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Abstract

An intersection number formula for CM-cycles in Lubin-Tate spaces

Qirui Li

We give an explicit formula for the arithmetic intersection number of CM cycles on

Lubin-Tate spaces for all levels. We prove our formula by formulating the intersection

number on the infinite level. Our CM cycles are constructed by choosing two separable

quadratic extensions K1, K2/F of non-Archimedean local fields F . Our formula works

for all cases, K1 and K2 can be either the same or different, ramify or unramified. As

applications, this formula translate the linear Arithmetic Fundamental Lemma (linear

AFL) into a comparison of integrals. This formula can also be used to recover Gross

and Keating’s result on lifting endomorphism of formal modules.
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Chapter 1

Introduction

1 Motivation and history

The intersection problem for Lubin-Tate towers comes from the local consideration for the geo-

metric side of the Gross-Zagier(G-Z) formula and its generalizations. The Gross-Zagier formula

[GZ1986][YZZ2013] relates the NeronTate height of Heegner points on Shimura curves to the first

derivative of certain L-functions. Recently, in the function field case, Yun-Zhang has discovered the

higher Gross-Zagier formula [YZ2015], relating higher derivatives of L-functions to intersection num-

bers of special cycles on the moduli space of Shtukas of rank two. In the number field case, the

ongoing work of Zhang [Zha2017a] constructs some new special cycles on Shimura varieties associated

to certain inner form of unitary groups. He conjectured certain height paring of those special cycles

is related to the first derivative of certain L-functions.

To prove his conjecture, Zhang reduces it to local cases. Now we briefly review his idea. On one

hand, the global height pairing is related to the local intersection numbers over almost all places. There

are essentially two non-trivial cases for the local intersection problem. One case is the intersection

of CM cycles in unitary Rapoport-Zink spaces. The other case is the intersection of CM cycles in

Lubin-Tate deformation spaces. On the other hand, using the relative trace formula, we relate the

derivative of the L-function to derivatives of certain orbital integrals over all places. In places where

the intersection problem reduces to Lubin-Tate spaces, the orbital integral has a form related to Guo-

Jacquet’s Fundamental Lemma. Zhang conjectured in his unpublished notes [Zha2017b] a linear AFL

to relate this intersection number to the first derivative of the orbital integral of Guo-Jacquet’s form.
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We summarise the situation in the following picture

Global Height Pairing //

��

Derivative of L-function

Relative Trace Formula

��
Local Intersection Number

linear AFL // Derivative of Orbital Integral

We review some history. This idea originates from Zhang’s Relative Trace Formula(RTF) approach

to the arithmetic Gan-Gross-Prasad (arithmetic GGP) conjecture([Zha2012]). The arithmetic GGP

is a generalization of the Gross-Zagier formula [GZ1986][YZZ2013] to higher-dimensional Shimura

varieties associated to certain incoherent Hermitian spaces([Zha2009],[Zha2010]). In this case, the

corresponding local geometric object is given by the unitary Rapoport-Zink space. Zhang formulated

an Arithmetic Fundamental Lemma in [Zha2012] relating the intersection number of two special cycles

in this space to the derivative of certain orbital integral. Since this orbital integral is related to the

Fundamental Lemma of Jacquet and Rallis, the AFL by its name means the arithmetic version of this

Fundamental Lemma. To distinguish from the linear AFL, we call this AFL as the unitary AFL. The

unitary AFL was proved for low rank cases in [Zha2017a], and for arbitrary rank and minuscule group

elements in [RTZ2013]. By using the unitary AFL, Zhang proved the arithmetic GGP conjecture for

low rank cases.

Let’s come back to the linear AFL. The linear AFL is an arithmetic version of Guo-Jacquet’s

Fundamental Lemma[Guo1996]. The Lubin-Tate deformation space in the linear AFL plays the role

of the unitary Rapoport-Zink space in the unitary AFL. We note that both Guo-Jacquet’s FL and

Jacquet-Rallis’s FL are the same for rank 1 case because they are both generalizations of Jacquet’s

Fundamental Lemma in Jacquet’s RTF approach of the Waldpurgur’s formula[Jac1986]. Therefore,

the unitary AFL and the linear AFL are the same at rank 1 case. The rank 1 case of either AFL can

be used in the RTF approach to the Gross-Zagier formula (see [ZTY2015]).

In this article we consider the same geometric problem as the linear AFL but establish another

formula for the intersection number of CM cycles with their translation in the Lubin-Tate space. Our

work primarily uses Drinfeld level structures. According to our Theorem 2.3, the CM cycle with its

translation give rise to a distribution, such that the intersection number on each level is obtained by

integrating against this distribution with a corresponding test function. The relation of our work and
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the linear AFL are described as follows.

Intersection Number
Conjectural linear AFL Theorem 2.3

++
Orbital Integrals

unkown

Conjecture 1
Distributions

In this picture, the upper level is the geometric world and lower levels are in the world of harmonic

analysis for symmetric spaces. Since two formulae interpreting the same number should be equal, we

formulated Conjecture 1 relating derivative of orbital integrals to our formula. The author has proved

rank one and two cases for the unit element in the spherical Hecke algebra of this Conjecture by direct

calculation [Li2018a].

We remark that our formula in Theorem 2.3 calculates the intersection number for all levels and

both ramify and unramified cases for characteristic 0 or an odd prime. Furthermore, we have a more

general formula dealing with CM cycles of different quadratic extensions (see Proposition 2.4). Our

formula in the unramified case could be used to verify the linear AFL, besides, in other cases we could

expect it to verify other more general conjectures.

2 Main Result

Now we explain our formula into details. Let K/F be a quadratic extension of non-Archimedean

local fields, π the uniformizer of OF and OF /π ∼= Fq. Fix an integer h, consider a formal OK-

module GK and a formal OF -module GF over Fq of height h and 2h respectively, then the algebra

DF = End(GF )⊗OF F and the algebra DK = End(GK)⊗OK K are division algebras of invariant 1
2h

and 1
h with center F and K respectively. The Lubin-Tate towerM•∼ associated to GF is a projective

system of formal schemesMn
∼ parametrizing deformations of GF with level πn structure. EachMn

∼

is a countable disjoint union of isomorphic affine formal spectrum of complete Noetherian regular local

rings indexed by j ∈ Z

Mn
∼ =

∐
j∈Z
Mn

(j).

For convenience, we call Mn
(j) the space at piece-j level-πn of the Lubin-Tate tower, and simply

denote Mn
(0) by Mn. The Lubin-Tate tower admits an action of D×F × GL2h(F ) while each piece

Mn
(j) admits an action of O×D × GL2h(OF ). The kernel of the GL2h(OF ) action for Mn

(j) is the
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subgroup Rn given by

Rn = ker (GL2h (OF ) −→ GL2h (OF /πn)) (for n ≥ 1); R0 = GL2h(OF ). (1.1)

Consider a pair of morphisms

τ : Kh −→ F 2h;

ϕ : GK −→ GF ,
(1.2)

where τ is F -linear and ϕ is a quasi-isogeny of formal OF -modules. The pair (ϕ, τ) give rise to a CM

cycle δ[ϕ, τ ]n as an element of Q-coefficient K-group of coherent sheaves for eachMn
∼ (see Definition

3.2 for details). We remark that the D×F ×GL2h(F )-translation of the cycle agrees with its action on

the pair (see Proposition 5.6). In other words, an element (γ, g) ∈ D×F ×GL2h(F) translates δ[ϕ, τ ]• to

δ[γϕ, gτ ]•. Therefore ϕ, τ, γ, g together give us an intersection number on each level of the Lubin-Tate

tower, specifically, at the space of piece-0 level-πn the intersection number is defined by

χ(δ[ϕ, τ ]n ⊗L
Mn

δ[γϕ, gτ ]n),

where ⊗L is the derived tensor product, χ the Euler-Poincare characteristic defined in the way that

for any complex of coherent sheaves F• on Mn,

χ(F•) =
∑
i

(−1)iχ(F i)

and

χ(F) =
∑
i

(−1)i lengthOF̆ (Riν∗F).

where ν : Mn −→ Spf OF̆ is the structural map. We make some convention and definitions before

introducing our main theorem, the symbol x is a secondary choice for elements in GL2h(F ) to avoid

conflicts with the usual notation g. The Haar measure dx on GL2h(F ) is normalized by its hyperspecial

subgroup GL2h(OF ).

Definition 2.1. Let (X,µ) be a set with measure µ, U ⊂ X is a measurable subset with finite volume.

By the standard function for U we mean 1U

Vol(U) .

Definition 2.2 (Invariant Polynomial). Let H ⊂ G be algebraic groups over F , C the algebraic closure

of F . Suppose H(C) ⊂ G(C) is identified by blockwise diagonal embedding GLh(C) × GLh(C) ⊂



5

GL2h(C). For any element g ∈ G(C) = GL2h(C), write

g =

 a b

c d


with a, b, c, d all h× h matrices. Put

 g′

g′′

 =

 a

d


 a b

c d


−1  a

d


 a −b

−c d


−1

. (1.3)

Then g′ and g′′ have the same characteristic polynomial. We call this polynomial as the invariant

polynomial of g denoted by Pg. For g ∈ G(F ), the invariant polynomial of g is defined by viewing it

as an element in G(C).

We call the polynomial Pg as invariant polynomial since for any h1, h2 ∈ H, Ph1g = Pg = Pgh2 .

Note that in (1.2), ϕ induces ResK/FD
×
K ⊂ D×F and τ induces ResK/F GLh ⊂ GL2h. On algebraic

closure C both of them is identified with GLh(C) × GLh(C) ⊂ GL2h(C). Therefore we can define

invariant polynomials for γ ∈ D×F and g ∈ GL2h(F ) relative to ϕ and τ . We can prove that Pg and

Pγ are polynomials over F .

Theorem 2.3. Let Res(γ, g) be the resultant of invariant polynomials of γ and g relative to ϕ and τ .

Put

Int(γ, f) =

∫
GL2h(F)

f(x)
∣∣Res(γ, x)

∣∣−1

F
dx. (1.4)

Suppose the invariant polynomial of γ is irreducible. Then the number

C · |∆K/F |−h
2

F Int(γ, f)

is exactly the intersection number of δ[ϕ, τ ]n with its translation by (γ, g) on Mn if f is the standard

function for Rng. Here |∆K/F |F is the norm of the relative discriminant of K/F and

C =

 1 if n > 0

c(K) if n = 0 (see(6.2)).

Remark 2.4. The Theorem 2.3 is also true for Hecke correspondence translation. If f is a standard

function of double cosets of Rn, The formula C · |∆K/F |−h
2

F Int(γ, f) interprets the intersection number

of a cycle with its translation by Hecke correspondence. See Section 3 Theorem 3.1 and (6.12),(6.13)
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for details.

Remark 2.5. In Proposition 2.4 we have a more general formula for CM cycles coming from two

different quadratic extensions.

3 Strategy of proof

The main idea is to raise the problem to the infinite level. We review some history, in Theorem 6.4.1

of the paper [SW2012] of Scholze-Weinstein, and also in the paper [Wei2013] of Weinstein, he shows

that the projective limit of the generic fiber of the Lubin-Tate tower for GF is a perfectoid space

M∞. They showed that M∞ can be embedded into the universal cover of G2h, where G is a certain

deformation of GF .

In contrast, our work is on the integral model and finite level. We proved the preimage of the

closed point under the transition map Mn → M1 is canonically isomorphic to G2h
F [πn−1]. In other

words, the following diagram is Cartesian (See Proposition 3.4)

G2h
F [πn−1] //

��

SpecFq

��
Mn

//M1

.

Those heuristic examples let us to regard G2h
F as an approximation ofMn when n→∞. Therefore,

it is natural to construct CM cycles δ[ϕ, τ ]∞ on G2h
F and formulate the similar intersection problem.

We calculated in Section §4 Proposition 5.3 that the intersection number of δ[ϕ, τ ]∞ and δ[γϕ, gτ ]∞ is

related to
∣∣Res(γ, g)

∣∣−1

F
, by using our Proposition 3.4, we proved that this number is the intersection

number on all spaces above certain level of the Lubin-Tate tower. In Section §6, we proved our main

Theorem 2.3 by using projection formula, the essential property for the method in Section §6 to work

is that the transition maps of the Lubin-Tate tower are generically etale.

4 The linear AFL

Since the linear AFL provides another conjectural formula for the intersection number of CM cycles

onM0 when K/F is unramified, using our Theorem 2.3, we have a conjectural identity equivalent to

the linear AFL. This conjectural identity is purely analytic. Now we state the linear AFL of Zhang

and introduce its equivalent form the Conjecture 1. Let K/F be an unramified extension with odd
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residue characteristic, (ϕ, τ) a pair of isomorphisms. Consider F-algebraic groups H ′ ⊂ G′ with the

inclusion given by

i : H ′ = GLh×GLh −→ GL2h = G′

(g1, g2) 7−→

 g1

g2


. (1.5)

For any γ ∈ D×, let g(γ) be an element in G′ having the same invariant polynomial with γ(with

respect to (1.5) and ϕ). Let η be the non-trivial quadratic character associated to K/F . We regard η

and |•|F as characters on H ′ by precomposing it with (g1, g2) 7→ det(g−1
1 g2)(note the inverse on g1).

Consider the following orbital integral

OrbF (f, g(γ), s) =

∫
H′×H′
I(g(γ))

f
(
h−1

1 g(γ)h2

)
η(h2)|h1h2|sFdh1dh2. (1.6)

Here

I (g) = {(h1, h2)|h1g = gh2}.

Assuming our main theorem, we state an equivalent form of the linear AFL conjecture of Zhang

Conjecture 1. Let K/F be an unramified quadratic extension with odd residue characteristic, (ϕ, τ)

a pair of isomorphisms, f a spherical Hecke function, then

± (2 ln q)−1 d

ds

∣∣∣∣
s=0

OrbF (f, g(γ), s) = c(K)

∫
GL2h(F)

f(g)
∣∣Res(γ, g)

∣∣−1

F
dg. (1.7)

By calculating both sides of this identity, the author has proved the linear AFL in the h=2 case

for the identity element in the spherical Hecke algebra in [Li2018a]. Another application of Theorem

2.3 is a new proof [Li2018b] of Keating’s results [Kea1988] on lifting problems for the endomorphism

of formal modules.

5 Outline of contents

We define the Lubin-Tate tower and CM cycles in Section §2. Afterwards, in Section §3 we define and

consider the intersection problem on G2h
F by viewing it as an approximation ofMn when n→∞ and

we compare the space G2h
F with spaces for the Lubin-Tate tower by proving an important Proposition

3.4. In Section §4, by using Proposition 3.4, we showed that the intersection number on G2h
F is related

to the one on the space at high levels of the Lubin-Tate tower. In Section §5, we calculate the
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intersection number on high levels of the Lubin-Tate tower by using G2h
F . In Section §6, we prove our

main Theorem 2.3.

