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ABSTRACT 

Biological and Bioinspired Photonic Materials for Passive Radiative Cooling 

and Waveguiding 

Norman Nan Shi 

Animals have evolved diverse strategies to control solar and thermal radiations so that 

they can better adapt to their natural habitats. Structured materials utilized by these 

animals to control electromagnetic waves often surpass analogous man-made optical 

materials in both sophistication and efficiency. Understanding the physical mechanism 

behind these structured materials of nature inspires one to create novel materials and 

technologies.  

Our optical and thermodynamic measurements of insects (Saharan silver ants and 

cocoons of the Madagascar comet moth) living in harsh thermal environments showed 

their unique ability to simultaneously enhance solar reflectivity and thermal emissivity, 

and to maintain a cool body temperature.  

Saharan silver ants, Cataglyphis bombycina, forage on the desert surface during the 

middle of the day. The ants’ conspicuous silvery glance is caused by a coating of hairs 

with unique triangular cross-sections. The hair coating enhances not only the reflectivity 

of the ant’s body surface in the visible and near-infrared range of the spectrum, where 

solar radiation culminates, but also the emissivity of the ant in the mid-infrared. The latter 

effect enables the animals to efficiently dissipate heat back to the surroundings via 

blackbody radiation under full daylight conditions.  



 

 

The fibers produced by the wild comet moth, Argema mittrei, are populated with a high 

density of air voids that have a random distribution in the fiber cross-section but are 

invariant along the fiber. These filamentary air voids strongly back-scatter light in the 

solar spectrum, which, in combination with the fibers’ intrinsic high emissivity in the 

mid-infrared, enables the cocoon to function as an efficient radiative-cooling device, 

preventing the pupa inside from overheating.  

The reduced dimensionality of the random voids leads to strong optical scattering in the 

transverse direction of the cocoon fibers. This enables tightly confined optical modes to 

propagate along the fibers via transverse Anderson localization. We made the first 

observation of transverse Anderson localization in a natural fiber and further 

demonstrated light focusing and image transport in the fibers. This discovery opens up 

the possibility to use wild silk fibers as a biocompatible and bioresorbable material for 

transporting optical signals and images. 

Drawing inspirations from these discoveries, we designed and developed high-throughput 

fabrication processes to create coatings and fibers with passive radiative-cooling 

properties. The radiative-cooling coatings consist of various nanoparticles imbedded 

within a silicone thin film. The sizes and materials of the nanoparticles were chosen to 

provide simultaneously high solar reflectivity and thermal emissivity. The coating has 

been implemented in two site studies on real roofs and has demonstrated reduced roof 

temperature by up to 30oC in the summer and associated reduction of electricity usage by 

up to 30%. We also made biomimetic fibers from regenerated silk fibroin and a 

thermoplastic using wet spinning. Spectroscopic measurements showed that these man-

made fibers exhibit exceptional optical properties for radiative-cooling applications.
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Chapter 1 

Theory and background 

1.1 Theoretical aspects of thermal radiation  

1.1.1 Blackbody radiation 

Blackbody radiation is defined as electromagnetic waves emitted from the 

surfaces of an object caused by molecular vibrations associated with the internal energy 

of the object. These electromagnetic waves can be characterized by the wavelength λ0 in 

vacuum, and the wavelength range of interest in this study include the long-wavelength 

part of the ultraviolet (λ0 = 0.35 - 0.4 μm), the visible region (λ0 = 0.4 – 0.7 μm), the near-

infrared region (λ0 = 0.7 – 2.5 μm), and the mid-infrared region (λ0 = 2.5 – 25 μm).  At 

any given body surface, radiation in the form of electromagnetic waves can either be 

reflected by the surface, absorbed as it travels beyond the surface and into the medium of 

the body, or transmits and passes through the body. A body is defined as opaque when all 

the radiation that passes through its surface is absorbed. A combination of low surface 

reflectivity and high internal absorption makes a body a good absorber for incident 

radiation at a given wavelength of light. A material can be a good absorber at one 

wavelength, but transparent at a different wavelength. Glass, for example is highly 

transparent in the visible spectrum, but highly absorptive in the mid-infrared. A 

blackbody, which is a perfect absorber, is one that allows incident light waves at all 
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wavelengths and all incidence angles to pass into the body with zero reflection and total 

internal absorption. Aside from being a perfect absorber, a blackbody is also a perfect 

emitter, at every wavelength and at every emitting angle, as governed by the second law 

of thermodynamics.  

The total intensity of radiation is defined as the integral of the spectral intensity 

over all wavelengths: 

𝑖𝑏 = ∫ 𝑖𝑏𝜆(𝜆)𝑑𝜆
∞

𝜆=0
        (1.1) 

where 𝑖𝑏 is the total intensity, and 𝑖𝑏𝜆 is the radiative intensity as a function of 

wavelength. The intensity of blackbody radiation is independent of the direction of 

emission, as is shown in Fig. 1.1a. The power of emitted radiation, however, is a function 

of emission direction and is defined by the equation: 

𝑒𝜆𝑏 (𝜆, 𝜃, 𝜑) = 𝑖𝑏𝜆(𝜆)𝑐𝑜𝑠𝜃       (1.2) 

also known as the Lambert’s cosine law. Radiation generated by a diffuse surface also 

follows this cosine law (Fig. 1.1b).  

As shown in Fig. 1.1c, the shaded area is given by dω = sinθdθdφ, and the spectral 

emission from an area dA to the shaded area per unit wavelength is: 

𝑖𝜆𝑏 (𝜆)𝑐𝑜𝑠𝜃𝑑𝜔𝑑𝜆 = 𝑖𝑏𝜆(𝜆)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜑𝑑𝜆     (1.3) 

The blackbody spectral emission over the entire hemisphere can be obtained by 

integrating equation 1.3 over all solid angles: 

𝑒𝜆𝑏(𝜆)𝑑𝜆 = 𝑖𝑏𝜆(𝜆)𝑑𝜆 ∫ ∫ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜑𝑑𝜆
𝜋

2
𝜃=0

2𝜋

𝜑=0
=  𝜋𝑖𝑏𝜆(𝜆)𝑑𝜆   (1.4) 

This relationship shows that the hemispherical emissive power is simply π multiplied by 

the blackbody intensity, a relationship that will be used later in this study. 



 

3 

 

Figure 1.1 (A) Angular distribution of blackbody intensity and (B) blackbody directional 

emissive power. (C) Unit hemisphere used to obtain the relationship between blackbody 

hemispherical emissive power and intensity. All images in this figure are reproduced 

from [1]. 
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1.1.2 Spectral distribution of emissive power, Planck’s law and Stefan-

Boltzmann Law 

Radiation emitted by a blackbody has a broad spectrum distribution, with fixed amount of 

energy radiating at any given wavelength that’s a function of temperature. The exact 

expression was derived by Max Planck, where the total emissive power at any given 

wavelength is a function of temperature: 

𝑒𝜆𝑏(𝜆, 𝑇) =  𝜋𝑖𝑏𝜆(𝜆) =  
2𝜋𝐶1

𝜆5(𝑒
𝐶2
𝜆𝑇−1)

     (1.5) 

where 𝐶1 = ℎ𝑐0
2 and 𝐶2 = ℎ𝑐0 /𝑘. Here, h is the Plank’s constant, k is the Boltzmann 

constant and c0 is the speed of light in vacuum. 

One can also calculate the overall hemispherical total emissive power of a 

blackbody surface by integrating equation 1.5 over all wavelength range. 

𝑒𝑏 = ∫ 𝑒𝜆𝑏(𝜆)𝑑𝜆
∞

0
= ∫  𝜋𝑖𝑏𝜆(𝜆)𝑑𝜆

∞

0
=  𝜎𝑇4    (1.6) 

where σ is the Stefan-Boltzmann constant. 

 

1.1.3 Radiation from the sun and atmospheric transparency windows 

The energy exchange between an animal and its surrounding environment is complex and 

involves many variables. Mechanisms that can affect an animal’s temperature include its 

metabolism, rate of water evaporation, and thermal convection, conduction, and 

radiation.  In this section we start to build the thermodynamic model by only including 

radiative energy exchange. 

Radiative energy exchange in an animal’s natural environment includes absorption of 

solar radiation in the ultraviolet, visible and the near-infrared, and radiative energy 
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exchange between the animal’s body and the surrounding environment in the mid-

infrared. The sun has a temperature of ~5778 K. Using equation 1.5 and by treating it as a 

blackbody, it has a radiation spectrum shown in Fig. 1.2. On a clear day, the atmospheric 

transparency windows allow a significant amount of solar radiation to pass through the 

atmosphere and reach the earth surface. In this study, we use the reference solar 

irradiance distribution provided by American Society for Testing and Materials (ASTM) 

[2], which is also shown in Fig. 1.2. Furthermore, a model (MODTRAN) was developed 

for estimating the transmission of the atmosphere in the mid-infrared [3] (Fig. 1.2). The 

MODTRAN model assumes that an infrared detector is looking down at the earth at an 

elevation of 70 kilometers above the sea level. Thermal radiation through this mid-

infrared atmospheric transparency window allows the earth to lose heat to outer space, 

thereby achieving an energy balance with incoming solar energy and maintaining long-

term stability of its temperature. 
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Figure 1.2 AM 1.5 solar irradiance spectrum and MODTRAN infrared transmission 

spectrum through the atmosphere, and blackbody radiation spectra for T = 5778 K 

(temperature of the sun) and T = 300 K (ambient temperature or body temperature of an 

animal). 

1.1.4 Kirchhoff’s law of thermal radiation 

If an element dA (Figure 1.1C) at temperature T is placed inside an isothermal enclosure 

(also a blackbody) also at temperature T, to maintain the energy balance between the 

enclosure and the element, the intensity of radiation incident on dA from a given 

direction (θ, φ) has to be equal to the intensity of radiation emitting from dA in the same 

direction. We can express the above relationship with the following equation [1]: 

𝜀𝜆(𝜆, 𝜃, 𝜑, 𝑇) = 𝛼𝜆(𝜆, 𝜃, 𝜑, 𝑇)       (1.7)  
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In other words, Kirchhoff’s law of thermal radiation can be stated as directional and 

wavelength-specific thermal emissivity is equal to the corresponding absorptivity. 

1.1.5 Heat transfer model 

In section 1.1.3, we only considered the basic terms related to radiative energy exchange. 

In this section, the heat transfer model between a body and its surrounding environment 

will be addressed in more detail.  

The temporal temperature profile of an animal in its natural environment can be 

described by the following equation [4]:  

( )4 4 4' ' " 's g a

dT
C Ps T s T s T s hs T T

dt
    = − + + − −    (1.8) 

CdT/dt describes the overall rate of change in stored thermal energy. The thermal 

capacity C = cw, where c, is the specific heat (1.56 Jg-1K-1 for chitin [5]) and w is the 

weight of the specimen.  

’Ps is the absorbed power of the light source (the Sun, or the Xenon lamp in the 

thermodynamic measurements); ’ is the absorptivity averaged over the spectrum of the 

light source; P is the light intensity (power per unit area) incident onto the specimen; and 

s is the specimen area that intersects the incoming light beam (projected area).   

−T4s’ is the thermal radiation from the specimen to the surrounding environment, 

hence its negative sign;  is the emissivity averaged over the entire surface of the 

specimen and averaged over the spectrum of a blackbody at temperature T;  is the 

Stefan-Boltzmann constant 5.6710-8 Wm-2K-4; and s’ is the surface area of the specimen. 
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Ts
4s is the absorption of blackbody radiation from the sky;  is absorptivity of the 

specimen averaged over the spectrum of a blackbody at temperature Ts, the radiative 

temperature of the sky [6].   

”Tg
4s is the absorption of blackbody radiation from the terrestrial environment; ” is 

absorptivity of the specimen averaged over the spectrum of a blackbody at temperature 

Tg, the temperature of the surface of the terrestrial environment. 

hs’(T-Ta) is the power transferred through thermal convection; h is heat transfer 

coefficient; and Ta is the ambient temperature. 

Note that α and α” may have different values: in the case of the silver ants, the 

absorptivity of the hairy top and lateral sides of their body differs from that of the bald 

ventral body surface. We assume that there is minimal heat transfer through conduction: 

for example, the thin long legs of the desert ants minimize thermal conduction from the 

desert floor [7]. 

