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Abstract

Bayesian Modeling for Mental Health Surveys

Sharifa Zakiya Williams

Sample surveys are often used to collect data for obtaining estimates of finite pop-

ulation quantities, such as disease prevalence. However, non-response and sampling

frame under-coverage can cause the survey sample to differ from the target population

in important ways. To reduce bias in the survey estimates that can arise from these

differences, auxiliary information about the target population from sources including

administrative files or census data can be used. Survey weighting is one approach com-

monly used to reduce bias. Although weighted estimates are relatively easy to obtain,

they can be inefficient in the presence of highly dispersed weights. Model-based esti-

mation in survey research offers advantages of improved efficiency in the presence of

sparse data and highly variable weights. However, these models can be subject to model

misspecification. In this dissertation, we propose Bayesian penalized spline regression

models for survey inference about proportions in the entire population as well as in sub-

populations. The proposed methods incorporate survey weights as covariates using a

penalized spline to protect against model misspecification. We show by simulations that

the proposed methods perform well, yielding efficient estimates of population proportion

for binary survey data in the presence of highly dispersed weights and robust to model

misspecification for survey outcomes. We illustrate the use of the proposed methods to

estimate the prevalence of lifetime temper dysregulation disorder among National Guard

service members overall and in sub-populations defined by gender and race using the

Ohio Army National Guard Mental Health Initiative 2008-2009 survey data. We fur-

ther extend the proposed framework to the setting where individual auxiliary data for

the population are not available and utilize a Bayesian bootstrap approach to complete

model-based estimation of current and undiagnosed depression in Hispanics/Latinos of

different national backgrounds from the 2015 Washington Heights Community Survey.
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Chapter 1

Introduction

1.1 Overview

This dissertation develops Bayesian multilevel regression model-based approaches that

utilize auxiliary information to improve the robustness of inference in survey data chal-

lenged with non-response and sampling frame under-coverage. In this chapter we briefly

review important statistical concepts in survey sampling and introduce the data moti-

vating our work.

1.2 Introduction to Survey Sampling

Survey research methods can be seen as being composed of two main stages: design and

inference. Appropriate application of these methods in public health facilitate inference

about large populations using moderately sized samples that are relatively low cost and

more generalizable to a target population than other study designs.

1



1.2.1 Survey design

Survey design focuses on the statistical aspects of taking a sample. It provides guidance

on defining a target population, the validity of a sample, and measurement error [1]. A

critical aspect of survey design is how data are collected. Typically, a sampling technique

is used to draw sample units from an enumerated list of target population units also

known as a sampling frame. An ideal sample would be a smaller-sized direct translation

of the target population, perfectly reflecting each characteristic of the whole population

[1]. This is nearly impossible to obtain as populations, particularly human populations,

are complex with units entering, leaving, and re-entering the population over time.

However, steps can be taken to ensure that our sample will reflect the characteristics of

interest in the population as closely as possible; that is, it will be representative.

Most sampling techniques can be described as being probability or non-probability

sampling procedures. Probability sampling is a technique in which the chance of be-

ing selected into the sample is known for all the units in the population; thus the

probability of the resulting sample can be calculated [1]. Probability sampling tech-

niques result in samples that are expected to support efficient statistical analysis and be

representative of the population from which they are drawn. Common types of proba-

bility sampling techniques include simple random sample, stratified random sampling,

probability-proportional-to-size (PPS) sampling, and cluster sampling [2]. More complex

probability sampling procedures may combine two or more probability sampling tech-

niques in what is called multistage sampling [1, 2]. However implemented, a probability

sample of a few thousand units can provide accurate information on a target population

of millions [1, 2]. Non-probability sampling on the other hand, does not involve random

selection and as such, it is more difficult to determine whether the samples obtained are
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representative of the population. It is often necessary to employ non-probability sam-

pling techniques in situations where probabilistic sampling is not feasible or practical

[2]. While non-probability sampling has its place, the primary goal of survey research

is to obtain efficient, approximately unbiased estimators and to make appropriate in-

ference about a population using the estimators obtained from a representative sample.

As such, employing a probability sampling technique is an important part of ensuring

approximately unbiased estimate of population parameters [2].

When a probability sampling strategy is applied, the survey sample obtained will

differ from the target population in expected ways i.e. by design. These are called

sampling errors. Weighting adjustments are usually utilized to correct the differences

between the samples and the population that arise due to sampling errors [3]. This

adjustment compensates for differential sampling rates and produces approximately un-

biased estimates of parameters in the target population [3]. Often samples will also

differ from the target population due to non-sampling errors [2–7]. Non-sampling errors

include any errors not attributable to sampling variation such as non-response, where

some sampled individuals provide no information because of non-contact or refusal to

respond, or sampling frame under-coverage, where not all the units in the target pop-

ulation are included in the enumerated list [3]. Ignoring non-sampling errors in survey

research can lead to biased results.

1.2.2 Survey inference

This stage involves selecting and using estimators for parameters of interest as well as

variance estimation. Of interest in this thesis are methods for survey inference that

correct for differences between the sample and target population that arise due to non-

response and under-coverage using auxiliary data from administrative files or census
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data. There are two primary inferential paradigms that exist for survey data inference:

design-based and model-based. The primary distinction between design- and model-

based inference lies in the source of randomness. In the design-based framework, the

population is considered fixed and the sample is seen as the realization of a stochastic

process. Inference in this case is based on the distribution of estimates generated by the

sampling design and is free of any assumptions about the distribution of the population

values [8]. In model-based inference, the population is seen as the realization of a

stochastic process and as such, population values in this case are considered random

and certain assumptions regarding their distribution in the population must be made

[8].

1.2.2.1 Design-based inference

As previously mentioned, in the design-based framework the population is fixed and

randomness is introduced via sample selection. We cannot predict exactly how precise

an estimate is as this requires information about the target population that we do

not have access to; however, we judge the precision by examining the randomization

distribution i.e. the frequency distribution generated for the estimate as a result of

repeated random sampling of all possible samples permissible under the sampling design

from the population [8, 9]. This distribution is sometimes referred to as the reference

distribution.

The following notation will be utilized for this section. For a population with

N units, let Y= (y1, . . . , yN ), where yi is the survey variable for unit i, and let I=

(I1, . . . , IN ) denote the inclusion indicator variable, where Ii = 1 if unit i is included in

the sample and Ii = 0 otherwise. Design-based inference in based on the distribution

of I, with the survey variables, Y treated as fixed quantities [10]. For a randomly
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selected sample, s of size n, we attempt to measure and record survey variables for all

observation units in the sample y= (y1, . . . , yn). Please note that sample is obtained via

probability sampling technique and will not necessarily contain the first n units of the

population unless these units happen to be drawn by the sampling technique; this is rare

[9]. Recall that each possible random sample s has a known probability of selection π.

An estimate, say a sample mean, ȳ can be computed for the sample and is the average

of the values of survey variable y on the individual observation units in the sample [9].

The frequency distribution of the estimates can be calculated for samples obtained from

the population via probability sampling selection methods. Therefore it is possible to

calculate how frequently any sample will be selected and the estimate for each sample.

Samples obtained via selection techniques that are non-probability, are not amenable to

design-based inference [9].

Using the design-based approach to inference can be advantageous because it takes

into account survey design and provides reliable inference in large samples [10]. Al-

though most design-based estimators obtained using a probability sampling technique

are unbiased and consistent, they can be inefficient [10, 11]. Moreover, there are practi-

cal considerations with regard to the use of probability sampling in real world settings

such as obtaining sampling frames, alternative modes of survey administration, and a

growing interest in combining data sources to produce new information where standard

design-based strategies may not be appropriate [11]. Finally, design-based methods be-

come inapplicable in situations where the randomization distribution is corrupted by

non-sampling errors such as non-response and measurement errors [12–14].

Additional weighting adjustments via post-stratification, raking, or response propen-

sity models can be used to address non-response and under-coverage errors. Here, ex-

isting survey weights are adjusted according to the distribution of auxiliary data in the

5



target population and survey sample and the weighted sample observations are used

for inference. These non-response weighting adjustments can introduce considerable

variation in weights such that the increased variance overwhelms the reduction in bias

and results in increased mean squared error [5, 6]. This is particularly the case where

the number of auxiliary variables is large or when estimation in small or zero sample

sub-populations is desired [5, 6, 15].

Model-assisted approach In the model-assisted approach to design-based survey

inference, the aim is to use models to help address important considerations relating

to non-response and under-coverage errors [10]. The role of the model in this case

is to estimate the variation in the finite population without making the assumption

that the model generated the population though it should look as though it could have

been generated from the model [12]. This requires model assumptions about these non-

sampling errors and their distributions in addition to the randomization distribution

that is induced by sample design [12].

Lehtonen and Veijanen (1998) proposed a generalized regression model-assisted

estimator that is design-consistent regardless of the validity of the working model under

certain regularity conditions. Further, if the working model provides a good fit to

the data then the residuals, should be less variable than the response values and the

generalized regression estimator should be significantly more efficient than the basic

design-weighted estimator.

1.2.2.2 Model-based inference

The basis of a model-based approach to sampling inference is that estimating finite

population characteristics can be naturally expressed as a prediction problem [17]. Here,

6



both I= (I1, . . . , IN ) and Y= (y1, . . . , yN ) are considered random variables and a model

is specified for the survey outcomes Y, which then are used to predict the non-sampled

values of the population [10, 11]. The view that finite population inference problems are

actually prediction problems, leads naturally to a theory in which prediction models,

not sample selection probabilities, are central [17]. There are two major variants of

model-based inference: super-population modeling and Bayesian modeling.

Super-population modeling This is also also referred to as the frequentist model-

based approach. The finite population values of Y are assumed to be a random sample

from a super-population; a super-population is the hypothetical infinite population from

which we sample a well-defined finite population. Here, Y are assigned a probability

distribution indexed by fixed parameters θ. Inferences are based on the joint distribution

of Y and I [13]. It is assumed that the population structure obeys this specified model

and that the same model holds with respect to the sample [18]. To reduce or eliminate

sampling bias, sample design is usually incorporated into the model.

Bayesian modeling In Bayesian modeling, parameters in the super-population model

are assigned a prior distribution and inferences about finite population quantities or

parameters are based on their posterior distributions. Bayesian inference requires spec-

ification of a distribution for the population values. Inferences for finite population

quantities are then based on the posterior predictive distribution of the non-sampled

values of Y, Yi/∈s, given the sampled values Yi∈s. Specification of the distribution for

the population values is often achieved via a parametric model indexed by parameters,

combined with a prior distribution.
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The related calibrated Basyeian approach represents a unified approach to survey infer-

ence that is model-based. Under this framework, inferences are Bayesian with models

that yield inferences with good design-based properties. That is, Bayesian credible in-

tervals when assessed as confidence intervals in repeated sampling should have close

to nominal coverage [11]. Good calibration in survey research requires that Bayesian

models incorporate sampling design features such as weighting, stratification, and clus-

tering. Weighting and stratification are captured by including weights and stratification

variables as covariates in the model while clustering is captured by Bayesian hierar-

chical modeling with clusters as random effects [11]. Prior distributions are generally

weakly informative to allow the likelihood to dominate the posterior distribution [11].

This Bayesian approach is preferable to a frequentist model-based approach since using

weakly informative priors over parameters tends to propagate uncertainty in estimating

these parameters yielding better confidence coverage than procedures that fix parameters

at their estimates [11].

