 

serially diluted concentrations ranging from 50 M to 0.4 M in quadruplet in agonistic and allosteric 

modes. From the experiments 38 compounds were found to be active and were retested. It was observed 

that most of the compounds were more active at higher concentrations while at 50 M many of the 

compounds precipitated out of solution. Given the sporadic nature of precipitation, some compounds 

exhibited inconsistent activity at high concentrations. To focus more on higher concentrations and avoid 

compound precipitation, the retest was conducted under similar conditions at four serially diluted 

concentrations ranging from 30 M to 3.25 M. Out of 83 compounds, 9 compounds were active in 

agonistic mode in both screens, while 20 compounds exhibited activity in allosteric mode, prompting 

another round of testing (see CellSensor screen in Appendix). 

In the third round, compounds were diluted to yield 8 concentrations ranging from 50 M to 0.2 

M and were tested in quadruplet in both agonistic and allosteric modes using CellSensor (see 

CellSensor screen in Appendix). This screen revealed three compounds that were active in allosteric 

mode, but not as agonists. These compounds were tested in the CellSensor assay for the 4th re-test as 

well as in ELISA using the same CHO cell line. K54211867 and K30652576 were active at the two 

highest concentrations (50 and 25 µM) in allosteric mode in both assays. K46962856 was not active in 

any of the assays (see below). 

The remaining 17 compounds of the third round of screening were active in both modes. To verify 

these results compounds were retested with K252a in agonistic mode to rule out TrkB independent 

activation of the system, since CellSensor reported TrkB activation at gene expression level (see below), 

which could also be triggered by other kinases. 
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Figure 1.2.18 CellSensor screen outline 

 

1.2.9.4.1 Inhibition screen by K252a. 

K252a inhibition in the Invitrogen CHO-TrkB cell line was published (IC50 11 nM(126)) and tested 

by Dr. Meyers in our group (IC50 35 nM). As it was previously shown in HEK-TrkB and CNC that K252a 

inhibited TrkB and ERK with a narrow pharmacological window for TrkB selectivity (Figure 1.2.11 H), it 

was important to test whether K252a was capable of inhibiting TrkB while keeping activity of downstream 

targets intact. For this purpose, cells were pretreated with K252a 30 min prior to Thapsigargin (10 nM, 

EC100) or BDNF (50 ng/ml, EC100) treatments (Figure 1.2.19 A). The IC50 was 113.5 nM at TrkB, which 

is 10x higher than reported. One of the probable explanations of the discrepancy with previous results 

could be the old batch of K252a. For the inhibition screen, IC80 of K252a was selected (200 nM). The 

BDNF (50 ng/ml, EC100) control was inhibited by K252a by 35%-40% (Figure 1.2.19B) in the screened 

plates. 

1st round CHO experiments: 81 compounds @ 50-10-2-0.4 µM

2nd round CHO experiments: 38 compounds @ 30-15-7.5-3.75 µM

3rd round CHO experiments: 20 compounds @ 50-25-10-5-2-1-0.4-0.2 µM 

3 compounds were active only in allosteric mode:

K54211867, K30652576, K46962856

3+1 compounds were 
retested for confirmation 

(K21249854 – as a 
negative control)

Compounds were tested 
for PAM activity: 
presented here

3+1 compounds were  tested 
in CHO at receptor with ELISA 

(allosteric mode, 8 
concentrations, N2)

17 compounds  were 
active in both modes

17 compounds were tested in 
agonistic mode with K252a

None of the compounds were 
inhibited – false positives
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Figure 1.2.19 CellSensor screen with K252a 
A. K252a inhibition curve of BDNF and thapsigargin activity measured by CellSensor to identify IC80 value of 
K252a to use in the inhibition tests. B. Inhibition control in plates used for inhibition screen with K252a at IC80 

 

Compounds were used at eight concentrations (30-20-15-10-7.5-5-3.75-2.5 µM) in quadruplet. 

Some compounds were tested at four concentrations (30-15-7.5-3.75 µM) due to the small amount of 

material that was available. The results of the screen are presented in Table 1.3. 

Table 1.3 CellSensor inhibition screen of 17 hit compounds 

Compound and structure 3rd screening round (agonistic mode) Inhibition experiments 
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Compound and structure 3rd screening round (agonistic mode) Inhibition experiments 
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Compound and structure 3rd screening round (agonistic mode) Inhibition experiments 
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Compound and structure 3rd screening round (agonistic mode) Inhibition experiments 
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None of the compounds were inhibited by K252a. These results indicated that none of the 

compounds agonized TrkB. Probably, these compounds induced the increase of cytosolic calcium which 

led to the expression of β-lactamase in CHO cells independently from TrkB. 

1.2.9.5 CNC screen 

All the 83 compounds were also screened in CNC for TrkB activation under the same condition 

as the CellSensor screen. Each compound was tested at four concentrations prepared by 5x serial 

dilution in quadruplet for 1h treatment in both agonistic and allosteric mode (see CNC screen in 

Appendix). Most of the compounds did not satisfy the selection criterion in CNC screen, however 19 

compounds exhibited an upward trend at higher concentrations in allosteric mode. Hits found in the CHO 

screen (20 compounds) also contained 14 of these compounds. These 19 compounds were retested in 

CNC more thoroughly. To this end, compounds were tested at eight concentrations ranging from 50 M to 
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Figure 1.2.20 Retest of selected compounds in CNC 
A-B. Compounds selected from CNC screen retested for TrkB activation in CNC in allosteric mode, 14 out of 19 
compounds presented. C-G. Remaining compounds’ inhibition curves of TrkB activation by BDNF; 5 compounds 
were measured in CNC in allosteric mode. IC50 values are presented in the x-axis. H. Structure of the 5 
compounds with inhibition activity. Data represents mean±SD of a representative experiment.  
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0.2 M in allosteric mode. None of the compounds exhibited any statistically significant activation of the 

receptor. 

On the other end, five compounds exhibited inhibition activity at TrkB (Figure 1.2.20 C-H). The 

most potent compound, K61473003, inhibited TrkB phosphorylation in CNC with IC50 at 5 M. However, 

this compound did not induce any activity (agonistic, or antagonistic) in HEK-TrkB cells at TrkB or ERK, 

while in the CellSensor assay, it produced significant activation signal in allosteric mode at 10 M and 

was toxic at 50 M. Similar discrepancies could be observed for other compounds, so further 

characterization was not pursued. 

1.2.9.6 Allosteric hits 

Based on the 3rd round of the CellSensor screening, three compounds were active in allosteric, 

but not in agonistic mode. These compounds were retested for the 4th round. As these compounds were 

active in allosteric mode, TrkB inhibition experiments would not be useful to determine whether these 

compounds were directly activating TrkB. In order to detect TrkB activation at the receptor level ELISA 

was conducted on CellSensor CHO-TrkB cells in allosteric mode at eight concentrations with 1h treatment 

time. Allosterically active compounds had 6% activation over basal level activity in the CellSensor assay. 

Since ELISA on CellSensor CHO-TrkB proved to be sensitive with a S/B = 10, it provided an opportunity 

to measure low levels of TrkB activations. 

An important aspect of the allosteric mode was BDNF concentration. BDNF concentrations in the 

CellSensor assays used for allosteric mode would correspond to EC 0.3 level in  CHO-TrkB ELISA 

experiments. This low concentration of BDNF produced 3xSD ≤ 2%, which was not significantly different 

from DMSO signal. Having these low ECs was beneficial for allosteric experiments as the smaller SD 

could help detect weak signals. For example, BDNF at EC31 with 3xSD = 24% the significant signal of 

the compound would be at 55% of TrkB activation, while at EC2.5 with 3xSD 8.7% it would be at 11% 

(see Figure 1.2.21 A) in CellSensor assay, which produces a larger dynamic range to detect significant 

activation of TrkB. This relation could be easily explained if one analyzes the dose dependent activation 

of the system by BDNF. BDNF at 3.5±0.5 ng/ml yields in 28±5% activation, while BDNF at 1±0.5 ng/ml 

yields in 8±2%. Thus, 3xSD values were 15% and 6% respectively (see Figure 1.2.21B). The later 3xSD 
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is smaller, which lowers the cut-off value, and allows identification of possible weaker compounds. In 

other words, small variations in BDNF concentrations at higher levels resulted in noisier results. 
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Figure 1.2.21 Signal variation and BDNF concentration relationship in allosteric mode 
A. Relation between 3xSD threshold of BDNF and BDNF EC. 3xSD linearly increases with the increase of the EC 
(solid line represents fitted line function, dashed curve represents 95% confidence band). Data gathered from 21 
experiments in CHO Invitrogen assay. B. BDNF at 3.5±0.5 ng/ml yields in 28±5% activation (green line), while 
BDNF at 1±0.5 ng/ml yields in 8±2% (blue line) 
 

 

Since allosteric modulators influenced the response of the receptor to its ligand, these molecules 

at active concentrations should be able to influence the dose-response curve of BDNF. To demonstrate 

this, the BDNF dose response curve was measured in the presence of hit compounds at active 

concentrations. Selected compounds at different concentrations were added to cells prior to treating them 

with BDNF. Using CellSensor, ELISA, and ELFI assays on CellSensor CHO-TrkB, HEK-TrkB, and CNC 

cells, BDNF dose response curves were measured for TrkB, Akt, and ERK activation, as well as reporter 

gene expression. As a control in the CellSensor assay, a dose response curve of thapsigargin in the 

presence of the compounds was also measured.  

1.2.9.6.1 BRD-K54211867-019-01-5 

All the experimental results are presented in Table 1.4. In the CellSensor assay, K54211867 

potentiated BDNF in a dose-dependent manner, with 10x decrease of BDNF EC50 at a 50 µM 

concentration. However, higher concentrations of the compound decreased efficacy of BDNF. At 50 µM, 

K54211867 did not potentiate thapsigargin as much, however it did lower the efficacy of thapsigargin 

similar to BDNF response. At the TrkB, ERK, and Akt levels in CHO, HEK-TrkB, and CNC cells, 

K54211867 had no significant influence on BDNF EC50 values. At the Akt level in CHO efficacy of BDNF 
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was reduced by the compound, while at ERK level in HEK-TrkB an increase in efficacy of BDNF could be 

observed.  

Table 1.4 K54211867 characterization as allosteric agonist 

C
o

m
p

o
u
n

d
 

s
tr

u
c
tu

re
 

 

K
5

4
2

1
1
8

6
7

 d
o

s
e

 r
e
s
p

o
n

s
e
 c

u
rv

e
 

in
 C

e
llS

e
n
s
o

r 
a
n

d
 E

L
IS

A
 

K 5 4 2 1 1 8 6 7

C e llS e n s o r  A s s a y

C o n c e n tra t io n , lo g (M )

%
 M

a
x

 a
c

ti
v

a
ti

o
n

 b
y

 B
D

N
F

- 
3

x
S

D
 D

M
S

O
/B

D
N

F
 "

E
C

1
5

"

A llo s te r ic  M o d e

A g o n is tic  M o d e

 

T r k B  a c t iv a tio n  b y  K 5 4 2 1 1 8 6 7

in  C H O  (a llo s te r ic  m o d e )

C o n c e n tra tio n ,  M

%
 M

a
x

 a
c

ti
v

a
ti

o
n

 b
y

 B
D

N
F

-7 -6 -5 -4

-2

0

2

4

6

8

3 x S D  B D N F  (E C  0 .3 )
3 x S D  D M S O

B D N F  (E C  0 .3 )

 

B
D

N
F

 a
n

d
 t

h
a

p
s
ig

a
g

ri
n
 d

o
s
e

 

re
s
p

o
n

s
e
 c

u
rv

e
s
 i
n
 C

e
llS

e
n

s
o

r 
a

s
s
a

y
 

B D N F  c u r v e  w ith  K 5 4 2 1 1 8 6 7  (c o m b in e d  d a ta )

B D N F  C o n c e n tra t io n , lo g (M )

S
ig

n
a

l 
/ 

B
a

c
k

g
r
o

u
n

d

-1 1 .5 -1 1 .0 -1 0 .5 -1 0 .0 -9 .5 -9 .0 -8 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

4 .0

4 .5 K 5 4 2 1 1 8 6 7  (5 0  M )

K 5 4 2 1 1 8 6 7  (2 5  M )

K 5 4 2 1 1 8 6 7  (2 0  M )

K 5 4 2 1 1 8 6 7  (1 0  M )

K 5 4 2 1 1 8 6 7  (5  M )

D M S O

 
K54211867 
Concentration, 
µM 

50 25 20 10 5 0 

BDNF EC50, pM 18 28 65 72 125 170 
 

T h a p s ig a r g in  d o s e  r e s p o n s e  w ith  K 5 4 2 1 1 8 6 7  ( ra w )

C o n c e n tra t io n , lo g (M )

E
m

 @
 4

5
0

 n
m

-1 2 -1 1 -1 0 -9

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

T h a p s ig a rg in

+  1 8 6 7

(2 5  M )

T h a p s ig a rg in

 
K54211867 Concentration, 
μM 

0 25 

Thapsigargin EC50, pM 53 109 
 

B
D

N
F

 d
o

s
e

 r
e

s
p

o
n
s
e

 c
u

rv
e

s
 o

f 
T

rk
B

 

a
c
ti
v
a

ti
o

n
 i
n

 E
L

IS
A

 a
n

d
 E

L
F

I 
a
s
s
a
y
 i
n

 

C
e
llS

e
n
s
o

r 
C

H
O

-T
rk

B
 

B D N F  d o s e  d e p e n d e n t T r k B  a c t iv a t io n  in  C H O

w ith  K 5 4 2 1 1 8 6 7

C o n c e n tra t io n , lo g (M )

A
b

s
 a

t 
4

5
0

 n
m

-1 0 .0 -9 .5 -9 .0 -8 .5 -8 .0

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

B D N F

B D N F

+  1 8 6 7

 (5 0  M )

 
1867 Concentration, 
μM 

0 50 

BDNF EC50, pM 1611 630 
 

B D N F  d o s e  d e p e n d e n t T r k B  p h o s p o r y la t io n  a t  Y 8 1 6

in  C H O  w ith  K 5 4 2 1 1 8 6 7

C o n c e n tra t io n , lo g (M )

L
u

m
in

e
s

c
e

n
c

e

-1 2 -1 1 -1 0 -9 -8

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0
B D N F

B D N F

+  1 8 6 7

(2 5  u M )

 
1867 Concentration, 
μM 

0 25 

BDNF EC50, pM 668 495 
 



47 
 

B
D

N
F

 d
o

s
e

 r
e

s
p

o
n
s
e

 c
u

rv
e

s
 o

f 
E

R
K

 a
n

d
 A

k
t 

a
c
ti
v
a

ti
o

n
 i
n

 E
L
F

I 
a
s
s
a
y
 C

e
llS

e
n

s
o

r 
C

H
O

-T
rk

B
 

B D N F  d o s e  d e p e n d e n t A k t a c t iv a t io n

in  C H O  in  1  h o u r  w ith  K 5 4 2 1 1 8 6 7

C o n c e n tra t io n , lo g (M )

L
u

m
in

e
s

c
e

n
c

e

-1 2 -1 1 -1 0 -9

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

B D N F + D M S O

B D N F + 1 8 6 7  (2 0  u M )

B D N F + 1 8 6 7  (8  u M )

D M S O

 
1867 Concentration, 
μM 0 20 8 

EC50, pM 330 90 200 
 

B D N F  d o s e  d e p e n d e n t E rk  a c t iv a t io n

in  C H O  in  1  h o u r  w ith  K 5 4 2 1 1 8 6 7

C o n c e n tra t io n , lo g (M )

L
u

m
in

e
s

c
e

n
c

e

-1 2 -1 1 -1 0 -9

5 0 0 0 0

1 0 0 0 0 0

1 2 5 0 0 0

1 5 0 0 0 0

1 7 5 0 0 0

B D N F + D M S O

B D N F + 1 8 6 7  (2 0  u M )

B D N F + 1 8 6 7  (8  u M )

D M S O 

 
1867 Concentration, 
μM 0 20 8 

EC50, pM 200 80 120 
 

B
D

N
F

 d
o

s
e

 r
e

s
p

o
n
s
e

 c
u

rv
e

s
 o

f 
T

rk
B

 

a
c
ti
v
a

ti
o

n
 i
n

 E
L

IS
A

 a
n

d
 E

L
F

I 
a
s
s
a
y
 i
n

 

C
N

C
 

B D N F  d o s e  d e p e n d e n t T r k B  a c t iv a t io n

in  C N C  (D IV  1 5 , 3 h ) w ith  K 5 4 2 1 1 8 6 7

C o n c e n tra t io n , lo g (M )

A
b

s
 a

t 
4

5
0

 n
m

-1 0 .5 -1 0 .0 -9 .5 -9 .0 -8 .5

0 .2

0 .4

0 .6

0 .8

B D N F

B D N F

+  1 8 6 7

(1 0  M )

 
1867 Concentration, 
μM 0 10 

BDNF EC50, pM 463 649 
 

B D N F  d o s e  d e p e n d e n t T r k B  p h o s p o r y la t io n  a t  Y 8 1 6

in  C N C  (D IV  1 4 )  w ith  K 5 4 2 1 1 8 6 7

C o n c e n tra t io n , lo g (M )

p
T

r
k

B
 /

 T
o

ta
l 

T
r
k

B

-1 2 -1 1 -1 0 -9 -8

0 .0 3 5

0 .0 4 0

0 .0 4 5

0 .0 5 0

0 .0 5 5

B D N F

B D N F

+  1 8 6 7

(2 5  M )

 
1867 Concentration, 
μM 0 25 

BDNF EC50, pM 581 279 
 

B
D

N
F

 d
o

s
e

 r
e

s
p

o
n
s
e

 c
u

rv
e

s
 o

f 
E

R
K

 a
n

d
 A

k
t 

a
c
ti
v
a

ti
o

n
 i
n

 E
L
F

I 
a
s
s
a
y
 i
n

 C
N

C
 

B D N F  d o s e  d e p e n d e n t A k t a c t iv a tio n

in  C N C  in  1  h o u r

B D N F  C o n c e n tra t io n , lo g (M )

p
A

k
t 

/ 
T

o
ta

l 
A

k
t

-1 1 -1 0 -9 -8

0 .1 0

0 .1 5

0 .2 0

0 .3 0

0 .3 5

0 .4 0

B D N F + D M S O

B D N F + 1 8 6 7

D M S O
 

 

B D N F  d o s e  d e p e n d e n t E r k  a c tiv a tio n

in  C N C  in  1  h o u r

B D N F  C o n c e n tra t io n , lo g (M )

p
E

r
k

 /
 T

o
ta

l 
E

r
k

-1 1 -1 0 -9 -8

1 .0

1 .2

1 .4

1 .6

1 .8

2 .0

2 .2 B D N F + D M S O

B D N F + 1 8 6 7

D M S O

 
1867 Concentration, 
μM 0 20 

EC50, pM 463 720 
 



48 
 

B
D

N
F

 d
o

s
e

 r
e

s
p

o
n
s
e

 c
u

rv
e

s
 o

f 
T

rk
B

 a
n

d
 

E
R

K
 a

c
ti
v
a

ti
o

n
 i
n

 E
L

F
I 

a
s
s
a
y
 i
n

 H
E

K
-

T
rk

B
 

B D N F  d o s e  d e p e n d e n t T r k B  p h o s p o r y la t io n  a t  Y 8 1 6

in  H E K -T r k B  w ith  K 5 4 2 1 1 8 6 7

C o n c e n tra t io n , lo g (M )

L
u

m
in

e
s

c
e

n
c

e

-1 2 -1 1 -1 0 -9 -8

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

B D N F

B D N F

+  1 8 6 7

(2 5  M )

********

****

****

***
**nsns

 
1867 Concentration, 
μM 0 25 

BDNF EC50, pM 258 193 
 

B D N F  d o s e  d e p e n d e n t E R K  a c tiv a tio n  in  H E K -T rk B

w ith  K 5 4 2 1 1 8 6 7

C o n c e n tra t io n , lo g (M )

L
u

m
in

e
s

c
e

n
c

e

-1 2 -1 1 -1 0 -9 -8

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

B D N F

B D N F

+  1 8 6 7

(2 5  M )

****
****

****

****

****

*
nsns

 
1867 Concentration, 
μM 0 25 

BDNF EC50, pM 68 58 
 

 

1.2.9.6.2 BRD-K30652576-019-01-1  

All the experimental results are presented in Table 1.5. Similar to K54211867, K30652576 also 

potentiated BDNF while decreasing its efficacy in the CellSensor assay. Interestingly, K30652576 almost 

completely inhibited thapsigargin in CellSensor. At 50 M it also potentiated the BDNF-induced TrkB 

activation, while decreasing BDNF’s efficacy in CHO-TrkB as measured by ELISA. At 25 M only 

inhibition of BDNF-induced TrkB activation was measured by ELFI. Akt was also inhibited to a lesser 

degree, while the response at the ERK level was not influenced by the compound. In CNC, an inhibition 

of BDNF-induced TrkB and Akt activation could be measured with no influence on ERK. No potentiation 

or inhibition was observed in HEK-TrkB. 

 

Table 1.5 K30652576 characterization as allosteric agonist 
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1.2.9.6.3 BRD-K46962856-001-01-5 

All the experimental results are presented in Table 1.6. K46962856 had a much less pronounced 

BDNF potentiation with little influence on BDNF efficacy. It inhibited thapsigargin similar to K54211867. At 

50 and 25 µM it also inhibited BDNF-induced TrkB activation in CHO measured by ELISA and ELFI. In 

CNC, an inhibition of TrkB activity could be measured. No potentiation or inhibition was observed in HEK-

TrkB. 

Table 1.6 K46962856 characterization as allosteric agonist 
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All the experimental results are presented in Table 1.7. K21249854 acted as an agonist by 
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phosphorylation in CHO measured by ELISA and ELFI. Inhibition was also measured in CNC with ELISA, 

while ELFI contradicted this result. Little influence on BDNF curve could be measured in HEK-TrkB cells. 
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1.2.9.7 Conclusion of HTS 

In the course of the HTS, 40,000 compounds were tested as agonists and allosteric modulators. 

The primary screen identified 355 potential hits, the number of which was reduced to 83. All these 

compounds were tested in secondary assays. No true TrkB agonists were identified in the secondary 

assays. All identified hits were thoroughly tested in all our assays in all established cell lines. Compounds 

acting as a PAM were not convincingly active at the receptor level and likely influenced unidentified 

downstream targets to elicit their activity.  

1.2.10 Phage Display 

Based on these negative results in terms of finding a TrkB agonist or modulator, alternative 

screening platforms were researched. It was hypothesized that the large ligand binding surface in TrkB 

would require a larger ligand to influence the activity of this receptor class. Hence, a DNA, protein, or 

peptide-based library could be used to find sequences that act as agonists/modulators at TrkB. A peptide 

library and the phage display screening approach were chosen. Moreover, multiple peptides displayed on 

the surface of a phage could act as BDNF mimics and induce TrkB dimerization. To perform phage 

display, T7 bacteriophage libraries displaying peptides with the composition of CX7C (C=cysteine; X= 

random amino acid; ~ 200 peptides per phage particle) were used. The two cysteines provided a cyclizing 

disulfide bond, which restricts the conformation of the peptide and provide higher affinity to the receptor 

than linear peptide (137, 138).. In case linear peptide is favored for binding, the library can still provide 

with such peptides due to random DNA sequences. A successful identification of linear peptide in cyclic 

library which has been reported (139). The diversity of phage library can reach theoretical levels and thus 

cover a large space of peptide structures. 

An arguable activation mechanism of TrkB could be through conformational change of 

extracellular domain upon ligand binding. Thus, to find agonistic or allosteric peptide, phage display on 

the extracellular domain of TrkB should be performed. There were two strategies explored: phage display 

on the recombinant extracellular domain of TrkB immobilized on the surface and phage on TrkB 

presented on the surface of the cell. 
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1.2.10.1 Recombinant TrkB 

Phage display on recombinant TrkB 

was performed in Dr. Teesalu laboratory (Tartu 

university, Estonia). To perform phage display 

on isolated TrkB, a recombinant extracellular 

domain of TrkB was acquired (Met1-His430) 

with a His-tag at the C-terminus. The standard 

protocol for in vitro biopanning on a protein was performed using Ni-NTA agarose beads for H7 tagged 

protein. TrkB immobilization on a plate surface was not chosen to avoid enrichment of phages that bind to 

plastic surface of a plate which could result in low selection or high background. The biopanning was 

performed several times on TrkB and had enrichment ~1000 fold, but the same amount of phage also 

bound to naked beads. It means that the enriched pool had a lot of His-containing phages as it came out 

from the Ion Torrent sequencing (Table 1.8) – it was unexpected. The screen was repeated and 

troubleshooted multiple times without success. 