6 Notation

This subsection provide a table for notation of this article served as a quick reminder or locator. We

strongly recommend the reader to skip this subsection and return back when necessary.

6.1 Formal module and Central Simple Algebras

The integer h is fixed. We denote

• GK ,GF : formal OK and OF modules over Fq of height h and 2h(kh) respectively.

• [+]G , [−]G , [a]G : the adding, subtracting, scaling operators defined by G.

• OD, ODK : identified as End(GF ) and End(GK), maximal orders of division algebras DF and

DK .

• DF , DK : division algebras of center F and K with invariant 1
2h and 1

h . DK is often considered

as a subalgebra of DF induced by ϕ.

• GL2h(F),G′2h: short notations for GL2h(F ).

• Hh: a subgroup of GL2h(F) isomorphic to GLh(K). The inclusion map is usually induced by τ .

• H′h: a subgroup of G′2h isomorphic to GLh(F ) × GLh(F ). The inclusion is usually blockwise

diagonal embedding.

• Rn: the kernel of the reduction map GL2h(OF )→ GL2h(OF /πn). R0 is GL2h(OF ).

• nrd, Nrd(g), NRD(g): the reduced norm for DF , glh(DF ), gl2h(DF ) respectively.

• NmL/F : The norm map from L to F .

• ∆ϕ,τ ,Pτ , Qτ : See Section §1 and subsection §2.1

6.2 Notation for Lubin-Tate towers

• M•∼, N•∼: Lubin-Tate towers associated to GF and GK respectively.(See Def.1.4 and Def.1.3)

• Mn
(j), Nn(j): the level πn, piece j part of the Lubin-Tate tower.
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• Mn, Nn: Abbreviations for Mn
(0) and Nn(0).

• [G, ι, α]n: an equivalent class of formal module deformations with level πn structure.

• (πmϕ, τ)n (resp. (πmγ, g)n): The map from Nn+m (resp. Mn+m) to Mn induced by (ϕ, τ) :

N• −→M• (resp. (γ, g) :M• −→M•). (See Definition 4.5)

• (πm)Nn ,(πm)n: transition maps from Nn+m(resp. Mn+m) to Nn (resp. Mn).

• δ[ϕ, τ ]n: the CM cycle on Mn defined by ϕ and τ .(See Def.3.2 )

• Equih(K/F ) (resp.Equi2h(F/F )): The subset of pairs (ϕ, τ)(resp.(γ, g)) such that the map

induced on Lubin-Tate towers preserve the piece index. See Definition 4.2

• ν(τ): The conductor of τ . (See Definition 4.4)

6.3 Linear Algebra Notation

For any ring O, we denote

• On: the free R-module of n× 1 matrices over O;

• On∨: the free R-module of 1× n matrices over O, dual to On;

• g∨ : V ∨ −→W∨: The dual of the map g : W −→ V . W and V are free modules over O.

• (a, b, c, · · · ): Diagonal matrix with diagonal entries a, b, c · · · .

6.4 Symbols

We usually use the following letter symbols

• h: a fixed integer, indicating we are considering problems for GL2h.

• n, n+m: integers, indicating the πn and πn+m level of the tower.

• k: an integer, k = [K : F ], used when defining general CM cycles when k 6= 2.

• (j): integer in parenthesis, indicating the piece j of the tower.

• g and x: elements in GL2h(F); x is usually in integrands to avoid conflicts with g.

• γ: an element in DF .

• ϕ: a quasi-isogeny from GK to GF as formal OF -module.
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• τ : an isomorphism from Kh to F 2h as F-linear space.

• ι: a quasi-isogeny from GF to G ⊗A Fq, used in the definition of deformation.

• α: a map defining Drinfeld level structure.

• A: a test object in C.

• c(K): a constant, see (6.2).
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Chapter 2

CM cycles of the Lubin-Tate tower

In this section, we give a general definition for CM cycles for arbitrary field extension K/F . Let

k = [K : F ], we remark here k is not necessarily equals 2. We keep those general settings until we

start discussing the intersection number.

To explain definitions more clearly, we put all proofs and properties to the last subsection §5.

1 The Lubin-Tate tower

In this subsection we give a precise definition of the Lubin-Tate tower associated to a formal OK-

module GK of height h.

1.1 Formal modules

Suppose A is a B-algebra with the structure map s : B −→ A. A (one-dimensional) formal B-module

G = (G′, i) over A is a one dimensional formal group law G′ over A, with a homomorphism of rings

i : B −→ End(G′) such that the induced action of B on Lie(G) ∼= A is the same as the one induced by

the structure map.

If the residual field of B is Fq, and q is a power of the prime p, A is of characteristic p, and G1,G2

are formal B-modules over A, then for any α ∈ Hom(G1,G2), it can be written as α(X) = β(Xqh) for

some β with β′(0) 6= 0. We call this h the height of α. Furthermore, if B is a discrete valuation ring

with the uniformizer π, then we define the height of G by the height of i(π). For convenience, we use

symbols [a]G and [+]G to denote the addition and scalar multiplication operators defined by G.

Let GK be a height h formal OK module over Fq, K̆ the unramified closure of K. Lubin and Tate

studied a problem of deforming GK to a formal OK module over A ∈ C where C is the category of
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complete Noetherian local OK̆-algebras with residual field Fq. A deformation of GK over A is a pair

(G, ι) of G a formal OK-module over A and an OK-quasi-isogeny ι : GK −→ G, where G is the base

change of G to Fq. Two deformations (G1, ι1) and (G2, ι2) are equivalent if there is an isomorphism

ζ : G1 −→ G2 of formal OK modules such that it induces the identity map of GK via ι1 and ι2. In

other words, we need ι2 = ζ ◦ ι1. This kind of isomorphism is also called a *-isomorphism in the

literature. We denote the equivalent class of (G, ι) by [G, ι].

Definition 1.1. If the height of ι equals to 0, we call the deformation [G, ι] as a classical deformation.

Lubin and Tate showed that the functor which assigns each A ∈ C to the set of equivalent classes

of classical deformations of GK over A is representable by N0
(0), which is isomorphic to the formal

spectrum of

A0 = OK̆ [[U1, · · · , Uh−1]].

Let Guniv
K be the universal formal OK module over A0, Drinfeld [Dri1974] showed that the ring An

obtained by adding πn-torsions of Guniv
K is also a regular local ring. Let Nn(0) be its formal spectrum,

its set of A-points Nn(0)(A) is the set of equivalent classes [G, ι, α]n of triples (G, ι, α), which includes

data of a classical deformation (G, ι) and a homomorphism of left OK-modules α : Oh∨K −→ G[πn](A)

such that the power series [πn]G(X) is divisible by

∏
v∈(OK/πn)h∨

(X[−]Gα(v)).

Definition 1.2. We call the above α a Drinfeld level πn structure of G, N0
(0) the classical Lubin-

Tate deformation space(Lubin-Tate space) of GK and Nn(0) the classical Lubin-Tate space with level

πn structure.

LetNn(j) be the formal scheme representing the functor classifying triples [G, ι, α]n with Height(ι) =

j. We briefly explain the existence of this formal scheme. Since End(GK) is the maximal order of a divi-

sion algebra over K, an uniformizer of End(GK) corresponds to an isogeny of height 1 $ : GK −→ GK .

By precomposing $j to the ι in the triple [G, ι, α]n, we obtain an (non-canonical) identification between

deformations with Hight(ι) = j to classical deformations. ThereforeNn(j) exists and (non-canonically)

isomorphic to Nn(0).

Definition 1.3. We define Nn∼ as the disjoint union

Nn∼ =
∐
j∈Z
Nn(j).
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As a functor, Nn∼(A) classifies all deformations of GK over A with Drinfeld level πn structure.

1.2 Lubin-Tate tower

Definition 1.4. The Lubin-Tate tower N•∼ associated to GK is a projective system of {Nn∼}n∈Z≥0

with transition maps, functorially in A ∈ C, given by

(π)Nn : Nn+1
∼(A) −→ Nn∼(A)

[G, ι, α]n+1 7−→ [G, ι, [π]G ◦ α]n

.

These transition maps do not change the height of ι in the definition, therefore maps Nn+1
(j) to

Nn(j). We denote the subtower {Nn(j)}n∈Z≥0
of N•∼ by N•(j).

2 Maps between Lubin-Tate towers

Let K/F be a field extension of degree k, GF the formal OF -module by only remembering OF -action of

GK . From now on we fix π as a uniformizer of OF (so not necessarily a uniformizer of OK). Consider

a pair (ϕ, τ) of morphisms

ϕ : GK −→ GF ;

τ : Kh −→ F kh,

(2.1)

where τ is F -linear and ϕ is a quasi isogeny of formal OF -modules. LetM•∼ be the Lubin-Tate tower

associated to GF . In this section, we will define a map (ϕ, τ) : N•∼ −→M•∼ induced by ϕ and τ . It

is helpful to describe them separately.

Remark 2.1. By the subindex n of Nn(j) we mean level-πn structure. But π is not necessarily a

uniformizer of OK , the fractional subindex like Nn
k

(j) could make sense if K/F is ramified. But we

do not need fractional-subindex-spaces in our discussion.

Remark 2.2. In our article, a map for two towers α : N•∼ −→M•∼ means an element in

lim←−
j

lim−→
i

Hom(Ni∼,Mj
∼).

This kind of element is uniquely determined if we choose compatible elements in Hom(Nm+n
∼,Mn

∼)

for all n ≥ 0 with some fixed m ≥ 0.
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2.1 Map induced by ϕ

Definition 2.3. We define the induced map (ϕ) : N•∼ −→ M•∼ by the following morphism in

Hom(Mn
∼,Nn∼), functorially in A ∈ C, for each n ≥ 0,

Nn(j)(A) −→ Mn
(kj+Height(ϕ−1))(A)

[G, ι, α]n 7−→ [G, ι ◦ ϕ−1, α]n

(2.2)

In other words, the map is defined by precomposing ϕ−1 to the second data. The map (ϕ) shift

the index by Height(ϕ−1).

2.2 Map induced by τ

Similarly, it is straightforward to define the map induced by τ by precomposing τ∨ to the third data,

but this arise a problem that α ◦ τ∨ may not be a well-defined Drinfeld level structure. Now fix τ , we

define our desired map by the following procedure.

Let m be an integer such that

τ∨(Okh∨F ) ⊃ πmOh∨K . (2.3)

(We will define the smallest such m as ν(τ), see Definition 4.4). Let

V = τ∨(πnOkh∨F )/πn+mOh∨K . (2.4)

Suppose α is a Drinfeld level-πn+m structure of G. Consider a power series defined by

ψ(X) =
∏
v∈V

(X[−]Gα(v)). (2.5)

Then by Serre’s construction there exists a formal OF -module G2 such that ψ is an isogeny ψ : G −→

G2. Note that the kernel of ψ is α(V ).

Definition 2.4. With the above setting and notation, we define the induced map (τ) : N•∼ −→M•∼

by the following morphism in Hom(Nm+n
∼,Mn

∼), functorially in A ∈ C, for each n ≥ 0,

Nn+m
(j)(A) −→ Mn

(kj+Height(ψ◦π−m))(A)

[G, ι, α]n+m 7−→ [G2, ψ ◦ ι ◦ π−m, ψ ◦ α ◦ τ∨]n

. (2.6)
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Remark 2.5. If τ is an isomorphism from OhK to O2h
F , then (2.6) is simply given by

[G, ι, α]n 7→ [G, ι ◦ ϕ−1, α ◦ τ∨]n.

We claim this definition does not depend on the choice of m since maps arise from two different m

in (2.6) only differ by a transition map of the Lubin-Tate tower. Transition maps induce the identity

map for a tower by Remark 2.2. We also need to check ψ ◦ α ◦ τ∨ do define a Drinfeld-πn level

structure. We prove this in Lemma 5.1.

Remark 2.6. If τ(OhK) = OkhF , then we can take m = 0 and the definition in (2.6) reduces to

precomposing τ∨ to the third data: [G, ι, α]n 7→ [G, ι, α ◦ τ∨]n.

We also note that the map (τ) shift the index by Height(ψ ◦π−m). Therefore it is natural to define

this number as the height of τ .

Definition 2.7. Let q be the cardinality of the residue field of OF . For an F -linear map τ : Kh −→

F kh, define the height of τ by

Height(τ) = logq Vol(τ(OhK)), (2.7)

the volume is normalized by OkhF .

Remark 2.8. We define the height in this way because

logq Vol(τ(OhK)) = logq Vol(τ∨(Okh∨F )) = Height(π−m) + logq #V = Height(π−mψ).

2.3 Maps induced by ϕ and τ

Putting those definitions together, we can define

Definition 2.9. With the above setting and notation, we define the induced map (ϕ, τ) : N•∼ −→

M•∼ functorially in A ∈ C by following maps for all n ≥ 0

Nn+m
(j)(A) −→ Mn

(kj+Height(τ)−Height(ϕ))(A)

[G, ι, α]n+m 7−→ [G2, ψ ◦ ι ◦ π−m ◦ ϕ−1, ψ ◦ α ◦ τ∨]n

. (2.8)
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3 CM cycles of the Lubin-Tate tower

In this subsection, we define a CM cycle on the Lubin-Tate tower M•∼ induced by the map

(ϕ, τ) : N•∼ −→M•∼. (2.9)

Therefore, we need to define the cycle for each Mn
(j).

Definition 3.1. Let (ϕ, τ) be the map for Lubin-Tate towers as in (2.9), its corresponding CM cycle

δ[ϕ, τ ]• is a family of cycles giving an element δ[ϕ, τ ]Mn
(j) in Q-coefficient K-group of coherent sheaves

for each Mn
(j). The cycle δ[ϕ, τ ]Mn

(j) is defined as follows. Suppose the map (ϕ, τ) on Nn+m
∼ and

Mn
∼ is given by

oϕ,τ : Nn+m
(l) −→Mn

(j).

Here l = j
k −Height(τ) + Height(ϕ). If l is an integer, we define

δ[ϕ, τ ]Mn
(j) =

1

deg
(
Nn+m

(l) → Nn(l)
) [oϕ,τ∗ONn+m

(l)

]
;

Otherwise, we define δ[ϕ, τ ]Mn
(j) = 0. Here the map Nn+m

(l) → Nn(l) is the transition map.

Remark 3.2. The definition does not depend on m because each transition map ν : Nm+1
(l) −→ Nm(l)

is a finite flat map over formal spectra of regular local rings, therefore ν∗ONm+1
(l)
∼= OdNm(l) for

d = deg
(
Nm+1

(l) → Nm(l)
)

.