In order to obtain analytical solution from equation (1.8), the thermal radiation term 

εσT4s’ can be linearized in the following way: 

( )

( )

4

4
4 4

4 4 3 3 4

' ' 'T 1

' 1 4 ' 4 ' 4 ' 3 '

avg

avg avg avg

avg

avg

avg avg avg avg avg avg

avg

T T
T s s T T T s

T

T T
s T s T s T T T s T T s T

T

  

    

 −
= + − = +  

 

 −
 + = + − = −  

 

     

(1.9) 

 Equation (1.8) can then be simplified to: 
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( ) ( )3 4 4 44 ' ' 3 ' ' " 'avg avg s g a

dT
C s T hs T s T Ps T s T s hs T BT A

dt
     = − + + + + + +  − +  

(1.10) 

where B = ( )34 ' 'avgs T hs +  and A = ( )4 4 43 ' ' " 'avg s g as T Ps T s T s hs T    + + + +  

Solving the ordinary differential equation above, the temperature T of the specimen can 

be expressed as 

exp
B

T t
C

 
  − 

 
           (1.11) 

where  

34 ' '
r d

avg

C C

B s T hs
 


= = =

+
    (in air)      (1.12) 

is the rise and decay time constant characterizing the specimen’s temperature change. 

This equation shows that the time constants are proportional to the thermal capacity, C, of 

the specimen, and inversely proportional to the sum of radiative and convective heat 

transfer rates. The equation also shows that the rise and decay time constants are 

identical. 

For thermodynamic measurements performed in vacuum, the equation can be further 

simplified by taking out the effect that is due to convective heat transfer (setting 

parameter h to zero). The rise and decay time constants can then be expressed as 

34 '
r d

avg

C

s T
 


= =       (in vacuum)                   (1.13) 
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The specimen reaches its equilibrium body temperature when dT/dt is equal to zero, i.e., 

when there is no net heat transfer. For vacuum experiments without convective heat 

transfer, the resulting relationship is:  

4 4 4' ' "s gT s Ps T s T s    = + +    (in vacuum)                                                 (1.14) 

with the equilibrium temperature: 

T = 

1/4

4 4 1/41 '
[ ( ' " )]

' '
s g

Ps
Ps T s T s

s s


   

 

 
+ +   

 
 (in vacuum)        (1.15) 

when blackbody radiation from the sky and the terrestrial environment is small as 

compared to the radiation from the sun or Xenon lamp (as it has been the case in the 

thermodynamic measurements), the equilibrium temperature is proportional to α’, i.e., the 

absorptivity of the specimen averaged over the solar spectrum, and inversely proportional 

to ε, i.e., the emissivity of the specimen in the mid-infrared.  

In the presence of convection and at thermal equilibrium, according to equation (1.8) we 

have 

( )4 4 4' ' " ' 0s g aPs T s T s T s hs T T    − + + − − =       (in air)                                 (1.16) 

The equilibrium temperature T can be obtained by numerically solving the above 

equation. 
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1.2 Reflection and scattering of light 

1.2.1 Reflection and refraction at an optical interface for polarized light 

Consider an interface between two optically smooth dielectric media where the refractive 

indices for the two media are n1 and n2. When a polarized light beam is incident upon the 

interface at an angle from the side with lower refractive index, a portion of the light is 

reflected, and the rest is transmitted through. The reflection and transmission coefficients 

are functions of the incident angle and the refractive indices of the two media, also 

known as the Fresnel equations: 

𝑟𝑥 =
𝑛1𝑐𝑜𝑠𝜃1 −  𝑛2𝑐𝑜𝑠𝜃2

𝑛1𝑐𝑜𝑠𝜃1 +  𝑛2𝑐𝑜𝑠𝜃2
 

𝑟𝑦 =  
𝑛1𝑠𝑒𝑐𝜃1 −  𝑛2𝑠𝑒𝑐𝜃2

𝑛1𝑠𝑒𝑐𝜃1 +  𝑛2𝑠𝑒𝑐𝜃2
 

𝑡𝑥 = 1 +  𝑟𝑥 

𝑡𝑦 = (1 + 𝑟𝑦) 
𝑐𝑜𝑠𝜃1

𝑐𝑜𝑠𝜃2
 

           

 (1.17) 

where rx and ry are the reflection coefficients for TE and TM polarized light, respectively, 

as defined by Fig. 1.3A, and θ1 and θ2 are governed by Snell’s law: 

𝑛1𝑠𝑖𝑛𝜃1 = 𝑛2𝑠𝑖𝑛𝜃2         (1.18) 

While rx increases continuously as a function of incident angle, ry does reach a point 

where no light is reflected, this position is known as the Brewster’s angle. From equation 

(1.18), we can show that the Brewster angle is: 

θB = arctan (n2 / n1)         (1.19) 
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While the Brewster angle only occurs when n1 is smaller than n2, total internal reflection 

can occur when n1 is larger than n2, and again using equation (1.18), we can show that the 

critical angle where total internal reflection starts to occur is 

θc = arcsin (n2 / n1)       (1.20)  

 

 

 

 

    

 

Figure 1.3 (A) Schematic diagram of the reflection and refraction at the boundary 

between two dielectric media.  (B) Reflection coefficient for TE polarized light as a 

function incident angle θ1. (C) Reflection coefficient for TM polarized light as a function 

of incident angle θ1. All images in this figure are reproduced from [8].  
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1.2.2 Effective medium theory 

Consider a material composed of a periodic array of fine structures. When estimating the 

reflection and transmission of light interacting with the material, as the wavelength of 

light becomes significantly larger than the constitutive structures at the interface and 

within the material, an approximation known as the effective medium theory is often used 

to estimate and describe the optical properties of the material. A zeroth-order 

approximation is used when the size and periodicity of the structure is much smaller than 

the wavelength of light, while a second-order approximation is used when the size and 

periodicity of the structure is smaller, but do begin to support higher-order diffraction 

waves, the two approximations are presented below [9]: 

Zeroth-order approximation: 

(0) (z) ( ) (1 ( ))TE s if z f z  = + −  , 

(0)

1 (z) (1 ( ))

( )TM s i

f f z

z  

−
= +  ,          (1.21) 

Second-order approximation 

2 22
(2) (0) 2 2

(2)

0

( )
(z) ( ) 1 (z)[1 (z)]

3 ( )

s i
TE TE

TE

z f f
z

 
 

  

 − 
= + −  

   

 , 

22 (2) (0)2
(2) (0) 2 2 2

0

( )
( ) ( ) 1 (z)[1 (z)] ( )

3

TE TM
TM TM s i

i s

z
z z f f

 
   

   

   
 = + − −   

    

     (1.22) 

The equation set (1.21) corresponds to the zeroth-order approximation of the effective 

permittivity of the interface for TE and TM  incident light. Here f is the filling factor at a 
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given layer of the effective medium marked by its z position. Λ is the width of the 

structure’s cross section, εs and εi are the permittivity of the constitutive structures and 

air, respectively, and λ is the wavelength of interest. This estimation is accurate only 

when wavelength is much larger than individual structures. When wavelength is only a 

few times larger than the structure (e.g., mid-infrared light interacting with hair structures 

of the silver ants), the second-order approximation is used, as shown above in equation 

set (1.22). 

 

Figure 1.4 (A) Theoretically calculated effective index of a layer of triangular hairs as a 

function of the filling factor (percentage of space filled with the chitin-protein complex). 

Zero filling factor represents the apexes of the triangles, where the effective refractive 

index neff  = 1.0 is matched with that of free space. Filling factor of 100% corresponds to 

the cuticular surface (refractive index of cuticle: 1.56; we here assume that there is no gap 

between triangular hairs and the cuticle). (B) Simulated reflectivity spectra of a single 

layer of triangular hairs situated on a cuticular substrate at  = 10 m for TE and TM 

polarizations. Reflectivity is uniformly lower (i.e., emissivity uniformly higher) for TM 

polarization at all incidence angles. 
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As an example, we calculated the effective refractive index of a layer of triangular hairs 

(2 µm high, and 2 µm wide) of n=1.56 on a substrate of n=1.56 using the second-order 

approximation of the effective medium theory, and reflectivity as a function of incidence 

angle for both TE and TM light waves with =10 m(Fig. 1.4). 

1.2.3 Mie scattering and dielectric resonators 

In 1908, Gustav Mie published a paper where he rigorously explained the theory behind 

optical phenomena associated with gold colloidal particles [10]. The work explored the 

interaction of electromagnetic waves with spheres that are smaller than or comparable to 

the wavelength of light, and enabled the understanding of the color of gold colloids due 

to the scattering and absorption of light. The theory demonstrated for the first time how 

light can be controlled by nanoscaled resonant scatterers.  

As one fast forwards to present day, optical resonances in metallic and dielectric 

nanostructures have enabled the development of a broad range of applications such as 

solar cells and hard drive technologies, and new research fields such as metasurfaces 

[11]–[13].  

Due to the high losses of metal plasmonic resonators, dielectric resonators, especially 

high refractive index dielectric resonators, have become an increasingly attractive 

candidate for a wide range of applications due to its low optical losses, and also their 

abilities to control both electric and magnetic field components of light waves. 

To demonstrate the optical properties of a dielectric resonator, we use a simple spherical 

particle as an example, and use numerical methods to illustrate how optical resonances 

arise in dielectric nanostructures. 
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In this numerical model, a broadband plane-wave light source is incident onto a lossless 

dielectric sphere, which has a refractive index of 3 and a radius of 100 nm. The scattering 

properties of a Mie resonator is a function of its shape, size, the dielectric permittivity ε 

and the wavelength of light λ. In this particular example, the fundamental resonance 

mode of the sphere, characterized by enhanced scattering, lies at ~623 nm, and a 

second-order mode at ~430 nm. The fundamental mode shown here is the magnetic 

dipole mode of the sphere. The resonant dipole is created as a result of coupling of 

incoming polarized light to circular displacement currents of the electric field, where 

phase retardation inside the particle plays an important role [14]. As the size or the 

refractive index of the sphere increases, the fundamental resonance modes will shift to 

larger wavelengths, and a number of higher-order modes appear at shorter wavelengths. 

At these resonance modes, the scattering strength is enhanced both in the forward and 

backward direction, and stronger scattering strength is normally observed for materials 

with higher refractive indices. It’s also interesting to note that resonance modes with high 

scattering strength are not only observed in spherical particles; studies have shown 

similar resonance modes in disks, cylinders and rings as well. By varying the size, shape 

and refractive index of these dielectric structures, one can achieve strong resonance 

modes covering a large span of the solar spectrum, as will be discussed in further detail in 

Chapter 3.  
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Figure 1.5 Numerically calculated scattering cross section spectrum for a dielectric 

sphere with n = 3 and radius of 100 nm. The two distinct response peaks are the 

fundamental (magnetic dipole) and second-order (magnetic quadrupole) resonance modes 

of the dielectric sphere. The magnitude of the cross-sectional magnetic field of the two 

modes are shown as insets. 
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1.3 Anderson localization 

1.3.1 Anderson localization 

The concept of localization was first proposed by Philip Warren Anderson in 1958 [15], 

who studied spin diffusion and electronic conduction in random lattices. The concept of 

mean free path was introduced with the classical Drude model to describe conduction and 

diffusion of electrons in a solid. In this model, electrons bounce between heavy, 

stationary ions sitting at the metal lattice sites, and the average length an electron travels 

before it collides with an ion is used to characterize the material’s electrical conductivity. 

With the introduction of quantum mechanics, the model was modified, where only 

impurities introduced into a perfect lattice act as scattering centers that affect the mean 

free path of the electrons traveling in a metal. As the density of the defects increases to a 

critical value, Anderson pointed out that the electron movement can no longer be 

characterized by the diffusion model, and that electrons become completely localized and 

conductivity comes to a halt. 

The original study went unnoticed for over a decade [16], until the concept became 

broadly adopted by the physics community, and remains a heavily studied field today. 

The concept of localization is not limited to electrons, but has been extensively studied 

for light, microwave, and ultrasound waves. 

To experimentally observe the effect of Anderson localization of light, researchers need a 

scattering medium composed of scatterers with  high refractive indices, minimal 

absorption, and small sizes compared to the wavelength of light. Experimental 

demonstrations of Anderson localization of light have been reported in scattering media 
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composed of Titania powders and grounded Gallium Arsenide powders; however, 

debates still exist to this day on the interpretation of the measurement results for three-

dimensional materials [17]–[19]. In three-dimensional systems, localization effects are 

characterized by the transport length l* and the Ioffe-Regel condition, which states that 

Anderson localization can be observed when the system satisfies the criterium kl* ~ 1, 

where k is the wavevector inside the medium. While it is extremely challenging to realize 

Anderson localization in bulk media, coherent waves can always be localized in one-

dimensional and two-dimensional systems [20]. Localization of light in optical media 

with reduced dimensionality gives rise to an interesting phenomenon called transverse 

Anderson localization, which will be studied in detail in the second half of Chapter 4.   

