
Low energy physics for the high
energy physicist

Effective theories, holographic duality and all that

Angelo Esposito

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161459402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


© 2018
Angelo Esposito

All rights reserved



ABSTRACT

Low energy physics for the high energy physicist

Angelo Esposito

In this work we discuss the application of high energy theory methods to the study

of condensed matter problems. We focus in particular on the effective field theory

(EFT) approach and on the holographic duality. We show that, in certain contexts,

both techniques present some relevant advantages with respect to more standard

approaches. In particular, we will study holographic superfluids, and make explicit

connection between the holographic picture and the EFT one. We also determine

for the first time the gravity dual of a solid, and show that it undergoes a first order

phase transition, a “holographic melting”. On a more phenomenological ground, we

study the motion of vortex lines in a confined superfluid. Using a suitable EFT

we successfully reproduce the experimental results, and perform a number of steps

forward with respect to traditional methods. Finally, we also discuss possible exciting

directions for the future of EFTs and condensed matter.
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Introduction

The regime of validity of high energy theory and the regime of existence of nonrela-

tivistic matter could not seem more separated. The first one deals with phenomena at

very high energy scales, with experiments that probe either the smallest constituents

of matter or the largest scales known to us. On the other hand, the condensed mat-

ter world is characterized by low energy processes and by typical velocities that are

much smaller than the speed of light. Experiments in this branch of physics aim at

understanding the complicated behavior of collective, macroscopic systems, rather

than discovering the fundamental bricks of our world.

Nevertheless, these two corners of physics recently found an unexpected common

ground in the use of relativistic effective field theories (EFTs) for the description of

several states of matter (fluids, solids, superfluids, and so on).

The basic idea behind this approach is surprisingly simple. To the best of our

knowledge, the Poincaré invariance (rotations, spacetime translations and boosts) of

fundamental interactions is a symmetry of our whole Universe, including the con-

densed matter world. Despite that, macroscopic systems like a solid, a fluid and

many others manifestly violate it. It then follows that Poincaré symmetry must be

spontaneously broken: the underlying theory is symmetric but the particular state

under consideration is not.

It is very well known that the spontaneous breaking of a symmetry comes with

some powerful consequences. As we will see, this is the starting point of our approach.
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It will allow us to classify different states of matter solely in terms of their symmetry

breaking pattern, as well as to determine the interactions of their low energy modes

in a universal way, up to a few effective parameters.

But this will not be the end of our story. In the last two decades the high energy

community devoted huge attentions towards a new, powerful tool: the so-called holo-

graphic principle (also known as AdS/CFT correspondence or gauge/gravity duality).

Such a conjecture relates a gravitational theory on an asymptotic anti-de Sitter (AdS)

spacetime to a (possibly) strongly coupled theory without gravity on the boundary

of AdS. We will later explain how this correspondence allows to obtain physical re-

sults in a nonperturbative regime, which is hardly accessible with more traditional

techniques.

For this reason, among many other applications, holography has been extensively

employed to study different states of matter. In particular, this line of research took

essentially two roads. On the one hand, one can search for the gravity dual of the

systems observed so far, with the hope of understanding better their strong dynam-

ics. On the other hand, given a gravity dual, one can investigate the corresponding

boundary theory. In this way one might be able to identify new possible states of

matter, and determine whether or not they can be realized by Nature.

In this thesis we employ both the tools presented above to investigate different

systems. There will be two distinct goals. From a more formal viewpoint we will

make explicit connection between the standard approach used in AdS/CFT and the

low energy EFT formulation of the problem. This connection is rather crucial to

understand known holographic systems as well as to identify new ones. On a more

phenomenological ground, we will show how the EFT methods for condensed matter

are now mature enough to become more than an interesting exercise for high energy

physicists. We will show how they can be used as a powerful tool to describe real

experimental data or probe novel phenomena.
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This thesis is organized as follows. In Chapter 1 we give an introduction to the

effective theory approach to condensed matter. We will classify several systems based

on their symmetry breaking pattern, and present a detailed description of the EFT

for superfluids and solids, which are very relevant for the present work. In Chapter 2

we instead present the holographic duality. In particular, we will build the relevant

pieces of the holographic dictionary using concrete examples. Both these chapters

serve as a quick review of the background material.

From Chapter 3 we start presenting novel results. We will discuss holographic

superfluids and provide an analytical proof of their duality with a theory of scalar

quantum electrodynamics (QED) on asymptotically AdS background. Beside being

an interesting result, the technique used to give the proof will be the crucial ingredient

of the analysis of Chapter 4. There we first write down the effective theory for solids

on a sphere, and then determine the gravity dual of a solid. In the bulk of AdS this

will be an SO(d) magnetic monopole coupled to a scalar field in the fundamental

representation. We also study the phase transition of our solution, exhibiting an

example of holographic melting.

In Chapter 5 we instead switch gears considerably and focus on more phenomeno-

logical aspects. We introduce the effective theory for vortex lines in superfluids, and

employ it to correctly reproduce the experimental results on vortex precession in ultra

cold atom gases. Finally in the Conclusions we will discuss what have been achieved

in this work, as well as some interesting work in progress and directions for the future.

It should be mentioned that, in order to keep the present thesis self-contained,

some part of the author’s work has been left out. This includes the study of the

so called exotic mesons, i.e. experimentally observed resonances that do not fit the

standard quark-antiquark picture. Such particles are likely composed by two quarks

and two antiquarks, but their internal configuration is still unknown. The two main
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models are the compact tetraquark (where the four constituents are tightly bound

together inside the hadron) and the meson molecule (where two quark-antiquark pairs

are separated in space and interact via residual strong forces). In particular, we have

shown how the molecular interpretation is at odds with Monte Carlo simulations [1] as

well as experimental data [2]. We have also discussed possible experimental signatures

that could uniquely determine the nature of these particles [3, 4], and put forward a

model based on the Feshbach resonance mechanism that aims at providing a unified

picture of all the exotic mesons [5] (see also [6]). A broader picture of this puzzle has

been presented in two review articles [6, 7].

Another work concerned the study of the effects of hadronization on initial state

correlations in proton-nucleus collisions [8]. Although, as we showed, hadronization

severely modifies the initial partonic angular distribution, its effects are surprisingly

often neglected in theoretical studies.

Lastly, there is some ongoing work on the application of the so called consistency

relations (see e.g. [9]) to the study of primordial nongaussianities [10]. The main

idea is that, being consistency relations a nonperturbative statement, they could be

applied to data on large scale structures at all scales. The dramatic increase in

the available statistics might allow to measure primordial nongaussianities and hence

constrain the available inflationary models.
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r 1
An unconventional approach to

condensed matter

All condensed matter systems1 share one feature that makes them apparently incom-

patible with a Poincaré invariant formalism: they naturally single out a particular

reference frame. Moreover, the states of matter that have been produced in the lab

so far are all characterized by typical velocities (e.g. the speed of sound) that are

much smaller than the speed of light. For this reason, the standard descriptions of

such systems never invoke Poincaré symmetry as a guiding principle.

Nevertheless, as already mentioned in the Introduction, condensed matter systems

emerge as particular symmetry breaking states of an underlying Poincaré invariant

theory. Consider for example an ordinary solid. Its properties are essentially deter-

mined solely by electromagnetic interactions. These can generate, for example, a lat-

1It should be noted that the term “condensed matter” is typically not used to refer to systems
as, for example, ultra cold gases of atoms or molecules. Nevertheless, in our language, condensed
matter is any state of matter that spontaneously breaks the Poincaré group and is isotropic and
homogeneous at long distances. I will collect all these systems under the same umbrella. I hope the
true experts in the field will find the compassion to forgive me.
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tice structure which is in general neither symmetric under rotations nor translations.

However, we know that the fundamental theory behind electromagnetism is quantum

electrodynamics (QED), which is instead invariant under the whole Poincaré group.

Therefore the solid under consideration emerges as a particular symmetry-violating

state subject to fundamentally relativistic laws. This means that the Poincaré group

is broken spontaneously.

In the EFT approach to this problem the spontaneous breaking of the Poincaré

group is taken as the defining feature of a condensed matter system. In other words,

we consider any state of matter as being defined by which symmetries it sponta-

neously breaks and which ones it instead preserves. As it will be clear soon, for every

symmetry breaking pattern, the well known Goldstone theorem strongly constrains

the possible interactions of the low energy modes of the systems. In particular, they

will be much less general than what is admitted in a system with no underlying

Poincaré invariance.

It should be pointed out that in this thesis we will only deal with the low energy

bosonic excitations and we will not treat the case of fermionic ones. A large portion

of the interesting phenomena observed experimentally are actually due to the latter

ones. The approach presented here will not focus on these aspects.

1.1 To be or not to be (broken)

The allowed states of matter have been systematically classified in [11]. The authors

studied the possible ways of breaking the Poincaré group, while still preserving spatial

homogeneity, time-translational invariance and (although not necessary) isotropy2.

The generators of the Poincaré group are those of spacetime translations, Pµ,

2It is in principle conceptually straightforward, although tedious, to lift the requirement of
isotropy. This would allow to describe, for example, systems with a discrete rotational symmetry.
We will not consider these cases for simplicity.
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rotations, Ji and boosts, Ki. We remind the reader that their Lie algebra is given by

[Ji, Pj] = iϵijkP
k, [Ki, Pj] = iδijP0, [Ki, P0] = −iPi,

[Ji, Jj] = iϵijkJ
k, [Ji, Kj] = iϵijkK

k, [Ki, Kj] = −iϵijkJk.

(1.1)

In addition to this spacetime Poincaré group we will also allow for some internal

symmetries, whose generators commute with those presented above. As already men-

tioned, we also assume the existence of some unbroken spacetime translations and

spatial rotations generators, P̄0, P̄i and J̄i. These ensure that our system (at large

enough distances) is homogeneous, isotropic and time-translational symmetric.

It is crucial to notice that the P̄ s and J̄s need not to correspond to the same

generators as the original Poincaré group, as long as they satisfy the algebra (1.1)

among themselves. They can be a linear combination of the latter ones together

with the generators of the internal symmetries. Indeed we classify condensed matter

systems precisely on the basis of which of the unbroken generators presented above

involve or not internal symmetries. It is however important to keep in mind that, as

explained already, all condensed matter systems spontaneously break Lorentz boosts.

It is clear that one could always introduce additional internal symmetries, both

broken and unbroken. This would realize the same symmetry breaking pattern but

introduce additional Goldstone modes, that transform nonlinearly under the broken

symmetries. In this work we will focus on those systems that present the minimum

number of Goldstones. In particular, it turns out that only eight different states of

matter are possible [11].

Counting the Goldstone bosons

Before going into the details of the different condensed matter systems it is important

to comment on the number of Goldstone modes expected for each of them. Most of the

readers will probably be familiar with the Poincaré invariant version of the Goldstone
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theorem. In particular, in that context it is stated that given a certain symmetry

group G broken to some subgroup H, the spectrum of the theory will present a

massless mode (the Goldstone boson) for each broken generator of G (see e.g. [12]).

This is not true anymore when the set of broken generators includes spacetime

ones. One famous example is that of a 2-dimensional brane in a 4-dimensional space-

time (e.g. a sheet in your office) [13]. The brane breaks four spacetime symmetries:

translations and boosts perpendicular to it, as well as the two rotations that are not

contained on its plane. Nevertheless, at low energies, the brane can be described

solely in terms of its local position in the transverse direction, i.e. just one degree of

freedom.

Where are the additional Goldstones hiding? The reason for the mismatch be-

tween the number of broken generators and the number of gapless modes is due to

the fact that, when broken spacetime symmetries are involved, one can impose the

so-called inverse Higgs constraints and remove some of the Goldstone modes in favor

of the others [11, 13–16].

The criterion for when such constraints can be imposed is the following. Let us

label with Qa the broken generators of the group G, with P̄µ the unbroken spacetime

translations and with TA all the other unbroken generators. Whenever the com-

mutator between the unbroken spacetime translations and one multiplet of broken

generators Qa contains another multiplet of broken generators Q′
a, i.e.

[P̄µ, Qa] = if b
µa Q

′
b + other generators, (1.2)

one can impose inverse Higgs constraints and express the Goldstones associated with

Qa in terms of derivatives of those associated with Q′
a.

Let us show it with a simple example [16, 17]. Consider a point particle moving

in a (1 + 1)-dimensional spacetime. In this case the Poincaré algebra has only three
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generators, P0, P1 and K, associated with the time translation, the spatial translation

and the boost. Their algebra is simply

[K,P0] = −iP1, [K,P1] = −iP0, [P0, P1] = 0. (1.3)

The position of the particle can be described as a field, x(t), in a (0+1)-dimensional

spacetime. In this case P0 generates a spacetime symmetry while P1 has to be re-

garded as the generator of an internal shift symmetry, x(t) → x(t)+a. Let us consider

the background where the particle is at rest, say at the origin. This means

⟨x(t)⟩ = 0. (1.4)

This vev clearly breaks the spatial translation and the boost (the particle is here

and not there and its velocity is zero and not something else), but leaves the time

translation unbroken. In the language described above P̄0 = P0.

The most general element of the group can be parametrized as3

g = eitP0+ix(t)P1eiω(t)K , (1.5)

where x(t) and ω(t) play the role of “Goldstone bosons”. One might therefore expect

for both of them to appear in the action. However, it is well know that the action for

a point particle only involves the first one, i.e.

Sp.p. = −m
∫
dt

√
1−

(
dx

dt

)2

. (1.6)

Indeed, since [K, P̄0] ⊃ P1, we can impose an inverse Higgs constraint. To do that

3Note that it is actually rather crucial to parametrize g this way. An alternative parametrization
could have been g = eitP0+ix(t)P1+iω(t)K , in which case imposing the inverse Higgs constraint becomes
much less trivial.
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one has to write the so-called Maurer-Cartan form, −ig−1dg. In this particular case

we have

−ig−1dg = e−iωKP0e
iωKdt+ e−iωKP1e

iωKdx+Kdω

= (coshω dt− sinhω dx)P0 + (coshω dx− sinhω dt)P1 + dωK

≡ dtL (P0 +D0xP1 +D0ωK) . (1.7)

The inverse Higgs constraint corresponds to finding a non-trivial solution to the equa-

tion D0x = 0. In particular this is given by

ω(t) = tanh−1

(
dx

dt

)
. (1.8)

The equation above indeed allows to eliminate ω(t) in favor of x(t). Moreover, it is

easy to show that the other constraint, D0ω = 0, simply corresponds to the equation

of motion of a relativistic particle, and that L corresponds to its lagrangian.

It should be noted that the interpretation of the inverse Higgs constraints is still

somewhat obscure. In particular, it can be shown that in certain circumstances where

some redundancy is present (see Section 1.4 for an example) they correspond to a

gauge fixing [13]. On the other hand, in other instances they correspond to integrating

out gapped Goldstones [13, 18, 19].

In general, it is not mandatory to impose the inverse Higgs constraints. However,

in those instances where the gap of the gapped Goldstones is comparable to the strong

coupling scale, one would need to also include all the other gapped modes present

in the theory. If these are not known, then the inverse Higgs constraints must be

imposed for consistency with the low energy expansion.
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1.2 The eight states of matter

In this section we list the possible symmetry breaking patterns of the Poincaré group

and briefly comment on the properties of the associated condensed matter systems.

Six of these states will be realizable solely postulating the presence of internal symme-

tries, while two will require additional symmetries, whose generators do not commute

with those of the Poincaré group. In all cases, we will represent the additional gen-

erators as Q. The “eightfold way” of condensed matter is given by the following

states.

Type-I framid

P̄0 = P0, P̄i = Pi, J̄i = Ji

This is the simplest possible scenario, the one where the only broken symmetries are

the three Lorentz boosts. We will call this system a type-I framid. The minimal way

to implement this symmetry breaking pattern is through a single vector field that

acquires a vacuum expectation value (vev) along its time component, ⟨Aµ(x)⟩ = δ0µ.

As usual, the Goldstone bosons can be parametrized as the coefficients of a broken

symmetry acting on the vacuum [12]. We can then write

Aµ(x) =
(
eiη⃗(x)·K⃗

) ν

µ
⟨Aν(x)⟩, (1.9)

where the Ks are taken in the suitable representation, and the associated Goldstone

modes, η⃗, are called framons.

Note that a framid is an extremely peculiar system. Since boosts are the only bro-

ken symmetries, it cannot be rotated nor translated. The language itself of “volume

element” is absent and one can only talk about the local velocity of the system. The

framons correspond to fluctuations of this local velocity. Surprisingly, even though
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they represent the cheapest way of breaking the Poincaré group, framids do not seem

to be realized by Nature.

Another peculiarity is that the infinitely many interactions of the framons are, at

lowest order in derivatives, completely determined solely in terms of their speeds [11].

Indeed, the most general lagrangian for Aµ that is Poincaré-invariant, compatible

with AµA
µ = −1 and with at most two derivatives is

L = −M
2

2

{(
c2L − c2T

)(
∂µA

µ
)2

+ c2T
(
∂µAν

)2
+
(
c2T − 1

)(
Aρ∂ρAµ

)2}
, (1.10)

where M is some overall mass scale and cL and cT are the longitudinal and transverse

speeds of the framons. Indeed, given the parametrization (1.9), the action above

contains all the possible interactions for the η⃗ field.

Type-I superfluid

P̄0 = P0 − µQ, P̄i = Pi, J̄i = Ji

In this case, the operator Q is simply the conserved charge associated with an internal

U(1) symmetry. This is the symmetry breaking pattern corresponding to a type-I

superfluid, as we will discuss more in detail in Section 1.4. The number of broken

generators here is four, i.e. time translations and three boosts. However, it is well

know that the low energy dynamics of a superfluid can be described by only one

Goldstone mode, the superfluid phonon [20–22]. Indeed from the algebra (1.1) we

find that [Ki, P̄j] = iδij(P̄0 + µQ), which indicates that there are three available

inverse Higgs constraints.

Indeed the simplest realization of such a pattern is through a single, real scalar

field whose vev is proportional to time, ⟨ϕ(x)⟩ = µt, which clearly breaks both time

translations and boots. To recover time-translational invariance one postulates a shift

symmetry, ϕ→ ϕ+ a, such that a linear combination of time translations and shifts
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leaves the vev unaltered. The U(1) symmetry generated by Q acts nonlinearly on ϕ.

Very similarly to what we have done for the framid, the Goldstone mode can be

written as the (spacetime dependent) parameter of the symmetry under consideration,

i.e. ϕ(x) = µ(t + π(x)). Moreover, the physical interpretation of the parameter µ is

that of a chemical potential.

Type-I galileid

P̄0 = P0, P̄i = Pi − βQi, J̄i = Ji

For reasons that will soon be clear such a system is dubbed type-I galileid. The

unbroken generators must follow the same algebra as in Eq. (1.1), i.e. it must be

[J̄i, P̄j] = iϵijkP̄
k. From this it follows that the Qi’s must obey the following commu-

tation relation

[Ji, Qj] = iϵijkQ
k, (1.11)

and hence they cannot be the generators of an internal symmetry, since they do not

commute with the original Poincaré group.

The field theory implementation of a type-I galileid is very non trivial and ap-

parently plagued by pathologies. One possibility is that of realizing the symmetry

breaking pattern via a reducible representation of the Lorentz group involving a scalar

field φ and a vector field Bµ, that transform under the action of Qi as

φ→ φ+ 2b jBj, (1.12a)

Bi → Bi + b j(∂iBj + ∂jBi)−
1

2
b j∂j∂iφ, (1.12b)
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and with a background given by

⟨φ(x)⟩ = β|x⃗|2 and ⟨Bi(x)⟩ = xi. (1.13)

A system like this one breaks six generators but also presents three inverse Higgs

constraints since [Ki, P̄0] = i(P̄i + βQi). Hence it will feature three independent

Goldstone modes. Nevertheless, one can show that it is impossible to write a standard

kinetic term for the fluctuations, and that therefore the system must come with ghost

instabilities [11].

To find a way out of this issue one can modify the algebra by introducing an

additional generator, D, that satisfies the following commutation relations:

[Qµ, Pν ] = 2iηµνD. (1.14)

Here we have defined the four-vector Qµ = (Q,Qi), anticipating what will be needed

to describe a type-II galileid. In the case of type-I galileids there is no Q. This is

the algebra of galileon theories [23], hence the name of our system. Such theories

only involve a single scalar degree of freedom, ϕ(x), that enjoys a generalized shift

symmetry given by

ϕ→ ϕ+ c+ bµx
µ, (1.15)

where the shift c is generated by D, while bµxµ by Qµ.

For our type-I we are after an expectation value that only breaks spatial transla-

tions, while preserving rotations and time translations. This is given by

⟨ϕ(x)⟩ = 1

2
β|x⃗|2, (1.16)
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where β is a constant free parameter. Since we can describe our symmetry breaking

pattern through a single scalar, its fluctuation will correspond to the single Goldstone

mode present in the system.

Although a theory like this one is free of instabilities, it still does not satisfies our

requirements. In fact, the stress energy tensor can be found to be ⟨Tµν(x)⟩ ∼ x2 [11],

which is not translationally invariant.