As a second approach another method to immobilize proteins was used. PureProteome™ NHS 

FlexiBind Magnetic Bead System from Merck Millipore was tested. This system covalently binds a protein 

on the bead surface though a free amine on a protein. A screen was conducted in duplicate for three 

rounds with both CX7C and CX8C phage libraries and sequenced with Ion Torrent. Finding the same or 

similar phages found in both duplicates was a good confirmation of a successful screen. Table 1.9 

contains results from the CX8C and CX7C screens. The top list of peptides had fairly good overlap 

between duplicates. The most prominent peptide sequences after the third round are listed in Table 1.9: 

Table 1.9 Recombinant TrkB phage display second approach results 

CX8C Library 1 torrent count 2 torrent count 
 

CX7C Library 1 torrent count 2 torrent count 

CLWTKKGKKC 234 390  CHPGKGKRC 455 107 

CAKGSKWNKC 85 163  CRKSKRGEC 363 133 

CTDAKGRKRC 80 115 
 

CLQKKKSKC 141 177 

CRGKKASREC 87 109 
 

RLCKKGKPC 135 176 

CSKGPKKKPC 78 85 
 

CMYKGKKKC 173 88 

CERSSKKSKC 69 68 
 

CFKGKKAVC 78 114 

    CEGKRRKGC 105 91 

    CKDKKGRPC 100 73 

Table 1.8 Recombinant TrkB phage display first approach 

Peptide sequnce % of total in the 3rd round 

CKSEHSH 47.7 

CKNRHSH 12.5 

CKSHHH 6.1 

CHKH 5.5 

CAGAHVH 2.9 

CKSHQH 1.9 
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Table 1.10 Phage display on plated cell results 

Most of these peptides 

contained multiple positively charge 

amino acids, specifically lysine. Even 

though sequences found in the parallel 

control naked bead screen did not overlap with the primary screen, these results raised questions 

whether recombinant TrkB produced true binders to the receptor. It was decided to conduct phage display 

on TrkB expressed on the cell surface. Found sequences could be compared to the recombinant TrkB 

screen, which would validate the results of both screens. 

1.2.10.2 Cell based Phage Display 

Since the main purpose of the TrkB phage 

display was to identify peptides that would act as 

TrkB agonists or allosteric modulators, it was 

decided to conduct the screen against the 

activated form of TrkB, which should be present in 

a BDNF-TrkB complex. Therefore, the general 

strategy of the cell-based phage display was to 

form a BDNF-TrkB complex on cell surface and 

biopan against this complex (Figure 1.2.22). 

Typically, the first round of selection could be 

performed overnight at 4°C. Subsequent rounds 

required more strict conditions, to reduce non-

specific and low affinity peptides. To ensure 

diversity collapse of the initial library 3-5 rounds of 

selection were conducted.  

Phage 
library 

Input Output 

+ BDNF - BDNF + BDNF O/I - BDNF O/I 

CX8C 4.00E+08 3.00E+08 7.10E+06 1.8% 7.00E+06 2.3% 

CX7C 3.50E+08 4.00E+08 6.10E+06 1.7% 7.70E+06 1.9% 

G7 2.70E+08 2.80E+08 3.60E+06 1.3% 3.60E+06 1.3% 

 

Figure 1.2.22 Phage display scheme 
Phage display consisted of several steps reminiscent of a 
catalytic cycle. 1. Cells were incubated with phage library and 
BDNF (+BDNF) or Phage vehicle (-BDNF) for 2h or overnight at 
4°C with rocking. 2. After biopanning cell medium was collected 
for input titer, and cells were washed 5 times. 3. Cells were 
lysed. 4. The number of phages were counted in the lysate. 5-6. 
Collected phages were amplified and purified for sequencing 
and next round of selection.  
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1.2.10.2.1 Phage display on cultured HEK-TrkB cells 

Since protein conformation at 37°C was considered to be more relevant to physiological 

conditions as well as binding of phage could be faster, it was decided to perform biopanning on seeded 

HEK-TrkB at 37°C for 2 h incubation in the presence of BDNF at EC100 (100 ng/ml). To test the feasibility 

of the outlined approach, CX8C and CX7C libraries and CG7C control phages were added to HEK-TrkB, 

which then was treated with BDNF. After the biopanning, cells were washed with medium five times and 

lysed. Lysates were collected and analyzed for phage content. The results of the test run results are 

present in Table 1.10.  

Table 1.11 Phage titer at every washing step 

The output-to-input ratio was too 

high, indicating high background. To 

characterize whether the five washing steps 

were enough to wash off excess phages, 

each washing step aliquots were collected 

and analyzed for phage content (Table 

1.11). On the fifth washing step the number of phages was almost two orders of magnitude lower than the 

output sample, indicating that increasing steps or the volume of medium of washing had not decreased 

the number of phages in the output sample. Lowering the temperature had not yielded more favorable 

results, so an alternative approach was explored. 

1.2.10.2.2 BDNF-TrkB complex detection: Blue-native PAGE (BN PAGE) 

Since phage display on the plate produced high background, biopanning was performed in cell 

suspension (Figure 1.2.22). HEK-TrkB is an adherent cell line so several questions were raised:  

1. Did the BDNF-TrkB complex form in suspension?  

2. Was it present in the course of phage display? 

3. Did phosphorylation of TrkB takes place at 4°C? 

4. Did cells survive in suspension? 

To answer the first question a method for detecting protein-protein interactions was used. The 

common method is co-immunoprecipitation, which requires BDNF-specific antibody for precipitation and 

Washing steps  

Input 2.70E+08 100.00%  

1 3.45E+06 1.28%  

2 2.75E+05 0.10%  

3 1.50E+05 0.06%  

4 8.00E+04 0.03%  

5 8.80E+04 0.03%  

Output 3.60E+06 1.33%  
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detection, which was not available. Other potential in vitro methods use purified protein or require genetic 

tagging of the proteins in the cells. One other method that could be used with cell lysates has been native 

electrophoresis. However, PAGE electrophoresis could only be used to resolve negatively charged 

proteins. To solve this issue in native PAGE, Coomassie Brilliant Blue G-250 (CBG250) has been used to 

give proteins negative charge (140, 141). This dye has stained proteins non-specifically without disrupting 

protein complexes and has given negative charge to proteins proportional to the size. This method has 

been called Blue-native PAGE (BN PAGE). 

A                           B                               C                                  D                             E 

     
F                                                         G 

 

Figure 1.2.23 BN PAGE development 
A. A test run of CBG250 stained marker proteins and cell lysate of U2OS-TrkB treated with BDNF performed on 4-
20% Mini Protean pre-cast gel. To test the detection limit two loads of lysate were tested. The Coomassie stained 
blot was imaged on the 700 nm channel on a NIR Licor Odyssey imaging station. B-C. Coomassie destained 
membrane blotted against pERK and TrkB to test protein migration in the gel and detection of ERK 
phosphorylation and BDNF-TrkB complex. D. Coomassie stained blot of different recombinant proteins imaged to 
visualize protein migration in manually prepared 4-20% BN PAGE Bis-Tris gel. Markers sample contained lower 
concentration of recombinant proteins used on other lanes. E. Lysates of BDNF treated and control U2OS-TrkB 
cells blotted against TrkB imaged to visualize TrkB migration in BN PAGE gel and detect formation of the complex. 
F. BN PAGE blot of U2OS-TrkB treated with BDNF and K252a stained against TrkB to test formation of the 
complex in the presence of K252a. G. BN-PAGE blot of BDNF dose response of BDNF-TrkB complex formation 
and Zn activity at TrkB in U2OS-TrkB at 37°C 1-hour treatment was stained against TrkB to demonstrate BDNF 
dose dependent complex formation and whether Zn2+ induced any TrkB dimerization. 
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To test the principle of BN PAGE as well as to develop this method, the SDS PAGE method was 

adjusted as necessary by substituting SDS to CBG250, while using SDS PAGE buffers and Tris-glycine 

gel. Different recombinant proteins (RNAse, GAPDH, BSA, alkaline phosphatase, β-galactosidase) were 

mixed to prepare BN PAGE markers. DiscoverX U2OS-TrkB cells, which were readily available at the 

time of the experiments, were used. BN PAGE on 4-20% gradient Mini Protean gel produced protein 

electrophoresis with long streaks, broad bands and poor front stacking (Figure 1.2.23A). CBG250 stained 

proteins could be visualized in the 700 nm channel of near-IR on the Lycor Odyssey dual channel 

imaging station. Cell lysates had one continuous droplet-shaped band and contained large proteins that 

did not travel into the gel. CBG250 could not be effectively destained from the blot rendering the 700 nm 

channel useless for further staining. Thus, target proteins could only be visualized in the 800 nm channel. 

Phospho-ERK and TrkB were detected using corresponding antibodies (Figure 1.2.23B-C). The pERK 

band appeared to be broad, while TrkB contained a long streak and one major band. There was a second 

TrkB band in the BDNF-treated lysate which was barely detectable. These results indicated that BN 

PAGE in principle does work, however SDS PAGE gel was not suitable for this method. 

BN PAGE has been performed on Bis-Tris - ε-aminocaproic acid or tricine-imidazole gels. Based 

on reagent availability 4-20% gradient Bis-Tris gel was manually prepared by layering 20-15-12-10-8-7-6-

5-4% acrylamide/bisacrylamide solutions. To test how proteins of different size and charge travel in BN 

PAGE, RNAse (13.7 kDa), GAPDH (37 kDa), BSA (66 kDa), and β-galactosidase (116 kDa) were used 

(Figure 1.2.23D). The protein front was stacked, however streaks remained. Rf values of RNA, GAPDH, 

and β-galactosidase correlated with MW, while BSA had a higher Rf than expected. Lysates of DiscoverX 

U2OS-TrkB cells treated with BDNF were used in BN PAGE to identify whether the BDNF-TrkB complex 

could be detected. Untreated cells contained one band, while BDNF treated lysates contained two TrkB 

bands, with one corresponding to similar band in untreated cells with lower absorbance (Figure 1.2.23E). 

The second band most likely represented the BDNF-TrkB complex. To confirm a BDNF-dependent 

complex formation U2OS-TrkB cells were treated with BDNF at various concentrations for 1h at 37°C 

(Figure 1.2.23F). A second TrkB band indeed formed at active concentrations of BDNF. Interestingly, Zn 

did not form a TrkB dimer and at high concentration and probably caused TrkB degradation. To test 

whether formation of the complex could be inhibited, DiscoverX U2OS-TrkB were treated with BDNF and 
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K252a and subjected to BN PAGE analysis (Figure 1.2.23G). The BDNF and K252a treated sample 

contained the same bands as BDNF treated sample, indicating the formation of the complex even in the 

presence of K252a. The results were not surprising, since BDNF have caused TrkB dimerization through 

extracellular domains even though K252a inhibited activity of TrkB kinase domain, which might not play a 

role in complex formation and stability. 

Having developed a new method to verify complex formation, the first and second stated 

questions above could be answered. To this end, HEK-TrkB cells were treated with BDNF at 100 ng/ml 

(EC100) for 1h at 4°C or 37°C on the plate or in suspension. Free TrkB and BDNF-TrkB complex were 

resolved on 4-20% BN PAGE and visualized using a TrkB antibody. BDNF treated cells on plate and in 

suspension at 37°C and 4°C contained two resolved TrkB bands indicating the formation of a BDNF-TrkB 

complex (Figure 1.2.24A). Lysate of cells treated on the plate at 4°C did not, however, contain clear 

BDNF-TrkB bands as the whole lane was noisy with a lot protein at the start.  

Table 1.12 Phage display on plated cell results 

To test whether TrkB is 

phosphorylated under phage display 

conditions, similar lysates used for BN 

PAGE were analyzed in ELISA (Figure 

1.2.24B). TrkB phosphorylation was higher than control under all conditions where cells were treated with 

BDNF, which answered the third and fourth stated questions. Surprisingly even at 4°C signaling 

processes of cells was not inhibited. Lastly, it was important to find the output-to-input ratio of phage  

A                                                                   B                                                C 
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Figure 1.2.24 Cell-based Phage Display protocol characterization 
A BN PAGE of HEK-TrkB cells treated with BDNF under different conditions. B. Phosphorylation of TrkB in BDNF 
treated HEK-TrkB cells under different conditions measured by ELISA. C. O/I ratio of phage in plate and 
suspension format of phage display. 
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display protocol (Figure 1.2.22). To this end G7 phages were added to cells and incubated for 2 h 

at 4°C on plate and in suspension. The output-to-input (O/I) ratio of suspension sample was 0.005%, or  
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Figure 1.2.25 Cell-based Phage display first run 
A-C. Phosphorylation of TrkB in the course of the screening measured using ELISA and control samples from 
round 1 (A), round 2 (B), and round 3 (C). TrkB phosphorylation was also measured before and after washing 
steps in the third round (C). D. Input and output values from each round and each library counted by titering. E. O/I 
ratio was calculated to track enrichment of the libraries. 
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20,000 times less phages in the output than in the input, while plate sample retained 0.1% of phages, or 

800 times less phage in the output than the input (Figure 1.2.24C). In other words, selection in 

suspension was better, thus improving the protocol. 

1.2.10.2.3 Phage Display in cell suspension 

Using the developed phage display protocol, three rounds of selection were performed with both 

phage libraries and G7 phage as a control. To control for TrkB activity each round contained a sample 

that was later used for ELISA to identify the phosphorylation level of TrkB. In all rounds, BDNF treated 

cells contained phosphorylated TrkB (Figure 1.2.25A-C). In the first round, 5*108 phages were added to 

cells with and without BDNF, incubated for 4h at 4°C with rocking, and about 105 phages were collected 

after five washing rounds (Figure 1.2.25D). The O/I was 0.02% while the O/I for control G7 phage was 

around 0.01% (Figure 1.2.25E). In the second round 2*109 of library phages were input, incubated for 2 

hours at 4°C rocking, and 105 phages were collected resulting in O/I equal to 0.07%. G7 control sample 

had O/I equal to 0.01%, which indicated successful enrichment of the libraries. In the third round, CX8C 

input and output was around 4*107 and 2*104 respectively, yielding 0.05% O/I in BDNF treated sample 

and 0.09% in untreated sample. CX7C input and output values were an order magnitude lower than 

CX8C, yielding 0.09% O/I in BDNF treated sample and 0.13% in untreated sample. G7 O/I was 0.014% 

which was consistent throughout the screen (Figure 1.2.25E). The O/I of the third round was similar to 

second round, raising the question of whether the enrichment was good, and should the current screen 

be pursued any further. As it was noted by Dr. Teesalu, second and subsequent rounds should have 

lower input than the first input to increase stringency of the screen. Therefore, it was decided to do 

another screen and correct conditions to increase stringency. 

A second phage display run was performed with necessary modifications. The first round of 

biopanning was conducted rocking overnight at 4°C with 109 phages in the input. TrkB was 

phosphorylated during the first round of biopanning (Figure 1.2.26A). The output contained 2*105 in CX8C 

sample and 1*105 phages in CX7C, with O/I equal to 0.02% and 0.01% respectively (Figure 1.2.26 D and 

Figure 1.2.26 Cell-based Phage display second run 
A-C. Phosphorylation of TrkB in the course of the screening was measured using ELISA and control samples from 
round 1 (A), round 2 (B), and round 3 (C). D. Input and output values from each round and each library was 
counted by titering. E. Output-to-input ratio was calculated to track enrichment of the libraries. F-G. Output-input 
graphs for CX8C (F) and CX7C (G) were drawn to compare output values of naïve and collected libraries. 
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E). In the second round an order of magnitude less input of phages was biopanned for 4 hours, with a 

similar level of the output as in the first round. As the result, second round O/I was an order of magnitude 

higher than first round and G7 control, indicating successful enrichment. In the third round 7*106 phages 

were input for 4h biopanning at 4°C. The output of CX8C phages were also lower at 1.6*104 phages, 

while CX7C output was similar to previous rounds. The O/I for CX8C was similar to second round while 

O/I for CX7C reached 1%. G7 control remained low throughout the screen. Between first and second 

round the O/I was improved in CX8C library screen, but no further improvement was observed in the third 

round. CX7C O/I throughout the phage display screen was much better, with reaching 1% from 0.01%. To 

determine whether the output value of each round indicated an enrichment of the target specific phages, 

a naïve library output value as the function of input was measured. The output was directly proportional to 

input, while collected libraries output deviated from this relationship, indicating a higher affinity toward the 

target and confirming the enrichment (Figure 1.2.26 F and G). These results were encouraging and 

prompted further analysis of collected phages. TrkB was phosphorylated in all rounds (Figure 1.2.26 B 

and C). 

1.2.10.2.4 CX7C library sequence analysis and characterization 

Collected libraries were sequenced in Ion Torrent sequencing. In CX7C library collected in the 

first round of selection the number of unique phages had been reduced from 4.14*106 in the naïve library 

to 88098 (2% of unique phages from naïve library) in the BDNF treated sample, and 49139 (1.2% of 

unique phages from naïve library) in the untreated one, giving a ratio of 1.8 between the samples. The 

total number of phages recovered was 260067 in BDNF treated sample, and 115243 in untreated, with 

2.3 ratio between the samples. These numbers did not take into account phages that expressed non-

cyclic peptides and the one that do not start with C amino acid, and thus these numbers could not be 

accurately compared with values found by titering during the screening. 

In the second round the number of unique phages was 26455 from BDNF-treated sample and 

14397 from untreated sample, with a ratio of 1.8 which was consistent with the first round of selection. 

The total number of phages in BDNF treated and untreated samples reached 259856 and 62494 giving a 

ratio of 4.2, which was higher than in the first round indicating a better selection in the second round. The 

top 20 abundant phages are presented Table 1.13. The most abundant sequence, CYKIGRVKC, 
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amounted to 4% of total phage number in BDNF treated sample and 2% in untreated sample, providing a 

selection ratio of 2, which is consistent with unique phage number ratio and lower than the total number 

phage ratio. CRLDVC was the second most abundant with 1.41% and 1.58% of total phages present in 

BDNF-treated and untreated sample respectively with a 0.90 selection ratio, indicating to lack of 

specificity. 

Table 1.13 Top 20 abundant phages found through Ion Torrent sequencing in CX7C libraries. Phages selected for 
ELFI analysis are in bold. 

Round 2  Round 3 

Peptides 
Count % of total  

Peptides 
Count % of total 

+BDNF -BDNF +BDNF -BDNF  +BDNF -BDNF +BDNF -BDNF 

CYKIGRVKC 10364 1309 3.99% 2.09%  
CYKIGRVKC 78356 100772 67.51% 66.97% 

CRLDVC 3673 989 1.41% 1.58%  
CRLDVC 10550 13184 9.09% 8.76% 

CRLDFCS 1462 544 0.56% 0.87%  
CRLDFCS 2760 3374 2.38% 2.24% 

CQAWEISTC 549 226 0.21% 0.36%  
CQAWEISTC 1694 1956 1.46% 1.30% 

CGVPDGITC 429 49 0.17% 0.08%  
CHEWVLEPC 1334 1753 1.15% 1.17% 

CHEWVLEPC 418 160 0.16% 0.26%  
CVTWEVSSC 441 722 0.38% 0.48% 

CPGSEGRRC 404 50 0.16% 0.08%  
CPTWEVSQC 340 400 0.29% 0.27% 

CTIGEYEHC 333 100 0.13% 0.16%  
CHRRGDQIC 231 316 0.20% 0.21% 

CRRTRSGMC 320 40 0.12% 0.06%  
CKRRGDHTC 192 254 0.17% 0.17% 

CGNKTKVTC 296 53 0.11% 0.08%  
CPTWEVSLC 184 261 0.16% 0.17% 

CGTAPLNGC 288 75 0.11% 0.12%  
CEAWEVSSC 132 225 0.11% 0.15% 

CSPYKVNAC 283 91 0.11% 0.15%  
CEEWVVSAC 111 193 0.10% 0.13% 

CASEWDEGC 282 58 0.11% 0.09%  
CVAEGVERC 109 93 0.09% 0.06% 

CHRRGDQIC 276 59 0.11% 0.09%  
CITWEVSSC 100 120 0.09% 0.08% 

CGNTGVVVC 275 63 0.11% 0.10%  
CAFRGDHTC 97 101 0.08% 0.07% 

CRNTRTKTC 274 0 0.11% 0.00%  
CKRRGDGTC 95 95 0.08% 0.06% 

CVTWEVSSC 265 101 0.10% 0.16%  
CISQGRRIC 70 0 0.06% 0.00% 

CRQGRTKGC 244 23 0.09% 0.04%  
CASTLTGAC 70 0 0.06% 0.00% 

CNHSGRSKC 240 61 0.09% 0.10%  
CADISDSHC 66 14 0.06% 0.01% 

CRRRNVGVC 235 33 0.09% 0.05%  CNVLAKSEC 65 0 0.06% 0.00% 

CVSRSEGNC 234 52 0.09% 0.08%  
CHNVLDKC 64 0 0.06% 0.00% 

Total 259856 62494 - -  
Total 116065 150466   

Unique  26455 14397 - -  
Unique  4175 4878   

 

In the third round the number of unique phages was 4175 from BDNF-treated sample and 4878 

from untreated sample, with a ratio of 0.86 which was lower than in first and second rounds of selection. 

The total number of phages in BDNF-treated and untreated samples reached 116065 and 150466, giving 

a ratio of 0.77, which was in agreement with the unique phage number ratio and lower than in the first and 
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second rounds, indicating a worse selection in the third round. On the other hand, the diversity of the 

library was greatly reduced, so no further selection rounds were required. The most abundant sequence, 

CYKIGRVKC, amounted to 68% and 67% of total phage number in BDNF treated sample and untreated 

samples respectively, with selection ratio of 1 with no specificity toward BDNF treated sample that was 

observed in the second round. CRLDVC phage total number was also higher, up to 10550 and 13184 

amounting to 9% and 8.8% in BDNF-treated and untreated samples, the selection ratio of which did not 

change between second and third rounds. The higher than expected number of phages in the untreated 

sample could be attributed to less stringent biopanning condition of the third round. However, a lower 

number of unique phages did not support this assumption. 

Table 1.14 Sanger sequencing results.  
Phages selected for ELFI analysis are in bold  

Sequence analysis of the round two library top 20 

CX7C peptides (excluding peptides with less than 7 amino 

acids between C) (Figure 1.2.27A) showed a prevalence of 

charged amino acids like Arg and Glu at 2-4 and 5-7 

positions, respectively in the BDNF-treated sample. Amino 

acids were color coded as follows: DE, RHK, CGSTY, NQ, 

AFILMPVW. The sequence made up from the most 

frequently occurring amino acids were CGNREVETC and CRRTGDGGC (Figure 1.2.27 A). In contrast, 

untreated samples contained peptides with more frequent occurrences of Gly at various positions, and 

less amount of charged amino acids. This library also contained Trp at fourth position quite frequently. 

The sequence made from the two most frequent amino acids was CGTWGVSTC and CFIGEGEVC. In all 

sequenced libraries Thr was present at the seventh position. In the third round, the BDNF-treated library 

contained TWGVST sequence, that was the prominent in the second round untreated library, and RREDE 

motif (Figure 1.2.27B). The third round untreated library sequences were slightly different from the second 

round library with the most frequent motif being RWEVS(S/T). 

For Sanger sequencing random phage plaques from amplified plates of round three BDNF-

treated library were collected and submitted to sequencing (Table 1.14). CYKIGRVKC phage was in 61% 

of all selected plaques and CRLDFCS and CRLDVC were the next most abundant phages at 4%. Sanger 

Sequence Number 
 

CYKIGRVKC 28 
 

CQAMD 1 
 

CRLDFCS 2 
 

CRLDVC 2 
 

CERQY 1 
 

CNDFITPNC 1 
 

CVTWEVSSC 1 
 

CHRRGDQIC 1 
 

Total 46 
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sequencing results mirrored the Ion Torrent sequencing outcome. Selection parameters for functional 

characterization of the phages were abundance of the peptide, low number of charged amino acids (D, E, 

R, H, K), and high number of amino acids with heteroatoms (S, T, N, Q, Y, W, M, F). Based on these 

parameters CYKIGRVKC and CVTWEVSSC were selected. 

 

 

The entire round 3 CX7C BDNF treated library and selected phages were tested for allosteric 

modulation of BDNF activity at ERK in HEK-TrkB cells (Figure 1.2.27C-D). No significant influence of the 

library or individual phages were measured. Due to low concentration of phages that could be achieved in 

the cell medium the phages could not exert their activity. Indeed, the typical concentration of phages were 

at 1011 pfu/ml, which would be equal to 1.6 nM in stock and 20 pM in cell experiments. The EC10 of 

BDNF at ERK was 23 pM, thus the phage concentration was likely too low to elicit any significant 

response in ELFI. 