1.3.2 Transverse Anderson localization 

Transverse Anderson localization was first introduced in 1989 [21], but experimental 

demonstration of this phenomenon was not realized until 2007 [22]. In the experiments, a 

gaussian beam was launched into a photo-refractive crystal, where a disordered lattice 

was introduced by photo-refractive effects [23]. By increasing the disorder of the lattice 

in the transverse direction, while maintaining invariance in the propagation direction of 

the beam, researchers observed transverse localization of the beam, i.e., a constant beam 

profile along the propagation direction and exponential decay of optical intensity in the 

transverse direction. By fitting the intensity profile of the localized beam exiting the 

crystal, they obtained a localization length of ξ = 64 µm. The localization length is a 

function of the level of disorder, density of defects, and the refractive index contrast 

between the defect and background material. A defect filling fraction of close to 50%, 
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and a high refractive index contrast between the defect and the background material have 

further reduced the localization length to ~ 31 µm in recent studies [24]. Since then, 

researchers have explored potential applications utilizing transverse Anderson 

localization for image transport, light focusing and secure information transport [25]–

[28]. 
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Chapter 2 

Materials and techniques  

2.1 Materials 

2.1.1 Chitin 

The hairs of the Saharan silver ants are mainly composed of chitin (C8H13O5N)n, which is 

a long-chain polymer commonly found in the natural world. It is the characteristic 

composite of the exoskeletons of arthropods, including crustaceans (such as crabs and 

shrimps) and insects. The optical properties of chitin have not been studied thoroughly 

due to the difficulty in the production of optical-grade materials and its various 

derivatives depending on the sources. An average refractive index of 1.56 has been used 

in many publications and previous studies reported the dispersive complex refractive 

indices of shrimp chitin samples only in the UV and visible spectral range ( = 250−750 

nm) [1], [2]. Here, the dispersive complex refractive indices of chitin in the mid-infrared 

range ( = 2.5−20 m) were derived from spectra measured from butterfly wing 

membranes. 
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Table 2.1 Parameters used in the Lorentz oscillator model of chitin

 

 

The chemical composition and molecular structure of chitin have been identified using 

various methods including infrared spectroscopy and X-ray diffraction [3], [4]. Thirteen 

resonance frequencies in the mid-infrared spectral range corresponding to the major 

vibrational and rotational bands of chitin molecules (Table 2.1) have been characterized 

and applied in the Lorentz oscillator model [5], 
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(2.1) 

#
Resonant 

frequency (cm-1)

Resonant 
wavelength 

(m)

p=2c/p

(m)
2 (1015 Hz) Origin

1 3284 3.0451 21 0.05 O-H, N-H stretching

2 2920 3.4247 48 0.025 C-H stretching

3 1651 6.0569 37.8 0.01
Amide I (C-O
stretching)

4 1547 6.4641 46.2 0.01
Amide II (N-H

stretching)

5 1456 6.8681 66 0.01 C-H bending

6 1383 7.2307 74.4 0.01 CHx deformation

7 1306 7.6570 75.6 0.015 Amide III

8 1244 8.0386 52.2 0.018 NA

9 1157 8.6430 115.8 0.005 C3-OH

10 1115 8.9686 122.4 0.006 C3-OH

11 1076 9.2937 87 0.006 C6-OH

12 1034 9.6712 73.2 0.01
C-O-C bridge 

stretching

13 690 14.4928 36 0.055 NA
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to calculate the complex refractive indices ( ) ( ) ( ) ( )cn n ik    = + = , which were 

then used in the transfer matrix method to calculate the absorption spectrum of a thin film 

of chitin. In equation (2.1), m labels the various vibrational and rotational bands of chitin, 

and o= 8.854×10-12 C2N-1m-2 is the permittivity of free space, and o,m is the mth 

resonance frequency. The values of plasma frequency, p,m, and collision frequency, m, 

were simultaneously tuned to obtain the best fit between the calculated absorption 

spectrum and a measured spectrum from a piece of butterfly wing membrane with scales 

carefully removed, which can be considered as a relatively flat slab with a uniform 

thickness. The absorption spectrum of the scale-less wing membrane was measured using 

a Fourier transform infrared spectrometer and its thickness was determined using a 

scanning electron microscope.  
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Figure 2.1 Complex refractive indices of chitin in the infrared obtained using two 

methods. Solid curves were obtained using the Lorentz oscillator model and transfer 

matrix method, which considers multiple-beam interference effects (i.e., multiple 

reflection of light inside chitin thin films). Dashed curves are obtained based on the Beer-

Lambert law and Kramers-Kronig relations: the red dashed curve is the extinction 

coefficient, k, directly calculated from the measured absorption spectrum using the Beer-

Lambert law, and the navy blue dashed curve is the corresponding real part of the 

complex refractive index calculated using the Kramers-Kronig relations. Because the 

Beer-Lambert law only considers a single pass of light through chitin thin films, the 

extinction coefficient is overestimated. We used the values based on the Lorentz 

oscillator model and transfer matrix method (solid curves) for full-wave simulations of 

the interactions between infrared light and nano-structured ant hairs. 
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2.1.2 Silkworm fibers and silk protein 

Silkworms produce silk-protein (polyamino acid) based cocoon fibers to protect 

themselves from their surrounding environment. The material exhibits extraordinary 

mechanical properties such as high tensile strength and extensibility. The material is also 

biocompatible and bioabsorbable, making it a good candidate for biomedical applications 

[6], [7]. 

Natural silk fibers come in many different shapes and forms, exhibiting different 

compositions, structures, and mechanical and optical properties. Spider silk fibers are 

known to have superior mechanical properties compared to silk produced by domestic 

silkworms, but under the right spinning conditions, regenerated silk fibroin (from 

domestic silkworm) fibers have been shown to exhibit mechanical strength comparable to 

spider silk fibers [8].   

Silk fibroin protein is primary composed of a recurring amino acid sequence (Gly-Ser-

Gly-Ala-Gly-Ala)n (Fig. 2.2). These proteins form layers of antiparallel beta sheets (the 

main composition of silk fibroin), contributing to the silk’s superior tensile strength, 

rigidity and extensibility. 
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Figure 2.2 Primary structure of silk fibroin, (Gly-Ser-Gly-Ala-Gly-Ala)n. Figure 

reproduced from [9]. 

 

The backbone of these protein molecules gives rise to high absorption in the mid-

infrared, with the N-H stretching, alkyl and Amide bands representing the strongest 

absorption peaks. The strength and position of the absorption peaks vary depending on 

the sources of silk, but the absorption spectra all have a significant overlap with the mid-

infrared atmospheric transparency window and the radiation spectrum corresponding to 

the ambient temperature.  

2.2 Morphology characterization 

2.2.1 SEM/FIB dual beam system 

All the cross-sectional images shown in this thesis were prepared with a focused ion 

beam/scanning electron microscopy dual system (FEI Helios NanoLab DualBeam). This 

system allows us to mill a specimen with a high-energy focused Gallium ion beam and 

image the exposed cross-sections using SEM. 

Due to accumulation of electrons on the surface of non-conductive materials, all 

specimens were sputtered with a 10-nm layer of gold before  SEM/FIB sessions. All 

biological specimens were dried and degassed in a low vacuum chamber to minimize 

contamination to the sputtering chamber and the SEM/FIB chamber.  

Before FIB milling, a layer of 500-nm Platinum was deposited on top of a specimen at 

the position of an intended cross-sectional cut to protect the milling edge from milling 



 

30 

induced damages. A high-current ion beam (Ga+, 30 kV, 21 nA) was then used to cut 

through the specimen and expose a cross-section, followed by using a small-current ion 

beam (30 kV, 0.96-2.8nA) to polish the cross-sectional surface. The cross-section was 

then imaged using a scanning electron beam (5 kV, 85 pA).  

2.3 Direct laser writing lithography 

A direct laser write lithography process based on two-photon polymerization was used to 

create biomimetic optical materials. The 3D lithography system is a commercial 

instrument designed and built by Photonic Professional GT, Nanoscribe GmbH. It is a 

powerful platform for creating complex three-dimensional micro- and nanostructures 

with resolution of ~200 nm in the horizontal plane and of ~1 m in the vertical direction. 

Suspended structures fabricated with this technique, however, have to include supporting 

structures and channels for the developer to dissolve unexposed photoresists.  

An acrylic-based photoresist (IP-DIP, Nanoscribe GmbH) was used. It has a refractive 

index matching with that of the 63×, 1.4 N.A. emersion objective lens used in the system. 

A femtosecond fiber laser with a pulse width of 100 fs, a repetition rate of 80 MHz, and 

wavelength of ?? nm was used as the light source. The lens focuses emission from the 

laser to form a confined voxel in the photoresist to induce two-photon absorption and 

polymerization (Fig 2.3B). During the direct laser writing process, the photoresist was 

drop-casted on a transparent glass substrate and immersed with the objective lens. The 

lens was first brought to focus at the interface of the glass and the photoresist. A scanning 

galvo-mirror system was then used to control the writing in the x and y directions, while 
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a piezoelectric stage was used to control the writing in the z direction. A laser power of 

65 mW and a scanning speed of 50 mm/s were used during the writing process. 

 

Figure 2.3 (A) Schematic diagram of the Nanoscribe direct laser writing lithography 

system.  (B) Formation of the voxel and the writing process. Images reproduced from 

[10]. 

 

2.4 Optical characterization techniques 

2.4.1 Hemispherical reflection and transmission measurements 

Reflection and transmission measurements in the visible and near-infrared were carried 

out using a Fourier-transform-based spectrometer (Bruker Vertex 80) equipped with a 

laser stabilized high brightness Xenon plasma light source (Energetiq eq-99). Forward or 

backward scattered light was captured with a 2-inch visible/near-infrared integration 

sphere (Thorlabs IS200-4), coupled with a set of Silicon and Indium Gallium Arsenide 
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detectors. To measure transmission spectra, specimens were placed at the entrance port of 

the integration sphere so that forward scattered light waves were captured by the 

integration sphere. To measure reflection spectra, specimens were loaded onto a high 

reflectivity sample holder and placed at the center of the integration sphere so that back 

scattered light waves were captured by the integration sphere. The high reflectivity wall 

material of the integration sphere was used to calibrate measured reflection spectra. 

Spectral measurements in the mid-infrared were carried out using a Fourier transform 

infrared spectrometer (Bruker Vertex 70v), a 2-inch mid-infrared integrating sphere 

(Labsphere Model 4P-GPS-020-SL, with diffuse gold coatings), and a Mercury Cadmium 

Telluride detector.  

2.4.2 Time of flight measurement 

The photon lifetime of ultra-short pulses passing through a scattering optical medium 

(e.g., cocoon fibers) was characterized using the time-of-flight measurement technique 

[11], [12]. Two ultra-short pulsed laser beams, the probe beam and the reference or gate 

beam, were used. A schematic of the experimental setup is illustrated in Fig. 2.4. A 50× 

long-working-distance objective was used to focus the probe beam (λ = 600 nm) onto a 

specimen. An imaging arm was added to ensure proper alignment between the input 

beam and the specimen. The light that passed through the specimen was collected using a 

parabolic reflector. The collected signal and the reference beam (λ = 800 nm) were 

focused and spatially and temporally super-positioned onto a Beta Barium Borate (BBO) 

crystal. The generated sum-frequency signal (λ = 342.86 nm) passed through a narrow 

bandpass filter and was collected with a photomultiplier tube (PMT). By varying the 
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delay between the two beams, the temporal profile of the probe beam after its interaction 

with the specimen can be reconstructed. Instrument response function (IRF) of the 

experimental setup was similarly obtained, where the probe beam did not interact with 

any specimen. 

The probe beam and the reference beam have very similar gaussian shaped temporal 

profiles, and therefore the cross-correlation of the two pulses should also be represented 

by a gaussian function. A gaussian function was first used to fit the temporal profile of 

the cross-correlation between the reference and the probe beam. The fitted function was 

then convolved with an exponential decaying function with a time constant  to fit 

measured temporal profiles of TE and TM polarized pulses after exiting the specimen. 

