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ABSTRACT

Statistical Learning Methods for Personalized Medicine

Xin Qiu

The theme of this dissertation is to develop simple and interpretable individualized treatment rules

(ITRs) using statistical learning methods to assist personalized decision making in clinical prac-

tice. Considerable heterogeneity in treatment response is observed among individuals with mental

disorders. Administering an individualized treatment rule according to patient-specific character-

istics offers an opportunity to tailor treatment strategies to improve response. Black-box machine

learning methods for estimating ITRs may produce treatment rules that have optimal benefit but

lack transparency and interpretability. Barriers to implementing personalized treatments in clin-

ical psychiatry include a lack of evidence-based, clinically interpretable, individualized treatment

rules, a lack of diagnostic measure to evaluate candidate ITRs, a lack of power to detect treatment

modifiers from a single study, and a lack of reproducibility of treatment rules estimated from single

studies. This dissertation contains three parts to tackle these barriers: (1) methods to estimate

the best linear ITR with guaranteed performance among the class of linear rules; (2) a tree-based

method to improve the performance of a linear ITR fitted from the overall sample and identify

subgroups with a large benefit; and (3) an integrative learning combining information across trials

to provide an integrative ITR with improved efficiency and reproducibility.

In the first part of the dissertation, we propose a machine learning method to estimate optimal

linear individualized treatment rules for data collected from single stage randomized controlled

trials (RCTs). In clinical practice, an informative and practically useful treatment rule should be

simple and transparent. However, because simple rules are likely to be far from optimal, effective

methods to construct such rules must guarantee performance, in terms of yielding the best clinical

outcome (highest reward) among the class of simple rules under consideration. Furthermore, it

is important to evaluate the benefit of the derived rules on the whole sample and in pre-specified



subgroups (e.g., vulnerable patients). To achieve both goals, we propose a robust machine learn-

ing algorithm replacing zero-one loss with an authentic approximation loss (ramp loss) for value

maximization, referred to as the asymptotically best linear O-learning (ABLO), which estimates

a linear treatment rule that is guaranteed to achieve optimal reward among the class of all linear

rules. We then develop a diagnostic measure and inference procedure to evaluate the benefit of

the obtained rule and compare it with the rules estimated by other methods. We provide theo-

retical justification for the proposed method and its inference procedure, and we demonstrate via

simulations its superior performance when compared to existing methods. Lastly, we apply the

proposed method to the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial

on major depressive disorder (MDD) and show that the estimated optimal linear rule provides a

large benefit for mildly depressed and severely depressed patients but manifests a lack-of-fit for

moderately depressed patients.

The second part of the dissertation is motivated by the results of real data analysis in the first

part, where the global linear rule estimated by ABLO from the overall sample performs inadequately

on the subgroup of moderately depressed patients. Therefore, we aim to derive a simple and

interpretable piece-wise linear ITR to maintain certain optimality that leads to improved benefit in

subgroups of patients, as well as the overall sample. In this work, we propose a tree-based robust

learning method to estimate optimal piece-wise linear ITRs and identify subgroups of patients with

a large benefit. We achieve these goals by simultaneously identifying qualitative and quantitative

interactions through a tree model, referred to as the composite interaction tree (CITree). We

show that it has improved performance compared to existing methods on both overall sample and

subgroups via extensive simulation studies. Lastly, we fit CITree to Research Evaluating the Value

of Augmenting Medication with Psychotherapy (REVAMP) trial for treating major depressive

disorders, where we identified both qualitative and quantitative interactions and subgroups of

patients with a large benefit.

The third part deals with the difficulties in the low power of identifying ITRs and replicating

ITRs due to small sample sizes of single randomized controlled trials. In this work, a novel inte-

grative learning method is developed to synthesize evidence across trials and provide an integrative

ITR that improves efficiency and reproducibility. Our method does not require all studies to collect

a common set of variables and thus allows information to be combined from ITRs identified from



randomized controlled trials with heterogeneous sets of baseline covariates collected from different

domains with different resolution. Based on the research goal, the integrative learning can be used

to enhance a high-resolution ITR by borrowing information from coarsened ITRs or improve the

coarsened ITR from a high-resolution ITR. With a simple modification, the proposed integrative

learning can also be applied to improve the estimation of ITRs for studies with blockwise missing

feature variables. We conduct extensive simulation studies to show that our method has improved

performance compared to existing methods where only single-trial ITRs are used to learn personal-

ized treatment rules. Lastly, we apply the proposed method to RCTs of major depressive disorder

and other comorbid mental disorders. We found that by combining information from two studies,

the integrated ITR has a greater benefit and improved efficiency compared to single-trial rules or

universal non-personalized treatment rule.

Key Words: Personalized medicine; Machine learning; Treatment response heterogeneity; Indi-

vidualized treatment rules; Qualitative interaction; Quantitative interaction; Robust loss function;

Tree-based method; Integrative learning; Blockwise missing data
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Chapter 1

Introduction

1.1 Background and Overview

Heterogeneity in patient response to treatment is a long-recognized challenge in the clinical com-

munity. For example, in adults affected by major depression, only around 30% of patients achieve

remission with a single acute phase of treatment (Trivedi et al., 2006; Rush et al., 2004); the

remaining 70% of patients require augmentation of the current treatment or a switch to a new

treatment (Trivedi and Daly, 2008). Heterogeneity in treatment response also has been observed

among children with attention deficit and hyperactivity disorder (Pelham and Fabiano, 2008), and

autism spectrum disorders (Jones et al., 2010). Thus, a universal strategy that treats all patients

with the same treatment is inadequate, and individualized treatment strategies are required to im-

prove response in individual patients. In this regard, rapid advances in technologies for collecting

patient-level data have made it possible to tailor treatments to individual patients based on their

characteristics, thereby enabling the new paradigm of personalized medicine.

Personalized medicine aims to provide each patient with the right medicine, the right dose, and
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Figure 1.1: Three types of covariates (prognostic, predictive and prescriptive)
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at the right time, in order to improve patient care and reduce potential side effects and health

care cost (Carini et al., 2014). As depicted in Figure 1.1, three types of patient’s covariates may

be considered to achieve this goal. The first class of covariates includes prognostic variables which

inform selecting subgroups of subjects at high risk for disease, irrespective of the treatment they

receive (Carini et al., 2014). The other two classes of covariates correspond to variables with

either quantitative or qualitative interaction with treatments, which are referred as predictive or

prescriptive variables, respectively. In particular, qualitative interaction refers to that the treatment

effect changes direction based on some function of covariates, which indicates that a treatment could

be superior in one subgroup but inferior in another subgroup. This type of interaction provides

important information on estimating a personalized treatment rule. Quantitative interaction refers

to that the treatment effects are in the same direction in the covariate space but differ in magnitude

in some subgroup. Predictive variables manifest quantitative interaction and define subgroups of

subjects who are likely to experience large treatment benefit, while prescriptive variables manifest

qualitative interaction and define the optimal treatment for a given individual. Both classes of
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variables can be used to guide the development of personalized medicine (Carini et al., 2014).

In the following of this dissertation, we develop several new statistical learning methods for

estimating simple and interpretable individualized treatment rules for single-stage randomized con-

trolled trials. The dissertation consists of three projects. We start by introducing background and

motivation of each project. In Chapter 2, we propose a machine learning method to estimate the

optimal linear individualized treatment rule and a diagnostic measure to assess the optimality of

candidate rules. In Chapter 3, we improve the performance of a linear ITR fitted from the over-

all sample using a tree-based model to identify both qualitative and quantitative interactions and

subgroups of subjects with a large benefit. In Chapter 4, we use integrative learning to synthesize

evidence across multiple trials to improve efficiency and reproducibility of the estimation of ITRs.

1.2 Introduction to Estimation and Evaluation of Linear Individ-

ualized Treatment Rules

Statistical methods have been proposed to estimate optimal individualized treatment rules (ITRs)

(Lavori and Dawson, 2004) using predictive and prescriptive clinical variables that manifest quanti-

tative and qualitative treatment interactions, respectively (Carini et al., 2014; Gunter et al., 2011).

Q-learning (Watkins, 1989; Qian and Murphy, 2011) and A-learning (Murphy, 2003; Blatt et al.,

2004) are proposed to identify the optimal ITR. Q-learning is a regression-based method, which esti-

mates an ITR by directly modeling the Q-function (“Q” stands for “quality of action”). A-learning

only requires posited models for contrast functions and uses a doubly robust estimating equation

to estimate the contrast functions. This makes A-learning more robust to model misspecification

than Q-learning and provides a consistent estimation of an ITR (Schulte et al., 2014). Other pro-
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posed approaches include semiparametric methods and machine learning methods (Moodie et al.,

2007; Zhang et al., 2012; Foster et al., 2011; Zhao et al., 2012; Chakraborty and Moodie, 2013).

For example, the virtual twins approach (Foster et al., 2011) uses tree-based estimators to identify

subgroups of patients who show larger than expected treatment effects. Zhang et al. (2012, 2013)

estimated the optimal ITR by directly maximizing the value function over a specified parametric

class of treatment rules through augmented inverse probability weighting. In contrast, Zhao et al.

(2012) proposed outcome weighted learning (O-learning), which utilizes weighted support vector

machine to directly maximize the value function (expected clinical outcome by following the ITR).

More recently, Huang and Fong (2014) proposed a robust machine learning method to select the

ITR that minimizes a total burden score due to disease and treatment for a binary clinical outcome.

Interactive Q-learning (Laber et al., 2014) models two ordinary mean-variance functions instead of

modeling the predicted future optimal outcomes. Fan et al. (2017) proposed a concordance function

for prescribing treatment, where a patient is more likely to be assigned to a treatment than another

patient if s/he has a greater benefit than the other patient.

In clinical practice, simple treatment rules such as linear rules, are preferred due to their trans-

parency and convenience for interpretation. However, when only linear rules are in consideration,

many existing methods including semiparametric models and some machine learning methods may

not yield a rule with optimal performance, because they focus on optimization of a surrogate ob-

jective function of treatment benefit. Using surrogate objective functions may only guarantee the

optimality when there is no restriction on the functional form of the treatment rules. For exam-

ple, with O-learning, the objective function is a weighted hinge-loss, which yields the optimal rule

among nonparametric rules, but may not be optimal when the candidate rules are restricted to the

linear form. Therefore, learning algorithms are desired to derive a treatment rule with guaranteed
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performance when constraints are placed on the class of candidate rules.

An additional consideration is the need to evaluate, through diagnostics, any approach for rule

estimation. However, less emphasis has been placed on the evaluation of the estimated ITR in the

context of personalized medicine. Residual plots were used to evaluate model fit for G-estimation

(Rich et al., 2010) and Q-learning (Ertefaie et al., 2016). In the recent work by Wallace et al.

(2016), a dynamic treatment regime (DTR) is estimated by G-estimation and double robustness

is exploited for model diagnosis. How to evaluate the optimality of an ITR in general remains an

open research question.

The purpose of this work is two-fold: we first develop a general approach to identify a linear ITR

with guaranteed performance; we then propose a diagnostic method to evaluate the performance

of any derived ITR including the proposed one. Our two-stage approach separates the estimation

of the ITR from its evaluation and the sample used in each stage. Specifically, in the first stage,

we propose ramp-loss-based (McAllester and Keshet, 2011; Huang and Fong, 2014) learning for the

estimation and we show that this approach guarantees the derived linear ITR to be asymptotically

optimal within the class of all linear rules. We refer our method as Asymptotically Best Linear O-

learning, ABLO. For the second stage, in practice, it is infeasible to expect that an ITR that benefits

each individual can be identified due to the unknown treatment mechanism and the likely omission

of some prescriptive variables. Thus, we propose a practical solution to calibrate the average ITR

effect in the population given the observed variables, or in pre-specified important subgroups (e.g.,

patients in the most severe state). Specifically, to obtain an ITR evaluation criterion, we define the

benefit of a candidate ITR as the average difference in the value function between those who follow

the ITR and those who do not. We then use the ITR benefit as a diagnostic measure to evaluate

its optimality. Our method exploits the fact that if an ITR is truly optimal for all individuals, then
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for any given patient subgroup, the average outcome for patients who are treated according to the

ITR should be greater than for those who are not treated according to the ITR. On the contrary,

if the average outcome of the ITR is worse for some patients who follow the ITR than for those

who do not, then the ITR is not optimal on this subgroup.

Compared to the existing literature, two main contributions of this work are to propose a benefit

function to calibrate an ITR, and a diagnostic procedure to evaluate optimality of a derived ITR,

while most of the existing work focuses on the estimation of ITR/DTR. A third contribution is

to prove asymptotic properties of ITR estimated under the ramp loss (Huang and Fong, 2014).

Asymptotic results in the existing literature (e.g., Zhao et al. (2012)) are obtained for the hinge

loss. Due to these theoretical results, we can provide valid statistical inference procedure for testing

optimality of an ITR using asymptotic normality.

In Chapter 2, we show that ABLO consistently estimates the ITR benefit for a class of candi-

date rules regardless of two potential pitfalls: 1) the consistency of benefit estimator is maintained

even though the functional form of the rule is misspecified; 2) the rule does not include all pre-

scriptive/tailoring variables and thus the true global optimal rule is not in the specified class. We

further derive the asymptotic distribution for the proposed diagnostic measure. We conduct simu-

lation studies to demonstrate finite sample performance and show advantages over existing machine

learning methods. Lastly, we apply the method to the Sequenced Treatment Alternatives to Relieve

Depression (STAR*D) trial on major depressive disorder (MDD), where substantial treatment re-

sponse heterogeneity has been documented (Trivedi et al., 2006; Huynh and McIntyre, 2008). Our

analyses estimate an optimal linear ITR, and we demonstrate a large benefit in mildly depressed

and severely depressed patients but a lack-of-fit among moderately depressed patients.
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1.3 Introduction to Composite Interaction Tree for Learning Op-

timal Individualized Treatment Rules and Subgroups

Due to their simplicity and interpretability, decision trees are often constructed to assist person-

alized medical decision making. Two types of interactions are useful for personalizing treatments:

qualitative interactions inform the selection of optimal treatment from several competing choices;

quantitative interactions inform the identification of subgroups with a substantially greater or

smaller response than the overall sample. Methodologies are proposed to estimate an optimal ITR

by hunting for qualitative interactions between covariates and treatments on the outcome (Carini

et al., 2014; Gunter et al., 2011; Dusseldorp and Van Mechelen, 2014; Laber and Zhao, 2015).

Specifically, Qualitative interaction tree (QUINT, Dusseldorp and Van Mechelen, 2014) partitions

patients into terminal nodes where the average effect of one treatment for patients in the nodes is

superior or two treatments are similar. Unlike the usual classification trees or regression trees where

class labels are known, in tree-based methods for estimating optimal ITRs the optimal treatment

(class label) for an individual is unknown. In this regard, Minimum Impurity Decision Assignments

decision trees (MIDAs, Laber and Zhao, 2015) focused on the estimation of a tree-structured ITR

that maximizes a value function and splits the parent nodes where the value function will be most

dramatically improved. Fu et al. (2016) proposed to maximize the value function by exhaustive

search; their approach was shown to be more stable due to using residuals of a regression model

to remove main effects of covariates on the outcome when learning a tree (Liu et al., 2014). In a

recent work by Zhu et al. (2017), outcome weighted learning (Zhao et al., 2012) and reinforcement

learning tree (Zhu et al., 2015) were combined to construct a tree-based model to perform treatment

selection. The algorithm uses greedy search where at each step, a weighted classification score is
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used to evaluate the potential contribution of each variable.

Another group of methods is proposed to identify treatment response heterogeneity through

estimating quantitative interactions. In this case, the optimal treatment may be the same for

a subgroup of patients but they manifest a greater benefit than the overall sample. Subgroup

Identification based on Differential Effect Search (SIDES, Lipkovich et al., 2011) searches within

certain regions of the covariate spaces and identifies multiple subgroups with enhanced treatment

effects. At each step, SIDES partitions a parent node into two child nodes for each covariate in a

pre-specified set and retains the child node with a larger treatment effect. Virtual twins (Foster

et al., 2011) finds a subgroup of patients who will have larger treatment effect using tree-based

estimators. Interaction trees (ITs, Su et al., 2009) can identify both qualitative and quantitative

interaction, but cannot distinguish strong quantitative interaction from qualitative interaction.

Some of the above existing tree-based approaches (e.g., QUINT, IT) examine qualitative inter-

action by exploring each candidate feature variable in turn. However, due to biological and clinical

heterogeneity among patients, a single variable is unlikely to successfully guide treatment choice

in individual patients; information carried by a single variable is limited, and a large number of

variables each with small effects may play a role. Thus, tree-based approaches that partitions by

individual variables may have reduced performance. For instance, in a randomized trial treating

major depressive disorder (STAR*D, Rush et al., 2004), QUINT did not return any individual

variable that can distinguish the best treatment to reduce depressive symptoms. In contrast, using

the same study data, machine learning and regression-based approaches (Chakraborty and Moodie,

2013; Qiu et al., 2017) identified ITRs as linear combinations of feature variables that manifest a

qualitative interaction to differentiate optimal treatments for individual patients. However, a lin-

ear ITR fitted from the overall sample using these methods may not be optimal on some patient



CHAPTER 1. INTRODUCTION 9

subgroups (due to the misspecification of linear rules), and thus do not identify subgroups with

large ITR benefits.

Recognizing that estimating an ITR and identifying subgroups with large ITR benefits are

two important goals, we propose a novel composite interaction tree, referred to as CITree, to

simultaneously estimate qualitative and quantitative interactions. CITree contains two types of

splits: a qualitative-interaction split by fitting asymptotically best linear rule (ABLO) at each

stage; and a quantitative-interaction split based on a heterogeneity of ITR benefit (HTB) test.

Specifically, in the qualitative split CITree estimates an interpretable, simple decision tree that

guarantees enhanced performance on subgroups of patients by improving the value function fitted

from the overall sample. Patients are partitioned into homogeneous subgroups of similar optimal

ITR (reduce optimal treatment rule heterogeneity). In the quantitative split, CITree partitions

patients into homogeneous subgroups of ITR benefit such that the within-group optimal ITR effect

is similar while the between-group difference is large (reduce ITR benefit heterogeneity).

CITree leverages a diagnostic measure of the goodness-of-fit of a decision rule and a measure

of the ITR benefit (i.e., the difference in the mean response for patients who follow the ITR and

those who do not). It has been shown in Chapter 2 that if an optimal ITR genuinely maximizes

the clinical response in each individual patient, then the ITR will have a positive effect within any

arbitrarily defined subgroup of patients. Thus, by an HTB test, it is feasible to determine for which

patients a linear (and potentially misspecified) ITR leads to a significantly lower than average (and

potentially negative) benefit; thus the treatment is more likely to be non-optimal for these patients.

To remedy this lack-of-fit of linear rules, as patients travel down the CITree, non-optimal ITRs with

a poor benefit at top nodes are rectified in subgroups and patients organize into nodes of a high or

low ITR benefit. By recursively detecting subgroups with a low benefit (quantitative splits) and
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re-fit ITR within the subgroups (qualitative split), CITree will improve the overall value function

and increase the subgroup benefit.

In Chapter 3 of this dissertation, we further introduce the rationale and algorithm of CITree.

We show that CITree can successfully reduce the benefit heterogeneity and rule heterogeneity. We

then perform extensive simulation studies to show improvement as compared to existing machine

learning methods (e.g., IT, QUINT). Lastly, we fit a CITree using the Research Evaluating the

Value of Augmenting Medication with Psychotherapy (REVAMP) trial data for treating major

depressive disorder (MDD), where substantial treatment response heterogeneity was documented

in the literature (Shankman et al., 2013).

1.4 Introduction to Integrative Learning to Synthesize Individu-

alized Treatment Rules Across Multiple Trials

Several challenges hamper the success of developing and implementing personalized treatment de-

cisions in clinics. First, recent machine learning methods (Zhao et al., 2012, 2015) for discovering

individualized treatment rules (ITRs) lack interpretability, and thus, they are difficult to under-

stand by clinicians and translate into clinical practice. Second, most randomized controlled trials

(RCTs) are powered to detect average treatment effects instead of subgroup effects, let alone op-

timal individualized treatment decisions. Thus, subgroup or ITR findings are difficult to replicate

due to small sample sizes. Third, the target population for the application of ITRs can be different

from the patient sample used in estimating the ITR due to time, geographic, or other differences

(Justice et al., 1999). When learning an ITR based on a single study, the research aim is to estimate

an ITR that performs best on the current study, which may not be able to transport or generalize
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to a future sample due to sample difference between studies and the study-specific noise variables.

A cost-effective method to remedy the small sample size problem and improve the reproducibility

and transportability is to pool and analyze data from multiple RCTs, which includes meta-analysis

(Haidich, 2010) and integrative analysis approaches (Ma et al., 2011). Meta-analysis uses a weighted

average to compute a pooled estimate of an average overall treatment effect from individual studies

(Cipriani et al., 2018; Jakobsen et al., 2017). Subgroup analyses are exploratory in nature, and well-

designed studies testing the same subgroup effect is scarce in the literature. Therefore, conducting

subgroup meta-analysis across multiple trials is difficult. For example, we performed a systematic

review of subgroup analysis of RCTs of major depressive disorder (MDD). There were 211 studies

that met our inclusion criteria, but with only one consensus predictive variable (i.e., baseline severity

of depression), suggesting that the literature is incomplete and inconclusive given the substantial

observed heterogeneity in treatment effects (HTE). On the other hand, we didn’t find any research

performing meta-analysis for ITRs because there is no straightforward method to average ITRs

from individual studies given that an ITR is usually the sign of a decision function. Integrative

analysis approaches pool raw data from multiple studies and analyze the pooled data as if it is

from a single trial. Integrative analysis can be more effective than meta-analysis (Ma et al., 2011),

and has been used in detecting genetic risk factors from multiple cancer studies or cancer subtypes.

However, it requires that multiple studies share the same biological ground and the same candidate

feature variables should be collected from all the studies.