 

1.2.10.2.5 CX8C library sequence analysis and characterization 

CX8C library collected in the first round of selection contained 26499 number of unique phages 

out of 2*108 in the naïve library in the BDNF-treated sample, and 82397 in the untreated one, giving a 
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Figure 1.2.27 CX7C sequences and ELFI 
characterization 
A-B. Sequence logo represantation of round 2 
(A) and round 3 (B) CX7C library. Aminoacids 
were color coded as follows: DE, RHK, 
CGSTY, NQ, AFILMPVW. C. Functional 
activity of the round 3 CX7C library as 
allosteric modulator was evaluated in ELFI by 
measuring BDNF dose response 
phosphorylation of ERK. D. Selected 
individual phages were evaluated as allosteric 
modulators in ELFI measuring BDNF dose 
response phosphorylation of ERK. 
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ratio of 0.32 between the samples. The total number of phages recovered was 34143 in the BDNF-

treated sample, and 199880 in untreated, with a 0.17 ratio between the samples. The outcome of the 

BDNF-treated sample was surprising given the output value found by titering (2.6*105), while the total 

number of phages in the untreated sample were similar to the titering. Most likely the most abundant 

phages in round 1 BDNF-treated library were either insertless or lacking Cys at the expected location of 

the coat protein, thus reducing the total number of CX8C phages. 

Table 1.15 Top 20 abundant phages found through Ion Torrent sequencing in CX8C libraries. Phages selected for 
ELFI are in bold 

Round 2  Round 3 

Peptides 
Count % of total  

Peptides 
Count % of total 

+BDNF -BDNF +BDNF -BDNF  +BDNF -BDNF +BDNF -BDNF 

CVDSTGERWC 287 299 0.653% 0.659%  CRLDFC 4015 6859 12.632% 12.760% 

CRLDFC 137 23 0.312% 0.051%  CRGDRRALNC 3742 5473 11.773% 10.182% 

CRLDVCSP 108 48 0.246% 0.106%  CRLDVCSP 1102 1856 3.467% 3.453% 

CRGDRRALNC 103 42 0.234% 0.093%  CSQEIVYELC 1071 1578 3.370% 2.936% 

CAVRDNTTTC 76 11 0.173% 0.024%  CVGTLLIGEC 862 1180 2.712% 2.195% 

CRMFTNRSKC 58 36 0.132% 0.079%  CVDSTGERWC 773 1176 2.432% 2.188% 

CVGTLLIGEC 47 22 0.107% 0.048%  CRLDVC 600 802 1.888% 1.492% 

CSIVSNSKDC 44 0 0.100% 0.000%  CRGDRRSTEC 557 1236 1.752% 2.299% 

CRKTRSNQEC 42 2 0.096% 0.004%  CARIRGDMAC 418 781 1.315% 1.453% 

CSQHRTRSKC 40 19 0.091% 0.042%  CNEIVYDLSC 228 356 0.717% 0.662% 

CLEESTRRAC 39 11 0.089% 0.024%  CDRVFELNPC 212 303 0.667% 0.564% 

CAKRGDVGPC 39 20 0.089% 0.044%  CQKQEYCNPC 158 292 0.497% 0.543% 

CAGNKTHGRC 38 10 0.086% 0.022%  CTAFDAVNIC 150 114 0.472% 0.212% 

CTKKRC 38 0 0.086% 0.000%  CDVVYELTSC 144 153 0.453% 0.285% 

CKVNKSTKKC 37 7 0.084% 0.015%  CGLQSYCDPC 141 284 0.444% 0.528% 

CVSDSCNPSC 36 11 0.082% 0.024%  CEWTLTPPAC 117 122 0.368% 0.227% 

CNSGSASSKC 36 4 0.082% 0.009%  CFDLTFTQDC 109 76 0.343% 0.141% 

CANSTGKRRC 36 23 0.082% 0.051%  CAVRDNTTTC 108 121 0.340% 0.225% 

CTRTDGIDTC 35 29 0.080% 0.064%  CVGGGC 102 1 0.321% 0.002% 

CNRSRTSKVC 35 12 0.080% 0.026%  CRDNKTWPPC 98 209 0.308% 0.389% 

CPTGDSYKKC 34 2 0.077% 0.004%  CFDGVESYEC 97 103 0.305% 0.192% 

CDGYRMQGSC 8 0 0.018% 0.000%  CDGYRMQGSC 5 3 0.016% 0.006% 

CLGQNLDNSC 2 5 0.005% 0.011%  CLGQNLDNSC 7 0 0.022% 0.000% 

CLSLKHTTSC 8 3 0.018% 0.007%  CLSLKHTTSC 11 1 0.035% 0.002% 

Total  43972 45403 - -  Total peptides 31784 53752 - - 

Unique 13464 16467    Unique peptides 3006 3642 - - 
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In the second round the number of unique phages was 13464 in BDNF-treated sample and 

16467 from the untreated sample, with a ratio of 0.82, which indicated reduced discrepancies between 

the libraries observed in the first round. The total number of phages in the BDNF-treated and untreated 

samples reached 43972 and 45403 giving ratio of 0.97. The top 20 most abundant phages are presented 

in Table 1.15. The most abundant sequence, CVDSTGERWC, amounted to 0.65% of the total phage 

number in the BDNF-treated sample and 0.66% in the untreated sample, with a selection ratio of 1, which 

is consistent with a unique phage number ratio and lower than total phage number ratio. CRLDFC was 

the second most abundant peptide with 0.31% and 0.05% of total phages number in the BDNF-treated 

and untreated sample respectively with a 6.2 selection ratio, which indicates specificity toward the target 

sample. Moreover, this peptide shared similar RLDV(F) motif with the third most abundant peptide in the 

current library, CRLDVCSP, as well as second and third most abundant peptides in second round CX7C 

library, CRLDVC and CRLDFCS.  

Table 1.16 Sanger sequencing results.  
Phages selected for ELISA are in bold 

In the third round the number of unique phages was 

3006 from the BDNF-treated sample and 3642 from the 

untreated sample, with a ratio of 0.83 which was similar to the 

previous rounds. The total number of phages in the BDNF-

treated and untreated samples reached 31784 and 53752, 

giving a ratio of 0.59. The diversity of library was greatly 

reduced in the third round as with CX7C, so no further selection 

rounds were required. The most abundant sequence, CRLDFC, 

amounted to 13% of the total phage number in both BDNF-

treated and untreated sample, with a selection ratio of 1, 

indicating no specificity toward the BDNF-treated sample that 

was observed in the second round. CRLDVCSP phage total 

number was also higher, up to 1102 and 1856, amounting to 

3.5% in both BDNF-treated and untreated samples. Round 3 

CX8C results were similar to CX7C in terms of specificity. 

Sequence Number 
 

CGKXTNRVSC 1 
 

CRLDFC 4 
 

CSLLVESFD 1 
 

CNKSTSGLNC 1 
 

CSQEIVYELC 3 
 

CRGDRRALNC 2 
 

CLSSSRAIVC 1 
 

CGLGRENLEC 1 
 

CFDGVEFYQC 1 
 

CNVEGVTVIC 1 
 

CRLTKGKHPC 1 
 

CDGYRMQGSC 1 
 

CLGQNLDNSC 1 
 

CLDVSPY 1 
 

CEIIEGESA 1 
 

CLSLKHTTSC 1 
 

CLKIKKGPGC 1 
 

CKTDVRKMPC 1 
 

Total 48 
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Sequence analysis of the round 2 library top 20 CX7C peptides (excluding peptides with less than 

7 amino acids between C) (Figure 1.2.28A) showed a prevalence of charged amino acids like Arg and 

Lys at 2, 3, 5, and 7-9 positions, and Gly and Ser/Thr at 3-8 positions in the BDNF-treated library. 

Sequences made from the two most frequent amino acids were CAGSRTRKKC and CRKTSGSGEC. In 

contrast, untreated samples contained peptides with more frequent occurrences of Asp at various 

positions. The sequences of the two most frequent amino acids were CRSDGDALKC and 

CADNTNGVTC. In both libraries Ala and Arg were present at the second position, while Lys at the ninth. 

In the third round BDNF-treated library negatively charged amino acids Asp and Glu became more 

frequent in contrast to the second round BDNF-treated library, while Arg become more prominent in the 

untreated library (Figure 1.2.28B). 

For Sanger sequencing random plaques from the amplified plates of round 3 BDNF-treated 

library were collected and submitted to sequencing (Table 1.16). CRLDFC phage was in 8% of all 

selected plaques and CSQEIVYELC and CRGDRRALNC were the next most abundant phages at 6.25% 

and 4.2% respectively. Sanger sequencing results were not similar to the Ion Torrent sequencing 

outcome, as very rare peptides were gathered with only 3 peptides collected in the top 20 sequences. 

Based on the selection parameters CDGYRMQGSC, CLGQNLDNSC, and CLSLKHTTSC were selected. 
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Figure 1.2.28 CX8C sequences and ELFI 
characterization 
A-B. Amino acid frequency displayed as logo 
for round 2 (A) and round 3 (B) in CX8C library. 
Amino acids are color coded as follows: DE, 
RHK, CGSTY, NQ, AFILMPVW. C. Functional 
activity of round 3 CX8C library as allosteric 
modulator was evaluated in ELFI by measuring 
BDNF dose response phosphorylation of ERK. 
D. Selected individual phages were evaluated 
as allosteric modulators in ELFI measuring 
BDNF dose response phosphorylation of ERK. 
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The entire round 3 CX8C BDNF-treated library and selected phages were tested for allosteric 

modulation of BDNF activity at ERK in HEK-TrkB cells (Figure 1.2.28C-D). No significant influence of the 

library or individual phages were measured probably for the same reason as with CX7C phages. 

 

1.2.10.3 Conclusion of Phage Display 

Our efforts to utilize phage display platform for finding structures to modulate TrkB activity 

showed promising results based on the enrichments of the libraries. Initial testing of the sequences, 

identified in the course of the selection, were focused the most abundant peptides. Moving forward, a 

more sophisticated sequence analysis should be applied to find TrkB selective sequences. In the future, 

optimization and improvement of the phage display protocol should allow us to identify more specific 

sequences. 

1.3 Discussion 

BDNF and TrkB are important pharmacological targets. The neurotrophin based therapy has 

shown promise in the treatment of many treatment-resistant diseases. It is no wonder that significant 

effort has been put into developing probes that could influence this system. Given the positive results of 

BDNF infusion into animals, it has been surprising that BDNF injection has shown little effect in the 

treatment of ALS. There have been several hypotheses into why intrathecal injection has not yielded the 

expected results. One possibility has been the dose of injected BDNF. In animal models, the effects of 

BDNF have been detected at 5-10 mg/kg dose, while human trials have hardly exceeded 150 µg/kg 

without inducing adverse reaction to the injection and side effects such as the relieved constipation. The 

other hypothesis has been poor pharmacokinetics of the neurotrophic factors. In mice, it has been 

demonstrated that BDNF was readily cleared from blood following i.v. injections. Even though BDNF has 

shown affinity to brain vasculature, it has had little penetration of BBB shown by 2 independent 

experiments: i.v. injection did not produce high concentration of BDNF in CSF, while intrathecal injections 

have had produced little dose of BDNF in the serum. S.c. injection did produce a longer half-life of BDNF 

in the blood stream, but the BDNF dose did not exceed 16 ng/ml dose in the serum, making it ineffective 

(61). Another hypothesis is based on BDNF interaction with p75NTR. Several reports have shown that in 



72 
 

the presence of p75 BDNF did not produce the expected neurotrophic effects such as axonal growth and 

myelination (142), which could explain the lack of positive results in ALS studies. 

All these shortcomings have left little room to argue against developing alternative agonists or 

modulators of TrkB. Having a lead compound, it would be possible to modify the structure to penetrate 

BBB and have longer a half-life in the serum. Moreover, such a lead compound could be specific to TrkB 

over p75NTR and thus would presumably induce a neurotrophic response even in the presence of 

p75NTR. Alternatively, having a positive allosteric modulator might open the possibility of attenuating the 

side effects encountered in the BDNF infusion studies, while potentiating endogenously released BDNF. 

For example, physical activity has been shown to induce BDNF release (143). In the depressed brain 

BDNF release has been low, so having a PAM might help to overcome BDNF shortage in depressed 

patients performing exercises.  

To examine the key pharmacological and signaling properties of reported small molecule TrkB 

agonists, a number of quantitative and complementary in vitro cell assays were developed. BDNF, NT4, 

and NT3 robustly activated TrkB in these assays, whereas to our surprise and disappointment, activation 

of TrkB by any of the reported small molecule TrkB agonists could not be reproduced (125). A recent 

report by the authors who introduced 7,8-DHF as a TrkB agonist suggested that its activity in CNC in vitro 

has been dependent on days in vitro (DIV) of culture and have reported significant activation of the 

receptor beyond DIV 13 (88). Also, several other protocol modifications have been suggested by the 

author (personal communication; e.g., preparing 7,8-DHF stock solution in DMSO immediately before the 

experiments as 7,8-DHF may not be stable in solution). However, none of these protocol adjustments 

have altered the negative outcomes in our laboratory. The positive controls have worked reliably in 

multiple assays, while 7,8-DHF (and the other reported compounds) have not activated our TrkB system 

in vitro. This compound along with deoxygedunin and amitriptyline have been found as TrkB agonist 

using survival assay from staurosporine-induced apoptosis in TrkB expressing cells, while K252a has 

been used to inhibit TrkB as evidence of TrkB-dependent activity of the compounds. Interestingly, 

staurosporine is a parent compound of K252a and has inhibited non-specifically many kinases. Moreover, 

K252a potentiated AKT phosphorylation induced by BDNF and Zn in cortical neuronal culture (Figure 

1.2.11). Similar activity of staurosporine could be hypothesized. Then, staurosporine at 100 µM may have 
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potentiated Akt phosphorylation induced by BDNF and other compounds activity, and support anti-

apoptotic activity of these compounds, while still inhibiting other kinases (Trk family, c-MEK). It has also 

been reported that staurosporine has induced neurite outgrowth (144, 145). Although the difficulty of 

reproducing the in vitro results have been discussed at conferences for several years, only recently has 

an independent research group reported a study that failed to confirm some of the reported small 

molecule compounds as TrkB agonists (115), consistent with our own results described here. 

One plausible explanation for the observed discrepancies could be methodological in nature. 

Although western blot has been one of the standard core methods used in life sciences and has been 

widely utilized for the detection of phosphorylation states of receptors and kinases, it must be used 

cautiously for quantification, particularly of dynamic processes like kinase phosphorylation. Western blot 

requires a number of procedural steps (e.g., sample preparation, electrophoresis, transfer to blot), which 

make it impractical to perform multiple repeats for each experimental condition (including controls). 

Moreover, densitometry is quite dependent on the analysis procedure, which may lead to biased results, 

especially with the low level of phosphorylation of the protein of interest. Specificity of the antibody has 

played an important role as well (146, 147). While we could confidently use pERK and pAkt antibodies, as 

they have provided highly specific staining in blot (Figure 1.2.7), it has been more difficult finding a 

specific antibody for pTrkB, as these antibodies tend to stain other targets.  

For example, 7,8-DHF has been tested in vivo in many different disease models (see 

introduction) by several independent laboratories. The behavioral or physiological outcomes have been 

consistent with what would be expected for a TrkB agonist (plasticity inducer, repair enhancer). However, 

most of the in vivo reports of the molecular mechanism have been based on post mortem western blot. In 

some reports western blot results were not strictly analyzed. For example, in one report pTrkB has been 

falsely identified at 92 kDa, while in the other paper densitometric analysis did not account for the 

background on the lane and measured larger density than should have been. Most of these papers have 

also failed to provide full blots, most likely due to procedural chopping of the blot to streamline the 

analysis. Given the drawbacks of this method, alternative, more robust assays should be used to directly 

confirm a TrkB-mediated mechanism of action.  
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Complementary methods should be applied to confirm the western blot results. In our view, the 

described ELISA and ELFI provide sufficient throughput for controls and repeats to be used along with 

the blot to more accurately characterizes drug activity. We have recommended western blots to be used 

as a qualitative (or semi-quantitative) complementary method to the quantitative ELISA assays, as 

confirmation that the ELISA indeed detects the desired phosphorylation reaction (125). Alternative 

methods should also be considered that are independent from antibodies, like those methods based on 

enzymatic activity of reporter proteins as the readout mechanism. 

In methodological terms, even though in vitro assays afford the necessary probing power to 

characterize the mechanism of action of compounds on a molecular level (e.g., induction of TrkB receptor 

phosphorylation), these assays are often challenging to adjust for in vivo application. In mechanistic 

terms, the in vitro experimental system might not represent the native in vivo receptor complex and or 

recapitulate the possibilities of circuit-level effects. Indeed, activity of antidepressant drug, imipramine, in 

vivo has been associated with TrkB phosphorylation in hippocampus and medial prefrontal cortex of mice, 

however, in vitro no TrkB phosphorylation has been detected in cortical or hippocampal neuronal culture, 

leading to conclusion that imipramine indirectly induced TrkB phosphorylation (109). Thus, 7,8-DHF might 

have indirectly activated TrkB in vivo through the mechanisms that might not be available in vitro. 

Pharmacokinetics might have also played a role in the activity of the compound. 7,8-DHF has likely been 

converted in the body into a number of metabolites that could have induced the observed effects in vivo 

(89). It has also been known that TrkB could have undergone transactivation through the activation of 

several GPCRs, RTKs, or kinases, e.g. EGFR and Src (127, 128, 148, 149). Therefore 7,8-DHF and/or its 

metabolite might have also in theory induced transactivation of TrkB through other pathways that have 

not been present in vitro. Although the in vivo activity of a compound has been ultimately what has 

mattered for drugs and molecular probes, in vitro assays have been an important tool typically required 

for detailed characterization and further development of compound leads (150) 

Efforts to find TrkB agonist or allosteric modulator has proven to be a challenging task. 

Compounds reported in literature or found through a high throughput screen have not activated or 

modulated TrkB in our lab. Moreover, receptor tyrosine kinase agonists have seemed to be hard to 

develop in general, as little example of successful agonists of RTK proteins could have been found in 
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literature to date. Most of the compounds have appeared to be inhibitors or protein-based agonists, like 

antibodies. Pharmacologically, RTK structure has not favored small molecule interactions in the ligand 

binding domain for activation or modulation, while the kinase domain possesses ATP binding site that has 

typically been targeted by small molecule inhibitors. Targeting BDNF-TrkB complex might prove to be 

favorable for finding modulators, as this complex might create binding pockets for small molecule 

interactions. It could also be beneficial to use peptides or larger molecules that possess larger surface 

area available for interacting with the receptor. 

1.4 Conclusion 

BDNF and TrkB represent a new frontier for addressing treatment of many CNS diseases and 

conditions. However, being the part of RTK superfamily, development of agonists or modulators of TrkB 

remains to be challenging. Prominent reported agonists failed to reproduce their activity at TrkB in 

different assays. HTS had not led to any small molecule structures that activate the receptor in vitro. New 

innovative approaches must be developed to find true, therapeutically applicable agonists. 

1.5 Materials and Methods 

1.5.1 Materials 

Chemicals were purchased from different commercial sources: 7,8-dihydroxyflavone from TCI 

America, #D1916; LM22A-2 and LM22A-3 from eMolecules; amitriptyline hydrochloride (#A8404), 

deprenyl (M003), zinc with 2 equivalents pyrithione ionophore (Zn-2PT, ZPT) (H6377) from Sigma Aldrich; 

L-783,281 (DMAQ-B1) (#1819) and K252a (#1683) from Tocris; thapsigargin from Cayman Chemical 

(#10522). Deoxygedunin was synthesized from gedunin (Tocris, #3387)(151). LM22A-4, 5E5 and its 

precursors were synthesized in-house (see below). A list of antibodies is presented in the table below: 

Target Vendor Cat. # Source 

Pan-pTyr R&D Systems HAM1676 Mouse IgG1 

TrkB 

Abnova H00004915-M02 Mouse mAb 

Abcam ab82855 Rabbit pAb 

SCBT H-181 Rabbit pAb 

SCBT SC-11 Rabbit pAb 

SCBT SC-12 Rabbit pAb 

Sigma Aldrich T1941 Goat pAb 

R&D Systems AF397 Goat pAb 

Sino Biologicals 10047-RP02 Rabbit pAb 

pTrkB (pY516) Cell Signaling #4619 Rabbit mAb 

pTrkB (pY706/707) Cell Signaling #4621 Rabbit mAb 

pTrkB (pY816) Cell Signaling #4168 Rabbit mAb 
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p-AKT (pS473) Cell Signaling #4060 Rabbit mAb 

AKT1 Cell Signaling #2938 Rabbit mAb 

p-ERK Cell Signaling #4370 Rabbit mAb 

ERK Cell Signaling #9102 Rabbit pAb 

Rabbit IgG Cell Signaling #7074 Goat Ab 

1.5.2 Western Blot 

CNC were seeded in PDL-coated 12-well plated at 3×105 cell/well. After the experiment, cells 

were lysed with 100 µL of lysis buffer (Pierce RIPA buffer with 1:100 protease inhibitor cocktail, 

phosphatase inhibitor 2 and 3 cocktails (Sigma, P5726, P0044), and 0.5M EDTA solution, or ELISA lysis 

buffer) and incubated over ice for 15 minutes to an hour, after which time cells were scraped and the 

lysates transferred into microcentrifigue tubes. The tubes were centrifuged at 14,500 rpm for 10 minutes, 

the supernatant was transferred to fresh tubes, and the protein content was measured using the Pierce 

BCA assay. Lysates were diluted with 5x loading buffer (50% glycerol, 313 mM Tris, 10% SDS, 

bromophenol for color, pH 6.8), β-mercaptoethanol (5% final concentration), and any necessary amount 

of water to bring all samples to the same volume. Equal quantities of protein (typically 10 µg/lane) were 

added to each well of a 10% bis-tris acrylamide gel and were blotted onto Immobilon P PVDF transfer 

membranes. Blots were blocked in 3% BSA in TBS for at least 30 min, followed by an hour incubation 

with the primary antibody with rocking at RT. The blots were washed 3 x 5 minutes with TBST (0.05% 

Tween20), incubated for 30 min with secondary antibody (typically 1:1000) in the buffer indicated on the 

antibody’s corresponding data sheet, then washed again for 3 x 5 minutes prior to development with the 

ECL kit (ThermoScientific, PI34079). Chemiluminescence and light absorbance (for protein ladder) was 

visualized with a Kodak Image Station 440CF imager. Membranes were stripped and re-probed with the 

stripping buffer used in the in-cell ELISA followed by the same detection procedure for the next target 

protein. The chemiluminescent image was overlaid to the absorbance image for representation. 

1.5.3 Cell lines 

A HEK cell line stably transfected with human TrkB was a generous gift of Prof. Moses Chao 

(NYU). Cells were cultured in a 5% CO2 atmosphere at 37 °C in Dulbecco’s Modified Eagle Medium 

(DMEM) with GlutaMAX (Life Technologies, Grand Island, NY, USA, 10569, 10569044) supplemented 

with 10% Fetal Bovine Serum (FBS) (Premium Select, Atlanta Biologicals; Atlanta, GA, USA, S11550) 

and 100 Uml−1 penicillin and 100 μgml−1 streptomycin (Life Technologies, 15140) and 200 µg/ml G418 
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sulfate (MP Biomedicals, 091672548). Invitrogen CHO K1 cell line with CellSensor® construct (TrkB-

NFAT-bla, K1491) was obtained from Life Technologies and cultured in growth medium (DMEM with 

GlutaMax) supplemented with 10% dialyzed FBS (Invitrogen, 26400-044), 1x MEM NEAA (Sigma, 

M7145), 25 mM HEPES (Sigma, H0887), 5 μg/mL Blasticidin (Life Technologies, R21001) and 200 µg/ml 

Zeocin (Life Technologies, R25001). Cortical neurons were isolated from E18 rat embryos and were 

seeded on flat-bottom white 96-well plates (4×104 cells/well) or 12-well plates (2-3×105 cells/well) coated 

with poly-D-lysine (PDL) (Sigma, P6407) and cultured in Neurobasal medium (1/50 dilution, Life 

Technologies, 21103-049) supplemented with B27 supplement (1/100 dilution, Life Technologies, 17504) 

and GlutaMAX (Life Technologies, 35050) without changing medium until the experiment day. SH-SY5Y 

cells were seeded in 24-well plates (2×105 cells/well) and incubated for 48 hours in DMEM/F12 1:1 

(Invitrogen, 11330057) supplemented with 10% FBS and 100 Uml−1 penicillin and 100 μgml−1 

streptomycin. Then cells were washed with PBS and incubated for 48 hours in DMEM/F12 1:1 

supplemented with 4% FBS, 100 Uml−1 penicillin, 100 μgml−1 streptomycin, and 10 µM all-trans retinoic 

acid (Sigma, R2625). Prior to treatment with compounds, cells were incubated for at least 6 hours in 

medium without all-trans retinoic acid.  