4 Classical Lubin-Tate spaces

By using an element ω ∈ D×F with valuation j, we can always identifyMn
(j) withMn

(0) by the map

induced by ω. Therefore any problem or statement related to Mn
(j) is reduced to consider spaces

Mn
(0) with index (0) of the Lubin-Tate tower. From now on, we restrict ourselves onto those spaces

for easier elaboration.

Definition 4.1. We call a space in the Lubin-Tate tower with index (0) ( for example Nn(0) or

Mn
(0)) a classical Lubin-Tate space. For simplicity, we omit their index and denote them as Nn or

Mn.
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4.1 Maps and CM cycles for classical Lubin-Tate spaces

To induce maps from N• toM•, we need to put restrictions on (ϕ, τ) such that they do not shift the

index. By Definition 2.9, this is equivalent to require Height(τ) = Height(ϕ).

Definition 4.2. A pair of morphism in (2.1) is called as equi-height, if

Height(τ) = Height(ϕ).

We denote the set of maps (ϕ, τ) : N•∼ −→M•∼ induced by equi-height pairs as Equih(K/F ).

Remark 4.3. Another set of equi-height pairs we will frequently use is Equikh(F/F ), by definition it

is the set of elements (γ, g) ∈ D×F ×GLkh(F ) such that

vF (det(g)) = vF
(
nrd(γ−1)

)
.

Here nrd is the reduced norm for DF .

From now on, we will work on each space instead of the whole tower. Let (ϕ, τ) ∈ Equih(K/F ).

Note that the map (ϕ, τ) for Lubin-Tate towers may not induce an element in Hom(Nn+m,Mn) for

some m. In our situation, m needs to be large enough to obtain an element in Hom(Nn+m,Mn) as

described in (2.3). We define the smallest such an m as the conductor of τ .

Definition 4.4. Let τ : Kh −→ F kh be an F -linear map, we define the conductor ν(τ) of τ by the

minimal integer m such that

τ(OhK) ⊃ πmOkhF .

Definition 4.5. If m ≥ ν(τ) and (ϕ, τ) ∈ Equih(K/F ), by the symbol (πmϕ, τ)n we mean the map

Nn+m →Mn (j = 0) defined in (2.8) of Definition 2.9. In this case, we call the ψ of (2.8) (defined

at (2.5)) the Seere-isogeny associated to (ϕ, τ).

Remark 4.6. If F = K, ϕ = id, τ = id. By our symbol the map (πmid, id)n :Mn+m −→Mn is the

transition map for the Lubin-Tate tower.

To lighten notation, we will use the symbol (πm)n for the transition mapMm+n →Mn , (πm)Nn

for Nm+n → Nn .
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5 Properties of (πmϕ, τ)n

Firstly we check ψ ◦ α ◦ τ∨ in (2.6) is a Drinfeld πn-level structure so that previous definitions are

well-defined. Since the statement does not involve ϕ, it is sufficient only to prove it for equi-height

pairs.

Lemma 5.1. Let ψ : G −→ G2 be the Serre isogeny associated to (πmϕ, τ) where m ≥ ν(τ) and

(ϕ, τ) ∈ Equih(K/F ). Suppose α is a πm+n-level structure for G, then ψ ◦ α ◦ τ∨ is a πn-level

structure for G2.

Proof. Lubin-Tate deformation spaces are formal spectra of complete regular local rings. In other

words, the universal formal module is defined over a regular local ring. Therefore, without loss of

generality we can assume G1,G2 are defined over a regular local ring A. In particular, A is a unique

factorization domain. In this case, to show [πn]G2(X) is divisible by

∏
v∈Okh∨F /πn

(
X[−]G2ψ ◦ α ◦ τ∨(v)

)

is equivalent to check ψ ◦ α ◦ τ∨(v) are distinct solutions of [πn]G2
(X) = 0 for v ∈ Okh∨F /πn. Firstly,

if v 6= w as elements in Okh∨F /πn, then ψ ◦ α ◦ τ∨(v) 6= ψ ◦ α ◦ τ∨(w) because τ∨(v) − τ∨(w) /∈

ker
(
ψ ◦ α

)
= τ∨(πnOkh∨F ). Secondly, we need to check ψ ◦ α ◦ τ∨(v) is a solution for [πn]G2

(X) = 0.

Indeed,

[πn]G2
(ψ ◦ α ◦ τ∨(v)) =ψ([πn]G ◦ α ◦ τ∨(v))

=ψ ◦ α ◦ τ∨(πnv)

=0.

Therefore the lemma follows.

Our next goal is to prove (γ, g) translates the cycle δ[ϕ, τ ]• to δ[γϕ, gτ ]•. To do this, we need to

define the action of (γ, g) on Q-coefficient K-groups ofM•∼. It is sufficient to define and prove those

arguments for M•, (γ, g) ∈ Equikh(F/F ) and (ϕ, τ) ∈ Equih(K/F ). Before further elaboration, we

need some lemma.

Lemma 5.2. Let (ϕ, τ) ∈ Equih(K/F ), (γ, g) ∈ Equikh(F/F ),m1 ≥ ν(τ) and m2 ≥ ν(g). Let ψ1 and

ψ2 be Serre’s isogenies attached to (πm1ϕ, τ) and (πm2γ, g) respectively. Let ψ3 be the Serre’s isogeny

attached to (πm1+m2γϕ, gτ). Then

ψ3 = ψ2 ◦ ψ1.
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Proof. The proof is directly checking the definition. To fix notations, let

(πm1ϕ, τ)n+m2 [G, ι, α]n+m1+m2 =[G′, ι′, α′]n+m2

(πm2γ, g)n[G′, ι′, α′]n+m2
=[G′′, ι′′, α′′]n.

(2.10)

By definition of ψ1 : G −→ G′ and ψ2 : G′ −→ G′′, we have

ψ2(ψ1(X)) =
∏

v∈U(g)

(ψ1(X)[−]G′α
′(v))

Here U(g) = g∨(πnOkh∨F )/πn+m2Okh∨F . Note that α′ = ψ1 ◦ α ◦ τ∨ by our Definition 2.8, so

ψ1(X)[−]G′α
′(v) = ψ1(X)[−]G′ψ1 ◦ α(τ∨(v))

Since ψ1 is an isogeny from G to G′, therefore

ψ1(X)[−]G′ψ1 ◦ α (τ∨(v)) = ψ1 (X[−]Gα(w)) .

Here w = τ∨(v). Therefore we have

ψ2(ψ1(X)) =
∏

w∈U(gτ,τ)

ψ1(X[−]Gα(w)),

where U(gτ, τ) = τ∨ ◦ g∨(πnOkh∨F )/πn+m2τ∨(Okh∨F ). Now we expand ψ1 by its definition in (2.5).

ψ2 ◦ ψ1(X) =
∏

w∈U(gτ,τ)

∏
v∈U(τ)

(X[−]Gα(w + v))

Here U(τ) = πn+m2τ∨(Okh∨F )/πn+m1+m2Oh∨K . Therefore

ψ2 ◦ ψ1(X) =
∏

v∈U(gτ)

(X[−]Gα(v)) = ψ3(X).

Here U(gτ) = (gτ)∨(πnOkh∨F )/πn+m1+m2Oh∨K .

Therefore we have the following lemma.

Lemma 5.3. Let (ϕ, τ) ∈ Equih(K/F ), (γ, g) ∈ Equikh(F/F ),m1 ≥ ν(τ) and m2 ≥ ν(g), then

(πm2γ, g)n ◦ (πm1ϕ, τ)n+m2
= (πm1+m2γϕ, gτ)n.
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Proof. To fix notation, let

(πm1ϕ, τ)n+m2 [G, ι, α]n+m1+m2 =[G′, ι′, α′]n+m2

(πm2γ, g)n[G′, ι′, α′]n+m2
=[G′′, ι′′, α′′]n.

(2.11)

We take Serre isogenies ψ1 : G −→ G′, ψ2 : G′ −→ G′′ and ψ3 : G −→ G′′ attached to (πm1ϕ, τ),

(πm2γ, g), (πm1+m2γϕ, gτ) respectively. Then from Lemma 5.2, we know ψ3 = ψ2 ◦ ψ1. Then by

definition

(πm1+m2γϕ, gτ)n[G, ι, α]n+m1+m2
=[G′′, ψ3 ◦ ι ◦ π−m1−m2ϕ−1γ−1, ψ3 ◦ α ◦ τ∨g∨]n

=[G′′, ψ2 ◦ ψ1 ◦ ι ◦ π−m1ϕ−1π−m2γ−1, ψ2 ◦ ψ1 ◦ α ◦ τ∨g∨]n

=[G′′, ι′′, α′′]n.

Therefore this lemma follows.

Now we turn to CM cycles. To lighten notations, we write δ[ϕ, τ ]n for δ[ϕ, τ ]Mn .

Remark 5.4. For any (ϕ, τ) ∈ Equih(K/F ), we can write δ[ϕ, τ ]n as following

δ[ϕ, τ ]n =
1

deg(πm)Nn

[
(πmϕ, τ)n∗ONn+m

]
, (2.12)

where m ≥ ν(τ), the symbol [F ] means the class of F in K-group.

Next we define the action of (γ, g) for the cycle.

Definition 5.5. For any (γ, g) ∈ Equikh(F/F ), and m ≥ ν(g), we define

(γ, g)∗δ[ϕ, τ ]n =
1

deg(πm)Nn
(πmγ, g)n∗δ[ϕ, τ ]n+m. (2.13)

Proof of (2.12) and (2.13) not depending on m. (2.12) not depending on m is equivalent to verify

[
(πmϕ, τ)n∗ONn+m

]
=

deg(πm)Nn
deg(πm+1)Nn

[
(πm+1ϕ, τ)n∗ONn+m+1

]
. (2.14)

Note that (πm+1ϕ, τ)n = (πmϕ, τ)n(π)n+m and (π)n+m∗[ONn+m+1
] = deg(π)Nn+m

[ONn+m
], so

[
(πm+1ϕ, τ)n∗ONn+m+1

]
= deg(π)Nn+m

[
(πmϕ, τ)n∗ONn+m

]
.

Furthermore, since deg(π)Nn+m
deg(πm)Nn = deg(πm+1)Nn , both sides of (2.14) are equal.
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The equation (2.13) not depending on m is equivalent to verify

(πmγ, g)n∗δ[ϕ, τ ]n+m =
deg(πm)Nn

deg(πm+1)Nn
(πm+1γ, g)n∗δ[ϕ, τ ]n+m+1. (2.15)

Note that (πm+1γ, g)n = (πmγ, g)n(π)n+m and (π)n+m∗δ[ϕ, τ ]n+m+1 = deg(π)Nn+m
δ[ϕ, τ ]n+m so

(πm+1γ, g)n∗δ[ϕ, τ ]n+m+1 = deg(π)Nn+m
(πmγ, g)n∗δ[ϕ, τ ]n+m.

Furthermore, since deg(π)Nn+m deg(πm)Nn = deg(πm+1)Nn , both sides of (2.15) are equal.

Proposition 5.6. Let (γ, g) ∈ Equikh(F/F ),(ϕ, τ) ∈ Equih(K/F ). For any n ≥ 0,

(γ, g)∗δ[ϕ, τ ]n = δ[γϕ, gτ ]n. (2.16)

Proof. Let m = ν(g) and M = ν(τ). By Definition 5.5, we need to verify (πmγ, g)n∗δ[ϕ, τ ]n+m =

deg(πm)Nnδ[γϕ, gτ ]n. By expression (2.12), we therefore need to verify

1

deg(πM )Nn+m

(πmγ, g)n∗(π
Mϕ, τ)n+m∗ONn+M+m

=
deg(πm)Nn

deg(πM+m)Nn
(πm+Mγϕ, gτ)n∗ONn+M+m

.

Since deg(πM+m)Nn = deg(πm)Nn deg(πM )Nn+m
, therefore this is reduced to verify (πmγ, g)n ◦

(πMϕ, τ)n+m = (πm+Mγϕ, gτ)n, which is true by Lemma 5.3.
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Chapter 3

An approximation for infinite level

CM cycles

For any free OF -module M and formal OF -module G, Serre tensor construction gives a formal OF -

module G ⊗OF M . In this section, we assume in general [K : F ] = k. Consider

GhK ∼= GK ⊗OK OhK ∼= HomOK (Oh∨K ,GK),

GkhF ∼= GF ⊗OF OkhF ∼= HomOF (Okh∨F ,GF ),

where by HomOK (Oh∨K ,GK) we mean the functor from categories of C to sets by assigning each A ∈ C

A 7→ HomOK
(
Oh∨K ,GK(A)

)
.

The meaning for HomOF (Okh∨F ,GF ) is similar. We define CM cycles δ[ϕ, τ ]∞ on GkhF for any (ϕ, τ) ∈

Equih(K/F ). In this section, our goal is to compare cycles δ[ϕ, τ ]∞ and δ[ϕ, τ ]n . Formally speaking,

δ[ϕ, τ ]∞ is an approximation of δ[ϕ, τ ]n when n→∞. So we will use ∞ as our subindex of notation.

Let C ⊗ Fq be a full subcategory of C collecting all A ∈ C such that π = 0 in A. We assume

[π]GK (X) = Xqkh .

This would not loss generality since all formal OK-modules of height h are isomorphic over Fq.

Throughout this subsection (ϕ, τ) ∈ Equih(K/F ), (γ, g) ∈ Equikh(F/F ) , m ≥ ν(τ).
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1 Maps of GhK and GkhF

Definition 1.1. We define

(1) (πmϕ, τ)∞ = (πmϕ)⊗ τ is the isogeny of : GhK −→ GkhF . Functorially in A ∈ C, this defines:

(πmϕ, τ)∞ : HomOK (Oh∨K ,GK(A)) −→ HomOF (O2h∨
F ,GF (A))

f 7−→ πmϕ ◦ f ◦ τ∨

(3.1)

(2) Ker (πmϕ, τ)∞ is the kernel of the isogeny (πmϕ, τ)∞.

(3) s(πmϕ, τ)∞ is the natural inclusion s(πmϕ, τ)∞ : Ker (πmϕ, τ)∞ −→ GhK .

(4) (πm)GhK and (πm)GkhF are endomorphisms of GhK and GkhF by diagonal multiplying πm respectively.

Write (πm)∞ = (πm)GkhF for short.

Remark 1.2. If K = F , we can take (γ, g) ∈ Equikh(F/F ). Then Definition 1.1 defines (πmγ, g)∞,

Ker(πmγ, g)∞ and s(πmγ, g)∞.

Proposition 1.3 (Analogue to Lemma 5.3). Let m1 ≥ ν(g), m2 ≥ ν(τ) then

(πm1γ, g)∞(πm2ϕ, τ)∞ = (πm1+m2γϕ, gτ)∞.