The best fit yields photon lifetime , which characterizes the strength of light scattering 

inside the specimen. 

 

 

Figure 2.4 Schematic diagram of the time-of-flight measurement technique.  
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2.2.3 Fiber characterization 

A supercontinuum laser (SuperK extreme EXU-6) coupled to a filter-based 

monochromator (= 400 -1050 nm, LLTF Contrast) was used as the light source. Light 

was focused onto the entrance facet of one cocoon fiber with a 50× long-working-

distance objective (Mitutoyo 50× M Plan APO). An imaging arm branched out with a 

removable 50/50 beam splitter was used to align the incident beam with the entrance 

facet of the fiber. A matching objective, coupled to an imaging camera, was used to 

image the intensity distribution on the exit facet of the fiber. A variable neutral density 

filter was used to maintain the peak intensity at below 80% of the saturation level of the 

camera for all the images collected. The cocoon fibers and the exit facet imaging arm of 

the setup were mounted on separate XYZ linear translation stages to allow independent 

alignment and focusing adjustments with respect to the incoming beam.   

 

Figure 2.5 Schematic diagram of the optical setup used to characterize light transport in 

cocoon fibers supporting transverse Anderson localization. 
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2.5 Thermodynamic measurement 

2.5.1 Ant hair removal 

The hairs of the ants were removed by gently rubbing a blunt tungsten needle along the 

skin of the ants. The hairs break easily from their sockets and electrostatically attach to 

the needle. There is no loss of cuticular material from the ant specimens and all material 

loss (<1%) is due to the removal of the hairs. 

2.5.2 Thermodynamic measurement setup 

In the thermodynamic measurements, all radiative heat transfer effects, which the silver 

ants experience in their natural foraging environment, were mimicked. A high-power 

Xenon lamp (Thorlabs HPLS-30-04) was used to simulate solar radiation, creating a 

spatially uniform power distribution at the ant specimens’ surface (~1000 W m-2). The 

radiation spectrum of the lamp matches well with the solar spectrum. A large 

thermoelectrically cooled metal plate (TE Technology CP-200), maintained at 5°C and 

coated with a high-emissivity paint, was used to simulate background radiation of a clear 

sky. The specimens (head or gaster of silver ants) were suspended in still air on a 

specimen holder made of two pairs of thin human hairs to minimize thermal conduction. 

Fig. 2.6 shows how an ant head is placed on the hairs and the experimental setup.  

Thermodynamic measurements were also conducted in vacuum. In this case, thermal 

convection was minimized and the dominant channel of heat dissipation was thermal 

radiation. The specimen was suspended on two thin metal wires and placed inside a 

vacuum chamber (Janis ST-100), where the pressure is maintained at below 0.001 Pa. 
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The same high-power Xenon lamp was used and the optical power at the ant specimens’ 

surface was ~760W m-2. 

The rise and fall of body temperature of the ant specimens was recorded with a thermal 

camera (FLIR T640) at 30 frames per second. The camera was equipped with an infrared 

macro lens to capture detailed images of the ant body. The lamp was turned on and off at 

~40-second intervals during recording, in order to obtain a specimen’s temporal 

temperature profile, from which the rise and decay time constants and the equilibrium 

temperature reached with the lamp in the on-state could be determined.  
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Figure 2.6 Photos of specimen and experimental setup. (A) Photo of an ant head with 

hairs removed placed on two pairs of thin hairs. (B) Photo of the thermodynamic 

measurement setup.  
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2.6 Simulation techniques 

2.6.1 FDTD 

Finite-difference time-domain (FDTD) method was used throughout our studies to 

simulate the optical properties of structured biological and biomimetic materials as a 

function of wavelength and angle of incidence. In a typical FDTD simulation, we created 

the structural details of the subjects in computer models, assigned realistic complex 

refractive indices (e.g., those chitin and silk protein complex) to the structures, and 

conducted full-wave simulations to study how light waves interact with these structures. 
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Chapter 3 

Enhanced solar reflection and radiative heat dissipation in 

Saharan silver ants 

3.1 Background 

The silver ants of the Sahara Desert, Cataglyphis bombycina, inhabit one of the hottest 

terrestrial environments on earth. There they occupy the unique ecological niche of a 

“thermophilic scavenger” [1]. In wide-ranging foraging journeys, during which they 

move at maximum speeds of 0.7 m·s-1 across the hot sand surface, they search for corpses 

of insects and other arthropods that have succumbed to the thermally harsh desert 

conditions, which they themselves are able to withstand more successfully. On hot 

summer days, they may reach maximal foraging activities when temperatures of the 

desert surface are as high as 60° to 70°C [2]. In order to survive under these conditions of 

peak foraging activity, every now and then they must unload excess heat by pausing on 

top of stones or sticks of dry vegetation, where due to the steep temperature gradient 

above the sand surface they encounter considerably lower temperatures. Under the 

midday sun of a summer day the ants may spend up to 70 % of their entire foraging time 

in resorting to this kind of thermal respite (cooling-off) behavior. In keeping their body 

temperature below their critical thermal maximum of 53.6 °C [3], they do not only need 

mechanisms to reduce heat absorption from the environment, but they must also be able 
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to efficiently dissipate excess heat, so that they can minimize the amount of time spent in 

thermal refuges and hence lost in search for prey. 

Here we demonstrate by a series of optical and thermodynamic measurements, full-wave 

simulations and heat-transfer modeling how a dense array of uniquely shaped hairs 

characteristic for Cataglyphis bombycina enables the ants to maintain lower body 

temperatures by (i) reflecting a large portion of the solar radiation in the visible and near-

infrared range of the spectrum, and (ii) radiating heat to the surrounding environment by 

enhancing the emissivity in the mid-infrared, where the blackbody radiation spectrum of 

the ant’s body culminates. The thermoregulatory solutions that the silver ants have 

evolved to cope with thermally stressful conditions show that these animals are able to 

control electromagnetic waves over an extremely broad range of the electromagnetic 

spectrum (from the visible to the MIR) and that different physical mechanisms are 

employed in different spectral ranges to realize an important biological function. 

3.2 Characterization 

Specimens of Cataglyphis bombycina collected in Tunisia (34°10’N, 08°18’E) were used 

for all the morphology, optical, and thermodynamic measurements. 

3.2.1 Morphology Characterization 

In these ants, those parts of the body that strike by a brilliant silvery glare (Fig. 3.1A) are 

covered by dense and uniform arrays of hairs (Fig. 3.1B). This hair cover occupies the 

dorsal and lateral sides of the body leaving the ventral surface exposed (Fig. 3.2). As 

SEM images show, the hairs, which gradually taper off at the tip, are locally aligned in 
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the same direction (Fig. 3.1C). Their most remarkable structural feature is their triangular 

cross-section characterized by two corrugated top facets and a flat bottom facet facing the 

ant’s body (Figs. 3.1D, E). Cross sectional views obtained by focused ion beam (FIB) 

milling and scanning electron microscopy (SEM) techniques show that at any given 

cross-section the dimensions of the hairs vary greatly due to the tapering of the hairs, and 

that the gap between the bottom hair facet and the cuticular surface also varies but is 

generally larger than a few hundred nanometers.  

The cross-sectional image (Fig. 3.1D) was obtained with a focused ion beam/scanning 

electron microscopy dual system (FEI Helios NanoLab DualBeam). The detailed 

description of the milling process is described in Section 2.2.1. 
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Figure 3.1 The bright glare of the silver ant and its structural basis. (A) Silver ant 

offloading heat on top of dry vegetation [4]. (B) SEM frontal view of the head densely 

covered by hairs, which spare only the two compound eyes and the three ocelli. (C) SEM 

image of the hairs gradually tapering off towards the tip. (D) Cross-sectional view of the 

hairs milled with FIB and imaged with SEM. (E) SEM image of two hairs with one 

flipped upside down to exhibit the flat bottom facet. 
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Figure 3.2 Dorsolateral and ventral view of a silver ant as seen in the dark field mode of 

the optical microscope. The figure shows that the hairs cover only the dorsolateral sides 

of the ant’s body, leaving the ventral side freely exposed to the desert floor. 

3.2.2 Optical characterization and simulation in the visible and near-infrared 

Optical reflectivity measurements of ant specimens were obtained with two Fourier 

transform spectrometers, one collecting spectra in the visible and NIR ( = 0.45 - 1.7µm) 

and the other in the MIR ( = 2.5 - 16µm) range of the spectrum. The visible and NIR 

measurements showed that hemispherical reflection, i.e., the sum of specular and diffuse 

reflection collected through an integrating sphere is substantially enhanced in regions 

with intact hair coverage as compared to regions from which the hairs had been removed 



 

46 

(Fig. 3.3A and Fig. 3.2). The hairs help the ants to reflect 67% of the incoming solar 

radiation rather than only 41% as is the case after their removal. This enhancement is due 

to scattering within the triangular hairs (Mie scattering), where light gets trapped and then 

reradiates out in all directions. Individual hairs of given cross-sectional dimensions 

generate enhanced reflection due to scattering at specific wavelengths where fundamental 

and higher-order Mie resonance modes are supported [5]–[8]. Due to the variation in 

cross sectional areas, resonance peaks from individual hairs are averaged out over the 

visible and NIR spectrum, so that the hair cover effectively acts as a broadband reflection 

enhancement coating.  

This enhancement in reflectivity can be demonstrated with a simple FDTD simulation 

(Fig. 3.4). Both the height and the width of the triangular hair are set to 2 μm. The gap 

between the bottom facet of the triangular hair and the surface of the cuticle is set to 600 

nm. Simulated reflectivity spectrum for a periodic array of triangular hairs with TE 

polarized incident light is shown in Fig. 3.4A. Peaks in the spectra are the result of Mie 

resonances in the triangular hair, where back scattering is substantially enhanced as a 

result of these dielectric resonance modes. Vertical dashed lines show a few positions on 

the spectrum where enhanced reflectivity occurs due to Mie resonances. The 

corresponding distributions of light intensity at these wavelengths are plotted in Fig. 

3.4B. Cross-sectional view of the two-dimensional distribution of light intensity (|Electric 

field|2) for five exemplary Mie resonances are displayed. The reflectivity peak at λ = 

2.880 μm is the fundamental TE resonance mode. The peaks at shorter wavelengths 

represent higher-order Mie resonances in the triangular hair.  
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We also measured the reflectivity spectra using transverse-electric (TE), transverse-

magnetic (TM), and non-polarized light produced by a laser stabilized Xenon lamp (see 

method section). The TE (TM) polarization is defined as the situation in which the 

electric field component of the incident light is parallel (perpendicular) to the orientation 

of the hair array. Polarized light was created by inserting a broadband wire-grid polarizer 

into the beam path, at a location before light was focused onto the specimens. Spectra for 

non-polarized incident radiation were obtained by removing the polarizer. As shown in 

Fig. 3.3D, the hair array acts as a birefringent layer where higher reflectivity was 

observed for TE polarized light when compared to TM polarized light. This extra 

enhancement for TE polarized light is due to stronger Mie resonance mode confinement 

from the triangular hairs. At the three facets of the triangular hair structure, external 

reflection for TE polarized light is higher than TM polarized light. This enhanced 

reflection at the hair/air interface then leads to stronger resonance mode 

confinement/higher quality factor, which leads to higher overall reflectivity. When the 

hairs have been removed, there is no difference in the spectra obtained with TE, TM and 

unpolarized light. The high reflectivity in the near-infrared is partially due to the internal 

microstructures of the cuticle itself, which will be discussed in section 3.5.  

While parts of the dorsal side of the ant face solar radiation at right angles, due to the 

ellipsoidal shape of the ant’s body a large portion of the dorsolateral surface is hit by 

solar radiation obliquely [3]. This prompted us to examine the reflectivity as a function of 

the incidence angle of radiation, which was varied from 0° to 80°, with 0° representing 

the direction normal to the surface. The hairs were aligned parallel with the rotation axis 

of the radiating beam. As the results show, Mie scattering enhances reflectivity over all 
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angles when regions with intact hair cover are compared to those with hairs removed 

(Fig. 3.3C). With increasing angle of incidence, this enhancement becomes particularly 

strong at beyond 30°. This is the critical angle at which total internal reflection starts to 

occur at the bottom facets of the hairs (Fig. 3.3B-II). At angles approaching 90°, 

reflectivity drops off when total internal reflection at one of the top facets starts to direct 

more of the radiation towards the ant’s body (Fig. 3.3B-III).  

