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Parameter Estimation in Large Causal Models
Rasa Jurgelenaite and Peter Lucas1

Abstract. The assessment of a probability distribution that is as-
sociated with a Bayesian network is a challenging task, even if its
topology is sparse. Special probability distributions, based on the no-
tion of causal independence, have therefore been proposed, as these
allow defining a probability distribution in terms of Boolean com-
binations of local distributions. In Bayesian networks which need to
model a large number of interactions among causal mechanisms even
this approach becomes infeasible. We investigate the use of equiva-
lence classes of binomial distributions as a means to define such very
large Bayesian networks.

1 INTRODUCTION

As a consequence of the success of using Bayesian networks in solv-
ing realistic problems, increasingly complicated situations are being
tackled. We are in particular interested in the modelling of biomedi-
cal knowledge, for example in fields such as genetics and immunol-
ogy; in these fields hundreds to thousands of interactions between
variables may need to be captured in a probabilistic model. Clearly,
such models cannot be constructed and handled without exploiting
(potentially hypothetical) knowledge about underlying causal mech-
anisms and associated simplifying assumptions.

The aim of the present work was to develop a theory that allows
defining interactions between a huge number of causal factors.

2 PRELIMINARIES

2.1 Bayesian networks and causal modelling

A Bayesian networkB = (G, Pr) represents a factorised joint prob-
ability distribution on a set of variablesV . It consists of an acyclic
directed graphG, and a joint probability distributionPr defined in
terms of local probability distributionsPr(Vi | π(Vi)), for each node
Vi ∈ V (G) given its parentsπ(Vi). In this paper, we assume all
variables to be binary; as an abbreviation, we will often usevi to
denoteVi = > (true) andv̄i to denoteVi = ⊥ (false). Bayesian
networks are often seen as attractive tools because of the ease with
which cause-effect relationships can be modelled.

2.2 Probabilistic representation of interactions

Causal independence [3] is a popular way to specify interactions
among cause variables. The global structure of a causal indepen-
dence model is shown in Figure 1; it expresses the idea that causes
C1, . . . , Cn influence a given common effectE through intermediate
variablesI1, . . . , In and a deterministic functionf , called theinter-
action function. The conditional probability of the occurrence of the
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Figure 1. Causal independence model.

effect E given the causesC1, . . . , Cn can be computed as follows
[3]:

Pr(e | C1, . . . , Cn) =
X

f(I1,...,In)=e

Y
1≤k≤n

Pr(Ik | Ck) (1)

Absent causes do not contribute to the effect, i.e.Pr(ik | c̄k) = 0. As
an example, consider the interaction between insulin and glucagon,
two important hormones involved in the regulation of glucose levels
in blood; their effect on glucose levels in blood can be modelled by
means of an exclusive OR (⊗).

2.3 Symmetric causal independence models

The functionf in equation (1) is actually a Boolean function. How-
ever, there are22n

different n-ary Boolean functions [2]. Conse-
quently, the potential number of causal interaction models is huge.
However, in the case of causal independence it is usually assumed
that the functionf is decomposable to identical, binary functions. In
addition, it is attractive to assume that the order of the cause variables
does not matter; thus, it makes sense to restrict causal independence
models to symmetric Boolean functions, where the order of argu-
ments is irrelevant.

There are 8 symmetric binary Boolean functions, of which 6 suit-
able as a basis for defining Boolean functions, as these are all com-
mutative and associative [3]. Logical truth and falsity are constants,
and act as the global extremes in a partial order among Boolean func-
tions. As such they give rise to trivial causal independence models.
The remaining four causal independence models are defined in terms
of the logical OR, AND, XOR and bi-implication. We use∗ to de-
note a commutative, associative binary operator. Table 1 gives the
truth tables for then-nary Boolean functions of interest.

Table 1. The truth tables for somen-ary symmetric Boolean functions;
k =

Pn
j=1 ν(Ij), with ν(Ij) = 1 if Ij is equal to true and 0 otherwise.

I1 ∨ · · · ∨ In I1 ∧ · · · ∧ In I1 ⊗ · · · ⊗ In I1 ↔ · · · ↔ In

k ≥ 1 k = n odd(k) even(n− k)



Due to space limitations, we only consider XOR and bi-
implication in this paper. The functionf⊗(I1, . . . , In) yields the
valuetrue if there are an odd number of variablesIj with the value
true. Therefore, in order to determine the probability of the effect
variableE, Pr(e | C1, . . . , Cn), the probabilities for all cause vari-
able combinations with an odd number of present causes have to be
added. We have:

Pr⊗(e|C1, ..., Cn) =
X

I1⊗···⊗In

nY
k=1

Pr(Ik|Ck)

= Pr(̄ı1|C1) · · ·Pr(̄ın|Cn) ·X
1 ≤ k ≤ n

odd(k)

n−k+1X
j1=j0+1

. . .

n−k+tX
jt=jt−1+1

Pr(ij1 |Cj1)

Pr(̄ıj1 |Cj1)
· · · Pr(ijt |Cjt)