In practice, due to different study designs and hypotheses, RCTs often collect different sets of

baseline covariates or feature variables. When new evidence from neuroscience research emerges,

new hypotheses are proposed regarding various biomarkers as predictive/prescriptive variables for

pharmacotherapy of MDD (Trivedi et al., 2016). Thus, biomarkers are one of the foci of data collec-
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tion, in addition to clinical and neuropsychiatric measures (EMBARC, Trivedi et al. (2016)), while

in prior studies (e.g, STAR*D (Rush et al., 2004), CO-MED (Rush et al., 2011), HEAL (Shear

et al., 2016), REVAMP (Kocsis et al., 2009), Nefazodone-CBASP (Keller et al., 2000), Bulimia

(Sysko et al., 2010)), only comprehensive clinical variables are available. In particular, EMBARC

trial collects comprehensive baseline measures including clinical measures, depression and anxiety

measures, behavioral phenotyping (BP), functional magnetic resonance imaging (fMRI), electroen-

cephalogram (EEG), and diffusion tensor imaging (DTI). In addition to clinical measures, depres-

sion and anxiety measures, STAR*D and Co-Med also include information for measuring quality

of life, work and social adjustment, while HEAL consists of additional variables to measure grief

symptoms and treatment expectancy.

Non-uniform, heterogeneous feature collection poses challenges for the integration of ITRs or

meta-analysis across RCTs. Combining data directly and performing a single analysis is often

inefficient or inappropriate. For example, one may consider to use all subjects with common feature

variables across trials and treat it as a single study, which may lose information of important feature

variables. On the other hand, to include as many feature variables as possible, one may end up

with a small number of subjects in the analysis, which may lead to a biased sample to represent

the entire population.

Because available feature variables in each trial differ, treatment rules estimated from each trial

will include different “resolutions” of the patient-specific characteristics (i.e., ITRs from EMBARC

may depend on both clinical variables and brain imaging biomarkers, whereas ITRs from STAR*D

depend only on clinical variables). The fitted ITRs may yield opposite treatment recommendations

for the same patient based on different feature variables included. A conundrum is that although

ITRs learned with a rich set of feature variables and finer resolution may prescribe more specific



CHAPTER 1. INTRODUCTION 13

treatment for an individual patient, these ITRs can be less reliable due to an increased number of

tailoring variables. Conversely, coarsened ITRs learned using fewer variables are more robust and

practical in resource-limited clinical settings (e.g., when collecting data on expensive biomarkers

is prohibitive). However, these ITRs may not lead to a truly optimal personalized treatment.

Therefore, integration and reconciliation of the ITRs learned on heterogeneous scales are important.

We will propose novel analytic solutions to the above challenges. Our proposed method is related

to Multi-Task Learning (MTL) and Multi-Objective Reinforcement Learning (MORL). One type of

MTL (Ruder, 2017) is to optimize one loss function with related auxiliary tasks to improve the main

task. MORL (Liu et al., 2015) aims to optimize multiple objectives by summarizing them into one

single objective. When multiple studies collecting features with different resolutions are available,

depending on the main study of interest and information available in the future target population

of applying the estimated ITR, other studies can be included as auxiliary data sets to improve

the efficiency and reproducibility of the ITR comparing to using the main study data set alone.

When learning a high-resolution ITR is of interest, the auxiliary data sets often collect a subset

of feature variables which can provide low-resolution ITRs. If a simple and easy to interpret low-

resolution ITR is of interest, auxiliary data sets with high-resolution ITRs can still assist improving

the coarsened ITR based on the low-resolution information.

To improve efficiency and reproducibility of ITRs from both directions, we propose a novel in-

tegrative learning to synthesize evidence across trials and provide an integrative ITR. Our method

does not require all studies to collect common sets of variables. Thus, the integrative learning allows

evidence to be combined from ITRs identified in recent RCTs that collected emerging biomarkers

(e.g., neuroimaging measures) with earlier RCTs that focused on clinical and psychosocial markers.

The proposed method will summarize information across different trials by a regularized value func-
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tion and use a data-driven method to determine how much evidence each study contributes to the

integrative ITR. Optimization of the regularized value function can be easily solved using existing

outcome-weighted learning methods (Zhao et al., 2012; Qiu et al., 2017) with an augmentation term

related to the clinical outcome.

In Chapter 4 of this dissertation, we first introduce the rationale and algorithm of the proposed

integrative machine learning method for learning both high-resolution ITRs and coarsened ITRs.

We then extend the proposed method to studies collecting blockwise feature domains. We derive

the underlying Bayesian rules for the proposed method. We show that the proposed method

can successfully improve the efficiency and reproducibility of the estimated ITRs compared to

existing machine learning methods for single studies (e.g., ABLO) via extensive simulation studies.

Lastly, we fit ITRs using the proposed integrative learning method on Establishing Moderators

and Biosignatures of Antidepressant Response in clinical Care (EMBARC) trial for treating major

depressive disorder.
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Chapter 2

Estimation and Evaluation of Linear

Individualized Treatment Rules to

Guarantee Performance

2.1 Overview

In this chapter, we propose a machine learning method, asymptotically best linear O-learning

(ABLO) to estimate the optimal linear ITR. We also propose a diagnostic measure to evaluate

candidate ITRs. In Section 2.2, we propose the statistical method of ABLO and several tests for

goodness-of-fit. In Section 2.3, we show the asymptotic properties. In Section 2.4, we conduct

simulation studies to investigate the performance of the proposed method. In Section 2.5, we apply

the method to a study of patients with major depressive disorder, the STAR*D data. Finally, we

summarize our findings and discuss possible extensions in Section 2.6.
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2.2 Methodologies

We start by introducing some notations for single-stage randomized clinical trials. Let R denote

a continuous variable measuring clinical response after treatment (e.g., reduction of depressive

symptoms). Without loss of generality, assume a large value of R is desirable. Let X denote a

vector of subject-specific baseline feature variables, and let A = 1 or A = −1 denote two alternative

treatments being compared. Assume that we observe (Ai,Xi, Ri) for the ith subject in a two-arm

randomized trial with randomization probability P (Ai = a|Xi = x) = π(a|x), for i = 1, ..., n.

An ITR, denoted as D(X), is a binary decision function that mapsX into the treatment domain

A = {−1, 1}. Let PD denote the distribution of (A,X, R) in which D is used to assign treatments.

The value function of D satisfies

V (D) = ED(R) =

∫
R dPD =

∫
R
dPD

dP
dP = E

{
RI(A = D(X))

π(A|X)

}
, (2.1)

where P is the distribution of (A,X, R) and PD is the distribution under A = D(X). In most

applications, D(X) is determined by the sign of a function, f(X), which is referred to as the ITR

decision function. That is, D(X) = sign(f(X)). In general settings, f ∈ F can take any form, either

a parametric function or a non-parametric function. To quantify the benefit of an ITR, a measure

related to the value function is a natural choice. The mean difference is widely used to compare

the average effect of two treatments. Analogously, we define the benefit function corresponding to

an ITR as the difference in the value function between two complementary strategies: one that

assigns treatments according to D(X) and the other assigns according to the complementary rule

−D(X) for any given feature variables X. That is, the benefit function for D(X) = sign(f(X)) is

δ(f(X)) = E
{
R|A = sign(f(X)),X

}
− E

{
R|A = −sign(f(X)),X

}
. (2.2)
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2.2.1 Estimating Optimal Linear Treatment Rule

To obtain a practically useful and transparent ITR, we consider a class of linear ITR decision

functions, denoted by L, and estimate the optimal linear function f∗L ∈ L, that maximizes the

value function (2.1) among this class. To this end, following the original idea of Liu et al. (2014),

we note that maximizing V (D) is equivalent to minimizing a residual-weighted misclassification

error given as

E

[
|R− r(X)|I {A sign(R− r(X)) 6= D(X)}

π(A|X)

]
,

where r(X) is any function of X, taken as an approximation to the conditional mean of R given

X. Thus, we aim to minimize the empirical version of the above quantity, given as

1

n

∑
i

|Wi|I(AiZi 6= D(Xi))

π(Ai|Xi)
=

1

n

∑
i

|Wi|I(AiZif(Xi) < 0)

π(Ai|Xi)

for f ∈ L, where Wi = Ri − r̂(Xi), Zi = sign(Wi), and r̂(X) is obtained from a working model by

regressing Ri on Xi (Liu et al., 2014).

The above optimization with zero-one loss is a non-deterministic polynomial-time hard (NP-

hard) problem (Natarajan, 1995). To avoid this computational challenge, the zero-one loss was

replaced by some convex surrogate loss in existing methods, for instance, the squared loss or hinge

loss. Let f∗ denote the global optimal decision function corresponding to the optimal treatment

rule among any decision functions. That is, f∗(X) = E(R|A = 1,X) − E(R|A = −1,X). When

L consists of linear decision functions that are far from the global optimal rule such that f∗ 6∈ L,

estimating optimal linear rule by minimizing the surrogate loss (e.g., hinge loss or squared loss) no

longer guarantees that the induced value or benefit is maximized among the linear class.

In order to obtain the best linear ITR with guaranteed performance, we propose to use an

authentic approximation loss that will converge to zero-one loss, referred to as the ramp loss
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(McAllester and Keshet, 2011; Huang and Fong, 2014), for value maximization. The ramp loss, as

plotted in Figure 2.1, has been used in the machine learning literature to provide a tight bound on

the misclassification rate (McAllester and Keshet, 2011; Collobert et al., 2006). Mathematically,

this function can be expressed as

hs(u) = I(u ≤ −s
2

)− 1

s
(u− s

2
)I(−s

2
< u <

s

2
), (2.3)

where s is a tuning parameter to be chosen in a data-adaptive fashion. Clearly, when s converges

to zero, the ramp loss function converges to the zero-one loss; thus, we expect that the estimated

rule from this loss function should approximately maximize the value function among class L.

Figure 2.1: Different approximation functions of the zero-one loss
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Specifically, with the ramp loss (2.3), we propose to estimate the optimal linear ITR decision

function, f∗L(X), by minimizing the penalized weighted sum of ramp loss of a linear decision function

f(X) = β0 +XTβ,

L(f) = C

n∑
i=1

|Wi|hs(ZiAif(Xi))

π(Ai|Xi)
+

1

2
||β||2, (2.4)
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where C is the cost parameter, which is a tuning parameter that determines the penalty placed

on misclassifying a subject’s optimal treatment. Because the ramp loss is not convex, we solve the

optimization by the difference of convex functions algorithm (DCA) (An et al., 1996). First, we

express hs(u) as the difference of two convex functions. That is,

hs(u) = h1,s(u)− h2,s(u) = (
1

2
− u

s
)+ − (−1

2
− u

s
)+,

where function (x)+ denotes the positive part of x. Let ηi denote ZiAif(Xi). Then the penalized

weighted sum of ramp loss can be simplified as L =
∑n

i=1C
|Wi|hs(ηi)
π(Ai|Xi)

+ 1
2 ||β||

2, and the minimization

in (2.4) can be carried out in three steps:

• Step 1: Start with an initial value of β, i.e. β0, which can be derived from the linear rule

estimated by the O-learning with hinge loss. Then, the initial value of η can be calculated

and we denote it as η0.

• Step 2: Solve

β̂ = arg min

n∑
i=1

C
|Wi|{h1,s(ηi)− ĥ2,s(ηi, η0i )}

π(Ai|Xi)
+

1

2
||β||2, (2.5)

where ĥ2,s(ηi, η
0
i ) = h2,s(η

0
i ) + h′2,s(η

0
i )ηi and h′2,s(u) =

−I(u/s < −1/2)

s
.

• Step 3: Compute η0 and update it in step 2 until the change in L is less than a pre-specified

threshold.

In order to solve the optimization problem in Step 2, we introduce slack variables ξi to replace

h1,s(ηi). Therefore, (2.5) is equivalent to minimize

n∑
i=1

C
|Wi|{ξi − h′2,s(η0i )ηi}

π(Ai|Xi)
+

1

2
||β||2, s.t. ξi ≥

1

2
− ηi
s
, and ξi ≥ 0.
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By adding two non-negative Lagrange multipliers α and τ , we obtain

L =
n∑
i=1

C
|Wi|{ξi − h′2,s(η0i )ηi}

π(Ai|Xi)
+

1

2
||β||2 −

n∑
i=1

αi(ξi +
ηi
s
− 1

2
)−

n∑
i=1

τiξi.

Let γ be a vector with i-element γi =
|Wi|h′2,s(η0i )
π(Ai|Xi)

. Notice that ηi = AiZi(β0 + XT
i β), and take

derivative with regard to β0, β, ξ, we obtain the following equations

0 =
n∑
i=1

AiZi

(
Cγi +

αi
s

)
, (2.6)

β =
n∑
i=1

C
|Wi|h′2,s(η0i )AiZiXi

π(Ai|Xi)
+

n∑
i=1

αiAiZiXi/s =
n∑
i=1

AiZi

(
Cγi +

αi
s

)
Xi, (2.7)

0 =
|Wi|

π(Ai|Xi)
C − αi − τi. (2.8)

By (2.8), ξ′is cancel out and the penalized weighted sum of ramp loss becomes

L = −
n∑
i=1

Cγi
{
AiZi(β0 +XT

i β)
}

+
1

2
||β||2 −

n∑
i=1

αi
s

{
AiZi(β0 +XT

i β)
}

+
1

2

n∑
i=1

αi

= −
n∑
i=1

AiZi

(
Cγi +

αi
s

)
XT

i β +
1

2

n∑
i=1

αi +
1

2
||β||2 by (2.6)

= −1

2
||β||2 +

1

2

n∑
i=1

αi by (2.7)

∝ 1

2

n∑
i=1

αi −
1

2

(∑
AiZi

αi
s
XT

i

∑
AiZi

αi
s
Xi + 2

∑
AiZiCγiX

T
i

∑
AiZi

αi
s
Xi

)
= − 1

2s2
αTQα+

1

2
(1− 2CQγ/s)α,

where Q is a square matrix where Qi,j =< AiZiXi, AjZjXj >.

Hence, the dual problem is

min
1

2s2
αTQα− 1

2
(1− 2CQγ/s)T α, (2.9)

subject to 0 ≤ αi ≤ C|Wi|/π(Ai|Xi) and
∑
CAiZiγi +

∑
AiZiαi/s = 0. Thus, the optimization

problem can be solved via quadratic programming. After obtaining αi, the original coefficient can
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be derived by β̂ =
∑
AiZi

(
Cγi + αi

s

)
Xi. Based on the KarushKuhnTucker (KKT) condition

ξi(C|Wi|/π(Ai|Xi) − αi) = 0, when 0 < αi < C|Wi|/π(Ai|Xi), we have ξi = 0 and AiZi(β̂0 +

XT
i β̂)− 1

2s = 0. The intercept term β̂0 can be calculated by taking the average of
s

2AiZi
−XT

i β̂.

Therefore, we obtain the optimal linear ITR as

f̂∗L(X) = β̂0 +XT β̂,

and denote the optimal ITR as sign(f̂∗L(X)). In Section 2.3, we show that f̂∗L converges to the

true best linear rule, f∗L, asymptotically, at a slower rate than the usual root-n rate. We refer the

proposed estimation procedure as Asymptotically Best Linear O-learning, ABLO. We also prove

the asymptotic normality of β̂ and the estimated benefit function, which provides justification of

the inference procedures proposed in Section 2.2.2 and 2.2.3.

2.2.2 Performance Diagnostics for the Estimated ITR

ABLO guarantees that the optimal value among the class L is achieved asymptotically. Never-

theless, the optimal linear rule f∗L(X) may still be far from the global optimal, f∗, such that for

some important subgroups, f∗L(X) may be non-optimal or even worse than the complementary

treatment rule. Therefore, an empirical measure must be constructed to evaluate the performance

of an estimated ITR.

To develop a practically feasible diagnostic method for any estimated ITR, given by sign(f̂(X)),

we note that if f̂(X) is truly optimal among any decision functions in F , i.e., f̂(X) has the same

sign as f∗(X), then for any subgroup defined by X ∈ C for a given set C (e.g., C can represent the

subset of mildly depressed patients with QIDs score less than 11) in the domain of X, the value

function for those subjects whose treatments are the same as sign(f̂(X)) should always be larger
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than or equal to the value function for those subjects with the same X ∈ C, but whose treatments

are opposite to sign(f̂(X)). This is because

E

RI
{
A = sign(f̂(X))

}
π(A|X)

∣∣∣X
− E

RI
{
A = −sign(f̂(X))

}
π(A|X)

∣∣∣X


= I(f∗(X) > 0)E(R|A = 1,X) + I(f∗(X) ≤ 0)E(R|A = −1,X)

−I(f∗(X) > 0)E(R|A = −1,X)− I(f∗(X) ≤ 0)E(R|A = 1,X)

= |f∗(X)|

≥ 0.

It then follows that the group-average benefit for f̂ , defined as

δC(f̂) ≡ E

RI
{
A = sign(f̂(X))

}
π(A|X)

∣∣∣X ∈ C
− E

RI
{
A = −sign(f̂(X))

}
π(A|X)

∣∣∣X ∈ C
 ,

should be non-negative. On the other hand, if δC(f̂) ≥ 0 holds for any subset C, then the above

derivation also indicates that f̂(X) must have the same sign as f∗(X), i.e., f̂(X) is the optimal

treatment rule for subjects in C.

These observations suggest a diagnostic measure δC(f̂) for any subgroup C. Specifically, we

propose an empirical ITR diagnostic measure as

δ̂C(f̂) =

∑n
i=1 I

{
Xi ∈ C, Ai = sign(f̂(Xi))

}
Ri/π(Ai,Xi)∑n

i=1 I(Xi ∈ C)

−

∑n
i=1 I

{
Xi ∈ C, Ai 6= sign(f̂(Xi))

}
Ri/π(Ai,Xi)∑n

i=1 I(Xi ∈ C)
. (2.10)

Because δ̂C(f̂) approximates δC(f̂), the measure δ̂C(f̂) is expected to be positive with a high prob-

ability if f̂(X) is close to the global true optimal. Furthermore, the evidence that δ̂C(f̂) is positive

for a rich class of subsets C will support the approximate optimality of f̂ in the class. However,

because it is infeasible to exhaust all subgroups, we suggest a class of pre-specified subgroups
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C1, ..., Cm and calculate the corresponding δ̂C1(f̂), ..., δ̂Cm(f̂). An aggregated diagnostic measure is

∆̂(f̂) = min
{
δ̂C1(f̂), ..., δ̂Cm(f̂)

}
. A positive value of ∆̂(f̂) implies approximate optimality of f̂

when m is large enough. In practice, we consider Ck to be pre-specified groups or the sets de-

termined by the tertiles of each component of X, for example, the jth component of X below

its first tertile, between the first and the second tertiles, or above the second tertile. Moreover,

using the proposed diagnostic measure, by examining the subsets C (or tertiles defined by variables)

with negative or close to zero values of δ̂C(f̂), we can identify subgroups or components of X for

which the estimated rule f̂ may not be sufficiently optimal. Thus, we can further improve the rule

estimation in this subgroup to obtain an improved ITR.

If the same data are used for estimating the optimal ITR and performing diagnostics, the latter

may not be an honest measure of performance (Athey and Imbens, 2016). Thus, we suggest the

following sample-splitting scheme. Divide the data into K folds, and denote f̂ (−k) as the optimal

ITR obtained using data without the kth-fold. Next, benefit of each f̂ (−k) is calibrated on the

kth-fold data using the diagnostic measure and then averaged. Let nk denote the sample size of

the kth-fold, and let Ik index subjects in this fold. The honest diagnostic measure for subgroup C

is estimated by δ̂C(f̂) = 1
K

∑K
k=1 δ̂

(k)
C , where

δ̂
(k)
C =

1

nk

∑
{i:i∈Ik}

[
I
{
Ai = sign(f̂ (−k)(Xi))

}
− I

{
Ai = −sign(f̂ (−k)(Xi))

}]
Ri/π(Ai|Xi).

We will implement this scheme in subsequent analysis.

2.2.3 Inference Using the Diagnostic Measure

The proposed diagnostic measure, δ̂C(f̂), can be used to compare different ITRs and non-personalized

rules, make comparisons within certain subgroups, and assess heterogeneity of ITR benefit (HTB)
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across subgroups. Hypotheses of interest may include:

• Test significance of the optimal linear rule compared to the non-personalized rule in the overall

sample, i.e.,

H0 : δ(f∗L)− δ0 = 0 v.s. H1 : δ(f∗L)− δ0 > 0,

where δ0 is the average treatment effect of a non-personalized rule (difference in the mean

response between treatment groups). For this purpose, we can construct the test statistic

based on δ̂C(f̂) − δ0, where f̂ is obtained from any method, and C is the whole population.

We reject the null hypothesis at a significance level of α if the (1−α)-confidence interval with

∞ as the upper bound for δ̂C(f̂)− δ0 does not contain 0.

• Test significance of the optimal linear rule compared to the non-personalized rule in a sub-

group k, i.e.,

H0 : δCk(f∗L)− δ0k = 0 v.s. H1 : δCk(f∗L)− δ0k > 0,

where δ0k is the average treatment effect in the subgroup. The same test statistic as the

previous one can be used but with C = Ck.

• Test the HTB across subgroups {C1, · · · , CK}, i.e.,

H0 : δCk(f∗L)− δCK (f∗L) = 0, k = 1, · · · ,K − 1.

We propose the HTB test statistic

T = ∆̂
T

C {cov(∆̂C)}−1∆̂C ,

where ∆̂
T

C = (δ̂C1(f̂)− δ̂CK (f̂), · · · , δ̂CK−1
(f̂)− δ̂CK (f̂)). It can be shown that T asymptotically

follows χ2
K−1 under H0, so we reject H0 when T is larger than the (1− α)-quantile of χ2

K−1.
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• Test the non-optimality of the best linear rule f∗L in a subgroup C by evaluating

H0 : δC(f
∗
L) ≥ 0 v.s. H1 : δC(f

∗
L) < 0.

For this purpose, we can directly use δ̂C(f̂) and reject the null hypothesis if the confidence

interval with lower bound of −∞ does not contain zero.

The asymptotic properties of β̂ and δ̂C(f̂) are required to perform inference above. Based on the

theoretical properties (asymptotic normality) given in Section 2.3, we propose a bootstrap method

to compute confidence interval for the diagnostic measure. We denote the bth bootstrap sample as

(Ã
(b)
i , X̃

(b)
i , R̃

(b)
i ), where i = 1, 2, · · · , n, and re-estimate residuals as W̃

(b)
i in (2.5). Next, we re-fit

treatment rule f̃ (b) and obtain δ̃
(b)
C (f̃ (b)). The 95% confidence interval for δ̂C(f̂) is constructed from

the empirical quantiles of δ̃
(b)
C (f̃ (b)), b = 1, 2, · · · , B.