Next, we performed finite-difference time-domain (FDTD) simulations, in order to 

demonstrate the functional significance of the triangular cross-section of the hairs in 

enhancing reflectivity in the visible and NIR range. These simulations compared the 

reflective properties of triangular and circular hairs of the same cross-sectional area. Even 

though the enhancement of reflectivity at normal incidence is comparable in both cases, 

triangular hairs produce an extra enhancement at higher angles of incidence (Fig. 3.3C). 

The reason is that although Mie scattering of similar strength occurs in both circular and 

triangular hairs, in the latter the total internal reflection at the bottom of the hairs 

enhances reflectivity substantially further.  
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Figure 3.3 Reflectivity of the silver ant’s body surface from the visible to the mid-

infrared range of the spectrum. (A) Hemispherical reflectivity measured in the visible 

and near-infrared. (B) Schematic diagram showing the interaction between light and a 

hair at small (I), intermediate (II), and large (III) incidence angles. The corrugated upper 

two facets enhance diffuse reflection in the ultraviolet and visible range. (C) 

Measurement and simulation results showing reflectivity as a function of incidence angle. 

(D) Polarization dependent reflectivity measured in the visible and near-infrared. 
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Figure 3.4 (A) Reflectivity spectrum for a periodic array of triangular hairs with TE 

polarized incident light. (B) Cross-sectional view of two-dimensional distribution of light 

intensity (|Electric field|2) for five exemplary Mie resonances.  

  



 

51 

3.2.3 Gap between hair and cuticle and wetting and drying experiment 

The specimens were put through a series of wetting and drying cycles to demonstrate 

how the reflectivity was affected by having an index matching fluid, which filled all the 

gaps between the hairs and the cuticle. A solution of 70% ethanol and 30% water was 

used as the emersion fluid, and the reflectivity was characterized through a series of 

optical images taken with the dark field mode of an optical microscope (Zeiss Axio 

Imager). The wetting and drying cycle experiment (Fig. 3.5A-E) shows that the 

enhancement in reflectivity is greatly suppressed when the hairs are completely immersed 

in the ethanol-water solution, which destroys both Mie scattering within the hairs and 

total internal reflection at the bottom facets of the hairs. As the solution evaporated, 

individual hairs started to light up, until all the hairs became bright, when the solution 

had completely evaporated.  

As shown in this experiment, the high reflectivity disappeared when the specimens were 

wetted by an ethanol-water solution, which removed the refractive index contrast 

between air and hairs, and thus destroyed the conditions required for Mie scattering and 

total internal reflection. Through simulation (Fig 3.5F), we also show that the reflectivity 

in the visible and near-infrared increases as the gap opens up. Physically, the near-field 

coupling between triangular hairs and the substrate (the cuticle) reduces the strength of 

Mie resonance. This near-field coupling effect becomes weaker as the gap size increases. 

Reflectivity is very small when the hairs are in contact with the cuticular surface. The 

simulated averaged reflectivity spectra under TE and TM polarized incident light are 

plotted.  
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Figure 3.5 Optical images taken during the drying cycle of the wetting and drying 

experiment, the four frames are captured at (A) 10, (B) 100, (C) 105 and (D) 112 seconds 

after the drying process started. (E) Intensity of reflected visible light as a function of 

time during the drying process. (F) FDTD simulation of reflectivity as a function of gap 

length between hair and cuticle  
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3.2.4 Optical characterization and simulation in the mid-infrared 

Reflectivity measurements performed in the MIR range revealed a second important 

point in the silver ant thermotolerance story. When proceeding from lower to higher 

wavelengths, at about 8 μm a remarkable transition occurs in the reflectivity curves 

obtained from hairy and hair-free regions: the enhanced reflectivity of regions with hair 

cover as compared to those without hairs reverses to reduced reflectivity (Fig. 3.6A). As 

Kirchhoff’s law of thermal radiation states, reduced reflectivity corresponds to enhanced 

emissivity . At a body temperature of 50°C, which the silver ants may reach when 

foraging at peak activity times, the blackbody radiation of the ant’s surface would lie in 

the range of 6 - 16 μm (peaked at ~9 μm) and thus allow the silver ants to offload heat 

more efficiently through radiative heat transfer. The latter reduces the respite time and 

further decreases the equilibrium body temperature.  

This concept is further explored through FDTD simulation. Where we simulated the 

reflectivity as a function of wavelength at normal incidence for 30 different random 

arrangements of the hair structure (Fig 3.7). The refence is for an infinitely thick chitin-

protein complex layer with refractive index n = 1.56, resembling that of chitin. The 

spectra show a significant enhancement of reflectivity in the visible and near-infrared and 

a decrease of reflectivity (or increase of emissivity) in the mid-infrared. The layered 

structure and the coupling of modes between neighboring hairs lead to a broadening of 

the Mie resonance modes. Simulated reflectivity from TE polarized light is higher when 

compared to TM polarized light. This simulated birefringent effect from the hair array 

agrees with the measured results (Fig. 3.3D). The MIR reflectivity as a function of 

incidence angle was also explored through simulation (Fig. 3.6B). Simulation results 



 

54 

show that MIR reflectivity is significantly lower for Hairy region when compared to the 

bald region over all incident angles simulated (0 - 80˚). 

 

 

Figure 3.6 (A) Integrated hemispherical reflectivity measured in the Mid-infrared for 

region with hair intact and region with hair removed. (B) Simulated reflectivity in the 

mid-infrared as a function of incidence angle. 



 

55 

 

Figure 3.7 (A) Three exemplary arrangements of the triangular hairs. (B) Simulated 

reflectivity as a function of wavelength at normal incidence for 30 different random 

arrangements of the hair structure. (C) Reflectivity spectra averaged over 30 simulations. 

3.2.5 Thermodynamic measurement 

How does the hair cover with its enhanced reflectivity in the visible and NIR and 

its enhanced emissivity in the MIR affect the radiative heat transfer between the ant’s 

body and the environment? To investigate this question, we performed thermodynamic 

experiments, which mimicked all radiative heat transfer effects in the silver ants’ natural 

foraging environment. To accomplish this task, we used a high-power xenon lamp to 

simulate the solar spectral distribution at the desert sand surface [9] and a 

thermoelectrically cooled high-emissivity metal plate to simulate the clear sky with its 
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low level of blackbody radiation [10]. The ant specimens were suspended on thin threads 

to minimize thermal conduction. Thermodynamic experiments were conducted in 

vacuum to study thermal radiation, as well as in still air to study the interplay of thermal 

radiation and convection. Under both conditions, the specimens with their natural hair 

covers were able to maintain significantly lower steady-state body temperatures than the 

same specimens with the hairs removed (Fig. 3.8). 

Thermodynamic experiments were conducted using the gaster and head parts of silver 

ants. Temporal temperature profiles were taken before and after hair removal in vacuum 

and in still air. The experiments conducted in vacuum allowed us to exclude conductive 

and convective thermal transfer effects, so that we can study the sole effect of radiative 

heat transfer and extract the mid-infrared emissivity before and after hair removal. The 

experiments conducted in still air allowed us to study the comparative contributions of 

radiative cooling and natural convection and extract convective heat transfer coefficient h 

with and without hair cover. According to the heat transfer model developed in section 

1.1.5, we have 
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                   (3.1) 

These four equations allow us to solve for mid-infrared emissivity, hair  and bald , and 

convective heat transfer coefficients, hhair and hbald, before and after hair removal. The 

results for the gaster and head sections of silver ants are summarized in table 3.1. 
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Table 3.1 Thermodynamic measurement result summary for gaster and head  

Specimens Gaster Head 

Conditions Before hair 

removal 

After hair 

removal 

Before hair 

removal 

After hair 

removal 

Mass 0.4774mg 0.4729mg mhair=0.4836mg mbald 

=0.4801mg 

Surface area s’ =26.37 mm2 s’ =20.86 mm2 

Time constant 

of temperature 

change in 

vacuum 

vac,hair =  

4.627 sec 

vac,bald =  

4.937 sec 

vac,hair =  

5.947 sec 

vac,bald =  

6.126 sec 

Time constant 

of temperature 

change in air  

air,hair =  

1.445 sec 

air,bald =  

1.408 sec 

air,hair =  

1.713 sec 

air,bald =  

1.688 sec 

Average 

temperature 

during 

thermodynamic 

experiment in 

vacuum 

,vac hairT = 

(Tmax+Tmin)/2= 

(50.28oC 

+30.27oC) 

= 40.28oC 

,vac baldT = 

(Tmax+Tmin)/2= 

(56.16oC 

+30.43oC) 

= 43.30oC 

,vac hairT = 

41.66oC 

(Tmax+Tmin)/2= 

(51.42oC 

+30.43oC) 

= 41.66oC 

,vac baldT = 

45.36oC 

(Tmax+Tmin)/2= 

(60.56oC 

+32.16oC) 

= 45.36oC 

Average 

temperature 

during 

thermodynamic 

experiment in 

air 

,air hairT =  

(Tmax+Tmin)/2= 

(43.50oC 

+29.74oC) 

= 36.62oC 

,air baldT =  

(Tmax+Tmin)/2= 

(46.61oC 

+29.98oC) 

= 38.30oC 

,air hairT = 

37.54oC 

(Tmax+Tmin)/2= 

(44.29oC 

+30.78oC) 

= 37.54oC 

,air baldT = 

39.47oC 

(Tmax+Tmin)/2= 

(47.45oC 

+31.49oC) 

= 39.47oC 

Average mid-

infrared 

emissivity 

hair = 0.89 bald = 0.80 hair = 0.86 bald = 0.80 

Convective 

heat transfer 

coefficient 

hhair =  

13.8 W/m2/K 

hbald =  

14.7 W/m2/K 

hhair =  

15.3 W/m2/K 

hbald =  

15.7 W/m2/K 

 

Summary of thermodynamic measurement result parameters for the Gaster and Head of 

the Saharan silver ants measured in vacuum 
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The mid-infrared emissivity extracted in the above table is the effective emissivity 

averaged over the entire surface of the specimen, including both hair-covered regions and 

naturally bald regions. The average emissivity of the gaster decreases from hair = 0.89 to 

bald = 0.80 with hair removed. Considering that the hairs cover approximately 75% of the 

gaster (dorsal and lateral regions), we have 75% 25%hair hair bald  = + . Therefore, we 

derive that the emissivity of the hair-covered region is hair = 0.92, and that the hair cover 

enhances the mid-infrared emissivity by (0.92-0.8)/0.8=15%.  

Similarly, the average emissivity of the silver ant head decreases from hair = 0.86 to bald

= 0.80 with hair removal. Considering that the hairs cover only about 50% of the head 

(dorsal side), we have 50% 50%hair hair bald  = + . Therefore, we derive that the emissivity 

of the hair-covered region to be hair = 0.92, which agrees perfectly with the value 

obtained from the gaster.  

The extracted convective heat transfer coefficient, h, increases slightly with hair removal, 

from hhair = 13.8 W/m2/K to hbald = 14.7 W/m2/K for the gaster, and from hhair = 15.3 

W/m2/K to hbald = 15.7 W/m2/K for the head. The slightly smaller heat transfer coefficient 

of natural convection with hair cover is because the stagnant air between the hair cover 

and the cuticle creates a resistance to convective heat transfer from inside the ant body. 

The extracted convective heat transfer coefficient, h, agrees reasonably well with the 

value h = 12.7 W/m2/K calculated using the following equations [11], [12]: 
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where NuD, RaD, and GrD are, respectively, the averaged Nusselt number, the Rayleigh 

number, and the Grashof number of characteristic length D. Pr = 0.711 is the Prandtl 

number of air at 40oC. g=9.81 m/s2 is the acceleration of gravity, =1/313 1/K is the 

thermal expansion coefficient of air at 40oC, T=15K (temperature difference between 

specimen and surrounding air at thermal equilibrium), D~1.2 mm is the diameter of the 

specimen, v = 16.9710-6 m2/s is the kinematic viscosity of air at 40oC, and k=0.0271 

W/m/K is the thermal conductivity of air at 40oC. 

 

The thermodynamic experiments conducted in vacuum comparing specimens before and 

after hair removal further revealed that the hair cover decreases the time constants of 

temperature change (Fig. 3.8, B and E). The shortened time constants indicate an 

increased rate of radiative heat transfer and are a direct confirmation of the effect of the 

hairs in enhancing the MIR emissivity. By using the time constants and the heat transfer 

model, we computed that the hair cover enhances emissivity by about 15% (table 3.1). 