In summary, model-dependent approaches have bridged the gap between survey

inference and the rest of statistics [10, 17]. And often times, under the right conditions

such as large samples and uninformative priors, model-based inference results parallel

those from design-based inference; moreover, model-based inference not only matches

but also outperforms design-based inference if the model is correctly specified [10]. The

Bayesian approach, and hierarchical Bayes methods in particular, are attractive because

of their ability to handle complex design features, modeling, and provide exact infer-

ences on parameters [10, 17]. The Bayesian approach also yields better inferences for

small-sample problems where frequentist solutions are not available [10]. An important

consideration with model-based approaches is how best to specify the model; models

induce subjectivity - if the model is seriously misspecified then it can yield inferences

8



that are worse than design-based inferences [10, 11]. Recent work on model-dependent

strategies has focused on avoiding misspecification of the models by using smooth re-

gression [17]. The fact is, models are needed regardless to handle non-sampling errors.

Its strength is that it provides a flexible unified approach for all survey problems such

as non-sampling errors, complex sampling design, outliers, small area models, and com-

bining data from diverse data sources [11].

This dissertation focuses on the development and application of a flexible Bayesian

modeling approach to survey inference about the population proportion in data chal-

lenged by non-response and under-coverage. We then extend this model to allow reliable

estimates of survey quantities in small sub-populations. Finally, we apply the proposed

methodology to survey data to estimate the prevalence of mental health related outcomes

in a unique survey population.

1.3 Introduction to Motivating Data

Survey research in the field of public health can provide a great deal of information dis-

ease prevalence and exposure to known and potential risk factors. The data motivating

this research is from the Ohio Army National Guard Mental Health Initiative (OANG

MHI) study, a survey of active reserve guards in the OANG conducted by the University

Hospitals Cleveland Medical Center and the University of Toledo with cooperation from

the OANG. This study aims to examine the prevalence and risk factors of psychiatric

disorders among active reserve members registered with the ONG between June 2008

and February 2009 with the goal of improving the psychological well-being of reserve

guards during combat and post-deployment. The survey primarily included questions on

psychopathology, general health history, substance use and related behaviors, and social
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support. In particular, pre-, peri-, and post-deployment measures of social support, trau-

matic events, and preparedness were taken. Mental health research in this population

has suggested that reserve forces have greater risk of long-term psychopathology associ-

ated with deployment. This, coupled with the increased deployment of reserve guards,

make the study of mental health consequences of war in army reserve guards essential,

particularly among at-risk, traditionally small sub-populations such as women and racial

minorities. Reserve guards who did not have complete and correct postal address and

telephone information listed with the OANG, were unable to receive information about

the study and participate in the telephone interview and as such, contribute to sampling

frame under-coverage. Further, guards choosing to opt-out of the study result in survey

non-response and thereby, complicate the analysis of the survey data. To correct for

non-response and coverage bias, appropriate methods are needed so that findings can

be generalized from the survey sample to the target population. Methods for correcting

potential selection bias in the presence of non-response and under-coverage utilize aux-

iliary data from a variety of sources such as administrative files and the census. For the

OANG MHI study, auxiliary data was obtained from administrative files for the target

population. This data included the continuous measure of number of years in service.

As such, we propose a flexible Bayesian modeling approach to survey inference that is

robust to model misspecification to estimate overall population proportion when there

is continuous auxiliary information and extend it to domain estimation. We then apply

the proposed methods to the OANG MHI study as a data illustration.

The second survey study we use in this dissertation is the 2015 Washington Heights

Community Survey (WHCS). This study provides an extensive cross-sectional view of

a unique community in New York City that is predominantly Hispanic and low-income.
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However, the WHCS is challenged by complex design and non-response with an Ameri-

can Association for Public Opinion Research (AAPOR) Response Rate of 16.8%. Fur-

ther, the WHCS provides final survey weights for sampled units which incorporate com-

plex study design as well as adjustments for non-sampling errors. These weights should

not be taken to be inversely proportional to each unit’s probability of inclusion into the

sample. As such, we utilize a finite population Bayesian bootstrap (FPBB) procedure

to generate synthetic data for non-sampled units. We assess the performance of this

modified method as compared to the standard weighted and model-based approaches in

simulation.

1.4 Outline of Chapters

In Chapter 2 we present in more detail the goal and motivation of the research. We de-

scribe the proposed Bayesian penalized spline regression model which include a penalized

spline on the log-transformed survey weights to allow flexible association between auxil-

iary data and survey outcomes. We show by simulations its performance as compared to

common weighting and model-based approaches in the presence of continuous auxiliary

information and complex population association. We also apply the proposed method to

the Ohio Army National Guard Mental Health Initiative (OANG MHI) 2008-2009 survey

data to estimate the prevalence of current and lifetime temper dysregulation disorder

(TDD) among reserve guards. Chapter 3 extends the proposed model to include factor-

by-curve interaction with the aim of improving survey inference in sub-populations with

small sample size. We describe the proposed stratified multilevel regression model and

assess its performance in estimating prevalence in sub-populations using a simulation

study. We then apply the stratified modeling approach to the OANG MHI survey data
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to estimate current and lifetime TDD in domains defined by gender and race. Chapter 4

further extends the proposed modeling framework to the setting where individual aux-

iliary information for the target population are not available. Instead, we use auxiliary

information about the population margins from the U.S. Census and implement a finite

population Bayesian bootstrap approach to complete estimation of current and undi-

agnosed depression in Hispanics/Latinos of different national backgrounds using data

from the 2015 Washington Heights Community Survey. In Chapter 5, we conclude with

a summary and some thoughts on possible applications and future work.
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Chapter 2

Using administrative data to

improve survey inference for

population proportions

2.1 Introduction

The US military includes over 1.4 million full-time or active soldiers from the US Army,

Navy, Marine Corp, Air Force, and Coast Guard as well as over 1.2 million part-time

or reserve soldiers from the Army, Navy, Marine, Air Force and Coast Guard Reserve.

While both active and reserve soldiers receive similar training and equipment, reserve

service members generally serve one weekend a month and 15 days annually while main-

taining full-time civilian life including employment or academic studies in contrast to

the active soldiers who are full-time employed by the federal government. Deployment

of the reserve component is usually in response to a domestic or international crisis;

this exposes reserve members to a range of potentially traumatic events such as war
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and natural disaster [19, 20]. Following deployment, reserve soldiers face unique read-

justment challenges that have been documented to increase their psychiatric disorder

burden when compared to active component counterparts [20–24]. As such, an improved

understanding of the mental health of reserve soldiers is warranted.

The work of this chapter is motivated by analyzing the Ohio Army National Guard

Mental Health Initiative (OANG MHI) study data. The OANG MHI serves as a national

model for examining the prevalence and risk factors of mental health related outcomes,

such as psychopathology and substance use behaviors, among National Guard service

members with the aim of identifying potential areas of intervention that can be modified

during the course of deployment to improve the psychological well-being of soldiers

[25, 26]. The target population for this study was all service members of the OANG

between June 2008 and February 2009. All members with address information listed

with the Guard were notified of the study via mailed letter and opt-out card. While

some members chose to opt-out of the study, others refused participation when contacted,

were ineligible to participate in the study, or were not contacted before the cohort closed

[27]. Furthermore, service members with no or incorrect telephone numbers could not be

contacted to complete the 60-minute structured computer-assisted telephone interview

[27]. As such, the statistical analysis of the OANG MHI study data is complicated by

non-sampling errors such as survey non-response and sampling frame under-coverage.

A de-identified administrative dataset was obtained from the OANG containing

individual level data for all the service members in the target population (N = 10, 778).

This included information on gender (male, female), race (white, non-white), rank (en-

listed, officer), age (17-24 years, 25-34 years, 35 years and older), and number of years in

service. Table 2.1 shows the distribution of these auxiliary variables in the population

and in the unweighted survey sample. An essential question is how to best use these
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administrative data to improve survey inference for the prevalence of mental and mood

disorders among the OANG service members.

A common approach that uses the population auxiliary information to improve sur-

vey inference is to weight the sample data via post-stratification or raking [3, 14, 28, 29].

Both methods calibrate the weighted distributions of discrete auxiliary variables in the

sample to the distributions of these variables in the population, requiring joint popula-

tion distributions of the auxiliary variables in the use of post-stratification and marginal

population distributions in the use of raking. Although weighting adjustments are easy

to implement, weighted estimators can be unstable in the presence of extremely vari-

able weights [6, 7, 10]. Regression models represent another framework for correcting

selection bias due to non-response and sampling frame under-coverage [7, 30]. Specif-

ically, Little (1993) considered a basic normal post-stratification model for continuous

survey outcomes, assuming distinct mean and variance in each post-stratification and

using non-informative Jeffreys prior for the post-stratum means and variances. Gelman

and his colleagues proposed multilevel regression with post-stratification by including

categorical auxiliary variables and their interactions as covariates [15, 30, 31].

Both the aforementioned weighting and model-based methods use discrete popu-

lation auxiliary information. To apply to the OANG MHI study, the continuous years

of service variable has to be categorized. This might lead to loss of important informa-

tion if the continuous years of service variable is strongly associated with both response

and survey outcomes of interest. Recent extensions to model-based approaches have

incorporated penalized spline regression in various settings to protect against model

misspecification [32–35]. Generally, penalized splines are an easy to implement mecha-

nism, robust to model misspecification with a flexible mean structure that can be used
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within a regression model without being overly concerned with the selection of number

and position of knots [36].

In this chapter, we propose a Bayesian penalized spline regression model for im-

proving survey inference challenged by non-response and under-coverage. We present

this proposed approach alongside existing methods for improving survey inference chal-

lenged by non-response and under-coverage in Section 2, and conduct a simulation study

to compare the described methods in Section 3. We then apply the proposed method

to estimate the prevalence of current temper or disruptive mood dysregulation disorder

(TDD) among OANG service members in Section 4 and conclude the chapter in Section

5.

2.2 Methods

2.2.1 Setting and notation

Consider a target population of N units with binary survey outcome variable Y taking

a value of 0 or 1. Of interest is estimation and inference of the population proportion,

θ = Ȳ . Let Z = (Z1, Z2, . . . , Zp−1)
T be (p− 1) discrete auxiliary variables and Zp be a

continuous auxiliary variable, and both Z and Zp are observed for all the units in the

population. Values of Zp can be grouped using m cut-off values to create a discrete

variable Z∗p with (m + 1) groups. Let s denote a sample of size n selected from the

population with survey outcome values, y1 . . . yn. We assume that the population data

are de-identified and thus the sample data cannot be linked to the population data on

the individual level.
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2.2.2 Design-based approaches

2.2.2.1 Post-stratification

We partition the finite population into J disjoint and exhaustive cells or post-strata

defined by the joint distribution of Z and Z∗p , withNj population size in cell j, j = 1 . . . J ,

where
∑J

j=1Nj = N and Nj > 0. Let Ȳj be the population proportion of Y within cell

j, the finite population proportion can then be written as

θ = Ȳ =

∑N
i=1 yi
N

=

∑J
j=1Nj Ȳj∑J
j=1Nj

. (2.1)

We can then divide the sample similarly into J cells, with nj being the sample

size in cell j and
∑J

j=1 nj = n, and with ȳj being the sample proportion of Y in cell j.