Type-II framid

P̄0 = P0, P̄i = Pi, J̄i = Ji + Q̃i

Similarly as before, requiring that [J̄i, J̄j] = iϵijkJ̄
k implies

[Q̃i, Q̃j] = iϵijkQ̃
k. (1.17)

This means that the Q̃i’s are the generators of an internal SO(3) symmetry.

Indeed, its minimal implementation is through a triplet of vector fields, with

a vev given by ⟨Aa
µ(x)⟩ = δaµ, with a = 1, 2, 3. Since there are no inverse Higgs

constraints and we are breaking six generators (boosts and rotations) we expect an

equal number of Goldstone modes. Indeed, the corresponding framons and phonons

can be parametrized by

Aa
µ(x) =

(
eiη⃗(x)·K⃗

) ν

µ

(
eiπ⃗(x)·

⃗̃Q
) a

b
⟨Ab

ν(x)⟩. (1.18)

Since this implementation resembles closely that of a type-I framid, we refer to this

system as type-II framid.

Type-II galileid

P̄0 = P0 −αQ, P̄i = Pi − βQi, J̄i = Ji
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Similarly to what happens for the type-I galileid, the commutation relations between

the unbroken spacetime generators imply that the Qi’s transform as a vector un-

der rotations (see Eq. (1.11)) and hence they cannot be generators of an internal

symmetry as well. We can therefore dub this system a type-II galileid.

To implement this symmetry breaking pattern is slightly less cumbersome than

for a type-I galileid. In fact we can introduce a simple vector field, Cµ(x), that shifts

under the action of the Qµ’s as Cµ → Cµ + cµ, and acquires the following vev:

⟨Cµ(x)⟩ = αtδ0µ + βxiδ
i
µ. (1.19)

The number of broken generators is seven but we can impose four inverse Higgs

constraints. Indeed, it is easy to prove that

[Ki, P̄0] = −iP̄i + i(α + β)Qi, (1.20a)

[Ki, P̄j] = iδijP̄0 + iδij(α− β)Q, (1.20b)

where we used the fact that Qµ transforms as a four vector. Nevertheless, just like

before, this system also presents pathologies. In particular, it can be seen that if the

Goldstone associated to P0 is not ghost-like then the ones associated with Pi suffer

from gradient instabilities, and viceversa [11].

Introducing again the generator D as in Eq. (1.14), we can realize the symmetry

breaking pattern also in terms of a galileon field, but now with a vacuum expectation

value given by

⟨ϕ(x)⟩ = 1

2
(β|x⃗|2 − αt2). (1.21)

However, this state as well features a nonhomogeneous stress energy tensor.
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Type-II superfluid

P̄0 = P0 − µQ, P̄i = Pi, J̄i = Ji + Q̃i

Just like in the case of type-II framids, the Q̃s must be the generators of an

internal SO(3) symmetry. Since they commute with Q, the simplest implementation

of this symmetry is via an SO(3)×U(1) group. Given that [P̄i, Kj] = −iδij(P̄0+µQ),

we can impose three inverse Higgs constraints and reduce the number of Goldstone

modes to four. This is a so called type-II superfluid.

Its nonrelativistic version is nothing but the B-phase of superfluid He-3 [24]. In-

deed He-3 has three degrees of freedom: atomic spin and orbital angular momentum,

as well as the phase of its order parameter. The broken phase associated with the

U(1) subgroup is just like that of an ordinary type-I superfluid. However, rotations

in the spin and orbital spaces are both broken but a linear combination of them is

preserved4. Since in a nonrelativistic system the spin can be thought of as an internal

SO(3) degree of freedom, the structure just described indeed corresponds to a type-II

superfluid.

A relativistic realization of this symmetry breaking pattern is presented in [18],

via a triplet of vector fields acquiring the following vev:

⟨Aa
µ(x)⟩ = eiµtδaµ, (1.22)

where a is an internal SO(3) index. The interesting property of this field theory

is that this is one of the cases where the application of inverse Higgs constraints

cannot be regarded as a gauge fixing but it corresponds to integrating out massive

4A nice visual representation of this symmetry breaking pattern is given in [24]. In particular,
one can imagine the B-phase as a state where the orientations of spins and orbital momenta are
randomly distributed but always with a fixed relative angle. Separate rotations of them clearly
change the state of the system but a simultaneous rotation that preserves the relative orientation
does not. In our language this is exactly the breaking of two separate SO(3) groups down to the
diagonal subgroup.
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Goldstones [18].

Solid

P̄0 = P0, P̄i = Pi −αQi, J̄i = Ji − Q̃i

It is very easy to show that the Qs and Q̃s must be the generators of an internal

ISO(3) group, i.e. the three-dimensional Euclidean group. Indeed their algebra is

given by

[Qi, Qj] = 0, [Q̃i, Q̃j] = −iϵijkQ̃k, [Q̃i, Qj] = −iϵijkQk, (1.23)

with Qi being the generator of translations and Q̃i (minus) those of rotations. In this

case we have a total of nine broken generators but also six inverse Higgs constraints,

given that [P̄0, Ki] = i(P̄i + αQi) and [P̄i, Q̃j] = −iαϵijkQk. It then follows that the

system will be described, at low energies, by just a set of three Goldstone modes.

The simplest implementation of this symmetry breaking pattern is through a

triplet of scalar fields ϕI(x) (with I = 1, 2, 3). These fields will shift and rotate under

the internal ISO(3) group, i.e.

ϕI → ϕI +RI
Jϕ

J + aI . (1.24)

Their vacuum expectation value is instead given by ⟨ϕI(x)⟩ = αxI , and the Goldstone

modes can be parametrized as ϕI(x) = α(xI + πI(x)).

From the properties above one easily realizes that such a system corresponds to

a solid. In particular, the fields ϕI(x) correspond to nothing but the well known

comoving coordinates, and the πI(x) are the acoustic phonons. The constant α is a

free parameter of the theory and it represents the stretchability and compressibility

of the solid. More details on this construction will be given in Section 1.5.
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Interestingly, in this language solids and fluids are actually described by the same

symmetry breaking pattern [25–27]. In particular, for a fluid one can actually postu-

late an infinitely larger internal symmetry for the scalar fields. This is given by

ϕI → ξI(ϕ), with det ∂ξ(ϕ)
∂ϕI

= 1, (1.25)

which is the set of all possible volume preserving diffeomorphism (diffs). Physically

this corresponds to the fact that, while for a solid we are only allowed to translate

or rotate the volume elements, for a fluid we can also deform them, as long as their

volume remains constant. It follows that, in our language, a fluid is nothing but a

very special type of solid, one with an enhanced symmetry.

Moreover, it turns out that in this case there is an infinite number of inverse Higgs

constraints that still allow to retain just three Goldstone modes [11]. Nevertheless,

only the longitudinal fluid phonon will feature wave solutions as expected.

Lastly, given that framids and solids exhibit the same number of Goldstone modes

one might wonder whether they are actually the same system, with the above im-

plementation simply being more redundant. It should already be evident that this

is not the case given the universality of framon interactions described by the la-

grangian (1.10). Nevertheless, one can also compute any physical observable and

check if the two cases match. It can be shown that the 2 → 2 scattering amplitude

for framons and phonons at low momenta scales with energy respectively as E2 and

E4 [11], hence showing that framids are physically distinct from solids and fluids.

Supersolid

P̄0 = P0 − µQ, P̄i = Pi −αQi, J̄i = Ji − Q̃i

In this last case it is easy to show that the Qi’s and Q̃i’s obey the same algebra as in

Eq. (1.23), while Q commutes with all the generators. The additional internal group
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will hence be ISO(3) × U(1). This symmetry breaking pattern features ten broken

generators but also six inverse Higgs constraints (the same as in the case of a solid).

It follows that we expect a total of four Goldstone modes.

The symmetry breaking pattern presented above is that of a supersolid [28], whose

experimental observation was made feasible only recently [29, 30]. Indeed a simple

field theory implementation of such a system is essentially a combination of that for

a superfluid and that for a solid, i.e. introducing four scalars, ψ(x) and ϕI(x), such

that

⟨ψ(x)⟩ = µt and ⟨ϕI(x)⟩ = αxI . (1.26)

The ψ field transforms under the U(1) but it is a singlet under the ISO(3) group,

while the opposite is true for the ϕI field. Fluctuations around this background

parametrize the four Goldstones.

Summary

In Table 1.1 we summarize the scheme presented in this section. In particular, we have

presented the eight possible states of matter, classified based on which of the unbroken

generators, P̄0, P̄i and J̄i, are different from the original spacetime ones. In other

words, we distinguish different states of matter depending on whether or not they

need additional internal symmetries to recover spacetime isotropy and homogeneity

at long distances. We also limited our analysis to those systems that feature the

minimum number of Goldstone modes.
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System
Modified generators

NG
Internal Extra spacetime

P0 Pi Ji symmetries symmetries

type-I framid 3
type-I superfluid 4 1 U(1)

type-I galileid 4 1 Gal(3 + 1, 1)

type-II framid 4 6 SO(3)

type-II galileid 4 4 1 Gal(3 + 1, 1)

type-II superfluid 4 4 4 SO(3)×U(1)
solid 4 4 3 ISO(3)

supersolid 4 4 4 4 ISO(3)×U(1)

Table 1.1: Summary of the classification of condensed matter systems. NG represents
the minimal number of Goldstone bosons. For the definition of the galileon group,
Gal(3 + 1, 1), see for example [31].

1.3 An EFT language for condensed matter: why

bother?

As we will see in the next two sections, a classification of the states of matter in

terms of their symmetry breaking pattern allows to describe them with relativistic,

Poincaré invariant, low energy effective theories. Although unusual, this approach

presents some very relevant advantages [32]. Some of them are:

• Our system is described by a local action, which can be written in a Lorentz

invariant way almost trivially, without having to rely on any smart trick to

implement Poincaré invariance. Once the action is given, questions as, for

example, the derivation of the hydrodynamical equations or the calculation of

density and pressure become straightforward.

• The degrees of freedom are simple bosonic fields that describe the low energy

Goldstone modes. Their interactions are not engineered ad-hoc to reproduce

the observed phenomenology, but are forced by the symmetries of the system.
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• Relativistic field theories are easily treated in perturbation theory. In particular,

our low energy EFTs are systematically organized in a derivative expansion.

Once this is done it is possible to borrow a vaste set of tools (Feynman diagrams,

amplitude analysis, etc.) that have been developed over several decades of

particle physics.

• This approach does not require thermodynamics5. It is a priori possible to never

mention thermodynamical quantities and simply carry on the EFT procedure

all the way to the final computation of physical observables. The intermediate

steps will never invoke thermodynamical principles, but just fields, couplings,

and so on. A dictionary that translates our language to thermodynamics is not

necessary, but it is useful for the sake of comparison with experiments and to

constrain the free parameters of the theory.

The above considerations explain why the EFT approach can be a powerful in-

strument to add to the theorist’s toolbox. Of course, it is not the Holy Grail of

condensed matter and it comes with some drawbacks. Most notably:

• Being a low energy EFT it is valid in the regime where the Goldstone modes are

weakly coupled and it breaks down at some ultraviolet (UV) scale. In particular,

this means that this approach is unable to move away from perturbation theory.

Phenomena that are intrinsically nonlinear and/or due to small distance physics

(e.g. the formation of defects or phase transitions) are therefore outside the

reach of these methods.

• As any EFT it is simply formulated in terms of few effective parameters. How-

ever, this parameters cannot be deduced from the EFT alone. They must be

taken either as an input coming from some microscopic theory or fitted from

experimental data.

5Here typically the “booing” starts.
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Lastly, it should be noted that the EFT formulation does not necessarily requires

relativistic invariance, since one could as well impose Galilean symmetry. Neverthe-

less, we see no reason not to require the full Poincaré invariance, and therefore write

a theory for relativistic matter. The nonrelativistic limit can in fact be taken at any

step of the process. This is done by formally taking the limit of large speed of light,

c→ ∞ (see e.g. Chapter 5).

1.4 Superfluids

Let us now give a more detailed presentation of the effective theories for superfluids

and solids, which will be the main focus of this thesis. We will also extend the

treatment to a generic d-dimensional spacetime, to pave the road for the holographic

analysis done in Chapter 3.

As already mentioned, a superfluid is a finite density system that carries a spon-

taneously broken U(1) charge. The prototypical (weakly coupled) example is that of

a free Bose-Einstein condensate. Such a system is clearly at finite density and, below

the critical temperature, its ground state has a macroscopical occupation number.

In field theory language this means that the ground state spontaneously breaks the

U(1) symmetry associated to number density via the vev ⟨0|N̂k⃗=0|0⟩ ̸= 0, where N̂k⃗

is the number operator for particles with momentum k⃗.

The simplest implementation of the desired symmetry breaking pattern is ar-

guably the one involving a single real scalar field ϕ, that acquires a vev ⟨ϕ(x)⟩ = µt,

and shifts under the U(1) symmetry, ϕ → ϕ + a [21]. The superfluid phonon corre-

sponds to small fluctuations around this background, ϕ(x) = µ(t+ π(x)).

We therefore need to write down the most general action that is (i ) Poincaré

invariant, (ii ) shift invariant and (iii ) lowest order in energy. The most general low

23



energy action is easily found to be

S =

∫
ddxP (X), with X = −∂µϕ∂µϕ. (1.27)

The function P (X) is a priori completely general. We will see that it can be deter-

mined if the equation of state of the superfluid is given. The quantity X is the square

of the local chemical potential.

The Noether current associated with the U(1) shift can be easily found to be

jµ =
∂P

∂(∂µϕ)
= −2PX(X)∂µϕ. (1.28)

With PX we denote the derivative of the P with respect to X. If now we recall that j0

is nothing but the number density, we see that the vev ⟨ϕ(x)⟩ = µt is indeed the time

dependence needed to implement a nonzero constant density on the ground state.

The stress energy tensor is instead given by

Tµν = − 2√
−g

δS

δgµν

∣∣∣∣
g= η

= 2PX(X)∂µϕ∂νϕ+ ηµνP (X). (1.29)

On the equilibrium configuration it reduces to

⟨Tµν⟩ = 2XPXδ
0
µδ

0
ν + ηµνP, (1.30)

where P and its derivatives are now computed on the background, X = µ2. Since the

stress tensor is related to the energy density and pressure of the system, the above

equations allow to determine the lagrangian of our theory once the equation of state

of the superfluid is known.

This is a good moment to give an explicit example of the application of inverse

Higgs constraints [13]. Given the present ground state, the physical fluctuation of

24



the field is parametrized via the action of the broken generators (i.e. the U(1) charge

and boosts) as

δϕ(x) = i
(
π(x)Q+ η⃗(x) · K⃗

)
⟨ϕ⟩ = i

(
π(x)

P0 − P̄0

µ
+ η⃗(x) · K⃗

)
⟨ϕ⟩. (1.31)

Recall that the action of the generators is given by P0 = i∂0 and Ki = i(t∂i − xi∂0),

and that P̄0 is unbroken. Therefore

δϕ(x) =

(
π(x)

µ
− η⃗ · x⃗

)
⟨ϕ̇⟩. (1.32)

This parametrization features a gauge redundancy. Indeed if η⃗(x) → η⃗(x)+ ϵ⃗ (x) and

π(x) → π(x)+µ x⃗ · ϵ⃗ (x), the above fluctuation remains unchanged. The three inverse

Higgs constraints available in this context are found to be

Diπ = ∂iπ − µηi = 0. (1.33)

They allow to express the framons in terms of derivatives of the phonon, and indeed

they correspond to picking a particular gauge.

Let us now resume our general discussion. To study the behavior of the superfluid

phonon one can expand the action (1.27) in small fluctuations. To illustrate the con-

cept we will present it here up to cubic order in the Goldstone modes. In particular,

one gets

S(3) = (XPX + 2X2PXX)

∫
ddx

{
π̇2 − c2s(∇⃗π)2 + g3π̇(∇⃗π)2 − g̃3π̇

3

}
. (1.34)

The speed of sound and the cubic couplings are given in terms of derivatives of the
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lagrangian computed at equilibrium. In particular

c2s =
PX

PX + 2XPXX

, g3 =
2XPXX

PX

c2s, g̃3 = 2
XPXX − 2

3
X2PXXX

PX

c2s. (1.35)

Again, either the equation of state is know or these couplings must be extracted from

data.

Finally, the effective theory presented above describes a zero temperature super-

fluid, for which a single phonon is present. At finite temperature, superfluids can be

well described by the so called two-fluid model [33]. In that case, the system is seen as

a superposition of a superfluid component and a normal fluid one, hence presenting

also the phonons associated with the latter one. The EFT for relativistic superfluids

at finite temperature has been written down in [32].

1.5 Solids

Let us now focus on the EFT for solids and fluids. In a d-dimensional spacetime the

internal symmetry group is ISO(d− 1) and the solid is described by d− 1 comoving

coordinates that transform under the symmetry group as

ϕI → ϕI +RI
Jϕ

J + aI , (1.36)

where I, J = 1, 2, . . . , d− 1. Their vev is instead given by ⟨ϕI(x)⟩ = αxI .

To lowest order in derivatives, the only object that is both Poincaré and shift

invariant is the matrix BIJ = ∂µϕ
I∂µϕJ . We now need to construct SO(d − 1)

invariants. For a (d− 1)× (d− 1) symmetric matrix the independent invariants are

given by trB, tr(B2), and so on, up to tr(Bd−1). For future convenience we decide to
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collect them in the following way:

X = trB, and Yn =
tr(Bn)

Xn
, (1.37)

so that X is the only invariant that keeps information about α. The most general

low energy action for a solid is then given by

S =

∫
ddxF (X, Y2, . . . , Yd−1), (1.38)

where again F is a priori generic but it can be related to the equation of state of the

solid. The stress energy tensor is found to be

Tµν = −2
∂F

∂BIJ
∂µϕ

I∂νϕ
J + ηµνF. (1.39)

The solid phonons are parametrized as ϕI(x) = α(xI + πI(x)). One can again

expand in small fluctuations to obtain

S(2) = −XFX

d− 1

∫
ddx

{
˙⃗π2 − c2L(∂Iπ

J
L)

2 − c2T (∂Iπ
J
T )

2
}
, (1.40)

where now we truncated the expansion at quadratic order in the phonon fields since

the interactions are rather cumbersome. We have also split the phonons in longitu-

dinal and transverse modes. Their definition in more than three spatial dimensions

is actually easier in momentum space, where they are such that π⃗L(k⃗) ∝ k⃗ and

π⃗T (k⃗) ⊥ k⃗. Their sounds speeds are again given in terms of background quantities:

c2T = 1 +
d− 1

XFX

d−1∑
n=2

∂F

∂Yn

n(n− 1)

(d− 1)n
, (1.41a)

c2L = 1 +
2FXXX

2

(d− 1)XFX

+
2(d− 2)

XFX

d−1∑
n=2

∂F

∂Yn

n(n− 1)

(d− 1)n
. (1.41b)
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Let us close this section by commenting on the case of a fluid. In this instance,

the action needs to be invariant under all volume preserving diffs. The only possible

invariant is the determinant of B, which is a very specific combination of the d − 1

invariants of SO(d− 1). For example, in d = 4 and d = 5 we have

det4B =
1

3!
X3 (1− 3Y2 + 2Y3) , (1.42a)

det5B =
1

4!
X4
(
1− 6Y2 + 8Y3 + 3Y 2

2 − 6Y4
)
. (1.42b)

The action of a fluid is therefore much less generic than that of a solid:

Sfluid =

∫
ddxF (detB). (1.43)

It follows that in our language a fluid is nothing but a very “tuned” solid.
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The holographic duality

In 1997-98 a series of papers [34–36] had a tremendous impact on many branches of

physics, both from a scientific and a sociological viewpoint (see e.g. Figure 2.1). The

original papers conjectured the duality between the large N limit of N = 4 super

Yang-Mills theory in 3+1 dimensions and an AdS5 × S5 spacetime.

This conjecture has been subject of study and improvements for the past two

decades. Nowadays, it could be roughly stated as follows

Strongly coupled d-dimensional QFTxy
Gravitational theory in (d+ 1)-dimensional asymptotically AdS spacetime

This is commonly referred as the holographic duality, since an optical hologram

encodes three dimensional information in a two dimensional object1.

As already anticipated in the Introduction, the holographic duality was also

largely employed to study condensed matter systems. In particular, the aim of this
1Another very common name for this conjecture is AdS/CFT correspondence, which however

does not quite describe what the duality is anymore.
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Figure 2.1: Comparison between the original paper by J. Maldacena (left panel) and
the paper by S. Weinberg that presented for the first time the Standard Model of
particle physics (right panel), as they appear on inSPIRE at the time of writing. De-
spite the unprecedented success of the Standard Model, the paper on the holographic
duality presents a few thousand more citations!

“AdS/CMT” program is that of both understanding the strong dynamics of well

known states of matter as well as identifying new, exotic ones. See for example [37,

38] for a review and [39, 40] for a textbook treatment.

We will devote the present chapter to the introduction of the various entries of

the so-called holographic dictionary. We will mostly follow the pedagogical approach

taken in [38], and present the dictionary through concrete examples.

2.1 Weak coupling is strong coupling

Let us briefly review the argument of [34], where the author considered the case of D3

branes in type IIB string theory. This will be the only section where we will employ

concepts from string theory, which provides explicit examples of the duality. After

that, we will forget about it forever and send it back in the box of the (many) things

that the author of this thesis does not understand.