1.5.4 Sandwich ELISA: 

TrkB phosphorylation level was quantified using the previously described KIRA-ELISA (152) with 

slight modification. On the day of experiment cells were washed and incubated with culturing medium 

without proteins (FBS or B-27 supplement) for 0.5-1 hour. Compounds at 5x of working concentrations 

were delivered in medium with ≤2.5% DMSO (to accommodate ≤0.5% DMSO in culture). Cells were 

treated for various times. Experiments were stopped by removing medium on ice and cells were lysed in 

100 µl of ELISA lysis buffer (0.15 M NaCl, 10 mM Trizma, 10 mM Tris base, 2 mM EDTA, 1% TritonX-

100, 10% glycerol, pH 8.0, 1:100 phosphatase inhibitor cocktail 2 (Sigma Aldrich, P5726), 1:100 protease 

inhibitor cocktail (Sigma Aldrich, P8340)). Experimental plates were kept at -20 °C or -80 °C until 

transferred to ELISA plate (NUNC Immulon 4 HBX) coated overnight at 4°C with appropriate capturing 

antibody (PBS, 0.8 μg/mL rabbit polyclonal anti-TrkB Sino Biologicals #10047-RP02, or 1 μg/mL goat 

polyclonal anti-TrkB Sigma Aldrich T1941 for phosphorylation assay; 1 μg/mL goat polyclonal anti-hTrkB 

R&D Systems AF397 for total TrkB assay) for 2-3 hours at RT or overnight at 4 °C. ELISA plates were 



78 
 

washed 5 times with 150 µl of washing buffer (PBS, 0.05% Tween-20) and blocked (PBS, 1% BSA) for 1 

hour at RT before transfer of 80 and 20 µl of lysate for phosphorylation and total TrkB assays respectively 

for overnight incubation at 4 °C. On the next day, ELISA plates were washed and incubated with an 

appropriate detecting antibody. Tyrosine phosphorylation was quantified by 1-hour incubation with HRP-

conjugated monoclonal anti-pY antibody (1/2500 R&D systems #HAM1676) in washing buffer with 0.1% 

BSA followed by 30 min color development of TMB One solution (Promega #G7431) The plates was then 

quenched with 1N HCl and absorbance was measured at 450 nm on a plate reader (BMG Labtech, Cary, 

NC, USA). Total TrkB was quantified similarly using anti-TrkB antibody (0.8 μg/mL Sino Biologicals 

#10047-RP02, 1.5 hours incubation) and HRP conjugated anti-rabbit IgG (1:1000 Cell Signaling 

Technologies #7074). 

1.5.5 ELFI 

Phosphorylation levels of TrkB at specific tyrosine residues and downstream signaling proteins 

were quantified using in-Cell ELISA. Cells were treated similarly as in sandwich ELISA. Experiments were 

stopped by fixing the cells in 4% formaldehyde (Sigma, F8775) for 20 min. Cells were permeabilized with 

washing buffer, blocked in washing buffer with 10% BSA, and incubated with detecting antibody for 

protein of interest for 2 hours at RT or overnight at 4 °C. Appropriate HRP-linked secondary antibody was 

applied and luminescence (SuperSignal® ELISA Pico Chemiluminescent Substrate, ThermoScientific 

#37070) was detected on the plate reader. To quantify different proteins in the same plate, antibodies 

were stripped using stripping buffer (153) (6M Guanidine*HCl, 0.2% Triton X-100, 20 mM Tris*HCl, pH 

7.5) for 5 min, washed, blocked, and treated with another antibody. Stripping and re-probing cycles were 

done up to 6 times.  

1.5.6 DiscoverX PathHunter® assay 

PathHunter® U2OS TrkB-P75 Cells were detached by detachment reagent (DiscoverX) and 

resuspended in Plating 16 reagent (DiscoverX). Cells (5000 cells/well) were plated into 384-well plate 

(Corning). Plates were incubated at 37 °C in 5% CO2 for about 20 hours. Compounds were pin-

transferred to the cells. For agonist assay, cells with compounds were incubated for 3 hours at 37°C. For 

allosteric agonist assay, cells were treated with compounds first and after three minutes EC15 BDNF 

(DiscoverX) was added for 3 hours (incubation at 37 °C). Detection reagent (DiscoverX) was added for 
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incubation 1 hour at room temperature in the dark. The luminescence was measured in the Envision plate 

reader (Perkin Elmer). 

Invitrogen CellSensor assay: Assay was performed according to the Invitrogen protocol. Briefly, 

cells were seeded in 384-well plates at 1.2×104 cells/well in medium without Blasticidin and Zeocin 

overnight. On the next day, cells were treated with compounds for 5 h. After treatment, wells were loaded 

with β-lactamase LiveBLAzer™-FRET B/G substrate (CCF4-AM, Invitrogen, K1095) for 2 hours. 

Fluorescence at 450 nm and 510 nm was recorded on a plate reader (excitation wavelength 410 nm). 

1.5.7 Phage Display 

T7-select phage display system (EMD Biosciences, Gibbstown, NJ) was used for individual 

peptide-phage cloning according the manufacturer’s instructions. Phage was purified by precipitation with 

PEG-8000 (Sigma, St. Louis, MO). The sequences of displayed peptides were determined from the DNA 

encoding the insert-containing region at the C-terminus of the T7 major coat protein gp10. 

For cell-based phage display (154), cultured cells were dissociated with trypsin, centrifuged, and 

resuspended in 1% bovine serum albumin (BSA) PBS (Lonza) medium. Typically, 1 million cells were 

resuspended in 1 ml of the medium in 15 ml tubes, then phage libraries were added, followed by BDNF at 

100 ng/ml. Biopanning was performed in 15 ml tubes placed in angled magnetic holder on rocker at 4°C. 

After the biopanning, cells were washed 5 times with the medium and transferred to a new tube after 

each washing round, lysed in LB bacterial growth medium containing 1% NP-40, and phage was titrated.  

1.5.8 Statistical analysis 

Statistical analysis was performed using GraphPad Prism software 2-way ANOVA analysis 

followed by Dunnett’s t-test (compared to DMSO). Statistical significance was assigned by stars: *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001. Dose response curves were fit using built-in GraphPad function non-

linear function log[agonists] vs response with variable slope and four parameters. Signal-to-background 

ratios were calculated by dividing the highest positive response value by the negative control value 

(typically DMSO).  
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1.7 Appendix 

All the screen data performed in our lab is presented on individual plate basis. Compound 

libraries were named as BRD## based on the availability of the compounds and necessary conditions 

(single or multiple doses). 

Data presents as mean±SD of the single experiment. Color coded solid and dotted lines 

represent mean and 3xSD of the controls (DMSO, BDNF at low EC, BDNF at max EC). Low EC of BDNF 

varied between the experiments and were calculated post-factum.  

BRD01-06 contained compounds at 5050-10-2-0.4 µM concentrations and were used in HEK-

TrkB screen 

BRD07-17 contained compounds at 50-10-2-0.4 µM concentrations and were used in CellSensor 

(1st round) and CNC screens. 

BRD18-22 contained compounds at 30-15-7.5-3.25 µM concentrations and were used in 

CellSensor screen (2nd round) 
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1.7.1 Compound libraries 

BRD01 BRD02 BRD03 BRD04 BRD05 BRD06 

K80274451 K37526858 K80786583 K74587389 K61473003 K80786583 

K13752834 K54211867 K75724375 K80764150 K21249854 K09140990 

K93930139 K97073606 K41945164 K00185670 K65757418 K32712332 

K76756739 K25704484 K16111984 K74405511 K10432698 K74587389 

K57102399 K30161335 K32712332 K46962856 K26613565 K74405511 

K61487646 K61479519 K60158292 K21471155 K30877586 K21471155 

K46686541 K47086760 K14188824 K70362473  K21249854 

K67438335 K71944937 K09140990 K95266828  K61473003 

K53763132 Naloxonazine K51942702 K60873820  
 

BRD07 K10432698 K65603112 K71944937 K02595530 K35151998 K13683125 K93930139 K53212675 

BRD08 K70507343 K58397562 K03887292 K95361366 K82118272 K04803823 K22568370 K80274451 

BRD09 K60174045 K01880422 K88581921 K22878659 K41719870 K34914110 K87640196 K26613565 

BRD10 K30958256 K62850984 K10189663 K61487646 K70388087 K50330857 K30652576 K02764896 

BRD11 K27145031 K15187228 K25401439 K20075659 K52427821 K63404341 K50931717 K41636894 

BRD12 K78133682 K72840764 K51079083 K16329066 K44844695 K00140310 K65757418 K30877586 

BRD13 K13752834 K76756739 K57102399 K46686541 K67438335 K53763132 K37526858 K47086760 

BRD14 K54211867 K97073606 K25704484 K30161335 K61479519 K80786583 K75724375 K41945164 

BRD15 K16111984 K32712332 K60158292 K14188824 K09140990 K51942702 K74587389 K80764150 

BRD16 K00185670 K74405511 K46962856 K21471155 K70362473 K95266828 K60873820 K21249854 

BRD17 K61473003         

 

BRD18 BRD19 BRD20 BRD21 BRD22 

K10432698 K58397562 K30958256 K54211867 K74405511 

K71944937 K04803823 K70388087 K61479519 K21471155 

K13683125 K60174045 K61487646 K80786583 K61473003 

K53212675 K41719870 K25401439 K32712332 K51713105 

K95361366 K22878659 K27145031 K60158292 K94669964 

K22568370 K50330857 K50931717 K80764150  
K82118272 K02764896 K78133682 K21249854  
K65603112 K30652576 K75724375 K46962856  
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1.7.2 Pilot screen 

T im e -d e p e n d e n t  E r k  a c t iv a t io n  b y  p ilo t  s c re e n  c o m p o u n d s

in  D R X  U 2 O S  T rk B /p 7 5  c e ll l in e

T im e , m in

p
E

r
k

 /
 T

o
ta

l 
E

r
k

B D N F  (1 0 0  n g /m l)

K 9 3 9 3 0 1 3 9

K 7 6 7 5 6 7 3 9

K 5 7 1 0 2 3 9 9

K 6 1 4 8 7 6 4 6

K 4 6 6 8 6 5 4 1

K 6 7 4 3 8 3 3 5

K 5 3 7 6 3 1 3 2

D M S O  (0 .2 % )

3 x S D  D M S O

T im e -d e p e n d e n t E R K  a c t iv a tio n  b y  p i lo t  s c r e e n  c o m p o u n d s

in  D R X  U 2 O S  T r k B /p 7 5

T im e , m in

p
E

r
k

 /
 T

o
ta

l 
E

r
k

B D N F  (5 0  n g /m l)

K 9 3 9 3 0 1 3 9

K 7 6 7 5 6 7 3 9

K 6 1 4 8 7 6 4 6

K 9 3 9 3 0 1 3 9  (d ilu te d )

K 7 6 7 5 6 7 3 9  (d ilu te d )

K 6 1 4 8 7 6 4 6  (d ilu te d )

D M S O
3 x S D  D M S O

T im e -d e p e n d e n t  A k t a c tiv a t io n  b y  p ilo t  s c re e n  c o m p o u n d s

in  D R X  U 2 O S  T r k B /p 7 5

T im e , m in

p
A

k
t 

/ 
T

o
ta

l 
A

k
t

B D N F  (5 0  n g /m l)

K 9 3 9 3 0 1 3 9

K 7 6 7 5 6 7 3 9

K 6 1 4 8 7 6 4 6

K 9 3 9 3 0 1 3 9  (d ilu te d )

K 7 6 7 5 6 7 3 9  (d ilu te d )

K 6 1 4 8 7 6 4 6  (d ilu te d )

D M S O
3 x S D  D M S O

T im e -d e p e n d e n t E R K  a c t iv a tio n  b y  p i lo t  s c r e e n  c o m p o u n d s

in  D R X  U 2 O S  T rk B

T im e , m in

p
E

r
k

 /
 T

o
ta

l 
E

r
k

B D N F  (5 0  n g /m l)

K 9 3 9 3 0 1 3 9

K 7 6 7 5 6 7 3 9

K 6 1 4 8 7 6 4 6

K 9 3 9 3 0 1 3 9  (d ilu te d )

K 7 6 7 5 6 7 3 9  (d ilu te d )

K 6 1 4 8 7 6 4 6  (d ilu te d )

D M S O

3 x S D  D M S O

T im e -d e p e n d e n t  A k t a c tiv a t io n  b y  p ilo t  s c re e n  c o m p o u n d s

in  D R X  U 2 O S  T rk B

T im e , m in

p
A

k
t 

/ 
T

o
ta

l 
A

k
t

B D N F  (5 0  n g /m l)

K 9 3 9 3 0 1 3 9

K 7 6 7 5 6 7 3 9

K 6 1 4 8 7 6 4 6

K 9 3 9 3 0 1 3 9  (d ilu te d )

K 7 6 7 5 6 7 3 9  (d ilu te d )

K 6 1 4 8 7 6 4 6  (d ilu te d )

D M S O
3 x S D  D M S O

T im e -d e p e n d e n t  T r k B  a c t iv a t io n  b y  p i lo t  s c r e e n  c o m p o u n d s

 in  C N C  (D IV 1 9 )

T im e , m in

A
b

s
 (

4
5

0
 n

m
)

B D N F  (1 0 0  n g /m l)

K 9 3 9 3 0 1 3 9

K 7 6 7 5 6 7 3 9

K 5 7 1 0 2 3 9 9

K 6 1 4 8 7 6 4 6

K 4 6 6 8 6 5 4 1

K 6 7 4 3 8 3 3 5

K 5 3 7 6 3 1 3 2

D M S O  (0 .2 % )

3 x S D  D M S O

T im e -d e p e n d e n t  T rk B  a c tiv a tio n  b y  p i lo t  s c re e n  c o m p o u n d s  in  C N C  (D IV 1 5 )

T im e , m in

p
T

r
k

B
 /

 T
o

ta
l 

P
r
o

te
in

B D N F  (5 0  n g /m l)

K 9 3 9 3 0 1 3 9  (1 0  M )

K 7 6 7 5 6 7 3 9  (1 0  M )

K 6 1 4 8 7 6 4 6  (1 0  M )

K 9 3 9 3 0 1 3 9  (5 0  M )

K 7 6 7 5 6 7 3 9  (5 0  M )

K 6 1 4 8 7 6 4 6  (5 0  M )

D M S O

3 x S D  D M S O

T im e -d e p e n d e n t  E r k  a c t iv a t io n  b y  p ilo t  s c re e n  c o m p o u n d s

in  C N C  (D IV 1 9 )

T im e , m in

C
h

e
m

il
u

m
in

e
s

c
e

n
c

e

B D N F  (1 0 0  n g /m l)

K 9 3 9 3 0 1 3 9

K 7 6 7 5 6 7 3 9

K 5 7 1 0 2 3 9 9

K 6 1 4 8 7 6 4 6

K 4 6 6 8 6 5 4 1

K 6 7 4 3 8 3 3 5

K 5 3 7 6 3 1 3 2

D M S O  (0 .2 % )

3 x S D  D M S O

T im e -d e p e n d e n t  T r k B  a c t iv a t io n  b y  p i lo t  s c r e e n  c o m p o u n d s

in  H E K -T rk B  (F T )

T im e , m in

p
T

r
k

B
 /

 T
o

ta
l 

P
r
o

te
in

B D N F  (5 0  n g /m l)

K 9 3 9 3 0 1 3 9

K 7 6 7 5 6 7 3 9

K 6 1 4 8 7 6 4 6

K 4 6 6 8 6 5 4 1

K 6 7 4 3 8 3 3 5

K 5 3 7 6 3 1 3 2

D M S O  (0 .2 % )
3 x S D  D M S O

T im e -d e p e n d e n t  T r k B  a c t iv a t io n  b y  p i lo t  s c r e e n  c o m p o u n d s

in  H E K -T r k B

T im e , m in

p
T

r
k

B
 /

 T
o

ta
l 

P
r
o

te
in

B D N F  (5 0  n g /m l)

K 9 3 9 3 0 1 3 9

K 7 6 7 5 6 7 3 9

K 5 7 1 0 2 3 9 9

K 9 3 9 3 0 1 3 9  (d ilu te d )

K 7 6 7 5 6 7 3 9  (d ilu te d )

K 6 1 4 8 7 6 4 6  (d ilu te d )

D M S O

3 x S D  D M S O

 
 

  



90 
 

1.7.3 HEK-TrkB screen 
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1.7.4 CellSensor screen 
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*B R D 1 0  a c tiv ity  in  C H O -h T rk B  a s s a y  (A g o n is tic , e m @ 4 5 0 )
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*B R D 1 3  a c tiv ity  in  C H O -h T rk B  a s s a y  (A g o n is tic , e m @ 4 5 0 )
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*B R D 1 4  a c tiv ity  in  C H O -h T rk B  a s s a y  (A g o n is tic , e m @ 4 5 0 )
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*B R D 1 5  a c tiv ity  in  C H O -h T rk B  a s s a y  (A g o n is tic , e m @ 4 5 0 )
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*B R D 1 6  a c tiv ity  in  C H O -h T rk B  a s s a y  (A g o n is tic , e m @ 4 5 0 )
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2 Chapter II: Targeting neurons through screening platforms 

2.1 Introduction 

One of the challenges in neuroscience, neurology, and neurosurgery has been to gain the ability 

to identify pathological cell phenotypes and target therapy on a neuronal cell level. The brain is highly 

complex in its anatomy and physiology. A great progress has been made to image and measure brain 

activity on a macroscopic level using different techniques, like computed tomography (CT), functional 

magnetic resonance imaging (fMRI), electroencephalogram (EEG), and positron emission tomography 

(PET). However, it still remains challenging to visualize brain on cellular and molecular levels underlying 

the circuits and connections. 

2.1.1 Central nervous system diversity of neurons and synapses 

The central nervous system (CNS) is one the most complex structures in a human body. The 

mature male brain has been found to have 170 billion cells, of which 86 billion has been identified as 

neuronal cells through immunoreactivity of the neuronal nuclear protein (NeuN) (1, 2). Distribution of 

neurons has been shown to be non-uniform across different brain structures; for example, 80% of the 

neurons have been localized to the cerebellum and 19% to the cerebral cortex (1). Interestingly, the 

distribution of the non-neuronal cells has been found to be inverse, with 72% of total number in cerebral 

cortex and 19% in the cerebellum. In cortical grey matter, 12 billion neuronal bodies and 17 billion non-

neuronal cell bodies have been identified giving the ratio of non-neuronal/neuronal number close 1.5. In 

the white matter non-neuronal cells have been found to be much more abundant with 40 billion against 

2.6 billion of neuronal cells increasing the ratio up to 15 non-neuronal to 1 neuronal cell body (1). 

Classification of the neurons has also been an important goal in understating the functional 

activity of the brain areas. For example, cerebral cortex, which has been estimated to have 180 different 

areas responsible for motor, sensory, and high-order executive functions, has been shown to have two 

major classes of neurons: glutamatergic excitatory neurons and GABAergic inhibitory neurons (3). 

However, to provide diverse functional activities of the cortex, each area must contain different types of 

neurons. Indeed, RNA sequence profiling revealed 19 distinctive excitatory neuronal types and 23 
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interneuron types under the four main subclasses in the adult mouse visual cortex (4). In rat 

somatosensory neocortex, approximately 207 neuronal types have been identified based on 

morphological and electrophysiological properties (5).  

To identify the different types of neurons morphological and electrophysiological properties have 

been studied in-depth, but perhaps a more useful approach has been employment of biochemical 

markers that are expressed in the neuron of interest, which could be used to genetically tag these 

neurons. The molecular classification has also been used to classify cells, for example, GABAergic 

parvalbumin-expressing neurons, or somatostatin-expressing neurons were named after the specific 

protein expressed in these cells (6). 

Such diversity of neurons should also produce large diversity of the synaptic connections. Indeed, 

simulation of a small volume of rat neocortex containing 31,000 neurons predicted 184 million synapses 

with an average of 1,145 synapses per neuron and each neurons innervating 255 other neurons 

belonging to 32% of total number of neuron types present the area (5). Overall, synapses have been 

classified based on the neurotransmitters that are released during the signal transduction, as well as 

microanatomical (e.g. connectivity, size and number of synaptic vesicles, dimensions of the synaptic cleft 

and postsynaptic density), electrophysiological (e.g. excitatory or inhibitory postsynaptic potentials), and 

molecular (different ligand-gated ion channels) features (7, 8). Therefore, although the basic molecular 

machinery required for NT release is similar, it could be hypothesized that some neurochemical markers 

specific to certain neuronal types may also distinguish the synapses formed by these cells. 

2.1.2 Neurons and synapses in pathologies 

Synaptic connections have been shown to be altered in different pathologies (9, 10). For 

example, the mutation in cell adhesion molecules neuroligin and neurexin that form trans-synaptic 

complex along with synaptic scaffolding proteins were found in individuals with autistic spectrum 

disorders. Interestingly, mice with neuroligin or neuroxin knock-out have shown impaired synaptic 

transmission with no change in the number of synapses (11). Moreover, mice bearing mutations in these 

genes have found to exhibit a shift in the excitatory and inhibitory signals with enhancements in GABAA 

receptor-mediated synaptic transmission (12). To measure such intricate changes in signaling would 

require detection of the neurotransmitter release, or action potential in certain cell types, which would be 
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possible with probes that have a homing potential to the cells of interest. On the other hand, in 

neurodegenerative diseases synaptic loss is seen together with synaptic function dysfunction  

2.1.3 Genetic methods 

To monitor synaptic activities various genetic methods have been developed based on pH or 

calcium sensitive fluorescent proteins. For example, a fusion protein of vesicle-associated membrane 

protein and a pH sensitive form of green fluorescent protein (pHluorin), where pHluorin is located in 

lumen of the synaptic vesicle, has been successfully used to indirectly measure the neurotransmitter 

release/exocytosis during the stimulation (13). In another construct, a genetically encoded calcium 

indicator GCaMP has been fused to the cytoplasmic C-terminus of the synaptic vesicle protein 

synaptophysin, which yielded a robust reporter gene of the calcium influx in the presynaptic termini during 

the action potential (14). 

An intriguing approach to visualize synapses has been reported where a GFP-fused intrabody, an 

antibody-like protein, for postsynaptic density protein 95 and gephyrin (a component of the postsynaptic 

protein network of inhibitory synapses) has been transfected into neurons with self-regulated expression 

allowing to achieve high signal-to-background ratio (15). In other words, using such construct has 

provided opportunity to perform an immunofluorescence assay inside the living cells. 

To directly detect the neurotransmitter release, a FRET based construct has been engineered 

where a bacterial glutamate-binding protein Gltl has been sandwiched between two FRET partner 

proteins, CFP and citrine. The biding of the glutamate to the GltI causes a disruption of FRET between 

the fluorescent protein reaching a 10% FRET ratio change upon the glutamate release (16). An improved 

version of this sensor has taken advantage of the circularly permuted GFP, which has been shown report 

on the release of glutamate in vivo in mice (17). 

All these methods are powerful enough to detect a single neurotransmission event, however, they 

require genetic manipulations and viral transductions, which always raises the question of genetic 

alterations and phenotypic consequences. Moreover, these constructs have limited application for 

diagnostics and treatments due to invasive natures of the methods. Thus, developing the chemical 

approach to detect and measure synaptic transmissions and neuronal composition of the brain has a 

potential to be used beyond the preclinical research purposes.  
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2.1.4 Chemical methods 

There are only a few chemical probes developed to report on neurotransmission-related 

physiological processes. These include FM dyes and voltage sensitive dyes (VSDs). There is only one 

class of chemical probes that are both targeted to specific neuronal cell/synapse types and report on 

neurotransmission: the FFN probes (see below). 

The FM dyes, based on the styryl-pyridinium fluorescent core, provide membrane staining due to 

the lipophilic character of the probe, however these compounds do not readily cross the cell membranes 

owing to the two charges (Figure 2.1.1 A) (18, 19). This structure also provides an environmental 

sensitivity to the dye with two orders of magnitude larger quantum yield in the non-polar solvents. It has 

been largely used for staining active synapses. However, the method of staining has not been simple, 

where the dye must be loaded into the synaptic vesicle through the recycling of the vesicles, which 

requires electrical or high K+ concentration stimulation of the neurons (18). Even though any type of 

synapses could be labeled by these dyes, staining procedure and lack of specificity to the neuronal 

plasma membrane have restricted the utility of these dyes mostly to in vitro application. 

Structurally similar to FM dyes, naphthylstyryl class of the fluorophore has been found to have 

electrochromic properties, a shift in excitation and emission spectra caused by the change in the external 

electric field, which allowed to optically measure changes in cell membrane potential (Figure 2.1.1 B) 

(20). These dyes opened the opportunity to image membrane potential changes with millisecond temporal 

resolution, which classified them as fast VSDs. Following a different structural design, a new class of 

VSDs has been developed based on a bright fluorophore and an orthogonal -wire containing the aniline 

group at its end (Figure 2.1.1 C). This design was guided by the idea of electric field induced modulation 

of the photo-induced electron transfer (PeT) from the aniline electron lone pair to the fluorophore (21). 