This enhanced emissivity is due to the fact that at large MIR wavelengths (i.e., at 

wavelengths much larger than the dimensions of the cross sections of the hairs), the hair 

structure acts as a gradient refractive index layer (Fig 1.4) [13]–[15], which provides the 

surface with broadband, broad-angle antireflective properties in the MIR (Fig. 3.6-3.7). 

Because of the influence of convection, the time constants of temperature change 
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decreased by a factor of about 3 when the specimens were brought from vacuum into air 

(Fig. 3.8). This indicates that radiative heat dissipation amounted to about one-half of 

convection and, therefore, still played a significant role in the presence of natural 

convection. 

 

Applying experimentally extracted parameters to the heat transfer model revealed that the 

enhanced visible and NIR reflectivity and enhanced MIR emissivity make comparable 

contributions to reducing the steady-state temperature in the presence of natural 

convection. On hot summer days in the Sahara, the foraging activities of silver ants often 

occur under low wind or even still air conditions, when the ants must rely on enhanced 

visible and NIR reflectivity and enhanced MIR emissivity equally heavily to reduce their 

body temperature during the respite behavior. 
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Figure 3.8 (A) Thermal camera images showing the head of an ant specimen at the 

thermal steady state under different conditions. Temporal temperature profile measured 

for the head before and after hair removal in vacuum (B) and in still air (C) are shown. 

(D to F) Results obtained for the hind part (gaster) of an ant specimen. Insets in (B) and € 

are photos of specimens before and after hair removal.  
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3.3 Thermodynamic model of silver ants 

Using parameters extracted from experiments, we can numerically solve equation (1.16) 

to obtain equilibrium temperature, and study the comparative contributions of enhanced 

visible and near-infrared reflectivity and enhanced MIR emissivity in reducing the 

equilibrium temperature under different convective heat transfer conditions. 

Figure 3.9 shows the equilibrium temperature as a function of visible and near-infrared 

reflectivity Rvis-NIR and MIR emissivity MIR under natural convection. Rvis-NIR ranges 

from 0.44 to 0.69 (or absorptivity vis-NIR ranges from 0.31 (with hairs) to 0.56 (hairs 

removed)), and MIR from 0.8 to 0.89. The way we calculated the variation ranges of Rvis-

NIR and MIR is described in the subsequent section. Removing hairs from specimens 

decreases Rvis-NIR from 0.69 to 0.44 and MIR from 0.89 to 0.80. As a result, the 

equilibrium temperature increases from ~34oC to ~39.2oC (i.e., from the upper right 

corner to the lower left corner in Fig. 3.9. The effects of Rvis-NIR and MIR are quite 

comparable, as the temperature gradient in Fig. 3.9 is essentially diagonal. If Rvis-NIR and 

MIR were able to change independently: (a) when MIR increases from 0.8 to 0.89 for a 

fixed Rvis-NIR, equilibrium temperature decreases by ~2oC, (b) when Rvis-NIR increases 

from 0.44 to 0.69 for a fixed MIR, equilibrium temperature decreases by ~3oC. 

The way we calculated the variation range of Rvis-NIR and MIR according to experimental 

results are discussed in the following. 

Assuming that the body parts (head or gaster) of silver ants can be approximated as a 

sphere with radius r, and that  and  are angles of the spherical coordinate system. The 

total absorbed power ’Ps  is calculated in the following way. The power incident onto a 
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small area dA=r2sind on the sphere is PdAcos. Therefore the total power incident 

onto the upper half of the sphere is: 

( )
2 /2

2 2

0 0
cos sinP r d d P r

 

 
    

= =
=                             (3.3) 

The total reflected power from the upper half of the sphere is: 

( )
2 /2

2

0 0
cos sinR P r d d

 

 
    

= =
                                     (3.4) 

where R() is angular dependent reflectivity. Thus, the total absorbed power is the 

difference between (3.3) and (3.4):  

( ) ( ) ( )
2 /2 2 /2

2 2 2

0 0 0 0

1
' cos sin 1 sin cosPs r P R P r d d R d d P r
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= − = −    

 
     

(3.5) 

Therefore, the absorptivity in the visible and near-infrared is: 

( )
2 /2

0 0

1
' 1 sin cosR d d

 

 
     

 = =
= −                               (3.6) 

The angular dependent reflectivity R() is calculated in the following way. The 

reflectivity measured from various spots on the ant body at zero-degree angle of 

incidence and normalized to solar irradiance according to equation (1) is Rhair(=0) = 

60%15% for hair-covered regions and Rbald(=0) = 40%10% for regions with hairs 

removed. Using the measured increase in reflectivity as a function of incidence angle, 

Rhair() and Rbald() (Fig. 2C), we can then calculate the angular dependent 

reflectivity: 



 

64 

( )

( )

( 0) ( )

( 0) ( )

hair hair hair

bald bald bald

R R R

R R R

  

  

= = + 

= = + 
.                                                                    (3.7) 

Using equations (18) and (19), the values of absorptivity ’ for the hair-covered regions 

and regions with hairs removed are, respectively, 
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The mid-infrared emissivity  is calculated using the following equation (8), 
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Here R(), shown in Fig. 2F,is the mid-infrared reflectivity obtained from full-wave 

FDTD simulations. It was averaged over TE and TM polarizations, and averaged over 

azimuthal angle from =0 to =90o in step of 10o. R() is also weighted by the blackbody 

radiation spectrum at 50oC using an equation similar to equation (1). We obtained using 

(21) that the emissivity for the bald and hairy regions, respectively, is bald = 0.87 and hair 

= 0.93.  hair = 0.93 agrees well with the value extracted from the thermodynamic 

experiments (where we obtained hair = 0.92). bald = 0.87 seems to be an overestimation: 

our measurements indicate that the heterogeneous internal structures of ant body enhance 

MIR reflection. For example, out MIR reflectivity measurements using an integration 

sphere, which captures all specular and diffuse reflection, showed that the MIR 

reflectivity at zero-degree incidence angle is 10-20%, which is much larger than 4.8%, 
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the reflectivity at normal incidence of an interface between air and chitin with n=1.56. 

Enhanced MIR reflectivity leads to reduced MIR absorption or emissivity. In solving the 

equilibrium temperature using the heat transfer model, we used bald = 0.80 obtained from 

the thermodynamic experiments. 

It is interesting to note that the hairs cover only the top and sides of the ant’s body, where 

they are responsible for the effects described above. The absence of hairs on the bottom 

surface reduces the radiative energy transfer between the hot sand and the cooler ant 

body, so that the animals can reduce the absorption of blackbody radiation from the 

desert floor. 

 

Figure 3.9 Equilibrium temperature as a function of visible and near-infrared reflectivity 

RVIS-NIR and MIR emissivity εMIR at h = 15W/m2/K, which represents natural convection.  
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3.4 Biomimetic hair structures 

Inspired by the hair coating of the Saharan silver ants, we utilized an existing fabrication 

technique to create biomimetic Metasurfaces for passive radiative cooling of objects. The 

device shown in figure 3.10 is fabricated using a commercially available nano-3D 

lithography tool based on two-photon polymerization. The technique itself and the 

fabrication process and the detailed parameters used are described in section 2.3.1 

The photoresist used here have similar optical properties to the natural chitin material, 

both in refractive index and materials absorption. The photoresist does have significantly 

higher absorption in the ultraviolet and the blue, where the strong absorption is needed 

for the polymerization process to take place during writing.  

A schematic diagram of the designed unit cell is shown on the right in figure 3.10. In 

order to have the triangular beams suspended in air to create enhanced Mie resonance 

within the structure, three rectangular pillars are used to support a single triangular beam, 

creating an air gap between the substrate and the triangular beams. There is a thin layer of 

photoresist deposited between the structure and the substrate to enhance adhesion. Gaps 

are placed in between adjacent triangular beams to allow the developer solution to gain 

full access to the unexposed photoresist and remove it from the rest of the structure. 
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Figure 3.10 Single layer biomimetic triangular hair structure fabricated using nano-3D 

direct laser write lithography. The schematic diagram on the right is the cross-sectional 

view of a single triangular beam, where three pillars are used to support and suspend the 

triangle, and a base layer of photoresist is used to enhance adhesion.  
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Figure 3.11 (A-B) Two different magnifications and viewing angles of a dual-layer 

biomimetic hair coating. (C) Cross-sectional view of a three-layer randomly stacked 

biomimetic hair coating. (D) Cross-sectional view of actual silver ant hair structure (for 

comparison). 
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Using this unit cell as the basis of the designed structure, we fabricated devices with two 

layers and three layers of hair coatings, where the hairs are randomly positioned on top of 

one another just as they would be in the actual silver ant hair arrangement. In Fig. 3.11 C 

and D, we compare side by side a manmade structure and the actual hair structure. The 

capability of the direct laser lithography allows us to fabricate hair structures with similar 

size and position when compared to natural hair coatings. 

To characterize radiative cooling capabilities of the man-made devices, we measured the 

device’s hemispherical reflectivity from the visible to the mid-infrared (red curve, Fig. 

3.12), and compared it to results of a glass substrate (blue) and a control sample, 

consisting of a thin slab of photoresist using the same amount of material as the three-

layer biomimetic hair coating (yellow). 

The results show that the biomimetic hair coating enhances reflectivity in the visible and 

near-infrared, and it also suppresses reflectivity in the mid-infrared. The glass substrate 

has a pronounced phonon resonance peak centered at =~ 9 µm, the biomimetic coating 

was able to suppress that peak significantly, and the suppression is not only due to 

materials absorption, as is demonstrated by the controlled structure, but also due to 

structural suppression of reflection from the triangular beams acting as an anti-reflective 

coating in the mid-infrared. 
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Figure 3.12 Hemispherical reflectivity measurement of a three layer (red) biomimetic 

hair coating, compared to measurement results of the glass substrate (blue) and a control 

sample, consisting of a thin slab of photoresist using the same amount of material as the 

three-layer biomimetic hair coating (yellow). 

 

3.5 Enhanced reflectivity in the ultraviolet and near-infrared 

3.5.1 Enhanced reflectivity in the ultraviolet due to hair corrugation 

We also investigated possible optical effects of the corrugations on the top two facets of 

the hair structure (Fig. 3.13A), where the step sizes of the corrugations are ~200 to 300 

nm. Reflectivity simulations (Fig. 3.13B) show enhanced reflectivity in the ultraviolet 
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and blue when comparing structure with corrugated facets to structure with smooth 

facets. The enhancement can be contributed to enhanced scattering at the corrugated 

surfaces where the size of the corrugations is optimized to reflect light in the UV and near 

UV portion of the solar spectrum. The enhancement could protect the ant body from 

harmful UV radiation, and reduce the overall solar absorption of the ant body. 

 

Figure 3.13 Optical effects of hair corrugation. (A) SEM image showing the top two 

facets of a hair of the Saharan silver ants, showing longitudinal corrugations on the 

surface of the hair. (B) Simulated reflectivity of a single triangular hair structure with 

corrugated top facets, indicating enhanced reflectivity in the ultra-violet and the blue 

when compared to hair structure with smooth top facets.   

 

3.5.2 Near-infrared reflectivity enhancement in desert ants 

We measured reflectivity of seven different species of desert ants, and all exhibited 

enhanced reflectivity in the near-infrared portion of the solar spectrum (=1-1.7 µm). The 

enhanced reflectivity is created by strongly scattering structures located right underneath 
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the inner cuticle wall (Fig. 3.14). In the case of Cataglyphis bombycina, a granular layer 

was embedded between a thin membrane and the inner wall of the cuticle, whereas in the 

case of Cataglyphis noda, spherical shaped particles were found to be attached to the 

inner wall of the cuticle. It’s interesting to note that while the granular and spherical 

structures enhance reflectivity in the visible and near-infrared, due to strong absorption of 

visible light by pigmentations in the cuticular layer, the overall enhanced reflectivity was 

only observed in the near-infrared.   

While broadband enhanced reflection over the entire solar spectrum is ideal for 

minimizing heating from solar radiation, specific pigmentations develop in different 

species of ants for various others reasons that are essential to their survival, such as 

camouflage. Near-infrared light accounts for half of the overall power of solar radiation. 