When dealing with an open string one can choose two possible boundary condi-

tions. The first one chooses the string end point to be freely moving, and fixes its

velocity. The second possibility is that of having the end point fixed at some position

X i = constant. The space spanned by all possible X i = const. is called a D-brane. It

can be shown that the D-brane energy goes as e−1/gs , where gs is the string coupling

constant. It then follows that D-branes are nonperturbative solitons of string theory
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that collect the end points of open strings. A Dp brane is an object with p spatial

dimensions living in nine spatial dimensions (for the type IIB string).

Let us now consider the case of N superimposed D3 branes. It is found that the

gravitational backreaction of the branes on the spacetime surrounding them becomes

negligible in the limit when λ ≡ 4πgsN ≪ 1. Following the discussion of Section 1.1,

since the D-brane clearly breaks spatial translations we expect some gapless exci-

tations. Moreover, when we have N such solitons, their relative positions are also

massless modes. It can be shown that these two kinds of degrees of freedom can

be combined into an N × N bosonic matrix field. Other possible modes are those

associated with the strings that extend between pairs of branes, which turn out to

become massless in the limit where all the D-branes overlap. There will clearly be

N×N types of such strings, which are described by a gauge field. This point is easily

understood if one goes back to a more mundane kind of string: the QCD flux tube. A

meson can be seen exactly as an open string extending between two quarks, and it is

well known that its low energy excitations are nothing but the QCD gluons. Lastly,

for the case of supersymmetric strings, one also needs to include the fermionic part-

ners of the bosonic matrices. The low energy action for all these fluctuations turns

out to be [40]

SD3 =
4πN

λ

∫
d4x

{
− 1

4
tr(FµνF

µν)− 1

2
tr
(
DµΦ

ABDµΦAB

)
− 1

4
tr
(
[ΦAB,ΦCD][ΦAB,ΦCD]

)
− itr

(
Ψ̄Aγµ∂µΨA

)
− tr

(
Ψ̄A[ΦAB,Ψ

B]
)}
, (2.1)

where A,B = 1, . . . , 4, Fµν is the gauge field strength, Φ is a bosonic matrix field

transforming in the adjoint of U(N) and Ψ its fermionic partner. This is the action

of an N = 4 super Yang-Mills theory. One also recognizes in this a version of the ’t

Hooft matrix model [41, 42], with λ being the ’t Hooft coupling (small in this regime).

Let us now consider the opposite case, the one where λ ≡ 4πgsN ≫ 1. In this
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situation, the D3 branes strongly backreact on the surrounding spacetime. Indeed,

they will collapse onto each other and form a black brane (not too different from a

black hole), whose near horizon geometry is given by

ds2 = L2dr
2

r2
+
r2

L2

(
−dt2 + dx⃗ 2

3

)
+ L2dΩ2

5, (2.2)

which is the metric of an AdS5×S5 spacetime, with the horizon located a r = 0. The

low energy excitations of the system of D3 branes will be localized very close to this

horizon. The AdS radius is related to the string length, ℓs, and the Planck length,

Lp, by

L = λ1/4ℓs = (4πN)1/4Lp. (2.3)

But then, for large ’t Hooft coupling and for N ≫ 1, the AdS radius is much larger

than both ℓs and Lp, which means that the low energy excitations of the branes will

simply be described by classical gravitational perturbations around the metric (2.2).

This shows that, in the large N limit, when the theory living on the D3 brane is

weakly coupled, the gravitational system in which the brane lives must be described

by the full quantum gravity theory (strings, in this case). On the other hand, when

the theory is strongly coupled, the spacetime in the bulk is described in terms of

classical weak gravity. Therefore:

Strong coupling, large N on the boundaryxy
Weak, classical gravity in the bulk

This is the first entry of our holographic dictionary. From now on we will assume to

be working in the large N limit and at strong ’t Hooft coupling.
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2.2 Bulk fields and boundary operators

Let us now forget about string theory. In the boundary strong coupling and large N

limit, the theory in the bulk is simply Einstein’s gravity. In the following sections we

will show how to compute observables of the boundary theory, starting from quantities

that can be extracted from the fields in the bulk.

The GKPW formula

The key quantities in any QFT are the n-point functions of the operators of the

theory. If all these correlators were known, the theory would have been completely

solved. Consider an operator O(x). All its correlators can be computed starting from

the generating functional

ZQFT[ϕ(1)(x)] =
⟨
ei

∫
ddxϕ(1)(x)O(x)

⟩
. (2.4)

Taking suitable functional derivatives with respect to the source ϕ(1)(x) one can indeed

extract all the n-point functions.

The definition of observables on the gravity side is instead a trickier business, since

spacetime is dynamical. Nevertheless, asymptotically AdS spaces have a boundary

where the metric is not dynamical. In particular, it is possible to set a Dirichlet

problem where the value of a field in the bulk, say ϕ(r, x), is fixed to be ϕ(1)(x) at

the boundary. It can actually be shown that for a given boundary condition, there is

a unique extension of the field towards the interior of AdS such that the field itself is

regular everywhere [35]. The partition function on the bulk side can then be defined

as a function of such boundary conditions, i.e.

Zbulk[ϕ(1)(x)] =

∫ ϕ→ϕ(1)

Dϕ eiS[ϕ]. (2.5)
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Of course, in order to have a duality between the boundary QFT and the bulk

gravitational theory there must be some one-to-one correspondence between their

respective observables. This is exactly what is provided by the Gubser-Klebanov-

Polyakov-Witten (GKPW) formula, which reads

ZQFT[ϕ(1)(x)] = Zbulk[ϕ(1)(x)]. (2.6)

The previous relation is the foundation of holography. It states that given a certain

field in the bulk, this field will be dual to an operator on the boundary. In particular,

we have

Leading boundary behavior of the field in the bulkxy
Source for the dual operator of the boundary QFT

How to determine which fields are dual to which operators is a further, nontrivial

problem. Before getting there, however, we will study more in depth how the prop-

erties of the boundary operator are determined by the features of the field in the

bulk.

Scaling dimension of the dual operator

To make our discussion more concrete let us focus on a particular example and let us

study a free massive scalar field on AdS background. The action is given by

Sbulk =

∫
dd+1x

√
−g
[
M2

p

2

(
R +

d(d− 1)

L2

)
− 1

2
(∇ϕ)2 − m2

2
ϕ2

]
. (2.7)

Here R is the Ricci scalar, 2Λ = −d(d− 1)/L2 is the negative cosmological constant

and Mp is the Planck mass. We will work in the Mp → ∞ limit, when one can

neglect the backreaction of the scalar field and work on a fixed AdS background, with
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a metric given by

ds2 = L2dr
2

r2
+
r2

L2
dxµdx

µ. (2.8)

As already pointed out, the scalar field ϕ will be associated to some operator on the

boundary of AdS. The equation of motion in the bulk is given by

ϕ′′ +
d+ 1

r
ϕ′ − (mL)2

r2
ϕ+

L4

r4
∂µ∂

µϕ = 0, (2.9)

which close to the boundary (r → ∞) has the following solution:

ϕ(r, x) = ϕ(1)(x)

(
L

r

)d−∆

+ · · ·+ ϕ(2)(x)

(
L

r

)∆

+ · · · , (2.10)

where ∆ is the largest positive solution of the equation

∆(∆− d) = (mL)2. (2.11)

Being the equation of second order there are two integration constants, ϕ(1) and ϕ(2),

the first one being the source of the boundary operator.

Now note that the metric (2.8) is invariant under rescaling {t, x⃗, 1/r} →

λ{t, x⃗, 1/r}, and the same thing is true for Eq. (2.9). Therefore if ϕ(r) is a solu-

tion, then ϕ(r/λ) will be a solution as well. This means that the leading falloff

transforms as ϕ(1) → λ∆−dϕ(1). But then, in order for the action in Eq. (2.4) to be

invariant, the operator must transform as

O(x) → λ−∆O(x), (2.12)

from which it follows that ∆ is the scaling dimension of the boundary operator, which

is then related to the mass of the bulk field via Eq. (2.11).
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Holographic renormalization

We would now like to compute the boundary action for the background solution of

Eq. (2.9). Upon integration by parts and employing the equations of motion, the

on-shell action for the scalar reduces to a pure boundary term:

S̄bulk = −
∫
r→∞

ddx
1

2

√
−γ ϕnM∇Mϕ, (2.13)

where γµν is the induced metric on the boundary and nr = r/L is the outward pointing

unit normal vector. Using the asymptotic expression given in Eq. (2.10) one easily

finds

S̄bulk =

∫
r→∞

ddx

[
d−∆

2L

( r
L

)2∆−d

ϕ2
(1) +

d

2L
ϕ(1)ϕ(2)

]
. (2.14)

Given that 2∆ > d, the first term is infinite. Such a divergence is due to the infinite

volume of the bulk spacetime, over which we have integrated.

As it happens in quantum field theory, we can get rid of the divergence by intro-

ducing a suitable counter term. From this one might infer that the radial direction

of the bulk spacetime plays the role of an energy scale—in the renormalization group

(RG) sense—with the near boundary region corresponding to the UV and the near

horizon one to the IR. Another hint also comes from the scaling dimension of the

boundary operator—see Eq. (2.12). Indeed, when the operator is irrelevant (∆ > d)

then the scalar field grows when moving towards the boundary, while when the op-

erator is relevant (∆ < d) it goes to zero. Moreover, one can also show that the

equation of motion (2.9) corresponds precisely to the RG equation for the boundary

couplings, with r playing the role of the renormalization scale (see Appendix A). We

therefore found one more entry of our dictionary:
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Radial direction in the bulk (horizon/boundary)xy
Renormalization scale of the boundary theory (IR/UV)

Standard quantization (the good)

Let us now introduce a counter term to cure the divergence of Eq. (2.14). The correct

counter term action is given by

Sc.t. =
∆− d

2L

∫
r→∞

ddx
√
−γ ϕ2. (2.15)

Being purely a boundary term this does not affect the equation of motion in the bulk.

There is actually another reason for which such a counter term is necessary, i.e.

to fix the variational problem [43]. In fact, consider the variation of the action (2.7)

(still neglecting backreaction). Again, it reduces to a boundary term given by

δSbulk =

∫
r→∞

ddx δϕ

[
d−∆

L

( r
L

)∆
ϕ(1) +

∆

L

( r
L

)d−∆

ϕ(2)

]
, (2.16)

where δϕ = δϕ(1)(L/r)
d−∆ + δϕ(2)(L/r)

∆. This is problematic. If we require for the

variation to be zero for every δϕ(1) and δϕ(2), this would enforce ϕ(1) = ϕ(2) = 0, i.e.

the trivial solution. However, if we also include the counter term the total variation

is then

δSbulk + δSc.t. =
2∆− d

L

∫
ddxϕ(2)δϕ(1), (2.17)

and therefore the variational problem is well defined if ϕ(2) = 0 or ϕ(1) = fixed.

Putting together Eqs. (2.14) and (2.15) we obtain the total on-shell action:

S̄ = S̄bulk + S̄c.t. =
2∆− d

2L

∫
ddxϕ(1)ϕ(2). (2.18)
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We are now ready to find the expectation value of the boundary operator. In partic-

ular we have (in the large N limit)

⟨O(x)⟩ = −i
ZQFT[0]

δZQFT[ϕ(1)]

δϕ(1)(x)
=

−i
Zbulk[0]

δZbulk[ϕ(1)]

δϕ(1)(x)

N→∞−−−→
δS̄bulk[ϕ(1)]

δϕ(1)(x)
=

2∆− d

2L

(
ϕ(2)(x) +

δϕ(2)

δϕ(1)

ϕ(1)(x)

)
=

2∆− d

L
ϕ(2)(x), (2.19)

where in the first step we employed the GKPW relation. In the last step we

instead used the fact that, since the equation of motion (2.9) is linear in the

bulk field, the two falloffs must be proportional to each other, i.e. it must be

ϕ(2)(x) =
(
δϕ(2)/δϕ(1)

)
ϕ(1)(x) [38, 44].

Hence, while one of the falloffs is related to the source of the dual operator, the

other one is instead related to its vacuum expectation value. We just found another

crucial feature of the holographic duality (for standard quantization):

Subleading falloff of the bulk fieldxy
Expectation value of the dual operator

Alternative quantization (the bad)

So far we have assumed that the first falloff was the one corresponding to the source

of the boundary operator. This is indeed the only possible choice when the leading

behavior of the field is non-normalizable. Nevertheless, if the mass of the scalar is

such that

−d
2

4
< (mL)2 < −d

2

4
+ 1, (2.20)
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then both falloffs are normalizable. In particular, recall that the nature of AdS allows

for fields that are slightly tachyonic. The lowest allowed mass squared is called the

Breitenlohner-Freedman (BF) bound [45]. In this case we can exchange the roles

of the two falloffs and consider ϕ(2) as the source. This alternative quantization is

achieved by adding one more boundary term to the action:

SI =

∫
r→∞

ddx
√
−γ
[
d−∆

L
ϕ2 + ϕnM∇Mϕ

]
, (2.21)

so that S = Sbulk + Sc.t. + SI . With manipulations very close to the ones performed

in the previous section, one can show that in this case the vev of the dual operator

is given by

⟨O(x)⟩ = d− 2∆

L
ϕ(1)(x). (2.22)

Mixed boundary conditions (the ugly)

The operators dual to some bulk fields are given by single trace operators2. Just like

in an ordinary QFT, even if they are absent in the far UV, multitrace operators will

be generated by the RG flow towards the infrared—see again Appendix A.

However, multitrace operators can also be explictly added to the spectrum of the

UV theory through the so called mixed boundary conditions [46–48]. As we saw in the

previous sections, if we consider, for example, standard quantization, this corresponds

to having a term in the boundary action given by W [O] =
∫
ddxϕ(1)(x)O(x). The

boundary condition for the scalar field is that its leading falloffs is fixed to be ϕ(1) =

ϕ(1)(x). The prescription to include multitrace operators is simply that of extending

this definition to W s that are nonlinear functionals of their argument. In particular,

2Single trace is here meant with respect to the global group of the boundary theory. For
example, if Φ is a scalar field in the adjoint representation, then a single trace operator could
be O(x) = 1

N tr(Φ · Φ). A double trace operator would be O2(x) and so on.
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the boundary condition for the scalar field will be

ϕ(1) =
δW [O]

δO

∣∣∣∣
O=(2∆−d)ϕ(2)

. (2.23)

From the boundary viewpoint, this boundary condition introduces a deformation in

the action simply given by ∆S = W [O]. Since both falloffs are nonzero here, these

boundary conditions can only be imposed when both of them are normalizable, i.e.

for the range of masses in Eq. (2.20).

Mixed boundary conditions can trigger an RG flow that evolves from a UV fixed

point with a given quantization (standard or alternative) to an IR fixed point with

the other quantization [46]. Consider again the scalar field, as in Eq. (2.10), and

imagine to start in the UV with alternative quantization, such that the dimension of

the operator is dim[O] = d−∆ < d/2, and suppose to turn on a relevant deformation,

W [O] = f
2

∫
ddxO2(x). The corresponding boundary condition will be ϕ(2) = fϕ(1).

In the far UV f = 0 and indeed we have alternative quantization ϕ(2) = 0. However,

in the far IR f → ∞ and the boundary condition becomes ϕ(1) = 0. Therefore the

multitrace operator triggers a flow between two different conformal theories, quantized

in different ways.

2.3 Which symmetry?

We are finally ready to make our last crucial step. We now need to understand how

to select a certain bulk theory given a boundary QFT or, of course, viceversa. Once

again, we will be guided by symmetry principles. Let us make it concrete and consider

the example of a U(1) free photon in the bulk. The action for this gauge theory is

S = −
∫
dd+1x

√
−g1

4
FMNF

MN , (2.24)
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with FMN = ∂MAN − ∂NAM . The equations of motion for the gauge field are simply

given by ∇MFMN = 0, and close to the boundary they are solved by

Aµ(r, x) = a(1)µ (x) + · · ·+ jµ(x)

(
L

r

)d−2

+ · · · , (2.25)

where we are working in radial gauge, Ar = 0, and we indicated the second falloff as

jµ for reasons that will be clear soon.

The on-shell action once again reduces to a pure boundary term3, which reads

S̄ = −
∫
r→∞

ddx
√
−γ 1

2
nMFMNA

N =
d− 2

2L

∫
ddx a(1)µ jµ. (2.26)

The theory in the bulk has a U(1) gauge symmetry, i.e. is invariant under

Aµ(r, x) → Aµ(r, x) + ∂µλ(r, x). This is true also for large gauge transformations,

i.e. such that λ(r, x) becomes constant on the boundary. But then, performing such

a transformation on the on-shell bulk action above, one obtains

S̄ → d− 2

2L

∫
ddx

(
a(1)µ jµ + ∂µλj

µ
)
= S̄ − d− 2

2L

∫
ddxλ ∂µj

µ. (2.27)

In order for this to be invariant the falloff jµ(x) must correspond to a conserved

current of a global symmetry on the boundary, ∂µjµ(x) = 0.

This teaches us that global symmetries on the boundary are gauged in the bulk.

The subleading falloff of the corresponding gauge field will be the conserved current

of the boundary symmetry. In the example above it will be the U(1) current. The

subleading falloff of the bulk metric will instead be the stress energy tensor of the

boundary QFT. This is because the metric of the bulk is nothing but the gauge

field associated with diff invariance, which is the gauged analogue of the Poincaré

invariance of the boundary. Its leading falloff is clearly the metric of the boundary

3This is a feature common to all quadratic actions.
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theory, which is indeed the source for the stress energy tensor. Lastly, in Section 2.2

we saw that the falloffs of the fields are directly related to the source and vev of

the dual operators. It then follows that the quantum numbers must simply match

directly.

Here is the last entry of our dictionary:

Gauge symmetry in the bulkxy
Global symmetry of the boundary QFT

2.4 Finite temperature

Before concluding we must add one more aspect of the duality. In particular, it is

rather obvious that in order to describe condensed matter systems in a complete way

one must be able to turn on temperature on the boundary theory. It is well know

that the thermal partition function for a certain QFT is obtained making time purely

imaginary and periodic [49]. The inverse period of the imaginary time corresponds

to the temperature of the system.

In the previous section we learned that the subleading falloff of the bulk metric

corresponds to the boundary stress energy tensor. It follows that the leading falloff

will be its source, i.e. the boundary metric itself. In other words, close to the

boundary we have

ds2 = L2dr
2

r2
+
r2

L2
hµν(x)dx

µdxν + . . . , (2.28)

where hµν is precisely the (nondynamical) metric of the boundary theory. Conse-

quently, if the boundary theory has periodic time, the bulk has it as well.
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In absence of any horizon, finite temperature can be trivially introduced by com-

pactifying time in the bulk. More interesting is the case of a black hole in the interior

of AdS. The black hole metric is given by

ds2 =
dr2

g(r)
+ g(r)dτ 2 +

r2

L2
dx⃗ 2

d−1 , (2.29)

where g(r+) = 0 at some value of the radial coordinate, corresponding to the black

hole horizon. Moreover, τ = it is the Euclidean time. For a nonextremal black hole,

close to the horizon we can expand g(r) = g′(r+)(r− r+) + . . . , and the metric reads

ds2 =
dr2

g′(r+)(r − r+)
+ g′(r+)(r − r+)dτ

2 + · · · . (2.30)

Let us now perform a change of coordinates such that

dr2

g′(r+)(r − r+)
= dρ2 =⇒ ρ = 2

√
r − r+
g′(r+)

. (2.31)

The metric then becomes ds2 = dρ2 + ρ2dφ2 + . . . , where φ = g′(r+)τ/2. This is

clearly the metric of a circle and to avoid a conical singularity at ρ = 0 one must

require that φ has period equal to 2π. But this means that the inverse period of the

Euclidean time will be given by

T =
g′(r+)

4π
. (2.32)

Therefore, if the bulk theory has a black hole horizon the temperature of the boundary

QFT will be related to the black hole radius by the above formula.
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Bulk side Boundary side

Strong/weak coupling Weak/strong coupling
Classical gravitational theory Large N limit

Quantum corrections 1/N corrections

Falloffs of the bulk field
Source and vev of the operator

(depending on the quantization)
Near boundary behavior of the falloffs Scaling dimension of the operator

Gauge symmetry Global symmetry
Bulk gauge field Conserved current of global symmetry

Periodic imaginary time Finite temperature

Table 2.1: Schematic summary of the main entries of the holographic dictionary.

2.5 Summary

Let us summarize the findings of this chapter. The holographic duality is a very

powerful tool. It allows to compute the observables of a certain strongly coupled QFT

using classical Einstein’s gravity in a space with one additional spatial dimension. In

this way one can compute observables in a regime that is not otherwise accessible

with other techniques. The dictionary that brings you from one side to the other

of the duality is essentially based on symmetry principles. A schematic overview is

reported in Table 2.1.
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Holographic superfluids

As we learned in Section 1.2 the symmetry breaking pattern of type-I superfluids is

remarkably simple, since it features only one modified generator. This is probably

one of the reasons why such condensed matter systems have been among the first ones

to be investigated by means of the holographic duality (see for example [37, 50–59])1.

In this chapter we will use holographic superfluids as a toy model to developed a

technique that allows to explicitly compute the action of the phonons of the boundary

theory starting from the fields in the bulk of AdS. Such a method will be a key

ingredient in our study of holographic solids.