2.3 Asymptotic Properties

Let X denote a vector with one as the first component and the remaining components as feature

variables. To emphasize that the tuning parameter s of ramp loss may depend on the sample size

to establish asymptotic properties, we denote it by sn in this section. We assume

(a) The true optimal linear function, f∗L(x) = xTβ∗, is the unique minimizer of E {RI(Af(X) < 0)}

for f(x) = xTβ where ‖β‖ = 1. Furthermore, there exists a positive constant δ0 such that

P (|XTβ∗| > δ0) = 1.

(b) The joint densities of (R,X) given A = 1 and −1 are twice-continuously differentiable.

(c) There exits a function r(x) such that {r̂(x)− r(x)} = o((nsn)−1/2) uniformly in x, where r̂(x)

is estimated from a working regression model of R on X.

(d) (nCn)−1 → 0, nsn →∞, ns3n → 0, and (nsn)1/2(nCn)−1 → 0.
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(e) There exits a unique minimizer, denoted by βn, that minimizes

E
[
|R− r(X)|hs

{
A sign(R− r(X))XTβ

}
/π(A|X)

]
.

Assume that βn belongs to a bounded set. Furthermore, let

IFn(R,X, A) =

[
∂

∂β
E {A(R− r(X))X/π(A|X)|Z(β) = 0} fZ(β)(0)

∣∣∣
β=βn

]−1
×
[
|R− r(X)|A sign(R− r(X))X(2sn)−1I(A sign(R− r(X))XTβn ∈ [−sn/2, sn/2])/π(A|X)

]
,

we assume that s
1/2
n IFn(R,X, A) has a bounded third moment and converges to a random variable

in L2(P ) norm.

Condition (a) requires a separable boundary condition, but this condition can be further re-

laxed to allow XTβ∗ to have positive probability around the boundary and the density vanishes

faster than a linear rate when close to the boundary. Condition (c) usually holds if we estimate

r(x) through some parametric models. In condition (d), sn and Cn are the tuning parameters

to be chosen depending on n, for example, Cn = 1 and sn = n−1/2. Condition (e) assumes the

convergence of the minimizer associated with the ramp loss. Under these assumptions, we first

show the consistency of ABLO, f̂∗L(x) = xT β̂. The proof follows the standard M-estimation theory

by Van der Vaart (2000). Let Pn denote the empirical measure, then f̂∗L minimizes

Pn

[
|R− r̂(X)|hs

{
A sign(R− r̂(X))XTβ

}
/π(A|X)

]
+ (2nCn)−1‖β‖2.

It is clear that from assumptions (a), (b) and (c),

sup
β

∣∣∣Pn

[
|R− r̂(X)|hs

{
A sign(R− r̂(X))XTβ

}
/π(A|X)

]
+(2nCn)−1‖β‖2 − E

[
|R− r(X)|hs

{
A sign(R− r(X))XTβ

}
/π(A|X)

] ∣∣∣→ 0
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almost surely. By condition (b) and (d), E
[
|R− r(X)|hs

{
A sign(R− r(X))XTβ

}
/π(A|X)

]
con-

verges uniformly to E
[
|R− r(X)|I

{
A sign(R− r(X))XTβ < 0

}
/π(A|X)

]
, which is equivalent to

E
[
RI(AXTβ < 0)/π(A|X)]− E[(R− r(X))−

]
− r(X).

This gives

Pn

[
|R− r̂(X)|hs

{
A sign(R− r̂(X))XTβ

}
/π(A|X)

]
+ (2nCn)−1‖β‖2

→ E
[
RI(AXTβ < 0)/π(A|X)]− E[(R− r(X))−

]
− r(X)

uniformly in β. Since (a) implies f∗L is also the unique minimizer of the latter limit for ‖β‖ = 1,

it yields that any convergent subsequence of β̂ should converge to a limit proportional to β∗.

Therefore, we conclude that β̂/‖β̂‖ converges to β∗ almost surely. Furthermore, by noting

sup
β

∣∣∣P [|R− r̂(X)|hs
{
A sign(R− r̂(X))XTβ

}
/π(A|X)

]
−E

[
|R− r(X)|hs

{
A sign(R− r(X))XTβ

}
/π(A|X)

] ∣∣∣→ 0,

we can easily show that ‖β̂ − βn‖ converges to zero almost surely.

To obtain the asymptotic normality for β̂, we follow Koo et al. (2008) by noting β̂ solves

Pn

[
|R− r̂(X)|A sign(R− r̂(X))Xh′s

{
A sign(R− r̂(X)XT β̂

}
/π(A|X)

]
+ (nCn)−1β̂ = 0.

This gives

√
nsn(Pn −P)

[
|R− r̂(X)|A sign(R− r̂(X))Xh′s

{
A sign(R− r̂(X))XT β̂

}
/π(A|X)

]
= −(nsn)1/2(nCn)−1β̂

−(nsn)1/2P
[
|R− r̂(X)|A sign(R− r̂(X))Xh′s

{
A sign(R− r̂(X))XT β̂

}
/π(A|X)

]
= o(1)− (nsn)1/2

∂

∂y
P

[
|R− y|A sign(R− y)Xh′s

{
A sign(R− y))XT β̂

} r̂(X)− r(X)

π(A|X)

] ∣∣∣
y=r(X)

+(nsn)1/2s−1n

∫ sn/2

−sn/2
E
[
A(R− r(X))X/π(A|X)|Z(β̂) = z

]
dF

Z(β̂)
(z),
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where Z(β) denotes the random variable A sign(R− r(X))XTβ and FZ(β) is its cumulative distri-

bution function. From (b) and since βn is the minimizer of the expected ramp loss, the last term

is equal to

(nsn)1/2(β̂ − βn)
∂

∂β
E [A(R− r(X))X/π(A|X)|Z(β) = 0] fZ(β)(0)

∣∣∣
β=βn

+ o(1).

Thus, the asymptotic normality of
√
n(β̂ − βn) holds by noting that

√
nsn(Pn −P)

[
|R− r̂(X)|A sign(R− r̂(X))Xh′s

{
A sign(R− r̂(X))XT β̂

}
/π(A|X)

]
is equivalent to

√
nsn(Pn −P)

[
|R− r(X)|A sign(R− r(X))X

I(A sign(R− r(X))XTβn ∈ [−sn/2, sn/2])

2snπ(A|X)

]

and therefore,

√
nsn(β̂ − βn) =

√
nsn(Pn −P)IFn(R,X, A) + op(1).

The asymptotical normality of
√
nsn(β̂ − βn) follows from condition (e).

Lastly, we examine the diagnostic statistics for any estimated decision function, denoted as

δ̂C(f̂) in (2.10), where f̂(x) = xT β̂ is an estimated rule converging to f∗(x) uniformly in x. Note

that we split the data into K folds, f̂ (−k) is estimated without the kth part of data and δ̂
(k)
C is

computed using the kth part. Let nk denote the sample size of the kth part of data and let Pnk

denote the empirical measure for the k part of data. Define by

δ∗C =
E [I(X ∈ C, Af∗(X) > 0)R/π(A|X)− I(X ∈ C, Af∗(X) < 0)R/π(A|X)]

E[I(X ∈ C)]

the subgroup benefit based on the optimal linear rule f∗. Since βn/‖βn‖ → β∗, from condition

(a), we have

β∗TXβTnX/‖βn‖ > 0



CHAPTER 2. ESTIMATION AND EVALUATION OF LINEAR INDIVIDUALIZED
TREATMENT RULES TO GUARANTEE PERFORMANCE 29

with probability one. Therefore,

δ∗C =
E [I(X ∈ C, Afn(X) > 0)R/π(A|X)− I(X ∈ C, Afn(X) < 0)R/π(A|X)]

E[I(X ∈ C)]
,

where fn(X) = βTnX.

Re-express δ̂C(f̂
(−k)) as

δ̂
(k)
C =

PnkI(X ∈ C, Af̂ (−k)(X) > 0)R/π(A|X)

PnkI(X ∈ C)
− PnkI(X ∈ C, Af̂ (−k)(X) < 0)R/π(A|X)

PnkI(X ∈ C)
.

Since {I(X ∈ C) : C ∈ {C1, ..., Cm}} and
{
Af(X) > 0 : f = XTβ

}
are VC-major classes,

(Pnk −P)I(X ∈ C, Af̂ (−k)(X) > 0)R/π(A|X)

= (Pnk −P)I(X ∈ C, Af∗(X) > 0)R/π(A|X) + op(n
−1/2
k ).

We obtain

δ̂C(f̂
(−k))− δ∗C

=
(Pnk −P)I(X ∈ C, Af∗(X) > 0)R/π(A|X)

PI(X ∈ C)
− (Pnk −P)I(X ∈ C, Af∗(X) < 0)R/π(A|X)

PI(X ∈ C)

− E [I(X ∈ C, Af∗(X) > 0)R/π(A|X)− I(X ∈ C, Af∗(X) < 0)R/π(A|X)]

E[I(X ∈ C)]2
(Pnk −P)I(X ∈ C)

+
E
[
I(X ∈ C, Af̂ (−k)(X) > 0)R/π(A|X)− I(X ∈ C, Af̂ (−k)(X) < 0)R/π(A|X)

]
E[I(X ∈ C)]2

−E [I(X ∈ C, Afn(X) > 0)R/π(A|X)− I(X ∈ C, Afn(X) < 0)R/π(A|X)]

E[I(X ∈ C)]2

+ op(n
−1/2
k ).

Using the smooth condition in (b) and the expansion for β̂
(−k)

around β̂n from the previous asymp-

totic proof, we can show that the difference in the last two terms has a convergence rate faster than

n
−1/2
k , given nk = o(nsn), and furthermore, when nk →∞,

√
nk

(
δ̂
(k)
C − δ

∗
C

)
→d G(C),
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where G(C) is a tight Gaussian process indexed by C with mean zero. After averaging over all

folds and assuming K is fixed, similar argument shows that
√
n
(
δ̂C − δ∗C

)
→d G̃(C) for some tight

Gaussian process G̃, where δ̂C = 1
K

∑
k δ̂

(k)
C . Note that these results apply to ABLO f̂L, or other f̂

estimated from minimizing a weighted hinge loss as in O-learning or predictive modeling.

If f∗L is also the global optimal rule, that is f∗L = f∗, then δ∗C > 0 for any C and anyX. Therefore,

the confidence interval for δ∗C will be expected to be within (0,∞) when n is sufficiently large. We

can also construct a test for H0 : δ∗C ≥ 0 vs Ha : δ∗C < 0 using this asymptotic distribution.

2.4 Simulation Studies

2.4.1 Simulation Design

For all simulation scenarios, we first generated four latent subgroups of subjects based on 10 feature

variables X = (X1, · · · , X10) informative of optimal treatment choice from a pattern mixture

model. Treatment A = 1 has a greater average effect for subjects in subgroups 1 and 2, and the

alternative treatment −1 has a greater average effect in subgroups 3 and 4. Within each subgroup,

X were independently simulated from a normal distribution with different means and standard

deviation of one. Two settings were considered. In Setting 1, the means of the feature variables for

subjects in the four subgroups were (1, 0.5,−1,−0.5), respectively. In Setting 2, the means were

(1, 0.3,−1,−0.3). Five noise variables U = (U1, · · · , U5) not contributing to R were independently

generated from the standard normal distribution and included in the analyses in order to assess the

robustness of each method in the presence of noise features. The treatments for each subject were

randomly assigned to 1 or −1 with equal probability, and the number of subjects in each subgroup

was equal.
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Three additional feature variables W , V , and S were generated to be directly associated with

the clinical outcome R. Here, W is an observed prescriptive variable informative of the optimal

treatment, V is a prognostic variable predictive of the outcome but not the optimal treatment,

and S is an unobserved prescriptive variable not available in the analysis. The clinical outcome for

subjects in the kth subgroup was generated by

R = 1 + I(A = 1)(δ1k + α1k ∗W + β1k ∗ S) + I(A = −1)(δ2k + α2k ∗W + β2k ∗ S) + V + e,

where e ∼ N(0, 0.25), V , W , and S are i.i.d. and follow the standard normal distribution, δ =

[δlk]2∗4 =

1 0.3 0 0

0 0 1 0.3

, α = [αlk]2∗4 =

 1 0.6 0.5 0.3

0.5 0.3 1 0.6

, and β = 2α. Within each group

k, there is a qualitative interaction between treatment and W as shown in Figure 2.2.

The benefit function of the theoretical global optimal ITR decision function, denoted as f∗, was

computed numerically by simulating the clinical outcome R under both treatment 1 and −1, using

all observed feature variables (i.e., X, W , and V ), and taking the average difference of R under

the true optimal and non-optimal treatments using a large independent test set of N = 100, 000.

In practice, this global optimum may not be attained by a linear rule due to the unknown and

potentially nonlinear true optimal treatment rule. The theoretical optimal linear rule f∗L was

computed numerically using the observed variables and maximizing the value function in the class

of all linear rules under each simulation model (details provided in Appendix Section A.1). The

benefit of f∗L was then computed with a large independent test set of N = 50, 000.

For each simulated data set, predictive modeling (PM), Q-learning, O-learning, and ABLO

were applied to estimate the optimal ITR. For PM, we considered a random forest-based prediction

related to the virtual twins approach of Foster et al. (2011). PM first applies random forest on

R, including all observed feature variables Z = (X,U ,W, V ) and treatment assignments. It next
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Figure 2.2: Clinical outcome (R) versus W with treatment 1 or −1 in each latent group in the

simulation setting. Two vertical dotted lines indicate W = −0.5 and W = 0.5.
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predicts the outcome for the ith subject given (Zi, Ai = 1) and (Zi, Ai = −1), denoted as R̂1i

and R̂−1i, respectively. The optimal treatment for the subject is sign(R̂1i − R̂−1i). Q-learning

was implemented by a linear regression including all the observed feature variables, treatment

assignments, and their interactions. Benefit of the estimated optimal ITR under each method and

was computed by δ̂C(f̂) in Section 2.2.2.

In the simulations, observed feature variables Z were used in all methods, while the unobserved

prescriptive variable S and latent subgroup membership were not included. Linear kernel was used
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for O-learning and ABLO. Five-fold cross validation was used to select the tuning parameters C and

s. For each method, the optimal treatment selection accuracy and ITR benefit were estimated using

two-fold cross validation with equal size of training and testing sets. The training set was used to

estimate the ITR and the testing set was used to estimate the ITR benefit and accuracy. Bootstrap

was used to estimate the confidence interval of the ITR benefit under the estimated rule. Coverage

probabilities were reported to evaluate the performance of the inference procedure. To evaluate

performance on subgroups, we partitioned W , V , X1, and U1 into three groups based on values

in the intervals (−∞,−0.5), [−0.5, 0.5], or (0.5,∞). We calculated the HTB test for the candidate

variables and tested the difference between the estimated rules and the overall non-personalized

rules.

2.4.2 Simulation Results

Results from 500 replicates are summarized in Table 2.1, 2.2, 2.3, Figure 2.3 and 2.4. For both

simulation settings, ABLO with linear kernel has the largest optimal treatment selection accuracy

regardless of the sample size, and it is also close to the maximal accuracy rate based on the

theoretical best linear rule. In addition, ABLO estimates the ITR benefit closest to the true global

maximal value of 0.678 on the overall sample, and it is almost identical to the benefit estimated

by the theoretical best linear rule when the sample size is large (N = 800 training, 800 testing).

PM, Q-learning, and O-learning all underestimate the ITR benefit, especially when the sample

size is smaller (N = 400 training, 400 testing), and thus they do not attain the maximal value

of the theoretical optimal linear rule. Based on the empirical standard deviation, we also observe

that ABLO is more robust than all other methods. For all methods, as the sample size increases,

the treatment selection accuracy increases and the estimated mean benefit is closer to the true
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optimal value. Furthermore, the estimated ITR benefit increases as the accuracy rate increases.

The coverage probability of the overall benefit of the best linear rule is close to the nominal level

of 95% using ABLO, but less than 95% using other methods. The coverages are not nominal for

O-learning, Q-learning, and PM, since their benefit estimates are biased when the candidate rules

are misspecified (e.g., true optimal rule is not linear). This is because they use a surrogate loss

function that does not guarantee convergence to the indicator function in the benefit function δC(f̂).

The performance of estimation of the subgroup ITR benefit shows similar results, whereby

ABLO outperforms O-learning, Q-learning, and PM in both settings, especially whenW ∈ [−0.5, 0.5],

and W > 0.5. Table 2.2 reports the probability of rejecting H0 : δCk(f∗L)− δC3(f∗L) = 0, k = 1 or 2,

using the HTB test with a null distribution of χ2
2. The rejection rates of the HTB tests of V and U1

that do not have a difference in ITR benefit across subgroups correspond to the type I error rate.

The type I error rates of ABLO are close to 5%, but conservative for the other three methods. To

examine the power, we test the effect of W on the benefit across subgroups defined by discretizing

W at -0.5 and 0.5. The power of ABLO is much greater than the other three methods especially

when the sample size is small. The other three methods underestimate the benefit function, and

thus the HTB test is conservative and less powerful.

Lastly, we test the difference in the benefit between the ITRs and the non-personalized rule in

the overall sample and the subgroups. Table 2.3 shows that with a sample size of 800, ABLO is the

only method that provides a significantly better benefit than the non-personalized rule with a large

power (> 80%). When the sample size is large (N = 1600), ABLO, Q-learning, and O-learning

have a power of ≥ 88%. As for the subgroups, the ITR estimated by ABLO is more likely to

outperform the non-personalized rule on the subgroups showing a larger true benefit (i.e., when

W > 0.5).
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Additional simulation results varying the strength of the prescriptive feature variable W are

described in Appendix Section A.2. In simulation settings where the conditional outcome model

is correctly specified and all variables are observed, regression-based methods Q-learning and PM

also perform well.

2.5 Application to the STAR*D Study

STAR*D (Rush et al., 2004) was conducted as a multi-site, multi-level, randomized controlled trial

designed to compare different treatment regimes for major depressive disorder when patients fail to

respond to the initial treatment of Citalopram (CIT) within 8 weeks. The primary outcome, Quick

Inventory of Depressive Symptomatology (QIDS) score (ranging from 0 to 27), was measured to

assess the severity of depression. A lower QIDS score indicates less symptoms and thus reflects

a better outcome. Participants with a total QIDS score under 5 were considered to experience a

clinically meaningful response to the assigned treatment and were therefore remitted from future

treatments.

The trial had four levels of treatments (e..g, see Figure 2.3 in Chakraborty and Moodie (2013));

we focused on the first two levels. At the first level, all participants were treated with CIT for a

minimum of 8 weeks. Participants who had clinically meaningful response were excluded from level-

2 treatment. At level-2, participants without remission with level-1 treatment were randomized to

level-2 treatment based on their preference to switch or augment their level-1 treatment. Patients

who preferred to switch treatment were randomized with equal probability to bupropion (BUP),

cognitive therapy (CT), sertraline (SER), or venlafaxine (VEN). Those who preferred augmentation

were randomly assigned to CIT+BUP, CIT+buspirone (BUS), or CIT+CT. If a patient had no
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preference, s/he was randomized to any of the above treatments.

The clinical outcome (reward) is the QIDS score at the end of level-2 treatment. There were 788

participants with complete feature variable information included in our analysis. We compared two

categories of treatments: 1) treatment with selective serotonin reputake inhibitors (SSRIs, alone or

in combination): CIT+BUS, CIT+BUP, CIT+CT, and SER; and 2) treatment with one or more

non-SSRIs: CT, BUP, and VEN. Feature variables used to estimate the optimal ITR included

the QIDS scores measured at the start of level-2 treatment (level 2 baseline), the change in the

QIDS score over the level-1 treatment phase, patient preference regarding level-2 treatment, and

demographic variables (gender, age, race), and family history of depression. As the randomization

to treatment was based on patient preference, we estimated π(Ai|Xi) using empirical proportions

based on preferring switching or no preference, because patients who preferred augmentation were

all treated with an SSRI and were excluded from the analysis.

We applied four methods to estimate the optimal ITR for patients with MDD who did not

achieve remission with 8 weeks of treatment with CIT. For all methods, we randomly split the

sample into a training and testing set with a 1:1 ratio and repeated the procedure 500 times. The

value function and ITR benefits were evaluated on the testing set. PM, Q-learning, O-learning, and

ABLO are compared in Figure 2.5 and Table 2.4. The non-personalized rules yield a QIDS score of

10.16 for SSRI and 9.60 for non-SSRI, with a difference of 0.56. The ITR estimated by ABLO yields

a QIDS score of 9.32 (sd = 0.23), which is smaller than PM (9.69, sd = 0.38), Q-learning (9.50,

sd=0.35), and O-leaning (9.55, sd = 0.41). The overall ITR benefit estimated by ABLO (1.11, sd

= 0.46) is much larger than PM (0.38, sd = 0.76), Q-learning (0.77, sd = 0.70), and O-leaning

(0.66, sd = 0.82). The ITR benefit based on ABLO is also larger than the non-personalized rule

(1.11 versus 0.56).
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In Figure 2.5, we also present the performance of assigning all subjects to non-SSRI by a blue

dashed line. ABLO is the only method that demonstrates more than 75% of times a greater ITR

value and ITR benefit compared to the non-personalized rule. We performed a one-sided HTB

test in Section 2.2.3 to compare the value function and benefit of the linear ITR with assigning

all to non-SSRI in the overall sample. We observe a difference in benefit of 0.56 points (CI:

(−0.20,∞), p-value= 0.11), and a difference of 0.28 points (CI: (−0.10,∞), p-value= 0.11) in value

function. The confidence intervals and p-values were calculated over repeated cross-validations,

which only accounted for the variability of cross-validations given the STAR*D data. Although

the differences are not statistically significant, they demonstrate some evidence of improvement by

using a personalized treatment strategy that worth future studies.

The final STAR*D linear decision function estimated by ABLO using full data can be expressed

as

f̂(X) =− 12.97 + 0.30 ∗ sex+ 1.27 ∗ white+ 0.79 ∗ black + 2.77 ∗ depression+ 0.05 ∗ age

+ 0.26 ∗ qids.start− 3.40 ∗ qids.slope+ 2.39 ∗ preference,

and the linear ITR is to treat a patient with SSRI if f̂ > 0; otherwise treat with a non-SSRI if

f̂ ≤ 0. The variable “sex” was coded as one for female and “preference” was coded as one for

switch and zero for no preference.