This class of VSDs produce better optical sensitivity and structural flexibility while retaining the temporal 

resolution. In addition to the fast VSD, alternative structural and mechanistic designs have been 

developed such as fluorophore repartitioning, reorientation, or aggregation with various spatial and 

temporal resolutions. However, one of the major limitation of the VSD has been the lack of cell specificity 

in brain tissue (22–24). 
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A                                                     B                                                                 C 

 

Figure 2.1.1 Structure of synaptic and voltage sensitive dyes. 
A. Structure of FM4-64, example of endocytic dyes. B. Structure of di-8-ANEPPS, an electrochromic fluorophore. 
C. A voltage sensitive dye VF2.4 based on PeT sensing mechanism. 
 

An interesting approach to detecting and reporting on neurotransmitter release has been 

developed in our laboratory, based on the idea of designing the fluorophore by mimicking the 

neurotransmitter structure (Figure 2.1.2) (25, 26). This class of probes, named fluorescent false 

neurotransmitters (FFNs), is characterized by several design features, most notably the probe acts as a 

fluorescent substrate of both the plasma membrane and vesicular transporters. In some instances, FFN 

probes were also designed as pH sensors with the pKa values in the relevant physiological range 

between the pH of the vesicle lumen and cytoplasm (from 5.5-7.4). For example, FFN102 is a dopamine 

transporter and vesicular monoamine transported substrate, as well as a pH sensor, which has been 

successfully used to image individual dopaminergic terminals in vivo and  report on changes in vesicular 

pH and neurotransmitter release (Figure 2.1.2) (27, 28). Another probe, FFN200, has revealed the 

existence of silent synapses in striatal dopamine axons (Figure 2.1.2) (29). FFNs has also been 

instrumental in the study of pharmacological mechanisms of psychostimulants in intact brain circuitry (30). 

Even though FFNs has provided high specificity and functional activity at specific synapses, they have so 

far been limited to the monoaminergic neuronal systems. 

Chemical targeting of living neurons (even in the 

absence of any sensing capabilities) has limited precedent. A 

neuron specific probe, named NeuO (Figure 2.1.3), has been 

developed in Dr. Chang’s laboratory (POSTECH) through the 

high content screening (HCS) of a diversity-oriented 

fluorescence library (DOFL) (31). This dye demonstrated a high selectivity to neuronal cell bodies in vitro 

and in vivo, allowing to differentiate neurons from glia and other non-neuronal cells without affecting the 

functional integrity of the neurons. Mechanistically, it is yet to be uncovered how NeuO achieves such a 

high specificity.  

 

Figure 2.1.2 FFN structure 
FFN102, a pH sensitive dye specific to 
dopaminergic terminals. FFN200, 
specific to dopaminergic terminals.  
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The DOFL approach seems to be a 

promising method for identifying similar probes 

for different cell types (32). For example, a 

microglia specific probe, CDr10, which has also 

been found through the HCS, allowed to 

quantitatively isolate microglia by flow cytometry 

and label the cells for a long period of time (33). 

Interestingly, CDr10 and NeuO are based on the 

same BODIPY fluorescent core (Figure 2.1.3), 

however, the difference in the side groups has been sufficient to grant the specificity to two distinct cell 

lines. Perhaps, one of the most exciting success of DOFL approach could be exemplified by the neural 

stem/progenitor cell probe, CDy5 (Figure 2.1.3), which visualized the symmetric and asymmetric cell 

division of the stem cells by staining both or one of the daughter cells (34). Given the diversity of the 

neuronal cells in the brain, DOFL approach may be a very promising method in identifying probes that 

would specifically label the cells of interest.  

2.1.5 Phage display 

An alternative approach for finding a cell specific probe could be phage display of peptides or 

proteins. The success of this methods could be exemplified by the in vivo screens conducted by Dr. 

Ruoslahti (35). By targeting various tumors in vivo, it has become apparent that each tumor influences the 

protein expression on the membrane surface of the vasculature, which then creates a sort of molecular 

ZIP code of the area, which can be targeted with homing peptides found in the phage display. Similar 

idea could be applied to any cell type, under the assumption that each cell type has a unique protein 

profile expressed on the plasma membrane, and that could afford a target specificity. In other words, a 

gene expression profile is reflected on the cell surface, and thus, similar to a gene promoter providing 

genetic targeting of the cell, a cell surface could provide a platform for the chemical targeting. 

Phage display provides a diverse library of peptides, from which some could bind to the 

membrane protein specific to the neurons. However, due to blood-brain barrier (BBB) that physically 

 

Figure 2.1.3 Structures of NeuO, CDr10, and CDy5 
NeuO, a neuron specific dye. CDr10, a microglia specific 
dye. CDy5, a neural stem/progenitor cell specific dye. 
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restricts the access to the neurons in the brain, most of the efforts focused on finding peptidic probes has 

been focused on the discovery of ligands that could penetrate the BBB (36).  

To deliver a payload to the brain parenchyma, one of the approaches has been to mimic tetanus 

toxins, which has been shown to selectively bind and penetrate axon terminals of the peripheral nervous 

system and then undergo retrograde transport. For this purpose, a two-tier selection method for a peptide 

with affinity to a tetanus toxin receptor using M13 phage display has been developed, in which in vitro 

biopanning on the trisialogangliosides (GT1b), an oligosaccharide-derivative important for functional 

activity of the tetanus toxin, has been performed followed by the biopanning on NGF-differentiated PC12 

cells. The identified CX7C peptide, Tet.C7C.1, with CKGTINPFC sequence, has shown to have affinity to 

the dorsal root ganglia and lower motor neurons (37). Another peptide, Tet1 with HLNILSTLWKYR 

sequence, found through phage display of immobilized GT1b (38) has been shown to deliver 

nanoparticles into the brain parenchyma following intracarotid artery injection (39). However, it has not 

been demonstrated whether this peptide stains any specific neurons in CNS (40).  

In another attempt to address BBB penetration, Wan et al. have examined the nasal passage of 

therapeutics as an approach to bypass BBB (41). Using Ph.D. – C7C library in M13 bacteriophages 

researchers identified an 11-aa long sequence, ACTTPHAWLCG, that displayed increased homing into 

the brains of live rats as compared to distribution to other organs or tissues (liver, spleen, blood). This 

method displays a potential to improve brain specificity as well as pharmacokinetics of peptidic drugs. 

There have been efforts to target neuronal cells as well. Staquicini et al. have applied phage 

display method (CX7C: C, cysteine; X, any residue) to characterize the mechanisms involved in neuronal 

stem cells (NSCs) proliferation and migration, as well as astrocytic-neuronal crosstalk, in development of 

murine olfactory system (42). Out of 5 most selective sequences, the authors have selected one, 

CGLPYSSVC, which showed superior efficacy in inducing proliferation, migration and adhesion in 

comparison to other peptides. The method has helped the authors to identify some of the key molecular 

players, netrin-4/laminin γ1chain/α6β1 integrin, in olfactory bulb development and maturation. Another 

lab, Hou et al, has employed M-13 phage display in attempt to improve targeted gene delivery to mouse 

cerebellar granule neurons (CGNs) (43). Although a careful analysis of 4 most promising compounds in 

vitro did not confirm significantly superior selectivity to neurons, the authors have emphasized the utility of 



108 
 

phage display method for post-mitotic neurons identification. Taking it a step further Schmidt et al. have 

used M-13 phage library to identify a peptide that would guide adenoviral internalization into neuronal 

precursor cells (NPCs) neurospheres for targeted gene delivery (44). Upon identification of selective 

sequences, QTRFLLH, VPTQSSG, and HTFEPGV, the two former sequences were covalently linked to 

adenoviral red fluorescent protein (AdRFP) and injected the AdRFP.QTRFLLH and AdRFP.VPTQSSD 

viral particles into hippocampi of young adult pNestin-GFP transgenic mice, to verify NPCs selective 

delivery. Authors concluded that although they were able to demonstrate NPC selectivity in vitro, 

considering the variability of NPCs in different brain regions, further improvements will need to be 

achieved for each brain region. 

Emphasizing the versatility of phage display derived peptides, Whitney et al. have employed the 

method for fluorescent tagging of peripheral nerves to reduce adverse events during surgical procedures. 

In their in vivo studies, authors have identified a sequence, NP41, NTQTLAKAPEHT, which selectively 

localized to sciatic nerve and its branches post IV injection as compared to surrounding tissue (45). 

Further analysis, however, showed that the peptide was specific to epineurium and, to some extent, to 

perineurium and endoneurium, as opposed to axons and/or myelin. Still, the study represents an example 

of versatile application of phage display method for therapeutic targeting and selective modulation. 

2.2 Results  

2.2.1 Overview 

To address the shortage of the specific chemical probes for glutamatergic and GABAergic 

synapses, or other parts of the neurons, like axons and dendrites, or even for different neuronal types, we 

set out to develop new methods for finding these molecules. DOFL coupled with the HCS has shown 

promise for finding cell type specific fluorescent probes. An HCS platform was developed in collaboration 

with Dr. Waites (CUMC), Dr. Chang (Pohang University), and Dr. Karan (CUMC), to explore the possibility 

of finding molecular probes for glutamatergic synapses or neurons. In addition, a phage display method 

was developed to find peptides that could specifically bind to the striatal neurons in collaboration with Dr. 

Ruoslahti (SBP MRI), Dr. Teesalu (SBP MRI), and Dr, Sulzer (CUMC).  
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2.2.2 High content screening assay 

To find fluorescent compounds that would specifically stain synapses, a high content screening 

strategy was developed where compound labeling patterns were compared to a well-characterized 

synaptic marker. The primary parameter to compare these patterns was the colocalization values of 

synaptic marker and fluorescent compounds. Other parameters were also measured (see below). The 

synaptic marker was either the expression of GFP-Synapsin1a (GFP-Syn) or mCherry-Rab3 (mCh-Rab3) 

to provide optically compatible control to the different library groups (see below). Synapsin1a is a 

cytoplasmic protein that has been hypothesized to regulate the synaptic vesicle reserve pools by 

tethering them to cytoskeleton, and thus, it is primarily localized in presynaptic boutons (46). The GFP-

Syn construct has been shown to be localized in the synapses, making it a good synaptic marker (47). 

Rab3 is a small GTPase protein that regulates Ca2+-dependent neurotransmitter release (48, 49). It has 

been shown to be located in glutamatergic and GABAergic terminals, making it another good synaptic 

marker (50). To perform a high content screening, it was necessary to conduct imaging on readily 

available and abundant neuronal cells. We used cortical neuronal cultures (CNC) due to the high number 

of neurons in the cortex and a simpler harvesting procedure (compared to other neuronal cultures). In 

addition, CNC could be maintained for a long time and consisted of predominantly glutamatergic and 

GABAergic synapses (51). CNC were lentivirally transduced with the one of the synaptic marker at days 

in vitro (DIV) 3 and cultured until DIV 14-16 to allow for synapse formation and maturation in 96-well 

plates. More than 60% of neurons expressed the synaptic markers, which formed fluorescent puncta 

readily detectable in the imaging system (Figure 2.2.1 A-B). 

The cell imaging system in the Columbia Genome Center high-throughput screening core (IN Cell 

Analyzer 2000, GE Healthcare; 2048 x 2048 pixel CCD camera) allowed imaging of a whole 96-well plate 

in 2 channels within minutes. CNC were treated with the library for 20 min and then washed before  

imaging. Images then were analyzed using an algorithm developed in the image analysis 

software (IN Cell Developer Toolbox). 

To develop the algorithm, screening plates were immunostained with antibodies against known 

synaptic (synaptic vesicle glycoprotein 2, SV2; vesicular glutamate transporter 1, VGLUT1; 

Synaptophysin; and Synapsin) and non-synaptic (microtubule associated protein 2, MAP2; and lysosomal 
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associated membrane protein 1, LAMP1) markers (Figure 2.2.1). Thresholding of images to select 

synaptic puncta and exclude background signals was optimized empirically, using images of neurons 

immunostained with the GFP or mCh antibody, which should exhibit ~100% colocalization with GFP-Syn 

and mCh-Rab3, respectively. Colocalization values were expressed as the fraction of GFP-Syn or mCh-

Rab3 puncta that exhibited overlap with the immunostained protein. With the software parameters 

established using the above-mentioned criteria, the algorithm could reliably distinguish synaptic proteins  

 (avg. colocalization of 0.67) from non-synaptic proteins (Figure 2.2.1 C-D). 

To test a small molecule in the assay, screening plates were stained with FM4-64, a lipophilic dye 

taken up by recycling synaptic vesicles that is an established marker for active presynaptic boutons (19). 

FM4-64 required stimulation of cortical neuronal culture with 90 mM KCl, followed by washing. While, 

FM4-64 exhibited a lower signal-to-noise ratio than immunostained synaptic proteins due to its non-

A                                                                   B 

 
C                                                                D 

 

Figure 2.2.1 Characterization of synaptic markers for HCS 
A. A representative image (original and zoomed) images of GFP-Syn expressing cortical neurons in 96-well plate 
format, acquired via high-throughput screening microscope. Scale bar is 100 μm for original image, 10 μm for 
zoomed image. B. Same as (A), but neurons are expressing mCh-Rab3. C. Colocalization values of various 
markers and FM4-64 with GFP-Syn construct. Non-synaptic markers, MAP2 and LAMP1, had low colocalization 
with the construct at 0.16±0.03 and 0.12±0.06 respectively, while synaptic markers, SV2 and VGLUT1, had higher 
colocalization at 0.6±0.1 and 0.6±0.2 respectively. FM4-64 had similar colocalization as synaptic markers with 
0.5±0.2. GFP antibody had 1.1±0.1 colocalization with the GFP construct. D. Colocalization values of various 
markers with mCh-Rab3 construct. Non-synaptic markers, MAP2 and LAMP1, had low colocalization with the 
construct at 0.19±0.01 and 0.13±0.03 respectively, while synaptic markers, Synaptophysin and synapsin, had 
higher colocalization at 0.65±0.08 and 0.83±0.07 respectively. mCherry antibody had 0.9±0.1 colocalization with 
the construct 
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specific labeling of cellular membranes, it served as a good test case (and the only available chemical 

tool-based positive control) for the colocalization algorithm in live neurons. Although the colocalization 

values for FM4-64 were lower than those for immunostained synaptic proteins, the average value (Figure 

2.2.1 C) was still significantly higher than that seen for non-synaptic proteins.   

2.2.2.1 Fluorescent library 

The library for this screen, which contained 7 different structural fluorescent cores, was provided 

by Dr. Y. T. Chang. One of the main cores presented in the library was BODIPY-triazole structure that 

exhibited a very large Stokes shift (up to 160 nm), as well as environment-dependent fluorescence 

(Figure 2.2.2 A) (52). NeuO dye was found using this sub-library (31). Other chemosensing fluorescent 

structures were based on benzimidazolium dyes, which were used to find a turn-on fluorescent GTP 

sensor (Figure 2.2.2 B) (53). Similar to benzimidazolium structures, a quinaldine scaffold based sub-

library was also used in our HCS, providing the library with a broad range of excitation/emission 

wavelengths from 315/480 nm to 600/720 nm and a broad range of Stokes shifts from 530/555 nm to 

485/720 nm (Figure 2.2.2 C) (54). A chalcone amide sub-library was also used in our HCS (Figure 2.2.2 

D). This sub-library exhibited absorbance at 430 nm and emission at 560 nm with quantum yield at 0.2. A 

green mouse embryonic stem cell probe, CDg4, was derived from this sub-library, which stains embryonic 

stem cells and was used both for imaging and flow cytometry (55). The rosamine based sub-library 

provided compounds with 

excellent photophysical 

properties, which was used to 

identify a yellow stem cell 

marker, CDy1 (Figure 2.2.2 E)  

(56). To cover blue range of 

wavelengths, xanthone 

scaffold based sub-library, 

which was used to find blue 

embryonic stem cell marker 

CDb8, were also provided 

 

Figure 2.2.2 Structural cores of the fluorescent library. 
A. BODIPY-triazole structure. B. Benzimidazolium structures. C. Quinaldine 
structure. D. Diaminochalcone structure. E. Rosamine structure. F. Xanthone 
structures. G. Nitrobenzoxadiazole conjugate triazine structure. 
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(Figure 2.2.2 F) (57). Nitrobenzoxadiazole tagged triazine derivates (Figure 2.2.2 G) were included where 

triazine structures could provide biological activity (58) while nitrobezoxadiazole was used as one of the 

smallest fluorescent cores  

Table 2.1 List of the groups for HCS 

Filter combination  
Number of 
compounds  

Number of 96wells 
plates 

Synaptic marker used  
for this group  

CFP:YFP (430±12/535±15) 503 6 mCherry-Rab3 (587/610) 
DAPI:Cy3 (350±25/605±32) 80 1 mCherry-Rab3 
DAPI:FITC (350±25/525±18) 961 12 mCherry-Rab3 
FITC:Cy3 (490±10/605±32) 669 8 mCherry-Rab3 
FITC:FITC (490±10/525±18) 633 8 mCherry-Rab3 
FITC:YFP (490±10/535±15) 831 10 mCherry-Rab3 
YFP:YFP (500±10/535±15) 38 1 mCherry-Rab3 
CFP:Cy3 (430±12/605±32) 324 4 GFP-Synapsin (475/509) 
Cy3:Cy3 (543±11/605±32) 311 4 GFP-Synapsin 
DAPI:CFP (350±25/470±12) 401 5 GFP-Synapsin 
DAPI:DAPI (350±25/455±25) 401 5 GFP-Synapsin 
dsRed:dsRed (555±12/602±26) 968 12 GFP-Synapsin 
FITC:TexasRed (490±10/624±20) 82 1 GFP-Synapsin 
TexasRed:Cy5 (579±17/705±36) 125 3 GFP-Synapsin 
TexasRed:TexasRed (579±17/624±20) 665 9 GFP-Synapsin 

 

The fluorescent library was received as powders in 6992 wells across 80 plates. Compounds 

were then dissolved in DMSO to yield 200 µM stock solutions, which were distributed into 89 plates. 

Based on their photophysical properties, and the available filters on the imaging system, compounds 

were divided into 15 groups with appropriate filter combinations, which served as a name of the group 

(excitation filter_emission filter, Table 2.1). The size of the group varied from 968 compounds in 

dsRed_Cy3 to 38 compounds in YFP_YFP. Synaptic markers were assigned to each group based on the 

minimum overlap of excitation and emission wavelengths with 7 groups imaged against mCh-Rab and 8 

groups against GFP-Syn. With an optimized platform for detecting synaptic labeling, the entire fluorescent 

dye library was screened. During screening, neurons were incubated with the compounds at 2 M 

concentration, washed, and imaged on the HTS microscope with 4 fields of view per well. A pilot screen 

on one of the DAPI_DAPI plates was performed to assess the screening platform. A primary screen of 89 

plates was then performed following the outlined procedure (Figure 2.2.3), with 31 plates were re-

screened due to technical issues of the control channel. Based on the analysis described below, cherry-

picked the most promising compounds from the DAPI_DAPI plates were then screened at 8 
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concentrations from 31 nM to 2 µM using the same protocol to determine concentration dependence 

(Figure 2.2.3). 

 

Figure 2.2.3 HCS outline 

 

 

2.2.2.2 Image analysis 

2.2.2.2.1 Parameters 

To analyze the images, a segmentation algorithm was used to differentiate areas with either 

puncta or a cell bodies. As previously reported (59), the Vesicle Segmentation algorithm provided by the 

IN Cell Developer Toolbox (v.1.9) software was used to threshold images based on average size of GFP-

Synapsin and mCh-Rab3 puncta (1−2 pixels; only objects in range of 0.5−5 μm2 were selected) and 

intensity (average intensity higher than 2−2.5 standard deviation over the background) (Figure 2.2.4 A). 

Thresholding of images to select synaptic puncta or cell bodies and exclude background signals was 

optimized empirically, using images of neurons immunostained with the GFP or mCh antibody for puncta, 

which should exhibit ∼100% colocalization with GFP-Syn and mCh-Rab3, respectively. For the 

Algorithm validation:
1. Immunofluorescence of EGFP-Synapsin and mCherry-Rab3 vs MAP2, 

LAMP1, SV2, VGLUT1, Synaptophysin, Synapsin, GFP, mCherry
2. Live imaging of EGFP-Synapsin vs FM4-64

Pilot screen: Control plate with DAPI_DAPI_101 plate 

Primary screen: 89 plates screen, 2 uM concentration, 20 min 
incubation, 5x washing with Tyrod buffer  

Repeat screen: 31 plates, same conditions

Screen at dose: DAPI_DAPI cherrypicked compounds, 4 plates, 8 
concentration, from 31 nM to 2 uM.
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immunostained images, puncta positive for a synaptic marker were collected by size and intensity 

(excluding pixels with intensities below 175 value). Compound channels were not thresholded. 

For cell body identification, built-in Cytoplasm Segmentation algorithm has been used with filters 

on area and form factor of the objects (Figure 2.2.4 B). Specific values were chosen empirically using 

MAP2 immunostained screening plates; if the area of the selection was larger than 50 μm2 and form 

factor was greater than 0.2, then the large, round (form factor = 1-0.9) to oblong (form factor = 0.9-0.2) 

forms were selected as the cell bodies. 

A                                                                                  B 

         

Figure 2.2.4 Segmentation of the representative image 
A. Puncta identification using vesicle segmentation developed through IN Cell Developer Toolbox. B. Cell body 
identification using cytoplasm segmentation developed through IN Cell Developer Toolbox. Top image presents 
raw file, bottom presents segmentation pattern. Green mask represents selected ROI (puncta for A, and cell body 
for B) for measurement, red mask represents discarded ROI. Images on the left show full field of view (scale bar 
100 µm), images on the right show zoomed area (scale bar 20 µm). 

 

For each channel, the number of objects and the sum of object intensities were counted, and 

colocalization between channels were calculated based on the number of overlapping pixels. Fraction of 

the GFP-Syn or mCh-Rab3 region of interest (ROI) that colocalized with the immunostained proteins and 

later with each compound was referred to as overlap. Colocalization values expressed as the fraction of 

immunostained proteins or compound ROI overlapping with synaptic markers were referred to as 

coverage. As initial characterization, average overlap value for each group of compounds was calculated, 

and hits were defined as compounds with overlap values > 2.5 standard deviations above the group 

mean. 
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In addition to the number of objects and colocalization values, intensities as percentage of total 

image intensity were also used to characterize every plate to find promising compounds. Relative 

intensity provided additional information on compound distribution in the neuronal culture. For example, 

compounds that stain synapses had higher relative intensities in the puncta. In the dose response 

experiment, relative intensities of the puncta were higher at the lower concentration of the dye, 

presumably because the non-specific binding decreased while the specific staining remained the same or 

decreased with a slower rate (e.g., Figure 2.2.8 B). 

To characterize the plates, these parameters were plotted against each other. The puncta overlap 

versus coverage plot would demonstrate the degree of colocalization of the compounds with the synaptic 

markers. Hit compounds were assumed to have high overlap and coverage, and thus should be 

positioned in the upper right side of the plot. As expected the synaptic proteins, VGLUT1 and SV2, were 

found in the upper right corner of the plot, whereas non-synaptic proteins, MAP2, LAMP1, and charged 

multivesicular body protein 2b (CHMP2b), were located in the lower left corner for puncta segmentation 

analysis (Figure 2.2.5 A). The observed reduced coverage of GFP could be explained by thresholding of 

the control channel, which reduced the number of puncta. Relative intensity of the hit compound in the 

puncta or the cell bodies would be expected to be high, while the number of the objects (puncta or cell 

bodies) would be within the certain limits, which based on the synaptic proteins colocalization should be 

between 1000-2000 puncta per image (Figure 2.2.5 B). High number of puncta or cell bodies indicated 

high non-specific staining and/or false segmentation (GFP in Figure 2.2.5B). Similar pattern is observed 

for cell body segmentation analysis showed in Figure 2.2.5 C and D. Puncta overlap and coverage versus 

cell bodies overlap and coverage would reveal compound distribution in the cell culture. Hit compounds 

that stain synapses would have higher overlap and coverage in synapses and lower overlap and 

coverage in cell bodies locating them in the upper left side of the plot (Figure 2.2.5 E, F). The inverse 

statement was assumed to be true for the cell body staining compounds. Similar information could be 

extracted from puncta number versus cell body number plot (Figure 2.2.5 G). Some of these plots do not  
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A                                                                                    B 

 
C                                                                                   D 

 
E                                                                                  F 

 
                                                 G 

 

Figure 2.2.5 Control plate plots 
A and C. Overlap versus coverage plot of the puncta segmentation (A) and cell body segmentation (C) of GFP-
Syn and immunostained synaptic markers (VGLUT1, SV2), neuronal cell body marker (MAP2), and endosomal 
markers (CHMP2b, LAMP1). B and D. Average intensity in the puncta (B) or cell body (D) versus the number of 
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depend on the control channel and provide information of the staining patterns of the compounds. 