Proof. Left= (πm1γ ⊗ g) ◦ (πm2ϕ⊗ τ) = (πm1+m2γϕ)⊗ (gτ) =Right.

2 CM cycles in GkhF

We define CM cycles in GkhF by similar ways as in Definition 3.2.

Definition 2.1. Let δ[ϕ, τ ]∞ be the element in Q-coefficient K group (of coherent sheaves) of GkhF as

following

δ[ϕ, τ ]∞ =
1

deg(πm)GhK

[
(πmϕ, τ)∞∗OGhK

]
. (3.2)

The definition does not depend on m by Proposition 1.3.

Definition 2.2. Let (γ, g) ∈ Equikh(F/F ). For any m ≥ ν(g), define

(γ, g)∗δ[ϕ, τ ]∞ =
1

deg(πm)GhK
(πmγ, g)∗δ[ϕ, τ ]∞.
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this definition does not depend on m by Proposition 1.3.

3 Thickening comparison

This part is the technical core of this article. We will show that there is a canonical isomorphism of

preimages

(πmϕ, τ)∞
−1 (

SpecFq
) ∼= (πmϕ, τ)−1

n

(
SpecFq

)
(3.3)

if n > ν(τ). This isomorphism compares finite order thickenings at the closed point of GhK and Mn

respectively because both (πmϕ, τ)∞ and (πmϕ, τ)n are finite flat. We will prove (3.3) by two steps.

Step 1, we will show that there is a map (πmϕ, τ)∞
−1 (

SpecFq
)
→ Nm+n for large n. Step 2, we will

show this is a closed embedding, and as a subscheme this is exactly (πmϕ, τ)−1
n

(
SpecFq

)
.

3.1 Step 1. Definition of s(πmϕ, τ)n

Note that

(πmϕ, τ)∞
−1 (

SpecFq
)

= Ker (πmϕ, τ)∞.

Definition 3.1. For any n > ν(τ), define the map functorially in A ∈ C,

s(πmϕ, τ)n : Ker (πmϕ, τ)∞(A) −→ Nm+n(A)

f 7−→ [GK , id, f ]

. (3.4)

We claim this definition is well defined. Since Ker (πmϕ, τ)∞(A) 6= ∅ implies A ∈ C ⊗ Fq, so GK is

a formal OK-module over A. Next we only have to check f is a Drinfeld πm+n-level structure of GK

over A. We need the following lemma.

Lemma 3.2. For any A ∈ C ⊗Fq, every element f ∈ Hom
(
Oh∨K ,GK [πn](A)

)
is a Drinfeld πn+1-level

structure.

Proof. We will show ∏
w∈Oh∨K /πn+1Oh∨K

(X − f(w)) = [πn+1]GK (X) (3.5)

by induction. If n = 0, the expression (3.5) is clearly true. Assume this statement is true for n − 1,
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write [πn]GK as [πn] for short, we have

[πn+1](X) = [πn]([π](X))

By induction hypothesis, this expression equals to

∏
w∈Oh∨K /πnOh∨K

([π]X − [π]f (w)) .

Since we have [π](X) = Xqkh , we can write the multiplicand as

[π]X − [π]f (w) = Xqkh − f(w)q
kh

= (X − f(w))q
kh

.

Besides, since f is trivial on πnOh∨K , we have f(w + v) = f(w) for any v ∈ πnOh∨K , therefore

∏
w∈Oh∨K /πnOh∨K

(X − f(w))q
kh

=
∏

w∈Oh∨K /πn+1Oh∨K

(X − f(w)).

The lemma follows.

Prove definition 3.1 well defined: We need to show f ∈ Ker (πmϕ, τ)∞(A) is a Drinfeld πm+n-level

structure for GK . Since πmϕ◦f◦τ∨ = 0 and Height(ϕ−1) ≥ 0, then ϕ−1 is an isogeny. Let u = ν(τ)+1.

Since πu−1τ−1∨Oh∨K ⊂ Okh∨F , and n ≥ u, then πn−1τ−1∨ ∈ Hom(OhK ,OkhF ). Therefore

πm+n−1 ◦ f =ϕ−1 ◦ πmϕ ◦ f ◦ τ∨ ◦ πn−1τ−1∨

=ϕ−1 ◦ 0 ◦ πn−1τ−1∨

=0.

(3.6)

So f factors through OhK −→ GhK [πm+n−1]. By Lemma 3.2, f is a level-πm+n structure.

3.2 Step 2. Properties of s(πmϕ, τ)n

Remark 3.3. We make following remarks before starting Step 2.

• For any A ∈ C ⊗ Fq, we will use the same notation GK ,GF to denote the base change of GK ,GF

to A.

• This fact will be frequently used: Let A ∈ C ⊗ Fq, then AutA(GF ) = AutFq (GF ).So [GF , γ, α]n =

[GF , id, γ−1α]n as an element in Nn(A).
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Proposition 3.4. We have following properties for s(πmϕ, τ)n:

(1) The map s(πmϕ, τ)n is a closed embedding. The following diagram is Cartesian

Ker (πmϕ, τ)∞ //

s(πmϕ,τ)n

��

SpecFq

��
Nm+n

(πmϕ,τ)n //Mn

. (3.7)

(2) Let F/E be a field extension. (ϕ1, τ1) ∈ Equih(K/F ), (ϕ2, τ2) ∈ Equikh(F/E), (ϕ3, τ3) =

(ϕ2ϕ1, τ2τ1) ∈ Equih(K/E). m1 > ν(τ1), m2 > ν(τ2), m3 = m1 +m2. the following diagram is

Cartesian

Ker(πm3ϕ3, τ3)∞
(πm1ϕ1,τ1)∞ //

��

Ker(πm2ϕ2, τ2)∞

��
Nn+m1

(πm1ϕ1,τ1)n //Mn

. (3.8)

Proof. Firstly, we claim that for the statement (1) we only have to show the diagram (3.7) is Cartesian,

then s(πmϕ, τ)n is a closed embedding because it is a base change of the closed embedding SpecFq →

Mn. For statement (2) we only have to show the diagram (3.8) is commutative, then (3.8) being

Cartesian follows by (1) and associativity of the fiber product by following reasons.

If (3.8) is commutative, use L = Ln−m2 to denote the πn−m1-level Lubin-Tate space of GE , where

GE is GF without OF rOE action. By statement (1),

Ker(πm3ϕ3, τ3)∞ = Nn+m ×L SpecFq.

Then by the associativity of the fiber product and commutativity of (3.8),

Ker(πm3ϕ3, τ3)∞ =Nn+m ×L SpecFq

=Nn+m ×MnMn ×L SpecFq

=Nn+m ×Mn Ker(πm2ϕ2, τ2)∞.

(3.9)

Therefore the diagram (3.8) is Cartesian.

In few words, This theorem is reduced to check

• (1)(3.7) is Cartesian

• (2)(3.8) is commutative.
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Functorially in A ∈ C, (1) (2) is equivalent to following statements respectively:

1. Let [G, ι, α]m+n ∈ Nm+n(A), we have (πmϕ, τ)n[G, ι, α]m+n = [GF , id, 0]n if and only if

[G, ι, α]m+n = [GK , id, f ]m+n and πmϕ ◦ f ◦ τ∨ = 0.

2. If (πm3ϕ3, τ3)n−m1 [GK , id, f ]n+m2 = [GE , id, 0]n−m1 then

(πm1ϕ1, τ1)n[GK , id, f ]n+m1
= [GF , id, πm1ϕ1 ◦ f ◦ τ∨1 ]n.

Proof of statement (1): To prove (⇐=), since [G, ι, α]n+m = [GK , id, f ]n+m. So

(πmϕ, τ)n[G, ι, α]n+m =(πmϕ, τ)n[GK , id, f ]n+m = [G′, ψ ◦ π−mϕ−1, ψ ◦ f ◦ τ∨]n, (3.10)

where ψ : GK −→ G′ is the Seere isogeny of (πmϕ, τ). We want to show

[G′, ψ ◦ π−mϕ−1, ψ ◦ f ◦ τ∨]n = [GF , id, 0]n.

By definition,

ψ(X) =
∏
w∈V

(
X[−]GKf(w)

)
,

where V = τ(πmOkh∨F )/πn+mOh∨K . We claim

f(w) = 0 for any w ∈ V. (3.11)

If our claim is true, then

ψ(X) =
∏
w∈V

(
X[−]GKf(w)

)
= X#V = Xqkhm−Height(τ)

.

So

ψ ◦ [π]GK (X) = Xqkhm−Hight(τ)+kh

= [π]GF ◦ ψ(X).

Therefore, G′ = GF . Since Height(π−mψ) = Height(τ) and Height(ϕ) = Height(τ), then the height of
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π−mψϕ−1 is 0, so is an isomorphism. Therefore,

(πmϕ, τ)n[GK , id, f ]n+m = [GF , π−mψϕ−1, ψ ◦ f ◦ τ∨]n

=
[
GF , id, (π−mψϕ−1)−1ψ ◦ f ◦ τ∨

]
n

(3.12)

Furthermore, since πmϕ ◦ f ◦ τ∨ = 0,

(π−mψϕ−1)−1ψ ◦ f ◦ τ∨ = πmϕ ◦ f ◦ τ∨ = 0

So we have

(πmϕ, τ)n[GK , id, f ]n+m = [GF , id, 0]n.

Therefore, we only have to prove our claim (3.11). Since πmϕ ◦ f ◦ τ∨ = 0, compose both sides by the

isogeny ϕ−1, then this implies

f ◦ τ∨(πmv) = 0 for any v ∈ Okh∨F .

Therefore, f(w) = 0 for any w ∈ V because w = τ∨(πmv) for some v ∈ Okh∨F .

To prove (=⇒), choose ϕ0 = id ∈ IsomOF (GK ,GF ), τ0 ∈ IsomOF (OhK ,OkhF ). Then ϕ = γϕ0

for some γ ∈ IsogOF (GF ,GF ) and τ = gτ0 for some g ∈ IsomF (F kh, F kh). In particular (γ, g) ∈

Equikh(F/F ). Let u = ν(τ) + 1, then (πu−1γ−1, πu−1g−1) ∈ Equikh(F/F ). Since πu−1OkhF ⊂

πu−1g−1OkhF , so ν(πu−1g−1) ≤ u− 1. On one hand,

(γ−1, πu−1g−1)n−u+1(πmϕ, τ)n[G, ι, α]n+m

=(πmϕ0, π
u−1τ0)n−u+1[G, ι, α]n+m

=[G, ι, α ◦ πm+u−1τ0]n−u+1.

(3.13)

On the other hand, since (πmϕ, τ)n[G, ι, α]n+m = [GF , id, 0]n,

(γ−1, πu−1g−1)n−u+1(πmϕ, τ)n[G, ι, α]n+m

=(γ−1, πu−1g−1)n−u+1[GF , id, 0]n

=[GF , id, 0]n−u+1.

(3.14)

Therefore [G, ι] = [GF , id]. So [G, ι, α]n+m = [GF , id, f ]n+m for some f . Since (πmϕ, τ)n[G, ι, α]n+m =
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[GF , id, 0]n. So

[GF , id, 0]n = (πmϕ, τ)n[GF , id, f ]n+m = [GF , id, πmϕ ◦ f ◦ τ∨]n. (3.15)

Therefore πmϕ ◦ f ◦ τ∨ = 0.

Proof of statement (2):

Since (πm3ϕ3, τ3)n−m2 = (πm2ϕ2, τ2)n−m2 ◦ (πm1ϕ1, τ1)n ,so

(πm2ϕ2, τ2)n−m2

(
(πm1ϕ1, τ1)n[GK , id, f ]n+m1

)
= [GE , id, 0]n−m2

.

On one hand, by results of (1),

(πm1ϕ, τ)n[GK , id, f ]n+m1
= [GF , id, g]n for some g ∈ HomOF (Okh∨F ,GF ).

On the other hand, let ψ : GK −→ G be the Serre isogeny attached to (πm1ϕ, τ), then

(πm1ϕ, τ)n[GK , id, f ]n+m1 =[G, ψ ◦ π−m1ϕ−1, ψ ◦ f ◦ τ∨]n. (3.16)

Therefore, [GF , id, g]n = [G, ψ◦π−m1ϕ−1, ψ◦f ◦τ∨]n. By definition, there is an isomorphism ζ : G −→

GF such that ζ ◦ ψ ◦ π−m1ϕ−1 = id over Fq. Since ζ ◦ψ ◦ π−m1ϕ−1 is an automorphism of GF over A,

and AutA(GF ) = AutFq (GF ), then ζ ◦ ψ ◦ π−m1ϕ−1 = id over A.

Therefore,

[G, ψ ◦ π−m1ϕ−1, ψ ◦ f ◦ τ∨]n =[GF , ζ ◦ ψ ◦ π−m1ϕ−1, ζ ◦ ψ ◦ f ◦ τ∨]n

=[GF , id, πm1ϕ ◦ f ◦ τ∨]n.

(3.17)

We have proved statement (2).

By statements (1) and (2) we proved our Proposition.

4 CM cycle comparison

We will reach our final goal in this subsection. We will compare cycles δ[ϕ, τ ]n and δ[ϕ, τ ]∞ on

(πm)−1
n (SpecFq) and (πm)−1

∞ (SpecFq) respectively. In other words, We consider maps

s(πm)∞ : Ker(πm)∞ −→ GhK ,
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s(πm)n : Ker(πm)∞ −→Mn+m.

Then we will show

Proposition 4.1. Let (ϕ, τ) ∈ Equih(K/F ), if n > ν(τ), then

s(πm)∗nδ[ϕ, τ ]n+m = s(πm)∗∞δ[ϕ, τ ]∞.

Proof. By definition of δ[ϕ, τ ]∞ and δ[ϕ, τ ]n+m in (3.2) and (2.12), we need to check for w ≥ ν(τ),

1

deg(πw)Nn+m

[
s(πm)∗n(πwϕ, τ)n+m∗ONn+m+w

]
=

1

deg(πw)GhK

[
s(πm)∗∞(πwϕ, τ)∞∗OGhK

]
. (3.18)

Since n > 0, deg(πw)Nn+m
= qkh

2w = deg(πw)GhK . Therefore, we only need to show

s(πm)∗n(πwϕ, τ)n+m∗ONn+m+w = s(πm)∗∞(πwϕ, τ)∞∗OGhK . (3.19)

By result of Proposition 3.4, since n > ν(τ), the following diagram is Cartesian.

Ker(πm+wϕ, τ)∞
(πwϕ,τ)∞ //

s(πm+wϕ,τ)n

��

Ker(πm)∞

s(πm)n

��
Nn+m+w

(πwϕ,τ)n+m //Mn+m

.