Clinical literature suggests that the baseline MDD severity may be a moderator for treatment

response (Bower et al., 2013). In addition, baseline MDD severity is highly associated with sui-

cidality; thus, patients with severe baseline MDD (QIDS ≥ 16) represent an important subgroup.

We partitioned patients into mild (QIDS ≤ 10), moderate (QIDS ∈ [11, 15]), and severe (QIDS

≥ 16) MDD subgroups. Using ABLO and the HTB test, baseline QIDS score was found to be



CHAPTER 2. ESTIMATION AND EVALUATION OF LINEAR INDIVIDUALIZED
TREATMENT RULES TO GUARANTEE PERFORMANCE 38

significantly associated with ITR benefit: two subgroups show a large positive ITR benefit (2.22

for the mild group and 2.02 for the severe group), whereas the moderate subgroup shows no benefit

(ITR benefit = −0.18). This result indicates that patients with mild or severe baseline depressive

symptoms (high or low QIDS score) might benefit from following the estimated linear ITR. For

patients who are moderately depressed (QIDS ∈ [11, 15]), the linear ITR estimated from the overall

sample does not adequately fit the data and does not outperform a non-personalized rule. Thus,

we re-fit a linear rule using ABLO for the moderate subgroup only. The re-estimated ITR yields a

lower average QIDS score of 8.93 (sd = 0.35), with a much improved subgroup ITR benefit of 0.60

(sd = 0.70). This analysis demonstrates the advantage of the ITR benefit diagnostic measure, the

HTB test, and the value of re-fitting the ITR on subgroups showing a lack-of-fit.

2.6 Discussion

In this work, we propose a diagnostic measure (benefit function) to compare candidate ITRs,

a machine learning method (ABLO) to estimate the optimal linear ITR, and several tests for

goodness-of-fit. In practice, often not all predictive and prescriptive variables that influence het-

erogeneous responses to treatment are known and collected. Thus, it is unrealistic to expect that

an ITR that benefits each and every individual can be identified. Our practical solution proposes

to evaluate the average ITR effect over the entire population and on vulnerable or important sub-

groups. Although we focus on linear decision functions here, it is straightforward to extend ABLO

to other simple decision functions such as polynomial rules by choosing other kernel functions (i.e.,

polynomial kernel). ABLO can also be applied to observational studies using propensity scores to

replace π(A|X) under the assumption that the propensity score model is correctly specified. We
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prove the asymptotic properties of ABLO and identify a condition to avoid the non-regularity issue

(in Section 2.3). In practice, when such issue is of concern, adaptive inference (Laber and Murphy,

2011) can be used to construct confidence intervals.

ABLO can consistently estimate the ITR benefit function regardless of misspecification of the

rule by drawing a connection with the robust machine learning approach for approximating the

zero-one loss. We provide an objective diagnostic measure for assessing optimization. In our

method, prescriptive variables mostly contribute to the estimation of the optimal treatment rule

while predictive variables mostly contribute to the development of the diagnostic measure and

assessment of the benefit of the optimal rule. Future work will consider methods to distinguish

these two sets of variables, which potentially overlap.

ABLO is slower than O-learning because it involves iterations of quadratic programming when

applying the DCA. In addition, certain simulations show that the algorithm can be slightly sensitive

to the initial values in extreme cases (examples provided in Figure A.3 in Appendix). However,

our numeric results show that O-learning estimators serve as adequate initial values leading to fast

convergence of the DCA. Another limitation is that the current methods only apply to single-stage

trials. ABLO can be extended to multiple stage setting following a similar backward multi-stage

O-learning in Zhao et al. (2015). The objective function in multi-stage O-learning will be replaced

by the ramp loss and the benefit function will be extended with some attention to subjects whose

observed treatment sequences are partially consistent with the predicted optimal treatment se-

quences. In addition, ABLO does not perform variable selection and therefore it cannot distinguish

important tailoring variables from noise variables. A possible solution is to replace the L2-norm

penalty by L1-norm penalty when minimizing the penalized weighted sum of ramp loss in (2.4).
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Figure 2.3: Simulation results: Overall ITR benefit and optimal treatment accuracy rates for the

four methods
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Table 2.2: Simulation results: probability of rejecting the null hypothesis that the treatment benefit

across subgroups is equivalent by the HTB test

Setting 1. Four region means = (1, 0.5,−1,−0.5).

W X1 V U1

N = 800

PM 0.16 0.05 0.03 0.02

Q-learning 0.18 0.06 0.03 0.03

O-learning 0.21 0.05 0.03 0.03

ABLO 0.42 0.07 0.05 0.06

N = 1600

PM 0.52 0.05 0.05 0.02

Q-learning 0.61 0.05 0.04 0.02

O-learning 0.71 0.04 0.04 0.02

ABLO 0.84 0.05 0.05 0.03

Setting 2. Four region means = (1, 0.3,−1,−0.3).

N = 800

PM 0.12 0.03 0.02 0.02

Q-learning 0.17 0.04 0.03 0.04

O-learning 0.15 0.03 0.03 0.03

ABLO 0.34 0.06 0.04 0.05

N = 1600

PM 0.42 0.06 0.04 0.03

Q-learning 0.56 0.07 0.04 0.03

O-learning 0.57 0.07 0.03 0.03

ABLO 0.74 0.10 0.04 0.05

*: W has strong signal; X1 has weak signal; V and U1 have no signal.
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Figure 2.4: Simulation results: Subgroup ITR benefit for the four methods
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*: Dotted-dashed lines represent the benefit under the theoretical global optimal treatment f∗. Dashed lines

represent the benefit under the theoretical optimal linear rule f∗L. The methods being compared are (from left to

right): PM: predictive modeling by random forest; Q-learning: Q-learning with linear regression; O-learning:

improved single stage O-learning (Liu et al., 2014); ABLO: asymptotically best linear O-learning.
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Table 2.3: Simulation results: Comparison of the ITR to the non-personalized universal rule. The

proportion of rejecting the null that the ITR has the same benefit as the universal rule∗ are reported

for the overall sample and by subgroups.

Setting 1. Four region means = (1, 0.5,−1,−0.5).

Overall W < −0.5 W ∈ [−0.5, 0.5] W > 0.5

N = 800

PM 0.22 0 0.09 0.33

Q-learning 0.37 0.02 0.20 0.40

O-learning 0.39 0.02 0.20 0.43

ABLO 0.86 0.07 0.47 0.78

N = 1600

PM 0.76 0.02 0.38 0.83

Q-learning 0.92 0.05 0.59 0.90

O-learning 0.95 0.06 0.67 0.94

ABLO 0.99 0.08 0.79 0.98

Setting 2. Four region means = (1, 0.3,−1,−0.3).

N = 800

PM 0.18 0.01 0.07 0.27

Q-learning 0.35 0.03 0.17 0.37

O-learning 0.31 0.03 0.17 0.35

ABLO 0.82 0.07 0.43 0.74

N = 1600

PM 0.72 0.03 0.38 0.75

Q-learning 0.88 0.05 0.57 0.86

O-learning 0.90 0.07 0.59 0.86

ABLO 0.99 0.12 0.77 0.97

*: For Setting 1, the mean difference (sd) of the universal rule is 0.09(0.08) for N = 800 and 0.07(0.05) for

N = 1600.

For Setting 2, the mean difference (sd) of the universal rule is 0.11(0.08) for N = 800 and 0.08(0.05) for N = 1600.
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Figure 2.5: STAR*D analysis results: Distribution of the estimated ITR benefit (the higher the

better) and QIDS score (the lower the better) at the end of level-2 treatment for the four methods

(based on 500 cross-validation runs).
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*: The methods being compared are (from left to right): PM: predictive modeling by random forest; Q-learning:

Q-learning with linear regression; O-learning: improved single stage O-learning (Liu et al., 2014); ABLO:

asymptotically best linear O-learning. The blue dashed line indicates non-personalized rule with non-SSRI.

Table 2.4: Results of STAR*D Data Analysis

QIDS score ITR benefit Subgroup ITR benefit by baseline QIDS score

Mean(sd) Mean(sd) QIDS≤ 10 QIDS∈ [11, 15] QIDS≥ 16

PM 9.69(0.38) 0.38(0.76) 1.29(0.82) -0.10(1.02) 0.40(1.67)

Q-learning 9.50(0.35) 0.77(0.70) 2.08(0.68) -0.17(0.92) 1.09(1.62)

O-learning 9.55(0.41) 0.66(0.82) 1.58(0.92) -0.23(0.95) 1.20(1.84)

ABLO 9.32(0.23) 1.11(0.46) 2.22(0.45) -0.18(0.51) 2.02(1.12)

*: lower QIDS score indicates a better outcome; higher benefit indicates a better outcome.
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Chapter 3

Composite Interaction Tree for

Learning Optimal Individualized

Treatment Rules and Subgroups

3.1 Overview

In this chapter, we propose a tree-based learning method, composite interaction tree (CITree), to

simultaneously estimate the optimal individualized treatment rules and identify subgroups with

small and large benefit. In Section 3.2, we propose the statistical method and discuss the algorithm

of CITree in detail. In Section 3.3, we conduct two simulation studies to investigate the performance

of HTB test and compare the performance of the proposed CITree method to existing tree-based

method. In Section 3.4, we apply the method to the REVAMP data and fit a CITree for the whole

sample. Finally, we end this chapter with conclusions and discussions in Section 3.5.
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3.2 Methodologies

In this Chapter, we still focus on single stage two-arm randomized trials and use the same notation

as described in Section 2.2. In clinical practice, linear decision rules are useful due to their trans-

parency and simplicity for interpretation. However, many existing methods may not yield an ITR

with the maximal value function within the class of linear rules, because they focus on optimizing

some surrogate objective function for treatment benefit (2.2). Note that optimizing the surrogate

function only guarantees the optimality when there is no restriction on the functional form of the

rules (i.e., nonparametric rules). In Chapter 2, an asymptotically best linear O-learning (ABLO)

was proposed to guarantee that the estimated decision rule is optimal among all linear rules by

replacing the zero-one loss in (2.10) with the ramp-loss and estimating the optimal linear ITR by

minimizing a penalized loss function (2.4).

Note that ABLO estimates a “global” linear ITR that maximizes the value function applied to

the overall sample. The linear rule may be overly simplified so that it does not lead to the optimal

rule for some subpopulations. Under the ramp loss, the empirical benefit function (2.10) can be

used to identify subgroups with a poor fit under a “global” linear rule and provide an opportunity

to re-fit a “local”, piece-wise linear rule using subjects in the subgroups. Thus, here we propose

the composite interaction tree (CITree) to automatically detect inadequate fit on subgroups and

discover subgroups exhibiting heterogeneous ITR benefit. The central idea of CITree is to improve

the performance of the estimated ITR by re-fitting rules in subgroups with poor performance.

Typically, a tree-based method recursively partitions parent nodes into two child nodes using

a criterion, such as Gini index for CART or G-statistic for interaction tree (IT). Therefore, the

tree growing step is the same from one level to the next and the parent/child nodes have similar
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characteristics. In order to detect both qualitative and quantitative interactions, CITree consists

of two types of parent/child nodes corresponding to qualitative and quantitative splits. Briefly,

for nodes at odd levels, we use ABLO to estimate an optimal ITR using all feature variables to

detect qualitative interaction. For nodes at even levels, we perform a heterogeneity of ITR benefit

(HTB) test to partition subjects in a parent node into two child nodes with homogeneous ITR

benefit, and detect quantitative interaction and lack-of-fit. The motivation for CITree is that the

overall ITR is more likely to be non-optimal for subgroups with a lower benefit. Therefore, the

overall goal is to maximize the value function of the overall population by re-fitting the ITR on

certain subpopulations. Unlike CART which is applied to data with known labels, CITree is an

unsupervised learning that estimates the optimal ITR to assign treatment to future subjects.

Figure 3.1: Diagram of an example Composite Interaction Tree (CITree)∗

∗: For rounded rectangulars, CITree fits f̂ to identify qualitative interaction and estimate the optimal linear ITR

using all feature variables (achieve homogeneous optimal treatment). For ellipses, CITree searches each feature

variable to identify significant quantitative interaction in ITR benefit (achieve homogeneous benefit).

Consider the root node as level 1 in an example CITree in Figure 3.1. The first step is a

qualitative split partitioning subjects into subgroups of homogeneous optimal treatment rules.

Specifically, we estimate an optimal linear ITR using ABLO on the overall sample and obtains a



CHAPTER 3. COMPOSITE INTERACTION TREE FOR LEARNING OPTIMAL
INDIVIDUALIZED TREATMENT RULES AND SUBGROUPS 49

linear decision function f̂1(X). Based on the predicted optimal treatment using f̂1(X), subjects

will be partitioned into two nodes at level 2, where on the left are subjects whose optimal treatment

is predicted to be −1, e.g., {i : f̂1(Xi) ≤ 0}, and on the right are those whose optimal treatment

is predicted to be the complementary treatment, e.g., {i : f̂1(Xi) > 0}. The second step is a

quantitative split partitioning each of the nodes at level 2 into two child nodes with homogeneous

ITR benefit. Specifically, we partition the sample space according to a covariate greater than a

threshold, Xs > c, to maximize the difference in ITR benefit between groups in the resulting child

nodes, C1 : Xs ≤ c and C2 : Xs > c, by performing an HTB test. The null hypothesis is

H0 : δC1(f)− δC2(f) = 0,

and the HTB statistic is defined as HTB = [δ̂C1(f̂) − δ̂C2(f̂)]2/Var(δ̂C1(f̂) − δ̂C2(f̂)), where the

subgroup benefit is estimated by (2.10) and the variance of δ̂C1(f̂) − δ̂C2(f̂) given f̂ is estimated

based on a formula in Appendix B.1. We can show that the conditional distribution given f̂ of the

test statistic computed from an independent sample follows a χ2(1) under H0 (such an HTB test

is implemented in the honest CITree as described subsequently). The HTB test is a measure to

evaluate ITR benefit heterogeneity between two child nodes to detect quantitative interactions.

In step 2, we search for the threshold c among grid points c = {c1, · · · , cJ} (e.g., quantiles of the

observed samples) and the covariate space Xs for s = 1, · · · , p, that has the smallest p-value. To

protect against overfitting, we use Benjamin and Hochberg procedure (Benjamini and Hochberg,

1995) to control for the false discovery rate (FDR). Given f̂1(X), a covariate and cut-point, we

partition each node into child nodes. For example, in Figure 3.1, four child nodes at level 3 are

{f̂1(X) ≤ 0;Xs ≤ c1}, {f̂1(X) ≤ 0;Xs > c1}, {f̂1(X) > 0;Xq ≤ c2}, and {f̂1(X) > 0;Xq > c2}.

Note that Xs and Xq are selected independently based on different subgroups, so they can be
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different. Each node not only indicates the estimated optimal treatment, but also partitions patients

based on the magnitude of the benefit gained by following the estimated optimal rule, and chooses

the most significant cut point after adjusting for the FDR. If no HTB test is significant at the

controlled FDR level, CITree stops partitioning the parent node.

The next step is to consider re-fitting the ITR using only subjects in each child node and denote

the decision functions as f̂2. If the value function is improved by the re-fitted ITR, CITree further

partitions the current node into subgroups of different optimal treatment based on f̂2. CITree stops

growing when no HTB test is significant, or the number of observations in the node is less than

a pre-specified number, or the re-fitted ITR does not improve the value function (stopping rules

are described in Algorithm 1). The resulting ITR for a K terminal nodes tree takes the form of∑
k I(X ∈ R̂k)f̂k(X), where R̂k indicates subjects in the kth terminal node following a particular

path on the tree, and f̂k(X) = β̂0k +XT β̂k is the final linear ITR fitted from ABLO for the node

k. The fitted ITR contains binary partitioning of the covariate space through R̂k and a linear

combination of covariates through f̂k(X) to balance interpretability and flexibility. Algorithm 1

illustrates the procedure.

An advantage of CITree is the simultaneous detection of qualitative and quantitative interactions

if both are present. Step 1 identifies qualitative interaction to estimate the optimal treatment

using ABLO and step 2 identifies quantitative interaction through HTB test. Note that after

performing step 1 to partition subjects into homogeneous groups with similar optimal treatment,

step 2 identifies quantitative heterogeneity of ITR effects and diagnoses potential subgroups with

a low benefit, which suggests a poor fit of the ITR estimated from the whole sample from upper

level. By performing a re-fit on such subgroups, CITree always leads to a higher or equal value

function compared to using the full sample. The step of re-fitting ITR offers patients whose optimal
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Algorithm 1 Composite Interaction Tree (CITree)

Fit an ITR for the whole sample using ABLO and obtain an initial rule f̂1.

Step 1: for l = 1, 3, 5, · · ·

• Partition each parent node at level l into two child nodes: {f̂k ≤ 0} and {f̂k > 0}.

Step 2: for l = 2, 4, 6, · · ·

• Search for the most significant HTB test among covariate space at grid points.

• Split each parent node into two child nodes if the adjusted HTB test is significant for

variable Xs at split point c: {Xs ≤ c } and {Xs > c}.

• Re-fit f̂ for each child node if it improves the value function.

Stopping rules

• If number of subjects in the node is less than a pre-specified number, the node will not be

split.

• If no HTB test is significant at even level of nodes, the node will not be split.

• If re-fitting ITR at the odd level of nodes does not improve the value function, the node

will not be split.

The final ITR is a piece-wise linear function denoted as
∑

K I(X ∈ R̂k)f̂k(X).
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treatments are estimated incorrectly at an upper level an opportunity to rectify and search for their

true optimal treatment. Another advantage of CITree is to use a linear combination of feature

variables rather than one variable (as done in IT or QUINT) to build a tree, which may lead to

identifying the optimal rule in fewer steps and with improved accuracy.

CITree uses the same sample for two types of splits. When the sample size is large and overfitting

is of primary concern, honest CITree can be used where the HTB test is performed on a hold-out

sample not involved in estimating ITRs. Specifically, honest CITree separates the whole sample

into two subsets. The training set is only involved to estimate ITR, while the ITR benefit and HTB

test are computed using the hold-out sample. This procedure guarantees using an honest measure

of the performance (Athey and Imbens, 2016) to determine the tree growth.

3.3 Simulation Studies

We perform extensive simulation studies to evaluate the CITree algorithm. In the first simulation

study, we examine whether the algorithm can successfully identify quantitative interaction between

covariates and treatment. In a simple simulation setting, we evaluate the performance of HTB test

by type I and type II error rates. The type I error rate represents the probability that CITree

performs a quantitative split in a group of subjects with no heterogeneous ITR benefit. The type

II error rate represents the probability of failure to detect a true ITR heterogeneity. In the second

simulation study, we compare the overall performance of CITree with existing tree-based machine

learning methods by assessing the overall ITR benefit in a more complex tree setting, and investigate

to what extent that CITree can recover the true tree structure.
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3.3.1 Simulation Study 1

Simulation data sets were generated based on the tree structure in the left panel of Figure 3.2. The

simulation setting is inspired by real world applications where patients consist of heterogeneous

subgroups with both quantitative and qualitative interactions. In this setting, treatment 1 is more

beneficial for subjects in the right node and treatment −1 is more beneficial for subjects in the left

node. Within the subgroup where treatment −1 benefits more, there exists a subgroup (X1 ≤ −0.5)

that has a greater treatment effect comparing to the rest of subjects (X1 > −0.5). The true optimal

treatment decision function is f1(X) = X1 +X2, where X1 and X2 are feature variables generated

i.i.d from N(0, 1). For the left node, a quantitative interaction was simulated between X1 and the

optimal treatment, which leads to two child nodes, one with a larger ITR benefit, and the other

with a smaller ITR benefit. We compared four settings in the simulations, where A is randomly

assigned as 1 or −1 with equal probability, and the clinical outcome R is generated by

R = η(X) +Aφ(X) + ε, ε ∼ N(0, 0.25),

φ(X) = 0.5I(f1(X) > 0)− I(f1(X) ≤ 0)
[
0.5 + αI(X1 ≤ −0.5)

]
. (3.1)

In the above model, the first term η(X) is the main effect not contributing to defining the true

ITR; and the second term Aφ(X) indicates that the optimal ITR should have the same sign as

f1. For setting 1 and 2, η(X) = X1 − 0.5X2 and no other feature variables were considered in the

analysis. For setting 3 and 4, η(X) = X1−0.5X2+0.5X3, variables X3 and X4 were generated i.i.d

following N(0, 1) and not contributing to the optimal ITR. In these two settings, all four feature

variables were considered when fitting CITree. Parameter α in model (3.1) determines the effect

size of the quantitative interaction, which is set to be 0.5 for setting 1 and 3, and 1 for setting 2

and 4. True benefits for subjects in terminal nodes under the true optimal rule are summarized in
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Figure 3.2.

Figure 3.2: CITree structure for generating data of simulation studies (left panel: simulation study

1; right panel: simulation study 2)

∗: For setting 1 and 3, α = 0.5; for setting 2 and 4, α = 1.

In each simulation, honest CITree randomly partitioned the whole sample into two subsets in

step 1 and step 2 of the CITree algorithm. We examined different sample size ratio for step 1 and

step 2 (2:1, 1:1, and 1:2) in order to assess the performance of the fitted ITR and HTB test. Step

1 was applied to the first data set to obtain f̂1, which was used to assign subjects in the second set

into two nodes at level 2 based on their predicted optimal treatment. Thus subjects in step 1 and

step 2 were independent, and HTB tests were evaluated on two nodes at level 2. For each feature

variable, we searched from the values of 1/4 quantile to 3/4 quantile, with an increase of 0.1. We

split a node when at least one of the HTB tests is significant at the controlled FDR level. By the
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simulation design, we can use the left node to evaluate the type II error and the right node to

evaluate the type I error rate. The sample size was N = 500, 1, 000, and 2, 000. We controlled FDR

at rate 0.05 and 0.1. To evaluate the performance of ITR, we simulate an independent validation

data set for each setting with N = 10, 000. We report the overall benefit and accuracy rate on the

validation set.

Results from 1, 000 replicates were summarized in Table 3.1. The type I error rates of HTB

test are adequately controlled at the FDR rate for CITree. For honest CITree, type I error rates

of HTB test are controlled at the FDR rate for setting 1 and setting 2. For setting 3 and 4, the

type I errors were better controlled when the sample size for step 2 is larger. The power of both

CITree and honest CITree increase as the sample size and the effect size of quantitative interaction

increase. Given the same total sample size, the power of HTB test increases as the sample size of

step 2 increases, which leads to a greater power of CITree over honest CITree. However, a smaller

sample size of step 1 will affect the performance of fitted ITR. Table 3.1 shows that the accuracy

rates and the overall benefits of the honest CITree decrease as the subset of step 1 gets smaller. To

balance the performance of step 1 and step 2, we used a 1:1 ratio in the rest of analyses.