Assuming that sample units in each post-stratification cell is a simple random sample

of the population in that cell, the population proportion using the sample s can be

estimated using

θ̂w =

∑J
j=1Nj ȳj∑J
j=1Nj

. (2.2)

Let wj = Nj/nj , we can re-write (2.2) as follows:

θ̂w =

∑J
j=1

∑nj

i=1wjyij∑J
j=1

∑nj

i=1wj
(2.3)

where wj is the post-stratification weight assigned to all sample units in cell j, j =

1, . . . , J . The post-stratification estimator in (2.3) requires both Nj and nj to be known

for all post-strata and could yield a very large wj when nj is small [3]. It is a challenge

to find harmony between having many post-strata such that units in the same cells

are homogeneous, and maintaining adequate sample sizes within each post-stratum to
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avoid extremely large weights due to small sample sizes [7, 30]. In order to compute

a weight for empty sample cells, some post-strata have to be collapsed. The choice of

what margins to collapse or which cells to pool is somewhat arbitrary and contradicts

the goal of including all auxiliary variables that affect inclusion or response so that the

assumption of simple random sampling within post-strata is reasonable [7].

Holt and Smith (1979) proposed the following to estimate the conditional variance

of the post-stratified mean,

V̂ =
J∑
j=1

(
Nj

N
)2(1− nj

Nj
)
σ̂2

nj

where σ̂2 is the variance of Y in post-stratum j and 1 − nj/Nj is a finite population

correction. An alternative weighting adjustment known as raking can also be used to

compute weights when sample post-strata are empty or sparse by using the marginal

distribution of the auxiliary variables instead of their joint distribution. Additionally,

in cases where the population joint distributions are not available, raking is a common

substitute to create weights using population margins.

2.2.2.2 Raking

A related weighting adjustment known as raking can be used to obtain weights wj to

replace wj in (2.3). The raking method of weighting adjustment utilizes the more com-

monly available marginal population distributions of the auxiliary variables. Raking

weights are obtained via an iterative proportional fitting procedure that begins by mod-

ifying sample weights to the marginal distribution of the first auxiliary variable to obtain

adjusted sample weights. These adjusted weights are then updated to conform to the

marginal distribution of the second auxiliary variable. This process of updating the
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adjusted weights is carried out for each auxiliary variable and the first iteration ends

when the weights are adjusted using the last auxiliary variable. Subsequent iterations

are performed until the weights conform to the marginal distributions of all the auxiliary

variables, i.e. the algorithm converges [14, 29].

Unlike post-stratification where the weighted sample distributions of the auxiliary

variables conform to their joint distributions in the population, with raking adjustments,

weighting results in weighted sample distributions of the auxiliary variables that con-

form to the marginal population distributions. Although raking can be used to address

situations where sample post-strata are sparse or empty by using marginal instead of

joint distributions of the auxiliary variable, raking can also be difficult to converge or

introduce considerable variation in weights when there are many auxiliary variables or

there exist empty or sparse margins [6, 15, 30]. Neither raking or post-stratification

methods are ideal when working with continuous auxiliary variables which have to be

categorized for use.

2.2.2.3 Response propensity weighting

Rosenbaum and Rubin [37] proposed a response propensity weighting approach to handle

non-response that allows continuous auxiliary variables as an alternative to using the

distributions of auxiliary variables for weighting adjustment. Here, a regression model for

response conditioned on auxiliary variable information is used to estimate the response

propensity. The inverse of the predicted response propensities in the sample can then

be used as weights in (2.3). However, the effect of this weighting adjustment in reducing

non-response bias largely relies on correct specification of the response propensity model,

and extreme weights can be generated as a result of very small response propensities

[38, 39].
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2.2.3 Design-based model-assisted approach

The generalized regression (GReg) estimator provides a model-assisted framework for

improving the inefficiency of weighted estimation in the presence of variable weights

while reducing bias due to non-response [16]. The GReg estimator for finite population

proportions combines the predicted values of the outcome of interest ŷi from a suitable

model, and the response propensity weighted estimator for the residuals ri = yi − ŷi of

the sampled units,

θ̂gr =
1

N

N∑
i=1

ŷi + (
∑
i∈s

ri/πi)(
∑
i∈s

1/πi)
−1 (2.4)

where the estimated population size
∑

i∈s 1/πi is the bias calibration term for the resid-

uals ri and πi is the response propensity for sample unit i [32]. Variance estimation for

the estimator in (2.4) is based on the following expression:

V̂ =
1

N2

∑
i∈s

φi(
ri
πi
− b̂)2,

b̂ =

∑
i∈s φi

ri
πi∑

i∈s φi

with φi = n
n−i(1− πi) [40, 41]. The GReg estimator is robust to model misspecification

if either the response propensity model or the predictive model is correctly specified.

We introduce a predictive model framework that can be used to obtain the predictions

ŷi in the following section.

2.2.4 Bayesian modeling approaches

Population proportions can be estimated using prediction models, where survey out-

comes are first regressed on auxiliary information using the sample data, and the fitted
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model is then used to yield predictions for the survey outcomes among the non-sampled

units in the population using the observed auxiliary information for the non-sampled

units [6, 7, 30]. Little [7] contrasts this predictive modeling approach with the weighting

approaches using Figure 2.1. The model-based predictive estimator of θ is

θ̂m =

∑J
j=1 (

∑
i∈s yij +

∑
i/∈s ŷij)

N
, (2.5)

where yij denotes the observed survey outcomes in the sample, and ŷij denotes the pre-

dicted survey outcomes for the non-sampled units based on a prediction model. Equation

(2.6) can be re-written to accommodate prediction in data that is unlinked between the

population and sample.

θ̂m = N−1
J∑
j=1

(∑
i∈s

(yij − ŷij) +
N∑
i=1

ŷij

)
. (2.6)

A number of prediction models are suggested in the literature for aggregate auxiliary

data [7, 15, 30, 31].

For continuous outcomes, Little (1993) considered a random intercept regression

model for survey inference in the presence of non-sampling errors that assumes a distinct

mean and variance for the survey outcome value in each post-stratification cell. The

basic normal post-stratification model (BNPM) is proposed as a unified and complete

Bayesian model-based foundation for survey inference, particularly inferences from small

samples. The model is written

(yi|j, µj , σ2j ) ∼ G(µj , σ
2
j );
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where yi is the value of continuous outcome Y for sample unit i , j identifies the post-

stratum, and G(a, b) is a normal distribution with mean a and variance b. If the post-

stratum means can be regarded as exchangeable, they can be modeled as coming from

a common distribution, yielding a random effects model. In large samples, inference is

insensitive to the form of the prior but in the presence of small post-strata, the prior for

the model results in partial pooling across post-strata [7].

An alternative model known as the multilevel regression for post-stratification

(MRP) model was proposed for estimation of a population mean for a binary survey

outcome [30]. MRP extends BNPM by taking advantage of hierarchical structures that

may exist in the post-stratification categories to improve the efficiency in overall esti-

mation and the precision of small area estimates [30]. Model-based methods have been

shown to yield efficient statistical inference in the presence of dispersed weights when

models are well constructed [6, 7]. However, an important consideration with model-

based approaches is how best to specify the model. Models induce subjectivity; if the

model is seriously misspecified then it can yield inferences that are worse than inferences

from weighting methods [4, 10, 11]. This is particularly a concern in the presence of con-

tinuous auxiliary information and complex population associations as model-dependent

approaches may even perform poorly in large samples where the population model is not

correctly specified as even small deviations from the assumed model that are not easily

detectable through routine model checking can cause serious problems [18]. Recent work

on flexible model-based approaches to avoid misspecification for complex survey designs

may offer benefits with respect to survey inference in the presence of non-sampling errors

[15, 32, 34, 35].
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2.2.5 Bayesian penalized spline regression on weights

In the missing data literature, Little and An (2004) proposed a doubly robust approach

to inference about a binary outcome using a penalized spline of propensity prediction

model. The logistic regression model for the outcome of interest included the logit-

transformed estimated response propensity score using a spline term. We extend this

model to the survey sampling setting and propose a Bayesian penalized spline regression

model for robust survey inference in the presence of non-response and under-coverage.

Let pij = Pr(yij = 1) be the probability that yij takes a value of 1 for unit i in

post-stratum j. We propose a logistic model that assumes a different mean for Y in each

post-stratum and includes the survey weights as covariates using a smooth regression:

logit(pij) = β0j + s(wij), (2.7)

β0j ∼ N(β0, τ
2),

where s(wij) is a smooth function of wij and can be modeled using a spline or Kernel

function. Here, I use a penalized spline to model this association [36]. Specifically,

s(wij) =
P∑
p=1

βpw
p
ij +

K∑
k=1

bk(wij −mk)
P
+, (2.8)

bk ∼ N(0, τ2b ),

where wij can be wij , w
−1
ij , log(wij), or other such appropriate transformation. The

constants m1 < m2 < . . . < mK are K pre-selected fixed knots. A function (wij −mk)
P
+

is called a truncated spline basis function of degree P , with (wij − mk)+ = wij − mk

if wij > mk and 0 otherwise. Values of p=1,2, and 3 define linear, quadratic, and
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cubic penalized splines, respectively. By specifying a normal distribution for bk, the

influence of the L knots are constrained, which is equivalent to smoothing the splines

via the penalized likelihood. The smooth function in the proposed model allows a flexible

association between the survey outcomes and the weights, and thus it protects against

potential model misspecification.

We complete the fully Bayesian modeling specification in equations (2.7) and (2.8)

by assuming non-informative prior and hyperprior distributions for the model parameters

with

β1,β2 ∝ 1 and τ, σ ∼ Cauchy+(0, 3),

where Cauchy+(0, 3) denotes the positive part of a Cauchy distribution with center 0

and scale 3 [4]. Using Markov chain Monte Carlo (MCMC) simulations, we can obtain

posterior draws of θ with

θ̂(m,d) = N−1
J∑
j=1

(∑
i∈s

(yij − ŷ(d)ij ) +
N∑
i=1

ŷ
(d)
ij

)
,

where ŷ
(d)
ij is the predicted binary response for the ith unit in the jth post-stratum

obtained from the posterior predictive distribution of yij in the dth draw, d = 1, . . . , D.

The average of the predictive estimates simulates the estimate of the population pro-

portion θ̂m = D−1
∑D

d=1 θ̂
(m,d). Credible intervals for the population proportion can

be formed by splitting the tail areas of the posterior predictive distributions equally

between the upper and lower endpoints.

The Bayesian modeling approaches are executed in RStan, an R interface to Stan

[42]. Stan is an open-source package for obtaining Bayesian inference using the No-U-

Turn Sampler (NUTS), a variant of Hamiltonian Monte Carlo (HMC) [43]. HMC avoids

24



the random walk behavior by using the gradient of the log-posterior [44]. It converges

more quickly than the simpler Markov chain Monte Carlo (MCMC) methods such as

random-walk Metropolis [45] and Gibbs [46] sampling. NUTS improves on HMC by

eliminating the need to choose the number-of-steps parameter required by HMC and

costly tuning runs, which makes it suitable for applications in user friendly Bayesian

inference package. We monitor the convergence of our MCMC simulations using the

convergence measure R̂ that suggests the chains mix well if close to one [42]. We keep

7,500 draws from 3 MCMC chains after 2,500 warm-up draws for each chain. RStan

code for the proposed method can be found in Appendix A.

2.3 Simulation study

2.3.1 Design

A simulation study was conducted to assess the performance of the proposed Bayesian

multilevel penalized spline regression model along with existing weighting and mod-

eling approaches for inference about a population proportion under the conditions of

highly dispersed survey weights and model misspecification. Auxiliary information

Z = (Z1, Z2, Z3) was simulated for a population of size N = 3, 000 in the form of

three correlated binary variables Z1, Z2 and Z3 with the respective marginal probabil-

ities of 0.7, 0.4, and 0.2 and a binary correlation of 0.1, and one continuous variable

Z4 ∼ 0.5z1 + 0.5z2 + logNormal(0.2, 1).