All the plots of 29 analyzed plates, as well as representative images of the wells in the plate, are 

presented in the Appendix. 

 

2.2.2.2.2 Quality control 

As expected, a substantial amount of the compounds produced poor and inconsistent staining. To 

identify these compounds, and exclude them from the analysis, the relative standard deviation of any 

parameter value was measured, which should not exceed 100%. Hits that fell under this designation were 

manually checked for further inspection. For example, a compound in A8 well of CFP_FITC_101_Q3 

plate was excluded because the relative standard deviation of the cell body number exceeded 100% 

(Figure 2.2.6 A). Upon inspection of these images, it was obvious that the staining was poor with low 

intensity, which probably created false segmentation. 

On the other hand, some compounds at the screened concentration produced oversaturated 

images, which also could not be used to correctly characterize them. To identify compounds that resulted 

in poor images, a histogram analysis was used. The pixel histogram from each image was plotted, and 

then divided into 3 sections: bottom 10% (0-410 intensity), from bottom 10% to middle point (410-2048 

intensities), from middle point to top (2048-4096). Then the number of pixels in each section was 

calculated using areas under the curve of the image histogram. By comparing these percentages, it was 

decided whether the well was bad, good, saturated, or oversaturated: if intensity of all pixels were smaller 

than 10% of maximal intensity, then it was a bad image (Figure 2.2.6 B); if the number of pixel with 

intensities in the top 50% was larger than the number of pixels with intensities in the bottom 10%, then 

the well was labeled saturated (Figure 2.2.6 D); if the number of pixel with the intensities in top 50% was 

larger than in the middle intensities, then well was considered oversaturated (Figure 2.2.6 E); every other 

condition was considered to be good (Figure 1.2.6 C). The average values of 3 quadrants were calculated 

to decide how to characterize a given well in the plate. The third quadrant was excluded from the 

puncta and cell bodies in immunostained channel (referred to as compound). E-F. Overlap (E) and coverage (F) 
values of puncta and cell body segmentation plotted against each other. G. Raw puncta number versus cell body 
number in immunostained channel. 
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analysis, because it would contain inconsistent images probably due to close proximity to washing 

needle. 

 These filters identified compounds that produced good images, which were then examined first. 

For example, in CFP_FITC_101_Q3 plate, 2 wells (A8 and B8) possessed bad statistics, 33 wells were 

labeled as good, 33 wells were saturated, and 12 wells were oversaturated (Figure 2.2.6 F). The overall 

A                                                                                 B 

  
B                                                                                         D 

  
E 

 
F 

 

Figure 2.2.6 Quality control of the images 
A. A representative image of 
CFP_FITC_101_Q3 plate, A8 well,. Relative 
standard deviation of cell body number 
exceeded 100%, so this compound was 
excluded from consideration. Left image is full 
field of view, scale bar represents 100 µm, right 
image is zoomed in view, scale bar represents 
20 µm. B. CFP_FITC_101_Q3 plate, H10 well 
was determined to be bad, because none of the 
pixels contained intensity higher than 410 value 
(10% of the scale). C. CFP_FITC_101_Q3 plate, 
G4 was determined to be good, because most of 
the pixels had intensity lower than 2048 value 
(50% of the scale) D. CFP_FITC_101_Q3 plate, 
A5 well was determined to be saturated, 
because the number of pixel with intensities in 
the top 50% was larger than the number of pixels 
with intensities in the bottom 10%. E. 
CFP_FITC_101_Q3 plate, A3 was determined to 
be oversatured, because the number of pixel 
with the intensities in top 50% was larger than in 
the middle intensities. Representaitve images in 
B-E present on the left were contrasted equally, 
with scale bar representing 20 µm, a histogram 
of the image is present on the right. F. Overall 
quality control map of CFP_FITC_101_Q3 plate. 
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quality of all plates varied depending on the type of fluorophore and ranged from all good wells to only 

couple of good wells. The quality control maps of 29 analyzed plates are presented in the Appendix.  

2.2.2.3 Screening pitfalls 

2.2.2.4 Signal cross-contamination issue 

The other issue in the screening was the bleed through of the compound emission into the control 

channel. To solve this issue, a MATLAB algorithm was developed based on the assumptions listed below: 

1. The first assumption was that the control channels containing signals from the 

compound channel retained the same image contour of the compound channel 

2. This compound image contour could be subtracted from the control image if the 

percentage of the bleed-through was known 

3. There is at least one pixel in the bleed-through control channel that is purely compound 

signal. 

Then the intensity of each pixel in the bleed-through control channel could be expressed with the 

following equation: 

𝐶 = 𝐶𝑛𝑡 + 𝑛 × 𝐶𝑝𝑑  

where C is the intensity of the bleed-through control channel, Cnt – pure intensity of the control, n – 

bleed-through factor, Cpd – intensity of the compound channel. Therefore, the equation 

should restore the control image (Figure 2.2.7 A). To use this equation, n value must be found. To 

this end, a MATLAB algorithm for finding the n value and then generating the bleed-through subtracted 

control image was developed. 

These new corrected images then were analyzed in IN Cell Analyzer 2000 algorithm again. As 

expected overlap and coverage values were reduced (Figure 2.2.7 B). The n value provided information 

about the bleed-through level of compounds into control channel. Some compounds had a quite 

substantial bleed thorough level with about 75% of their fluorescent signal in the compound channel 

(Figure 2.2.7 C). 

Despite this success, corrected images seemed to still contain staining pattern of the compound 

channel and not characteristic of synaptic markers. A closer inspection revealed a small shift of the 

𝐶𝑛𝑡 = 𝐶 − 𝑛 × 𝐶𝑝𝑑 
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stained objects between control and compound channels, possibly due to movements of the internal 

organelles visible on certain images (e.g. Figure 2.2.7 D). Aligning images using an X/Y registration 

component further improved n values by 10%. However, aligning did not correct for any fast-moving 

puncta and other movements that altered relative positions of the stained objects between the imaging of 

the two channels (Figure 2.2.7 D). Due to these issues, the correction algorithm was not run on the entire 

HCS images, but only used to identify possible hit compounds using the previously outlined parameters 

(see Parameters section above). 

A                                                                   B 

     
C 

 

D 

 

Figure 2.2.7 Bleed through correction 
A. An example of image contours of the bleed through 
control image, compound image, and corrected control 
image. Dashed box indicates an example of the third 
assumption. B. Bleed-through correction influence on 
overlap and coverage values of the representative 
plate, arrows indicate the change of the overlap and 
coverage values for some compounds. C. A plate map 
of bleed-through factor calculated using the MATLAB 
algorithm. D. An example of the mismatch between the 
control and the compound images (top image – full 
field of view, scale bar 100 µm; bottom image – 
zoomed in view, scale bar 20 µm). Dashed boxes 
highlight displaced puncta 
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2.2.2.5 DAPI-DAPI plates 

As the primary selection criteria, average overlap value was calculated for each compound group, 

and hits were defined as compounds with overlap values >2.5 standard deviations above the group 

mean. This selection method led to the identification of 53 hits across 11 of the compound groups (Table 

2.2). Images of each hit compound were manually inspected to evaluate synaptic labeling. Sixteen were 

excluded due to bleed through into the control channel, as some of the compound groups exhibited 

broader excitation and/or emission spectra (indicated by Table 2.2). Of the remaining 37 hits, the 22 most 

promising (Figure 2.2.8 A) were from a single plate (Q4) of the compound group designated ‘DAPI:DAPI’ 

due to its excitation/emission profile in the 4',6-diamidino-2-phenylindole (DAPI) range (~360 nm 

excitation, 460 nm emission). 

Table 2.2 Analysis of the overlap value per library groups 

Filter combination  

Overlap 
mean with synaptic 

marker  

Hit 
threshold (with 

2.5 StdDev) 

Number 
of hits (with 2.5 

StdDev) 
FITC:Cy3** 33.8 % 86.8 % 4 
Cy3:Cy3** 29 % 73.0 % 2 
dsRed:dsRed 24.9 % 67.4 % - 
CFP:Cy3** 14.5 % 63.5 % 4 
TexasRed:TexasRed 24.7 % 62.2 % 1 
FITC:YFP** 18.6 % 59.6 % 3 
Cy5:Cy5 25.5 % 58.7 % - 
FITC:FITC 15.3 % 56.2 % - 
TexasRed:Cy5 27.4 % 56.2 % - 
YFP:YFP 16.2 % 52.6 % - 
DAPI:FITC 12.4 % 49.8 % 1 
CFP:YFP** 13.9 % 47.9 % 3 
DAPI:Cy3 13.3 % 44.6 % 3 
DAPI:CFP 8.6 % 27.8 % 8 
FITC:TexasRed 3.1 % 25.8 % 2 
DAPI:DAPI 4.1 % 25.1 % 22 
 

To validate these findings, screening of the Q4 plate was repeated twice and selected 

compounds were imaged in a dose-dependent manner. The overlap values at the 2 µM concentration 

were consistent across three experiments, averaging 0.30-0.40 for the top 10 hits (Table S4), similar to 

the colocalization of FM dye with GFP-Syn (0.50 +/- 0.15). The percentage of compound intensity in 

puncta increased with decreasing concentration of the dye indicating specificity toward puncta over other 
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cellular structures (Figure 2.2.8 B). Coverage remained at the same level, while overlap was smaller at 

lower concentration due to lowering of overall puncta number in the compound channel (Figure 2.2.8 C-

D). 

 

2.2.2.5.1 Staining pattern 

As we previously reported (59) an identified hit compound with highest overlap value at 36% at 2 

µM was CX-G3 compound. The puncta intensities of the compound increased by 14% to 50% at 125 nM, 

while overlap dropped to 7% and coverage reached 19% (Figure 2.2.9 A). To further characterize 

compound staining, CX-G3 was imaged and the colocalized against immunostained vesicular associated 

membrane protein (VAMP2) and VGLUT1. Since CX-G3 could not be fixed, a special grid dish was used 

to image the same field of view before and after fixation. Images then were retrospectively aligned for  

A                                                                            B 

    
C                                                                            D 

     

Figure 2.2.8 Parameters of the DAPI_DAPI plate 
A. Overlap versus coverage plot of the DAPI_DAPI group, 5 plates. A horizontal line represents a cut-off level of 
the overlap value. Each point represents an average value of individual compound. B. Relative intensity versus 
concentration plot of the cherry-picked compounds. Overlap values are color-coded. C-D. Coverage and overlap 
versus concentration plot of the cherry-picked compounds.  
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colocalization analysis using the ImageJ Just Another Colocalization Plugin (JACoP) (60). 

Overlap value of CX-G3 compound was at 20-30% against VAMP2 and VGLUT1, while coverage 

reached 60-70% (Figure 2.2.9 B). Since cell periphery staining was more meaningful for synaptic 

markers, the analysis was repeated excluding cell bodies. Overlap value improved in this analysis 

reaching 35% values for both markers, while coverage remained the same (Figure 2.2.9 C). As a positive 

A                                                                    B                                                     C 

  
D 

 
E                                                           F 

  
G 

 

Figure 2.2.9 Colocalization of CX-G3 with immunostained markers, Lysotracker, Mitotracker 
A. Overlap, coverage, and relative intensity versus concentration plot of CX-G3. B-C. Colocalization analysis of 
immunostained synaptic markers and CX-G3 retroactively aligned. D. A representative images of live and 
immunofluorescent staining aligned retroactively. NeuO and CX-G3 were imaged live, while Vamp, VGlut, and 
Hoechst were imaged through the immunofluorescence. E-F. Colocalization analysis of Lysotracker and 
Mitotracker against CX-G3. G. A representative image of Lysotracker and Mitotracker with CX-G3. All images were 
taken in our laboratory. The scale bar represents 20 µm. 
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control, the colocalization value of Vamp staining against VGLUT1 (labeled as overlap) was at 75%, while 

82% of VGLUT1 (labeled coverage) colocalized with VAMP2 in both analysis approaches. When 

inspecting the image, it became apparent that CX-G3 also stained large puncta mostly in the cell bodies. 

CX-G3 also stained non-neuronal cells, which could be exemplified by comparing compound staining and 

NeuO, a neuron specific dye (Figure 2.2.9 D). 

In addition to synaptic markers, it was important to identify whether any of the CX-G3 stained 

puncta were lysosomes and/or mitochondria. For this purpose, CX-G3 was co-stained with spectrally 

compatible Lysotracker and Mitotracker (Figure 2.2.9 E). The colocalization of Lysotracker with the 

compound (labeled overlap) was high at 85%, while Mitotracker had 53%. On the other, CX-G3 

colocalized against Lysotracker (labeled coverage) with 21% of stained pixels, while against Mitotracker 

with 69% of pixels. Excluding cell bodies, CX-G3 vs Lysotracker colocalization values in both directions, 

and the percent of CX-G3 colocalized with Mitotracker, did not change, while about 26% of Mitotracker 

colocalized with the compound (Figure 2.2.9 F). On further analysis Lysotracker puncta showed high 

overlap with CX-G3, while CX-G3 stained more cells than Lysotracker, resulting in low coverage values 

(Figure 2.2.9 G).  

To create higher quality of the CX-G3 staining of neuronal culture, imaging was performed on a 

microscope in Dr. Waites’s laboratory (CUMC). To this end, a similar experiment was conducted, 

however, more detailed images were acquired could be captured for Lysotracker and CX-G3 (Figure 

2.2.10 A). Colocalization values were calculated using an in-house developed algorithm (described in 

(59)) in ImageJ. In short, this involved selecting G3 puncta using a multiple threshold analysis, and then 

quantifying the percentage of pixels within each punctum that overlapped with the marker. Puncta which 

contained more than 50% overlapped pixels were considered to have a positive colocalization. The 

number of CX-G3 puncta that colocalized with Lysotracker reached 50% (0.45 ± 0.06, Figure 2.2.10 B), 

while with Mitotracker colocalization was only 30% (0.29 ± 0.08, Figure 2.2.10 B). Since the dye is not 

fixable, we also performed these experiments by live imaging in 14−16 DIV neurons lentivirally 

transduced on 3 DIV with mCh-tagged VAMP2 or Rab3. Again, we found that CX-G3 exhibited a high 

degree of colocalization with both VAMP2-mCh (0.57 ± 0.06, Figure 2.2.10 B). and mCh-Rab3 (0.61 ± 

0.09; Figure 2.2.10 B), comparable to colocalization values measured between mCh-Rab3 and 
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endogenous VAMP2 (0.51 ± 0.05; Figure 2.2.10 B). CX-G3 also strongly colocalized with FM4-64 in 

hippocampal cultures (0.45 ± 0.05; Figure 2.2.10 B). 

A 

 
B 

 

C 

 
 

Figure 2.2.10 CX-G3 versus Lysotracker and 
Mitotracker 
A. A representative images of Lysotracker 
and Mitotracker against CX-G3 imaged at Dr. 
Waites’s laboratory. B. A representative 
images of mCh-Rab3, mCh-Vamp2, and 
FM4-64 against CX-G3 imaged at Dr. 
Waites’s laboratory. Scale bar represents 10 
µm. C. Colocalization analysis of live images 
CX-G3 against Lysotracker, Mitotracker, 
Rab3, Vamp, and FM4-64. RAb3 and VAMP 
were fused to mCherry and transfected into 
neuronal culture. Colocalization of G3 with 
Rab3, VAMP2, and FM in randomized images 
were depicted with *. (n = 2−4 images per 
batch, acquired from two independent 
batches of neurons) 

 

2.2.2.5.2 Photophysical properties 

Dyes from the Q4 plate are based on the xanthone scaffold (Figure 2.2.11 A), with peak 

excitation and emission values between 360 and 380 nm and 480−520 nm, respectively (57). The  
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A 

 
B 

 

Figure 2.2.11 DAPI_DAPI_101_Q4 structures and properties 
A. Structures and overlap heat map of the compounds in DAPI_DAPI_101_Q4 plate. B. Puncta number and side 
chain relationship. 
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compound diversity was achieved through various side chains attached through the azide-alkyne 

cycloaddition. Analyzing compounds using the overlap and total puncta number parameters and criteria 

discussed above, it became apparent that the aliphatic side chains gave better parameters than the  

aromatic ones (Figure 2.2.11 A). This observation prompted calculation of LogP values of the 

side chains to examine the lipophilicity in terms of puncta staining. Indeed, the puncta number versus 

LogP value plot revealed a bell-shaped distribution, which indicated an optimal lipophilicity range for high 

puncta staining (Figure 2.2.11 B). For example, cyclohexyl (CX-G3), cyclopentyl, isopentyl, pentyl, 

octanyl, butyl, hexyl side chains produced the highest number of puncta, while hydroxymethyl, 1-methyl-

1H-imidazol-5-yl, 4-nitrophenyl as well as dodecanyl and 4-pentylphenyl side chain containing 

compounds were on the lower end 

Since CX-G3 colocalized with lysotracker, it was important to measure fluorescent properties of 

the dye at different pH. To this end, CX-G3 was dissolved at 1 µM in Tyrod’s buffer equilibrated at 

different pH, and the excitation and emission spectra were recorded (Figure 2.2.12 A). Both the excitation 

and emission intensities were higher at the acidic pH. The emission intensity at pH 3 was 3.7x higher than 

at pH 9. At more physiologically relevant pH values, the dye was twice brighter at pH 5 than at pH 7.4. 

The pKa value was approximated at 6.5 (Figure 2.2.12 B). 

Of note, CX-A4 and CX-A6 had similar properties as CX-G3, CX-A6 was brighter the other two 

dyes. Dr. Cheng sent us other analog compounds to test along with these hit compounds (Figure 2.2.12 

C). CXAC series compounds contained acetyl groups on piperazine moiety, and CXPi contained 

piperidine residue. CXAC family was previously reported to selectively label mouse embryonic stem cells 

and to exhibit minimal cellular toxicity over multiple days of incubation, thus indicating the suitability of the 

CX family for use as probes in living cells. These compounds were brighter than their related CX series 

dyes (Figure 2.2.12 D-E). For example, at 1 µM at pH 7.4 CXAC-G3 was 2.6x brighter than CX-G3. 

However, the CXAC-A4 did not show any affinity to neurons in CNC with limited staining of the cell 

bodies, while CXPi-A4 stained all the cell bodies in pan-cytoplasmic manner (Figure 2.2.12 F). This posed 

a question about the functional role of second amino group of the piperazine ring in CX-G3’s ability to 

selectively localize to acidic compartments within the cell, potentially due to basifying ability of the 

molecule. 
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Figure 2.2.12 Spectral properties of CX-G3 and its analogs 
A. Excitation and emission spectra of CX-G3 at different pH (ex @ 371 nm, em @ 485 nm). B. Emission versus pH 
plot of CX-G3 (ex @ 371 nm, em @ 485 nm) C. CX-G3 and its analogs structures. D-E. Excitation and emission 
spectra of CX-G3 and its analogs in Tyrod buffer. F. Representative images of CX-A4, CXAC-A4, and CXPi-A4 at 
250 nM in cortical neuronal culture. 
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2.2.2.5.3 Mechanism of action 

Taken together the, pH dependence of the dyes and the photophysical properties of the 

acetylated compounds, we hypothesized that the outer piperazine amino group quenches compounds’ 

fluorescence through photoinduced electron transfer (PeT), which provided the CX family with pH sensing 

properties. Combined with our colocalization results, it is possible that the CX-G3 compound penetrates 

the majority of the soma due to lipophilicity of the structure, then concentrates and appears brighter in 

acidic vesicles, including lysosomes, endosomes, and synaptic vesicles. This would be a similar 

mechanism of action to that of Lysotracker dyes, with the key difference between these compounds being 

their photophysical properties and CX-G3’s preferential distribution into synapses within the cells.  

2.2.2.5.4 Stimulation of the cells 

To confirm the proposed mechanism of action, it was necessary to show pH-dependent staining 

in the neuronal culture. To this end, two approaches were chosen for this purpose, using bafilomycin and 

NH4Cl medium. Bafilomycin is a macrolide antibiotic which prevents re-acidification of the synaptic 

vesicles (61). It does not penetrate cell membrane and enters the vesicles through endocytosis. On the 

other hand, NH4Cl penetrates the cells and basifies all vesicles. Lysotracker was used as the control for 

vesicle de-acidification. 

Experimental protocols were optimized to reduce Lysotracker bleed-through, by reducing its 

concentration to 10 nM, and CX-G3 photobleaching, by modulating imaging conditions (Figure 2.2.13 A). 

Next, Lysotracker at 10 nM and CX-G3 at 250 nM were co-imaged before and after NH4Cl treatment. 

Lysotracker images contained bright puncta, primarily in the cell bodies, and dim puncta in the periphery. 

CX-G3 images, on the other hand, contained puncta both in the cell bodies and on the periphery with a 

much lower difference in intensity between these regions (Figure 2.2.13 B). Colocalization in the cell 

bodies between lysotracker and CX-G3 was high, however, in the periphery there were CX-G3 puncta 

that did not appear in Lysotracker staining, consistent with our colocalization data. Upon NH4Cl treatment, 

puncta staining decreased for both Lysotracker and CX-G3.  
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A 

 
B 

 

Figure 2.2.13 Representative images of CX-G3 and Lysotracker 
A. An example of the images taken at the optimized conditions. B. CX-G3 and Lysotracker staining before (top) 
and after (bottom) NH4Cl treatment. Scale bar represents 20 µm 
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Since CX-G3 exhibited high colocalization with synaptic markers, then upon neuronal stimulation 

fluorescence of the dye should be reduced or disappear in the synapses. However, electric stimulation of 

the cells did not induce dramatic destaining of CX-G3 in hippocampal culture (59), possibly due to 

association with the vesicular proteins or lipid that maintain the dye in protonated bright form. To 

determine whether pH of the synaptic vesicle was the only driving force for the staining, or if CX-G3 may 

bind to vesicular molecules, we performed a series of bafilomycin experiments. Bafilomycin treatment 

could indicate which case is more likely, since this compound can specifically collapse the pH-gradient in 

synaptic vesicles. If fluorescence signal remains after the collapse, there is likely a binding interaction 

between CX-G3 and an intravesicular partner. In order to load bafilomycin into synaptic vesicles, it was 

necessary to stimulate neurons to induce recycling of the vesicles. To this end, cells were stained with 

CX-G3, stimulated with an electrical field (10 Hz, 30 sec) and imaged before, during, and after the 

stimulation. SynaptopHluorin (spH), a fusion protein of the transmembrane synaptic vesicle protein 

VAMP2 and a pH-sensitive EGFP, was transfected into neuronal culture and used as the control. 

Stimulating spH expressing neurons resulted in an increase of fluorescence intensity that decayed over 

time due to recycling of the vesicles, since pHluorin becomes brighter at neutral pH. In the presence of 

the bafilomycin spH should remain bright after stimulation. Cell stimulation of the neurons indeed induced 

increase in fluorescence of spH along the neuronal processes which decayed overtime (Figure 2.2.14 A). 

To measure the intensity of the responsive neuronal processes, trainable WEKA segmentation, a 

combination of machine learning algorithms tailored for pixel-based segmentation, was performed to 

select the ROI. It could be argued that WEKA provided a superior identification of puncta than traditional 

algorithms because background identifier uses human defined features and thus puncta could be 

detected with different backgrounds. For example, WEKA identified puncta in the cell bodies with high 

background as well as in the periphery with low background. Treating the same cells with bafilomycin and 

stimulating them attenuated the stimulation-dependent fluorescence signal decrease as expected (Figure 

2.2.14 B). Interestingly the spH produced largely a stringy staining pattern most likely due to cell 

membrane localization of the spH sensor, especially after the electrical stimulation (Figure 2.2.14 C-D). 