When HTB tests were significant, we report the rate of choosing the correct variable for splitting.

Given the correct variable was selected, we also report the rate of choosing the correct split point.

Similar to Dusseldorp and Van Mechelen (2014), the correct split point is defined as being in the

interval [c − 0.2, c + 0.2], where c is the true split point. For setting 2 and 4 with a large benefit

heterogeneity between terminal nodes 1 and 2 and a sample size of 1,000 or 2,000, both CITree and

honest CITree can almost always identify the quantitative interaction, choose the right variable,

and at the right split point. In other settings of reduced benefit heterogeneity and sample size, the

ability to identify the correct tree structure is modest.
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Table 3.1: Simulation study 1 results: type I error rate and power for HTB tests

N Type I error Power Correct variable Correct point Accuracy Benefit

FDR 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

Honest CITree sample sizes for step 1 and 2 are 2 to 1

Setting 1 500 0.033 0.062 0.308 0.409 0.938 0.939 0.682 0.708 0.985 (0.013) 1.239 (0.194)

1000 0.043 0.072 0.528 0.642 0.992 0.988 0.842 0.841 0.989 (0.010) 1.242 (0.136)

2000 0.031 0.069 0.879 0.921 0.998 0.998 0.981 0.979 0.990 (0.015) 1.244 (0.102)

Setting 2 500 0.033 0.066 0.860 0.919 0.995 0.991 0.945 0.944 0.983 (0.014) 1.498 (0.202)

1000 0.046 0.071 0.993 0.997 1 1 0.983 0.983 0.987 (0.015) 1.498 (0.143)

2000 0.026 0.065 1 1 1 1 1 1 0.988 (0.017) 1.500 (0.110)

Setting 3 500 0.071 0.141 0.275 0.373 0.800 0.780 0.641 0.639 0.980 (0.013) 1.218 (0.209)

1000 0.069 0.115 0.490 0.616 0.920 0.890 0.834 0.827 0.985 (0.012) 1.224 (0.149)

2000 0.057 0.116 0.83 0.903 0.983 0.970 0.924 0.924 0.989 (0.015) 1.235 (0.108)

Setting 4 500 0.073 0.138 0.798 0.879 0.961 0.944 0.887 0.889 0.978 (0.014) 1.477 (0.217)

1000 0.069 0.115 0.985 0.994 0.996 0.995 0.983 0.982 0.985 (0.010) 1.483 (0.156)

2000 0.052 0.116 1 1 1 1 0.997 0.997 0.988 (0.011) 1.495 (0.109)

Honest CITree sample sizes for step 1 and 2 are 1 to 1

Setting 1 500 0.037 0.071 0.410 0.535 0.976 0.966 0.812 0.805 0.982 (0.014) 1.220 (0.153)

1000 0.025 0.053 0.768 0.840 0.995 0.994 0.932 0.932 0.988 (0.009) 1.234 (0.111)

2000 0.036 0.072 0.967 0.980 1 1 0.993 0.993 0.990 (0.012) 1.238 (0.080)

Setting 2 500 0.041 0.077 0.965 0.982 0.999 0.999 0.974 0.975 0.980 (0.014) 1.478 (0.159)

1000 0.025 0.057 1 1 1 1 0.998 0.998 0.986 (0.013) 1.490 (0.118)

2000 0.029 0.063 1 1 1 1 1 1 0.989 (0.010) 1.498 (0.082)

Setting 3 500 0.072 0.129 0.376 0.496 0.888 0.849 0.769 0.755 0.975 (0.014) 1.208 (0.171)

1000 0.060 0.115 0.666 0.765 0.953 0.945 0.880 0.874 0.984 (0.010) 1.222 (0.120)

2000 0.052 0.100 0.962 0.981 0.991 0.988 0.974 0.973 0.988 (0.012) 1.235 (0.089)

Setting 4 500 0.065 0.131 0.947 0.970 0.993 0.987 0.938 0.938 0.974 (0.015) 1.466 (0.181)

1000 0.054 0.114 1 1 0.999 0.999 0.998 0.998 0.982 (0.010) 1.481 (0.124)

2000 0.053 0.104 1 1 1 1 1 1 0.987 (0.009) 1.495 (0.091)

Honest CITree sample sizes for step 1 and 2 are 1 to 2

Setting 1 500 0.040 0.072 0.532 0.624 0.996 0.984 0.851 0.847 0.977 (0.017) 1.205 (0.132)

1000 0.025 0.046 0.892 0.922 0.998 0.997 0.962 0.963 0.985 (0.010) 1.230 (0.097)

2000 0.030 0.067 0.994 0.996 1 1 0.998 0.998 0.989 (0.013) 1.236 (0.070)

Setting 2 500 0.042 0.070 0.993 0.999 1 0.999 0.989 0.989 0.974 (0.017) 1.462 (0.140)

1000 0.023 0.046 1 1 1 1 1 1 0.983 (0.011) 1.488 (0.099)

2000 0.034 0.069 1 1 1 1 1 1 0.987 (0.011) 1.494 (0.073)

Setting 3 500 0.071 0.127 0.511 0.618 0.937 0.908 0.808 0.806 0.966 (0.018) 1.187 (0.148)

1000 0.058 0.109 0.818 0.881 0.979 0.967 0.926 0.926 0.979 (0.010) 1.215 (0.104)

2000 0.061 0.102 0.994 0.997 0.998 0.997 0.988 0.988 0.986 (0.008) 1.231 (0.076)

Setting 4 500 0.066 0.129 0.983 0.993 0.997 0.997 0.972 0.972 0.964 (0.019) 1.446 (0.156)
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1000 0.063 0.106 1 1 1 1 0.999 0.999 0.978 (0.010) 1.474 (0.107)

2000 0.061 0.103 1 1 1 1 1 1 0.985 (0.009) 1.489 (0.079)

CITree

Setting 1 500 0.032 0.054 0.753 0.838 0.997 0.996 0.920 0.920 0.990 (0.010) 1.242 (0.107)

1000 0.027 0.050 0.983 0.994 1 1 0.985 0.985 0.991 (0.012) 1.245 (0.082)

2000 0.032 0.063 1 1 1 1 0.997 0.997 0.990 (0.021) 1.240 (0.066)

Setting 2 500 0.030 0.051 1 1 1 1 0.997 0.997 0.988 (0.008) 1.500 (0.112)

1000 0.028 0.046 1 1 1 1 1 1 0.990 (0.010) 1.503 (0.083)

2000 0.031 0.068 1 1 1 1 1 1 0.988 (0.018) 1.498 (0.070)

Setting 3 500 0.049 0.102 0.648 0.776 0.965 0.938 0.885 0.882 0.986 (0.008) 1.239 (0.117)

1000 0.038 0.086 0.950 0.974 0.991 0.991 0.967 0.966 0.990 (0.008) 1.241 (0.086)

2000 0.039 0.089 1 1 1 1 0.999 0.999 0.990 (0.016) 1.240 (0.068)

Setting 4 500 0.060 0.104 1 1 0.999 0.999 0.994 0.994 0.985 (0.008) 1.498 (0.123)

1000 0.036 0.086 1 1 1 1 1 1 0.989 (0.009) 1.499 (0.088)

2000 0.040 0.082 1 1 1 1 1 1 0.990 (0.012) 1.501 (0.067)

3.3.2 Simulation Study 2

In this study, we investigate the performance of different methods in a more complex tree setting.

We compared CITree and honest CITree (1:1) with MIDAs (Laber and Zhao, 2015), interaction

trees (IT) and QUINT. Unlike other tree-based methods (e.g., IT or QUINT), which first fit a large

tree and then prune the tree to avoid overfitting, the CITree does not require pruning since splitting

only occurs when the HTB test is significant using an independent testing sample at controlled FDR

rate (i.e., honest CI Tree).

In our real data application described in Section 3.4, we found that although the benefit of a

global linear rule was greater than the effect of the non-personalized rule on the overall sample, it

was worse for some subgroups. In many cases, the performance of the ITR can be improved by

refitting the rule within specific subgroups. In order to mimic such real data cases, simulation data

sets were generated based on a tree structure in the right panel of Figure 3.2, where treatment 1

is more beneficial for subjects in terminal nodes T3, T4 and T5, and treatment −1 is better for
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subjects in terminal nodes T1 and T2. ITR benefits are the largest for subjects in terminal nodes

T1 and T5. Similar to simulation study 1, we generated four feature variables, X1 to X4, and a

continuous outcome R by (3.1), but with

φ(X) = I(f1(X) > 0)− I(f1(X) ≤ 0)

{
I(X1 ≤ −0.3)

+ 0.5I(X1 > −0.3)
[
I(f2(X) ≤ 0)− I(f2(X) > 0)[I(X3 > 0.3) + 0.5I(X3 ≤ 0.3)]

]}
.

We define f1(X) = X1 + X2 − 0.5 and f2(X) = X3 + X4. In setting 5, η(X) = X1 − 0.5X2 +

0.5X3 − 0.5X4. In setting 6, η(X) = X1 − 0.5X2 + 0.5X3 − 0.5X4 + 0.5X5, where X5 and X6 are

also i.i.d. with a standard normal distribution. In setting 6, both X5 and X6 were included when

fitting CITree.

For each simulated data set, CITree, honest CITree, IT, MIDAs, and QUINT were applied to

estimate optimal ITR and estimate its benefit. QUINT partitions the overall population into three

classes, where treatment −1 is more beneficial to subjects in class 1, treatment 1 is more beneficial

to subjects in class 2 and treatment effects are similar for subjects in class 3. Assignment of optimal

treatment for individuals depends on the treatment effect of the class they belong to. For those

predicted to be in class 3 where the difference of two treatments is not significant, the optimal

treatment is determined by the sign of the average effect in the terminal node where the subject

belongs to. Interaction tree is a classification/regression tree (CART) where the splitting criterion

is based on a t-test of difference between treatment groups. MIDAs is a decision tree method, which

splits the parent node into child nodes depending on whether the value function will dramatically

increase. For the honest CITree, we randomly partitioned all subjects to two subsets with 1:1 ratio

and perform step 1 and step 2 of the algorithm on separate data sets. Other design features of the

simulation study is the same as simulation 1.
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Figure 3.3: Overall performance of five methods in simulation study 2
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∗: The red dashed lines represent values based on true optimal rules

Results from 100 replicates are summarized in Table 3.2, 3.3, 3.4, 3.5, and 3.6, and Figure

3.3, 3.4, and 3.5. For both settings, CITree has the best overall performance (Table 3.2 , reported

empirical mean and standard deviation) with the highest optimal treatment allocation accuracy and

the largest overall benefit when the sample size is 500 or 1, 000. As the sample size increases to 2, 000,

honest CITree performs almost the same as CITree, but with significantly shorter computation time.

CITree is the only method that achieves a greater than 90% treatment allocation accuracy when the

sample size is 500. QUINT and MIDAs perform worse than the other methods, with less than 85%
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Table 3.2: Simulation study 2 results: comparing overall performance of five methods

Optimal Treatment Allocation Accuracy Rate

Setting N QUINT MIDAs IT Honest CITree CITree

Setting 5 500 0.815 (0.020) 0.815 (0.027) 0.856 (0.023) 0.898 (0.030) 0.936 (0.023)

1000 0.818 (0.018) 0.827 (0.017) 0.889 (0.013) 0.931 (0.023) 0.947 (0.016)

2000 0.820 (0.014) 0.835 (0.013) 0.913 (0.010) 0.946 (0.019) 0.938 (0.020)

Setting 6 500 0.804 (0.027) 0.798 (0.025) 0.841 (0.028) 0.884 (0.027) 0.917 (0.027)

1000 0.819 (0.022) 0.818 (0.017) 0.881 (0.017) 0.917 (0.029) 0.941 (0.019)

2000 0.819 (0.016) 0.830 (0.013) 0.905 (0.012) 0.941 (0.018) 0.942 (0.015)

Overall ITR Benefit

Setting N QUINT MIDAs IT Honest CITree CITree

Setting 5 500 1.207 (0.054) 1.196 (0.090) 1.301 (0.052) 1.405 (0.059) 1.473 (0.049)

1000 1.218 (0.045) 1.240 (0.055) 1.383 (0.037) 1.466 (0.044) 1.493 (0.036)

2000 1.230 (0.027) 1.273 (0.040) 1.444 (0.024) 1.493 (0.041) 1.483 (0.035)

Setting 6 500 1.174 (0.089) 1.146 (0.081) 1.256 (0.079) 1.381 (0.056) 1.441 (0.055)

1000 1.218 (0.064) 1.222 (0.059) 1.366 (0.044) 1.439 (0.058) 1.485 (0.042)

2000 1.235 (0.035) 1.269 (0.041) 1.434 (0.031) 1.486 (0.042) 1.488 (0.033)

∗: The true overall benefit for both settings is 1.64.

treatment estimation accuracy and the lowest estimated overall benefit. When the total sample size

is 2, 000, the estimated overall benefits of the CITree and honest CITree are close to the true benefit

of 1.64, and the treatment allocation accuracy is near 95%. Based on the simulation designs, the

true terminal node membership of each subject can be determined. Thus, we further examined the

optimal treatment allocation accuracy for subjects in each terminal node in Table 3.3. For subjects

in terminal nodes T2, T3, and T4, who are most likely to be mis-allocated, both CITree and honest

CITree perform much better than other methods in terms of accuracy. MIDAs performs relatively

well on T3 and T4 comparing to CITree and honest CITree. Honest CITree and CITree perform

adequately for subjects in T2 with accuracy greater than 72%, while QUINT and MIDAs perform

the worst with the accuracy rates ranging from 20% to 45%. CITree and Honest CITree have a

substantially greater benefit on T3 and T4 when N = 1, 000 and 2, 000 than other methods due to
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re-fitting ITR on these subgroups. QUINT, honest CITree and CITree perform well for subjects in

terminal node 1 (T1) with accuracy greater than 96%. IT and MIDAs are the only two methods

with lower than 95% accuracy rates for T1 when N = 500. MIDAs, IT, honest CITree and CITree

have a better performance (accuracy rates over 89.5%) in terminal 5 (T5) comparing to QUINT

(accuracy rates around 86%).

In Figure 3.4 and 3.5, we visualize the estimated optimal treatment for each patient in the

validation set averaged over 100 repetitions. The optimal treatment boundaries (solid blue lines)

were projected onto feature variables X1 and X2 for terminal nodes T1, T2, and T5, and onto X3

and X4 for T2, T3, and T4. In both figures, the color of dots represents the average estimated

optimal treatment (with treatments coded as “1” or “−1”) for that subject in the validation set

by a certain method based on 100 simulated data sets. The blue solid line is the true optimal

treatment boundary for qualitative interaction. The blue dashed line is the true boundary of

quantitative interaction (high vs low ITR benefit). Subjects between the solid and dashed lines

form the subgroup which is most easily mis-allocated by a sub-optimal method. CITree and honest

CITree perform better as shown in Figure 3.4, because they use a combination of feature variables

to perform qualitative split. Other methods only consider one variable for each split and therefore

do not capture a non-rectangular boundary. In Figure 3.5, our methods also perform better than

alternatives, due to performing a quantitative split. An advantage of CITree over other trees that

only fits qualitative interaction is that: subgroup with small benefits is the group that most likely

to have an inaccurate predicted optimal treatment. For example, MIDAs uses the overall value

function in all subjects as criterion, thus may not have adequate fit on this subgroup. In contrast,

CITree specifically identifies this subgroup with poor fit and re-fit an ITR locally using data from

this subgroup only.
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To examine the complexity of the trees fitted by five methods, we report number of terminal

nodes for each method in Table 3.4. The average number of terminal nodes for honest CITree and

CITree is around 5, which is the true number of nodes. The average number of tree levels is also

close to the the truth (5 levels). QUINT and MIDAs also generate relatively simple trees with

an average number of 6 to 7 terminal nodes. IT has the most complicated tree, after pruning it

still terminates with 10 to 25 terminal nodes (more complicated with larger sample size). With a

relatively simple tree, CITree has better performance than IT with a more complicated structure.

To further explore performance on recovering the tree structure, we report positive predictive

value (PPV) and subgroup benefit for the terminal nodes predicted by CITree and honest CITree.

The PPV of a terminal node represents the proportion of subjects who truly belong to the node

among those who are predicted to be in a terminal node. For T3 and T4, the sample size in both

nodes are small and the difference in benefit are low, thus the results with T3 and T4 combined

are reported. When the sample size is large at 1, 000 or 2, 000, for both CITree and honest CITree,

the PPV of T1 is high at a rate above 95%; the PPV of T2 and T3 + T4 is above 85%; the PPV

of T5 is the lowest, where some subjects who belong to T2, T3 and T4 are misallocated to T5.

When sample size is small (N = 500), the PPV of CITree is greater than that of the honest CITree

for each predicted terminal. The subgroup benefit of the predicted terminal nodes is consistent

with the PPVs, where subjects in T1 performs the best. The subgroup benefit of predicted T5 is

lower than the true value of 2.0, which suggests that some subjects from low benefit nodes were

misallocated to this terminal node.

In addition, we examined whether the correct variable was selected for splitting from level 2 to

level 3. When the sample size is 1, 000, more than 95% times, the correct variable X1 was selected

and more than 95% times an adequate split point (true value −0.3, considered as adequate in the



CHAPTER 3. COMPOSITE INTERACTION TREE FOR LEARNING OPTIMAL
INDIVIDUALIZED TREATMENT RULES AND SUBGROUPS 63

range [−0.5,−0.1]) was identified. When sample size is 2, 000, both CITree and honest CITree can

select the correct variable at an adequate cut point.

Regarding the computational speed, the honest CITree takes 15 seconds and CITree takes 1.5

minutes for N = 1, 000 on a PC with 3.8GHz CPU. The honest CITree is much faster than the

CITree since it only uses half of the sample in each step. They are both faster than QUINT

(2 minutes), which used five bootstrapped samples in the bootstrap-based pruning procedure.

The computation of searching the best HTB test for CITree is fast given the derived variance

formula. The computational time of estimating ITR for CITree after level 1 is also fast since the

sample size reduces dramatically in lower levels of the tree. QUINT was implemented via the R

package “quint” (Dusseldorp et al., 2016). R code for IT is available at http://biopharmnet.

com/subgroup-analysis-software/. R code for MIDAs was from the authors. R codes for fitting

CITree are available upon request.

3.4 Application to the REVAMP Study

REVAMP (Kocsis et al., 2009) is a two-phase, 12-week randomized trial, which aimed to compare

the efficacy of combining psychotherapy with medication to medication alone among chronic MDD

patients who didn’t fully respond to initial treatment of an antidepressant medication. Among 808

patients who entered phase I, 491 patients didn’t achieve remission and therefore entered phase II.

They were randomly assigned to receive (1) continued pharmacotherapy and augmentation with

cognitive behavioral analysis system of psychotherapy (MEDS+CBASP), (2) continued pharma-

cotherapy and augmentation with brief supportive psychotherapy (MEDS+BSP), or (3) continued

optimized pharmacotherapy (MEDS) alone with 2:2:1 ratio.

http://biopharmnet.com/subgroup-analysis-software/
http://biopharmnet.com/subgroup-analysis-software/
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The clinical outcome of interest is the 24-item Hamilton Depression Rating Scale (HAM-D)

total score at the end of phase II treatment. A lower HAM-D score indicates less symptoms and

thus a better response. We compared two categories of treatments: 1)Medication plus psychother-

apy (MEDS+THERAPY); and 2) Medication alone (MEDS). Five feature variables were used to

estimate the optimal ITR: gender(Male=1; Female=0), age (median = 47), Quick Inventory of De-

pression Symptoms (QIDS, a score to measure the symptoms of depression, a lower score indicates

better clinical outcome) score at the end of phase I (median = 8), the relative change of QIDS

score over phase I (median = −0.44, calculated as change of QIDS score over phase I divided by

baseline QIDS score), and current alcohol use (Yes=1). We estimated π(Ai|Xi) from the data by

the empirical proportions of the treatment. There were 418 participants with complete feature

variable information included in our analysis, where 336 received medication and therapy, and 82

patients received medication only.

We applied CITree, IT, QUINT, and MIDAs to estimate the optimal ITR for MDD patients who

did not achieve remission with phase I treatment. For all methods, we randomly split the sample

into a training set and testing set with 1:1 ratio and repeated the procedure 100 times. QUINT did

not identify any individual variable that has a qualitative interaction with the treatment, therefore

it returns a non-personalized treatment rule, that is, to treat all patients with medication and

therapy. The mean HAM-D score is 12.50 for MEDS+THERAPY and 12.81 for MEDS only group.

Three other methods estimated an individualized treatment rule. Figure 3.6 compares the overall

performance of CITree to IT and MIDAs. The ITR estimated by CITree yields an average HAM-D

score of 12.17 (sd=1.41), which is smaller than IT (12.97, sd=1.33), and MIDAs (12.54, sd=0.95),

indicating a better performance of CITree (Table 3.7). The overall ITR benefit estimated by CITree

(0.96, sd=2.43) is much larger than that based on IT (-0.64, sd=2.26) and MIDAs (0.21, sd=2.48),
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and also greater than QUINT (an overall benefit of 0.31). Both IT and MIDAs perform worse than

the non-personalized rule.

We present the fitted CITree on the full data in Figure 3.7. Subjects are first partitioned into

two groups with predicted optimal treatment as MEDS + THERAPY or MEDS only based on

the sign of first level decision rule, f̂1(X). For the right node with MEDS only as the optimal

treatment, subjects are then partitioned into a high benefit group (QIDS change> −0.21) and a

low benefit group (QIDS change≤ −0.21) based on the relative change of QIDS score at phase 1.

CITree stops growing for the high benefit node (T4) and re-fit f̂2(X) for the low benefit group

and forms another two terminal nodes T2 and T3. On the right side of the tree, no heterogeneity

in benefit was found and CITree stops growing after the first split. The final optimal treatment

decision rule omitting variables with negligible coefficients can be summarized as −I(f̂1(X) ≤

0) + I(f̂1(X) > 0)
[
I(QIDs.change > −0.21) + I(QIDs.change ≤ −0.21) × sign(f̂2(X))

]
, where

f̂1(X) = −0.5 + alcohol and f̂2(X) = 0.5 − gender. For the first level ITR, current alcohol

use dominates the optimal ITR, and in level 3 gender is the most important feature variable.