We conducted two sets of simulations. In the first simulation, we generated the

survey outcome Y , such that Pr(Y = 1) ≈ 0.20 and logit(Pr(Yij = 1)) = −4.95 +

1.35z1j + (3.15z4ij − 0.75z24ij)I(z4ij ≤ 4) + 0.75I(z4ij > 4) for unit i in the post-stratum
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j. Let Rij be the response indicator with 1 for inclusion in the sample and 0 otherwise.

Samples were selected so that the probability of response πij = Pr(Rij = 1), with

logit(πij) = −3.2 + z1j + z2j − 1.5z3j + z4j − 0.03z24j or logit(πij) = −5.2 + 2z1j +

2z2j − 3z3j + 2z4j − 0.06z24j . Both of the response models resulted in a sample size of

approximately 725, but the second response model yielded bigger variation in survey

weights for assessing the performance of various methods in the presence of dispersed

weights. In simulation two, the outcome Y was generated such that there was a non-

additive association using logit(Pr(Yij = 1)) = −1.4−z1j−1.2z4+1.5z1jz4j+0.05z1jz
2
4j .

The response model also involved complex, non-additive association with logit(πij =

1) = −2.5− z1j + z2j − 1.5z3j + z1jz4j − 0.03z24j . This model resulted in samples of size

approximately 725. Simulation two assessed the performance of the approaches in the

presence of misspecification.

For each generated outcome and sampling scenario, 500 replicates of simulation

were obtained and population proportion of Y = 1 was estimated. Results are pre-

sented for twelve estimators including five weighted estimators, and seven model-based

estimators. The weighted estimators included the unweighted estimator (UW), the post-

stratification (PS) and raking (R4) estimators where values of Z4 were categorized using

quartiles, the raking estimator where values of Z4 were categorized at deciles (R10), and

the propensity weighted estimator (PR) which included the main effects of auxiliary

information Z as well as a linear spline on Z4 using 15 equally spaced knots across the

range of Z4. I use quartiles and deciles of Z4 in post-stratification and raking estimation

to avoid sparse and empty sample cells, but increase the number of cut points to obtain

20 equally-sized groups for use in the propensity response model to better model the

linear spline. The seven prediction modeling estimators included
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1. A basic post-stratification model (Basic PS) that assumes a different mean for Y

in each post-stratum: logit(pij) = β0j with β0j ∼ N(β0, τ
2) and prior distributions

β0 ∝ 1 and τ ∼ Cauchy+(0, 3).

2. A basic post-stratification model that incorporates the main effects of the discrete

auxiliary variables and a smooth function of Z4 using a cubic penalized spline

on 15 equally spaced knots (Spline-Cov). Values of Z4 were categorized into 20

equally-sized groups.

3. The generalized regression estimator (GReg) based on the response propensity

model and Spline-Cov prediction model.

4. The proposed penalized spline model using the log of the PS weights for wj (Spline-

PS) and placing 15 knots equally spaced across the range of wj for estimating the

cubic spline function.

5. The proposed penalized spline model using the log of the raking weights (R4) for

wij (Spline-R4) and placing 15 knots equally spaced across the range of wij for

estimating the cubic spline function.

6. The proposed penalized spline model using the log of the raking weights (R10) for

wij (Spline-R10) and placing 15 knots equally spaced across the range of wij for

estimating the cubic spline function.

7. The proposed penalized spline model using the log of the PR weights for wij

(Spline-PR) and placing 15 knots equally spaced across the range of wij for esti-

mating the cubic spline function.

We evaluated the performance of the estimators using absolute empirical bias,

root mean squared error (RMSE), and coverage rate of the 95% confidence or credible
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interval (CI). Let θ̂t be an estimate of the population proportion θ in the tth simulation,

t = 1, . . . , 500. The absolute empirical bias and RMSE are defined as follow,

Absolute bias =
∣∣∣ 1

500

500∑
t=1

(θ̂t − θ)
∣∣∣,

RMSE =

√√√√ 1

500

500∑
t=1

(θ̂t − θ)2.

Estimators with smaller absolute bias, smaller RMSE, and 95% CI coverage rate close

to the nominal level are desired.

2.3.2 Results

Table 2.2 presents the absolute empirical bias (x100), RMSE (x100), interval width

(x100), and coverage rate of the 95% CI (x100) for twelve estimators in simulation one

with low variation in the weights. The UW estimator, that ignores the associations

between the auxiliary variables and both response and the survey outcome, performs

worse than all other estimators in this setting with large bias and RMSE, and poor

coverage rate. The weighted estimators yield smaller bias and RMSE as well as improved

CI coverage as compared to UW estimation. Further, using the continuous Z4 auxiliary

variable in raking weighted estimation categorized into deciles (R10) versus quartiles

(R4) reduces the bias with no penalty of loss in precision. The prediction modeling

approaches don’t offer huge gains of efficiency over the weighting approaches in the

low variation in weights setting of simulation one. The Basic PS model-based estimator

reduces bias and RMSE as compared to the UW estimator but has higher RMSE than the

other weighted estimators. However, the Spline-Cov model, which is correctly specified

for the outcome, has minimally lower RMSE compared with weighting approaches. The
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model-assisted GReg estimator performs similar to the prediction modeling approaches;

both the PR and the Spline-Cov models are correctly specified for the response and

survey outcome, respectively. Our proposed approach including a cubic spline on the

log-transformed R10 survey weights (Spline-R10) performs best in this setting with

relatively low bias, lowest RMSE, and closest to nominal coverage as compared to all

other estimators. Note that the bias and RMSE of the proposed approach using the

log-transformed R4 survey weights (Spline-R4) are further reduced by using the R10

weight (Spline-R10). Using the R10 raking weights, which utilize more of the continuous

information in Z4, does a better job of capturing the non-linear association between the

outcome and Z4.

Table 2.3 presents simulation one results for the setting of high variation in the

weights. Despite the fact that all the estimators perform worse in the presence of more

variation in the weights, the prediction modeling estimators show greater gains of im-

proved efficiency when compared to the weighting estimators in this setting compared

to the low variation setting. Weighted estimators can be inefficient in the presence

of highly variable weights and modeling approaches offer greatest benefits of improved

efficiency in this case. The GReg estimator does not perform well in this setting as

the PR model induces very high variation in the weights. However, GReg estima-

tion does have lower RMSE as compared to PR weighted estimation. Although the

newly proposed model-based estimators show improved efficiency as compared to the

weighting approaches, they have comparable RMSE as the existing prediction modeling

approaches. The Spline-R10 model performs best overall among the proposed models

with respect to bias, RMSE, and coverage of 95% CI. The Spline-Cov model, which

is correctly specified for the outcome, shows the greatest gains in efficiency among all

approaches in this scenario of simulation one.
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Table 2.4 compares the results for simulation two with non-additive association

between the outcome and continuous auxiliary variable Z4 so that our prediction mod-

eling approaches are misspecified for the outcome. Among the prediction modeling

approaches, the proposed Spline-R10 and Spline-PR models perform best. In this situ-

ation when models for the outcome are misspecified, the proposed Spline-R10 estimator

has lower bias and RMSE, as well as better coverage than the Spline-Cov estimator.

Further, the doubly-robust GReg estimator does not perform well here as the PR model

is misspecified for response and the Spline-Cov model is misspecified for the outcome.

2.4 Data application

Of interest, is inference about the prevalence of lifetime temper or disruptive mood

dysregulation disorder (TDD) among OANG service members. The de-identified, indi-

vidual level auxiliary information obtained from administrative records for the target

population included information on gender, race, rank, age group, and number of years

of service and was unlinked to the survey data. The outcome of interest, presence of

TDD, is available for all n = 2, 616 service members completing the survey. Figures

2.2 and 2.3 show the bivariate association between probability of response, prevalence

of TDD and the auxiliary variables. The auxiliary variables are both associated with

response and the outcome. Further, in Figure 2.2 there is non-linear association between

years of service and both the response mechanism and the outcome association. There-

fore, because of potential selection bias from non-response and frame under-coverage,

the auxiliary data can be used to improve inference about TDD in the OANG study

sample. However, using adjustment methods developed for categorical data may not be
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the optimal choice as we observe complex association between years of service and the

outcome of interest in the sample data.

To facilitate computation of survey weights for weighting estimation, the contin-

uous years of service measure was categorized according to population percentiles. A

major challenge is to maintain adequate sample sizes within each post-stratum to avoid

empty or sparse post-strata and thus extreme weights. As such, for post-stratification,

years of service was categorized according to population quartiles. Cross-classification

of the auxiliary variable information for post-stratification resulted in 2 x 2 x 2 x 3 x 4 =

96 cells or post-strata. However only 77 of these cells were non-zero in the population.

Further, only 65 cells from the population data were represented in the sample. Raking

weights were computed using the marginal distributions of the auxiliary variables with

years of service categorized into 16 groups using population percentiles of years of ser-

vice to better capture the continuous information in the variable. The maximum raking

weight was 11.7. It is important to note that the weights in the OANG MHI study data

are less variable than the weights in our simulation study. They are also less variable

that those typically found in community surveys.

We use the proposed Bayesian predictive modeling approach by fitting a logistic

regression for the survey outcome with random intercepts for the 65 post-strata formed

by the cross-classification of the auxiliary variables and raking weights as covariates

using a linear penalized spline. We keep 15,000 draws from 3 MCMC chains after 5,000

warm-up draws for each chain. Visual inspection of traceplots of the parameters in

the model show that the chains converge to the posterior after around 6,000 iterations.

Further the R̂ convergence measure was close to 1 indicating the chains mix-well. The

model-based estimate of lifetime TDD, given by the mean of the posterior predictive

estimates, was 20.9% (19.4%, 22.4%).
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2.5 Conclusion

In this chapter we proposed a flexible Bayesian model for survey inference that protects

against model misspecification in the presence of continuous auxiliary information. We

assessed the performance of our proposed method and existing weighting and model-

based approaches via simulation study. Our simulations confirmed established findings

on the importance of using appropriate statistical analyses to adjust for non-sampling

errors such as non-response and under-coverage [3, 28, 47]. Both the weighting and

model-based approaches yield population estimates that are more accurate than the

estimates without any adjustments in all simulation settings. Moreover, the simulation

study showed that our proposed model-based approach using the raking weights as

a covariate outperforms the weighting approach, yielding more efficient estimates and

closer to the nominal level 95% CI, in the presence of highly dispersed weights. The

Spline-Cov model also performs well in the setting of high variation in the weights. In

this setting, both our proposed model and the Spline-Cov model are correctly specified

for the outcome.

Importantly, our proposed model is robust to misspecification of the model for the

survey outcome. By using a penalized spline on the survey weights, we allow flexible

association between the auxiliary variable information and the survey outcome. On the

other hand, the Spline-Cov model did not perform as well as our proposed method in

the case that there is model misspecification, with increased bias and RMSE as well as

poorer coverage.

Utilizing the continuous auxiliary variable information helped to improve the pre-

cision and efficiency of estimation. Using the raking R10 weights in our proposed model-

based estimation (Spline-R10) consistently resulted in reduced bias, improved efficiency,
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and better confidence coverage compared to the Spline-R4 estimator. With respect to

using the R10 weights in weighted estimation, the R10 weighted estimator consistently

reduced bias of estimation as compared to the R4 weighted estimator. However, in the

presence of highly variable weights, the R10 weighted estimator was more inefficient

than the R4 weighted estimator.