1It should be noted that such systems often appear in the literature as “holographic supercon-
ductors”. The reason is that, as far as the transport properties are concerned, the charge response
of a superconductor is described by superfluidity. Nevertheless, when investigating the low energy
spectrum, superconductors present a gap, because of the Higgs mechanism, while superfluids do
not. We will show that the systems presented in this chapter indeed have gapless modes in their
spectrum.
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3.1 On the previous episodes

Let us now review the features of holographic superfluids. To determine the dual

of a strongly coupled superfluid one needs to use the holographic dictionary devel-

oped in Chapter 2. As seen previously, a type-I superfluid features a spontaneously

broken global U(1) symmetry. Global symmetries of the boundary QFT are gauge

symmetries of the bulk theory. Therefore, our most minimal ingredient will be a U(1)

gauge field. However, this is not enough. Since the photon is not charged under the

U(1) group, the vev of its dual operator will not cause spontaneous breaking of the

symmetry. It then follows that we will also need some kind of matter fields.

One possible realization can be found in the following way. In Section 1.2 we

learned that the simplest implementation of the superfluid symmetries is through a

single real scalar, ϕ(x), that shifts under the U(1) and acquires a time dependent vev,

⟨ϕ(x)⟩ = µt. However, the same symmetry breaking pattern can also be realized in a

more holography-friendly way, by introducing a complex scalar Φ(x) and shifting the

time derivatives by the chemical potential, i.e.

Φ(x) = φ(x) eiπ(x), ∂0 → ∂0 − iµ. (3.1)

The complex scalar now transforms linearly under the U(1) group and its phase does

not acquire any vev. The chemical potential can now be considered as the temporal

component of a constant gauge field. It is easy to convince oneself that the two

descriptions are perfectly equivalent, if we identify ϕ(x) = µt+ π(x).

It is now evident what a possible gravity dual is. It will be a theory of scalar QED

on an asymptotically AdS background [51, 52]. The corresponding action will be

S = −
∫
dd+1x

√
−g
[∣∣∇Φ− iqAΦ

∣∣2 + V
(
|Φ|2

)
+

1

4
FMNF

MN

]
+ Sbdy. (3.2)
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Here Sbdy will be a suitable boundary term, needed to cure the ultraviolet diver-

gences as well as to determine the quantization scheme of the boundary theory (see

Section 2.2). Moreover, the scalar field potential will be generally given by

V
(
|Φ|2

)
= m2

∣∣Φ∣∣2 + interaction terms. (3.3)

For simplicity we will work in the so-called probe limit, i.e. neglecting the backreaction

of the matter fields on the metric. This limit can be formally achieved by considering

the limit of very large charge q [60].

Phase transition at finite temperature

One of the first features of a superfluid that one can recover holographically is its

phase transition [51, 52]. In order to do that we need to turn on the temperature. As

seen in Section 2.4, one way to do that is to study our scalar QED on a black hole

background, i.e. considering a metric given by

ds2 = L2 dr2

f(r)r2
+
r2

L2

(
−f(r)dt2 + dx⃗ 2

d−1

)
. (3.4)

where f(r) = 1− (r+/r)
d, and the horizon is located at r = r+. The temperature of

the system is then given by

T =
|g′tt(r+)|

4π
=

d

4πL2
r+, (3.5)

hence the larger the black hole the hotter the superfluid.

Since we do not want to break the boundary spatial translations, we will consider

ansatze for the background fields that only depend on the holographic coordinate.
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From Eq. (3.1) we easily understand that the field profiles we are looking for are

Φ(r, x) = φ(r) and AM(r, x) = A(r)δ0M , (3.6)

where both φ and A are real fields. Their equations of motion are given by

φ′′ +

(
d+ 1

r
+
f ′

f

)
φ′ + q2

(
L2

r2f

)2

A2φ− L2

r2f
V ′(φ2)φ = 0, (3.7a)

A′′ +
d− 1

r
A′ − 2q2

L2

r2f
φ2A = 0. (3.7b)

In this section we will only consider the case of a free tachyonic scalar in d = 2 + 1,

with a potential given by V = −d−1
L2 φ

2. For simplicity we also set L = q = 1.

As far as our boundary conditions are concerned, we require regularity throughout

the whole interior of AdS. In particular, for the gauge field we must demand that

close to the horizon A(r) goes to zero at least as fast as r − r+, to ensure that its

magnitude, AMA
M , which is a scalar, does not diverge. Since Eqs. (3.7a) are both

of second order, these near horizon conditions will fix two of the four integration

constants. The behavior of the fields near the conformal boundary is

φ(r) =
φ(1)

r
+
φ(2)

r2
+ . . . , A(r) = µ− ρ

r
+ . . . , (3.8)

where µ is the chemical potential and ρ is the number density of the boundary theory.

The tachyonic mass we have chosen is well within the range (2.20) and therefore both

quantizations are allowed. Since we are looking for spontaneous breaking of the

U(1), our source must vanish. The two possible boundary conditions are thus either

φ(1) = 0 or φ(2) = 0. Since we are working in d = 2 + 1 dimensions, in the first case

(standard quantization) the scalar field will be dual to an operator O2 with scaling

dimension ∆ = 2, while in the second case (alternative quantization) it will be dual

to an operator O1 of scaling dimension d−∆ = 1 [51]. Note that in this latter case,
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Figure 3.1: Vacuum expectation values of the dual operators in standard (left panel)
and alternative (right panel) quantization as a function of temperature. Both the
horizontal and vertical axes have been rescaled by the critical temperature to obtain
adimensional quantities. Figures taken from [51]. The divergence at T = 0 of the
⟨O1⟩ operator indicates that the full backreaction of the fields on the spacetime should
be included at low temperatures—see e.g. [52].

the scaling dimension is such that O2
1 is also a relevant deformation and should be

included on naturalness grounds. This would be done via mixed boundary conditions

which were not studied in the original work [51].

Since we are imposing three boundary conditions—i.e. two at the horizon and one

at the boundary—we are left with one free parameter. This corresponds precisely to

the freedom of varying the chemical potential of the boundary theory.

It is now fairly easy to solve Eqs. (3.7a) numerically and extract the different

falloffs as a function of temperature. The results for the two possible quantizations

are reported in Figure 3.1. The interpretation is quite clear. There is a critical

temperature Tc above which the scalar field is identically zero and the gauge field

is exactly given by A = µ − ρ/r. Such a solution does not present a condensate.

Nevertheless, for T < Tc the scalar field turns on, hence spontaneously breaking the

U(1) symmetry. This is our fluid-superfluid phase transition. Moreover, since we have

a black hole solution both above and below the critical temperature, the entropy of our

system (which is dominated by the black hole degrees of freedom) will be continuous

at T = Tc. This is the hallmark of a second order phase transition. To confirm this
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one can also fit the dependence of the condensate with temperature and show that,

near the critical temperature, it exhibits a square root behavior ⟨Oi⟩ ∝
√
Tc − T [51].

3.2 From bulk fields to boundary phonons

In the previous section we showed how one can reproduce the superfluid phase tran-

sition with holographic techniques. The literature on holographic superfluids is ex-

tremely rich (see also [53–57]) and it goes well beyond the goal of this thesis to

summarize all of it.

As it is probably clear by now, the most natural question that could arise in light

of the EFT viewpoint on superfluids is: what about the phonon? In other words, is it

possible to gather information on the low energy spectrum of the system starting from

the bulk setup? Some work in this direction has already been done [59, 60], studying

in particular the behavior of first, second and fourth sounds [33] as a function of

temperature2. Nevertheless, to the best of our knowledge, all the available results are

based on numerical analyses. In this section we will present a completely analytical

method to explicitly obtain the action of the phonons of the boundary theory starting

from the fields in the bulk of AdS. A first version of this technique already appeared

in [61, 62], in the context of holographic fluids. Nevertheless, in that particular case,

the solution to the background equations of motion is known analytically and the

calculation can be carried on explicitly. Here we build on that initial result and

develop a way to compute the action of the boundary phonon even if the background

2A quite interesting open problem is actually related to the behavior of second sound in holo-
graphic superfluids. At low temperatures, the speed of second sound, c2, should be related to that
of the first sound, c1, by [33]:

lim
T→0

c22 =
c21

d− 1
,

where d is the number of spacetime dimensions. This behavior cannot be recovered from hologra-
phy [59]. It would be interesting to try to employ the methods developed in this chapter to shed
some light on the problem.
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profiles are unknown. Such result has been presented in [63].

Background configuration

The relevant action for our bulk theory is still the one reported in Eq. (3.2). However,

we are now solely concerned about the spectrum of first sound, i.e. zero temperature

superfluids. In this case our background metric will simply be that of pure AdS, i.e.

ds2 =
dr2

r2
+ r2dxµdx

µ, (3.9)

where we are setting again the AdS radius to one. Moreover, we will not need to

specify our scalar field potential as in Eq. (3.3). Nevertheless, it can be shown that

for several choices of such a potential, the full backreacted geometry does not exhibit

conformal invariance in the infrared since it presents a mild divergence at r = 0 [54,

57], and hence our approximation (3.9) is a bad one. However, it can also be shown

that there are choices (e.g. a free massless scalar [57] or a Mexican hat potential at

large charge [53, 54]) for which our background metric is the correct one in the probe

limit. We will assume to be working with potentials of this sort.

Our background fields are again given by

Φ̄(r, x) = φ(r), ĀM(r, x) =
√
2 r ψ(r)δ0M , (3.10)

where the definition of the profile ψ has been chosen for later convenience. For generic

mass and dimension, the near boundary behavior of the fields is

φ(r) =
φ(1)

rd−∆
+
φ(2)

r∆
+ . . . , (3.11a)

ψ(r) =
µ√
2 r

− ρ√
2 rd−1

+ . . . . (3.11b)

Here ∆ is again defined as the largest positive solution of Eq. (2.11). For concreteness
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we will work in standard quantization, imposing φ(1) = 0. We recall that in this case

the boundary action for the background is given by3

Sbkg
bdy = (∆− d)

∫
r→∞

ddx
√
−γ φ2. (3.12)

The equations of motion for the bulk profiles are

φ′′ +
d+ 1

r
φ′ − V ′(φ2)

r2
φ+ 2q2

ψ2

r2
φ = 0, (3.13a)

ψ′′ +
d+ 1

r
ψ′ +

d− 1

r2
ψ − 2q2

φ2

r2
ψ = 0. (3.13b)

Intermezzo: conformal superfluids

Before going on with our study we need to find a way to check whether or not we are

indeed dealing with superfluids. In the case of a pure AdS background and of standard

or alternative quantization, the boundary theory has an exact conformal invariance.

What does that mean for our superfluid? A conformal theory is characterized by

a traceless stress energy tensor [42]. If we require T µ
µ = 0, Eq. (1.29) reduces to a

simple equation for the dependence of the superfluid’s lagrangian on the chemical

potential:

−2XPX(X) + dP (X) = 0 =⇒ P (X) ∝ Xd/2, (3.14)

hence completely fixing the action up to an overall constant. This also determines the

speed of sound, as well as all other interaction couplings in Eq. (1.35). In particular

3Away from the background configuration the expression for the boundary action is more com-
plicated. We will comment on that in the followings sections.
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it must be

c2s =
PX

PX + 2XPX

=
1

d− 1
. (3.15)

We will show that this is exactly what we can recover from our holographic setup.

Background on-shell action

The first check we can perform is to show that the background on-shell action indeed

reproduces what expected from Eq. (3.14). The argument is pleasantly simple. Con-

sider a particular solution of Eqs. (3.13) with µ = 1, and let us denote such profiles

with φ̂(r) and ψ̂(r). Since the equations of motion are invariant under rescaling of the

radial coordinate, a solution with a generic chemical potential can simply be obtained

by replacing r → r/µ, i.e. φ(r) = φ̂(r/µ) and ψ(r) = ψ̂(r/µ).

Let us now compute the on-shell action. It is given by

Sbkg = −
∫
ddx dr rd−1

[
r2(φ′)2 + 2q2ψ2φ2 + V

(
φ2
)
−
(
rψ′ + ψ

)2]
+ (∆− d)

∫
r→∞

ddx rdφ2. (3.16)

If we now perform a change of variable r = µy we get

Sbkg = N
∫
ddxµd, (3.17)

with normalization given by

N = −
∫
dy yd−1

[
y2(φ̂′)2 + 2q2ψ̂2φ̂2 + V

(
φ̂2
)
−
(
yψ̂′ + ψ̂

)2]− lim
y→∞

ydφ̂2, (3.18)

which is independent of the chemical potential. If we now recall that X = µ2 at

equilibrium, we can see immediately that the on-shell lagrangian at equilibrium is
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indeed P (X) = NXd/2 as expected for a conformal superfluid.

O phonon, phonon, where art thou, phonon?

The previous result is an encouraging sign that we are going in the right direction.

Nevertheless, one could argue that it is nothing but the consequence of dimensional

analysis in a conformal theory, where the only scales available on the background are

the radial coordinate and the chemical potential.

Our goal is now that of deriving the action of the superfluid phonon of the bound-

ary theory. In order to do that it is natural to start from the fluctuations of the bulk

fields, which we parametrize as

Φ = (φ+ σ)eiπ, AM = ĀM + αM . (3.19)

Expanding the action (3.2) up to quadratic order in the fluctuations we get

S(2) =−
∫
dd+1x

√
−g
[
∂Mσ∂

Mσ + φ2∂Mπ∂
Mπ − 4qĀMφ∂Mπ σ

− 2qφ2αM∂Mπ + q2ĀM ĀMσ
2 + 4q2φĀMα

Mσ + q2φ2αMα
M

+
(
V ′ + 2φ2V ′′) σ2 +

1

4
fMNf

MN

]
+ S

(2)
bdy . (3.20)

Here fMN = ∂MαN − ∂NαM and S
(2)
bdy are the terms of the boundary action that are

quadratic in the fluctuations. Moreover, V ′ and V ′′ are computed on the background

profile. Our plan of action is now the following:

1. Compute the linearized equations of motion for the fluctuations at lowest order

in boundary derivatives. This will correspond to a low energy expansion for the

boundary theory.

2. Solve such equations of motion for all fluctuations but the phase π.
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3. Plug the solutions back into the quadratic action, to obtain the so called par-

tially on-shell action.

This procedure is not too dissimilar from what presented in [61]. The main difference

is that we will be able to solve the equations of motion despite the fact that the

background profiles are not known analytically.

To implement the low energy expansion, we perform the following formal identi-

fications:

σ , αµ , ∂r ∼ O(1) , ∂µ ∼ O(ϵ) , π , αr ∼ O(1/ϵ) , (3.21)

where the last one has been done because π always appears with a boundary deriva-

tives. The radial fluctuations of the gauge field must be of the same order for con-

sistency with the equations. The equations of motion at lowest order in ϵ then turn

out to be4

σ′′ +
d+ 1

r
σ′ − V ′ + 2φ2V ′′

r2
σ + 2

√
2q
φψ

r3
(qα0 − ∂0π) + 2q2

ψ2

r2
σ = 0 , (3.22a)

(qα0 − ∂0π)
′′ +

d− 1

r
(qα0 − ∂0π)

′ − 2q2
φ2

r2
(qα0 − ∂0π)− 4

√
2q3

φψ

r
σ = 0 , (3.22b)

(qαi − ∂iπ)
′′ +

d− 1

r
(qαi − ∂iπ)

′ − 2q2
φ2

r2
(qαi − ∂iπ) = 0 , (3.22c)

π′ − qαr = 0 . (3.22d)

Note that the equations for the radial mode σ and for the gauge invariant combination

qαµ − ∂µπ are of second order and hence require two boundary conditions. However,

the equation for the phase is only first order. In particular, if we impose that π

4There is small subtlety hidden here. In particular, the low energy expansion is not strictly
speaking appropriate for every value of the radial coordinate since, for a region very close to r = 0
the coefficients of the equations could become as large as 1/ϵ2. The most rigorous way to perform
the expansion would that to set an IR cutoff on the radial coordinate, r = δ, take the ϵ → 0 limit
and then remove the cutoff once the on-shell action has been computed. It can be shown that the
order of the limits does not matter.
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vanishes at the center of AdS, the solution is readily found to be

π(r, x) = q

∫ r

0

dz αr(z, x). (3.23)

As it will soon be clear, the phonon of the dual superfluid theory will be given by the

value of π at the boundary, i.e. πB(x) ≡ π(r = ∞, x). This is the reason why we do

not want to solve the equations of motion for the phase of the scalar.

Let us now solve the remaining equations. Let us start with Eq. (3.22c) and

consider the change of variables qαi − ∂iπ ≡ rβi. The equation then becomes

β′′
i +

d+ 1

r
β′
i +

d− 1

r2
βi − 2q2

φ2

r2
βi = 0. (3.24)

But this is precisely Eq. (3.13b) for the background profile, and hence the regular

solution is βi(r, x) = bi(x)ψ(r). To determine the arbitrary constant we will impose

that the fluctuation αi vanishes both in the IR and in the UV [61]. This fixes the

solution to be (recall that ψ goes to zero in the IR faster than r itself)

αi =
1

q

(
∂iπ −

√
2

µ
r ψ∂iπB

)
. (3.25)

This is the essence of our new technique, i.e. being able to determine the on-shell

fluctuations as a function of the background fields, regardless of their specific func-

tional form. Moreover, given the boundary conditions, this will be the only regular

solution, as discussed in Section 2.2 and in [35].

For the remaining two fluctuations we relabel them as σ ≡ −rγ′ and qα0 − ∂0π ≡

−q
√
2r2δ′. After that, Eqs. (3.22a) and (3.22b) become

γ′′′ +
d+ 3

r
γ′′ +

d+ 1

r2
γ′ − V ′ + 2φ2V ′′

r2
γ′ + 2q2

ψ2

r2
γ′ + 4q2

ψφ

r2
δ′ = 0 , (3.26a)

δ′′′ +
d+ 3

r
δ′′ +

2d

r2
δ′ − 2q2

φ2

r2
δ′ − 4q2

φψ

r2
γ′ = 0 . (3.26b)
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One can check that these are linear combinations of Eqs. (3.13) and their derivatives

and therefore admit a solution with γ(r, x) = c(x)φ(r) and δ(r, x) = c(x)ψ(r), with

the same proportionality factor c(x). Imposing again double vanishing boundary

conditions, we get

σ =
∂0πB
qµ

rφ′, and α0 =
1

q

(
∂0π +

√
2

µ
r2ψ′∂0πB

)
. (3.27)

It should be noted that, in order for the above solution to go to zero at the center

of AdS, the derivatives of the background profiles must vanish fast enough. This is

what is found, for example in [53, 57].

If now we plug the solutions found so far into the quadratic action (3.20) and

use the equations of motion for the background, we find that the action reduces to a

purely boundary term given by

S(2) =
(d− 1)(d− 2)ρ

2q2µ

∫
ddx

[
π̇2
B − 1

d− 1

(
∇⃗πB

)2]
+ S

(2)
bdy. (3.28)

As one can see, we are almost done. Unfortunately, for a complex field, the

boundary term Sbdy does not have a unversal expression valid for all dimensions.

Nevertheless, we will now argue that it cannot contribute to the above action. At

lowest order in boundary derivatives, the most general boundary action can be written

as

Sbdy =

∫
r→∞

ddxLbdy
[
Φ, DMΦ, FMN

]
, (3.29)

where Lbdy is an analytic function of gauge and diff invariant combinations of its

arguments and their derivatives.

For the sake of our argument, it is more convenient to redefine the radial coordi-

nate as r = 1/u, so that all the metric components are on equal footing, gMN ∼ u2.
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In this coordinates the boundary is at u = 0. Now notice that pairs of indices can

be contracted with gMN , while a single radial index can also be contracted with the

vector normal to the boundary nM ∼ u. It then follows that each free covariant index

carries a factor of u. Close to the boundary the fields and their derivatives will then

behave as

Φ ∼ u∆, DuΦ ∼ u∆, DµΦ ∼ u∆+1, Fuµ ∼ ud−1, (3.30)

while, instead, Fµν is of higher order in boundary derivatives. One can easily check

that the above scalings are correct for both the background fields and their fluctu-

ations. The most general gauge and diff invariant lagrangian term can be written

schematically as

√
−γΦn(DMΦ)m(FMN)

ℓ ∼ u−d+(n+m)∆+ℓ(d−1), (3.31)

where the free indices should be thought of as being contracted with either gMN or

nM . The estimate above is the most conservative one (lowest possible power of u for

u→ 0).

Gauge invariance imposes that the boundary term includes an equal number of

Φ and Φ∗ fields. This means that n +m = 2κ, with κ ≥ 0. But then the combina-

tion (3.31) always vanishes at the boundary. In fact, since ∆ > d/2 we have

−d+ 2κ∆+ ℓ(d− 1) > (κ− 1)d+ ℓ(d− 1) ≥ 0, (3.32)

for d > 2. Moreover, in the case when κ = 0, diff invariance forces ℓ ≥ 2 and again

−d+ ℓ(d− 1) > 0.