Thus current alcohol use and gender are identified to manifest a qualitative interaction. A recent

study by Gunter et al. (2011) also showed alcohol dependence is useful for selecting treatments

in a Nefazodone CBASP Trial for major depression. Relative change of QIDS score manifests a

quantitative interaction to distinguish patients with a high and low benefit.

CITree divides patients into four terminal nodes. For subjects who don’t use alcohol (T1),

adding therapy is more beneficial than treated by medication alone. For those with current al-

cohol use and phase I QIDS relative change > −0.21, medication alone is more beneficial com-

pared to adding therapy. Males with current alcohol use and larger relative change of phase I

QIDS decrease are more likely to achieve a better treatment outcome (lower HAMD score) with
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MEDS+THERAPY; while females with current alcohol use and larger relative change of phase I

QIDS decrease are more likely to perform better by MEDs only.

3.5 Discussion

In this work, we propose a tree-based learning method (CITree) to estimate interpretable ITRs and

simultaneously identify subgroups with large benefit to guide treatment decision making for the

patients. CITree performs qualitative interaction and quantitative interaction splits and retains the

re-fitted linear rule in each node only if the new rule improves the subgroup and overall benefit,

so it is guaranteed to outperform ABLO. The proposed algorithm fits a linear rule in each node to

estimate an ITR and thus the resulting rule is piece-wise linear. When desirable, polynomial rule

can also be considered. We have shown that using a linear combination of feature variables may

be more powerful in identifying qualitative interaction comparing to exploring a single variable

in turn. QUINT and IT do not have this feature, which may have contributed to their inferior

performance both in simulations and real data application. Other possible reasons for their inad-

equate performance include using surrogate objective function for splitting criterion (e.g., t-test)

and imbalanced treatment group size.

The composite interaction tree method has several limitations. First, it is slower comparing to

ABLO, since it requires re-fitting ABLO at different child nodes. Faster computational algorithm is

worth investigating in the future, e.g., parallel computing for finding child nodes in different parent

nodes. In addition, like other tree-based methods, the composite interaction tree could be unstable

depending on the first few splits (although the fitted tree was fairly stable in REVAMP example).

An extension is to consider ensemble methods in line with random forest. However, such methods
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may lose the advantage on interpretability. Lastly, an important extension is to develop a dynamic

tree-based method for multi-stage studies such as sequential multi-stage randomization trials.
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Table 3.3: Simulation study 2 results: classification accuracy among subjects truly belong to each

terminal node

Setting N Method T1 T2 T3 T4 T5

Setting 5 500 QUINT 0.981 (0.044) 0.374 (0.337) 0.665 (0.343) 0.784 (0.280) 0.865 (0.061)

MIDAs 0.932 (0.056) 0.315 (0.170) 0.779 (0.174) 0.803 (0.151) 0.912 (0.044)

IT 0.949 (0.038) 0.591 (0.157) 0.642 (0.270) 0.787 (0.185) 0.927 (0.049)

Honest CITree 0.969 (0.018) 0.740 (0.122) 0.674 (0.215) 0.755 (0.193) 0.965 (0.021)

CITree 0.974 (0.015) 0.788 (0.099) 0.841 (0.143) 0.932 (0.100) 0.975 (0.014)

1000 QUINT 0.990 (0.025) 0.283 (0.357) 0.753 (0.356) 0.856 (0.265) 0.870 (0.049)

MIDAs 0.956 (0.036) 0.252 (0.143) 0.854 (0.131) 0.866 (0.113) 0.924 (0.038)

IT 0.968 (0.022) 0.685 (0.102) 0.666 (0.206) 0.853 (0.099) 0.941 (0.025)

Honest CITree 0.973 (0.014) 0.765 (0.099) 0.835 (0.141) 0.928 (0.124) 0.975 (0.014)

CITree 0.978 (0.012) 0.802 (0.076) 0.892 (0.094) 0.974 (0.039) 0.977 (0.012)

2000 QUINT 0.996 (0.008) 0.242 (0.352) 0.755 (0.372) 0.907 (0.223) 0.873 (0.045)

MIDAs 0.975 (0.021) 0.200 (0.124) 0.872 (0.125) 0.899 (0.090) 0.936 (0.023)

IT 0.982 (0.013) 0.742 (0.074) 0.720 (0.155) 0.886 (0.066) 0.953 (0.019)

Honest CITree 0.979 (0.010) 0.795 (0.088) 0.898 (0.081) 0.970 (0.056) 0.976 (0.015)

CITree 0.974 (0.011) 0.822 (0.070) 0.787 (0.170) 0.916 (0.116) 0.980 (0.011)

Setting 6 500 QUINT 0.978 (0.047) 0.437 (0.350) 0.605 (0.359) 0.685 (0.333) 0.846 (0.079)

MIDAs 0.911 (0.049) 0.304 (0.166) 0.780 (0.191) 0.791 (0.154) 0.895 (0.046)

IT 0.933 (0.046) 0.594 (0.180) 0.603 (0.268) 0.756 (0.217) 0.913 (0.062)

Honest CITree 0.966 (0.020) 0.725 (0.119) 0.594 (0.204) 0.706 (0.205) 0.961 (0.028)

CITree 0.973 (0.013) 0.747 (0.112) 0.773 (0.169) 0.875 (0.158) 0.965 (0.022)

1000 QUINT 0.988 (0.036) 0.325 (0.359) 0.729 (0.353) 0.838 (0.268) 0.864 (0.061)

MIDAs 0.941 (0.040) 0.248 (0.155) 0.820 (0.160) 0.842 (0.132) 0.925 (0.034)

IT 0.968 (0.020) 0.659 (0.118) 0.643 (0.228) 0.835 (0.116) 0.936 (0.029)

Honest CITree 0.970 (0.017) 0.750 (0.103) 0.772 (0.175) 0.873 (0.155) 0.966 (0.018)

CITree 0.975 (0.013) 0.790 (0.096) 0.879 (0.082) 0.961 (0.053) 0.975 (0.014)

2000 QUINT 0.995 (0.013) 0.236 (0.344) 0.763 (0.357) 0.877 (0.263) 0.879 (0.039)

MIDAs 0.963 (0.029) 0.200 (0.124) 0.854 (0.129) 0.898 (0.081) 0.938 (0.023)

IT 0.981 (0.013) 0.719 (0.091) 0.693 (0.176) 0.869 (0.089) 0.950 (0.017)

Honest CITree 0.976 (0.011) 0.793 (0.074) 0.876 (0.086) 0.962 (0.053) 0.973 (0.016)

CITree 0.974 (0.012) 0.816 (0.065) 0.848 (0.123) 0.946 (0.064) 0.978 (0.010)
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Table 3.4: Simulation study 2 results: total nodes or levels of tree based methods

QUINT MIDAs IT Honest CITree CITree

Setting N Nodes Nodes Nodes Levels Nodes Levels Nodes

Setting 5 500 6.09 (0.93) 5.80 (0.91) 9.26 (1.54) 4.81 (0.87) 4.18 (1.18) 5.30 (0.61) 4.99 (1.03)

1000 6.01 (1.00) 6.32 (1.03) 14.55 (2.13) 5.34 (0.54) 5.22 (1.09) 5.47 (0.72) 5.65 (1.55)

2000 5.89 (0.99) 6.58 (0.79) 22.60 (3.86) 5.42 (0.61) 5.72 (1.48) 5.68 (0.91) 6.47 (1.84)

Setting 6 500 6.10 (0.85) 6.22 (0.89) 9.95 (1.86) 4.73 (1.00) 4.30 (1.55) 5.41 (0.89) 5.43 (1.67)

1000 5.98 (1.08) 6.69 (0.99) 16.05 (2.89) 5.34 (0.86) 5.20 (1.36) 5.56 (0.80) 5.73 (1.52)

2000 5.64 (0.98) 6.98 (0.90) 24.13 (4.27) 5.57 (0.76) 5.89 (1.58) 5.77 (1.13) 6.45 (2.01)

Table 3.5: Simulation study 2 results: PPVs of predicted terminal nodes by CITree

Setting N Method T1 T2 T3+T4 T5

Setting 5 500 Honest CITree 0.919 (0.126) 0.761 (0.234) 0.832 (0.198) 0.748 (0.072)

CITree 0.969 (0.056) 0.875 (0.137) 0.934 (0.063) 0.779 (0.072)

1000 Honest CITree 0.970 (0.047) 0.871 (0.136) 0.945 (0.059) 0.759 (0.061)

CITree 0.977 (0.037) 0.918 (0.096) 0.966 (0.040) 0.774 (0.060)

2000 Honest CITree 0.980 (0.011) 0.930 (0.043) 0.970 (0.044) 0.768 (0.073)

CITree 0.982 (0.010) 0.809 (0.156) 0.923 (0.074) 0.777 (0.071)

Setting 6 500 Honest CITree 0.911 (0.131) 0.700 (0.232) 0.800 (0.163) 0.740 (0.067)

CITree 0.964 (0.050) 0.851 (0.100) 0.890 (0.092) 0.754 (0.063)

1000 Honest CITree 0.956 (0.080) 0.850 (0.117) 0.904 (0.091) 0.753 (0.063)

CITree 0.976 (0.041) 0.907 (0.057) 0.952 (0.042) 0.773 (0.069)

2000 Honest CITree 0.977 (0.017) 0.915 (0.045) 0.961 (0.029) 0.767 (0.063)

CITree 0.982 (0.008) 0.855 (0.138) 0.938 (0.063) 0.781 (0.061)
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Table 3.6: Simulation study 2 results: subgroup benefits of predicted terminal nodes by CITree

Setting N Method T1 T2 T3+T4 T5

Setting 5 500 Honest CITree 1.959 (0.400) 0.610 (0.406) 0.996 (1.132) 1.521 (0.311)

CITree 1.964 (0.233) 0.957 (0.316) 0.811 (0.305) 1.638 (0.207)

1000 Honest CITree 1.958 (0.225) 0.804 (0.357) 0.852 (0.427) 1.550 (0.203)

CITree 1.957 (0.149) 0.928 (0.240) 0.768 (0.272) 1.598 (0.176)

2000 Honest CITree 1.956 (0.149) 0.904 (0.246) 0.774 (0.289) 1.569 (0.200)

CITree 1.977 (0.098) 0.932 (0.154) 0.631 (0.210) 1.591 (0.157)

Setting 6 500 Honest CITree 1.959 (0.558) 0.380 (0.531) 0.814 (0.666) 1.427 (0.296)

CITree 1.990 (0.303) 0.893 (0.322) 0.766 (0.434) 1.513 (0.204)

1000 Honest CITree 1.915 (0.323) 0.710 (0.338) 0.786 (0.389) 1.567 (0.271)

CITree 1.964 (0.163) 0.903 (0.252) 0.804 (0.330) 1.630 (0.185)

2000 Honest CITree 1.937 (0.173) 0.855 (0.267) 0.768 (0.310) 1.542 (0.181)

CITree 1.983 (0.114) 0.940 (0.158) 0.718 (0.219) 1.601 (0.155)

∗: True benefits of Setting 5 are 2.00 for T1, 0.91 for T2, 1.95 for T5 and 0.70 for T3+T4.

True benefits of Setting 6 are 2.00 for T1, 0.89 for T2, 1.97 for T5 and 0.77 for T3+T4.

Figure 3.6: Overall performance of three methods in the REVAMP Study
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stage 2 treatment for three methods (based on 100 cross-validation)
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Table 3.7: Overall performance of three methods in the REVAMP Study

Method MIDAs IT CITree

Value 12.54 (0.95) 12.97 (1.33) 12.17 (1.41)

Benefit 0.21 (2.48) -0.64 (2.26) 0.96 (2.43)

Figure 3.7: CITree for optimal individualized treatment decision (the REVAMP Study)
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Chapter 4

Integrative Learning to Synthesize

Individualized Treatment Rules

Across Multiple Trials

4.1 Overview

In this chapter, we propose an integrative learning method to estimate the optimal individualized

treatment rule by synthesizing evidence across multiple trials. In Section 4.2, we introduce the

rationale and algorithm of the proposed integrative machine learning method. In Section 4.3, we

derive the underlying Bayesian rules for the proposed method. In Section 4.4, we perform extensive

simulation studies to show improvement as compared to existing machine learning methods for sin-

gle studies. In Section 4.5, we apply the proposed method to the EMBARC trial using information

from HEAL trial. Finally, we end this chapter with discussions and possible extensions in Section
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4.6.

4.2 Methodologies

In Chapter 2 and 3, we focus on proposing methods for learning simple ITRs on a single randomized

controlled trial. However, an ITR learned by a single study aims to optimize the performance on

the study, which may not generalize to a future sample. A method that can use information from

multiple studies may provide an ITR that represents a more general population and therefore has

better reproducibility. Because not all of the same feature variables are collected in each study, one

cannot directly combine study data and perform a single analysis. Taking weighted averages of the

estimated ITR decision functions also does not apply because each ITR is obtained by maximizing

the empirical value function, which has a complex, nonlinear relationship with the decision function.

In this section, we propose novel integrative learning methods to combine ITRs from RCTs that

collect different subsets of baseline feature variables.

4.2.1 Integrative Learning for High-Resolution ITR Using Coarsened ITRs

First consider how to enhance learning a high-resolution ITR dependent on a rich set of features in a

comprehensive trial by using coarsened ITRs that have been learned from smaller trials with subsets

of feature variables. Let (Xi, Ai, Ri), i = 1, ...., n, be the richest set of baseline feature variables,

treatments, and treatment outcomes collected on the ith participant in a comprehensive trial,

denoted as study 0. The randomization probability of ith participant is denoted as P (Ai|Xi) =

πi. For other K trials, only a subset of features, denoted by Zk, is collected by design. The

observed data from these trials consist of (Zjk, Ajk, Rjk) for the jth patient in the kth trial, and

P (Ajk|Zjk) = πjk for its randomization probability, with j = 1, ..., nk, k = 1, ...,K.
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The richest feature set X defines the high-resolution ITR (denoted by sign(f0(X))), in terms

of conditional response given X. Features Zk as subsets of X define coarser, low-resolution ITR

(denoted by sign(fk(Zk))), in terms of conditional response given Zk. Our key rationale is that each

low-resolution fk still maintains certain optimality when applied to patients in the comprehensive

trial but only using features available in Zk. Although fk is fit by maximizing the average value

of the conditional response given coarsened groups (stratified by conditioning on Zk), such that it

may not be optimal for every individual in the finest group stratified by X, fk is informative of f0

in the following sense: randomly select a patient from subpopulations stratified by different values

of Zk, and apply to this patient the finest optimal ITR f0 based on X. We should expect that most

times, the treatment recommendations from f0 should be the same as those based on fk because fk

should maximize the conditional response given Zk averaged over all subjects (definition of value

function). Based on this rationale, we propose the following method to integrate evidence from the

smaller/auxiliary trials to improve learning the optimal ITR from the comprehensive trial.

First, for k = 1, ...,K, we use outcome weighted learning (e.g. ABLO) and kth study data

to obtain the optimal rule dependent on the kth study features, denoted as sign(f̃k(Zk)). The

corresponding benefit function is denoted by δ̃(f̃k(Zk)). To simplify the notation of benefit function,

we will use δ̃k(Zk) to represent δ̃(f̃k(Zk)) in the following sections. That is, for any future subject

including the subject in the high-resolution study (study 0) whose value for the feature variable

Zk is zk, the learned rule based on the kth study concludes that the optimal treatment assignment

should be 1 if f̃k(zk) > 0 and -1, otherwise. Under the this optimal treatment assignment, the

expected benefit is δ̃k(zk).

Hence, for each subject i in study 0, in addition to the observed trial data (Ai,Xi, Ri), we also

know from the kth study evidence that his/her optimal treatment rule should not be significantly
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different from sign(f̃k(Zik)) and that the expected benefit should not be far from δ̃k(Zik), where

Zik is the set of the feature variables used in the kth study so is part of Xi. Next, we integrate this

external information to learn the optimal treatment rule using the data from study 0. Specifically,

we introduce an additional regularization to incorporate f̃k as prior information in the learning

approach. The regularized value function to be maximized to estimate f0 is

1

n

n∑
i=1

Ri
πi
I(Aif0(Xi) > 0) +

{
K∑
k=1

λk
n

n∑
i=1

δ̃ik
πi
I(f0(Xi)f̃k(Zik) > 0)

}
, (4.1)

where λk is a tuning parameter to be selected from data, and δ̃ik = δ̃k(Zik). A straightforward

choice is to let δik be the approximate benefit of using f̃k to assign treatments available based on

ABLO. Note that the first term in (4.1) is the empirical value function associated with f0. The

second term is a regularization term such that the more consistent the signs of f0 and f̃k, the larger

the value. Thus, the regularization ensures that the derived treatment rule is consistent with the

learned rule from the kth trial.

Note that maximizing (4.1) is equivalent to maximizing

1

n

n∑
i=1

[
Ri
πi
I(Aif0(Xi) > 0) +

{
K∑
k=1

λk
2

δ̃ik
πi

sign(Aif0(Xi))sign(Aif̃k(Zik)) +
K∑
k=1

λk
2

δ̃ik
πi

}]
,

which can be rewritten (up to a constant) as

1

n

n∑
i=1

R̃i
πi
I(Aif0(Xi) > 0)

after defining R̃i = Ri+
∑K

k=1 λkδ̃ik

{
2I(Aif̃k(Zik) > 0)− 1

}
. Thus, maximizing (4.1) is equivalent

to maximizing another empirical version of the value function, but the outcome for individual i is

augmented as R̃i instead of Ri. Hence, this optimization can be solved by minimizing a surrogate

ramp loss function, as in ABLO. The tuning parameter λk can be selected by cross-validation with

a maximal value function. δ̃ik can be estimated by parametric or non-parametric models using
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the kth trial data and predicting the estimated benefit on the subjects of study 0. Specifically,

in this work, we apply a linear regression model on the kth trial data with assigned treatment,

baseline feature variables and their interactions to predict clinical outcome for each subject with

both treatment 1 and -1 given its feature variables. The benefit is then estimated by the difference

between the predicted outcome given the estimated optimal treatment and the predicted outcome

given the alternative treatment for subjects in study 0. Note that λk can be tuned separately for

different coarsened ITR k. In practice, since δik will be estimated separately for each study k, one

can keep λk the same across different studies to ease computational burden on choosing tuning

parameters.

4.2.2 Integrative Learning for Coarsened ITRs Using High-Resolution ITR

In clinical settings with limited resources (e.g., when cost constraint does not permit the collection

of brain imaging data), an ITR that depends only on easily assessed clinical variables can be

practically useful. Thus, we propose an integrative learning approach to enhance coarsened ITRs

by using evidence generated from existing studies with high-resolution ITR.

The key rationale is that the average benefit of the high-resolution ITR f0 evaluated in a

subgroup stratified by Zk should be the same as the average benefit of the coarsened ITR fk.

First, we obtain the optimal treatment rule, denoted by sign(f̃0(X)), and its benefit function,

denoted by δ̃0(X), using study 0. To incorporate this information to improve the rule learning in

study k, k = 1, ...,K. For each k, we consider estimating fk by maximizing the following objective

function similar to (4.1), but exchange the roles of f0 and fk as

1

nk

nk∑
j=1

Rjk
πjk

I(Ajkfk(Zjk) > 0) +
λk
n

n∑
i=1

δ̃i
πi
I(fk(Zik)f̃0(Xi) > 0), (4.2)
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where λk is a tuning constant and weight δ̃i = δ̃0(Xi). Again, δi can be the benefit of assigning

treatment to subject i using f̃0 estimated from ABLO. In (4.2), the first component is the empirical

value for each ITR fk involving the kth trial data. The second component encourages fk and f̃0 to

yield the same treatment recommendation (same sign) as much as possible, especially for subjects

with a large benefit δ̃i.

To solve the optimization for kth trial, we can rewrite (4.2), up to a constant, as

1

nk

nk∑
j=1

Rjk
πjk

I(Ajkfk(Zjk) > 0) +
λk
n

n∑
i=1

δ̃i
πi

(
2I(Aif̃0(Xi) > 0)− 1

)
I(Aifk(Zik) > 0).

We again augment the original data set by combining data from both study k and study 0; however,

for subject i in study 0, instead of using Ri as the reward outcome in the augmentation term, we

use R̃i = λknkn
−1δ̃i(2I(Aif̃0(Xi) > 0) − 1), which is less variable than Ri. For optimization, we

just augment the data from kth study, (Zjk, Ajk, Rjk), with additional data from study 0 with

(Zik, Ai, R̃i). Therefore, we can apply the standard learning method to learn the optimal ITR

using this integrated data set. Additionally, λk weighs the importance of this augmentation and

will be chosen by cross-validation.

4.2.3 Extension to Blockwise Feature Domains in a Single Trial

With the development of new data collection techniques, multiple sources of data may be collected

from different domains. In practice, it is common that the data entails blockwise feature entries

(Xiang et al., 2013), due to cost or primitive protocol of data collection. For example, in the

EMBARC trial, some subjects have complete clinical, neuropsychiatric measures and brain imaging

measures, while others are lack of the entire domain of brain imaging data.

Assume that the blockwise feature pattern is completely random and noninformative. The data
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Figure 4.1: An example for data collected with blockwise feature domains

*: white color indicates the measures for that domain are missing, other colors indicate the measures that are

complete. In this case, X includes feature variables from domain 1, 2, 3, and 4; Z1 includes variables from domain

1 and 2; Z2 includes variables from domain 1, 2, and 3; ZK includes only variables from domain 1.

from this single study can be treated as collected from multiple trials based on the domains of

feature variables that are collected. More specifically, study 0 consists all subjects with complete

feature variable measures, and subjects that have the same block of feature variables measured will

be considered as from an independent trial. In this way, the total number of small studies, K, is the

total number of block patterns. For example, in Figure 4.1, there are K sub-studies. In study 0 with

complete feature variables X, using methods in Section 4.2.1, one can learn a high-resolution ITR

f̃0(X); while in study k, a coarsened ITR f̃k(Zk) will be estimated given the available covariates

Zk. Compared to using study data 0 alone, the integrative learning offers an opportunity to use

all collected data efficiently. Hence, our proposed method to integrate treatment rules learned in

K studies can be used to improve learning optimal treatment rule using the data from study 0.