In conclusion, our study promotes the use of a model-based approach that includes

the raking weights as a covariate using penalized splines for survey inference in the pres-

ence of highly dispersed weights and in the presence of continuous auxiliary information

which can have complex associations with survey outcomes in the population. Future

work will need to consider the performance of the proposed approach for inference in

sub-populations.
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Figure 2.1: Survey inference using a weighting approach where a weight is computed
for each sampled unit using auxiliary information (A) and a predictive modeling per-

spective (B).
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Figure 2.2: Bivariate association between probability of responding to survey, proba-
bility of having lifetime temper or disruptive mood dysregulation disorder (TDD) and
continuous years of service, Ohio National Guard Mental Health Initiative (OANG
MHI) Study, 2008-2009. Panel (a) shows the association between the logit response
propensity and years of service. Panel (b) shows the association between the logit of
having lifetime temper or disruptive mood dysregulation disorder (TDD) and years of

service in the unweighted sample.

Figure 2.3: Bivariate association between probability of responding to survey, prob-
ability of having lifetime temper or disruptive mood dysregulation disorder (TDD)
and discrete auxiliary variables, Ohio National Guard Mental Health Initiative (OANG
MHI) Study, 2008-2009. Panel (a) shows the association for probability of response.

Panel (b) shows the association for prevalence of TDD in the unweighted sample.
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Table 2.1: Distribution of auxiliary variable information in population and unweighted
survey sample, Ohio Army National Guard Mental Health Initiative (OANG MHI)

Study, 2008-2009.

Measure Population Unweighted sample
n(%) n(%)

Sex
Male 9,293(86.2) 2,228(85.2)
Female 1,485(13.8) 388(14.8)

Race
White 8,761(81.3) 2,298(87.8)
Non-white 2,017(18.7) 318(12.2)

Rank
Enlisted 9,750(90.5) 2,274(86.9)
Officer 1,028(9.5) 342(13.1)

Marital Status
Married 4,154(38.5) 1,230(47.0)
Not married 6,624(61.4) 1,386(53.0)

Age group
17-24 years 4,043(37.5) 881(33.7)
25-34 years 3,746(34.8) 850(32.5)
35 years and older 2,989(27.7) 885(33.8)

Years of service, mean(SD) in years 8.6(7.9) 10.1(8.4)
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Table 2.2: Comparison of absolute bias, root mean squared error (RMSE), interval
width, and coverage rate of 95 % confidence or credible interval (CI) for estimators

from simulation one with low variation in the weights.

Estimator Bias RMSE Width Coverage

Weighting
UW 6.6 6.7 5.1 0.0
P-S 0.4 2.5 7.4 84.3
R4 0.6 2.4 8.2 90.2
R10 0.1 2.4 8.4 92.4
PR 0.1 2.8 11.3 96.0

Prediction model
Basic PS 1.9 2.8 7.9 83.0
Spline-Cov 1.0 2.3 8.0 91.4

Doubly robust
GReg 1.0 2.3 9.8 96.0

Proposed method
Spline-PS 0.4 2.5 8.9 91.2
Spline-R4 0.7 2.5 8.7 90.8
Spline-R10 0.2 2.2 8.5 95.0
Spline-PR 0.0 2.5 9.1 93.8
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Table 2.3: Comparison of absolute bias, root mean squared error (RMSE), interval
width, and coverage rate of 95 % confidence or credible interval (CI) for estimators

from simulation one with high variation in the weights.

Estimator Bias RMSE Width Coverage

Weighting
UW 8.6 8.7 4.6 0.0
P-S 1.0 4.6 9.3 63.1
R4 0.5 4.2 13.6 91.4
R10 0.2 4.4 14.0 89.6
PR 0.4 6.5 19.1 86.8

Prediction model
Basic PS 3.3 4.2 10.4 79.0
Spline-Cov 1.9 3.2 10.7 89.2

Doubly robust
GReg 1.1 4.6 9.6 78.0

Proposed method
Spline-PS 0.9 4.6 12.8 80.3
Spline-R4 1.4 4.4 12.9 85.6
Spline-R10 1.1 3.4 11.2 88.7
Spline-PR 0.2 4.7 14.7 89.0
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Table 2.4: Comparison of absolute bias, root mean squared error (RMSE), interval
width, and non-coverage rate of 95 % confidence or credible interval (CI) for estimators

from simulation two.

Estimator Bias RMSE Width Coverage

Weighting
UW 20.2 20.2 7.1 0.0
P-S 2.7 3.2 5.4 48.2
R4 5.4 5.6 6.2 3.4
R10 2.7 3.2 6.1 55.0
PR 1.7 2.9 9.0 87.2

Prediction model
Basic PS 3.9 4.2 6.7 29.1
Spline-Cov 1.9 2.5 6.5 80.4

Doubly robust
GReg 2.7 4.6 11.1 74.0

Proposed method
Spline-PS 2.8 3.2 6.3 58.4
Spline-R4 3.1 3.5 6.4 46.7
Spline-R10 1.3 2.0 6.1 89.1
Spline-PR 1.1 1.9 6.2 92.5
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Chapter 3

Stratified Bayesian penalized

spline model for domain

estimation

3.1 Introduction

Since the beginning of the 21st century, the US Army has relied more on its reserve com-

ponent both domestically and internationally than at any other time since the Korean

war [48]. The increasing share of women and racial minorities in the ranks of reserve

personnel since the 2000s [49] coupled with the greater risk of long-term psychopathol-

ogy among US military reserve forces compared to active duty counterparts [21–23, 50],

make assessing the mental health among gender and racial sub-populations in the reserve

component of the US military essential. The Ohio Army National Guard Mental Health

Initiative (OANG MHI) study provides important information about the prevalence and

risk factors of mental health related outcomes among National Guard service members.
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Although the target population for the OANG MHI study is all serving members of the

OANG between June 2008 and February 2009, using the study data for estimation of

the prevalence of important mental health indicators in gender by race sub-populations

can be very informative as a secondary analysis. In order to conduct estimation at the

domain or sub-group level, there must be appropriate data at this level.

Cross-classifying the final sample of 2,616 OANG service members by gender and

race, results in 1,996 white and 232 non-white male, and 302 white and 86 non-white

female soldiers. While surveys like the OANG MHI study provide a cost-effective way of

generating reliable prevalence estimates for aggregates of domains, often they may not

have sufficiently sized samples to produce reliable estimates for domains. Further, due

to non-sampling errors such as non-response and sampling frame under-coverage, the

sample data from the OANG MHI study is subject to selection bias [10, 51–53]. In this

setting, estimation using auxiliary data from administrative records, the census, or other

large registries, becomes an important tool not only in reducing bias due to non-sampling

errors, but in improving domain estimation in sub-groups with small sample size [7, 10,

52, 53]. Using auxiliary data via weighting adjustments such as post-stratification or

raking can reduce bias if, conditioned on the auxiliary information, the non-sampling

errors are ignorable. However, these estimators can be inefficient in the presence of

small sample sizes and although model-based approaches offer advantages of improved

efficiency in the presence of sparse data, they can be subject to misspecification [7, 10, 51–

53].

The auxiliary information available for the OANG population of 10,778 service

members included gender (male, female), race (white, non-white), rank (enlisted, officer),

age (17-24 years, 25-34 years, 35 years and older), and number of years in service. Figure

3.1 shows the association between the outcome of interest and continuous years of service
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stratified by gender and race sub-groups. The association between the log odds of having

lifetime temper or disruptive mood dysregulation disorder (TDD) and years of service

differs between groups, and is non-linear within groups. Having a flexible model that

is robust to misspecification is particularly important for domain estimation when the

survey data is subject to selection bias, as is the case in the OANG MHI study.

In the previous chapter, we proposed a Bayesian penalized spline regression model

for survey inference that utilized auxiliary information to address issues of non-response

and sampling frame-under-coverage. The proposed model allowed distinct means of

survey outcomes in post-strata defined by the joint distribution of auxiliary variables

and incorporated survey weights using a penalized spline to allow flexible association

with the survey outcome. Simulation study found that the proposed prediction modeling

approach performed better than weighting approaches in the presence of highly dispersed

weights and was robust to model misspecification. However, it is not clear that this model

is appropriate for domain estimation, particularly in domains with small sample size.

In the missing data literature, Zhang and Little (2009) proposed a stratified penalized

spline of propensity prediction approach for robust inference about conditional means.

In this chapter, we extend their approach to the survey sampling setting and pro-

pose an extension to our Bayesian penalized spline model to facilitate robust estimation

of sub-population proportions. This stratified regression model builds on our previous

approach by including an interaction of the penalized spline of the survey weights and

the auxiliary variable defining the domain estimand of interest. The following section

describes the notation and proposed stratified model in detail. In Section 3 we conduct a

simulation study to demonstrate the performance of the stratified model as compared to

the previously proposed penalized spline model as well as common weighting approaches

for domain estimation under various conditions. Section 4 applies the proposed method
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to estimating the prevalence of lifetime TDD among OANG gender by race sub-groups.

We conclude the chapter with general suggestions in Section 5.

3.2 Methods

3.2.1 Setting and notation

For a population of N units, let Y be a binary survey outcome of interest taking a value

of 0 or 1. Let Z = (Z1, Z2, . . . , Zp−1)
T be (p − 1) discrete auxiliary variables and Zp

be a continuous auxiliary variable, and both Z and Zp are observed for all the units in

the population. Values of Zp can be grouped using m cut-off values to create a discrete

variable Z∗p with (m + 1) groups. Consider that X is a discrete auxiliary variable with

l = 1, . . . , L levels. Let s denote a sample of size n selected from the population with

survey outcome values, y1 . . . yn. We assume that the population data are de-identified

and thus the sample data cannot be linked to the population data on the individual

level. Of interest is estimation of the population proportion, θl = Ȳl within each domain

l.

Define the conditioning auxiliary variable,

xil =


1, if xi = l,

0, otherwise

for l = 1, . . . , L.

Then the population proportion of Y in domain l can be written,
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θl = Ȳl =

∑Nl
i=1 yil
Nl

(3.1)

where Ȳl is the mean of Y for population units belonging to domain l and Nl is the

population size of domain l.

3.2.2 Stratified Bayesian penalized spline regression on weights

In the proposed stratified model for the survey outcome, we assume a distinct mean

within each post-stratum j, which is further assumed to follow a normal distribution

with a common variance and estimated using a fully Bayesian approach. We extend this

multilevel model to include factor-by-curve interaction by fitting a stratified logit regres-

sion for the observed stratum specific prevalence, pij , using a partially linear model on

the survey weight, wij , that is flexible to accommodate non-linear associations between

the auxiliary information and the outcome of interest. Consider the triple (wij , xijl, yij)

where wij is the survey weight, xijl is an indicator variable identifying the domain mem-

bership, and yij represents the binary survey outcome of interest for the ith sampled unit

in post-stratum j. A stratified cubic penalized spline model for the observed stratum

specific prevalence pij = Pr(yij = 1|zijl, wij) is then written:

logit(pij) = β0j +

P∑
p=1

βpw
p
ij +

K∑
k=1

bk(wij −mk)
P
+ +

L∑
l=2

xijl(γ0l +

P∑
p=1

γpw
p
ij)

+

L∑
l=1

xijl

{ K∑
k=1

clk(wij −mk)
P
+

}
(3.2)

β0j ∼ N(β0, τ
2),

bk ∼ N(0, τ2b ),

clk ∼ N(0, τ2cl), l = 1, . . . , L.
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where constants m1 < m2 < . . . < mK are K pre-selected fixed knots for the truncated

cubic spline basis function, (wij−mk)+, with (wij−mk)+ = wij−mk if wij > mk and 0

otherwise. By specifying a normal distribution for bk, the influence of the K knots is con-

strained, which is equivalent to smoothing the splines via the penalized likelihood. The

stratified smooth function in the proposed model allows a flexible association between

the survey outcomes and the weights at levels of the conditioning variable, and thus it

protects against potential model misspecification. This is analogous to the framework

proposed by Coull (2001).