Therefore, the left hand side of (3.19) equals to

s(πm)∗n(πwϕ, τ)n+m∗ONn+m+w
=(πwϕ, τ)∞∗s(π

m+wϕ, τ)∗nONn+m+w

=(πwϕ, τ)∞∗OKer(πm+wϕ,τ)∞ .

On the other hand, by the following Cartesian diagram,

Ker(πm+wϕ, τ)∞
(πwϕ,τ)∞ //

s(πm+wϕ,τ)∞
��

Ker(πm)

s(πm)∞
��

GhK
(πwϕ,τ)∞ // GkhF

the right hand side of (3.19) equals to
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s(πm)∗∞(πwϕ, τ)∞∗OGhK =(πwϕ, τ)∞∗s(π
m+wϕ, τ)∗∞OGhK

=(πwϕ, τ)∞∗OKer(πm+wϕ,τ)∞ .

Therefore the expression (3.19) holds.
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Chapter 4

Intersection Comparison

In section 3, we showed that some thickening of the closed point of spacesMn and GF are the same up

to some order. And there is no difference between δ[ϕ, τ ]∞ or δ[ϕ, τ ]n inside this thickening. Mean-

while, the intersection number should be captured by “thick enough” thickening at the intersection

point. Indeed, this intuition is true thanks to the regularity of Lubin-Tate deformation spaces. This

section is piling up commutative algebra arguments to verify this intuition.

From this section, we will consider two quadratic extensions K1, K2 of F . Then k = 2. K1 and

K2 are not necessarily isomorphic. This whole section is a proof of the key theorem:

Theorem 0.1 (Intersection Comparison). For any (ϕ1, τ1) ∈ Equih(K1/F ), (ϕ2, τ2) ∈ Equih(K2/F ),

if δ[ϕ1, τ1]∞⊗δ[ϕ2, τ2]∞ has finite length, then there exists N > 0(see (4.15)), such that for all n ≥ N ,

χ(δ[ϕ1, τ1]n ⊗L
Mn

δ[ϕ2, τ2]n) = χ(δ[ϕ1, τ1]∞ ⊗L
G2h
F
δ[ϕ2, τ2]∞). (4.1)

1 Outline of proof

We will prove this theorem by 3 steps. In this section, to simplify notation, by length(•) we mean

lengthW (Fq)(•).

Step 1: we will reduce the intersection number to the intersection multiplicity. In other words, we

will prove the following expression.

χ(δ[ϕ1, τ1]n ⊗L
Mn

δ[ϕ2, τ2]n) = length(δ[ϕ1, τ1]n ⊗Mn δ[ϕ2, τ2]n), (4.2)

χ(δ[ϕ1, τ1]∞ ⊗L
G2h
F
δ[ϕ2, τ2]∞) = length(δ[ϕ1, τ1]∞ ⊗G2h

F
δ[ϕ2, τ2]∞). (4.3)
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Step 2: we will compare the intersection multiplicities inside the thickening

s(πM )n−M : Ker(πM )∞ −→Mn; (4.4)

s(πM )∞ : Ker(πM )∞ −→ G2h
F . (4.5)

In other words, we will use Proposition 4.1 to show if n−M > max (ν(τ1), ν(τ2)),

length
(
s(πM )n−M∗s(π

M )∗n−M
(
δ[ϕ1, τ1]n ⊗Mn δ[ϕ2, τ2]n

))
= length

(
s(πM )∞∗s(π

M )∗∞
(
δ[ϕ1, τ1]∞ ⊗G2h

F
δ[ϕ2, τ2]∞

))
.

(4.6)

Step 3: we will show the intersection multiplicity in the thickening is the actual multiplicity if

the thickening is “thick” enough. In other words, there is a large integer M (depend only on

(ϕ1, τ1), (ϕ2, τ2)), such that for n > M , we have

s(πM )n−M∗s(π
M )∗n−M

(
δ[ϕ1, τ1]n ⊗Mn

δ[ϕ2, τ2]n
)

= δ[ϕ1, τ1]n ⊗Mn
δ[ϕ2, τ2]n, (4.7)

s(πM )∞∗s(π
M )∗∞

(
δ[ϕ1, τ1]∞ ⊗G2h

F
δ[ϕ2, τ2]∞

)
= δ[ϕ1, τ1]∞ ⊗G2h

F
δ[ϕ2, τ2]∞. (4.8)

Finally, for this choice of M , take N = M + max (ν(τ1), ν(τ2)) + 1, Theorem 0.1 will be true for

this N .

2 Step 1: Reduce to intersection multiplicity

By definition, for any coherent sheaves F and G on an OF̆ -formal scheme X, we have

χ(F ⊗L
X G) =

∞∑
i=0

(−1)i length
(
ToriX(F ,G)

)
.

To show (4.2) and (4.3), we need to show

ToriMn
(δ[ϕ1, τ1]n, δ[ϕ2, τ2]n) = 0 (4.9)

ToriG2h
F

(δ[ϕ1, τ1]∞, δ[ϕ2, τ2]∞) = 0 (4.10)

for any i > 0. To prove this statement, we need the acyclicity lemma from Stacks Project.

Lemma 2.1 (Acyclicity Lemma). [Sta2017, Tag 00N0] Let A be a Noetherian local ring, M• = 0→

http://stacks.math.columbia.edu/tag/00N0
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Mh → · · · →M0 a complex of A-modules such that depthA(Mi) ≥ i. If depthA(Hi(M•)) = 0 for any

i, then M• is exact.

Lemma 2.2. [Sta2017, Tag 0B01] Suppose A, B1, B2 are regular local rings with ring morphisms

A→ Bi for i = 1, 2 such that

1. dim(A) = 2h, dim(B1) = dim(B2) = h.

2. depthA(B1) = depthA(B2) = h.

3. lengthA(B1 ⊗A B2) <∞.

Then for any i > 0,

ToriA(B1, B2) = 0.

Proof. 1 Since A is a regular local ring, so depthA(A) = 2h. By Auslander-Buchsbaum, there is a

finite free A-module resolution F• → B1 of length

depthA(A)− depthA(B1) = 2h− h = h.

Therefore, F•⊗AB2 → B1⊗AB2 is the complex representing B1⊗LB2. The i’th cohomology of F•⊗B2

is ToriA(B1, B2). This is a finite module over the Artinian ring B1⊗AB2, so depthA(ToriA(B1, B2)) = 0.

On the other hand, for any term in the complex F•⊗AB2, we have depthA(Fi⊗AB2) = depthA(B2) =

h ≥ i because Fi is a free A-module.

By acyclicity lemma[Sta2017, Tag 00N0], the sequence F•⊗AB2 is exact, therefore ToriA(B1, B2) =

0 for i > 0.

To best adapt our situation, we consider a special case implying condition (2) of Lemma 2.2.

Lemma 2.3. Suppose A,B are regular local rings with residual field Fq. Let f : Spf B −→ Spf A be

a map such that f−1(SpecFq) is an Artinian scheme, then

depthA(B) = dim(B)

Proof. Let mA be the maximal ideal of A. Take maximal ideal generators fi ∈ mA. Consider

Bi = B/(f1, · · · , fi), Let I = {j|dim(Bj−1) > dim(Bj), then I has dim(B) many elements because

dim(B
/
mAB) = 0. Now {fj}j∈I is a required regular sequence. So depthA(B) = dim(B).

1This proof is written according to [Sta2017, Tag 0B01]

http://stacks.math.columbia.edu/tag/0B01
http://stacks.math.columbia.edu/tag/00N0
http://stacks.math.columbia.edu/tag/0B01
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Proof of (4.9) and (4.10). Let v be an integer bigger than ν(τ1) and ν(τ2). For (4.9), we let A = OMn
,

Bi = (πvϕi, τi)n∗ONn+v
for i = 1, 2. For (4.10), we let A = OG2h

F
, Bi = (πvϕi, τi)∞∗OGhK for i = 1, 2.

Since for large enough n, by Proposition 3.4,

(πmϕ, τ)−1
n (SpecFq) ∼= (πmϕ, τ)−1

∞ (SpecFq) = Ker(πmϕ, τ)∞,

and Ker(πmϕ, τ)∞ is Artinian, soA −→ Bi satisfy the condition in Lemma 2.3, therefore depthA(B1) =

dim(Bi) = h for i = 1, 2. So we verified condition (2) in Lemma 2.2. The condition (3) in Lemma

2.2 is satisfied because we assumed δ[ϕ1, τ1]n ⊗Mn δ[ϕ2, τ2]n is of finite length. The condition (1) in

Lemma 2.2 is clearly true for our A. Therefore, we proved (4.9) and (4.10) by Lemma 2.2. Step 1 is

finished.

3 Step 2: Multiplicities inside the thickening

Write δi,n = δ[ϕi, τi]n and δi,∞ = δ[ϕi, τi]∞ for i = 1, 2. We have

length
(
s(πM )n−M∗s(π

M )∗n−M (δ1,n ⊗Mn
δ2,n)

)
= length

(
s(πM )∗n−Mδ1,n ⊗G2h

F [πM ] s(π
M )∗n−Mδ2,n

)

and

length
(
s(πM )∞∗s(π

M )∗∞

(
δ1,∞ ⊗G2h

F
δ2,∞

))
= length

(
s(πM )∗∞δ1,∞ ⊗G2h

F [πM ] s(π
M )∗∞δ2,∞

)
.

We will prove (4.6) by showing the right hand side of above two equations are the same. In other

words, we need to show for i = 1, 2

s(πM )∗n−Mδ[ϕi, τi]n = s(πM )∗∞δ[ϕi, τi]∞.

By Proposition 4.1, this statement follows if n−M > max(ν(τ1), ν(τ2)). Therefore, we proved (4.6).

Step 2 is finished.

4 Step 3: Actual Multiplicity

Lemma 4.1. Let A be a Noetherian local ring with maximal ideal m, denote by s the natural map

s : Spf A/mn −→ Spf A. Suppose F is a coherent sheaf on Spf A supported at the closed point such
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that lengthA(F) < n or lengthA(s∗s
∗F) < n. Then s∗s

∗F = F .

Proof. Let B = H0(Spf A,F), the statement is claiming B ⊗A A/mn = B. In other words, we need

to show mnB = 0. Consider the descending chain

B ⊃ mB ⊃ · · · ⊃ mnB,

If lengthAB < n or lengthAB/m
nB < n, there must be 1 ≤ i ≤ n such that miB = mi+1B. By

Nakayama lemma, miB = 0. So mnB = 0.

Lemma 4.2. Let A, B be Noetherian regular local rings with the same dimension. Suppose there is

a closed embedding

s : Spf B/mMB −→ Spf A,

then Spf B/mMB = Spf A/mMA as a subscheme of Spf A.

Proof. We need to show the kernel of the surjective map s : A −→ B/mMB is mMA . We prove this by

induction on M . If M = 1, this is true since B/mB is a field. If M > 1, By induction hypothesis, we

assume this statement is true for M − 1, so the preimage of mM−1
B /mMB is mM−1

A . Furthermore, since

the image of mA is mB , so ker s ⊃ mMA . Therefore s induces a surjective map

s
∣∣
mM−1
A

: mM−1
A /mMA −→ mM−1

B /mMB .

We will success if this map is an isomorphism. Indeed, because A, B are regular local rings of the same

dimension, mM−1
A /mMA and mM−1

B /mMB are both k-linear spaces with the same dimension (M+n−2)!
(n−1)!(M−1)! .

Here n = dim(A) = dim(B), k ∼= B/mB ∼= A/mA. Therefore any surjective map between those two

linear spaces is an isomorphism.

Come back to our situation. We claim

Ker(πM )∞ ∼= SpecFq[[X1, · · · , X2h]]/mq
2hM

. (4.11)

This is because GF ∼= Spf Fq[[X]], and the multiplication of [π]GF gives the map X 7→ Xq2h

. Therefore
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the induced map of (πM )∞ : G2h
F −→ G2h

F is given by

(πM )∞ : Fq[[X1, · · · , X2h]] −→ Fq[[X1, · · · , X2h]]

Xi 7−→ Xq2hM

i

.

So we verified our claim (4.11). By applying Lemma 4.2 to closed embeddings s(πM )∞ : Ker(πM )∞ −→

G2h
F and s(πM )n−M : Ker(πM )∞ −→ Mn as described in (1) of Proposition 3.4, we can write them

as following closed embeddings

s(πM )∞ : Spf OG2h
F
/mq

2hM

G2h
F

−→ G2h
F (4.12)

s(πM )n−M : Spf OMn
/mq

2hM

Mn
−→Mn (4.13)

Those embeddings are of the form s : Spf A/mn −→ Spf A.

Proof of (4.7) and (4.8). Let v be an integer no smaller than ν(τi) for i = 1, 2. For (4.7), we let A(n) =

OMn , B
(n)
i = (πvϕi, τi)n∗ONn+v for i = 1, 2; For (4.8), we let A(∞) = OG2h

F
, B

(∞)
i = (πvϕi, τi)∞∗OGhK

for i = 1, 2. We have assumed δ[ϕ1, τ1]∞⊗G2h
F
δ[ϕ2, τ2]∞ has finite length, this implies B

(∞)
1 ⊗A(∞)B

(∞)
2

has finite length over W (Fq)(note that the length over A ∈ C is the same as the length over W (Fq)).

Now we choose M such that q2hM is bigger than its length. In other words

M >
1

2h
logq length(B

(∞)
1 ⊗A(∞) B

(∞)
2 )

=
1

2h
logq length(δ[ϕ1, τ1]∞ ⊗G2h

F
δ[ϕ2, τ2]∞) + v.

(4.14)

Then by the description in (4.12) and Lemma 4.1 we have

B
(∞)
1 ⊗A(∞) B

(∞)
2 = s(πM )∞∗s(π

M )∗∞

(
B

(∞)
1 ⊗A(∞) B

(∞)
2

)
.

By (4.6), s(πM )∞∗s(π
M )∗∞

(
B

(∞)
1 ⊗A(∞) B

(∞)
2

)
and s(πM )n−M∗s(π

M )∗n−M

(
B

(n)
1 ⊗A(n) B

(n)
2

)
have

the same length, so q2hM is also bigger than their length, by the description in (4.13) and apply

Lemma 4.1 we have

B
(n)
1 ⊗A(n) B

(n)
2 = s(πM )n−M∗s(π

M )∗n−M

(
B

(n)
1 ⊗A(n) B

(n)
2

)
.

Therefore we completed Step 3.
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Now we finished all steps, to make step 2 work, we should take N = M + max(ν(τ1), ν(τ2)) + 1.

To make step 3 to work, we should take M to be at least in (4.14) with v at least max(ν(τ1), ν(τ2)).

Therefore, we must take

N =
1

2h
logq length(δ[ϕ1, τ1]∞ ⊗G2h

F
δ[ϕ2, τ2]∞) + 2 max(ν(τ1), ν(τ2)) + 1 (4.15)

for the Theorem 0.1 to be true.
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Chapter 5

Computation of intersection

numbers on high level.