4.3 Theoretical Results

In this section, we derive the underlying Bayesian rules of the integrative learning methods. To this

end, we assume that the asymptotic limits of f̃k(Zk) and δ̃k(Zk) in (4.1) are, fk(Zk) and δk(Zk),
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respectively. Then for given λk’s, the Bayesian rule for the integrative learning for high-resolution

ITR maximizes

E0

[{
R+

K∑
k=1

λkδk(Zk) (2I(Afk(Zk) > 0)− 1)

}
I(Af0(X) > 0)

π(A|X)

]

over f0(X), where E0(·) denotes the expectation under the joint distribution of (R,X) in study

0, and π(a|X) = P (A = a|X) in study 0. Using the standard result from the outcome weighted

learning (Zhao et al., 2012), we immediately obtain that the Bayesian rule, denoted by f∗0 (X),

satisfies

sign(f∗0 (X))

= sign

(
E0

{
R+

K∑
k=1

λkδk(Zk) (2I(Afk(Zk) > 0)− 1)
∣∣∣A = 1,X

}

−E0

{
R+

K∑
k=1

λkδk(Zk) (2I(Afk(Zk) > 0)− 1)
∣∣∣A = −1,X

})

= sign

(
E0

{
R+

K∑
k=1

λkδk(Zk) (2I(fk(Zk) > 0)− 1)
∣∣∣A = 1,X

}

−E0

{
R+

K∑
k=1

λkδk(Zk) (2I(fk(Zk) < 0)− 1)
∣∣∣A = −1,X

})

= sign

(
E0[R|A = 1,X]− E0[R|A = −1,X] +

K∑
k=1

λkδk(Zk)sign(fk(Zk))

)
.

Note that δk(Zk)sign(fk(Zk)) = E0[Rk|Ak = 1,Zk] − E0[Rk|Ak = −1,Zk]. Thus, the Bayesian

rule is

sign

(
E0[R|A = 1,X]− E0[R|A = −1,X] +

K∑
k=1

λk(E0[Rk|Ak = 1,Zk]− E0[Rk|Ak = −1,Zk])

)
.

In other words, the Bayesian rule is to essentially combine all conditional treatment effects given

Zk from all the auxiliary studies with treatment effect given X. Here, λk is used to weigh the

effect size from the kth study. The first term has the same sign as the theoretical optimal high-

resolution ITR using the rich feature set X. The second term aggregates coarsened treatment
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recommendations and benefits that are fitted from the smaller feature sets Zk. Therefore, the

integrated ITR converges to an ITR that prescribes treatment with larger weighted conditional

benefits across trials. Thus, in this sense the integrated ITR borrows information from all trials.

Under the assumption that the direction of the expected treatment difference given X in study 0

is the same as the average treatment difference given Zk, f̃0 is Fisher consistent.

Furthermore, we remark that when λk is close to zero, the derived Bayesian rule approximates

the true optimal treatment rule. However, in finite samples of study 0, the optimal rule estimated

from one single study is likely to be different from the true optimal rule for some subjects due

to limited information available to learn a fully nonparametric rule. Therefore, by allowing λk to

be non-zero and determined in a data-driven way, one can use additional information from other

studies to correct the finite sample bias in study 0 and improve the precision by including more

samples available in auxiliary studies.

Using the same argument, we obtain that the Bayesian rule for low-resolution study, say study

k, maximizes

Ek

[
Rk

πk(Ak|Zk)
I(Akfk(Zk) > 0)

]
+ λkE0

[
δ0(X)

π(A|X)
sign(Af0(X))I(Afk(Zk) > 0)

]
= Ek

[
Rk

πk(Ak|Zk)
I(Akfk(Zk) > 0)

]
+ λkEk

[
δ0(X)

π(A|X)

g0(Zk)

gk(Zk)
sign(Af0(X))I(Afk(Zk) > 0)

]
,

where Ek(·) is the expectation with respect to (Rk,Zk) in study k, g0(·) and gk(·) are the density

functions for Zk in study 0 and study k, respectively. This expression, up to a constant independent

of fk, is equivalent to,

Ek [{Ek[Rk|Ak = 1,Zk]− Ek[Rk|Ak = −1,Zk]} sign(fk(Zk))]

+ λkEk

[
δ0(X)

g0(Zk)

gk(Zk)
sign(f0(X))sign(fk(Zk))

]
.
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Therefore, the Bayesian rule for this integrative learning is

sign(f∗k (Zk)) = sign
(
Ek[Rk|Ak = 1,Zk]− Ek[Rk|Ak = −1,Zk]

+ λk
g0(Zk)

gk(Zk)
(E0[R|A = 1,Zk]− E0[R|A = −1,Zk])

)
,

which is a weighted combination of the conditional treatment effects given Zk from study k and

study 0. In particular, λk gives the weight to integrate evidence from study 0. Additionally, if the

conditional treatment effects are in the same direction or even have the same magnitude across the

trials, the above Bayesian rule is the same as the optimal rule for study k. However, using the

combined treatment effects to estimate the integrative rule has a better precision in finite sample

due to including more data from study 0.

As a remark, δk(Zk) or δ(X) can be replaced by any other functions of the feature variables, or

even a constant of one. In this case, the Bayesian rules are not necessarily based on the combined

conditional treatment effects, but is the combination of the treatment effect in the study of interest

and the evidence from other trials depending on the optimal rules learned in those trials.

4.4 Simulations

4.4.1 Simulation Design

The simulation model is inspired by real-world applications where multiple RCTs are conducted

at different locations or different time (Justice et al., 1999). In the simulation studies, the patient

population consists of a mixture of patients. For all trials, we assume that within each mixing

subgroup the conditional distribution of R given X is the same, but the mixing proportion is

different across trials. For example, a trial conducted in one location may consist of more elderly

patients than another trial in another location, but the distribution of outcome given age and other
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feature variables follow the same distribution within the subgroup of elder or younger patients.

In the simulation model, three feature variables, (X1, X2, X3), informative of optimal treatment

choice, were generated from four latent subgroups of subjects with probabilities (p1, p2, p3, p4).

Within each subgroup, X1, X2, and X3 were independently simulated from a normal distribution

with different means, (1, 0.5,−1,−0.5), and standard deviation of one. The treatment for each

subject was randomly assigned to 1 or −1 with equal probability. The clinical outcome for subjects

in the kth subgroup was generated by

R = 1 + I(A = 1)(δ1k + α1k ∗W ) + I(A = −1)(δ2k + α2k ∗W ) + α1k ∗ S + 0.5 ∗ V ∗A+ ε,

where ε ∼ N(0, 0.25), V , W , and S are i.i.d. and follow the standard normal distribution, δ =

[δlk]2∗4 =

0.8 0.3 0 0

0 0 0.8 0.3

, α = [αlk]2∗4 =

 1 0.6 0.5 0.3

0.5 0.3 1 0.6

. Treatment A = 1 has a

greater average effect for subjects in subgroups 1 and 2, and the alternative treatment −1 has a

greater average effect in subgroups 3 and 4. Here, W is an observed prescriptive variable within each

subgroup, V has qualitative interaction with treatment and therefore it is directly informative of

the selection of optimal treatment, and S is an unobserved prognostic variable with the same main

effect within each subgroup. One noise variable N1 not contributing to the clinical outcome was

independently generated from the standard normal distribution. In order to apply our method, we

generated one high-resolution data set (data set 0), including all the observed feature variablesX =

(X1, X2, X3,W, V,N1), and one low-resolution data set (data set 1), with onlyZ1 = (X1, X2, X3, V ).

To mimic real-world situation, we set the probabilities of belonging to each latent subgroups as

(0.4, 0.1, 0.4, 0.1) for data set 0, and (0.2, 0.3, 0.2, 0.3) for data set 1.

In order to test the generalizability of the proposed method, we evaluate the estimated ITR

on different target populations, aiming to simulate different settings of patient recruitment in
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the future target population where the ITR will be implemented. The total population consists

of a mixture of patients, with the same conditional distribution of R given X within subgroup

as described above. Each setting has mixing proportion, specifically, the ratio of the validation

settings are (0.25, 0.25, 0.25, 0.25), (0.2, 0.2, 0.3, 0.3), (0.5, 0, 0.5, 0), and (0, 0.5, 0, 0.5) for settings 1

to 4. Validation setting 3 and 4 represent extreme cases when only subgroups with large or small

benefits are collected. To maintain the simplicity and interpretability of the ITRs, we only consider

linear rules in the following.

4.4.2 Simulation Results

4.4.2.1 Integrative learning for improving high-resolution ITR using coarsened ITRs

In this section, we evaluate the performance of the integrative learning for high-resolution ITR

improved by coarsened ITRs. For each simulation, data set 1 is used to learn a coarsened ITR

with only 4 variables, namely X1, X2, X3, and V . The ITR learned by integrative learning uses

all the 6 observed feature variables (X1, X2, X3,W, V,N1) and includes the coarsened ITR as prior

information in the learning algorithm. The weight δ̃i1 of subject i is estimated by a linear regression

model using the data set 1 including treatment assignment, feature variables and their interactions,

and predict the estimated benefit on the study 0. In the real data applications, when estimating

the benefit is not possible (e.g., only the coarsened ITR is available but not the individual-level

data of study 1), we assign the same weight for each individual in the high-resolution data set,

which is equivalent to setting δ as one for each subject. We compared the integrative learning

results (both weighted by estimated benefit and equally weighted) to ABLO using only data set 0

(ABLO-H) with feature variables X or data set 1 (ABLO-L) with feature variables Z1. The sample

size was 200 for both data set 0 and 1. Cross validation was used to select the tuning parameters λ.
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To evaluate the performance of ITRs, we simulate independent validation data with four different

settings as described above, each setting with N = 10, 000. We report the overall benefit, value

and classification accuracy on the four validation settings.

Table 4.1: Mean and standard deviation of overall benefit, value and accuracy rates using integrative

learning for high-resolution ITRs comparing to ITRs by ABLO on single studies

ABLO-H ABLO-L Int-Equal Int-Ben

Benefit Setting 1 0.806(0.053) 0.819(0.063) 0.830(0.045) 0.841(0.036)

Setting 2 0.807(0.052) 0.818(0.060) 0.830(0.045) 0.841(0.035)

Setting 3 0.894(0.046) 0.893(0.068) 0.909(0.047) 0.920(0.031)

Setting 4 0.711(0.068) 0.747(0.065) 0.745(0.055) 0.752(0.045)

Value Setting 1 0.668(0.027) 0.675(0.033) 0.680(0.023) 0.686(0.019)

Setting 2 0.665(0.026) 0.670(0.030) 0.676(0.022) 0.682(0.018)

Setting 3 0.833(0.024) 0.832(0.035) 0.840(0.025) 0.846(0.017)

Setting 4 0.501(0.034) 0.519(0.032) 0.518(0.028) 0.522(0.022)

Accuracy Setting 1 0.810(0.027) 0.817(0.033) 0.823(0.024) 0.830(0.019)

Setting 2 0.812(0.028) 0.820(0.033) 0.825(0.025) 0.831(0.020)

Setting 3 0.812(0.022) 0.808(0.038) 0.818(0.026) 0.825(0.017)

Setting 4 0.806(0.037) 0.827(0.039) 0.827(0.032) 0.832(0.028)

∗: ABLO-H is estimated by ABLO using high-resolution data only;

ABLO-L is estimated by ABLO using low-resolution data only;

Int-Equal is estimated by integrative learning for high-resolution ITR with equal weights for all subjects;

Int-Ben is estimated by integrative learning for high-resolution ITR weighted by estimated benefit.

Results from 100 replicates are summarized in Table 4.1 and Figure 4.2. For all the validation

settings, ITRs estimated by integrative learning using both trial data outperform ITRs learned

by ABLO using single trial data with larger optimal treatment selection accuracy, larger overall

benefit and estimated value function. With more information used to estimate an ITR, the ITRs

by integrative learning are more likely to be generalized to a future sample. Also, integrative

learning weighted by estimated benefit performs better than using equal weights in the simulation

since the estimated benefits are also useful information in learning the ITR. By integrating useful
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Figure 4.2: Overall ITR benefit and optimal treatment allocation accuracy for the four methods.
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*: ABLO-H is estimated by ABLO using high-resolution data only;

ABLO-L is estimated by ABLO using low-resolution data only;

Int-Equal is estimated by integrative learning for high-resolution ITR with equal weights for all subjects;

Int-Ben is estimated by integrative learning for high-resolution ITR weighted by estimated benefit.

information, the benefit and value function estimated by integrative learning are also more efficient

compared to ABLO with smaller standard deviations.

4.4.2.2 Integrative learning for improving coarsened ITRs using high-resolution ITR

In this section, we evaluate the performance of the integrative learning for coarsened ITR using

high-resolution ITR. The simulation data sets we generated are exactly the same as the above

section. The only difference is that the ITRs learned by integrative learning is a low-resolution ITR

without variable W and N1. We assume the those two variables are not observed in the validation

settings. Therefore, the high-resolution ITR cannot be used to predict the optimal ITR in the

validation set. For each simulation, data set 0 is used to learn a high-resolution ITR. And then the

high-resolution ITR was used as prior information to integrate the coarsened ITR. We compared
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the integrative learning results (both weighted by estimated benefit and equally weighted) to the

coarsened ITR by ABLO using data set 1 (ABLO-L) with low-resolution feature variables Z1. We

were not able to compare the result with ABLO-H using data set 0, because we assumed complete

feature variable information was not observed in the validation sets and only low-resolution ITRs

were fitted in the simulation.

Table 4.2: Mean and standard deviation of overall benefit, value and accuracy rates using integrative

learning for low-resolution ITRs comparing to ITRs by ABLO on single studies

ABLO-L Int-Equal Int-Ben

Benefit Setting 1 0.820(0.057) 0.844(0.033) 0.858(0.023)

Setting 2 0.820(0.057) 0.843(0.036) 0.858(0.025)

Setting 3 0.888(0.066) 0.919(0.039) 0.928(0.029)

Setting 4 0.748(0.060) 0.757(0.046) 0.778(0.030)

Value Setting 1 0.675(0.030) 0.688(0.018) 0.695(0.013)

Setting 2 0.671(0.029) 0.683(0.018) 0.690(0.013)

Setting 3 0.829(0.034) 0.845(0.020) 0.849(0.016)

Setting 4 0.519(0.030) 0.524(0.022) 0.534(0.014)

Accuracy Setting 1 0.817(0.030) 0.830(0.021) 0.838(0.016)

Setting 2 0.820(0.032) 0.833(0.021) 0.842(0.015)

Setting 3 0.805(0.035) 0.823(0.021) 0.828(0.017)

Setting 4 0.827(0.036) 0.834(0.029) 0.848(0.021)

∗: ABLO-L is estimated by ABLO using low-resolution data only;

Int-Equal is estimated by integrative learning for low-resolution ITR with equal weights for all subjects;

Int-Ben is estimated by integrative learning for low-resolution ITR weighted by estimated benefit.

Simulation results from 100 repetitions are summarized in Table 4.2 and Figure 4.3. For all

the validation settings, ITRs learned by integrative learning (Int-Equal and Int-Ben) using data

sets from both trials outperform the coarsened ITR learned by ABLO using single data set of

low-resolution feature variables. Also, integrative learning weighted by estimated benefit performs

better than integrative learning using equal weights, indicating the estimated benefit does help
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Figure 4.3: Overall ITR benefit and optimal treatment allocation accuracy for the three methods.
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*: ABLO-L is estimated by ABLO using low-resolution data only;

Int-Equal is estimated by integrative learning for low-resolution ITR with equal weights for all subjects;

Int-Ben is estimated by integrative learning for low-resolution ITR weighted by estimated benefit.

in learning the integrative ITR. By borrowing useful information, the integrative learning is also

more efficient comparing to ABLO-L by reducing the standard deviations for about 50% in esti-

mation of overall benefit and value function. By borrowing information from high-resolution ITR,

the integrative ITR retains the simplicity by including only four feature variables, but improves

the performance by incorporating additional information from another RCT with more feature

variables.

Additional simulation studies were performed in Appendix Section C.1, where simulation models

are slightly different across different trials.
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4.5 Application to the EMBARC trial

EMBARC (Trivedi et al., 2016) is a two-phase, multi-site, randomized trial, which was designed to

discover biosignatures associated with response to treatment for MDD. In the first stage, partici-

pants were randomized to an 8-week treatment of sertraline (one kind of SSRI, Selective Serotonin

Reuptake Inhibitor) or placebo. We will focus on the first stage in our analysis. The primary out-

come, Hamilton Depression Rating Scale (HAM-D) was measured at week 8 to assess the severity

of depression. The clinical outcome (reward) we use in the analysis is the change in HAM-D score

from baseline to week 8, where a larger value of the change corresponds to better treatment re-

sponse (a greater reduction in symptom). There are 242 participants with complete baseline clinical

feature variables and outcome. The clinical feature variables are gender, race, age, baseline HAM-

D score, and baseline Quick Inventory of Depressive Symptomatology (QIDS) score. Among all

242 patients, only 138 have neuroimaging and behavioral phenotyping measures. In this example,

138 patients with complete clinical measures, behavioral phenotyping and neuroimaging measures

were considered as study 0. We performed univariate analysis as a screening step by a linear re-

gression model including the feature variable, assigned treatment and their interaction to assess

all tier 1 behavioral phenotyping and brain imaging measures. The most informative behavioral

phenotyping measure “Effect of Flanker interference on accuracy” and functional magnetic reso-

nance imaging (fMRI) measure “Pregenual cingulate (seed) to right amygdala conflict adaptation

coupling” were selected with p-value of the interaction term less than 0.1. Flanker accuracy effect

is a measure of interference effects, with higher scores indicating an increased interference effects

(i.e., reduced cognitive control). The selected fMRI measure is the difference of the connectivities

between Pregenual cingulate and Right amygdala during incongruent minus congruent frames, dur-
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ing the emotion recognition task (ERT), which is a standard neuropsychiatric test. Both variables

were included when estimating a high-resolution ITR using EMBARC data.

Healing Emotion After Loss (HEAL, Shear et al., 2016) is the low-resolution study we used

to improve the performance of ITR for EMBARC study. HEAL is a single-phase, multi-site,

randomized trial. Patients with complicated grief were randomized to receive citalopram (also

one kind of SSRI), placebo, citalopram+psychotherapy, or placebo+psychotherapy. Since a large

proportion of patients with complicated grief are also suffering from MDD, we use the subgroup of

patients with current MDD and were randomized to either citalopram or placebo in the analysis.

Based on the study design, the primary outcome for HEAL was the change of QIDS score from

baseline to week 12. There are 74 patients satisfied our inclusion criteria and used in the analysis.

To learn a coarsened ITR, we used age, gender and baseline QIDS score in the HEAL study as the

feature variables.

We applied the same four methods as the simulation studies to estimate the optimal high-

resolution ITR (SSRI or placebo) for patients with complete feature variable information in the

EMBARC study (132 subjects). For all methods, we randomly split the EMBARC sample into

a training and testing set with a 2:1 sample size ratio and repeated the procedure 100 times.

We bootstrapped the HEAL sample to learn a coarsened ITR for every repetition. The value

function and ITR benefits were evaluated on the testing set. Results for ABLO using the HEAL

data (ABLO-L), ABLO using the EMBARC complete feature variables (ABLO-H), integrative

learning with equal weight (Int-Equal) and integrative learning with estimated benefit (Int-Ben)

are compared in Table 4.3 and Figure 4.4. The non-personalized rules yield a change in HAM-D

score of 7.48 for SSRI and 5.84 for placebo, with a difference of 1.64. The ITR estimated by Int-Ben

yields a HAM-D change score of 7.71 (sd = 1.27), which is larger than Int-Equal (7.64, sd = 1.36),
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ABLO-H (7.63, sd = 1.40), and ABLO-L (7.24, sd=1.60). The overall ITR benefit estimated by

Int-Ben (2.24, sd = 1.98) is larger than Int-Equal (2.04, sd = 2.18), ABLO-H (2.04, sd = 1.98),

and ABLO-L (1.33, sd = 2.49). The ITR benefit based on Int-Ben is also much larger than the

non-personalized rule (2.24 versus 1.64). The estimation of value function is more efficient by

using Int-Ben (sd = 1.27) comparing to ABLO-H (sd = 1.40), while the estimation of ITR benefit

is equally efficient for Int-Ben (sd = 1.98) and ABLO-H (sd = 1.98) with a larger estimation of

overall benefit.

Table 4.3: Overall performance of the four methods in EMBARC study using HEAL ITR

Method ABLO-L ABLO-H Int-Equal Int-Ben

Value 7.236(1.602) 7.634(1.399) 7.640(1.359) 7.712(1.266)

Benefit 1.331(2.485) 2.041(1.975) 2.042(2.179) 2.239(1.982)

Figure 4.4: Overall performance of the four methods in EMBARC study using HEAL ITR
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Table 4.4: Overall performance of the four methods to handle blockwise feature domain data in

EMBARC study

Method ABLO-L ABLO-H Int-Equal Int-Ben

Value 7.217(1.438) 7.634(1.399) 7.672(1.351) 7.949(1.371)

Benefit 1.253(2.206) 2.041(1.975) 2.113(1.968) 2.682(2.024)

Figure 4.5: Overall performance of the four methods to handle blockwise feature domain data in

EMBARC study
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at the end of stage 1 treatment for four methods (based on 100 cross-validation)

Next, we present an application to handle blockwise feature domain data when learning an ITR.

In EMBARC, 104 subjects have complete clinical measures but do not have complete neuroimaging

and behavioral phenotyping measures. In the following, we will use these 104 subjects as the study

1 with low-resolution covariates to improve the performance of the high-resolution ITR learned

from the remaining 138 subjects with complete feature variables. The coarsened ITR learned



CHAPTER 4. INTEGRATIVE LEARNING TO SYNTHESIZE INDIVIDUALIZED
TREATMENT RULES ACROSS MULTIPLE TRIALS 94

from study 1 includes all the clinical measures at baseline, i.e., age, gender, race, baseline QIDs

score, and HAM-D score, while the high-resolution ITR includes the selected fMRI and behavioral

phenotyping measure. We repeated the same procedure as using the HEAL study for 100 times

and reported the results in Table 4.4 and Figure 4.5. The ITR benefit of Int-Ben (2.68, sd=2.02)

is larger than that using HEAL ITR (2.24, sd=1.98). The coarsened ITR learned from EMBARC

includes more feature variables and more subjects than HEAL, which lead to a greater improvement

in performance of the high-resolution ITR.