To perform inference, we assume non-informative prior and hyperprior distribu-

tions [4] for the parameters of interest βp, γp ∝ 1 and τ, τb, τcl ∼ Cauchy+(0, 3), and

obtain draws from the posterior distributions of θl using Markov chain Monte Carlo

(MCMC) simulations via

θ̂
(d)
l = N−1l

J∑
j=1

(∑
i∈s

(yijl − ŷ
(d)
ijl ) +

Nl∑
i=1

ŷ
(d)
ijl

)
,

where ŷ
(d)
ijl is the predicted binary response for the ith unit in the jth post-stratum of

domain l obtained from the posterior predictive distribution of yijl in the dth draw,

d = 1, . . . , D. The average of the predictive estimates simulates the estimate of the

conditional population proportion θ̂l = D−1
∑D

d=1 θ̂l
(d)

. Credible intervals for the con-

ditional population proportion can be formed by splitting the tail areas of the posterior

predictive distributions equally between the upper and lower endpoints.
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3.3 Simulation study

3.3.1 Design

The performance of the proposed stratified Bayesian penalized spline regression model

for domain estimation as compared to select weighted estimators as well as our previously

proposed Bayesian penalized spline regression was evaluated using a simulation study.

Auxiliary information Z = (Z1, Z2, Z3) was simulated for a population of size N =

3, 000 in the form of three correlated binary variables Z1, Z2 and Z3 with the respective

marginal probabilities of 0.7, 0.4, and 0.2 and a binary correlation of 0.1, and one

continuous variable Z4 ∼ 0.5z1 + 0.5z2 + logNormal(0.2, 1). Of interest is the estimation

and inference about the conditional proportion of Y = 1 in sub-populations defined by

auxiliary variables.

In our simulation setting the marginal proportion Pr(Y = 1) ≈ 0.20 and samples

of size approximately 725 were obtained. The outcome Y was generated such that there

was a non-additive association using logit(Pr(Yi = 1)) = −1.4− z1 − 1.2z4 + 1.5z1z4 +

0.05z1z
2
4j . The response model also involved complex, non-additive association with

logit(πi = 1) = −2.5−z1 +z2−1.5z3 +z1z4−0.03z24 . In this simulation, we assessed the

performance of the described approaches for estimation of the proportion in the overall

population and in sub-populations defined by Z1 such that group Z1 = 0 had domain

size n ≈ 115 and group Z1 = 1 had size n ≈ 610 . The population associations between

the continuous auxiliary variable Z4 and both the outcome and response at levels of Z1

are illustrated in Figure 3.2.

We obtained 500 replicates and estimated the proportion of Y = 1 in the pop-

ulation and sub-populations defined by Z1. Results are presented for nine estimators
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including the unweighted estimator (UW), four weighted estimators, and four model-

based estimators. The weighted estimators included the post-stratification (PS) and

raking (R4) estimators where values of Z4 were categorized using quartiles, the rak-

ing estimator where values of Z4 were categorized at deciles (R10), and the propensity

weighted estimator (PR) which included the main effects of auxiliary information Z as

well as a linear spline on Z4 using 15 equally spaced knots across the range of Z4. We

include four Bayesian model-based estimators, including

1. A penalized spline model using the log-transformed R10 weights (Spline-R10)

2. A penalized spline model using the log-transformed PR weights (Spline-PR)

3. The proposed stratified penalized spline model with interaction between Z1 and

cubic spline function on the log-transformed R10 weights (S-Spline-R10)

4. The proposed stratified penalized spline model with interaction between Z1 and

cubic spline function on the log-transformed PR weights (S-Spline-PR)

In the Bayesian predictive models, similar to Chapter 2, we place 15 knots equally

spaced across the range of wij for estimating the cubic spline function. We evaluate the

performance of the estimators using absolute empirical bias, root mean squared error

(RMSE), and coverage rate of the 95% confidence or credible interval (CI). Estimators

with smaller absolute bias, smaller RMSE, and 95% CI coverage rate close to the nominal

level are desired.

3.3.2 Results

We present simulation results for nine estimators of the proportion of Y = 1 in the overall

population and in domains defined by the cross-classification of auxiliary variables in
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Table 3.1. For overall estimation, the weighted estimators are inefficient with poor

confidence coverage as compared to the proposed prediction modeling approaches. We

observe gains in efficiency and improved confidence coverage associated with using the

stratified Bayesian modeling approach (S-Spline-R10 versus Spline-R10, and S-Spline-

PR versus Spline-PR). In this setting, the proposed stratified model is correctly specified

for the population association in the outcome.

For estimation in domains defined by Z1, we see that in group Z1 = 0 which is

the smaller domain, the UW estimator has lowest RMSE and close to nominal coverage.

From Figure 3.2 we see that conditioned on Z1, the non-response is ignorable with

respect to the outcome of interest. Importantly, in this small group we see the proposed

stratified spline models have closer to nominal coverage and lower RMSE than Spline-

R10 and Spline-PR. In group Z1 = 1 where there is non-linear association between Z4

and the outcome of interest, the proposed models outperform weighting approaches. In

particular, the Spline-R10 and Spline-PR approaches perform well in this setting with

low RMSE and close to nominal coverage.

3.4 Data application

Our proposed modeling approaches were used to estimate lifetime TDD prevalence for

all OANG service members and for domains defined by gender x race. As mentioned

previously, auxiliary information was obtained from administrative files. This included

information on gender, race, rank, age, and number of years in service.

In our modeling approach we assume a distinct mean in each post-stratum defined

by the cross-classification of auxiliary information and utilize raking weights computed

using the the marginal distributions of the auxiliary variables with years of service
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categorized into 16 groups using population percentiles of years of service to better

capture the continuous information in the variable for both models. Similar to the

previous chapter, we keep 15,000 draws from 3 MCMC chains after 5,000 warm-up

draws for each chain. We assess model convergence by visual inspection of traceplots of

the parameters and using the R̂ convergence measure where values close to 1 indicate

that the chains mix-well.

The results presented in Table 3.2 show that both methods result in similar es-

timates for the prevalence of lifetime TDD in the OANG population. However, the

interval width associated with the stratified spline model is minimally narrower that

that of the spline model. The estimates and interval widths for estimation in the largest

sub-population, male white service members, are very similar. For smaller groups, the

spline model-based approach produces estimates with smaller interval widths as com-

pared to the stratified spline model.

3.5 Conclusion

In this chapter, we proposed an extension of our Bayesian model for survey inference

to a stratified model and applied it to survey inference of proportion in the overall

population as well as within sub-populations. In overall population proportion esti-

mation the stratified modeling approach performed well, with lower RMSE than the

non-stratified modeling approach. For estimation in domains, we saw that both pro-

posed models outperformed weighted estimators with respect to absolute bias, RMSE,

and coverage rate when there was complex associations within domains. In domains

of small size, the stratified model showed promise with improved efficiency and better

confidence coverage as compared to the non-stratified model. In application, the width
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of the interval associated with estimates from the stratified model were wider than those

from the non-stratified proposed modeling approach in the smallest sample domins. As

such, an important consideration of the proposed stratified approach in domains with

small sample size is whether there is sufficient data to support efficient estimation. It

is possible that the stratified modeling approach may lead to an overfit model for the

survey outcome.

In conclusion, this chapter proposes a stratified modeling approach for domain

estimation that includes an interaction between the conditioning variable and a penal-

ized spline on the survey weights. We find that it performs well in small size domains

and offers further protection against model misspecification in estimation of population

proportion when compared to the non-stratified penalized spline approach.
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Figure 3.1: Association between the logit of having current temper or disruptive mood
dysregulation disorder (TDD) and years of service among gender by race domains in
the unweighted sample, Ohio National Guard Mental Health Initiative (OANG MHI)

Study, 2008-2009.
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Figure 3.2: Association between the logit of Pr(Y = 1) and auxiliary variable Z4

overall and by categories of Z1 in simulation one.
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Chapter 4

Estimating current and

undiagnosed depression among

Hispanics/Latinos of different

national backgrounds

4.1 Introduction

Depression is a leading cause of disability, contributing to increased health care costs

and decreased workplace productivity and quality of life [55–59]. This coupled with the

fact that Hispanics in the U.S. are the largest minority group, heterogeneous with regard

to place of origin, and potentially different with respect to the diagnosis and treatment

of mental health conditions, has increased the demand for within ethnicity estimates of

the prevalence of mental health conditions [55, 60–62].
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Many epidemiologic studies examining within ethnicity depression prevalence in

U.S. Hispanics have focused on Mexican, Cuban, and Puerto Rican subgroups and report

12-month depression prevalence [62–64]. The Hispanic Health and Nutrition Examina-

tion Survey (Hispanic HANES), the first population-based health survey of U.S. His-

panics, found significantly higher 12-month major depression prevalence among Puerto

Ricans (6.9%) than in Cuban Americans (2.5%) and Mexican Americans (2.8%) [64]. A

more recent study examining within Hispanic ethnicity past-year depression in the U.S.

found similar rankings with highest prevalence among Puerto Ricans [63]. However,

results from González et al. (2010) found higher national 12-month major depression

prevalence estimates for Puerto Ricans and Mexican Americans with rates of 11.9%,

8.0%, respectively. Although, these 12-month depression estimates are important, hav-

ing estimates related to short-term depression symptomology will further inform and

enhance medical practice and care provision.

The Hispanic Community Health Study, a 2008-2011 cross-sectional study of His-

panic/Latinos, estimated past-week depression prevalence using the Center for Epidemi-

ological Studies Depression Scale (CES-D) in U.S. Mexicans, Puerto Ricans, Dominicans,

Cubans, Central Americans, and South Americans [60]. These findings indicate that,

just as with past-year depression, Puerto Ricans (38.0%) had the highest prevalence of

past-week depression followed by Cubans (27.9%), Dominicans (27.4%), Central Amer-

icans (24.9%), South Americans (24.2%), and then Mexicans (22.3%). However, the

authors found rather high levels of short-term depression symptomology with preva-

lence rates three times greater than estimates reported in previous studies for 12-month

depression. Because depression is a debilitating health condition, often co-morbid with

serious chronic illness and poor social conditions, identifying depression symptomology

in the short-term is important as having undiagnosed and thus untreated depression can
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worsen and significantly diminish health [56, 57, 60, 65–67].

We were unable to find current estimates of undiagnosed depression among community-

based Hispanic ethnicity populations in the literature. However, a study of patients with

co-morbid depression and diabetes found that approximately 14% of depression cases

among Hispanics with diabetes went undiagnosed [68]. A more recent cross-sectional

analysis of Caribbean-origin Hispanics with poorly controlled diabetes found that while

52.8% of the sample had depression, only 21.4% reported taking antidepressants [66]. Fi-

nally, results from the household components of the 2012 and 2013 Medical Expenditure

Panel Surveys found that screen-positive depression was nearly 5 times more prevalent

among adults in the lowest income group than the highest income group [65].