In this wavelength range, light is no longer visible to animal eyes, and these species of 

desert ants have found a way to utilize these unique nanostructures to enhance solar 

reflection without compromising visible colorations. 
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Figure 3.14 (A) Measured hemispherical reflectivity for the abdomen of seven different 

species of desert ants. All the species exhibit a high reflectivity in the near-infrared 

region of the solar spectrum. (B-C) Granular and spherical structures found on the inner 

cuticle wall of Cataglyphis bombycina and Cataglyphis noda, respectively. Both 

structures enhanced reflectivity in the visible and near-infrared. 
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3.5.3 Bioinspired cool roof coating 

Inspired by these reflectance-enhancing micro- and nano-structured granules and spheres, 

we designed and fabricated a cool-roof coating material that introduces a large number of 

dielectric nanoparticles (SiO2, TiO2) into a silicone-based binding material. The particles 

were selected to have sizes comparable to the wavelength of visible and near-infrared 

light, enabling strong scattering over the entire solar spectrum. The silicone embedding 

medium and the particles were also selected so that their absorption bands strongly 

overlap with the mid-infrared atmospheric transparency window. In this way, we created 

a coating that also exhibits enhanced thermal emissivity. Thermal measurement of the 

bioinspired cool-roof coating material showed that it significantly reduced the peak 

temperature of the roof during the daytime, when compared to a control (asphalt) (Fig. 

3.15). It’s interesting to note that due to the high emissivity of the roof coating and the 

asphalt, during nighttime, the coating can be cooled to be significantly lower than the 

ambient air temperature.  
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Figure 3.15 Thermal measurement of a roof covered by the bioinspired cool-roof coating 

compared to an asphalt roof and the ambient air temperature.  

 

3.6 Conclusion 

In conclusion, Saharan silver ants are covered with a dense array of uniquely shaped 

triangular hairs on the top and the sides of their bodies. These silvery hairs protect the 

ants against getting overheated in at least three ways. First, as a result of total internal 

reflection and Mie scattering the hairs enhance reflectivity in the visible and near-

infrared, where solar radiation culminates. Second, in the mid-infrared, where solar 

radiation becomes negligible for λ > 2.5 μm, the hairs acting as an antireflection layer 

enhance emissivity and thus increase the ants’ ability to offload excess heat via 

blackbody radiation. Third, the ant’s bare bottom surface reflects mid-infrared radiation 

from the hot desert floor more efficiently than if it were covered by hairs. Taken together, 

these effects result in decreasing the ant’s equilibrium body temperature and the time 

constants of heat transfer and thus enable these thermophilic scavengers to forage at 

exceedingly high environmental temperatures. In general, the thermoregulatory solutions, 

which the silver ants have evolved to cope with thermally stressful conditions, provide a 

first example that an animal is able to control electromagnetic waves over an extremely 

broad range of the spectrum (from the visible to the mid-infrared, i.e., λ = 400 nm – 

16μm), and that different physical mechanisms are employed in different spectral regimes 

to realize important biological functions. Furthermore, the present interdisciplinary 

account on the silver ants could have a significant technological impact by inspiring the 
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development of biomimetic coatings for passive cooling of objects such as vehicles and 

buildings [16]–[18]. Interestingly, a recent article reported the demonstration of a 

multilayered film that can cool down an object by using essentially the same mechanisms 

as the silver ants, i.e., high reflectivity in the solar spectrum and high emissivity in the 

mid-infrared [19]. 
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Chapter 4 

Nanostructured fibers as a versatile photonic platform: 

Radiative cooling and waveguiding 

4.1 Background 

Silkworm cocoon fibers are remarkable natural materials that act to protect the pupae 

from sudden temperature fluctuations, ultraviolet (UV) radiation, and predatory 

attacks.[1]–[5] These exceptional thermal, optical, and mechanical properties, combined 

with biocompatible and biodegradable properties, make silk fibers an ideal candidate for 

tissue engineering and other biomedical applications.[6]–[10] This study aims to build 

and expand upon the silk fiber’s functionalities, bringing it closer to new applications in 

radiative cooling, light delivery, and image transport.  

The moth species, of which its cocoon fibers are being studied here, is Argema mittrei, 

more commonly known as the comet moth. It is one of the largest moths in the world, 

with cocoons spanning 6-10 cm in length.[11] Under sunlight, the cocoons, as well as 

individual silk fibers that make up the cocoons, exhibit a bright silvery, metallic sheen 

(Figure 4.1, 4.2 a-b). While diffuse reflection in randomly structured materials is often 

observed in nature, light reflection with a high degree of specularity observed in these 

wild moth cocoon fibers is unique for a natural biological system.[12]–[15]   
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In Fig. 4.1, we show the dark field microscopy image of a domestic silkworm (Bombyx 

mori) cocoon and compares it to the wild comet moth cocoon, along with the optical 

images of complete cocoons. The domestic silkworm cocoon exhibits a diffused white 

shine, while the wild comet moth cocoon exhibits a high degree of specular shine. From 

the dark field optical microscopy images, it can be shown that the individual domestic 

silkworm cocoon fibers are mostly transparent, and the overall white shine is a result of 

multiple scattering at the boundaries of individual fibers. In the case for wild comet moth 

cocoon fibers, the individual fibers are highly reflective and specular in nature.  

As we will show in this study, unique optical properties of these fibers are the results of 

filamentary air voids propagating along the cocoon fibers. The voids have cross-sectional 

sizes comparable to wavelengths of visible and near-infrared light, and thus act as 

scattering centers that enhance the solar reflectance of the fibers. Furthermore, the variety 

of chemical bonds of the silk proteins leads to a high emissivity in the mid-infrared. The 

combined effect of high solar reflectance and thermal emissivity enables the cocoons to 

regulate temperature via passive radiative cooling.[16]–[19] Drawing inspiration from the 

structure and optical properties of these natural fibers, we fabricated biomimetic fibers 

embedded with a high density of voids and characterized their radiative cooling 

capabilities. Aside from radiative cooling, the cocoon fibers with longitudinally invariant 

voids possess the ability to guide light along their longitudinal direction through 

transverse Anderson localization. The latter is a phenomenon first observed 

experimentally in 2007 in a photo-refractive crystal, where small random one-

dimensional (1D) perturbations of optical refractive indices were introduced through an 

optical nonlinear effect.[20], [21] Since then, researchers have been able to create fibers 
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containing longitudinally invariant random structures using various fiber drawing 

techniques with different materials systems, and apply them towards applications in 

image transport, light focusing, and secure information transport.[22]–[27] This study 

shows the first experimental observation of transverse Anderson localization in a natural 

biological system, where potential applications in light guiding, image transport, and light 

focusing are demonstrated.  

 

 

 

 

Figure 4.1 Dark field microscopy image and optical image of domestic silkworm cocoon 

(left) and wild comet moth cocoon (right). 
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4.2 Characterization 

4.2.1 Morphology Characterization 

The comet moth cocoon is made of threads, each consisting of a pair of fibers bonded 

together by a coating of sericin.[28] We used focused ion beam (FIB) milling to expose 

the fiber’s transverse and longitudinal cross-sections. The transverse cross-section of one 

fiber (Fig 4.2C) shows that it has a diameter of ~40 µm and is populated by irregularly 

shaped voids with sizes ranging from hundreds of nanometers to a micron. Smaller voids 

tend to be located more toward the edge of the fiber and larger voids more toward the 

center. The region where sericin joins the two fibers together is free of voids. The 

longitudinal cross-section of a fiber (Figure 4.2D) shows that the voids propagate for at 

least tens of microns without varying in size. 

  



 

83 

 

 

Figure 4.2 Morphology of the cocoon and silk fibers of the comet moth. (A) Photo of a 

comet moth cocoon, showing its reflective sheen. (B) Dark field optical microscopy 

image showing overlapping cocoon fibers. (C) Scanning electron microscopy (SEM) 

image of the transverse cross-section of a comet moth silk fiber, prepared with focused 

ion beam (FIB) milling. (D) SEM image of the longitudinal cross-section of a silk fiber 

prepared with FIB milling. 

  



 

84 

4.2.2 Reflectivity and emissivity characterization 

Directional-hemispherical reflectance measurements on single silk fibers ~50 µm thick 

show that single fibers have a high reflectance of 0.66 normalized to the solar spectrum 

(Fig 4.3). The fibers’ strong enhancement in reflectance is the result of multiple light 

scattering by the random voids inside the fibers, where the void sizes are comparable to 

the wavelengths of sunlight. At longer wavelengths, however, as the voids are now 

subwavelength in size and thus no longer act as strong scattering centers, reflectance is 

greatly reduced. In fact, the fibers become highly absorptive in the mid-infrared (=6-14 

µm) due to strong and broadband absorption of a variety of chemical bonds of fibroin 

proteins that comprise the silk fibers. The wavelength range over which infrared 

absorptivity is enhanced overlaps well with the atmospheric transparency window (=8-

14 µm) and the blackbody radiation spectrum of warm objects.[29], [30] Reduced 

reflectance and enhanced absorptivity in the mid-infrared enable the cocoon fibers to 

reach a high emissivity of 0.88, weighted by the thermal radiation spectrum at 300 K. In 

this way, the portion of solar energy absorbed by the cocoon can be efficiently dissipated 

back to the environment through thermal radiation. The combined effects of high solar 

reflectance and high thermal emissivity help prevent the pupae inside a cocoon from 

overheating when the cocoon is under direct sunlight.  
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Figure 4.3 Optical characterization of single cocoon fibers. (A) Integrated hemispherical 

reflectance and emissivity (calculated by 1−reflectance−transmittance) spectra of a single 

comet moth cocoon fiber from the visible to the mid-infrared (=400 nm – 13.5 μm). 

Normalized spectral intensity of the AM 1.5 solar spectrum, the blackbody radiation 

spectrum at 300 K, and the atmospheric transparency window are plotted in the 

background. 

 

4.2.3 Polarization dependent reflectivity  

To further understand how these filamentary voids affect the optical properties of the 

fibers, and to understand the specular reflection of these fibers in the visible, we shone 

linearly polarized light onto single silk fibers and measured spatial, spectral, temporal, 

and polarization dependent properties of back- and forward-scattered light. The 

integrated reflectance of the silk fiber is significantly higher with an illumination of 

transverse electric (TE) polarized light compared to that with an illumination of 
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transverse magnetic (TM) polarized light (Fig 4.4D). Here, TE corresponds to the electric 

field parallel to the longitudinal direction of the fiber. This large difference in reflectivity 

is the result of form birefringence created by the filamentary voids, as is confirmed 

through finite-difference time-domain (FDTD) simulations. 

FDTD simulations were used to investigate reflection of the cocoon fiber as a function of 

incident wave polarization. Actual transverse cross-sectional SEM image of a fiber was 

imported to obtain the structure used in FDTD simulations (Fig. 4.4). The voids were 

assumed to be completely invariant in the longitudinal direction of the fiber. A refractive 

index of n = 1.5 was assigned to the material at all wavelengths,[31] and no absorption 

was considered in the simulations.  

The simulated reflectance results show that reflection of TE polarized incident light is 

higher than that of TM polarized light (Fig. 4.4). It is also observed that as the 

wavelength of light increases towards the near-infrared, reflectance decreases. This trend 

matches the measurement results, where the scattering strength of the material decreases 

as the wavelength of light becomes substantially larger than the size of the voids.  

The scattering strength of these fibers can be quantified by using a cross-correlation 

measurement technique.[12] We measured the temporal profile of an ultrashort laser 

pulse at λ = 600 nm before and after it passed through a single cocoon fiber along the 

transverse direction (Figure 4.4E). The temporal profile before passing through the 

cocoon fiber was used as the instrument response function (IRF). The IRF was convolved 

with an exponential decay function to fit and extract the photon lifetime, which positively 

correlates with the strength of light scattering inside the random structures of the cocoon 

fiber. The measured photon lifetime is 210 fs for TE polarized light and 155 fs for TM 
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polarized light. The results agree qualitatively with the polarization dependent reflectivity 

measurements and FDTD simulation results, where TE polarized light interacts stronger 

with the filamentary voids when compared to TM polarized light.  