Now that we have proved that the boundary term does not contribute to the

58



on-shell action, Eq. (3.28) finally reduces to

S(2) =
(d− 1)(d− 2)ρ

2q2µ

∫
ddx

[
π̇2
B − 1

d− 1

(
∇⃗πB

)2]
, (3.33)

which is indeed the action for the phonon of a conformal superfluid, with sound speed

c2s = 1/(d− 1), as expected from Eq. (3.15).

Note that, with our conventions, ρ/µ > 0, hence ensuring that for d > 2 the

overall coefficient is positive and the Goldstone bosons are not ghost-like. Moreover,

our argument does not hold for d = 2 since the asymptotic behavior of the fields is

not regular anymore. However, in this particular case we do not expect Goldstone

modes in the first place, in compliance with Coleman’s theorem [64, 65].

Moreover, it should be pointed out that the boundary Goldstone is here noth-

ing but the Wilson line of the radial component of the gauge field fluctuation—see

Eq. (3.23). This same result is also found is several different contexts as, for example,

a bulk Einsten-Maxwell theory [62], holographic fluids [61] and pions in holographic

QCD [66].

3.3 Summary

In this chapter we have provided an explicit, analytical proof that a theory of scalar

QED in AdS is dual to a superfluid on the conformal boundary. In particular, we have

done that by explicitly solving the equations of motion for all the bulk fluctuations

except for the the only gapless one, i.e. the scalar phase π.

Of course, given the vast number of other proofs developed during the years, no

sane person would have argued the opposite. The relevance of our proof actually

lies in the technique employed to derive it. In order to find the on-shell fluctuations

we did not need the detailed knowledge of the background profile. This comes as

a blessing given that, in most of the interesting cases, the background equations of
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motion are nonlinear and an analytic solution is rarely available.

As we will see in the next chapter, thanks to the experience gained with this toy

model, we will be able to employ the same method to derive the gravity dual of a

solid, which is a true novelty.

60



C
h

a
p

t
e

r 4
Holographic solids

As explained in the previous chapters, the holographic duality is a powerful statement

that has been used to explore (among other things) a great variety of condensed

matter systems, many of which are quite exotic. Nevertheless, one, very simple class

of systems have been essentially lacking from the literature: solids. The gravity dual

of a theory in a solid state has never been found (or essentially looked for) so far.

Some attempts in this direction have been made in [67–70], where the authors try to

describe a solid state on the boundary theory via a theory of massive gravity in the

bulk. The approach is rather interesting and indeed reproduces some properties of

the boundary theory that closely resemble those expected from a solid. However, it is

rather unclear whether the rigorous application of the holographic dictionary would

tell that massive gravity corresponds to a dual theory with the right symmetries to

describe a solid. Furthermore, beyond some interesting indications, no actual proof

of the duality has been presented.

In this chapter we will exhibit a clear gravity dual for a solid in d spacetime

dimensions, providing an analytical proof of the duality. We will find that the corre-
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sponding theory on the gravity side is that of an SO(d) magnetic monopole coupled

to a scalar field in the fundamental representation. It would be a missed opportu-

nity not to dub such a configuration solidon. Some hints of this duality could have

been found in the results reported in [71, 72]. We will also compute the free energy

of our solidon and show that indeed the boundary system undergoes a first order

solid-to-liquid phase transition as expected. This work has been presented in [73].

4.1 Conformal solids and solids on a sphere

How does the holographic dictionary apply to the symmetries of a solid? In Chapter 1

we explained that the symmetry breaking pattern of a solid in d spacetime dimensions

requires an internal ISO(d− 1) group. The holographic duality would tell us to take

this global symmetry and gauge it in the bulk. However, one quickly realizes that it

is not such an easy task. In particular, ISO(d− 1) is a noncompact group (because

of the shifts) which is nonlinearly realized, and to find its gauged, Yang-Mills version

is not a trivial task. In Appendix B we show how to build linear representations of

the Euclidean group and to deduce the gauged version of our ISO(d− 1) symmetry.

Nevertheless, in this chapter laziness wins over cleverness and we take a different

approach. In particular, we will consider at first a solid on a sphere1. In this case,

the original shifts compactify and become additional rotations, and the symmetry

group becomes SO(d). The Yang-Mills theory for such a symmetry is very standard

and allows us to readily deduce the gravity dual. Once this is done, we can focus our

attention to a region close to the pole of our sphere and recover a flat solid.

Given the program spelled out above, we need to take two preliminary steps. First

of all, we have to understand what to expect from a conformal solid, and secondly,

we have to write down the effective theory for a solid on a sphere.

1Note that this is not a spherical solid, like a marble, but rather a solid living on a spherical
manifold, like a spherical thin shell.

62



Conformal solids

Just like we did for holographic superfluids, we now want to check what the impli-

cations of conformal symmetry are for a solid. This will again be our way to check

whether or not we are doing everything correctly. Whether or not there exist CFTs

that admit a solid state is still an open question. Note also that people familiar with

crystalline structures might find the idea of a conformal solid rather unusual, given

the natural length scale provided by the microscopic lattice spacing. However, for

a solid with an underlying lattice, conformal symmetry would simply imply that all

possible lattice spacings are allowed.

If we assume that we have a CFT in a solid state, then conformal invariance forces

the stress tensor to be traceless. From Eq. (1.39) one deduces

T µ
µ = −2

∂F

∂BIJ
BIJ + dF = −2FX

∂X

∂BIJ
BIJ − 2

d−1∑
n=2

∂F

∂Yn

∂Yn
∂BIJ

BIJ + dF

= −2XFX − 2
d−1∑
n=2

∂F

∂Yn

(
n(Bn−1)IJ

Xn
− nYn

X
δIJ
)
BIJ + dF

= −2XFX + dF = 0 , (4.1)

which fixes the dependence of the lagrangian on X for every field configuration, i.e.

F = Xd/2f(Y2, . . . , Yd−1). (4.2)

As for the case of the superfluid, this has consequences for the sound speeds. In

particular, from equations (1.41) one easily finds that the longitudinal and transverse

speeds must be related to each other:

c2L =
1

d− 1
+ 2

d− 2

d− 1
c2T . (4.3)

In the absence of transverse modes (c2T = 0) one recovers the sound speed of conformal
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fluids and superfluids. In what follows we will treat this relation as the hallmark of

conformal solids.

It is interesting to note that in the absence of instabilities or superluminalities,

Eq. (4.3) implies that for a conformal solid

0 ≤ c2T ≤ 1/2 and 1

d− 1
≤ c2L ≤ 1 . (4.4)

Consequently, a conformal solid is always a relativistic system, hence hardly realizable

in the lab. This is also confirmed by the fact that the vanishing of the trace for the

stress energy tensor implies that pressure and energy density are of the same order of

magnitude. From a certain viewpoint, a conformal solid is closer to a fluid than the

solids we are used to in everyday life. The reason is that for common solids one can

have a nonzero density but zero pressure (e.g. your seat is not expanding underneath

you). For a conformal solid that is not possible.

EFT for solids on a sphere

Let us now work out the effective theory for solids on a sphere. In order for this

effective theory to make sense we must consider a sphere with a radius much larger

than the UV cutoff, otherwise there would be no range of energies for which we could

actually talk about collective modes. Moreover, if our solid presents an underlying

crystalline structure, dislocations will arise because of the curvature of the manifold.

We assume that we can ignore such effects if they are fairly sparse and homogeneously

distributed.

The internal symmetry group is now SO(d). The comoving coordinates, ϕI will

now be d− 1 angles that, at equilibrium, can be chosen to coincide with the physical
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angles, i.e.

⟨ϕI⟩ = θI . (4.5)

Exactly as for a flat solid, this vacuum expectation value breaks the isometries of

the sphere and the internal SO(d) (as well as the usual boosts) down to the diagonal

subgroup. The main difference with respect to a solid in flat space is the absence of

the free parameter α—see below Eq. (1.36). Such freedom is due to the fact that a

flat, homogeneous and isotropic solid can be compressed, dilated or sheared, which

corresponds to varying continuously α or turning it into a matrix. For a solid on a

sphere this cannot be done without spoiling homogeneity. For example, if we want

to compress one pole we would end up stretching the opposite one.

An effective action for the ϕI fields that is invariant under SO(d) can again be

written in terms of the matrix BIJ = ∂µϕ
I∂µϕJ . In this case, spacetime indices are

contracted with the metric for R× Sd−1, while the internal ones are contracted with

the following metric in field space:

gIJ(ϕ) = diag
(
1, sin2 ϕ1, · · · ,

d−2∏
n=1

sin2 ϕn

)
. (4.6)

The most general action will again be a function of the invariants built out of BIJ .

However, as far as the application of the holographic dictionary is concerned,

the most transparent way of writing down the EFT is to think about the (d − 1)-

dimensional sphere as being embedded in a d-dimensional flat space. One can then

introduce a real multiplet Φ⃗(x) in the fundamental representation of SO(d). This

scalar will acquire a vev in the radial direction, that we can parametrize as

⟨Φ⃗⟩ = Φ0R(θ) · x̂d, (4.7)
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with x̂d being the normal vector pointing along the xd-axis. Let us now replace the

angles θI with the comoving coordinates ϕI . Then the traces of powers of the matrix

BIJ = ∂µΦ
I∂µΦJ are invariant under SO(d), which is realized linearly on Φ⃗ and

nonlinearly on the ϕ’s. The most general effective action is then

S = Rd−1

∫
dt dΩd−1F (X, Y2, · · · , Yd−2) , (4.8)

where X and Yn are defined as in Eq. (1.37) but now using BIJ , and R is the radius

of the sphere.

To recover the EFT for flat solids, one can look at a patch of the sphere with size

much smaller than the sphere radius, i.e. such that θI = xI/R, with |xI | ≪ R. For

an observer who only has access to momenta k ≫ 1/R, it is impossible to probe the

global properties of the manifold. For such an observer α ≡ 1/R effectively plays the

role of a free parameter, to be eventually determined by boundary conditions. In this

limit we indeed find again that ⟨ϕI⟩ = αxI .

4.2 Meet the solidon

In this section we will describe our gravity dual. We will start at first with the case

of AdS space with a spherical boundary but then we will focus our attention on a

small patch of such a boundary, to recover the EFT of flat solids.

Setup

The holographic dictionary tells us to take the global symmetries of the boundary

theory and gauge them in the bulk. In light of what discussed in the previous section,

we will consider the following action for an SO(d) Yang-Mills theory coupled to a
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real scalar in the fundamental representation, i.e.

S = −
∫
dd+1x

√
−g
[
1

2
DM Φ⃗ ·DM Φ⃗ + V

(
|Φ⃗|2

)
+

1

8
FAB
MNF

ABMN

]
+ Sbdy , (4.9)

where, as in Chapter 3, the scalar potential is kept generally of the form

V
(
|Φ⃗|2

)
=
m2

2
|Φ⃗|2 + interaction terms . (4.10)

Although we will keep the interaction terms unspecified, later on in our analysis we

will restrict the range of masses. For later convenience, we also choose to work in

the notation where A,B, · · · = 1, . . . , d are indices in the fundamental representation.

With this choice, the real generators of the fundamental representation are given by

TAB
IJ = δAJ δ

B
I − δAI δ

B
J . (4.11)

The group algebra is

[
TAB, TCD

]
=

1

2
fABCDEFTEF , (4.12)

where the structure constants are

fABCDEF = δACδBEδDF + δAEδBDδCF

− δADδBEδCF − δAEδBCδDF − (E ↔ F ) . (4.13)

Moreover, from now we will use i, j, . . . = 1, . . . , d− 1. Although a bit heavier than

the usual notation with indices in the adjoint representation, this will allow an easier

classification of the quantum numbers of our fluctuations.

In order to study the spectrum of the phonons we will neglect backreaction and

consider the zero temperature case. Thus we take our background metric in global
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coordinates to be

ds2 = −
(
1 + ρ2

)
dτ 2 +

dρ2

1 + ρ2
+ ρ2dΩ2

d−1 , (4.14)

where we set again L = 1. Again, we will assume to be working with scalar field

potentials that are consistent with this approximation—see discussion below Eq. (3.9).

We now have to select our ansatze for the background fields. The scalar field profile

is simply inspired by the discussion done in the previous section, Eq. (4.7), while for

the gauge field we consider a generalization of the ‘t Hooft-Polyakov monopole [74].

In particular

Φ⃗ = φ(ρ)ρ̂, AAB
M = ρψ(ρ)∂M ρ̂ · TAB · ρ̂ , (4.15)

where ρ̂ is a unit vector pointing towards the boundary of AdS. The corresponding

equations of motion are given by

φ′′ +
(d− 1) + (d+ 1)ρ2

ρ(1 + ρ2)
φ′ − 2V ′(φ2)

1 + ρ2
φ− (d− 1)

(
1 + qρ ψ

)2
ρ2(1 + ρ2)

φ = 0 , (4.16a)

ψ′′ +
(d− 1) + (d+ 1)ρ2

ρ(1 + ρ2)
ψ′ +

(d− 3) + (d− 1)ρ2

ρ2(1 + ρ2)
ψ

−(d− 2)
(1 + qρ ψ)(2 + qρ ψ)

ρ2(1 + ρ2)
ψ − q

1 + qρ ψ

ρ(1 + ρ2)
φ2 = 0 . (4.16b)

Close to the boundary we again have

φ =
φ(1)

ρd−∆
+
φ(2)

ρ∆
+ . . . , ψ =

ψ(1)

ρ
+
ψ(2)

ρd−1
+ . . . . (4.17)

What about boundary conditions? We are looking for spontaneous breaking of

our symmetry, which means that the sources associated with charged operators must

vanish. While in the superfluid case the U(1) photon did not carry charge, here the

nonabelian gauge field does. It then follows that we must impose ψ(1) = 0. For
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the scalar field the situation is a bit more subtle. In particular, in the absence of a

temporal component for the gauge field, which provides an effective negative mass

square, the scalar field cannot condense by itself. This essentially means that the

only solution consistent with either φ(1) = 0 or φ(2) = 0 is the trivial one, as it can

be checked numerically.

We are therefore forced to introduce mixed boundary conditions, where both

falloffs are nonzero. This means that both falloffs must be normalizable and hence

the allowed range of masses is −d2/4 < m2 < −d2/4 + 1. The source of the dual

operator will be given by JΦ ∝ φ(2)− f |φ(1)|ν−1φ(1), where ν is some number and f is

the coupling associated with the multitrace operator (see Section 2.2). Our boundary

conditions will then be JΦ = 0. In particular, for ν = ∆/(d −∆) they will preserve

conformal symmetry on the boundary. These boundary conditions correspond to

deforming the QFT with the following operator

∆S[O] = f

∫
ddx
∣∣O⃗(x)

∣∣ν+1
. (4.18)

In general, this deformation should be analytic in the operator O⃗, in order for the

conformal vacuum ⟨O⃗⟩ = 0 to exist, so that it is indeed possible to regard the bound-

ary theory as a UV completion of our EFT for solids. This forces ν to be an odd

positive integer. Nevertheless, as long as we are interested in states that are far away

from the conformal vacuum (as for the study of phonons) we can keep it general.

The boundary conditions described above are achieved with the following bound-

ary term

Sbdy = −d−∆

2

∫
ρ→∞

ddx
√
−γ |Φ⃗|2 − 2∆− d

ν + 1
f

∫
ddx |Φ⃗(1)|ν+1 +O(∂2µ) , (4.19)

where again γµν is the induced metric on the boundary, and O(∂2µ) stands for higher

order terms. Such terms can always be neglected in our analysis because the back-
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Figure 4.1: Background profiles for the scalar (left panel) and gauge (right panel)
fields. The solution is obtained for d = 3, V (φ2) = −φ2 and q = 1. The gauge field
satisfies ψ(1) = 0, while the scalar satisfies φ(2) = fφ(1) with f = −1.8.

ground will not depend on the boundary coordinates xµ, while for the fluctuations

we will be implementing a low energy expansion. The first falloff is defined as

Φ⃗(1) = limρ→∞ ρd−∆Φ⃗.

The equations of motion (4.16) are both of second order and therefore we need

four integration constants. Again, we will impose regularity in the interior of AdS,

which fixes two of them. The remaining two are fixed by setting to zero the sources

associated with the scalar and gauge field. This means that, for a given coupling of

the multitrace operator, our theory will have no free parameters. This is in line with

the absence of free parameters in the EFT for solids on a sphere (see Eq. (4.5)).

In Figure 4.1 we report an example of solutions for the background profiles.

A convenient gauge transformation

In the next section we want to restrict our attention only to a region close to a pole

of our sphere, in order to recover the results for a flat solid. Before doing that, it is

convenient to perform a gauge transformation in the bulk. The radial vector can be

obtained starting from x̂d as ρ̂ = R · x̂d, with R =
∏d−1

i=1 exp
[(
θi − π

2

)
T id
]
. At this

point we can perform a gauge transformation on the profiles (4.15) with element R−1.
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The resulting profiles are

Φ⃗ = φ(ρ) x̂d, (4.20a)

AAB
M = ρψ(ρ)(R−1 · ∂MR · x̂d)T · TAB · x̂d −

1

2q
tr
(
R−1 · ∂MR · TAB

)
. (4.20b)

This is nothing but the gauge transformation that brings from a ‘t Hooft-Polyakov

solution in the so called hedgehog gauge to a Dirac monopole [74].

Flat limit

We can now finally take the flat limit and study our solidon in a small region close

to one of the poles. In order to do so we need to change from global coordinates

to Poincaré patch coordinates. This can be achieved with the following change of

variables:

ρ = R r , τ = t/R , θi =
π

2
− xi

R
, (4.21)

and by taking the large R limit [71]. This corresponds to zooming in close to the

xd-axis. Indeed, the metric becomes

ds2 = −r2dt2 + dr2

r2
+ r2dx⃗ 2

d−1 +O(R−2) , (4.22)

and the matter fields become

Φ⃗ = φ(r)x̂d , AAB
M = r ψ(r)TAB

id δiM +O(R−2) . (4.23)

Note that, with a little abuse of notation, we have relabeled the background profiles as

φ(Rr) → φ(r) and rψ(Rr)− 1
Rq

→ rψ(r). In particular, now the gauge field does not

vanish at the boundary anymore but it goes to a constant, ψ(1) ≡ 1/(Rq), which now
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plays the role of a free parameter, very much like the chemical potential of holographic

superfluids. As already mentioned, there is actually a smarter way to deduce the

ansatze (4.23) in Poincaré patch. Nevertheless, we believe the derivation presented

here is more pedagogical. The alternative derivation can be found in Appendix B.

In Poincaré patch the equations of motion for the background fields are consider-

ably simpler. They are given by

φ′′ +
d+ 1

r
φ′ − (d− 1)

q2ψ2

r2
φ− 2

V ′(φ2)

r2
φ = 0, (4.24a)

ψ′′ +
d+ 1

r
ψ′ +

d− 1

r2
ψ − q2φ2

r2
ψ − (d− 2)

q2ψ3

r2
= 0. (4.24b)

As for the superfluid, an analytical solution to these nonlinear equations is not avail-

able. Nevertheless, we will be able to solve for the fluctuations of the bulk fields as

a function of the previous profiles and we will be able to find the partially on-shell

action anyway.

4.3 Phonons of the boundary theory

Let us now introduce the fluctuations of the bulk fields. We will parametrize them as a

global SO(d) modulation of the symmetry breaking vev but with local transformation

parameters [12]. In particular, we have

Φ⃗ = (φ+ σ)M· x̂d, AM = M· (ĀM + αM) · M−1 , (4.25)

where the SO(d) element is M = exp(−πiT id). The gauge field is here represented

as a matrix in the adjoint representation.

Similarly to what we have done for the background profiles, we also perform

a gauge transformation on the fields in Eq. (4.25). We choose the transformation

72



element to be precisely M−1, in order to obtain

Φ⃗ = (φ+ σ)x̂d, AAB
M = ĀAB

M + δAAB
M . (4.26)

This is a much more convenient parametrization, since we embedded both the gauge

field and the angular perturbations in a single field. Indeed, at linear order δAAB
M =

αAB
M − 1

q
∂Mπ

AB, with πid = −πdi ≡ πi and πij = πdd = 0. At this point we still have

the residual gauge freedom of applying a transformation generated by the T ij only,

under which the scalar field is invariant. We use this to also fix the fluctuations so

that δAij
r = 0.

We are now ready to compute the partially on-shell action. We will again follow

the procedure outlined below Eq. (3.20), with the low energy expansion implemented

in the following way:

σ, δAAB
µ , ∂r ∼ O(1), ∂µ ∼ O(ϵ), δAid

r ∼ O(1/ϵ) . (4.27)

At lowest order in energy, the linearized equations for the fluctuations read

σ′′ +
d+ 1

r
σ′ − (d− 1)

q2ψ2

r2
σ − 2

V ′ + 2φ2V ′′

r2
σ + 2

q2φψ

r3
δAid

i = 0, (4.28a)

δAid ′′
j +

d− 1

r
δAid ′

j +
q2ψ2

r2

[
δAjd

i − (d− 3)δAid
j − 2δijδA

kd
k

]
−q

2φ2

r2
δAid

j + 2
q2φψ

r
δijσ = 0, (4.28b)

δAid ′′
t +

d− 1

r
δAid ′

t − (d− 2)
q2ψ2

r2
δAid

t − q2φ2

r2
δAid

t = 0, (4.28c)

δAid
r = 0 . (4.28d)

Eq. (4.28d) once again tells us that the gapless fluctuation is given by the Wilson line
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of the radial component of the gauge field, i.e.