 

  



132 
 

A                                                                   B 

s p H  c o n tro l ( -  b a f i lo m y c in )

T im e , s

R
e

la
ti

v
e

 i
n

te
n

s
it

y

0 1 0 0 2 0 0 3 0 0

1 .0 5

1 .1 0

1 .1 5

s p H  c o n tro l (+  b a f i lo m y c in )

T im e , s

R
e

la
ti

v
e

 i
n

te
n

s
it

y

0 1 0 0 2 0 0 3 0 0

1 .0 5

1 .1 0

1 .1 5

 
C 

 
D 

 

Figure 2.2.14 spH imaging with and without bafilomycin 
A. Relative intensity change of spH over time in hippocampal culture in the absence of bafilomycin. To analyze the 
image, an axon classifier (developed based on spH processes) of WEKA segmentation was used to select ROI 
and measure the intensities across the frames. B. Relative intensity change of spH over time in the presence of 1 
µM bafilomycin. Dotted lines indicate the start and end of the stimulation (10 Hz, 30 s). Data represents mean±SD 
of 12 ROI C. Averaged frames of spH in the absence of bafilomycin. D. Averaged frames of spH in the presence of 
bafilomycin 

 

Since changes in spH indicate an area of the cell which has undergone vesicle fusion, this signal 

could be used as a marker for release sites where CX-G3 signal may be decreasing. To this end, spH 

expressing cells were treated with CX-G3 and electrically stimulated in Tyrod buffer. Using the same 

WEKA axon classifier to segment the spH channel we measured the fluorescence changes in both 

channels over time (Figure 2.2.15 C). One interesting observation was that spH emission did not decay 

after stimulation ended as previously recorded, suggesting that CX-G3 could act as a lipophilic base 

(Figure 2.2.15 A). Instead, overall background fluorescence of the sample increased, which was not 

observed in the control experiment (Figure 2.2.15 D). The CX-G3 fluorescent signal did not significantly 

decrease due to the stimulus (Figure 2.2.15 B). In other words, coincubation of spH with CX_G3 resulted 

in amplified spH signal. Considering the pH determinants of spH fluorescence, the lipophilic base activity 
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of CX-G3 could have driven the amplified signal of spH, which was almost twice as high than in the 

absence of CX-G3 (Figure 2.2.14 A). Further investigation must be conducted to verify the presented 

hypothesis. 
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Figure 2.2.15 spH and CX-G3 response to electrical stimulation in spH expressing hippocampal neuronal culture 
incubated with CX-G3. 
A. Relative intensity change in spH channel over time of CX-G3 (250 nM) treated hippocampal culture transfected 
with spH in the absence of bafilomycin upon stimulation. B. Relative intensity change in CX-G3 channel over time 
of the same sample. The stimulation (10 Hz, 30 s) starting and ending points are present with dotted lines. Data 
represents mean±SD of 75 ROI. C. An example of 4 ROI segmented through WEKA axon classifier. Green is spH, 
red is CX-G3, ROI is highlighted in yellow. D. Averaged frames of the same sample in the absence of bafilomycin 
upon stimulation, top - spH response, bottom – CX-G3 response. 

 

An earlier experiment of electrical stimulation of CX-G3 stained neuronal culture demonstrated 

that some puncta disappeared upon stimulation without bafilomycin (Figure 2.2.16 A). Thus, analysis 

method of spH filaments may not be ideal for analysis of CX-G3 puncta properties. To quantify the 

changes of CX-G3 staining, first approach was to count the number of the puncta. However, there were 

drastic variations in the number of puncta between the frames because of the puncta movements and a 

shift in z-plane of the objective.  
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Since the number of puncta could not be reliably counted, it was attempted to measure changes 

of the fluorescence of the ROI. To this end, image stacks were divided into several frames corresponding 

to the before (BS), during (DS), and after (AS) stimulation time periods, and subsequently were averaged 
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Figure 2.2.16 
Representative CX-G3 
image analysis approaches 
A. An example of the 
puncta disappearance. B-
E. Representative 
histograms of the control 
sample CX-G3 (250 nM) 
stained hippocampal slide 
without stimulation (B), the 
stimulated slide in the 
absence of bafilomycin (C), 
the stimulated slide in the 
presence of 1 µM 
bafilomycin (D), the 
stimulated slides of spH 
expressing neurons in the 
absence of bafilomycin (E). 
Arrow indicate the shift in 
the histogram over time. F. 
Statistical analysis of the 
histogram maxima, data 
represents mean±SD of 
n=5 for CX-G3 samples, 
n=2 for spH and control 
samples. G. Statistical 
analysis of the average 
intensity of the puncta, data 
represents mean±SD of 
n=5 for CX-G3 samples, 
n=2 for spH and control 
samples. DS – during 
stimulation, AS – after 
stimulation, Baf – 
bafilomycin. Intensities 
were normalized to the 
average intensities before 
the stimulation for each 
punctum. 
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through t-projection images by averaging pixel intensities. Image corresponding to before stimulation 

period was used to create puncta segmentation using WEKA puncta classifier (developed based on CX-

G3 staining), and intensities of these segments were measured in all images. Intensities then were 

normalized to first image (corresponding to before stimulation period), and data was used to create 

histograms to detect if the overall intensity distribution changed. In this analysis, if puncta intensities did 

not change over time, then histogram should not change as a function of time, which was observed for 

control slides of CX-G3 without stimulation (Figure 2.2.16 B). Histogram maxima of CX-G3 stained cells 

stimulated in the absence of bafilomycin significantly shifted to the right, indicating the decrease in the 

number of puncta with the same intensity after the stimulation (Figure 2.2.16 C, F). Surprisingly, CX-G3 

stained cells treated with bafilomycin did not show significant shift in the histogram maxima (Figure 2.2.16 

D, F). In comparison, spH histogram shifted to the left as expected, however, the number of samples 

precluded the statistical analysis of the data (Figure 2.2.16 E, F). Change in average intensity of the 

puncta in CX-G3 samples with and without bafilomycin was not significantly different (Figure 2.2.16 G) 

 

2.2.2.5.4.1 Image analysis algorithm 

Even though histogram analysis of the puncta intensities indicated the decrease of fluorescence 

of CX-G3 after the stimulation, it was unclear what percent of puncta responded to stimulation and what 

was the percent of the fluorescence change. To more accurately analyze these images, a new analysis 

algorithm was developed where each individual punctum signal was measured to find whether the 

fluorescence changes were due to the stimulation. To this end, each frame was segmented using WEKA 

puncta classifier, and all the ROI were then combined across the frames (before, during and after the 

stimulation for a total of 30 frames), which created a sort of Z-projection of the segmentation. This allowed 

for confining moving puncta to one ROI and preventing them from falsely appearing as responsive to the 

stimulus. On the other hand, some closely located puncta were grouped into one ROI. In the next step, 

fluorescence of all ROI was measured over time. Fluorescence of the destaining punctum (responsive 

puncta) was assumed to follow exponential decay, as it has been exemplified with FM1-43 unloading 

under the similar conditions (62). Thus, to identify puncta responsive to the stimulus, measured intensities 



136 
 

over time were fitted to ‘Plateau followed by one phase decay’ function in GraphPad, parameters of which 

allowed to distinguish these puncta.  

Applying this algorithm to a sample with spH expressing cells treated with CX-G3 and stimulated 

in the absence of bafilomycin revealed that out of 925 identified puncta (Figure 2.2.17 A) in CX-G3 

channel only 112 puncta or 12.1 satisfied the selection criteria (Figure 2.2.17 B, see 2.5.11 section). The 

response varied greatly from about 20% to 4% decrease in fluorescence to cumulatively giving 10±4% 

decrease (Figure 2.2.17 C). Some of the unresponsive puncta displayed linear decay and were excluded 

from the consideration (Figure 2.2.17 D). Z-drift had limited influence on identification and measurement 

of the puncta in this algorithm. These results indicate that CX-G3 could indeed be released upon the 

stimulation. For a more definitive answer, more images, including controls, must be further analyzed. 
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Figure 2.2.17 Individual punctum analysis 
A. Intensity plot over time of 925 puncta, identified through puncta classifier (developed based on CX-G3 staining) 
of WEKA segmentation in the CX-G3 channel of CX-G3 (250 nM) stained hippocampal culture transfected with 
spH stimulated in the absence of bafilomycin. The stimulation (10 Hz, 30 s) starting and ending points are present 
with dotted lines. Data represents mean±SD of 925 ROI B. Intensity plot over time of puncta responsive to 
stimulation identified using data filters. Data represents mean±SD of 112 ROI C. An example of best and worst 
responsive puncta fitted to ‘Plateau followed by one phase decay’. D. Examples of the curve fitting results to 
unresponsive puncta intensity plots 
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2.2.2.6 Conclusion of HCS 

Using the DOFL approach in HCS of synaptic and neuronal probes, approximately 7000 

fluorophores were imaged in CNC providing a powerful platform for finding specific dyes. As the result of 

initial data analysis, a xanthone based probe was discovered that also labeled presynaptic terminals. 

These probes being lipophilic and pH-sensitive dyes that consistently colocalized with synaptic markers 

and stained releasable synaptic vesicles. These probes could be used for quick staining of synaptic 

vesicle in variety of preparations (cultured neurons, brain slices, in vivo). The accumulated image 

repository could be further used to find new probes. 

2.2.3 Phage Display 

While HCS provided an opportunity to find fluorescent small molecules that stain synapses and 

cell bodies, the diversity of the library was still limited (~ 8,000 compounds). Moreover, this library was 

unlikely to produce a molecule that could be used for delivery of other sensors or actuators/drugs. Given 

the diversity of the cells in the CNS, it was also important to find probes specific to the neuronal cell 

surface markers. To address this issue, a phage display targeted at neurons was developed. While phage 

display was successfully used with cancer cells, little success has been achieved in targeting neurons in 

in vivo.  

2.2.3.1 Phage display on cultured neurons 

Using T7 bacteriophage and CX7C and CX8C phage libraries, the biopanning was performed on 

neuron-glia co-culture with glia culture as parallel control screen. In the initial trials, cells were treated with 

phage library at 4°C for 3h, then washed and lysed for phage analysis. The output-to-input ratio (O/I) was 

about 3% for both libraries indicating high background most likely due to non-specific binding of the 

phage to the plastic. To avoid this background, two alternative approaches were explored. In the first one, 

after biopanning for 2 h at 37°C cells were detached from the plate with papain. This approach produced 

0.4% O/I for CX7C library which was 2.5 times higher than G7 O/I. Despite providing better O/I, it was still 

high for the initial round, as well as papain could compromise the phages. As the second approach, 

mature neuronal-glial co-culture was detached with papain before biopanning for 2 h on ice in the tube 

with rocking. The O/I was at 0.004% with 12 times higher value than G7 O/I for neuron-glia co-culture. 

Meanwhile, glia culture produced O/I at 0.0002% with 3.5 times higher O/I than that of G7. The output  
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result of the second approach was considered successful and thus was used for the screen. One 

thing must be noted that detaching the cells from the culture most likely kept only cell bodies while 

neurons processes were washed away. Also, detaching the neurons could have induced membrane 

damage through which phages could penetrate the cells. Nevertheless, this method was the best in-vitro 

phage display option on mature neurons.  

The first round of selection was conducted on striatal neurons isolated from neonatal mouse pups 

co-cultured with rat embryonic glia derived from the cortex (established procedure in Dr. Sulzer group). 

CX7C and CX8C O/I value for neurons were 0.002% and 0.004% respectively, while G7 O/I was 

0.0003%. For glia culture, O/I for both CX7C and CX8C were lower at 0.0007% and 0.0015%, 

respectively, with G7 O/I reaching 7*10-5%. However, the second round of selection could not be 

performed, because new striatal cultures contained a low number of neurons, which raised the questions 

whether the selection would produce any peptide with neuron homing properties and whether striatal 

cultures were consistent in producing the same neuronal markers. Moreover, the cell surface protein 

markers of cultured neurons may be drastically different from the in vivo ones, as well as not all neuronal 

subtypes could survive in vitro conditions. Based on these concerns, the attempts to conduct phage 

display on the cultured neurons were abandoned.  

2.2.3.2 Ex-vivo phage display 

To perform selection on 

neurons with the closest conditions 

to in vivo, ex vivo phage display 

protocol was developed. Biopanning 

could not be performed in the tissue 

due to limited penetration of the 

phage into the tissue, as well as the 

concerns of washing inefficiency. 

Moreover, neurons could not be 

separated from glia without tissue 

disintegration. To use striatal tissue  

 

Figure 2.2.18 Immunofluorescence of isolated neuron and glia cultures 
Initial single cell suspension (initial mix), isolated neurons, and isolated 
glia were cultured and immunostained with neuronal (MAP2, green) 
and glia (GFAP, red) markers. 
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Figure 2.2.19 Ex vivo phage display scheme and outcome 
A. A phage display protocol scheme. Striatal tissue was digested and triturated into a single cell suspension, 
treated with phage library for 2 h at 4°C, washed 5 times with centrifugation and resuspension in a new tube. Then 
neurons and glia were separated using magnetic beads, and lysed. Collected phages from both fractions were 
tittered and amplified for sequencing. Neuronal phage library was then used for the next round of selection. B. The 
output-to-input ratio and fraction of each round measured by titering. C. Raw number and fraction of phage input. 
and output for each round. 
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for selection, cells needed to be separated into single cell suspension, where biopanning could be 

performed, and then neuronal cells needed to be isolated from glia to achieve enrichment for neuron 

specific peptides. This approach would provide equilibrium in binding to neurons and glia for phage, 

which should increase probability for selection of neuron homing peptides. For this purpose, Miltenyi 

neuron isolation kit and magnetic labeling of glia were employed. To isolate the neurons from the glia, 

striatal tissue was digested and triturated using the kit to achieve the single cell suspension. Then cells 

were treated with antibody cocktail for glial markers and tagged with magnetic beads. Then glia were 

separated from the neurons on the column in the magnetic field. In other words, flow through contained 

neurons, while glia remained on the column. Neuronal fraction contained 79% of the total cells, while glia 

fraction had 17% (In human striatum neuron to glia ratio has been found to be 1.07 (63)). To confirm the 

composition, neuron and glia fraction were seeded along with initial cell suspension and cultured for two 

weeks. Immunofluorescence revealed that neuronal fraction contained mostly neurons, while glia fraction 

was made up mostly of glia, confirming successful isolation of neurons (Figure 2.2.18).  

Since successful isolation of the neurons could be achieved using the magnetic beads, a new 

phage display protocol was developed. Cell suspension prepared from the striatal tissue (with both 

neurons and glia) was treated with phage for 1.5 h on ice with rocking. Cells then were washed five times, 

and neurons were isolated from glia and lysed (Figure 2.2.19 A). The same protocol was used for two 

more rounds with the decreasing amount of the phage input amplified from neuronal fraction of previous 

round of selection. The output number of phages, on the other hand, increased with each round indicating 

a successful enrichment, while the G7 output decreased with decreasing input number of phages. The O/I 

value for the libraries reached 0.1% up from 0.0003% (Figure 2.2.19 B-C). 

 

2.2.3.2.1 CX7C library sequence analysis and characterization 

Collected libraries were sequenced using Ion Torrent sequencing. In CX7C library collected in the 

first round of selection the number of unique phages had been reduced from 4.14*106 in the naïve library 

to 6426 (0.16% of unique phages of naïve library) in the neuron fraction, and 5709 (0.14% of unique 

phages from naïve library) in the glia fraction, giving a ratio of 1.1 between the samples. Surprisingly, the 

total number of phages recovered was 26934 and 97576 in neuron and glia fraction respectively, with 
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0.28 ratio between the samples. These numbers did not take into account phages that expressed non-

cyclic peptides and the ones that do not start with C amino acid, and thus these numbers could not be 

accurately compared with values found by titering during the screening. 

In the second round the number of unique phages was reduced to 2720 and 4471 with total 

number of phages reaching 55512 and 54300 in neuronal and glial fractions respectively. The top 20 

abundant phages are presented in Table 2.3. The most abundant sequence, CPPFLETIC, amounted to 

7% of total phage number in neuronal fraction and 2% in glial fraction, providing a selection ratio of 3.5. 

Selection ratio for the top 20 phages was 3±1, while the total unique phage number in neuronal fraction 

was 2 times less than in glial fraction. 

Table 2.3 Top 20 sequence in CX7C libraries identified by IonTorrent 

Round 2  Round 3 

Peptides 
Count % of total  

Peptides 
Count % of total 

Neuron Glia Neuron Glia  Neuron Glia Neuron Glia 

CPPFLETIC 3650 1202 6.6% 2.2%  CPPFLETIC 29415 10498 35.4% 24.3% 

CPPLLRELC 1246 447 2.2% 0.8%  CPPLLRELC 3784 1554 4.5% 3.6% 

CEDFECAVL 
SLRPHSS 1056 535 1.9% 1.0%  CPPWIETVC 2915 985 3.5% 2.3% 

CPALMATLC 791 202 1.4% 0.4%  

CEDFECAVL 
SLRPHSS 2264 1102 2.7% 2.6% 

CPPWIETVC 782 209 1.4% 0.4%  CPALMATLC 1798 652 2.2% 1.5% 

CEIGRLMGIEC 699 246 1.3% 0.5%  CPELLRGLC 1159 520 1.4% 1.2% 

CPELLRGLC 578 209 1.0% 0.4%  CEIGRLMGIEC 1057 452 1.3% 1.0% 

CGLSVQGIC 561 420 1.0% 0.8%  CPTFMNSLC 911 337 1.1% 0.8% 

CTLWEGASC 559 216 1.0% 0.4%  CTLWEGASC 893 386 1.1% 0.9% 

CGDAFPYIC 548 185 1.0% 0.3%  CGLSVQGIC 866 564 1.0% 1.3% 

CPTFMNSLC 527 205 0.9% 0.4%  CGDAFPYIC 831 379 1.0% 0.9% 

CDFRGNAIC 344 164 0.6% 0.3%  CDFRGNAIC 753 460 0.9% 1.1% 

CDLDRNMLC 297 60 0.5% 0.1%  CDVRGNAIC 606 401 0.7% 0.9% 

CPEFLVNIC 260 121 0.5% 0.2%  CPDFLSEFC 461 147 0.6% 0.3% 

CDVRGNAIC 259 70 0.5% 0.1%  CSDYSNEVC 435 297 0.5% 0.7% 

CLGPTDSPC 240 158 0.4% 0.3%  CGREFPYIC 399 159 0.5% 0.4% 

CSPGGNAIC 236 104 0.4% 0.2%  CYMSNNVNC 393 207 0.5% 0.5% 

CGREFPYIC 235 43 0.4% 0.1%  CPEFLVNIC 367 142 0.4% 0.3% 

CYMSNNVNC 225 117 0.4% 0.2%  CSPGGNAIC 326 353 0.4% 0.8% 

CPNWLKDIC 201 66 0.4% 0.1%  CPSFIASLC 319 106 0.4% 0.2% 

Total peptides 55512 54300 - -  Total peptides 83173 43124 - - 

Unique 
peptides 2720 4471 

- - 
 

Unique 
peptides 2396 2033 

- - 

 

In the third round the number of unique phages was 2396 and 2033 and the total number of 

phages was 83173 and 43124 in neuronal and glial fractions respectively. Over the course of phage 

display, the number of unique phages reduced drastically in round 1 and round 2 collapsing the diversity 

of the library. Interestingly, the total number of phages increased in neuronal fraction, while reverse trend 
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was observed in glial fraction indicating enrichment of neuron specific phages (Figure 2.2.20 C). The 

most abundant sequence, CPPFLETIC, reached 35% and 24% of total phage number in neuronal and 

glial fraction respectively (the second most abundant sequence amounted to 4.5%), with selection ratio of 

1.5 reducing the difference between the fractions. Among top 20 phages in round 3 specificity for 

neuronal fraction was reduced to 1.2±0.3. The higher than expected number of phages in the glial fraction 

could be attributed to less stringent biopanning condition of the third round. However, in glial fraction the 

difference in number of unique sequences between round 2 and 3 was larger than that of round 1 and 2, 

which did not support the abovementioned stringency concern. 

Table 2.4 Sequences of CX7C round 3  
library identified by Sanger sequencing 

Sequence analysis of the round two library top 20 CX7C 

peptides (excluding peptides with less than 7 amino acids between 

C) (Figure 2.2.20 A) showed a prevalence of hydrophobic amino 

acids at 2-5 and 7 and 8 positions, respectively in the neuronal 

fraction. Amino acids were arbitrarily color coded as follows: DE, 

RHK, CGSTY, NQ, AFILMPVW. The sequence made up from the 

most frequently occurring amino acids in round 2 and round 3 

libraries was CPPFLNAIC, which had high homology to the most 

abundant sequence, CPPFLETIC (Figure 2.2.20 A-B). Glial fraction 

sequences from round 2 less frequently contained hydrophobic amino acids, however, the composition at 

2, 6, and 8 positions was similar to neuronal fraction library. Glial fraction sequences from round 3 were 

quite similar to the neuronal fraction. These preliminary results did not reflect our expectations. Further 

analysis must be performed with the detailed sequence comparison of the two fractions in order to find 

peptides specific to neurons. 

For Sanger sequencing random phage plaques from amplified plates of round three neuronal 

fraction library were collected and submitted to sequencing (Table 2.4). CPPFLETIC phage was in 6.5% 

of all selected plaques. Sanger sequencing results contained only 5 out of 20 peptides from top 20 of the 

Ion Torrent sequencing outcome. At the initial characterization of the sequences, the most abundant 

phage, CPPFLETIC, was amplified for further testing.  

Sequence Number  

CPPFLETIC 3  

CPPLLRELC 1  

CEDFECAVLSLRPHSS 1  

CPDFLSEFC 1  

CSDYSNEVC 1  

CLQVDAF 1  

CLSVESF 2  

CLTVAPSC 1  

CPELLRGLC 1  

CRGGYEADC 1  

CSLNNNVVC  1  

CSRTGGSAC 1  

CVPRQSTLC 1  

CVXXEDRW 1  

Total 46  
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2.2.3.2.2  CX8C library sequence analysis and characterization 

 Collected libraries were sequenced in Ion Torrent sequencing. In CX8C library, collected in the 

first round of selection, the number of unique phages had been reduced from 2*108 in the naïve library to 

5814 (0.003% of unique phages from naïve library) in the neuronal fraction, and 7106 (0.004% of unique 

phages from naïve library) in the glial fraction, giving a ratio of 0.82 between the samples. The total 

number of phages recovered was 194083 and 49447 in neuronal and glial fractions respectively, with 

selection ratio of 4 between the samples. The total phage number for the first round was unusually high 

when compared to other phage display results and it was a complete reverse result when compared to 

CX7C library results. Also, total number of individual phages was 10 times than that of CX7C round 1 

library. 

 In the second round the number of unique 

phages was reduced to 2065 and 2429 with the 

total number of phages reaching 36628 and 41061 

in neuronal and glial fractions respectively. The top 

20 abundant phages are presented in Table 2.5. 

The most abundant sequence, CTLWDEAQIC, 

amounted to 4.4% of total phage number in 

neuronal fraction and 1.9% in glial fraction, 

providing a selection ratio of 2.3, while the next two 

sequences, CFNSLEFPDC and CQLWDEAIVC, 

reached 3% and 1% in neuronal and glial fractions 

respectively. Selection ratio for the top 20 phages 

was 1.8±0.9. 

In the third round, the number of the unique 

phages was 2033 and 2396 and the total number 

of phages was 47107 and 62445 in neuronal and 

glial fractions respectively. The number of unique 

phages and total number of phages in neuronal 

A                                   CX7C                                        
        Round 2: Neuron                  Round 2: Glia            

  
B                                   CX7C 
        Round 3: Neuron                 Round 3: Glia 

 
C 

 

Figure 2.2.20 CX7C sequences and numbers from the 
neuronal versus glia screen 
A-B. Sequence logo representation of round 2 (A) and 
round 3 (B)  CX7C library. Amino acids were arbitrarily 
color coded as follows: DE, RHK, CGSTY, NQ, 
AFILMPVW. C. Number of unique phages and total 
number of phages measured by IonTorrent  
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fraction were drastically reduced in round 1 and round 2 collapsing the diversity of the library. However, 

round 3 did not improve the enrichment. The glial fraction mirrored the outcome of neuronal fraction 

(Figure 2.2.21 C). While the top peptide in round 2, CTLWDEAQIC, dropped to fourth position in round 3 

keeping the abundance at 5%, CFNSLEFPDC and CQLWDEAIVC assumed the top positions in round 3 

reaching 18% and 9% of total phage number. Among top 20 phages in round 3 specificity for neuronal 

fraction dropped to 1.1±0.6. The round 3 of selection did not improve the numbers overall, while it 

changed the abundance of the sequences. 