4.6 Discussion

In this work, we propose integrative learning methods to estimate integrative ITRs with combined

information across multiple trials. In practice, it is rare for RCTs to collect exactly the same feature

variables, given different hypotheses and goals. Our method does not require all the trials to collect

the same subsets of feature variables, which allows more flexibility comparing to integrative analysis

that combines multiple data sets into one data set. Although here we focused on linear decision

rules, our method can be generalized to any nonparametric form of decision rules or using other

loss functions to replace zero-one loss for optimization (4.1) and (4.2). Our integrative methods

improve the efficiency and reproducibility not only for high-resolution ITRs but also for coarsened

ITRs by using a regularized value function to incorporate information from other related studies

and a data-driven method to determine how much evidence each study contributes to the integrative

ITR.

Here a linear regression is used to estimate the benefit of ITRs estimated from other studies.

Other nonparametric or machine learning methods can be considered. In addition, future studies
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can be developed to explore other methods to properly weigh the evidence of RCTs, such as using

Composite Interaction Tree (CITree, Qiu and Wang, 2018). Another extension is to apply the

integrative learning methods to observational studies, where one difficulty is how to properly weigh

the evidence of RCTs versus observational studies when both types of studies are present. Due to

the virtue of randomization in RCTs, an unbiased estimator of expected clinical outcome given a

subset of features is also an unbiased estimator of the expected clinical outcome given comprehensive

features, which may not be true for observational studies with unknown confounders. This causes

another difficulty in applying integrative learning to observational studies. In this work, we derived

the underlying Bayesian rules for the integrative learning method, which shows that our integrative

rule maximizes a weighted combination of conditional treatment effects given differential subsets

of feature variables. An interesting theoretical work would be to show that the integrative learning

method is more efficient compared to the ITRs learned from single trials.

There are several limitations for the proposed method. First, integrative learning may not

improve performance when subjects from multiple trials follow substantially different distributions,

especially when f0 and fk yield different treatment recommendations for a large number of subjects.

However, our tuning parameters are chosen adaptively based on data to prevent integrative learning

from deteriorating performance in this setting. For example, when the target population is the first

trial, which has substantially different distribution from the second trial, we expect that the tuning

parameter λ will be chosen close to 0, and therefore the second trial does not assist in improving

the performance of the ITR. When the target population is different from all trials with observed

data, the performance gain depends on the nature of differences and we performed a few sensitivity

analyses to examine performance (see for example, Table C.1 and C.2). Another limitation of the

integrative learning is that it requires the same two treatments are assessed across multiple trials.
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It is interesting to extend the current integrative learning method to handle multiple treatments

using evidence from direct and indirect comparisons, which is similar to network meta-analysis

(Tonin et al., 2017).
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Appendix A

Appendices for Chapter 2

A.1 Computing the Theoretical Optimal Linear Rule

Here we derive the theoretical optimal linear rule f∗L in the class of all linear rules f ∈ L under our

simulation settings in Section 2.4. Let G be the latent class identifier in the simulations. Define

G|(X,W, V,A,U)=G|X as the class number, which only depends onX = (X1, X2, · · · , Xp), where

Xj |G = k ∼ N(µk, 1) for j = 1, · · · , p, and k = 1, 2, 3, 4. For a given treatment decision rule f , the

expected value function under the decision rule is

E

[
R

π(A|X)
{I(Af(X, V,W,U) > 0)}

]
= E [I(f(X, V,W,U) > 0) {E(R|X, V,W,U , A = 1)− E(R|X, V,W,U , A = −1)}]

+ E
{
E(R|X, V,W,U , A = −1)

}
.

Because E {E(R|X, V,W,U , A = −1)} is a constant which doesn’t depend on f , maximizing the

expected value function is equivalent to maximizing E {I(f(X, V,W,U) > 0)Ω(X,W )} , where
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under the simulation model for E(R|X, V,W,U , A) we can obtain

Ω(X,W ) = P (G = 1|X) {δ1 + (α11 − α21)W}+ P (G = 2|X) {δ2 + (α12 − α22)W}

+ P (G = 3|X) {−δ1 + (α13 − α23)W}+ P (G = 4|X) {−δ2 + (α14 − α24)W} .

Next, we show that V and U are independent of optimal linear decision rule f∗L. Let f∗L(X,W )

maximizes the value function in class L. For any fixed V and U ,

E {I[f∗L(X,W ) > 0]Ω(X,W )} ≥ E [I{f(X, V,W,U) > 0}Ω(X,W )]

= E [I{f(X, V,W,U) > 0}Ω(X,W )|V,U ] .

Therefore, take expectation of the inequality to obtain

E [E {I(f∗L(X,W ) > 0)Ω(X,W )}] ≥ E [E {I(f(X, V,W,U) > 0)Ω(X,W )|V,U}]

= E [I{f(X, V,W,U) > 0}Ω(X,W )] .

Thus we can ignore the independent noise variables while maximizing the value function.

Under linear transformation,

X → (
Xs√
p
, x̃2, · · · , x̃p),

where Xs = X1 + X2 + · · · + Xp, and x̃2, · · · , x̃p are orthogonal to Xs, the objective function

becomes

∫ ∫
I {f(Xs, x̃2, · · · , x̃p,W ) > 0}Ω(Xs,W )e

−X
2
s

2p
− x̃

2
2
2
···− x̃

2
s
2 dXsf(W )dWdx̃2 · · · dx̃s,

where

Ω(Xs,W ) = eµ1Xs−
pµ21
2 {δ1 + (α11 − α21)W}+ eµ2Xs−

pµ22
2 {δ2 + (α12 − α22)W}

+eµ3Xs−
pµ23
2 {−δ1 + (α13 − α23)W}+ eµ4Xs−

pµ24
2 {−δ2 + (α14 − α24)W} .
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Because (x̃2, · · · , x̃p) are independent noise variables, as shown before, the optimal linear rule only

depends on Xs and W . The objective function is thus equivalent to

∫ ∫
I {f(Xs,W ) > 0}Ω(Xs,W )dXsf(W )dW.

As Xs ∼ 1
4N(µ1, p) + 1

4N(µ2, p) + 1
4N(µ3, p) + 1

4N(µ4, p) and W ∼ N(0, 1), where µk is the mean

of Xp in the kth class. Monte Carlo method can be applied to find the optimal linear rule f∗L.

A.2 Additional Simulation Results

We performed additional simulations to vary the strength of the informative feature variable W ,

such that its effects in different settings are α =

 1 1 0.3 0.6

0.5 0.5 0.3 0.6

.

Results from 500 replicates are summarizied in Table A.1, Figure A.1, and A.2. ABLO with

linear kernel has the highest optimal treatment classification accuracy regardless of the sample

size for both settings, and also estimates the ITR benefit closest to the true global maximal value

of 0.705 on the overall sample. PM, Q-learning, and O-learning underestimate the ITR benefit,

especially when the sample size is smaller (N = 400 training, 400 testing). Thus they do not achieve

the maximal value of the theoretical optimal linear rule. The performance of estimating subgroup

ITR benefit is similar to the overall sample. ABLO outperforms other methods with subgroup ITR

benefit closer to the true global maximal value (e.g., in groups W ∈ [−0.5, 0.5] and W > 0.5).

A.3 Sensitivity to the Starting Values of ABLO

To evaluate the sensitivity of the algorithm to starting values, we include the algorithm convergence

path of two example datasets in terms of value function and weighted ramp loss function. In Figure
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A.3, lines indicate convergence paths given different initial values. In the first example dataset, the

algorithm converges to the same value function and ramp loss. However, the algorithm converges

fastest if starting with O-leaning estimates. In the second dataset, the algorithm is more sensitive

to different starting values, but the one starting with O-learning estimates performs the best, which

is also the proposed starting values for ABLO.
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Figure A.1: Simulation results: Overall ITR benefit and accuracy rates for the four methods
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*: Dotted-dashed lines represent the benefit (top panels) and accuracy (bottom panels under the theoretical global

optimal treatment f∗. Dashed lines represent the benefit and accuracy under the theoretical optimal linear rule f∗L.

The methods being compared are (from left to right): PM: predictive modeling by random forest; Q-learning:

Q-learning with linear regression; O-learning: improved single stage O-learning (Liu et al., 2014); ABLO:

asymptotically best linear O-learning. This figure appears in color in the electronic version of this article.
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Figure A.2: Simulation results: Subgroup ITR benefit for the four methods
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*:Black dotted-dashed lines represent the benefit under the theoretical global optimal treatment f∗. Red dashed

lines represent the benefit under the theoretical optimal linear rule f∗L. The methods being compared are (from left

to right): PM: predictive modeling by random forest; Q-learning: Q-learning with linear regression; O-learning:

improved single stage O-learning (Liu et al., 2014); ABLO: asymptotically best linear O-learning. This figure

appears in color in the electronic version of this article.
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Figure A.3: Performance of the algorithm on two example datasets evaluated by value function

and penalized weighted sum of ramp loss
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*: Initial 1 starts β from the estimates obtained by O-learning; Initial 2 starts from β = 0; Initial 3 starts from

β = (1, · · · , 1,−1, · · · ,−1)T , where half of the components are 1 and the other half are −1; Initial 4 starts from

β = (1, 0, · · · , 0)T . This figure appears in color in the electronic version of this article.
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Appendix B

Appendices for Chapter 3

B.1 Estimation of Variance for δ̂C1(f̂)− δ̂C2(f̂)

In a binary tree, consider a binary partition (e.g., based on X1 > c or X1 ≤ c) to partition n

subjects with feature variables Xi into two subgroups C1 and C2. Recall that in an honest CITree,

f̂ denotes the ITR estimated from an independent training sample and the estimated subgroup

benefit for C1 is

δ̂C1(f̂) =

∑n
i=1 I

{
Xi ∈ C1, Ai = sign(f̂(Xi))

}
Ri/πi∑n

i=1 I(Xi ∈ C1)
−

∑n
i=1 I

{
Xi ∈ C1, Ai 6= sign(f̂(Xi))

}
Ri/πi∑n

i=1 I((Xi ∈ C1)
,

where πi = π(Ai|Xi).

To apply HTB test for C1 and C2, it is necessary to estimate the variance of δ̂C1(f̂) − δ̂C2(f̂),

which is equivalent to

Var
{
δ̂C1(f̂)− δ̂C2(f̂)

}
= Var

{
δ̂C1(f̂)

}
+ Var

{
δ̂C2(f̂)

}
− 2Cov

{
δ̂C1(f̂), δ̂C2(f̂)

}
.
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Denote

Fn =
1

n

n∑
i=1

[
I
{
Xi ∈ C1, Ai = sign(f̂(Xi))

}
− I

{
Xi ∈ C1, Ai 6= sign(f̂(Xi))

}]
Ri/πi

=
1

n

n∑
i=1

f̃(Xi),

and

Gn =
1

n

n∑
i=1

I(Xi ∈ C1) =
1

n

n∑
i=1

g(Xi).

Define δ̂C1(f̂) = φ(Fn,Gn) = Fn
Gn , and Pn = (Fn,Gn). By functional delta method of Van der Vaart

(2000), we have

√
n {φ(Pn)− φ(P )} ≈ φ′P

{√
n(Pn − P )

}
.

Notice

√
n {φ(Pn)− φ(P )} =

√
n
{
δ̂C1(f̂)− δC1(f)

}
d−→ N(0, V ),

and

φ(P ) =
EFn
EGn

=
Ef̃(X)

Eg(X)
,

we obtain

V = Var
[√
n {φ(Pn)− φ(P )}

]
≈ Var

[
1

EGn

{√
n(Fn − EFn)

}
− EFn

(EGn)2
{√

n(Gn − EGn)
}]

=
1

(EGn)2
Var

{√
n(Fn − EFn)

}
+

(EFn)2

(EGn)4
Var

{√
n(Gn − EGn)

}
−2

EFn
(EGn)3

Cov
{√

n(Gn − EGn),
√
n(Fn − EFn)

}
→ 1

E{g(X)}2
Var

{
f̃(X)

}
+
{Ef̃(X)}2

{Eg(X)}4
Var {g(X)} − 2

Ef̃(X)

{Eg(X)}3
Cov

{
f̃(X), g(X)

}
,

where Eg(X), Ef̃(X), Var(f̃(X)), Var(g(X)), and Cov
{
f̃(X), g(X)

}
can be estimated by em-

pirical mean, variance and covariance.
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Similarly, denote

F∗n =

n∑
i=1

[
I
{
Xi ∈ C2, Ai = sign(f̂(Xi))

}
− I

{
Xi ∈ C2, Ai 6= sign(f̂(Xi))

}]
Ri/πi

=

n∑
i=1

f̃∗(Xi),

and

G∗n =

n∑
i=1

g∗(X) =

n∑
i=1

I(Xi ∈ C2).

Then, we obtain

√
n
{
δ̂C2(f̂)− δC2(f)

}
≈ 1

EG∗n

{√
n(F∗n − EF∗n)

}
− EF∗n

(EG∗n)2
{√

n(G∗n − EG∗n)
}
.

Therefore, we have

V ∗ = nVar(δ̂C2(f̂))

→ 1

E{g∗(X)}2
Var

{
f̃∗(X)

}
+
{Ef̃∗(X)}2

{Eg∗(X)}4
Var {g∗(X)}

−2
Ef̃∗(X)

{Eg∗(X)}3
Cov

{
f̃∗(X), g∗(X)

}
.

Next, we obtain the covariance of the two estimated subgroup benefits as

nCov
(
δ̂C1(f̂), δ̂C2(f̂)

)
≈ 1

EGnEG∗n
Cov

{√
n(Fn − EFn),

√
n(F∗n − EF∗n)

}
− EF∗n

EGn(EG∗n)2
Cov

{√
n(Fn − EFn),

√
n(G∗n − EG∗n)

}
− EFn

(EGn)2EG∗n
Cov

{√
n(Gn − EGn),

√
n(F∗n − EF∗n)

}
+

EFnEF∗n
(EGn)2(EG∗n)2

Cov
{√

n(Gn − EGn),
√
n(G∗n − EG∗n)

}
→ 1

Eg(X)Eg∗(X)
Cov

{
f̃(X), f̃∗(X)

}
− Ef̃∗(X)

Eg(X)(E(g∗(X))2
Cov

{
f̃(X), g∗(X)

}
− Ef̃(X)

(Eg(X))2Eg∗(X)
Cov

{
g(X), f̃∗(X)

}
+

Ef̃(X)Ef̃∗(X)

(Eg(X)Eg∗(X))2
Cov {g(X), g∗(X)} .
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Therefore, the estimated variance is

Var
{
δ̂C1(f̂)− δ̂C2(f̂)

}
= V/n+ V ∗/n− 2Cov

(
δ̂C1(f̂), δ̂C2(f̂)

)
.
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Appendix C

Appendices for Chapter 4

C.1 Simulation Study for Multiple Trials with Different Treat-

ment Effects

In this setting, the simulation models are slightly different across trials with different treatment

effect sizes. The clinical outcome R for all the trials is generated by

R = φ(X) ∗A+ 0.5 ∗X1 + ε, ε ∼ N(0, 0.25)

φ(X) = X1 − 0.5X2 − αX3 − βX4 + 0.3(X2
5 > 0.64)− 0.3(X6 > 0). (C.1)

In the study with comprehensive feature variables (study 0), X1, · · · , X5 are observed, only X6 is

an unobserved latent variable. The interaction effect of X3 and X4 are both α = β = 0.8. However,

in the study with low-resolution variables (study 1), only X1, X2 and X3 were collected in the trial

and can be used to estimate a coarsened ITR. The interaction effect of X3 and X4 were set to 0.1,

meaning that both X1 and X4 don’t contribute much to the selection of optimal treatment. All

the feature variables X1, · · · , X6, observed or unobserved, were generated independently and follow
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standard normal distribution. Treatment A was randomly assigned from {−1, 1} for each subject

with equal probability.

In the validation data set, we are trying to simulate a more general population with treatment

interaction effect between the data collected from study 0 and study 1. For validation setting 1 to

4, we set α = β as 0.3, 0.4, 0.5, and 0.6. Similar to Section 4.4.2, we applied integrative learning

for high-resolution ITR (study 0) using coarsened ITR learned from study 1 and validated it on

validation setting 1 to 4. Results from 100 repetitions are shown in Table C.1 and Figure C.1. In

validation setting 1, ABLO-L performs better than ABLO-H with larger benefit and accuracy. It is

also more efficient compared to all other methods with a smaller standard deviation in estimating

benefit and value function. This is because the interaction effect of X3 and X4 is 0.3, which is

relatively small and closer to the sample collected from study 1. Also, the coarsened ITR is simpler

than high-resolution ITR and with fewer model assumptions, and therefore making the model less

variable in estimating the benefit and value function. However, when the treatment effect gets

larger in setting 2 to 4, Int-Ben always performs the best with the largest benefit and accuracy,

also with the smallest standard deviation of benefit.

Next, we apply integrative learning for low-resolution ITR (study 1) using high-resolution ITR

learned from study 0 and validated it on validation setting 1 to 4. Results are shown in Table C.2

and Figure C.2. In all validation settings, Int-Ben performs best in terms of a larger estimated

benefit and smaller standard deviation by borrowing information from high-resolution ITR learned

from study 0. Overall, the estimation of benefit became less efficient for all methods as the treatment

effect increases since the validation data became more and more different to the study where low-

resolution ITR was estimated.
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Table C.1: Mean and standard deviation of overall benefit, value and accuracy rates for integrative

learning of high-resolution ITR comparing to ITRs by ABLO on single studies

ABLO-H ABLO-L Int-Equal Int-Ben

Benefit Setting 1 1.757(0.057) 1.824(0.028) 1.849(0.063) 1.868(0.047)

Setting 2 1.874(0.044) 1.816(0.037) 1.935(0.041) 1.951(0.029)

Setting 3 2.014(0.032) 1.779(0.053) 2.042(0.028) 2.056(0.019)

Setting 4 2.190(0.029) 1.821(0.059) 2.195(0.044) 2.209(0.027)

Value Setting 1 0.887(0.027) 0.913(0.014) 0.932(0.030) 0.941(0.022)

Setting 2 0.938(0.022) 0.901(0.019) 0.967(0.020) 0.975(0.014)

Setting 3 1.015(0.018) 0.901(0.027) 1.031(0.014) 1.038(0.010)

Setting 4 1.089(0.016) 0.905(0.029) 1.092(0.023) 1.098(0.014)

Accuracy Setting 1 0.852(0.020) 0.880(0.012) 0.890(0.029) 0.898(0.022)

Setting 2 0.875(0.018) 0.848(0.013) 0.904(0.020) 0.913(0.017)

Setting 3 0.903(0.017) 0.820(0.015) 0.919(0.016) 0.928(0.012)

Setting 4 0.921(0.014) 0.797(0.013) 0.923(0.021) 0.930(0.015)

∗: ABLO-H is estimated by ABLO using high-resolution data only;

ABLO-L is estimated by ABLO using low-resolution data only;

Int-Equal is estimated by integrative learning for high-resolution ITR with equal weights for all subjects;

Int-Ben is estimated by integrative learning for high-resolution ITR weighted by estimated benefit.

Figure C.1: Overall ITR benefit and optimal treatment allocation accuracy for the four methods

●●

●

●

●●

●

●
●●
●

●●

●●

●

●
●

●
●
●

●●
●

●

●

●

●
●

●●

●

●

●
●

●●●

●

●
●

1.5

1.7

1.9

2.1

Setting 1 Setting 2 Setting 3 Setting 4

O
ve

ra
ll 

M
ea

n 
B

en
ef

it

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●
●

80

90

Setting 1 Setting 2 Setting 3 Setting 4

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y(

%
)

Method

ABLO−H

ABLO−L

Int−Equal

Int−Ben

∗: ABLO-H is estimated by ABLO using high-resolution data only;

ABLO-L is estimated by ABLO using low-resolution data only;

Int-Equal is estimated by integrative learning for high-resolution ITR with equal weights for all subjects;

Int-Ben is estimated by integrative learning for high-resolution ITR weighted by estimated benefit.



APPENDIX C. APPENDICES FOR CHAPTER 4 121

Table C.2: Mean and standard deviation of overall benefit, value and accuracy rates for integrative

learning of low-resolution ITR comparing to ITRs by ABLO on single studies

ABLO-L Int-Equal Int-Ben

Benefit Setting 1 1.794(0.029) 1.816(0.020) 1.821(0.018)

Setting 2 1.853(0.041) 1.895(0.029) 1.911(0.021)

Setting 3 1.844(0.051) 1.903(0.042) 1.927(0.032)

Setting 4 1.844(0.065) 1.922(0.056) 1.956(0.043)

Value Setting 1 0.876(0.017) 0.890(0.011) 0.895(0.009)

Setting 2 0.929(0.021) 0.950(0.014) 0.958(0.010)

Setting 3 0.955(0.025) 0.983(0.021) 0.995(0.016)

Setting 4 0.919(0.032) 0.958(0.028) 0.976(0.022)

Accuracy Setting 1 0.881(0.012) 0.890(0.009) 0.891(0.008)

Setting 2 0.857(0.014) 0.871(0.010) 0.876(0.008)

Setting 3 0.825(0.013) 0.840(0.011) 0.847(0.009)

Setting 4 0.806(0.015) 0.826(0.015) 0.835(0.012)

∗: ABLO-L is estimated by ABLO using low-resolution data only;

Int-Equal is estimated by integrative learning for low-resolution ITR with equal weights for all subjects;

Int-Ben is estimated by integrative learning for low-resolution ITR weighted by estimated benefit.

Figure C.2: Overall ITR benefit and optimal treatment allocation accuracy for the three methods.

●●

●
●

●

●●
●●

●

● ●

●
●

● ●

●●

●
●

●

●

1.6

1.7

1.8

1.9

2.0

Setting 1 Setting 2 Setting 3 Setting 4

O
ve

ra
ll 

M
ea

n 
B

en
ef

it

●
●

●

●
●
●●●
● ●

●

●

●
●

●

●●

●
●

●80

85

90

Setting 1 Setting 2 Setting 3 Setting 4

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y(

%
)

Method

ABLO−L

Int−Equal

Int−Ben

*: ABLO-L is estimated by ABLO using low-resolution data only;

Int-Equal is estimated by integrative learning for low-resolution ITR with equal weights for all subjects;

Int-Ben is estimated by integrative learning for low-resolution ITR weighted by estimated benefit.
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