πi = q

∫ r

0

dz αid
r (z) . (4.29)

Just like for the superfluid we will find that πi
B(x) ≡ πi(r = ∞, x) will correspond to

the Goldstone modes of the boundary theory.

Once again we will be able to rewrite the equations of motion for the fluctuations

in terms of those for the background profiles, and their derivatives. Here δAid
t is

decoupled from all other fluctuations, and it is easy to show that the regular solution

is given by δAid
t = cit(x)rψ, with generic cit. Indeed, plugging this into Eq. (4.28c),

one gets back the background equation (4.24b). Imposing double vanishing boundary

conditions both at the center and at the boundary of AdS we obtain

δAid
t = −∂tπ

i
B

qψ(1)

r ψ(r) . (4.30)

This is again the only regular solution for our boundary conditions.

To solve for the other components is a much trickier business, given the compli-

cated tensor structure. First of all let us decompose the fluctuations in irreducible

representations of SO(d), i.e.

δAid
j =

1

d− 1
δijδA

kd
k +

1

2
Ai

j +
1

2
T i
j , (4.31)

where Ai
j is antisymmetric and T i

j is symmetric and traceless. In this way, the

equations of motion for the three combinations decouple from each other.

It is easy to show that the solution for the antisymmetric part is given by Ai
j =

aij(x)rψ, with generic aij. Imposing the boundary conditions it becomes

Ai
j = −∂jπ

i
B − ∂iπ

j
B

qψ(1)

r ψ(r) . (4.32)
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Let us know turn to the trace part of Eq. (4.31). Since it is invariant under

SO(d), it has the same quantum numbers has the scalar fluctuation σ and, in fact,

their equations are coupled. If one writes σ = c(x)rφ′ and δAid
i = −c(x)r2ψ′/(d− 1),

the equations for these two fields reduce to a combination of Eqs. (4.24) and their

derivatives. Thus, the two solutions are

δAid
i =

∂iπ
i
B

qψ(1)

r2ψ′(r) , σ = −(d− 1)
∂iπ

i
B

qψ(1)

r φ′(r) . (4.33)

We should now deal with the traceless symmetric part, T i
j . Unfortunately we will

not be able to solve its equations of motion. Nevertheless, we will still constrain its

behavior close to the conformal boundary. The corresponding equation of motion

reads

T i ′′
j +

d− 1

r
T i ′
j − q2φ2

r2
T i
j − (d− 4)

q2ψ2

r2
T i
j = 0 , (4.34)

which cannot be rewritten in terms of background equations. However, we know that

the most general expression close to the boundary will be

T ij = −∂
{iπ

j}
B

q
+

T ij
(2)(xµ)

rd−2
+ . . . , (4.35)

where the first falloff has been fixed by the boundary condition at r = ∞. With { · · · }

we represent the symmetric traceless combination of indices. Now, note that the ten-

sor structure of Eq. (4.35) is trivial, i.e. all the components obey the same equation.

Moreover, the equation only involves derivatives with respect to the holographic coor-

dinate and the xµ dependences do not couple. It then follows that Eq. (4.35) is just a

second-order ordinary differential equation (ODE) for the radial dependence of each

component of the tensor. Given its linearity, the second falloff must be proportional
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to the first one. Hence we can write

T ij
(2) = −

ψ(2)

qψ(1)

λ ∂{iπ
j}
B , (4.36)

where the prefactor has been chosen for later convenience. Here λ is an integration

constant that should be determined from the exact solution to the equation of motion.

Its value will in general depend on the particular form of the background profiles.

We are almost at the end of our program. Once the on-shell fluctuations have

been found (all but πi), we can write down the partially on-shell action. Upon using

the equations of motion, the quadratic action reduces to a purely boundary term

given by

S(2) = −
∫
r→∞

ddx
√
−ggrr

[
gµν

1

2
δAid′

µ δA
id
ν + gµν

1

4
δAij′

µ δA
ij
ν +

1

2
σσ′
]
+ S

(2)
bdy , (4.37)

with S(2)
bdy given by the terms in the boundary action (4.19) that are quadratic in the

fluctuations.

The second term in square brackets does not contribute to the phonon action since

πij = 0, and we can thus neglect it. The scalar fluctuation instead enters both the last

term in square brackets and the boundary term. Together they give a contribution

that is proportional to the following dimensionless quantity:

Σ ≡ (d− 1)2(d−∆)2(2∆− d)

d− 2

[
∆

d−∆
− ν

]
f |φ(1)|ν+1

ψ(1)ψ(2)

, (4.38)

which vanishes exactly when the boundary conditions preserve the conformal invari-

ance of the boundary theory, i.e. for ν = ∆/(d − ∆)—see Seciton 4.2. Using the

solutions in Eqs. (4.30), (4.32), (4.33) and (4.34) we finally obtain the action for the
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boundary phonons

S(2) = −d− 2

2

ψ(2)

q2ψ(1)

∫
ddx

{
˙⃗π2
B − (∂kπ

k
B)

2 − 1

2

[
(∂jπ

i
B)

2 − (∂kπ
k
B)

2
]

− λ

2

[
(∂jπ

i
B)

2 +
d− 3

d− 1
(∂kπ

k
B)

2

]
− Σ (∂kπ

k
B)

2

}
(4.39a)

= −d− 2

2

ψ(2)

q2ψ(1)

∫
ddx

{
˙⃗π2
L + ˙⃗π2

T −
[
1 + λ

d− 2

d− 1
+ Σ

]
(∂jπ

i
L)

2 − λ+ 1

2
(∂jπ

i
T )

2

}
,

(4.39b)

where the phonon field has been split into a longitudinal and a transverse component,

π⃗B = π⃗L + π⃗T . Our numerical analysis shows that the two gauge field falloffs, ψ(1)

and ψ(2), have opposite sign, and hence, at least for some potentials, the Goldstones

are not ghost-like.

The two sound speeds can be readily obtained from Eq. (4.39b). They are

c2T =
λ+ 1

2
, and c2L = 1 + λ

d− 2

d− 1
+ Σ . (4.40)

Their values will depend in a complicated way on the particular bulk theory under

consideration. This is because both the integration constant λ and the parameter Σ

depend on the background field profiles, and hence on the scalar potential. However,

in the conformal case, Σ = 0, the speeds of sound are related to each other by

c2L =
1

d− 1
+ 2

d− 2

d− 1
c2T , (4.41)

for any value of λ. This is precisely the relation anticipated in Section 4.1 for confor-

mal solids. We interpret this as an analytical proof that our gravity dual is indeed

the right one.
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4.4 Melting the solidon

We just argued that our solidon is indeed dual to a solid on the boundary of AdS. A

very natural question that one might want to answer is then: does our solid melt?

To answer it we need to turn on temperature, but there are first a few subtleties

to be addressed. First of all we will move back to global coordinates, where we are

confident that the global properties of our fields are well defined. Secondly, since now

we want to look for a transition between a spontaneously broken phase, ⟨O⃗⟩ ̸= 0,

and the conformal vacuum, ⟨O⃗⟩ = 0, we need to introduce in our theory a multitrace

deformation that is analytic in O⃗. This means that the boundary conditions must be

φ(2) = fφν
(1) with ν odd. In particular, we will choose d = 3 and ν = 1, in which case

the deformation is relevant.

At this stage we reintroduce backreaction. We parametrize the metric as

ds2 = −(1 + ρ2)h(ρ)g(ρ)dt2 +
h(ρ)

g(ρ)

dρ2

1 + ρ2
+ ρ2dΩ2

2 . (4.42)

We also consider the case of a free scalar with m2 = −2, which is safely above

the Breitenlohner-Freedman bound [45]. Lastly, we set q = 1 for simplicity. The

equations of motion for the background profiles now read

φ′′ +

(
2 + 4ρ2

ρ(1 + ρ2)
+
g′

g

)
φ′ +

2h

(1 + ρ2)g
φ− 2h(1 + ρψ)2

gρ2(1 + ρ2)
φ = 0 , (4.43a)

ψ′′ +

(
2 + 4ρ2

ρ(1 + ρ2)
+
g′

g

)
ψ′ +

(
2

1 + ρ2
+
g′

ρg

)
ψ − h(1 + ρψ)(2 + ρψ)

gρ2(1 + ρ2)
ψ

− h(1 + ρψ)

gρ(1 + ρ2)
φ2 = 0 . (4.43b)

Einstein’s equations can instead be combined to yield the following first order equa-
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tions for h and g:

g′ +
1 + 3ρ2

ρ(1 + ρ2)
g − 1 + 3ρ2

ρ(1 + ρ2)
h+

ψ2(2 + ρψ)2 + 2φ2(1− ρ2 + 2ρψ + ρ2ψ2)

2ρ(1 + ρ2)
h = 0 ,

(4.44a)

h′ −
(
ρ

2
φ′2 +

(ψ + ρψ′)2

ρ

)
h = 0 . (4.44b)

Einstein’s equations also present a second order one which, however, can be derived

from the ones above. Note that we again set L = 1 as well as Mp = 1. This can be

done by an appropriate rescaling of the fields as well as of the Planck mass, the AdS

radius and the couplings q and f (see [73]).

In Section 2.4 we learned that there are two possible ways to introduce tem-

perature in the bulk. We could either compactify the Euclidean time (a so called

thermal soliton) for our solidon configuration, or place the solidon on a black hole

background. It can be shown numerically that, for every fixed f , there is always a

minimum temperature below which the black hole solution ceases to exist—i.e. there

are no solutions with the prescribed boundary conditions—which is in contrast with

the fact that solids at zero temperature do exist. We will therefore simply consider

the case of a thermal solidon.

Let us now solve the equations in the bulk. Regularity fixes three out six free

parameters, and the remaining ones can be taken to be φ′(0), ψ′(0) and g(0). Close

to the boundary, the asymptotic behaviors are

φ =
φ(1)

ρ
+
φ(2)

ρ2
+ . . . , (4.45a)

ψ =
ψ(1)

ρ
+
ψ(2)

ρ2
+ . . . , (4.45b)

g = g(0) +
g(0)φ

2
(1)

4ρ2
+
g(3)
ρ3

+ . . . , (4.45c)

h = g(0) −
g(0)φ

2
(1)

4ρ2
−

2g(0)φ(1)φ(2)

3ρ3
+ . . . . (4.45d)
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As anticipated, we will use the three free parameters to impose g(0) = 1, ψ(1) = 0 and

φ(2) = fφ(1). Our life can be made easier by noticing that the equations of motion

exhibit the following scaling symmetry

t→ t/a, g → ag, h→ ah. (4.46)

This can always be used to rescale a particular solution in order to achieve g(0) = 1.

The two free parameters left are φ′(0) and ψ′(0), and they can be used in a shooting

algorithm to impose the two remaining boundary conditions.

It is well known that the free energy of the boundary theory is given by the on-shell

Euclidean action of the bulk side, F = TSE (see e.g. [38, 40]), where the temperature

is the inverse of the periodicity of time. Notice that our background does not depend

on time, and hence we can set our system to any temperature we want. The complete

on-shell Euclidean action is given by

SE = −
∫
d4xE

√
gE

[
R

2
+ 3 + Lm

]
+ SGH

E + Sc.t.
E + Sbdy

E . (4.47)

Here Lm is the lagrangian for the matter fields, R is the Ricci scalar for the bulk

spacetime, and Sbdy
E is the Euclidean analogue of the action in Eq. (4.19). Moreover,

SGH
E and Sc.t.

E are the Gibbons-Hawking [75] and counterterm [76] actions, which are

needed to fix the variational problem and cure the divergences of the gravity part of

the action. In our case, they are given by

SGH
E = −

∫
ρ→∞

d3xE
√
γE K, (4.48)

Sc.t.
E =

1

2

∫
ρ→∞

d3xE
√
γE

[
4 + R + RµνRµν −

3

8
R2
]
. (4.49)

Here, K = nρ∂ρ log√γE is the scalar extrinsic curvature of the boundary, γE the

Euclidean induced metric, nρ = 1/
√
gρρ the ρ-component of the vector normal to the
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Figure 4.2: Comparison between the free energies of the solidon for two different
values of the double trace coupling, and the free energy of SAdS. Below T =

√
3/2π

the black hole ceases to exist. The gray dashed line corresponds to pure AdS.

boundary, and Rµν the Ricci tensor built out of the induced metric.

The melting of our solid will correspond to a transition between a spontaneously

broken phase and an unbroken one. We therefore need to compare the free energy of

the solidon with that of a solution with φ = 0. Given that the source of the gauge

field is set to zero as well, it turns out that the only possibility is the one for which

ψ = 0 as well. Consequently we consider the simple Schwarzschild-AdS (SAdS) black

hole. This is also very reasonable given that such a solution is well known to be dual

to a fluid.

The result of this comparison is reported in Figure 4.2. It is evident that below

a certain critical temperature our solidon is the preferred configuration. Moreover,

the derivative of the free energy presents a discontinuity at the critical temperature,

which is the hallmark of a first order phase transition. Indeed, the dual interpretation

is that of a solid-to-liquid phase transition. Moreover, the fact that the free energy

approaches a constant value at zero temperature is consistent with what expected

from a solid [77].

Two comments are in order. First of all, it should be noticed that we ignored
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the contribution of phonons to the free energy, since we are working solely with

the background profiles. Phonons are expected to contribute with an additive term,

Fπ ∝ 2 × T 3, with 2 being the number of polarizations in d = 3 dimensions [77].

At low temperatures this contribution will be smaller than the constant term. Even

though a more accurate analysis should include such a factor, unless the speed of

sound is very small, we expect the large N2
c factor of the black hole free energy to

ensure for the phase transition to happen anyway.

Secondly, one should be careful to make sure that the parameters of the solutions

we are considering are such that they indeed allow for a large separation between the

IR and UV cutoffs (see discussion in Section 4.1). Our IR cutoff is simply the inverse

radius of the sphere, while the UV one is set by the energy density of our solution ⟨T00⟩.

Taking into account the fact that 1/Nc here plays the role of a coupling, the criterion

to have a parametric separation between these cutoff is ⟨|T00|⟩/N2
c ≫ 1/R3. It can

be checked that our results actually do not satisfy this requirement. Nevertheless, we

showed in [73] that the results can be easily extrapolated to the correct regime, and

that the conclusions remain unchanged.

4.5 Summary

In this chapter we have derived the gravity dual of a solid in d spacetime dimensions,

which turned out to be an SO(d) magnetic monopole coupled to a scalar in the fun-

damental representation. Such a solution can only be achieved with mixed boundary

conditions, and we called it a solidon. The operators dual to the bulk fields realize

precisely the symmetry breaking patter of a solid, as explained in Chapter 1. To prove

that this is indeed the case, we employed the techniques developed in Chapter 3 for

holographic superfluids and we explicitly computed the action for the phonons of the

boundary theory. We showed that in the conformal case we recover what is expected
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from the EFT approach.

Moreover, we studied the melting of our solid: as the temperature is raised our

solid undergoes a first order solid-to-liquid phase transition. The dual interpretation

of this is a transition between the solidon and an SAdS solution. It is rather interesting

to note that this happens for temperatures that are larger than the one at which the

Hawking-Page phase transition occurs [78]. This seems to suggest that there might

be strongly coupled theories that, at low temperatures, undergo a transition to a solid

state rather than a confined one.

Our results have the nice feature of not only filling a gap in the zoology of holo-

graphic states of matters, but also of making explicit contact between the holographic

language and the EFT one.

Lastly, we are not aware of any evident connection between our results and those

presented in [67–70].
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Vortex lines in superfluids

The developments of the previous chapters were mostly formal, given that the main

goal was to recover the known EFT formulation from the holographic approach. The

aim of this chapter is instead rather different and, at least to the very personal opinion

of the author, more relevant. Here we try to convince the reader that the effective

theory approach to condensed matter is now mature enough to be more than an

interesting theoretical formulation of some well known problems. We will show that

it can be used successfully as a powerful tool to describe the real world and that, in

certain circumstances, it presents several advantages over more traditional methods.

We will do so through a specific example, by studying the precession of a straight

vortex in a confined superfluid. Such a phenomenon is well known and it has been

the object of intense theoretical study [79–85]. Nevertheless, the EFT formulation

will provide a particularly transparent explanation for it, and will allow us to derive

it in a very simple and general way.

In order to do that, we will present an effective string theory for vortex lines

in superfluids, and then explore its consequences in the presence of some external
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trapping that spatially confines the system. Of course, writing down such an EFT is

not an easy task, and it requires a fair amount of work and theoretical understanding.

Nevertheless, it can be done once and for all. After the theory has been written down

it can be used in a variety of contexts, and it often makes the theorist’s life much

easier.

The results of this chapter were presented in [86].

5.1 Vortices and their precession

Let us now summarize the main properties of vortices in superfluids, and describe

the phenomenon of their precession in confined ultra cold atoms. Explaining this

phenomenon will be the ultimate goal of this chapter.

A brief introduction to vortex lines

The vorticity of a superfluid is identically zero, given that its velocity field can be

expressed as the gradient of a scalar, v⃗ = ∇⃗ϕ/m, where m is the mass of the mi-

croscopic component of the superfluid. The possible motions of the condensate are

therefore quite limited. One possibility is that of vortices [20, 87], i.e. string-like

objects of atomic thickness, where the U(1) symmetry is locally restored. They are

the only degrees of freedom that can carry vorticity (which is localized on the line),

and the velocity field around them is irrotational but nontrivial. For example, for a

straight vortex configuration the velocity field away from the vortex has a 1/r profile.

The circulation around the vortex line is quantized. In particular

Γ =

∮
dℓ⃗ · v⃗ =

2πγ

m
, (5.1)
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where γ is an integer. The possibility of quantized circulation was first introduced

by Onsager in [88] and Feynman in [89].

The first indirect evidences for the existence of these objects were already obtained

half a century ago in superfluid He-4 [90, 91], and they were later followed by several

direct observations (see e.g. [92–96]).

Vortex precession

When a vortex is created off-axis in a confined superfluid (i.e. of finite size), it

spontaneously starts orbiting around the axis of the cloud. Moreover, at least for

vortices close enough to the center of the superfluid, if the cloud is circular, so is the

orbit of the vortex line. If the cloud is elliptical the orbit will be elliptical as well,

with the same aspect ratio. It is also interesting to note that to trigger the rotation

no initial “push” is required. The simple fact that the vortex is located away from

the center of the superfluid will force it to rotate. The explanation of this will be

clear in the next section. The first observation of such a phenomenon (the so called

precession) was made in [97] using a nearly spherical condensate of 87Rb. A more

recent analysis was instead reported in [98], where the authors studied the trajectory

and precession frequency of a vortex line in an elliptical cloud of 6Li. A representation

of this phenomenon is reported in Figure 5.1.

An interesting peculiarity of this phenomenon is given by the magnitude of the

precession frequency when the system is confined by an harmonic trapping. Suppose

that the atom cloud is confined by some effective potential of the form

V (x⃗⊥) =
m

2

(
ω2
xx

2 + ω2
yy

2
)
. (5.2)

It can be shown that in this situation the precession frequency for a straight vortex
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Figure 5.1: Experimental observation of the vortex precession as reported in [98]. (a)
Tomographic image of a slice of the superfluid cloud along a direction parallel to the
vortex line. The oscillatory motion of the vortex is evident. (b) Density profile of the
cloud. The depletion corresponds to the position of the vortex, which is fitted by the
black solid line. (c) Average vortex oscillation as seen in a plane perpendicular to the
vortex axis. The average has been computed by repeating the experiment ∼ 7 times
for each slice in the y direction. (d) Vortex trajectory on the plane perpendicular to
itself as a function of time. Note that, in this plot, the x axis has been labeled z. We
prefer to keep our xy labeling for clarity with the following analysis.

is given by

ωp =
3

4

ωxωy

µ
log (R⊥/ξ) , (5.3)

where µ is the chemical potential, R⊥ is the typical transverse size of the cloud, and ξ

is the so called healing length [20], which can be thought of as the microscopic size of

the vortex core. Given that R⊥ ≫ ξ, the precession frequency is quite larger that the

typical frequency of the system, which is set by either ωx or ωy. Such an enhancement

is indeed observed experimentally [98].
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It should be noted that different traditional approaches often disagree on the exact

expression for Eq. (5.3) (see e.g. [79, 81, 82] and [83]). The experimental analyses

are now refined enough to be able to discriminate between the different possibilities.

We will show that our EFT approach easily recovers Eq. (5.3). As we will show, the

vortex precession is due to long distance physics, rather than the microscopic one.

This means that it follows essentially from the symmetries of the confined superfluid.

In this cases the EFT methods are the most suitable ones, since they do not depend

on the assumptions and approximations made for the microscopic dynamics.

5.2 One more EFT: vortex lines in superfluids

Let us now describe the effective theory for vortex lines in superfluids. The vortex

thickness is comparable to the typical atomic scales; at much longer distances, the

vortex can be described as a string coupled to the superfluid modes [99]. The develop-

ment of such an EFT is an interesting topic per se, but to present it in all its details

goes beyond the goal of this work. In the next few sections we will present those

aspects that are of importance for the vortex precession. For all the other details the

reader should refer to [99] (see also [100]).

An alternative action for the superfluid modes

As mentioned above, we will effectively describe the vortex line as a classical string.