Table 2.5 Top 20 sequence in CX8C libraries identified by IonTorrent 

Peptides 
Count % of total  

Peptides 
Count % of total 

Neuron Glia Neuron Glia  Neuron Glia Neuron Glia 

CTLWDEAQIC 1602 793 4.4% 1.9%  CFNSLEFPDC 8499 7122 18.0% 11.4% 

CFNSLEFPDC 1118 591 3.1% 1.4%  CQLWDEAIVC 4089 3705 8.7% 5.9% 

CQLWDEAIVC 1098 491 3.0% 1.2%  CENTIFDGIC 3617 2155 7.7% 3.5% 

CLVLESLSDC 1005 1020 2.7% 2.5%  CTLWDEAQIC 2448 1987 5.2% 3.2% 

CFGLILENDC 495 522 1.4% 1.3%  CDMMRNLGVDC 1568 1526 3.3% 2.4% 

CENTIFDGIC 440 203 1.2% 0.5%  CPANLKGIVC 1143 1614 2.4% 2.6% 

CPANLKGIVC 439 239 1.2% 0.6%  CLVLESLSDC 790 1630 1.7% 2.6% 

CATGNRVKLC 393 279 1.1% 0.7%  CQLWPGSKVC 727 584 1.5% 0.9% 

CQLWPGSKVC 316 118 0.9% 0.3%  CNEDMFPYMC 684 538 1.5% 0.9% 

CLQVSNLTSC 290 299 0.8% 0.7%  

CNMYANSCQS 
GLTIEPF 667 945 1.4% 1.5% 

CDMMRNLGVDC 285 73 0.8% 0.2%  CFGLILENDC 621 1142 1.3% 1.8% 

CRGLTVEGTC 284 369 0.8% 0.9%  CSDRSYMDEC 475 2806 1.0% 4.5% 

CNEDMFPYMC 274 182 0.7% 0.4%  CEEDYHSTTC 465 1530 1.0% 2.5% 

CASNASRTRC 259 116 0.7% 0.3%  CVGTLFSSIC 431 250 0.9% 0.4% 

CLLVLNDTEC 251 139 0.7% 0.3%  CKSNRTNAIC 399 706 0.8% 1.1% 

CSDRSYMDEC 237 676 0.6% 1.6%  CASNASRTRC 390 513 0.8% 0.8% 

CNNATTSDEC 208 256 0.6% 0.6%  CKWKGLNDAC 341 925 0.7% 1.5% 

CEEDYHSTTC 188 302 0.5% 0.7%  CRGLTVEGTC 328 836 0.7% 1.3% 

CMTLGELTIC 187 117 0.5% 0.3%  CLQVSNLTSC 282 313 0.6% 0.5% 

CKSNRTNAIC 186 225 0.5% 0.5%  CKLWDEVRLC 273 324 0.6% 0.5% 

Total peptides 36628 41061 - -  Total peptides 47107 62445 - - 

Unique peptides 2065 2429 - -  Unique peptides 2033 2396 - - 

 

Sequence analysis of top 20 CX7C peptides from round 2 library (excluding peptides with less 

than 7 amino acids between C) (Figure 2.2.21 A) showed a prevalence of Leu amino acids at 2-5 and 7 

positions in neuronal fraction, while glial fraction amino acid composition was more varied. In the round 

three, the frequency changed drastically with different hydrophobic amino acids at 3-6 and 9 positions in 

neuronal fraction, while negatively charged amino acids become more frequent in glial fraction (Figure 

2.2.21 B). Amino acids were arbitrarily color coded as follows: DE, RHK, CGSTY, NQ, AFILMPVW. The 

sequence made up from the most frequently occurring amino acids in round three of the neuronal 

fraction, CKLWDESTIC, was homologous to the second most abundant peptide, CQLWDEAIVC.  
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Table 2.6 Sequences of CX8C  
round 3 library identified by  
Sanger sequencing 

For Sanger sequencing random phage plaques 

from amplified plates of round 3 of neuronal fraction library 

were collected and submitted for sequencing (Table 2.6). 

CFNSLEFPDC and CQLWDEAIVC phage were in 6.3% of 

all selected plaques. Sanger sequencing results mirrored 

the peptides found through the Ion Torrent sequencing. At 

the initial characterization of the sequences, the most 

abundant phages, CFNSLEFPDC and CQLWDEAIVC, were amplified for further testing.  

 

A                                CX8C                                  B                                CX8C 
        Round 2: Neuron                  Round 2: Glia                   Round 3: Neuron                 Round 3: Glia   

   
 

C 

 
 

Figure 2.2.21 CX8C sequences and numbers 
A-B. Sequence logo represantation of round 2 (A) and 
round 3 (B) CX8C library. Aminoacids were arbitrarily 
color coded as follows: DE, RHK, CGSTY, NQ, 
AFILMPVW. C. Number of unique phages and total 
number of phages measured by IonTorrent 

 

2.2.3.2.3 In vitro characterization of the phages 

Striatal neurons were cultured to test the collected phages (Figure 2.2.22 A). This culture was 

treated with CX7C libraries for 2 h at 37°C and then fixed for immunofluorescence. Naïve library did not 

stain neurons or glia and rather had 1-2 pixel size puncta staining pattern with occasional bright spots, 

which did not colocalize with any of the cell body proteins. Round three library, on the other hand, stained 
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Sequence Number 

CQLWDEAIVC 3 

CFNSLEFPDC 3 

CTLWDEAQIC 1 

CRLRSNSIQC  1 

CLVLESLSDC 1 

CLTVKDF 1 

CKSNRTNAIC 2 

CGMLHPNAMC 1 

CFGLILENDC 1 

CENTIFDGIC 1 

CDQSLTNDIC 1 

CDMMRNLGVDC 1 

Total 48 
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some cell bodies in the neuronal fraction along with a similar staining patter as naïve library. To quantify 

the cell bodies stained by the phages, a WEKA segmentation was used, which revealed the number of 

cell bodies stained was the highest by the round three CX7C library (Figure 2.2.22 B-C). Interestingly, 

round two phages stained less number of cell bodies than round one. Similar staining pattern was 

observed for CX8C libraries. Stained cell bodies did not create any extensive processes. Most likely, the 

library stained a neuronal cell subtype that did not grow in vitro. Since phage display was performed on 

the cell bodies of freshly isolated neurons, protein expression profile could be completely different from 

cultured neurons. Thus, in vitro culturing could not be used to test isolated phages. 

A                                                             B                                                               C 
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Figure 2.2.22 Immunofluorescent analysis of phage specificity 
A. Staining pattern of the naïve, round one, round two, and round three CX7C libraries in striatal cultures. Scale 
bar represents 100 µm. B. WEKA segmentation of the CX7C round three library puncta overlaid on other control 
channels in striatal culture. Scale bar represents 20 µm. C. The number of the cell bodies stained by the CX7C 
libraries measured with the WEKA segmentation.  

 

2.2.3.3 Conclusion of Phage Display 

The initial selection conditions indicated a possibility of selecting phages specific to neurons 

reflected in the diversity collapse of the naïve library and enrichment of specific sequences. Moving 

forward, a more detailed analysis of the sequences must be performed to find promising contenders, and 

peptide characterization must be performed on neuron preparations that are close to in vivo conditions. 

Further optimization and improvement of phage display protocols should increase the probability of 

finding selective, neuron specific peptides. 

2.3 Discussion 

High content screening is a powerful approach for finding new probes and one that can generate 

a lot of information from a library of diverse compounds. The advantage of this approach could be 

highlighted by the intrinsic multiple screening opportunities of different targets. For example, our primary 
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target of HCS was the glutamatergic synapses, the acquired images could still be used to search for 

probes that specifically stain cell bodies, or axons, or dendrites without necessity to develop new 

screening assay. In addition to the probe, molecules that grant the specificity towards the target of the 

screen could lead to a better understanding of the gene expression profile of the cells of interest. 

One of the primary challenges of HCS is the image analysis algorithms. Currently, most of the 

image analyses are based on the models built in a software. Even though these models can do an 

excellent job in identifying the necessary structures, the rate of false positives and false negatives could 

be high depending on the quality of the images. Moreover, variations in the background, saturation of the 

images, and the irregularities in the staining patterns create a big challenge for these models to perform 

well. Progress in the artificial intelligence and the machine learning technology has created new 

algorithms in recognizing different patterns in the image, which is getting close to the human level of 

recognition. These algorithms may be employed and lead to a much superior platform for image analysis. 

Another challenge of HCS is the logistics of the project. Since the images could be analyzed 

multiple times and must be empirically examined, it becomes important to have an easy access to the 

images. Given the number of images (the total number we acquired was 40,000 images) it was not a 

trivial task to share images between the labs, an issue that was not thoroughly addressed in the 

beginning of the project. An open-source software, OMERO sever, was used to help ameliorate the 

situation and provide a structure to image storage. Future screening project must plan the logistics of data 

storage to avoid these pitfalls. 

Quality control also becomes an important aspect of the logistics. Such control gives an 

opportunity to recognize poor quality images for potential re-screening with adjusted conditions, as well 

as excluding such images from analysis to save time. In our screen multiple quality issues, such as bleed 

through between the channels, low fluorescent signal of the dyes, oversaturation of the images, became 

apparent during the analysis. Implementing quality control analysis during the image acquisition may 

provide the opportunity for early intervention and adjustments of the conditions to improve the quality of 

the screen in general. Implementation of these logistical goals, however, may require software 

development skills. 
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Primary selection criterion that was built into the design of the HCS identified a new probe, CX-

G3, that stained acidic cellular compartments, including synaptic vesicles. Even though mechanistically, 

CX-G3 is likely similar to Lysotrackers, it stained more vesicles in the neuronal projections, while cell body 

staining was not as bright as Lysotracker, thus providing a more selective staining of the synaptic 

vesicles. Early attempts to detect the release of the synaptic vesicles did not show definitive results. 

However, a more detailed analysis of individual synapses showed that approximately 10% of all stained 

puncta were released under the stimulation. Given this little number of the releasable puncta stained by 

CX-G3, it should not be surprising that little significant change in fluorescence on average could be 

detected, especially since the intensities of the synaptic vesicles were low and contributed little to the total 

intensity of the image. CX-G3 also stained puncta in brain slices ex-vivo, as well as in-vivo, with high 

colocalization with synaptic markers (not discussed in this thesis, but recently published (59)).  

Using other selection criteria, new probes could be found in the HCS. Several promising 

compounds have been identified, which still require further assessment. Overall, HCS provided an 

opportunity to find new promising probes that label different parts of neurons. 

To provide an alternative approach to finding the probes specific to neuronal cell bodies or 

synapses, a peptide phage display method was developed. Such selective molecules could provide 

homing properties for molecular materials bearing other functional probes, like VSD. As the proof of 

concept of the cell surface signature for different cell types, we have aimed at finding peptides that would 

selectively bind to neurons in the presence of the other non-neuronal cells. The outcome of the phage 

display was promising, reaching high enrichment of the peptides at later rounds. Further analysis is 

required to confirm the success of the selection. For this purpose, peptides must be tested using ex vivo 

samples, which would require additional optimizations of the conditions. 

When proven successful, phage display could be then used to find specific peptides to synapses 

and different neuronal types using new exciting approaches, such as individual cell or synapse picking by 

an automated system. Moreover, a new dual functional phage display system could be developed, where 

phages could penetrate the BBB for in vivo biopanning. Such construct is being developed in 

collaboration with Dr. Ruoslahti and Dr. Teesalu, which may open new exciting avenues of the discovery 

of the neuron specific probes.  
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2.4 Conclusion 

Though at these early stages HCS and phage display methods pose a lot of challenges, the 

intrinsic potential of these approaches cannot be underestimated. The ability to target systems on single 

neuronal, or even single synaptic, levels provides an unprecedented and exciting opportunity to diagnose 

and modify various neurological conditions, which to date pose the biggest challenge to fields of medical 

and biochemical science. In our attempts to identify probes that have a potential to selectively label 

specific neurons and neuronal compartments, new compounds have been uncovered which stain 

synapses, in vitro and in vivo, as well as new platforms have been created allowing for future discovery of 

numerous novel probes. The extent of potential application of these approaches is being expanded every 

day and the opportunities for translational application are becoming more realistic with each new step of 

their optimization. These novel methods possess a great potential which will undeniably be one of the 

integral parts of future neuroscience. 

 

2.5 Materials and Methods 

2.5.1 DNA constructs and AAV production 

Lentiviral constructs to express EGFP-Synapsin1a, mCh-Rab3, and VAMP2-EGFP/mCh have 

been previously described (47, 48). For AAV experiments, Rattus norvegicus synaptophysin (GenBank 

accession number NM_012664.3) tagged at its C-terminus with mCherry was synthesized (Genewiz) and 

subcloned into the pAAV-CaMKIIa-EGFP expression vector (gift from Ed Boyden; Addgene plasmid 

#64545) at the BamHI and EcoRI sites, replacing the EGFP cassette. This construct was sent to the 

University of North Carolina viral vector core for custom AAV8 production. SynaptopHluoroin construct 

was from Addgene plasmid #24478 (deposited by Leon Lagnado), in which synaptophysin-pHluorin was 

subcloned from pEGFP-C1 vector backbone (using Nhe1/Mfe1 digest) into the FUGWm vector backbone 

(for lentiviral production) using EcoRI/XbaI digest. 
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2.5.2 Neuronal culture and lentiviral transduction 

Cortical neurons were prepared from E18 Sprague-Dawley rat embryos of both sexes, 

dissociated in TrypLE Express (Fisher/Life Technologies) for 20 minutes, washed 3X in Hank’s Balanced 

Salt Solution (Sigma), and plated in Neurobasal medium with B27 supplement and Glutamax (all 

Fisher/Life Technologies) at a density of 10,000 cells/well in 96 well plates coated with poly-L-lysine 

(Sigma). On 3 days in vitro (DIV), neurons were transduced with lentivirus (2 µl/well), prepared as 

previously described (48), to express either GFP-Syn or mCh-Rab3. Hippocampal neurons were prepared 

in the same way but plated onto 22x22 mm coverslips at a density of 250,000 neurons per coverslip. 

Coverslips were lentivirally transduced with mCh-Rab3 or VAMP2-mCh on 5-7 DIV. 

 

2.5.3 Immunofluorescence on HTS microscope 

GFP-Synapsin or mCh-Rab3-expressing cortical cultures in 96-well plates were fixed with 4% 

formaldehyde in PBS for 15 min, washed 3X in PBS, then incubated with primary antibodies in blocking 

buffer (2% glycine, 2% BSA, 0.2% gelatin, 50mM NH4Cl in 1X PBS) for 1 hour. The following antibodies 

were used: MAP2 (Sigma, ap-20 m1406), LAMP1, SV2A (Developmental Studies Hybridoma Bank), 

VGLUT1 (SySy, #135 302), GFP. Following 3X PBS washes, cells were incubated with Alexa Fluor 488 

or 568-conjugated secondary antibodies for 1 hour, washed 3X in PBS, and imaged using the high-

throughput screening microscope (IN Cell Analyzer; GE Healthcare, 20X objective) in the Columbia 

Genome Center. Colocalization of FP-tagged Synapsin or Rab3 with the synaptic and non-synaptic 

markers was calculated as described below (colocalization algorithm). 

 

2.5.4 Screening 

The compound library was formatted into groups of 96-well plates based on excitation/emission 

spectra (Table 2.2). Screening was performed in batches of 12-15 plates, with each compound group 

screened in the same batch. The compounds (prepared in DMSO as 100 M stock solutions) were added 

to the medium of 14-16 DIV neurons via automated liquid handling system (Cell Explorer; Perkin Elmer) 

for a final concentration of 2 M. Following 20-minute incubation at 37oC, plates were washed 3X at room 

temperature in normal Tyrodes solution (119mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 30 mM 
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glucose, 25 mM Hepes pH 7.4), and images were acquired at room temperature in 4 fields of view/well 

using the high-throughput screening microscope (IN Cell Analyzer; GE Healthcare, 20X objective) and 

CCD camera (2048 x 2048 pixels) in the Columbia Genome Center HTS facility. Following screening, 

plates were fixed with 4% formaldehyde in PBS, washed once in PBS, and stored in the dark at 4oC. 

 

2.5.5 Colocalization algorithm and hit selection 

The vesicle segmentation algorithm of IN Cell Developer Toolbox (v.1.9) was used to identify 

puncta through thresholding images based on average size of GFP-Synapsin and mCh-Rab3 puncta (1-2 

pixels; only objects in range of 0.5-5 m2 selected) and intensity (average intensity 2-2.5X over 

background). Cytoplasm Segmentation algorithm has been used with filters on area >0.2 (arbitrary units) 

and form factor > 0.2, the kernel size 19, sensitivity 50 was used identify cell bodies. Specific values were 

chosen empirically using MAP2 immunostained screening plates. For each channel, thresholded objects 

were counted, and colocalization between channels calculated based on number of overlapping pixels. 

Colocalization was calculated for each compound with GFP-Syn or mCh-Rab3. For each group of 

compounds, average colocalization with the synaptic marker was calculated, and hits were defined as 

compounds with colocalization values >2.5 standard deviations above the group mean.  

 

2.5.6 Serial dilutions  

Serial dilution was performed in 96-well plates of neurons or glia for the CX Q4 plate of 

compounds, using the following concentrations: 2, 1, 0.5, 0.25, 0.125, 0.0625, 0.03125 M. Signal-to-

noise ratio of the compounds was determined by comparing their average intensity at GFP-Syn puncta to 

their average intensity across the entire plate. 

 

2.5.7 Determination of excitation/emission spectra and lipophilicity 

Spectral analysis of the compounds was performed on BioTek Synergy H1 Hybrid reader. 

Compounds were in DMSO or normal Tyrodes buffer at pH ranging from 3 to 9 to yield final concentration 

of 1 µM. Excitation spectra were measured by recording emission at 485 nm; emission spectra were 
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recorded by exciting at 371 nm. Theoretic LogP values of the side chains of CX Q4 library compounds 

were calculated using PerkinElmer ChemDraw 14.0 software. 

 

2.5.8 Live imaging in cultured hippocampal and cortical neurons 

Imaging experiments of CX-G3 with mCh-Rab3, VAMP2-mCh, and FM4-64 were performed with 

18-20 DIV hippocampal neurons using a custom chamber designed for liquid perfusion and electrical 

stimulation. For FM4-64 loading, neurons were incubated with FM4-64 (15 M) in high potassium Tyrodes 

solution (like normal Tyrodes except for 90 mM KCl, 31.5 mM NaCl) for 45 seconds to stimulate FM dye 

uptake, then washed for ~5 minutes in normal Tyrodes to eliminate excess dye prior to 2-minute 

incubation with 0.5 M CX-G3, 2 min washing in Tyrodes, and image acquisition. For mCh-Rab3 and 

VAMP2-mCh imaging, neurons were placed in normal Tyrodes solution with 0.5 M CX-G3, washed for 2 

minutes in Tyrodes solution, then imaged. Images were acquired with a 40X objective (Neofluar, NA 1.3) 

or a 63X objective (Neofluar, NA 1.4) on an epifluorescence microscope (Axio Observer Z1, Zeiss) with 

Colibri LED light source, EMCCD camera (Hamamatsu) and Zen 2012 (blue edition) software. 

MitoTracker experiments were performed in 19-21 DIV cortical neurons after incubation with 100 nM 

MitoTracker (MitoTracker Deep Red FM; Thermofisher) for 30 min. Imaging was performed using a Leica 

DMI4000 imaging system. 

2.5.9 Quantification of CX-G3 colocalization with synaptic markers in cultured hippocampal 

neurons 

CX-G3 images were first background subtracted (3 µm rolling ball) using ImageJ software 

(National Institutes of Health). Clearly visible cell bodies were then manually excluded from the image 

analysis. CX-G3-positive puncta were then identified using the Multiple Thresholds plug-in (created by 

Damon Poburko, Simon Fraser University, Burnaby, BC, Canada) for ImageJ with the selection criteria: 

>1 standard deviation above background, 6-50 pixels in size, and min. circularity of 0.6. Puncta were then 

considered positive for the respective synaptic markers if at least 6 pixels (>0.95 µm2) of the ROI 

colocalized with fluorescence >1 standard deviation above background from the corresponding 

fluorescent marker. As a control, the analysis was repeated on randomized image pairs. For the 

MitoTracker images, which were collected on a separate microscope with different resolution, this 
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analysis was not possible. Instead these images were analyzed using the Just Another Colocalization 

Plugin (JACoP)  (60) setting the threshold to the >1 standard deviation and recording the Manders’ 

overlap coefficient. 

2.5.10 Immunofluorescence in cortical neuronal cells cultured in the grid dish 

Cortical cells were seeded on PDL-coated µ-Dish 33 mm (ibidi, 81166) and grown until DIV 12-

20. Cell were incubated with CX-G3 (250 nM) and NeuO (500 nM) for 30 min to 1h, then imaged, fixed, 

and immunostained with VAMP2 (SySy, #104 211) and VGLUT1 (SySy, #135 302) antibodies with 

Hoechst staining. Images were taken at the exact location of live imaging. Images then were registered 

and aligned using ImageJ TrackEM 2 plugin. Colocalization analysis was performed using JACoP plugin. 

 

2.5.11 Electrical stimulation of CX-G3-labeled hippocampal neurons  

Following 30 min incubation in 0.25 µM CX-G3, 10 nM Lysotracker (DND-99) and washes, 14-16 

DIV neurons lentivirally transduced with synptopHluorin at DIV 4-6 were imaged in normal Tyrodes 

solution in a custom-built imaging chamber as described previously. Images were acquired every 5 

seconds over a 5 min time course, under baseline conditions or in the presence of electrical stimulation 

(10Hz, 30 seconds; 10 mAmp current, 1 ms pulse width), administered following the first 5 images (25 sec 

into time course). To calculate the change in CX-G3 fluorescence intensity over time, WEKA 

segmentation was applied using puncta, axon, and background classifiers trained on spH and CX-G3 

images. Number of puncta and intensities were measured and normalized to the first frame. Individual 

puncta time course intensity changes were fitted to functions in GraphPad and the results were analyzed 

in TIBCO Spotfire software. 

Intensity over time plot of each individual punctum was fitted to ‘Plateau followed by one phase 

decay’ function in GraphPad. Parameters of the function were: X0 – time at which decay starts; Y0 – 

average Y value up to time X0; Plateau – is the Y value at infinite times. To select the responsive puncta 

following conditions must be satisfied: 

25 s ≤ X0 ≤ 55 s, where 25-55 s corresponds to stimulation duration; 

[Y0-3*SD] > [Plateau+3*SD], where SD – standard deviation calculated by fitting function; 

[µ0-25s-3*SD0-25s] > [µ55-150s-3*SD55-150s], where µ is average intensity, SD – standard deviation, 0-25s and 
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55-150s indicate frames (time period) used; 

R2 of ‘Plateau followed by one phase decay’ function > R2 of ‘Line’ function 

 

2.5.12 Data repository and analysis. 

All the images were uploaded onto custom build OMERO server. Data analysis of the HCS 

results was performed in TIBCO Spotfire software. Parameters were averaged using quadrant 1, 2, and 4 

results. Quadrant 3 results were discarded due to inconsistent staining, presumably influence by the close 

proximity to the delivery needle of the imaging station. 

2.5.13 Striatal cultures for phage display 

Striatal glia co-culture was prepared using protocol developed in Dr. Sulzer lab. Glia derived from 

embryonic rat cortex were seeded on PDL and laminin coated dishes in custom made glia medium, 

followed by cold wash next day, and treatment with FDU when cells reached 70% confluency. A day 

before seeding neurons, glia was once again washed on cold medium and replaced with custom maid 

neuronal culture. Striatal tissue was provided by Ms. Kanter, Dr. Choi, Dr. Mosharov. Tissue was digested 

in papain solution, then seeded on top of the glia monolayer and grown until DIV 13. On the day of the 

experiment, cells were digested with papain, resuspended in 1% BSA PBS medium, treated with phage at 

4°C for 1-3 h, then washed 3 times with cold neuron medium, lysed and scrapped for phage titering.  

For culturing, striatal tissue was digested in enzymatic solution of the Miltneyi Neuronal isolation 

kit, triturated, filtered in 70 µm mesh, resuspended in 80 µL of the 1% BSA PBS solution and treated with 

20 µL of antibody cocktail for 5 min at 4°C. Then cells were washed, resuspended in 80 µL of the 1% 

BSA PBS medium, treated with 20 µL of antibiotin conjugated magnetic beads, and applied to the LD 

column in magnetic field. Neurons that were washed from the column by 2x 1 mL of 1% BSA PBS were 

collected, Glia then were collected by flushing from the column in absence of the magnetic field with 3 ml 

of the 1% BSA PBS. Cell fractions then seeded on PDL coated 12-well plate in glia growth medium. Next 

day, cells were washed and fed with neurobasal medium to increase survivability of the neurons. Cells 

were then cultured until DIV 12. 

.For phage display, tissue was treated as describe above, but before applying glia antibody, cells 

were treated with the phage library for 2-4h at 4°C with rocking, and then washed 5 times with 1% BSA 
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PBS solution. Upon the collection of the fractions, cells were centrifuged and lysed for phage titering and 

amplification. 

For immunofluorescence experiments, cells were incubated with phage for 30-2h at 37°C or 4°C, 

then washed and fixed. T7 (provided by Dr. E. Ruoslahti), Neurofilament (Cell Signaling), VGLUT1 

antibodies were used to stain the cells. 
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2.7 Appendix: HCS plates 

Parameters plots of 29 plates are present: as follows: 

A. Puncta overlap versus coverage plot 

B. Cell body overlap versus coverage plot 

C. Relative intensity in puncta vs cell body plot 

D. Number of puncta vs number of cell body un compound channel 

E. Puncta relative intensity vs puncta number in compound channel 

F. Cell body relative intensity vs cell body number in compound channel 

G. Puncta overlap vs cell body overlap 

H. Puncta vs cell body coverage 

I. Legend of the plots 

J. Quality control map 

K. 4 selected images from the plate. Scale bar is 20 µm 
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