The 2015 Washington Heights Community Survey (WHCS) was a cross-sectional

survey of residents of Washington Heights, New York, that aimed to provide a pop-

ulation based health assessment of a predominantly Hispanic/Latino and low-income

neighborhood with high rates of foreign-born residents [69]. The information generated

from this survey is extensive and can help to provide a picture of the community in terms

of ethnicity and mental health. As the survey assessed short-term clinical depression

using the Patient Health Questionnaire-9 (PHQ-9) diagnostic tool [70] and obtained

respondent report of ever diagnosed with depression by a health provider (diagnosed

depression), it provides a unique opportunity to estimate the prevalence rates of current

depression and undiagnosed depression by Hispanic/Latino origin.
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4.2 Methods

4.2.1 Data source

The data for this study were drawn from the 2015 WHCS. The WCHS was adminis-

tered by the Global Research Analytics for Public Health group at Columbia Univer-

sity Medical Center between March and September of 2015 to 2,489 sample households

in Washington Heights, New York as part of a community assessment funded by the

NewYork-Presbyterian Hospital. Eligible participants had to be 18 years or older, a

resident of zip codes 10032 and 10033, and be able to complete the telephone interview

in either English or Spanish [69]. The survey included items on neighborhood social and

economic conditions, health care access, general health and health conditions and was

conducted using both an address-based sample (ABS) and a cell phone random digit dial

(RDD) sample. The survey had an American Association for Public Opinion Research

(AAPOR) Response Rate of 16.8% [69]. Survey weights were computed to account for

sampling design, survey non-response, and sample frame under coverage.

4.2.2 Measures of interest

The current depression status of each respondent was determined using the Patient

Health Questionnaire-9 (PHQ-9), a nine-item module from the more comprehensive full

PHQ that can be used to diagnose up to eight Diagnostic and Statistical Manuals of

Mental Disorders, version 4 (DSM-IV) conditions [70, 71]. The PHQ-9 is used to classify

and diagnose major depression via questions that ask the respondent to say how often

in the past two weeks they experienced specific feelings such as low interest in daily

activities, helplessness, trouble sleeping, low energy, or poor appetite using responses

not at all, several days, more than half the days, or nearly every day. As a severity
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measure, the PHQ-9 score can range from 0 to 27 as each item is scored from 0 (not at

all) to 3 (nearly every day). A PHQ-9 score ≥ 10 was classified as clinical depression

in this study [71, 72]. The survey also included self-report of ever being told by a

doctor or medical practitioner that respondent has depression. To avoid response bias,

these mental health related items were included in the survey as an interactive voice

response (IVR) module, so that participants could hear recorded versions of the survey

items and respond via their phone keypad, rather than answering to a live interviewer.

Undiagnosed depression was defined as having PHQ-9 score ≥ 10 but reporting never

being diagnosed with depression by a medical practitioner.

Respondents were classified into Hispanic/Latino sub-ethnicities using a combina-

tion of two survey items. The first item asked respondents to self-identify as either His-

panic/Latino, or non-Hispanic/Latino black, white, or other race. The second question

asked respondents identifying as Hispanic/Latino to specify their national background

as Dominican, Puerto Rican, Mexican, Central American, South American, Cuban, or

European/other.

4.2.3 Statistical analysis

We first provide weighted estimates of prevalence of current depression (having PHQ-9

score ≥ 10 vs. < 10) and undiagnosed depression (yes vs. no) in Hispanic ethnicity sub-

groups. However, since sample size in each sub-ethnicity group can be small (e.g. there

are only 32 survey respondents who are Mexican), the traditional weighted estimates of

prevalence in each small sub-ethnicity group can be unstable. As such, we utilized our

proposed Bayesian regression model-based approach that has been found in simulation

to perform better than weighting approaches for survey inference in domains with small

sample size.
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4.2.3.1 Bayesian models for survey inference

This modeling approach fits a logistic regression for the domain-specific prevalence for

respondent i in domain or sub-ethnicity l, pil = Pr(Yl = 1), using a linear spline on the

survey weight, wil, that is flexible to accommodate non-linear associations between the

auxiliary information and the outcome of interest. Specifically,

logit(pil) = β0l + β1wil +
K∑
k=1

bk(wil −mk)+ (4.1)

β0l ∼ N(β0, τ
2)

bk ∼ N(0, τ2b ).

The constants m1 < m2 < . . . < mK are K pre-selected fixed knots. To obtain the

domain estimates, we assume non-informative prior and hyperprior distribution for the

parameters of interest and obtain draws from the posterior distribution of our parameter

of interest using MCMC simulations. We can then take the average of the predictive

estimates, θ̂
(d)
l = N−1l

(∑
i∈s(yil − ŷ

(d)
il ) +

∑Nl
i=1 ŷ

(d)
il

)
to get the estimate of the condi-

tional population proportion, θ̂l = D−1
∑D

d=1 θ̂l
(d)

. Here, ŷ
(d)
il is the predicted binary

response for the ith unit in domain l obtained from the posterior predictive distribution

of yil in the dth draw, d = 1, . . . , D.

4.2.3.2 Finite population Bayesian bootstrap

Because survey weight wil information is unavailable for the non-sampled population

units, we cannot compute ŷ
(d)
il directly and use a Bayesian bootstrap procedure for

unequal probability sample designs in finite populations to generate synthetic data for

prediction [73, 74]. The finite population Bayesian bootstrap (FPBB), developed by Lo
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(1988) and extended by Cohen (1997) to accommodate unequal probability of selection

survey designs, can be used to generate synthetic data utilizing available sample weights.

Let si indicate sample unit i, i = 1, . . . , n. The FPBB proceeds by selecting a sample of

size N − n: s∗1, s
∗
2, . . . , s

∗
N−n by drawing s∗k from s1, s2, . . . , sn so that si is selected with

probability

wi − 1 + li,k−1(
N−n
n )

N − n+ (k − 1)(N−nn )

where wi is the survey weight associated with sample unit i, and li,k−1 = number of

bootstrap selections of si among s∗1, s
∗
2, . . . , s

∗
k−1. The FPBB population is then formed

by s1, s2, . . . , sn, s
∗
1, s
∗
2, . . . , s

∗
(N−n). Procedure is repeated B times to generate B syn-

thetic populations. Dong et al. (2014) provides a theoretical proof for Cohen 1997

weighted FPBB procedure. The function wtpolyap in the R package polypost can be

used to obtain draws from a weighted Pólya urn [76].

For each synthetic population b, b = 1, . . . , B, predictive estimates of the domain

proportion are obtained via

θ̂
b(d)
l = N−1l

(∑
i∈s

(yil − ŷ
b(d)
il ) +

Nl∑
i=1

ŷ
b(d)
il

)
(4.2)

The average of the predictive estimates simulates the Bayesian model-based estimator

of the population proportion in bth bootstrap, θ̂bl = D−1
∑D

d=1 θ̂
b(d)
l . The prevalence

estimate θ̂l = B−1
∑B

b=1 θ̂
b
l is the mean of the θ̂

(b)
l s and the variance in each group is

(1 +B−1)VB where VB = (B − 1)−1
∑B

b=1(θ̂
(b)
l − θ̂l)

2 [73].

In this application, the FPBB procedure is implemented by first drawing a weighted

sample of size N − n = 64, 306 − 1, 462 = 62, 844 using the provided survey weights to
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form FPBB population. Here, N = 64, 306 is the size of the target population i.e. pop-

ulation size of Hispanic residents of Washington Heights, New York, over 18 years of

age residing in zip codes 10032 and 10033 as obtained from the American Community

Survey 5-year estimates and n is the number of Hispanics in the WHCS sample. This

procedure is implemented B = 200 times to produce 200 synthetic FPBB populations.

4.3 Results

Depression data were available for 1,460 Hispanic residents. Table 4.1 shows the distri-

bution of Hispanic residents by national background in Washington Heights, New York.

Weighted estimates show that about three-quarters of the Hispanic/Latino residents of

Washington Heights are from the Dominican Republic with the remaining 25% com-

prising of Hispanic/Latinos of South American and Mexican descent. About 85% of

respondents report being 18 to 64 years of age.

Figure 4.1 shows the distribution of the survey weights in the WCHS study. The

maximum weight in the sample was 229.8. Figure 4.2 shows the bivariate association

between the outcomes of interest and survey weights in the 2015 WHCS survey data.

Here we see non-linear association between the logit of having current depression and the

logit of having undiagnosed depression and survey weight. Using the proposed modeling

approach to survey estimation can provide improved efficiency in the presence of highly

variable weights as well as being robust to potential misspecification of the model for

the outcome of interest.

Table 4.2 shows the prevalence estimates for current depression and undiagnosed

depression for Hispanic residents 18 to 64 years and 65 years and older based on the

model-based approach. For Hispanic residents aged 18 to 64 years, the prevalence of
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current depression is 11.5%. Puerto Rican ethnicity Hispanics had the highest prevalence

of current depression and Mexicans the lowest, at 15.0% and 8.4%, respectively. About

one in thirteen Hispanics aged 18 to 64 years in Washington Heights have undiagnosed

depression. Among Hispanics ages 18 to 64 years, undiagnosed depression is highest

among Puerto Ricans; among older adults, Hispanics from the Dominican Republic had

the highest rates of undiagnosed depression.

Table 4.3 provides the weighted estimates for current depression and undiagnosed

depression. While the ranking of the sub-ethnicity prevalence estimates do not differ,

there are some differences in the magnitude between weighting and modeling approaches.

Importantly, the standard error associated with the weighted estimate of overall depres-

sion in Hispanics in the 18 to 64 years age group is smaller than the standard error

for the model-based estimate of overall depression while for those 65 years and older,

the standard error associated with the model-based estimate is marginally smaller than

that of the weighted estimate. This is not surprising since this survey was designed

to produce estimates at aggregated levels as has sufficient sample to provide weighted

estimates for all Hispanics that have relatively small standard errors. Examining the

Hispanic origin-specific prevalence estimates of current depression, the standard errors

associated with the model-based approach are consistently smaller than the weighted

survey estimate standard errors. Also of note is that while the survey weighted estimates

of current depression among Mexican and European/Other Hispanics 65 years and older

are 0.0, the model-based estimates are 14.7% and 13.1%, respectively. This highlights

an advantage of using a modeling approach that provide predictions for zero sample

population groups. Similar observations can be made with regard to the weighted and

model-based estimates for undiagnosed depression.
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4.4 Conclusion

In this study, we provide prevalence estimates for current depression and undiagnosed

depression in Hispanic residents of a low-income neighborhood in New York City. Fur-

ther, we compare results from weighted and model-based methods for survey estimation

in this study and show the advantages of utilizing flexible regression models in small

domain survey estimation. An important aspect of public health research is identifying

and addressing health disparities. In order to identify differences in important health

indicators between demographic subgroups or domains, there must be appropriate data

at the domain level to produce prevalence estimates in these domains. Survey weighted

prevalence estimates for subgroups can yield unacceptably large standard errors in the

presence of small sample sizes and cannot accommodate prediction in subgroups with

no samples [7, 47, 52, 53, 77]. An alternative approach is to utilize regression models for

survey estimation. Using regression models for small domain estimation can improve the

accuracy of estimation and reduce standard errors [7, 30, 32, 35, 47, 52, 53, 77]. How-

ever, correctly specifying the model is essential as misspecified model-based estimates

are subject to bias.

Ethnicity-specific prevalence estimates of current depression from this community-

based sample were lower than the CES-D based depression prevalence reported in the

Hispanic Community Health Study/Study of Latinos [60]. Possible explanations for

this finding may lie with the diagnostic tools as well as the samples. Evaluations of

both the PHQ-9 and CES-D instruments in patient populations concluded that they

are valid screening tools with similar performance [78–80]. Therefore, the differences in

prevalence could be attributable to the different populations. The ranking of Hispan-

ic/Latino sub-ethnicities with regard to depression prevalence found in this study was
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consistent with previous work [60, 63, 64]. Our study findings advance the epidemiologic

literature by providing rates of undiagnosed depression among Hispanics and Hispanic

ethnicity subgroups in a community-based sample. Additionally, the fact that over 60%

of residents who screened as having current depression had never been diagnosed with

depression should highlight the continued need for provider screening and understand-

ing of cultural differences in patient care seeking. Research has shown that while some

patients are able to recognize symptoms and seek care, many are unwilling or unable to

bring these concerns to the attention of medical practitioners for reasons related to lack

of knowledge and culture [62, 81, 82].