However, if we describe the superfluid modes with the single scalar ϕ presented in

Section 1.4 we run into complications. In particular, in the presence of a vortex, the

scalar field becomes the winding number around the vortex and it is therefore not

single valued. This means that the leading coupling between ϕ and the string will

contain at least one derivative. This is because derivatives of ϕ are single valued and

can hence be used to write down local couplings.
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Nevertheless, in 3 + 1 dimensions, a theory of a scalar field with shift invariance

always admits a dual description in terms of a 2-form field Aµν whose action is now

invariant under the following gauge transformation [101, 102]:

Aµν → Aµν + ∂µθν − ∂νθµ. (5.4)

The most general effective action for such a field, at lowest order in derivatives is

given by

S =

∫
d4xG(Y ), with: Y = −FµF

µ and F µ =
1

2
ϵµνρσ∂νAρσ, (5.5)

where again G(Y ) is an a priori generic function. In Appendix C we show how to go

from the scalar to the 2-form formulation of the system.

The action (5.5) describes the dynamics of the superfluid modes. In particular,

the energy density, pressure and four-velocity are given by

ρ = −G(Y ), p = G(Y )− 2Y G′(Y ) and uµ = − Fµ√
Y
, (5.6)

while n =
√
Y is the superfluid number density.

The relation between Fµ and the old ϕ is given by ∂µϕ/
√
X = Fµ/

√
Y . From this

relation we deduce that, on the background, it must be

1

2
ϵijk∂i⟨Ajk⟩ = −n̄, 1

2
ϵijk (2∂j⟨A0k⟩ − ∂0⟨Ajk⟩) = 0, (5.7)

which are solved, up to gauge transformations, by

⟨A0i⟩ = 0 and ⟨Aij⟩ = −1

3
n̄ϵijkx

k. (5.8)

This background profiles implement the superfluid symmetry breaking pattern in
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the dual description. The fluctuations of the 2-form around equilibrium can be

parametrized using two 3-vectors, A⃗ and B⃗:

A0i(x) =
n̄

c
Ai(x), Aij(x) = n̄ϵijk

(
−1

3
xk +Bk(x)

)
, (5.9)

where we have explictly reintroduced the speed of light, c, to facilitate the nonrela-

tivistic (NR) limit later on. The quadratic action for these fields now reads

S(2) =
w̄

c2

∫
d3xdt

{
1

2

(
∇⃗ × A⃗

)2
+

1

2

[
˙⃗
B2 − c2s

(
∇⃗ · B⃗

)2]− ˙⃗
B ·
(
∇⃗ × B⃗

)
− 1

2ξ

(
∇⃗ × B⃗

)2
+

1

2ξ

(
∇⃗ · A⃗

)2}
. (5.10)

Here w̄ = ρ̄+ p̄ = −2n̄2G′(n̄2) is the background (relativistic) enthalpy density, while

the sound speed is given by c2s = (2Y G′′ + G′)/G′, evaluated on the background as

well. We also introduced the following gauge fixing term

Sg.f. = − w̄

n̄2

∫
d3xdt

1

2ξ

(
∂iAiµ

)2
. (5.11)

From now on we will also work in the Landau gauge, ξ → 0, which imposes

∂iAiµ = 0. This forces the A⃗ field to be purely transverse, ∇⃗ · A⃗ = 0, and the B⃗ field

to be purely longitudinal, ∇⃗× B⃗ = 0. In this gauge the mixing terms disappear from

Eq. (5.10), and the two propagators are easily found to be

Gij
A(k) =

c2

w̄

i(δij − k̂ik̂j)

k2
, Gij

B(k) =
c2

w̄

i k̂ik̂j

ω2 − c2sk
2
. (5.12)

From here we can easily understand the physical meaning of these two new fields.

The B⃗ field describes a longitudinal mode that propagates at the speed of sound,

i.e. nothing but the superfluid phonon. The A⃗ field instead does not propagate any

additional degree of freedom (there is no ω in its propagator), but can mediate long
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distance interactions. It is very similar to the static Coulomb potential, and for this

reason it is dubbed hydrophoton [103].

The action for the vortex line

The action in Eq. (5.5) describes the dynamics of the superfluid bulk modes, in the

absence of any vortex line. In this section we introduce our string-like object, as well

as its interactions with the A⃗ and B⃗ fields.

As already mentioned, when we are only interested in long distance phenomena,

the vortex line can effectively be treated as a string, described by an embedding

position Xµ(τ, σ), where σ is a coordinate along the string itself. It is well known

that the action for the string alone is given by a Nambu-Goto term [104], i.e.

SNG′ ∝
∫
dσdτ

√
− det (Gµν(X)∂αXµ∂βXν). (5.13)

From now on α, β, . . . run over the worldsheet coordinates τ and σ. Here Gµν(X)

is any tensor that could play the role of a spacetime metric. In vacuum this can

only be Gµν = ηµν , but in a Lorentz-violating background as ours we have different

possibilities. In particular, there is now another gauge invariant object that can

carry a Lorent index, i.e. the superfluid four-velocity in Eq. (5.6). A perfectly valid

metric could be any linear combination of ηµν and uµuν , with coefficients that can

in principle also depend on Y . One can at this point borrow a result from bi-gravity

theories [105], i.e. that given two metrics, gαβ and hαβ, the most general action that

is diff invariant and with no derivatives is

∫
ddx

√
− det gf

(
(g−1 · h)αβ

)
, (5.14)
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where f(Mα
β) is a generic function1.

For our worldsheet, the two possible metric tensors can be taken to be

gαβ = ηµν ∂αX
µ∂βX

ν , and hαβ = uµuν ∂αX
µ∂βX

ν . (5.15)

It turns out that there is only one independent invariant that can be built out of

these two tensors [99], i.e. the trace gαβhαβ. Moreover, we can also include a generic

dependence on the gauge invariant quantity Y . The action for a free string in the

superfluid is then given by

SNG′ = −
∫
dτdσ

√
− det g T

(
gαβhαβ, Y

)
. (5.16)

The function T is essentially a generalization of the standard string tension.

This is not the end of the story. There is one more term that is gauge, Lorentz

and reparametrization invariant2, i.e. the direct coupling between the string and the

bulk modes:

SKR = λ

∫
dτdσAµν∂τX

µ∂σX
ν , (5.17)

where the 2-form is computed on the string worldsheet, and KR stands for “Kalb-

Ramond”. Here λ is an effective coupling which is related to the vortex circulation

by λ = w̄Γ/n̄. The possibility to build the direct interaction (5.17) is the reason why

we introduced the 2-form language in the first place. The same interaction written

in therms of the scalar field ϕ will look highly nonlocal [100].

There are of course also higher derivative terms which, however, are negligible in

our long distance regime.

1To be more precise, the only requirement on f is that f(M) = f(S ·M · S−1) for any S.
2The invariance under reparametrizations corresponds to the freedom of redefining the world-

sheet coordinates, τ → τ ′(τ, σ) and σ → σ′(τ, σ).
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Expanding the action

The complete action for a vortex line in a superfluid is given by Eqs. (5.5), (5.13)

and (5.17). We are interested in expanding it for small fluctuations and small deriva-

tives. Before doing so one must notice that, in order for the effective theory to be

valid, the velocity of the vortex must be much smaller than the speed of sound3. To

see that, recall that the velocity of the superfluid at a distance r from the vortex is

of order v ∼ Γ/r (see Eq. (5.1)). Since this must be smaller than the sound speed up

to distances of the order of the vortex core, ξ, we must have Γ ≲ csξ. Now imagine

that the string is perturbed around a straight configuration by a distortion of typical

length ℓ. The typical vortex velocity will be [106]

∂tX⃗ ∼ Γ/ℓ≪ cs, (5.18)

given that the vortex core must be much smaller than ℓ.

Our expansion will therefore be an expansion in small fluctuations around equi-

librium, small derivatives of the A⃗ and B⃗ fields, and small string velocities. Note that

the Kalb-Ramond coupling starts at first order in ∂tX⃗. The final result is

S → w̄

c2

∫
d3xdt

[1
2

(
∇⃗ × A⃗

)2
+

1

2

( ˙⃗
B2 − c2s(∇⃗ · B⃗)2

)
(5.19a)

+
1

2

(
1− c2s

c2

)
∇⃗ · B⃗

( ˙⃗
B − ∇⃗ × A⃗

)2]
−
∫
dtdσ

[1
3
n̄λ ϵijkX

k∂tX
i∂σX

j + T(00)
∣∣∂σX⃗∣∣] (5.19b)

+

∫
dtdσ

[
n̄λ
(
Ai∂σX

i + ϵijkB
k∂tX

i∂σX
j
)

(5.19c)

+
∣∣∂σX⃗∣∣(2T(01)∇⃗ · B⃗ + 2T(10)

( ˙⃗
B − ∇⃗ × A⃗

)
· v⃗⊥
c2

)]
,

where v⃗⊥ is the local superfluid velocity perpendicular to the string, and the T s are

3This is not a NR limit, given that the sound speed cs can still be comparable to the speed of
light.
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effective couplings obtained from the generalized tension by

T(mn) = ambn
∂m

∂am
∂n

∂bn
T (a, b), (5.20)

evaluated on the background. For the sake of brevity we only included one cubic term,

which is already known to contribute to the renormalization of T(01) coupling [99],

and will be crucial for our analysis as well.

We can already note a very interesting feature of Eq. (5.19a). The kinetic term

for the vortex is only of first order in time derivatives. This means that to determine

the vortex trajectory one only needs to provide one initial condition, e.g. its position.

This is why the vortex precession does not require an initial “push” to the vortex

itself, as mentioned in Section 5.1.

The terms in Eq. (5.19a) describe the interaction of the bulk modes in the absence

of a vortex, those in Eq. (5.19b) describe the dynamics of the string moving in the

superfluid at equilibrium, and those in Eq. (5.19c) describe the coupling between the

vortex line and the superfluid modes.

5.3 Trapping the superfluid

The superfluid considered in the previous section clearly has no boundaries. However,

if we want to apply the EFT we just developed to a real experiment we need to be able

to describe the spatial confinement of the superfluid. Let us forget for a moment about

the presence of the vortex and, once again, let symmetry be our guiding principle.

Of course the trapping term will have to explicitly depend on position, and its most

general form will be [86]

Str = −
∫
d3xdt E

(√
Y , u⃗, x⃗

)
, (5.21)
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where E is for now a generic function with dimensions of an energy density. In terms

of the fluctuations, Y and u⃗ are readily found to be

Y = n̄2

[(
1− ∇⃗ · B⃗

)2 − 1

c2
( ˙⃗
B − ∇⃗ × B⃗

)2]
, u⃗ =

˙⃗
B − ∇⃗ × A⃗

1− ∇⃗ · B⃗
. (5.22)

The trapping term therefore provides new interactions for the superfluid bulk modes:

Str →
∫
d3xdt

{
n̄V (x⃗)

[
∇⃗ · B⃗ +

1

2c2
( ˙⃗
B − ∇⃗ × A⃗

)2]
− 1

2
ρij(x⃗)

( ˙⃗
B − ∇⃗ × A⃗

)i( ˙⃗
B − ∇⃗ × A⃗

)j}
, (5.23)

where

V (x⃗) ≡ ∂E
∂
√
Y
, ρij(x⃗) ≡

∂2E
∂ui∂uj

, (5.24)

both evaluated on the background, Y = n̄2 and u⃗ = 0. Here we have assumed that

the trapping mechanism does not involve any breaking of time-reversal symmetry. If

such a breaking is present (e.g. for magnetic trapping of charged particles) then one

should also allow for a term linear in u⃗. The truncation done in Eq. (5.23) is all we

need for our purposes.

It should be noted that in the standard Gross-Pitaevskii approach [20, 22] the

spatial confinement of the superfluid happens through a direct coupling between

the trapping potential, Vtr(x⃗), and the superfluid number density. This corresponds

to a particular case of our more general formula. In particular, it corresponds to

E(
√
Y , u⃗, x⃗) = Vtr(x⃗)

√
Y . If we neglect the dependence on the superfluid velocity, the

two approaches coincide at lowest order in perturbation theory.

The action (5.23) provides an external source for the phonon field, i.e.

J⃗B(x) = −n̄ ∇⃗V (x⃗) . (5.25)
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Such an external source will modify the superfluid background. In particular, the

new expectation value for the phonon field can be computed with standard Green’s

functions techniques:

⟨Bi(x)⟩ =
∫
d3kdω

(2π)4
iGij

B(k)J
j
B(k) e

ik·x , (5.26)

from which it immediately follows that

⟨∇⃗ · B⃗⟩ = n̄c2

w̄c2s
V (x⃗) . (5.27)

Since there are no external sources for A⃗, and the vev in Eq. (5.26) is time-

independent, it follows from Eq. (5.22) that the superfluid density in the presence of

a weak external trap is given by

n(x⃗) =
√
Y = n̄

(
1− n̄c2

w̄c2s
V (x⃗)

)
. (5.28)

This result is completely relativistic and true for any fairly regular trapping potential.

In the NR limit the enthalpy density is dominated by the mass density, and therefore

w̄ ≃ mn̄c2. The local number density then reduces to

n(x⃗) → n̄

(
1− V (x⃗)

mc2s

)
, (5.29)

which is the standard result obtained in the Thomas-Fermi approximation4 [20].

It is also quite interesting to note that the dependence of the superfluid density on

the trapping potential is completely local, i.e. the density at position x⃗ only depends

on the value of the trap at the same point. This is not what one would have expected.

4To make better contact with the more standard language the reader might want to recall that,
in the Gross-Pitaevskii approximation of weak coupling, one has c2s = µ/m and µ = nU0, where µ
is the chemical potential and U0 is the coupling of the nonlinear terms in the equation.
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Figure 5.2: Resummation of the nonlinear corrections to Eqs. (5.28) and (5.29). The
crossed circles represent the trapping potential V , the squares the density and the
wavy lines the B⃗ propagator.

In fact, integrating out gapless modes as in this case typically results in non-local

interactions. What is happening here is that the number of spatial derivatives acting

on B⃗ in the expression for the density and in the interaction term cancel exactly the

powers of momentum that appear in the denominator of the propagator of B⃗.

The EFT language we are using here also allows us to perform one more step

forward. Eq. (5.29) is true to first order in the trapping potential. Nevertheless,

since the superfluid density will eventually go to zero far enough from the center of

the cloud, this approximation must break down close to the edge. Nevertheless, the

spatial position around which we are performing the expansion is clearly arbitrary.

In other words, we can always redefine n̄ to be the density of the superfluid at a

point different from the center of the cloud. It follows that we are truly expanding in

small variations of the potential. We can thus transform Eq. (5.29) into a differential

RG-type equation [86]:

c2s(n)
dn

n
= −dV

m
. (5.30)

The solution to this will give the density to all orders in the trapping potential, and

corresponds to a resummation of tree level diagrams as in Figure 5.2. This is another

advantage over the traditional approach. In fact, one typically assumes the naïve

equation of state c2s ∝ n, in which case Eq. (5.29) is true to all orders in V . For more

general (and realistic) equations of state, the nonlinear corrections might be relevant.
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5.4 Vortex precession in 2D

Let us now consider a superfluid only confined in the x⃗⊥ = (x, y) plane, which cor-

responds to a trapping potential constant along the z direction. We will work in a

gauge for the string worldsheet such that τ = t, and we will restrict ourselves to a

straight vortex, along the z-axis, i.e. X⃗(t, z) = (X(t), Y (t), z). We also assume that∣∣X⃗∣∣ ≪ R⊥, where R⊥ is the typical transverse size of the cloud. Moreover, to make

the comparison with experiment more direct, we will take the nonrelativistic limit

from the beginning, i.e. considering c → ∞. To this end, we treat ρij in Eq. (5.23)

as a relativistic correction as well, assuming that it is secretly suppressed by inverse

powers of c. Indeed, the direct coupling to the superfluid velocity can be achieved ex-

perimentally from Doppler-like effects [107]. The inclusion of relativistic corrections

is quite straightforward and it is reported in Appendix D.

The vortex effective action

From the action (5.19c) we see that the vortex line as well provides additional external

sources for the superfluid modes. In particular, for c → ∞, such sources are easily

found to be

J⃗A(x) = n̄λδ2(x⃗⊥ − X⃗)ẑ, (5.31a)

J⃗B(x) =
[(
n̄λϵabẊ

b − 2T(01)∂a

)
δ2(x⃗⊥ − X⃗)− n̄∂aV (x⃗⊥)

]
x̂a⊥ , (5.31b)

where, from now on, a, b = 1, 2.

What should we do now? Our final goal is that of describing the motion of the

vortex line. To this end, the procedure we will follow is the standard one for effective

theories:

1. Solve the equations of motion for the A⃗ and B⃗ fields in the presence of the
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Figure 5.3: Feynman diagrams representing the nonrelativistic interactions between
the worldsheet of the vortex line and the trapping potential (crossed circle). The
interaction can be mediated by phonons (wavy blue line) or hydrophotons (dashed
red line). The cubic term in Eq. (5.19a) can be thought of as a correction to the
hydrophoton propagator.

sources reported above.

2. Plug such solutions back into the original action to find the effective action for

the vortex only. This amounts to integrating out the gapless modes on-shell.

3. Once the effective action is known, finding the trajectory of the vortex reduces

to a simple point particle problem.

Integrating out the A⃗ and B⃗ modes at lowest order will result in the following

additional term to the string action

Seff[X⃗] ⊃
∫
d3kdω

(2π)4
[
J i
A(−k)iG

ij
A(k)J

j
A(k) + J i

B(−k)iG
ij
B(k)J

j
B(k)

]
. (5.32)

Inspecting the sources in Eqs. (5.31), it is clear that these correction will contain

mixed terms describing the interaction between the vortex line and the trapping

potential, mediated by the superfluid modes. This corresponds to computing the

Feynman diagrams in Figure 5.3.

The free action for the string already contains a kinetic term and therefore every

correction to it coming from the interaction with V will be subleading. On the

other hand, it does not feature any space-dependent potential. Hence, every “force”
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acting on the vortex will necessarily arise from the interaction with V . Based on

these considerations, we can neglect the first term in the source (5.31b), which is

proportional to a time derivative and will result in a correction to the vortex kinetic

term.

The term due to the interaction mediated by a phonon is easily found to be (recall

that in the NR limit w̄ ≃ mn̄c2)

S
(B)
eff [X⃗] ⊃

2T(01)
mc2s

∫
dtdz V (X⃗) . (5.33)

This is again completely local in the potential, for the same reasons explained around

Eq. (5.29). The contribution from the hydrophoton is instead

S
(A)
eff [X⃗] ⊃ n̄3λ2c4

8π2w̄2c2s

(
1− c2s

c2

)∫
dtdzd2x⊥

V (x⃗⊥ + X⃗)

x2⊥
, (5.34)

which is instead nonlocal in the sense that it depends on the value of the potential

away from the position of the vortex. The complete effective action for the vortex

line in the nonrelativistic approximation is then given by

S
(NR)
eff [X⃗] =

∫
dtdz

[
n̄λ

3
ϵabX

aẊb +
2T(01)
mc2s

V (X⃗) +
n̄λ2

8π2m2c2s

∫
d2x⊥

V (x⃗⊥ + X⃗)

x2⊥

]
.

(5.35)

This result is very powerful. It allows us to describe the vortex motion for any regular

trapping potential, as long as the vortex is located at a position where perturbation

theory in the small trap does not break down.

As promised, finding the equations of motion for the position of the string is now

just a point particle problem. In particular, they are given by

2n̄λ

3
ϵabẊ

b − ∂aVeff(X⃗) = 0 , (5.36)
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where the effective potential, for vortex lines close to the center of the cloud, can be

approximated by

Veff(X⃗) ≃ −1

2
XaXb

[
2T(01)
mc2s

∂a∂bV (0) +
n̄λ2

8π2m2c2s

∫
d2x⊥

∂a∂bV (x⃗⊥)

x2⊥

]
, (5.37)

where we have assumed that the potential and its gradient vanish at the center of

the cloud, V (0) = ∇⃗V (0) = 0, which is what defined the “center”. It is important

to stress that the result in Eqs. (5.36) and (5.37) is valid whether the microscopic

theory is weakly coupled or not.

This could in principle be the end of the story. However, to reproduce the ex-

perimental results we will now specify the form of the trapping potential. In par-

ticular, there will be two qualitatively different regimes: harmonic traps for which

∂a∂bV (0) ̸= 0, and anharmonic traps for which ∂a∂bV (0) = 0.

Harmonic traps — ∂a∂bV (0) ̸= 0

If the second derivative of the trapping potential does not vanish near the center of

the cloud the integral in Eq. (5.37) will be logarithmic divergent close to x⃗⊥ = 0. In

particular, one can write

∫
d2x⊥

∂a∂bV (x⃗⊥)

x2⊥
= ∂a∂bV (0) 2π log(R⊥/a) + . . . , (5.38)

where a is some UV cutoff and the dots stand for terms that are finite for a → 0.

As it happens in any QFT, the UV cutoff must appear in the log together with an

IR scale for dimensional reasons. In our case the IR scale will be set by the typical

transverse size of the cloud. Note that, in the EFT language the cutoff a does not

represent any physical scale but it is just a regulator for the UV divergences and, as

such, it must be removed.