We will use the same notation as Section 4. Based on Theorem 0.1, the intersection number χ(δ[ϕ1, τ1]n⊗L
Mn

δ[ϕ2, τ2]n) is reduced to calculate

length(δ[ϕ1, τ1]∞ ⊗G2h
F
δ[ϕ1, τ1]∞). (5.1)

The main goal of this section is to write down an explicit formula for (5.1). Our results are Proposition

3.1 and Proposition 5.3.

1 Notation and set up

To make our calculation explicit, denote the set of m×n matrices over a ring A as Matm×n(A). Then

we have a canonical isomorphism

HomF (Kh, F 2h) ∼= F 2h ⊗F Kh∨ ∼= Mat2h×h(K).

For any element τ ∈ Mat2h×h(K), by τ we mean the conjugate matrix obtained by conjugating the

matrix τ entriwise. By

[
τ τ

]
we mean the 2h × 2h matrix obtained by putting τ and τ side by

side.
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Furthermore, since GF = GK as a formal OF -module,

HomOF (GK ,GF ) = HomOF (GF ,GF ) = OD, (5.2)

and we have a canonical algebra embedding induced by OK actions on GK :

K �
� // DF . (5.3)

In this section, we consider

Mat2h×2h(DF ) ∼= DF ⊗F Mat2h×2h(F ) ∼= HomOF (G2h
F ,G2h

F )⊗OF F. (5.4)

We will fix the embedding

Mat2h×2h(K) �
� // Mat2h×2h(DF )

induced by (5.3). Therefore, for any (ϕ, τ) ∈ Equih(K/F ) or (γ, g) ∈ Equi2h(F/F ), the element

ϕ ⊗
[
τ τ

]
or γ ⊗ g is in Mat2h×2h(DF ) by above settings. We will abbreviate ϕ ⊗ id and γ ⊗ id

as ϕ, γ. Then we can write ϕ⊗
[
τ τ

]
and γ ⊗ g as ϕ

[
τ τ

]
and γg. We denote

∆ϕ,τ = ϕ

[
τ τ

]
.

For any central simple algebra D over F . The reduced norm of γ ∈ D is defined by det(γ ⊗ 1). Here

γ⊗1 ∈ D⊗F L for some field extension L/F such that D splits over L. We use the following notation

in this section.

• nrd(γ) is the reduced norm of γ ∈ DF ;

• Nrd(g) is the reduced norm of g ∈ GLh(DF );

• NRD(g) is the reduced norm of g ∈ GL2h(DF ).

To lighten notation, We use will use Nrd(γ) to denote Nrd(γIh).
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2 Analysing δ[ϕ, τ ]∞

Given δ[ϕ, τ ]∞ as a cycle in G2h
F , in this section, our goal is to write δ[ϕ, τ ]∞ into the form

δ[ϕ, τ ]∞ = nϕ,τ
[
OXϕ,τ

]
,

where OXϕ,τ is the structural sheaf of a reduced closed subscheme Xϕ,τ in G2h
F . In other words, we

would like to determine the underlying space of δ[ϕ, τ ]∞ and its multiplicity.

To lighten notation, we use [X] to denote [OX ] for any subscheme X.

2.1 Notation

For any τ ∈ IsomF (Kh, F 2h), we will use Pτ , Qτ ∈ GLh(K), Γτ ∈ GL2h(OK) to denote matrices such

that [
τ τ

]
= Γτ

 Pτ ∗

Qτ

 . (5.5)

Here we claim those matrices exist by Iwasawa decomposition, but the choice may not unique.

2.2 Decomposition of (πmϕ, τ)∞

By Definition 3.2 of the cycle δ[ϕ, τ ]∞, to find its multiplicities and underlying space, we need to

decompose (πmϕ, τ)∞ as a closed embedding followed by a finite flat map. Note the matrix of

(πmϕ, τ)∞ is given by

(πmϕ, τ)∞ = πmϕ⊗ τ.

We can write ϕ⊗ τ as ϕτ when viewed as an element of Mat2h×h(DF ).

Lemma 2.1. We have the following decomposition of πmϕτ

πmϕτ = ϕΓτϕ
−1

 Ih

0

πmϕPτ . (5.6)

Proof. Firstly, we have

πmϕτ = πmϕ

[
τ τ

] Ih

0

 .
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By equation (5.5), the above expression equals to

πmϕΓτ

 Pτ ∗

Qτ


 Ih

0

 = ϕΓτ

 Ih

0

πmPτ .

Now we replace

 Ih

0

 by ϕ−1

 Ih

0

ϕ, the lemma follows.

Therefore by Lemma 2.1 we have decomposed πmϕτ into three maps. πmϕPτ : GhK −→ GhF is an

isogeny,

 Ih

0

 : GhF −→ G2h
F is a closed embedding. ϕΓτϕ

−1 : G2h
F −→ G2h

F is an isomorphism.

By this decomposition, we can compute the multiplicity of δ[ϕ, τ ]∞ by looking at the degree of

the isogeny (πmϕ)Pτ . This degree equals to
∣∣Nrd(πmϕPτ )

∣∣−1

F
thanks to the following lemma.

Lemma 2.2. For any g ∈ glh(OD), suppose Nrd(g) 6= 0, then g : GhF −→ GhF is an isogeny of degree

equals to
∣∣Nrd(g)

∣∣−1

F
.

Proof. Let $ be an uniformizer of DF . By Cartan decomposition of the matrix algebra over division

algebra, we write g = u1tu2, here u1, u2 ∈ GLh(OD) and t = ($a1 , $a2 , · · · , $ah). Since u1, u2 are

isomorphisms of GhF , then deg(g) = deg(t). Since
∣∣Nrd(u1)

∣∣−1

F
=
∣∣Nrd(u2)

∣∣−1

F
= 1, then

∣∣Nrd(g)
∣∣−1

=∣∣Nrd(t)
∣∣−1

. Therefore we only have to show
∣∣Nrd(t)

∣∣−1
= deg(t).

Since the degree of $ : GF −→ GF equals to q. So deg(t) =
∏h
i=1 q

ai .Let nrd() be reduced norm

of DF . Then
∣∣Nrd(t)

∣∣−1
=
∏h
i=1

∣∣nrd($ai)
∣∣−1

F
. Since

∣∣nrd($ai)
∣∣−1

F
= qai , the lemma follows.

2.3 Conclusion

Our conclusion in this case is the following lemma.

Lemma 2.3. We can write the cycle δ[ϕ, τ ]∞ into any of the following forms.

δ[ϕ, τ ]∞ = |Nrd(ϕPτ )|−1
F

Im(ϕΓτϕ
−1

 Ih

0

)

 (5.7)

δ[ϕ, τ ]∞ = |Nrd(ϕPτ )|−1
F

[
Ker(

[
0 Ih

]
ϕΓ−1

τ ϕ−1)

]
. (5.8)

Proof. By definition, the cycle deg(πm)G2h
F
· δ[ϕ, τ ]∞ is defined by (πmϕ, τ)∞∗OGhK through the map

πmϕτ : GhK −→ G2h
F . In decomposition(5.6), we decomposed this map by a finite flat map πmϕPτ :
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GhK −→ G2h
F and a closed embedding ϕΓτϕ

−1

 Ih

0

 : GhF −→ G2h
F . Therefore,

deg(πm)G2h
F
δ[ϕ, τ ]∞ = deg(πmϕPτ )

[
Im(ϕΓτϕ

−1

 Ih

0

)
]

By Lemma 2.2, deg(πmϕPτ ) = |Nrd(πmϕPτ )|−1
F , deg(πm)G2h

F
= |Nrd(πm)|−1

F . This completes the

proof of the first equation.

Next we will prove

Im

ϕΓτϕ
−1

 Ih

0


 = Ker

([
0 Ih

]
ϕΓ−1

τ ϕ−1

)
. (5.9)

Consider the following exact sequence.

0 // GhF

 Ih

0


// G2h
F

[
0 Ih

]
// GhF // 0 . (5.10)

We change the coordinate of the middle term by the isomorphism ϕ−1
1 Γ−1

1 ϕ1 : G2h
F −→ G2h

F . Now this

complex looks like:

0 // GhF

ϕ−1
1 Γ1ϕ1

 Ih

0


// G2h
F

[
0 Ih

]
ϕ−1

1 Γ−1
1 ϕ1

// GhF // 0 . (5.11)

Since this sequence is exact. Therefore, we proved (5.9). This completes all the proof.

3 Computation of the intersection number

Let K1/F be the quadratic extension related to δ[ϕ1, τ1]n. By |∆K/F |F we mean the norm of the

relative discriminant of K/F . The main result is the following.
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Proposition 3.1. Assume the right hand side is a finite number, we have

χ(δ[ϕ1, τ1]∞ ⊗L
G2h
F
δ[ϕ2, τ2]∞) = |∆K1/F |

−h2

F

∣∣∣Nrd(

[
0 Ih

]
∆−1

1 ∆2

 Ih

0

)
∣∣∣−1

F
. (5.12)

Here ∆i = ϕi

[
τi τ i

]
.

Proof. By (4.3), we have

χ
(
δ[ϕ1, τ1]∞ ⊗L δ[ϕ2, τ2]∞

)
= length(δ[ϕ1, τ1]∞ ⊗OG2h

F

δ[ϕ2, τ2]∞).

By Proposition 2.3,

δ[ϕ1, τ1]∞ ⊗OG2h
F

δ[ϕ2, τ2]∞ =
∣∣Nrd(ϕ1Pτ1)Nrd(ϕ2Pτ2)

∣∣−1

F

[
Im(ν)×G2h

F
Ker(µ)

]
. (5.13)

where

• ν = ϕ2Γτ2ϕ
−1
2

 Ih

0

;

• µ =

[
0 Ih

]
ϕ1Γ−1

τ1 ϕ
−1
1 .

Since ν : GhF −→ G2h
F is a closed embedding of subgroup scheme. Then

Ker(µ)×G2h
F

Im(ν) = Ker(µ ◦ ν).

So

length
[
Im(ν)×G2h

F
Ker(µ)

]
= |Nrd(µ ◦ ν)|−1

F .

Therefore length(δ[ϕ1, τ1]∞ ⊗OG2h
F

δ[ϕ2, τ2]∞) equals to

|Nrd(ϕ1Pτ1) ·Nrd(ϕ2Pτ2) ·Nrd(µ ◦ ν)|−1
F .

By notation in (5.5), we observe that

µ ◦ ν = ϕ1Qτ1

[
0 Ih

]
∆−1

1 ∆2

 Ih

0

P−1
τ2 ϕ

−1
2 .
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So length(δ[ϕ1, τ1]∞ ⊗OG2h
F

δ[ϕ2, τ2]∞) equals to

∣∣Nrd(ϕ2
1Pτ1Qτ1)

∣∣−1

F

∣∣∣Nrd(

[
0 Ih

]
∆−1

1 ∆2

 Ih

0

)
∣∣∣−1

F
.

Therefore the Proposition follows if we can prove

∣∣Nrd(ϕ2
1Pτ1Qτ1)

∣∣−1

F
= q2h2e1 |∆K/F |−h

2

F . (5.14)

For our convenience, we omit the subindex from now. In other words, τ = τ1, ϕ = ϕ1, e = e1,

K = K1.

Let m = Hight(τ) = Height(ϕ). Let µ ∈ OK be a generator such that OK = OF [µ]. Then∣∣µ− µ∣∣
K

= |∆K/F |−1
F . We consider the element

τ0 =

 Ih

µIh

 .
Since τ0 induces an isomorphism from OhK to O2h

F . Take g ∈ GL2h(F) such that τ = gτ0, we have

Height(g) = Height(τ) = m. In other words,
∣∣ det(g)

∣∣
F

= qm and

∣∣∣∣NmK/FdetK

[
τ τ

]∣∣∣∣
F

= q2m

∣∣∣∣NmK/FdetK

[
τ0 τ0

]∣∣∣∣
F

, (5.15)

here detK(•) is the determinant as K-matrix.

Let ϕ0 = id ∈ IsomOF (GK ,GF ). There exists γ ∈ DF such that ϕ = γϕ0. So Height(ϕ) =

Height(γ) = m. That is,
∣∣nrd(γ)

∣∣
F

= q−m. Since ϕ0 is a unit, so

|nrd(ϕ)|F = |nrd(γ)|F = q−m (5.16)

Now we prove (5.14). By definition of Pτ ,Qτ in (5.5), we have Nrd(ϕ2PτQτ ) equals to NRD(ϕ

[
τ1 τ

]
),

so ∣∣Nrd(ϕ2PτQτ )
∣∣−1

F
= |NRD(ϕ)|−1

F

∣∣∣∣NRD

[
τ τ

]∣∣∣∣−1

F

.

Since NRD(ϕ) = nrd(ϕ)2h and NRD(g) = NmK/F det gh, we write the above expression as

|nrd(ϕ)|−2h
F

∣∣∣∣NmK/FdetK

[
τ τ

]∣∣∣∣−h
F

.
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By (5.16) and (5.15), the above expression equals to

∣∣∣∣NmK/FdetK

[
τ0 τ0

]∣∣∣∣−h
F

.

Since detK

[
τ0 τ0

]
= (µ− µ)h, the above expression equals |∆K/F |−h

2

F . (5.14) holds.

4 The case K1 = K2

Now we consider the case K = K1 = K2 and ϕ2 = γϕ1, τ2 = gτ1, e = e(K). In this case, the formula

(5.12) become

χ
(
δ[ϕ, τ ]∞ ⊗L δ[γϕ, gτ ]∞

)
= |∆K/F |−h

2

F

∣∣∣∣∣∣∣Nrd(

[
0 Ih

]
∆−1
ϕ,τγg∆ϕ,τ

 Ih

0

)

∣∣∣∣∣∣∣
−1

F

. (5.17)

5 The invariant polynomial and resultant formula for (5.17)

To further simplify this expression. We introduce the invariant polynomial. We fix ϕ and τ in the

following discussion. Note ϕ and τ induce injections glh(K) → gl2h(F ) and DK → DF respectively.

Viewed as left K-linear spaces, DF and gl2h(F ) decompose into eigenspaces for right K-multiplication.