Pr(̄ıjt |Cjt)
(2)

wheret = 1, . . . , k andj0 = 0.
The function valuef↔(I1, . . . , In) is true if there are an even

number of variablesIj with the valuefalse. Thus, to determine
Pr(e | C1, . . . , Cn) the probabilities for all cause variable combi-
nations with an even number of absent causes have to be added:

Pr↔(e | C1, . . . , Cn) =
X

I1↔···↔In

nY
k=1

Pr(Ik | Ck)

= Pr(i1 | C1) · · ·Pr(in | Cn) ·0BB@1 +
X

1 ≤ k ≤ n
even(k)

n−k+1X
j1=j0+1

· · ·
n−k+tX

jt=jt−1+1

Pr(̄ıj1 |Cj1)

Pr(ij1 |Cj1)
· · · Pr(̄ıjt |Cjt)

Pr(ijt |Cjt)

1CCA (3)

wheret = 1, . . . , k andj0 = 0.

3 EQUIVALENCE CLASSES OF BINOMIAL
DISTRIBUTIONS

The larger the number of causal mechanismsn becomes, the more
likely that the parametersPr(Ik | Ck) of a causal independence
model become arbitrarily close to each other. Hence, one way to sim-
plify the estimation of the probability distribution is to group param-
eters in particular equivalence classes.

The binomial distribution is one of the most commonly used dis-
crete probability distribution. Cause variables can be treated as trials
of an experiment satisfying the requirements of a binomial distribu-
tion, as the number of cause variablesn is known in advance, all
cause variables have two states, are independent, and the probability
of occurrence of each cause is the same.

We organise the intermediate variablesI1, . . . , In and their asso-
ciated variablesC1, . . . , Cn by their influence on the common effect
E, in accordance to the increasing order of the associated probabilis-
tic parametersPr(Ik | Ck). Next, we choose a smallε ∈ R+, which
determines how much the probabilities may vary inside an equiva-
lence class. An intermediate variableIk belongs to thet-th equiv-
alence class if its probability of successPr(ik | Ck) falls into the
interval[2(t−1)ε,2tε); we also assume thatPr(it | Ct) = (2t−1)ε.

4 ANALYSIS OF PROBABILISTIC BEHAVIOUR

In this section, we study the properties of the causal independence
models introduced above.

Let S∗1 , S∗2 , . . . be a sequence, abbreviated to〈S∗n〉; throughout
this section, a memberS∗n of this sequence represents a sum of prod-
ucts of probability distribution in an equivalence class of binomial
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Figure 2. Patterns of the XOR causal independence model.

distributions, i.e.:S∗n =
P

I1∗···∗In

Qn
t=1 Pr(It | Ct). We assume

the probabilityPr(it | Ct) to be constant, i.e.p = Pr(it | Ct).
Due to lack of space, only the situation for the XOR and bi-

implication causal independence models are considered here. In ad-
dition to the expected bounds of0 and1, the sequences have an ad-
ditional bound at1

2
.

Proposition 1 Let 〈S∗n〉 be a sequence as defined above. For each
memberS∗n of the sequence it holds that:

• if p ∈ [0, 1
2
) thenS∗n ∈ [p, 1

2
) for ∗ = ⊗, andS∗n ∈ [p, 1

2
) ∪

( 1
2
, p2 + (1− p)2] for ∗ = ↔;

• otherwise, ifp ∈ ( 1
2
, 1] thenS∗n ∈ [2p(1 − p), 1

2
) ∪ ( 1

2
, p] for

∗ = ⊗, andS∗n ∈ ( 1
2
, p] for ∗ = ↔.

Proposition 2 A sequence〈S∗n〉 is

• strictly monotonically increasing ifp ∈ (0, 1
2
) and∗ = ⊗,

• strictly monotonically decreasing ifp ∈ ( 1
2
, 1) and∗ = ↔,

• constantS∗n = p if p ∈ {0, 1
2
} and ∗ = ⊗, p ∈ { 1

2
, 1} and

∗ = ↔,
• non monotonic ifp ∈ ( 1

2
, 1] and∗ = ⊗, p ∈ [0, 1

2
) and∗ = ↔.

The propositions above yield insight into the behaviour of the se-
quences but leave questions about non-monotonic behaviour unan-
swered. We have proved (not shown here) that the sequences con-
verge to 1

2
. As F ′(S∗n) = |1 − 2p| for ∗ ∈ {⊗,↔} the rate of

convergence depends on the value ofp; the closer the value ofp is
to 1

2
, the faster the sequence converges to1

2
. Figure 2 illustrates this

behaviour; the plot for the bi-implication is similar.

5 DISCUSSION

In this paper, we addressed the problem of parameter estimation in
very large Bayesian networks. Our solution was to group local prob-
ability distributions into equivalence classes using probability inter-
vals, and to use a suitably defined probability distribution as a basis
for assessment. As far as we know, this is the first paper offering a
systematic analysis of the global probabilistic patterns that occur in
large Bayesian networks based on the theory of causal independence.
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