Following standard RG logic, we can get rid of the cutoff by allowing for a running
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of the T(01) coupling. In particular, the renormalized effective potential will be given

by

Veff(X⃗) ≃ −
T(01)(1/R⊥)

mc2s
∂a∂bV (0)XaXb , (5.39)

where the running coupling is

T(01)(q) = − n̄λ2

8πm
log(qℓ) . (5.40)

The length scale ℓ is now a true microscopic scale. The effective theory is unable

to determine its value, which should be extracted from data. The running of the

generalized tension coupling T(01) matches exactly the one already found in [99]. This

is a somewhat peculiar result, given that such a running arises at the classical level

(no quantum mechanics has been considered so far).

The standard parametrization for harmonic trappings is (see e.g. [98])

V (x⃗⊥) =
m

2

(
ω2
xx

2 + ω2
yy

2
)
+O(r4) , (5.41)

in which case the equations of motion for the vortex line are simply

Ẋ(t) = ωp
ωy

ωx

Y (t) , Ẏ (t) = −ωp
ωx

ωy

X(t) . (5.42)

These equations describe exactly an elliptical trajectory with the same orientation

and aspect ratio as the potential. Moreover, the precession frequency is readily found

to be

ωp ≡
3Γ

8πc2s
ωxωy log(R⊥/ℓ) , (5.43)

where we used λ = mΓ in the NR limit. When the Gross-Pitaevskii equation ap-
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plies c2s = µ/m [20], and this reduces exactly to the result reported in Eq. (5.3).

Nevertheless, since our approach does not assume anything about the microscopic

dynamics of the superfluid, we emphasize that it is more general than what derived

in the Gross-Pitaevskii approximation (i.e. weak, contact interactions). In particular,

if cs is known in all regimes, then Eq. (5.43) is valid also at strong coupling as, for

example, at the BEC-BCS crossover [98].

As already explained, the microscopic scale ℓ should be determined from experi-

ment. However, one can make one further step and consider the precession frequency

for two different traps, say ‘1’ and ‘2’ and define χ ≡ ωp/ωxωy for each of them. In

this case one has

χ1 − χ2 =
3Γ

8πc2s
log(R⊥,1/R⊥,2), (5.44)

which is independent of ℓ and hence completely predictive.

Just for fun, we have compared our predictions with the data reported in [98] for

the precession frequency as a function of the trapping frequency. The results and

details are reported in Figure 5.4. The agreement between Eq. (5.43) (in the weak

coupling limit) and the experimental data is quite good. The discrepancies are most

likely due to the fact that, in the experimental setup, the logarithmic enhancement

is actually just log(R⊥/ξ) ≃ 2 − 5 and hence next to leading log corrections should

be included. Moreover, at the crossover between the BCS (when the condensate is

formed by the Cooper pairs) and the BEC (when the condensate is formed by the

Li molecules) regimes, the system is strongly coupled and to apply our prediction we

should know the superfluid sound speed, which was not provided in the experimental

paper. It should however be noted that the fit has only one free parameter.
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Figure 5.4: Comparison between the experimental data measured in [98] and our
result Eq. (5.43). On the vertical axis we report the ratio of the trapping frequency
in the y-direction over the precession frequency, while on the horizontal axis we report
the chemical potential normalized to the trapping frequency along the x-direction.
The vertical dashed line separates the data taken in the BEC regime from those taken
in the BCS regime. Our model, in the weak coupling regime, is given by ωy/ωp =
4
3

µ
ℏωx

1
log(µ/(ℏωxα))

, with α being our only free parameter. The maximum likelihood
estimator for it gives α = 1.391± 0.077, at 1σ C.L.. The result of the fit is the black,
dot-dashed line. The agreement is good but not excellent, with χ2/d.o.f. = 1.4. The
reason is probably twofold. First of all, the logarithmic enhancement is actually quite
mild for the experimental setup under consideration [98], and higher order corrections
are likely relevant. Secondly, at the crossover between BEC and BCS regimes, the
systems is strongly coupled and our fitting function does not apply anymore. To
employ our prediction (5.43) correctly one would need the value of the speed of
sound for each point. Unfortunately that was not provided in [98].

Anharmonic traps — ∂a∂bV (0) = 0

The other situation we can consider is that of anharmonic traps, i.e. ∂a∂bV (0) = 0.

This regime became of phenomenological interest very recently, given that the authors

of [108–110] managed to produce a trapping potential which resembles a perfect box

with very good approximation. This essentially means that the density is roughly

constant inside the cloud, decreasing to zero very fast near the edge of the superfluid.

For later convenience, let us parametrize the potential as V (x⃗⊥) = mc2s f(x⃗⊥/R⊥),

where f is a dimensionless function varying between zero and O(1), when moving
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from the center to the edge of the cloud. The first term in Eq. (5.37) is now zero,

and the second one is convergent. It will be given generically by

∫
d2x⊥

∂a∂bV (x⃗⊥)

x2⊥
=
mc2s
R2

⊥
fab , (5.45)

where fab is a constant symmetric tensor with order-one entries. If we align our axes

with its eigenvectors then the equations of motion for the vortex line are given by

Ẋ(t) = ωp

√
fyy
fxx

Y (t) , Ẏ (t) = −ωp

√
fxx
fyy

X(t) . (5.46)

These again describe elliptical orbits with aspect ratio
√
fyy/fxx, and precession

frequency

ωp =
3

16π2

Γ

R2
⊥

√
fxxfyy . (5.47)

Interestingly, the logarithmic enhancement of Eq. (5.43) is now gone. This is in

line with what found in [111] with standard techniques. Moreover, given that no

microscopic scale is now present, the above equation is already completely predictive.

5.5 Summary

In this chapter we have presented an effective string theory that describes vortex

lines in a superfluid, and we have employed it to describe the experimental results

obtained, for example, in [98]. This is an important step. It shows that the EFT

approach to condensed matter can indeed be used in real experimental problems and

that it can offer several advantages over more standard methods.

Here are some of the steps forward that our EFT allowed:

• We were able to study the trajectory of a vortex line in a confined superfluid
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for any fairly regular trapping potential. This is not what typically happens.

Most of the literature is forced to study the motion of the vortex case by case,

for each given trap.

• Our results are general for any superfluid. The vortex precession turn out to

be a phenomenon due solely to long distance/low energy physics. The results

obtained here are therefore universal, regardless of the microscopic features

of the system. In particular, they go beyond the standard Gross-Pitasevskii

approach [20], which is valid in the weak coupling regime.

• The physics behind the vortex precession is always the same for all kinds of

trapping potential. In particular, it is due to the interaction between the vortex

line and the trap, mediated by the superfluid gapless modes. Such a unifying

picture seem to be lacking from the literature (see for example the discussion

in [112]).

It is also interesting to note that the potential in Eq. (5.35) is negative definite

(the coupling T(01) is expected to be positive [99]). This means that the interaction

with phonons (for example at finite temperatures) is expected to cause the vortex

line to drift towards the edge of the cloud until it disappears—see e.g. [81].

Lastly, although common experiments are highly nonrelativistic, the relativistic

corrections to the vortex action (see Appendix D) might be relevant, for example, for

neutron star physics. It has in fact been conjectured that the dynamics of vortices in

the superfluid core of the neutron stars might be the explanation for some observed

“glitches” in their rotational frequency [113].

106



Conclusion

It is always very exciting when two seemingly distant fields of physics find some

unexpected and fruitful overlap. This is the case for certain high energy theory

methods and some problems in low energy physics, which found a common ground

in the last fifteen years or so.

In this thesis we mainly presented two of them: the effective field theory ap-

proach and the holographic duality. Both of them have been successful in providing

a new viewpoint for some condensed matter problems, as well as helping identifying

new possible directions to investigate. On the one hand, the EFT approach pro-

vides a beautifully simple unifying viewpoint of the condensed matter world. As

often happens, effective theories constitute a useful calculation tool and help describe

phenomena in a remarkably simple way. In this case, this is done by isolating the

universal low energy/long distance properties of condensed matter systems from their

complicated microscopic structure, which is instead different from case to case.

On the other hand, the holographic duality offers a very powerful tool. It allows to

perform calculations in a nonperturbative regime that is hardly accessible with more

standard techniques. This is possible thanks to the surprising connection between

certain strongly coupled field theories and certain theories of gravity.

The more formal achievement of this thesis is that of having exhibited an explicit

relation between the EFT language and the holographic one. Being the holographic

duality specifically designed to improve the understanding of the microscopic under-
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lying theory, the focus on the long distance physics was often secondary. Here we

showed that, of course, one can recover the latter starting from the former. This also

helped us determining the gravity dual of a common solid, which was, surprisingly,

lacking from the literature.

From a phenomenological viewpoint, we instead successfully applied the EFT for

vortex lines in superfluids to explain the phenomenon of vortex precession in confined

ultra cold gases. The simplicity of EFTs allowed us to reproduce the known results,

as well as to perform several steps forward in the understanding of the phenomenon.

More broadly, we can consider this as a proof that the effective theories for condensed

matter are not just a theorist’s game. They can be used to describe real experimental

data in a way that, sometimes, is much simpler than the more traditional techniques.

The future of this field is bright. There is a huge variety of low energy problems

that would benefit from a high energy perspective and viceversa. Much work still

has to be done on holographic solids. For example, it would be interesting to study

their transport properties and dissipative behavior [114]. Beside being of interest for

the phenomenology of holographic solids, this problem can also shed some light on

questions related to the holographic duality per se as, for example, how dissipation

arises in the absence of a black hole horizon.

Another interesting line of research concerns the following question: what happens

when a phonon is coupled to gravity? Does it float or does it sink? In a recent paper

it has been showed that superfluid phonons indeed float [115]. Since this is true in the

nonrelativistic limit as well, it is not related to the statement that mass and energy

are equivalent. Rather, it means that phonons truly transport negative gravitational

mass, in the most mundane Newtonian sense. To the best of our knowledge, the

common lore is instead that collective excitations should only transport energy. One

can then try to show the same thing for fluids and solids as well, using both EFT

methods as well as standard hydrodynamical equations [116]. Beside being quite fun,
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this realization has intriguing experimental consequences. In fact, cold atom trapping

could be used to simulate a much stronger gravity, possibly allowing for the direct

observation of the floating of phonons.

Lastly, a very promising idea is that of employing our EFT methods to provide

new ideas for the detection of sub-GeV dark matter particles, for which there are

currently no experimental constraints [117]. Ideas in this direction have already

been developed [118, 119], where superfluid helium-4 was proposed as a possible

material to detect dark matter particles with masses down to some keV. The EFT

viewpoint can definitely help improve these ideas, as well as propose new possible

signatures. One promising possibility is that of detecting the emission of Čherenkov

sound following the interaction of a dark matter particle with one of the nuclei of

the superfluid helium [120]. This possibility, which seems possible with the current

available technology, would have the great advantage of providing an optimal way of

discriminating the dark matter event from the overwhelming thermal background.

These are just few of the questions that could be addressed employing high energy

ideas applied to condensed matter. It is an exciting feeling to have such a novel and

powerful tool at one’s disposal. There is a whole world of possibilities, and the fun

has just begun.
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Appendix A: From bulk equations
to RG flow

In this appendix we will show how to derive the renormalization group (RG) flow for
the operators of the boundary theory starting from the bulk of AdS [121–123]. In
particular, it will become clear that the radial coordinate plays exactly the role of an
energy scale of the dual theory.

Let us look at the bulk theory and introduce a radial cutoff at r = R, close to the
boundary. The bulk action will then be written as

S =

∫ R

0

dr

∫
ddx

√
−gL

[
ϕ, ∂Mϕ

]
+ Sbdy

[
ϕ,R

]
. (48)

As we explained in Section 2.2, Sbdy fixes the boundary conditions of our field at
r = R. Let us again consider a scalar field with lagrangian density

L = −1

2
∂Mϕ∂

Mϕ− V (ϕ). (49)

By varying the action one finds the boundary conditions at r = R, which are given
by

δSbdy

δϕ
=

√
−ggrrϕ′ = −Πr, (50)

where we have noticed that the right hand side is nothing but (minus) the conjugate
momentum for the flow along r.

Since the choice of UV cutoff is arbitrary, the on-shell action cannot depend on
it. From this it follows that

dS

dR
= 0 =

∫
r=R

ddx
√
−gL

[
ϕ, ∂Mϕ

]
+

∫
r=R

ddx
δSbdy

δϕ
ϕ′ + ∂RSbdy

[
ϕ,R

]
. (51)

This is an equation for how the boundary action changes with the UV cutoff. In
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particular

√
grr ∂RSbdy

[
ϕ,R

]
=

∫
r=R

ddx
[
−Πrϕ

′ +
√
−gL

]
=

∫
r=R

ddx
√
−γ
[
1

2γ
Π2

r +
1

2
∂Mϕ ∂

Mϕ+ V (ϕ)

]
. (52)

Here γ = ggrr is again the determinant of the induced metric at r = R. This is
the RG equation we were looking for. We have learned that, once the boundary
conditions are fixed, the field ϕ at r = R can be written in terms of its dual operator
O. The boundary action can be expanded in powers of such operator, i.e.

Sbdy =
∑
n

∫
ddx

√
−γλn(x,R)On(x). (53)

If we plug this expression in Eq. (52) one can compute the β-functions for the cou-
plings λn.
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Appendix B: Linear
representations of the Euclidean

group

Because of its shift part the Euclidean group, ISO(d− 1), is typically presented with
its nonlinear realizations. Here we show how to build its linear representations, which
can be useful when determining how to gauge such a group—see Section 4.2. To build
these representations we will employ the so called Wigner-Inonu contraction [124].

Consider the algebra of SO(d), and let us separate its generators into irreducible
representations of the SO(d − 1) group that leave the d-direction invariant. There
are those that transform as a vector, T id, and those that transform as a tensor, T ij.
Their commutation relations read[

T ij, T km
]
= δikT jm + δjmT ik − δimT jk − δjkT im, (54a)[

T ij, T kd
]
= δikT jd − δjkT id, (54b)[

T id, T jd
]
= T ij. (54c)

It is easy to show that if we define some new generators such that P ij = T ij and
P i = 1

ζ
T id, these satisfy the ISO(d − 1) algebra in the ζ → ∞ limit, with the P s

playing the role of the generators of translations.
To build a proper representation we now need to look at the states. Consider

an SO(d) multiplet in the fundamental representation, ψ⃗. Under an infinitesimal
transformation generated by the P s, the multiplet transforms as

δψi =
1

2
θijψj +

1

ζ
θidψd, and δψd =

1

ζ
θidψi. (55)

Now rescale the components of the multiplet as well. In particular, we choose ψi = ψ̃i

and ψd = ζψ̃d, such that the “tilde” fields stay finite in the ζ → ∞ limit. After the
contraction we have that

δψ̃i =
1

2
θijψ̃j + θidψ̃d, and δψ̃d = 0. (56)

The above transformations are clearly linear and one can easily show that the cor-
responding generators satisfy the algebra of ISO(d − 1). Interestingly, from this
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viewpoint, the fact that translations are usually nonlinearly realized can be seen as a
consequence of the spontaneous breaking of SO(d) due to the large vev acquired by
ψd.

Now imagine to set ψd = ζh(x) such that ⟨h(x)⟩ = 1. From Eq. (56) we understand
that the ψi = ϕi transform exactly as our comoving coordinates in Eq. (1.36), so that
⟨ϕi(x)⟩ = αxi realizes the symmetry breaking pattern of a solid. The full ψ⃗ multiplet
can then be parametrized as

ψ⃗(x) = O(x)Φ⃗ = (ϕ1(x), . . . , ϕd−1(x), ζh(x))
T , (57)

with

Φ⃗ = ζh(x)x̂d, O(x) = exp
(
−ϕi(x)

h(x)
P i

)
. (58)

Note that Eq. (57) is true in the ζ → ∞ limit. It is the flat space analogue of
Eq. (4.7). The solid lagrangian could now be written in terms of the invariants build
out of the matrix Bij = ∂µϕ

i∂µϕj. However, we can also write

∂µψ⃗ = O∂µΦ + ∂µOΦ = O
(
∂µΦ +O−1∂µOΦ

)
≡ ODµΦ. (59)

It follows that the same theory can also be written in terms of the invariants built
out of B̃ij = (DµΦ)

i(DµΦ)j. On the background the covariant derivative reduces to

⟨DµΦ⃗⟩ = ⟨O−1∂µOΦ⃗⟩ = αδiµP
iΦ⃗ = αδiµT

idx̂d. (60)

Which means that the theory for our solid can also be expressed in terms of a single
scalar field with a vacuum expectation value ⟨Φ⃗⟩ ∝ x̂d, and a constant gauge field
AAB

i = αTAB
id . This is indeed the ansatz found in Eq. (4.23) in the Poincaré patch

limit.
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Appendix C: How to go from the
scalar to the 2-form and back

In Chapter 1 we presented the simplest realization of the type-I superfluid symmetry
breaking pattern, i.e. the one involving a single real scalar ϕ. On the other hand, in
Chapter 5 we argued that, in order to couple the superfluid modes to vortex lines, a
dual 2-form description is more convenient. Let us show how one can go from one to
the other.

The two descriptions are related to each other by a Legendre transform. Consider
in fact the following action involving the 2-form, Aµν , and a 1-form, Hµ [100]:

S[H,A] =

∫
d4x [P (X)− F µHµ] , X = −HµH

µ, F µ =
1

2
ϵµνρσ∂νAρσ. (61)

The 2-form only appears linearly and can thus be considered as a Lagrange multiplier.
Varying with respect to it leads to the equation ∂νHµ− ∂µHν = 0, which is solved by
Hµ = −∂µϕ, for any scalar field ϕ. The action for ϕ then reduces to

S[ϕ] =

∫
d4x

[
P (X)− 1

2
ϵµνρσ∂νAρσ∂µϕ

]
=

∫
d4xP (X)− 1

2
ϵµνρσ

∮
dΣµ ∂νAρσϕ. (62)

This is exactly the action (1.27), up to a boundary term that does not affect the bulk
dynamics.

Let us now instead vary the action (61) with respect to Hµ. The corresponding
equations of motion are 2PX(X)Hµ = −F µ. From its square we get

2
√
XPX(X) =

√
−F µFµ ≡

√
Y , (63)

which we know is the superfluid number density—see Section 5.2. After integrating
out the 1-form, we obtain

S[A] =

∫
d4x [P (X)− 2XP (X)] = −

∫
d4x ρ(Y ) ≡

∫
d4xG(Y ), (64)

which is instead the action in Eq. (5.5), with G equals minus the energy density.
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Appendix D: Relativistic
corrections to the vortex action

In Chapter 5 we found more convenient to take the nonrelativistic limit right from
the beginning of our calculation. Nevertheless, one of the advantages of the EFT
formulation of the problem is that it allows for a fully relativistic analysis. Although
the experiments performed in lab always have sound speeds much smaller than the
speed of light, there might be instances (e.g. in the interior of neutron stars) where
relativistic corrections are relevant.

With respect to the analysis of Section 5.4, there are three relativistic corrections:
the correction to the second line of Eq. (5.19a), the last term in Eq. (5.19c), and
the ρij term in Eq. (5.23). To include the first one we simply keep all corrections in
Eq. (5.34). The second correction can instead be neglected all together. It is in fact
proportional to a time derivative and will provide a negligible correction to the string
kinetic term (see again discussion in Section 5.4). The only new term in the action
then comes from the relativistic corrections to the trapping action, i.e. [86]

S ⊃
∫
d3xdt

n̄

2c2
Uij(x⃗⊥)

(
∇⃗ × A⃗

)i(∇⃗ × A⃗
)j
, (65)

where Uij(x⃗⊥) ≡ V (x⃗⊥)δij − Vij(x⃗⊥), and ρij =
n̄
c2
Vij. This term provides an interac-

tion between the external trap and the vortex line, mediated by the hydrophoton—see
Figure 1. The new contribution to the vortex effective action is easily found to be

Seff[X⃗] ⊃ − n̄
3λ2c2

2w̄2

∫
d3xdt ϵabϵcdUac(x⃗⊥ + X⃗)

∫
d2p⊥d

2q⊥
(2π)4

e−i(p⃗⊥+q⃗⊥)·x⃗⊥
pb⊥ q

d
⊥

p 2
⊥q

2
⊥

=
n̄3λ2c2

8π2w̄2

∫
dtdσ

∫
d2x⊥ ϵ

abϵcdUac(x⃗⊥ + X⃗)
xb⊥ x

d
⊥

x4⊥
. (66)

We can now consider Eq. (5.35) and replace m → w̄/n̄c2. Putting the two terms
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Figure 1: Leading relativistic vortex/trap interaction.

together we obtain the fully relativistic vortex action [86]:

Seff[X⃗] =

∫
dtdσ

[ n̄λ
3
ϵabX

aẊb +
2T(01)n̄c

2

w̄c2s
V (X⃗) +

n̄3λ2c4

8π2w̄2c2s

∫
d2x⊥

V (x⃗⊥ + X⃗)

x2⊥
(67)

− n̄3λ2c2

8π2w̄2

∫
d2x⊥ϵ

abϵcdVac(x⃗⊥ + X⃗)
xb⊥x

d
⊥

x4⊥

]
.

Again, the motion of the vortex line is now a simple point particle problem.
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