Let DF+ and gl2h(F )+ be eigen-subspaces where the right multiplication of k ∈ K has eigenvalue k,

DF− and gl2h(F )− be eigen-subspaces where the action of k ∈ K has eigenvalue k. With respect to

this decomposition, every element γ ∈ DF decomposes as γ = γ+ + γ−. Every element g ∈ gl2h(F )

decomposes as g = g+ + g−. When γ(resp. g) is invertible, conjugating it by a trace 0 element µ ∈ K,

we know γ+ − γ−(resp. g+ − g−) is also invertible. In this case, we define

γ′ϕ = γ+(γ+ − γ−)−1γ+(γ+ + γ−)−1; g′τ = g+(g+ − g−)−1g+(g+ + g−)−1. (5.18)

Then γ′ϕ ∈ DK and g′τ ∈ glh(K) because they commute with elements in K. Define invariant

polynomials Pϕγ and P τg to be characteristic polynomials of γ′ϕ and g′τ in glh(K) and DK respectively.

Note that on one hand γ′ϕ(resp. g′τ ) commutes with γ−1
+ γ−(resp. g−1

+ g−) when γ+(resp. g+) is

invertible, on the other hand the conjugation by γ−1
+ γ−(resp. g−1

+ g−) is an extension of the Galois

conjugation on K, so coefficients of the characteristic polynomial of γ′ϕ(resp.g′τ ) must be fixed by the

Galois conjugation. Since the subset where γ+(resp. g+) is invertible is Zariski-dense, all invariant

polynomials we defined here are in fact over F of degree h.
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Remark 5.1. The action of γ+,γ− on GK may raise ambiguity. In our situation, [γ+]GF and [γ−]GF

are quasi-isogenies naturally defined by γ+, γ− through the identification DF
∼= End(GF )⊗OF F . But

by [γ+]GK and [γ−]GK we mean quasi-isogenies induced through ϕ : GK −→ GF . So as power series

[γ+]GK and [γ+]GF could be different, so could the case for γ−. More specifically, we have

ϕ ◦ [γ+]GK = [γ+]GF ◦ ϕ ϕ ◦ [γ−]GK = [γ−]GF ◦ ϕ.

By an abuse of notation, we write both [γ+]GK and [γ+]GF as γ+. So symbolically ϕ commutes with

γ+ and γ−, but the same symbol define different actions on GF and GK .

Definition 5.2. For any γ ∈ DF ,g ∈ GL2h(F), We define the relative resultant

Resϕ,τ (γ, g) = res(Pϕγ , P
τ
g ). (5.19)

Here res(•, •) is the symbol for the usual resultant.

In this subsection, we will show that

Proposition 5.3. We have χ(δ[ϕ, τ ]∞ ⊗L
G2h
F
δ[γϕ, gτ ]∞) = q2h2e|∆K/F |−h

2

F

∣∣Resϕ,τ (γ, g)
∣∣−1

F
.

Remark 5.4. If γ+ or g+ is invertible. Then we can write

γ′ = γ+(γ+ − γ−)−1γ+(γ+ + γ−)−1 = (1− γ−1
+ γ−γ

−1
+ γ−)−1.

g′ = g+(g+ − g−)−1g+(g+ + g−)−1 = (1− g−1
+ g−g

−1
+ g−)−1.

Proposition 5.5. For any γ ∈ DF , we have

∆−1
ϕ,τγI2h∆ϕ,τ =

 γ+Ih γ−Ih

γ−Ih γ+Ih

 . (5.20)

For any g ∈ GL2h(F), the element ∆−1
ϕ,τg∆ϕ,τ will be in the form

∆−1
ϕ,τg∆ϕ,τ =

 x+ x−

x− x+

 . (5.21)

Then we have g+ = ∆−1
ϕ,τ

 x+

x+

∆ϕ,τ , and g− = ∆−1
ϕ,τ

 x−

x−

∆ϕ,τ . Therefore Pg is the
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characteristic polynomial of (Ih − x−1
+ x−x

−1
+ x−).

Proof. By definition of γ+ and γ−, we have

γ+I2hτ = τγ+I2h; γ−I2hτ = τγ−I2h.

And also since ϕ symbolically commute with γ+ and γ−(See Remark 5.1), we have

γ+I2h∆ϕ,τ = ∆ϕ,τγ+I2h; γ−I2h∆ϕ,τ = ∆ϕ,τ

 Ih

Ih

 γ−I2h.
Adding these two expressions together and left multiplying ∆−1

ϕ,τ , we have

∆−1
ϕ,τγI2h∆ϕ,τ =

 γ+Ih γ−Ih

γ−Ih γ+Ih

 .
For any g ∈ GL2h(F), since the entry of g is in F and F is the center of DF , we have g = g and

ϕ−1gϕ = g. We also note that ϕ−1∆ϕ,τ = ϕ−1∆ϕ,τ

 Ih

Ih

. So

∆−1
ϕ,τg∆ϕ,τ =

 Ih

Ih


−1

∆−1
ϕ,τg∆ϕ,τ

 Ih

Ih

 .
Therefore ∆−1

ϕ,τg∆ϕ,τ is of the form (5.21).

Lemma 5.6. Let ∆ = ∆ϕ,τ , we have

∣∣∣Nrd(

[
0 Ih

]
∆−1γg∆

 Ih

0

)
∣∣∣−1

F
= |Resϕ,τ (γ, g)|−1

F . (5.22)

Proof. Let γ = γ+ + γ−. By Proposition 5.5, the left hand side of (5.22) equals to

∣∣∣∣∣∣∣Nrd(

[
0 Ih

] x+ x−

x− x+


 γ+ γ−

γ− γ+


 Ih

0

)

∣∣∣∣∣∣∣
−1

F

=
∣∣Nrd(x−γ+ + x+γ−)

∣∣−1

F

=
∣∣Nrd(x+γ+)

∣∣−1

F

∣∣Nrd(γ−γ
−1
+ + x−1

+ x−)
∣∣−1

F
.

(5.23)
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Let µ ∈ OK ⊂ DK such that µ = −µ. So we have

µγ−γ
−1
+ = −γ−γ−1

+ µ

µx−1
+ x− = x−1

+ x−µ

γ−γ
−1
+ x−1

+ x− = x−1
+ x−γ−γ

−1
+

Therefore

µγ−γ
−1
+ (−γ−γ−1

+ + x−1
+ x−) = (γ−γ

−1
+ + x−1

+ x−)µγ−γ
−1
+ .

Taking the reduced norm on both side and cancel the common factor Nrd(µγ−γ
−1
+ ), we have

Nrd
(
− γ−γ−1

+ + x−1
+ x−

)
= Nrd

(
γ−γ

−1
+ + x−1

+ x−

)
.

Therefore,

Nrd(γ−γ
−1
+ + x−1

+ x−)2 =Nrd
(

(−γ−γ−1
+ + x−1

+ x−)(γ−γ
−1
+ + x−1

+ x−)
)

=Nrd(x−1
+ x−x

−1
+ x− − γ−γ−1

+ γ−γ
−1
+ ).

(5.24)

Note that

NRD(g) =NRD

 x+ x−

x− x+


=NRD

 x+

x+


 Ih x−1

+ x−

x−1
+ x− Ih


=Nrd(x+x+)Nrd(Ih − x−1

+ x−x
−1
+ x−);

(5.25)

NRD(γ) =NRD

 γ+ γ−

γ− γ+


=NRD

 γ+

γ+


 Ih γ−1

+ γ−

γ−1
+ γ− Ih


=Nrd(γ+)2Nrd(Ih − γ−1

+ γ−γ
−1
+ γ−).

(5.26)
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Since (γ, g) is an equi-height pair, then
∣∣NRD(g)NRD(γ)

∣∣
F

= 1. So

∣∣∣Nrd(γ+x+)2
∣∣∣
F

=
∣∣∣Nrd

(
(Ih − x−1

+ x−x
−1
+ x−)(Ih − γ−1

+ γ−γ
−1
+ γ−)

)−1∣∣∣
F
. (5.27)

Multiplying (5.24) and (5.27), we conclude that the square of (5.23) equals to

∣∣∣∣∣Nrd

(
x−1

+ x−x
−1
+ x− − γ−γ−1

+ γ−γ
−1
+

(Ih − x−1
+ x−x

−1
+ x−)(Ih − γ−1

+ γ−γ
−1
+ γ−)

)∣∣∣∣∣
−1

F

.

This can be simplified to

∣∣∣Nrd
(

(Ih − γ−1
+ γ−γ

−1
+ γ−)

−1 − (Ih − x−1
+ x−x

−1
+ x−)−1

)∣∣∣−1

F
.

Our goal is to prove this expression equals to |Resϕ,τ (γ, g)|−2
F . Let L = K[γ−1

+ γ−], denote

γ′ = (Ih − γ−1
+ γ−γ

−1
+ γ−)−1 x′ = (Ih − x−1

+ x−x
−1
+ x−)−1, (5.28)

note that γ′ commutes with x′, so γ′ − x′ ∈ glh(L) ⊂ glh(D). Let det(•) denote the determinant for

glh(L), by definition of the reduced norm, we have

Nrd(γ′ − x′) = NmL/F det(γ′ − x′) =
∏

σ∈L/F

σ det(γ′ − x′).

By definition, Pg and Pγ are characteristic polynomials of x′ and γ′ respectively. Since they are all

over F , the above equation equals to

∏
σ∈Gal(L/F )

Pg(σ(γ′)) = res(Pγ , Pg)
2.

Since res(Pγ , Pg)
2 = Resϕ,τ (γ, g)2, we proved this lemma.

Then the Proposition 5.3 follows by (5.17).
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Chapter 6

Proof of main theorem

In this section, we will prove our main Theorem 2.3 by projection formula.

1 Notation

We will use the same notation as in Section 3, Section 4 and Section 5. Furthermore, we denote

∆1 = ϕ1

[
τ1 τ1

]
; ∆2 = ϕ2

[
τ2 τ2

]
.

We define some constants. Those constants will be repeatedly used in our discussion. For any

two quadratic extensions K1,K2/F , let N1,m be the Lubin-Tate space for the formal OK1
-module of

height h, and N2,m for the formal OK2-module of height h. Let m > 0. By deg(Ni)(resp. deg(Mi))

we mean the degree of the transition map Ni → N0(resp. Mi →M0).

Definition 1.1. Define the constant c(K1,K2) by

c(K1,K2) =
deg(Mm)

deg(N1,m) deg(N2,m)
. (6.1)

If K = K1 = K2, we define c(K) = c(K,K).

Proposition 1.2. The definition of c(K1,K2) in (6.1) does not depend on m. Furthermore,

c(K) =



h∏
n=1

1− q−2n

1− q1−2n
K/F unramified

h∏
n=1

1− q−n−h

1− q−n
K/F ramified

(6.2)
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Proof. Since

deg(Mm) = # GL2h(OF /πm) = q4h2(m−1)# GL2h(OF /π).

and

deg(Nm) = # GL2h(OK/πm) = q2h2(m−1)# GL2h(OK/π).

Plug these equations into (6.1), we see c(K1,K2) does not depend on m. Furthermore,

c(K,K) =
# GL2h(OF /π)

(# GLh(OK/π))
2 (6.3)

If K/F is unramified,

# GL2h(OF /π) = q4h2
2h∏
n=1

(1− q−n) # GLh(OK/π) = q2h2
h∏
n=1

(1− q−2n).

If K/F is ramified, let $ be uniformizer of OK ,

# GLh(OK/π) = qh
2

# GLh(OK/$) = q2h2
h∏
n=1

(1− q−n).

The Proposition follows by plugging those data into (6.3).

2 Formula for Intersection Number in Mn

2.1 Intersection number on different levels.

Our first step is to relate the intersection number on low level with the intersection number on high

level.

Lemma 2.1 (Serre’s multiplicity vanishing theorem). Let R be a regular local ring and p, q are primes

of R, suppose dim(R/p) + dim(R/q) < dim(R), then χ(R/p⊗L
R R/q) = 0.

Proof. This was proven in 1985 by Paul C. Roberts[Rob1985].

Lemma 2.2. Let M,N be finite modules over a regular Noetherian local ring A such that M ⊗A N

is of finite length. Suppose dim(Supp(M)) + dim(Supp(N)) < dim(A),then

χ(M ⊗L
A N) = 0.
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Proof. There is a filtration 0 = Mn ⊂ · · · ⊂ M0 = M such that Mi/Mi+1
∼= A/pi. Here pi ∈ Ass(M)

are associated primes of M . And similar for N . We denote the filtration of N as 0 = Nr ⊂ · · · ⊂

N0 = N and Nj/Nj+1
∼= A/qj . On one hand, we have

χ(M ⊗L
A N) =

∑
1≤i≤m
1≤j≤n

χ(A/pi ⊗L
A A/qj).

On the other hand, since dim(A/pi) + dim(A/qj) ≤ dim(Supp(M)) + dim(Supp(N)) < dim(A) for

any 1 ≤ i ≤ m, 1 ≤ j ≤ n, then by Serre’s multiplicity vanishing theorem, χ(A/pi ⊗L
A A/qj) = 0. In

particular χ(M ⊗L
A N) = 0.

Lemma 2.3. Let δ1 = δ[ϕ1, τ1]n+m, δ2 = δ[ϕ2, τ2]n+m. We have

χ
(
δ1 ⊗L

Mn+m
(πm)∗n(πm)n∗δ2

)
=

∑
g∈Rn/Rn+m

χ
(
δ1 ⊗L

Mn+m
δ[ϕ2, gτ2]

)
. (6.4)

Proof. In order to work on a coherent sheaf instead of a class, let w > ν(τ2) and put

F = (πwϕ2, τ2)m+n∗ONm+w+n
.

Since we have [F ] = deg(πw)Nm+n
· δ2 and (id, g−1)∗δ2 = δ[ϕ2, gτ2]n+m. To prove the lemma is

equivalent to show

χ
(
δ[ϕ1, τ1]n+m ⊗L

Mm+n
(πm)∗n(πm)n∗F

)
=

∑
g∈Rn/Rn+m

χ
(
δ[ϕ1, τ1]n+m ⊗L

Mm+n
(id, g−1)∗F

)
. (6.5)

Let J be the coherent sheaf on Mm+n in the following exact sequence.

0 // (πm)∗n(πm)n∗OMm+n
//⊕

g∈Rn/Rn+m
(id, g)∗n+mOMm+n

// J // 0 . (6.6)

On one hand, The map (πm)n : Mm+n −→ Mn is finite flat and genericly etale. Therefore, if we

tensor the sequence (6.6) with the module OMm+n

[
1
π

]
, then the map

(πm)∗n(πm)n∗OMm+n

[ 1

π

]
−→

⊕
g∈Rn/Rn+m

(id, g)∗n+mOMm+n

[ 1

π

]

is an isomorphism . Therefore

J ⊗OMm+n
OMm+n

[ 1

π

]
= 0. (6.7)



54

In other words, Supp(J ) ⊂ V (π). On the other hand, tensor (6.6) by F , we have exact sequence

0 // Tor1(F ,J ) // (πm)∗n(πm)n∗F //⊕
g∈Rn/Rn+m

(id, g)∗n+mF // J ⊗Mm+n
F // 0.