While this is an important study, it is critical to note that the target population

for the 2015 WHCS is unique with higher proportions of foreign-born and low-income

residents than Manhattan and New York City [69] and as such, the results may not

be fully generalizable to other Hispanic populations. Please note that, while innovative

with respect to content, the survey was cross-sectional in design. Notwithstanding these

limitations, the findings from this study have important implications as it relates to the

continued promotion of depression screening particularly among low-income minority

groups in an effort to improve health outcomes and social well-being.
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Figure 4.1: Distribution of final survey weights, Washington Heights Community
Survey (WHCS), 2015.
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Figure 4.2: Bivariate association between probability of having current depression
and undiagnosed depression and final survey weights, Washington Heights Community

Survey (WHCS), 2015.
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Table 4.1: Distribution of Hispanic residents by national background in population
and survey sample, Washington Heights Community Survey, 2015.

Hispanic origin Weighted sample, n(%)

All 1,460(100.0)

Dominican 1,081(72.2)
Puerto Rican 113(4.3)
Mexican 32(6.7)
Central American 47(2.3)
South American 103(9.6)
Cuban 49(2.2)
European/other 35(2.6)
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Chapter 5

Conclusion

In this thesis, we described an important area of research in mental health that moti-

vated our work. Specifically, researchers in the OANG MHI study were interested in

improving the well-being of reserve soldiers during and after deployment by examining

the prevalence and risk factors of a number of mental health related outcomes using

survey data from a sample of active guards. However, the survey data was challenged

by non-response and sampling frame under-coverage which can lead to biased inference.

Individual level auxiliary variable information for the OANG target population can be

used to improve inference in the presence of non-response and under-coverage. Available

auxiliary information included demographic measures such as gender, race, age, and rank

as well as a continuous measure, number of years in service. This continuous measure

can be discretized and used to account for non-response via post-stratification and rak-

ing weighting or can be incorporated into a predictive modeling approach similar to the

basic post-stratification model or multilevel regression for post-stratification. However,

examination of the association between years of service and probability of responding

to the survey as well as outcomes of interest, showed strong non-linear associations. As
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such, categorizing years of service may result in loss of important information. Response

propensity weighting estimation can accommodate continuous auxiliary information in

a model for response, as can prediction models for the outcome. However, an important

consideration with using regression models for either the response propensity weighting

or prediction modeling approaches to survey inference, is how best to specify the model

to avoid misspecification. Models induce subjectivity and misspecified models can yield

poor inferences.

The aim of this work was to develop a robust predictive modeling approach to

survey inference about a population proportion in the presence of non-response and

sampling frame under-coverage. In our first project, we proposed a flexible model-

ing framework for survey inference that is robust to model misspecification by using a

penalized spline of the survey weights to model the association between the auxiliary

variables and survey outcome. Our second project extended the proposed modeling ap-

proach to include factor-by-curve interaction with the aim of improving survey inference

in sub-populations or domains defined by categories of the auxiliary information. Being

able to assess prevalence in sub-groups defined by sociodemographic characteristics is

an important part of epidemiologic research. We find that both our proposed model

and the extension to the stratified model, are more efficient than the existing weighting

and modeling approaches with closer to nominal coverage. Further, we find improved

performance of the stratified penalized spline model for inference in small size domains.

We apply both methods to 2008-2009 data from the OANG MHI study which aims at

improving the well-being of reserve soldiers during and after deployment.

The third project extends the proposed model to the case where we have lim-

ited auxiliary information for the non-sampled population. In this application, we are
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interested in estimating current and undiagnosed depression in Hispanic and Latino sub-

ethnicities defined by national origin. We utilize data from the 2015 WHCS, a survey

of residents of Washington Heights, New York City, that aims to improve targeted pub-

lic health and clinical interventions in this neighborhood by describing the health and

health needs of residents. In this study, limited auxiliary information is available in the

form of marginal counts of domain size in the population as well as final survey weights

that account for sampling strategy as well as non-sampling errors. In order to apply

our proposed modeling approach to the 2015 WHCS data, we implemented a weighted

finite population Bayesian bootstrap (FPBB) method to generate synthetic populations

for prediction. We find that the modeling approach incorporating the FPBB procedure

resulted in domain estimates with smaller standard errors than the survey weighted

estimate.

In summary, this dissertation proposed a Bayesian penalized spline prediction

modeling framework for survey inference challenged by non-response and under-coverage.

The proposed approach reduces inefficiency of inference due to highly dispersed weights

as compared to weighted estimators, and yields more robust inference when there is

model misspecification as compared to prediction modeling approaches.

5.1 Implications to Public Health

Survey data play an important role in epidemiologic research, facilitating estimation of

and inference about health indicators in large finite populations using moderately sized

samples. However, surveys are increasingly challenged by a growing problem of non-

response and sampling frame under-coverage. Both of these issues can lead to biased

inference. In order to address these potential biases and improve the accuracy of survey
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estimates, appropriate statistical methods need to be applied. Although traditional

weighted estimators work well at correcting bias due to non-response and under-coverage,

they can be very inefficient in the presence of highly variable survey weights leading

to unstable estimates. Further, prediction models typically used to improved these

inefficiencies are subject to model misspecification; this can lead to incorrect inference.

Using our proposed Bayesian penalized spline prediction modeling approach can

improve inefficiency in estimation due to highly dispersed weights as compared to weighted

estimators. Moreover, our proposed modeling approach yields more robust inference

when there is model misspecification as compared to existing weighted and prediction

modeling approaches. In our Chapter 2 simulation setting with high variation in weights,

gains in reduced RMSE from our proposed method as compared with weighting ap-

proaches, ranged from 19% to 48%. In inferential statistics, reducing RMSE, increases

the power of the statistical test i.e. we are better able to correctly identify important

associations. Further, in research practice, where there is no definitive way to determine

whether the specified model for the outcome is correct, utilizing our proposed method

which is more robust to model misspecification than existing modeling approaches, is ad-

vantageous. In fact, in simulation study, this is where our proposed Bayesian penalized

spline model offered greatest improvement with respect to decreased bias and RMSE,

as well as improved confidence coverage relative to other approaches.

Quantifying and identifying disparities in health-related outcomes such as burden

of disease and health behaviors, is an important aspect of public health research. Im-

proving inference in sub-populations that define geographic or demographic domains of

the target population can aid in correctly identifying meaningful differences between

groups. Chapter 3 of this thesis focused on domain estimation for survey data with

particular attention to estimation in domains with small size relative to population size,
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where weighted estimation is often inappropriate and issues relating to model misspec-

ification can become magnified. In our simulation study, we see gains of up to 16%

reduction in RMSE for estimation in small size domains comparing the proposed mod-

eling approach with weighting estimation. These results are promising and necessitate

further work to assess the performance of the stratified penalized spline approach as

domain size and prevalence varies in order to fully define the method’s utility.

To implement the Bayesian penalized spline prediction modeling approach pro-

posed here, auxiliary information for the joint distribution of the auxiliary variables is

needed. Oftentimes, we have limited information on the non-sampled units. In our last

project, we utilized a FPBB procedure to complete survey inference in sub-populations

using our proposed modeling approach. Here, the breadth of utility of the proposed

Bayesian predictive modeling framework is exemplified in its application to survey infer-

ence where limited auxiliary information is available for non-sampled population units

via final survey weights and marginal counts of population size in domains of interest.

While this work is developmental and requires further assessment via simulation study,

it holds much promise for expanding the application of the proposed modeling approach.

Many surveys provide minimal auxiliary information on non-sampled units which nec-

essarily prohibits use of the predictive modeling approach as initially proposed. Being

able to utilize a bootstrap procedure that can incorporate important survey features

such as design and non-response adjustments to facilitate the use of prediction models,

will extend the utility of this thesis research.

When interpreting the results of this work, it is important to note that we focused

on point estimation of the population proportion in a simple setting which involved

non-response and sampling frame under-coverage issues in a survey with a moderate

amount of auxiliary data. We further extend to domain estimation and the case where
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limited auxiliary information is available on non-sampled population units. There is a

need for further work that considers the application of these methods to other types of

important outcomes such as count data, to survey settings that involve a large number

of auxiliary variables that result in challenges common to high-dimensional data, as well

as to surveys with complex design features.

Notwithstanding, there is much promise in applying the proposed Bayesian pre-

diction modeling framework to survey inference when the data are challenged by non-

response and under-coverage, and particularly when there exists highly variable weights

or complex population associations. Not only do results from the proposed model par-

allel those from weighting approaches in large samples, they can outperform weighting

approaches if the model is correctly specified. Moreover, the hierarchical Bayes approach

is attractive because of its ability to yield better inferences for small-sample problems.
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Appendix A

Bayesian Multilevel Penalized
Spline Stan model

data {
int<lower=1> n; //number of individuals
int<lower=1> P1; //number of linear predictors & intercept
int<lower=1> P2; //number of varying intercepts
int<lower=1> numknots; //fixed number of knots
int<lower=0,upper=1> Y[n]; //outcome variable
matrix[n,P1] x; //linear predictors & intercept
matrix[n,P2] z; //random intercepts
matrix[n,numknots] spn; // spline terms
}

parameters {
vector[P1] beta;
vector[P2] b;
real b0;
real<lower=0.001> tau;
vector[numknots] bk;
real<lower=0.001> taubk;
}

model {
Y ∼ bernoullilogit( x*beta + z*b + spn*bk);
for (k in 1:P2) {
b[k] ∼ normal(b0,tau);
}
tau ∼ cauchy(0,3);
for (k in 1:numknots)
bk[k] ∼ normal(0,taubk);
}
taubk ∼ cauchy(0,3);
}
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Appendix B

Stratified Bayesian Multilevel
Penalized Spline Stan model

data {
int<lower=1> n; //number of individuals
int<lower=1> P1; //number of linear predictors
int<lower=1> P2; //number of varying intercepts
int<lower=1> L1; //number of dummy variables in interaction variable L-1
int<lower=1> L2; //number of categories in interaction variable L
int<lower=0,upper=1> Y[n]; //outcome variable
rowvector[P1] x[n]; //linear predictors
rowvector[P2] z[n]; //random intercepts
int<lower=0> numknots; //fixed number of knots
rowvector[numknots] spn[n]; //spline terms
rowvector[L1] z1[n]; //linear predictors for interaction variable
rowvector[L2] z2[n]; //linear predictors for interaction variable
}

parameters {
vector[P1] beta;
vector[P2] b;
real b0;
real<lower=0.0001> tau;
vector[numknots] bk;
real<lower=0.0001> taubk;
vector[L1] gamma;
matrix[numknots,L2] ck;
vector<lower=0.0001>[L2] tauck;
}

model {
for (i in 1:n) {
Y[i] ∼ bernoullilogit( x[i]*beta + z[i]*b + spn[i]*bk +
z1[i]*gamma + sum( z2[i] .*(spn[i]*ck) ) );
}
for (k in 1:P2) {
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b[k] ∼ normal(b0,tau);
}
for (l in 1:numknots) {
bk[l] ∼ normal(0,taubk);
for (l2 in 1:L2) {
ck[l,l2] ∼ normal(0,tauck[l2]);
tauck[l2] ∼ cauchy(0,3);
}
}
tau ∼ cauchy(0,3);
taubk ∼ cauchy(0,3);
}
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