We claim

χ
(
δ[ϕ1, τ1]n+m ⊗L

Mm+n
(J ⊗Mm+n

F)
)

= 0; χ
(
δ[ϕ1, τ1]n+m ⊗L

Mm+n
Tor1
Mm+n

(F ,J )
)

= 0.

If our claim is true, the equation (6.5) will be true. Now we denote coherent sheaves M1 = J ⊗ F

and M2 = Tor1(J ,F), N = (πwϕ1, τ1)m+n∗ONm+n+w
. The lemma is reduced to show

χ(Mi ⊗L
Mm+n

N) = 0, i = 1, 2. (6.8)

On one hand, dim(Supp(N)) = h. On the other hand, by (6.7), we have Supp(J ) ⊂ V (π). Then

Supp(Mi) ⊂ V (π) ∩ Supp(F). Since π is not a zero-divisor for F ,

dim(Supp(Mi)) ≤ dim(V (π) ∩ Supp(F)) = dim(Supp(F))− 1 = h− 1.

Therefore,

dim(Supp(Mi)) + dim(Supp(N)) ≤ 2h− 1 < 2h = dim(OMn+m
).

By Lemma 2.2, we verified (6.8). Therefore, the Lemma follows.

2.2 An integral form of the intersection number

In this subsection, we push the integer m in Lemma 2.3 to infinity. This will imply the following

formula.

Proposition 2.4. Suppose ∆i = ∆ϕi,τi , and

F (g) = Nrd

[ 0 Ih

]
∆−1

1 g∆2

 Ih

0


 6= 0 (6.9)

for all g ∈ R0. Then

χ(δ[ϕ1, τ1]n ⊗L
Mn

δ[ϕ2, τ2]n) = c(K1,K2) deg(N2,n) deg(N1,n)|∆K1/F |
−h2

F

∫
Rn

∣∣F (g)
∣∣−1

F
dg.
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Proof. Because we assumed (6.9),
∣∣F (g)

∣∣−1

F
is a continuous function over the compact set R0, therefore

is a bounded function. Let M be an upper bound for
∣∣F (g)

∣∣−1

F
, by (5.17), for all g ∈ R0

length
(
δ[ϕ1, τ1]∞ ⊗G2h

F
δ[ϕ2, gτ2]∞

)
= q2h2e1 |∆K/F |−h

2

F

∣∣F (g)
∣∣−1

F
≤ q2h2e1 |∆K/F |−h

2

F M.

Furthermore, since ν(gτ2) = ν(τ2), we have

max{ν(τ1), ν(gτ2)} = max{ν(τ1), ν(τ2)}.

Then there exists an integer m such that for any g ∈ R0, we have

n+m >
1

2h
logq length(δ[ϕ1, τ1]∞ ⊗ δ[ϕ2, gτ2]∞) + 2 max(ν(τ1), ν(gτ2)) + 1. (6.10)

From now we fix this m. We note that

deg(πm)N1,n deg(πm)N2,nχ
(
δ[ϕ1, τ1]n ⊗L δ[ϕ2, τ2]n

)
= χ((πm)n∗δ[ϕ1, τ1]n+m ⊗L

Mn
(πm)n∗δ[ϕ2, τ2]n+m).

(6.11)

By projection formula, this equals to

χ(δ[ϕ1, τ1]n+m ⊗L
Mn+m

(πm)∗n(πm)n∗δ[ϕ2, τ2]n+m).

By Lemma 2.3, this equals to

∑
k∈Rn/Rn+m

χ(δ[ϕ1, τ1]n+m ⊗L
Mn+m

δ[ϕ2, kτ2]n+m).

Since n+m satisfies (6.10), by Theorem 0.1, we can replace the summand by

χ
(
δ[ϕ1, τ1]∞ ⊗L δ[ϕ2, kτ2]∞

)
,

which by Proposition 3.1 equals to |∆K1/F |
−h2

F

∣∣F (k)
∣∣−1

F
. Since this number is also the intersection

number on Mm+n, so F (k) is invariant under Rm+n translation. So

|∆K1/F |
−h2

F

∣∣F (k)
∣∣−1

F
= |∆K1/F |

−h2

F

∫
kRn+m

∣∣F (g)
∣∣−1

F
dg∫

Rn+m
dg

.
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Summing over k ∈ Rn/Rn+m we get a formula for (6.11). Dividing it by deg(πm)N1,n
deg(πm)N2,n

we

have

χ(δ[ϕ1, τ1]n ⊗L
Mn

δ[ϕ2, τ2]n) = |∆K1/F |
−h2

F

∫
Rn

∣∣F (g)
∣∣−1

F
dg

deg(πm)N1,n
deg(πm)N2,n

∫
Rn+m

dg
.

Note that

deg(πm)N1,n
=

deg(N1,n+m)

deg(N1,n)
and

∫
Rn+m

dk =
1

deg(Mn+m)
.

Therefore,

|∆K1/F |
−h2

F

∫
Rn

∣∣F (g)
∣∣−1

F
dg =

deg(N1,n+m) deg(N2,n+m)

deg(Mn+m) deg(N2,n) deg(N1,n)
χ(δ[ϕ1, τ1]n ⊗L

Mn
δ[ϕ2, τ2]n)

=
1

c(K1,K2) deg(N2,n) deg(N1,n)
χ(δ[ϕ1, τ1]n ⊗L

Mn
δ[ϕ2, τ2]n).

We proved this Proposition.

Proof of Theorem 2.3. Now we prove Theorem 2.3. In this case, K = K1 = K2 and

δ[ϕ1, τ1]n = δ[ϕ, τ ]n; δ[ϕ2, τ2]n = δ[γϕ, g0τ ]n.

Denote ∆ = ∆ϕ1,τ1 , then ∆2 = g0∆, plug them into (6.9) and by Lemma 5.6, we have

∣∣F (g)
∣∣−1

F
=
∣∣∣Nrd(

[
0 Ih

]
∆−1γgg0∆

 Ih

0

)
∣∣∣−1

F
= |Resϕ,τ (γ, gg0)|−1

F .

Then F (g) 6= 0 can be deduced from Resϕ,τ (γ, g) 6= 0 for all g ∈ GL2h(F ). In other words, we have

to show Pg is prime to Pγ . If not, since Pγ is irreducible, we must have Pg = Pγ . Let x′ and γ′ be

elements constructed in (5.28), since they have the same characteristic polynomial, there is a F -field

isomorphism F [γ′] ∼= F [x′] identifying γ′ with x′. Let L = F [γ′], DL the centralizer of L in DF .

Let x◦ = x−1
+ x− and γ◦ = γ−1

+ γ−. Since the characteristic polynomial of x′ is over F , it conjugates

to an F -matrix, therefore we can assume without loss of generality that x◦x◦ is an F -matrix. Since

x′ = (1 − x◦x◦)−1 is elliptic, so is x◦. Then K[x◦] is a field of degree h over K containing L, so

K[x◦] = L[x◦] = LK. Now we embed L[x◦] to DL such that its image is contained in DK . Now we

have

x◦x◦ = (1− x′)−1 = (1− γ′)−1 = γ◦γ◦.

Note that γ◦x◦ = x◦γ◦, so (γ◦x◦−1)2 = 1. This implies γ◦ = ±x◦. But their conjugation on K induce
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different Galois actions, contradiction. So F (g) 6= 0.

Therefore by Proposition 2.4,

χ(δ[ϕ, τ ]n ⊗L
Mn

δ[γϕ, g0τ ]n) = c(K,K) deg(Nn)2|∆K/F |−h
2

F

∫
Rng0

∣∣Resϕ,τ (γ, g)
∣∣−1

F
dg.

Let

f(g) =
1Rng0

(g)∫
GL2h(F )

1Rn(g)dg
.

If n = 0, we have deg(Nn) = 1, this implies

χ
(
δ[ϕ, τ ]0 ⊗L δ[γϕ, g0τ ]0

)
= c(K)|∆K/F |−h

2

F

∫
GL2h(F )

f(g) |Resϕ,τ (γ, g)|−1
F dg.

If n > 0, we have c(K,K) deg(Nn)2 = 1/ deg(Mn) = 1/Vol(Rn), this implies

χ
(
δ[ϕ, τ ]n ⊗L δ[γϕ, g0τ ]n

)
= |∆K/F |−h

2

F

∫
GL2h(F )

f(g) |Resϕ,τ (γ, g)|−1
F dg.

We proved Theorem 2.3.

3 Hecke Correspondence

In this subsection we discuss the geometric meaning for Int(γ, f) when f is a characteristic function

of double cosets. Fix a g0 ∈ GL2h(F ) and an integer n, put

f = fRng0Rn =
1Rng0Rn∫

GL2h(F)
1Rng0Rn(x)dx

(6.12)

This test function corresponds to the following correspondence, take m ≥ ν(g0),

f :Mn Mn+m
(πm)noo (πmγ,g0)n //Mn . (6.13)

For any class [F ] represented by a coherent sheaf F on Mn, the pulling back f∗ [F ] is defined to be

f∗ [F ] =
1

deg(πm)n
[(πm)n∗(π

mγ, g0)∗nF ] .

In this subsection, all tensors is over Mn or G2h
F unless otherwise stated, we omit it for convenience.

Theorem 3.1. Using the same notation as in Proposition 2.4, let f be the function in (6.12), we
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assume F (g) 6= 0 for all g ∈ Supp(f), then we have

1

deg(πm)n
χ
(
δ[ϕ1, τ1]n ⊗L (πm)n∗(π

mγ, g0)∗nδ[ϕ2, τ2]n
)

= C

∫
GL2h(F)

f(g)χ
(
δ[ϕ1, τ1]∞ ⊗L δ[γϕ2, gτ2]∞

)
dg×.

(6.14)

Here C = 1 if n > 0, and C = c(K1,K2) if n = 0.

Proof. Since (πm)n∗δ[ϕ1, τ1]n+m = deg(πm)N1,n
δ[ϕ1, τ1]n

χ
(
(πmγ, g0)n∗(π

m)∗nδ[ϕ1, τ1]n ⊗L δ[ϕ2, τ2]n
)

=
1

deg(πm)N1,n

χ
(
(πmγ, g0)n∗(π

m)∗n(πm)n∗δ[ϕ1, τ1]n+m ⊗L δ[ϕ2, τ2]n
)
.

By projection formula , this equals to

1

deg(πm)N1,n

χ((πm)∗n(πm)n∗δ[ϕ1, τ1]n+m ⊗L
Mm+n

(πmγ, g0)∗nδ[ϕ2, τ2]n).

By Lemma 2.3, we can write this expression as

1

deg(πm)N1,n

∑
x∈Rn/Rn+m

χ(δ[ϕ1, xτ1]n+m ⊗L
Mm+n

(πmγ, g0)∗nδ[ϕ2, τ2]n).

Use projection formula again, this equals to

1

deg(πm)N1,n

∑
x∈Rn/Rn+m

χ
(
(πmγ, g0)n∗δ[ϕ1, xτ1]n+m ⊗L δ[ϕ2, τ2]n

)
. (6.15)

By Definition 5.5 and Proposition 5.6,

(πmγ, g0)n∗δ[ϕ1, xτ1]n+m = deg(πm)N1,n
δ[γϕ1, g0xτ1]n,

so we can write (6.15) as

∑
x∈Rn/Rn+m

χ
(
δ[γϕ1, g0xτ1]n ⊗L δ[ϕ2, τ2]n

)
.
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Now use the Proposition 2.4 to the above expression, we conclude

χ
(
(πmγ, g0)n∗(π

m)∗nδ[ϕ1, τ1]n ⊗L δ[ϕ2, τ2]n
)

= c(K1,K2) deg(N1,n) deg(N2,n)

∫∫
Rn×Rn χ

(
δ[γϕ1, yg0xτ1]∞ ⊗L δ[ϕ2, τ2]∞

)
dxdy∫

Rn+m
dx

.
(6.16)

To lighten the notation we denote

X(g) = χ
(
δ[γϕ1, gτ1]∞ ⊗L δ[ϕ2, τ2]∞

)
.

Applying a substitution y → yx−1g−1
0 , we have

∫∫
Rn×Rn

X(yg0x)dxdy =

∫∫
Rn×Rng0x

X(y)dxdy. (6.17)

Note that  x ∈ Rn

y ∈ Rng0x

 =

 y ∈ Rng0Rn

x ∈ Rn ∩ g−1
0 Rny

 .

So (6.17) equals to ∫
Rng0Rn

X(y)Vol(Rn ∩ g−1
0 Rny)dy

Write y = t1g0t2 with t1, t2 ∈ Rn, We have Rn ∩ g−1
0 Rny = (Rn ∩ g−1

0 Rng0)t2. Since we have an

isomorphism of left cosets Rng0Rn/Rn ∼= Rn/(Rn ∩ g0Rng
−1
0 ), so

Vol(Rn ∩ g−1
0 Rny) = Vol(Rn ∩ g−1

0 Rng0) =
Vol(Rn)2

Vol(Rng0Rn)
.

Therefore (6.16) equals to

c(K1,K2) deg(N1,n) deg(N2,n)Vol(Rn)2

Vol(Rng0Rn)Vol(Rn+m)

∫
Rng0Rn

X(y)dy.

Note that deg(πm)n = Vol(Rn)/Vol(Rn+m) and f = 1Rng0Rn/Vol(Rng0Rn), we have the left hand

side of (6.14) equals to

c(K1,K2) deg(N1,n) deg(N2,n)Vol(Rn)

∫
Rng0Rn

f(y)X(y)dy.

If n = 0, then deg(N1,n), deg(N2,n) and
∫
Rn

dx are all equal to 1. If n > 0, we have c(K1,K2) deg(N1,n) deg(N2,n)
∫
Rn

dx =

1. So this Theorem follows.
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Now we prove Theorem 2.3 for general Hecke functions as a special case of K = K1 = K2,

(ϕ, τ) = (ϕ1, τ1) = (ϕ2, τ2). Then the equation (6.14) become

1

deg(πm)n
χ
(
δ[ϕ, τ ]n ⊗L (πm)n∗(π

mγ, g0)∗nδ[ϕ, τ ]n
)

= C

∫
GL2h(F)

f(g)X(g)dg. (6.18)

Here C = 1 if n > 0, and C = c(K1,K2) if n = 0, and

X(g) = χ
(
δ[γϕ, gτ ]∞ ⊗L δ[ϕ, τ ]∞

)
= |∆K/F |−h

2

F

∣∣Res(γ, g)
∣∣−1

F
,

If n = 0, the right hand side of (6.18) equals to

c(K)|∆K/F |−h
2

F · Int(γ, f).

If n > 0 the right hand side equals to

|∆K/F |−h
2

F · Int(γ, f).

So we proved our Theorem 2.3 for Hecke correspondence.
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