The simulated temporal profile of an ultra-short pulse passing through a single cocoon 

fiber (Fig. 4.4C) confirms the time-of-flight measurement results, where TE polarized 

light interact stronger with the voids.. The simulated results estimated photon lifetimes of 

270 fs for TE polarized light, and 230 fs for TM polarized light. 
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Figure 4.4 Polarization dependent optical simulation and measurement of single cocoon 

fibers. (A) Structure extracted from a cocoon fiber and used in the simulations. (B) FDTD 

simulations of the reflectance spectra of a single cocoon fiber with TE and TM polarized 

excitations. (C) FDTD simulations of the temporal profile of an ultrashort pulse passing 

through a single cocoon fiber with TE and TM polarized light. (D) Integrated 

hemispherical reflectance spectra of a single cocoon fiber illuminated with transverse 

electric (TE) and transverse magnetic (TM) polarized light at normal incidence, where 

TE polarization is defined with the electric field aligned to the longitudinal direction of 

the fiber. (E) Time-of-flight measurements of a single cocoon fiber. IRF stands for 

instrument response function, which is the cross-correlation of ultra-short reference 

(=800 nm) and probe (=600 nm) pulses. 

4.2.4 Specularity of cocoon fibers 

These filamentary voids are also what enable these silk fibers to exhibit a strong specular 

sheen, where the 1D nature of these voids limits the scattered light to within a narrow 

angular range in the far field. The effect was demonstrated by imaging the forward 

scattering pattern of a laser beam at λ = 633 nm focused onto a single fiber. Figure 2d 

shows that a single cocoon fiber has a far-field scattering pattern of a narrow horizontal 

stripe, perpendicular to the vertically oriented fiber, indicating highly directional 

scattering as a result of the filamentary voids. As a comparison, a regenerated silk fiber of 

similar width and thickness, filled with three-dimensional (3D) voids, produces a diffused 

scattering pattern with no preferential scattering direction (Fig. 4.5).  
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Figure 4.5 (A) Schematic showing a focused laser beam at =633 nm passing through a 

single cocoon fiber oriented in the vertical direction. Measured scattering pattern is 

shown on the right. Filamentary voids along the fiber prevents excessive scattering in the 

vertical direction, so the scattering pattern forms a horizontal narrow band. (B) Schematic 

showing the focused laser beam passing through a regenerated silk fiber bundle (as a 

control) containing a high density of nanoscale spherical voids (Fig. 4b). Measured 

scattering pattern on the right shows that there is no preferential scattering direction due 

to the 3D nature of the voids. (C) Schematic diagram of the far-field scattering pattern 

characterization technique.  
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4.3 Biomimetic fibers 

We have shown that fibers of the wild comet moth possess passive radiative cooling 

capabilities. The capabilities, however, are limited by materials absorption in the solar 

spectrum and density of voids. Drawing inspiration from the natural silk fibers, we 

explored alternative materials of choice and fiber pulling techniques to create biomimetic 

fibers with optimized radiative cooling capabilities.  

4.3.1 Regenerated silk fibroin fibers 

We obtained regenerated silk fibroin from cocoons made by the domestic silk moth, 

Bombyx mori.[32]  By chemically removing sericin, regenerated fibroin offers 

substantially reduced absorption in the visible and near-infrared part of the solar 

spectrum,[31] while providing similar absorption in the mid-infrared as natural silk 

fibers. Researchers have demonstrated that fibers extruded through wet spinning from a 

solution of regenerated fibroin have a larger tensile strength than natural Bombyx mori 

fibers.[33] We modified and optimized the fiber spinning recipes reported in the 

literature,[34] in particular, the concentrations of the silk fibroin solution and the 

coagulation bath, in order to maximize the density of voids inside the wet spun fibers 

(Fig. 4.6B). We found that a concentration of silk fibroin of 13.9% yields the highest 

density of voids. The regenerated silk fibroin fibers were first spun onto a motorized 

drum at a controlled speed to achieve a thickness of a few tens of microns. The voids 

were then further stretched into a filamentary form through a drawing process by a 

second motorized drum, two to four times faster than the first one. Spectral 

measurements of ~100-μm thick bundles of regenerated silk fibers with a high density of 
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voids showed that the fiber bundle has an integrated solar reflectance of 0.73 and an 

integrated thermal emissivity of 0.90 (Figure 4.6A).  

4.3.2 Polymer based fibers 

While the fibers made from regenerated fibroin provide good optical properties, silk 

fibroin’s proneness to long-term UV radiation, and water and heat damage, and its cost as 

a raw material significantly limit its applications in radiative cooling applications.[35], 

[36] A widely available thermoplastic, polyvinylidene difluoride (PVDF), which is highly 

resistant to UV radiation, heat and water damage, and has low absorption in the solar 

spectrum, was explored as an alternative material.[37], [38] By properly choosing the 

solvent and the ratio between PVDF and the solvent, as well as the coagulation bath, we 

were able to pull PVDF fibers containing 3D voids (Fig. 4.6D). A similar drawing 

process was used to stretch the voids into a filamentary form (Fig. 4.6E). Optical 

measurements on pre-drawn thicker fibers, ~100 μm in diameter, showed that the fibers 

have a high reflectance of 0.93 in the solar spectrum and a high emissivity of 0.91 (Fig. 

4.6a). We note that our regenerated silk and PVDF biomimetic fibers both have a higher 

solar reflectance compared to the comet moth fiber; this is primarily due to a higher 

density of voids created in the biomimetic fibers (i.e., 5.5 voids/μm2 for the regenerated 

silk fiber, 17 voids/μm2 for the PVDF fiber, and 2.2 voids/μm2 for the comet moth fiber). 

We also note that the filamentary voids in our biomimetic fibers are not as long as those 

observed in the cocoon fibers made by the comet moth. The natural silk fibers’ amazing 

capability of maintaining longitudinal invariance motivated us to investigate light 
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propagation along these nanostructured fibers confined by strong light scattering in the 

transverse direction.  

4.3.3 Fabrication of biomimetic fiberse using silk fibroin and PVDF 

Degummed Bombyx mori silk fibers were obtained and used as the starting point of the 

fibroin preparation process.[32] A solution of 9.3-M lithium bromide (LiBr) was used to 

dissolve the silk fibers. A 20% weight-to-volume ratio (i.e., 1 g VS 4 ml) between silk 

fibroin and the LiBr solution was used to prepare a fibroin-LiBr solution. The fibroin-

LiBr solution was left to completely dissolve in an oven set to 60˚C for 4 hours. The 

dissolved solution was transferred to a dialysis cassette (10 ml, 3500 MWCO), and 

dialyzed against deionized water for 48 hours. A centrifuge step was used to remove 

impurities that were left in the solution. The fibroin-LiBr solution was further 

concentrated with a second set of dialysis cassettes (3 ml, 10000 MWCO), where the 

solution was dialyzed against a 10% Polyethylene glycol (PEG, 20 kDa) solution for 14-

20 hours to achieve the desired concentrations (12-18%).  

PVDF solutions were prepared by dissolving Poly (vinylidene fluoride-co-

hexafluoropropylene) (PVDF-HFP) in Dimethylacetamide (DMA), with a weight ratio of 

1:5 between PVDF-HFP and DMA. 

Both silk fibroin and PVDF biomimetic fibers were fabricated using wet spinning. In the 

case of regenerated silk fibers, 30% ammonium sulfate solution was used as the 

coagulant, while in the case of PVDF fibers, deionized water was used as the coagulant. 

A syringe pump connected to a 28-gauge stainless steel, blunt-tip needle was used to 

extrude the solutions. As the solution entered the coagulation bath, phase separation and 
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polymer precipitation occurred, where a polymer lean phase and a polymer rich phase 

were generated in the fiber. Eventually the portion of the fiber with polymer lean phase 

became the voids. These newly solidified porous fibers were spun onto a motorized drum 

at a controlled speed to achieve the desired fiber diameters. The aspect ratio of the voids 

could be modified through a draw-down process using a second motorized drum at a 

higher speed compared to the first drum, where a certain degree of elongation of the 

voids could be achieved inside the fiber.  

Silk solutions at various concentrations (12.7, 13.9, 14.5, and 18.9%) were extruded into 

the coagulation bath at 20 ml/hr. The speeds of the take up drum and draw-down drum 

were set at 4-8 m/min and 10-20 m/min, respectively. PVDF solutions were extruded into 

the coagulation bath at 10 ml/hr. The speeds of the take up drum and draw-down drum 

were set at 1-2 m/min and 2-4 m/min, respectively. 

Cross-sectional scanning electron microscopy (SEM) images of the comet moth cocoon 

fibers were binarized by utilizing the image contrast between the voids and the 

surrounding solid fibroin regions (Fig. 4.7). An image processing software, ImageJ, was 

then used to obtain the sizes of all the voids inside the fiber. The histogram of void sizes 

is shown in Fig 4.7. The diameters of the voids are shown to range from a few tens of 

nanometers to about a micron in size. The average void size is 236 nm, the void density is 

2.2 voids/μm2, and the air-void filling fraction is 9.8% for this particular fiber. Similar 

processing techniques were used in the case of biomimetic regenerated silk and PVDF 

fibers, where the average void size is 145 nm and 106 nm in diameter, the void density is 

5.5 and 17 voids/μm2, and the air-void filling fraction is 14.5% and 17.7%, respectively.  
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Figure 4.6 Biomimetic fibers with a high density of internal voids for radiative cooling. 

a) Integrated hemispherical reflectance and emissivity spectra of a ~100-μm thick bundle 

of regenerated silk fibers and a single PVDF fiber of ~100-m diameter from the visible 

to the mid-infrared. Inset shows a photo of a nanostructured PVDF fiber, a bundle of 

nanostructured regenerated silk fibers, and a thread of the comet moth. b) and c) SEM 

images of transverse and longitudinal cross-sections, respectively, of a regenerated silk 

fiber containing a high density of voids. d) and e) SEM images of transverse and 

longitudinal cross-sections, respectively, of a PVDF fiber containing a high density of 

voids.  
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Figure 4.7 First column: SEM images of the transverse cross-section of a comet moth 

cocoon fiber (top), a regenerated silk fiber (middle), and a biomimetic PVDF fiber 

(bottom). Second column: Binarized images of the SEM images outlining all the voids. 

Third column: Histograms showing the size distributions of the voids.   
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4.3.4 Correlation between void concentration and reflectivity in the visible 

and NIR 

To further clarify the correlation between void concentrations and fiber reflectance over 

the solar spectrum, we fabricated regenerated silk fibers and PVDF fibers with both high 

and low void concentrations and measured their reflectance over the solar spectrum (Fig. 

4.8). The reflectance measurement clearly shows that PVDF and regenerated silk fibers 

with high void concentrations are significantly more reflective in the solar spectrum when 

compared to PVDF and regenerated silk fibers with low void concentrations. The 

correlation between void concentration and reflectivity is further confirmed by the dark 

field optical microscopy images of high and low void concentration PVDF and 

regenerated silk fibers, which shows high void concentration PVDF and regenerated silk 

fibers with a bright, diffused white shine, a clear indication of strong scattering. Low void 

concentration PVDF and regenerated silk fibers, on the other hand, appears to be semi-

transparent as a result of low concentration of scattering centers.   

The void concentrations of the regenerated silk fibers were controlled by the initial 

concentration of the regenerated silk solution, a concentration of 13.9% and 18.9% were 

used to fabricate high and low void concentration fibers, respectively (Fig. 4.8). The void 

concentration of the PVDF fibers were controlled by the amount of time the fibers stays 

in the coagulation bath after it has been drawn. The high void concentration fibers used 

here did not go through a coagulation bath soak, while the low void concentration fiber 

was soaked in the coagulation bath for 40 hours immediately after the fiber was drawn 

(Figs. 4.8C-D).  
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Figure 4.8 Reflection study of biomimetic fibers with high and low void concentration 

(a) Integrated hemispherical reflectance in the visible and near-infrared (λ = 0.4 μm – 1.5 

μm) for regenerated silk and PVDF fibers with high and low void concentrations. (b) 

Dark field optical microscopy images of regenerated slik and PVDF fibers with high and 

low void concentrations. (c-d) Cross-sectional SEM images of high and low 

concentration PVDF fibers. (e-f) Cross-sectional SEM images of high and low 

concentration regenerated silk fibroin fibers.  

 

4.4 Transverse Anderson localization 

Anderson localization in 3D systems requires a critical level of scattering strength, 

quantified by the Ioffe–Regel criterion, which can be satisfied in high refractive-index 

contrast materials systems.[39] However, the scaling theory of localization dictates that 

Anderson localization will always occur in random two-dimensional coupled waveguide 

arrays, even for low refractive-index contrast systems.[40] In the case of transverse 

Anderson localization, a beam first undergoes diffusive broadening as it propagates along 

the longitudinal direction of the waveguide array, but eventually reaches a mean 

localization radius, called localization length ξ, as it propagates further down the array. 

The onset of transverse localization can be characterized by an exponentially decaying 

tail of the beam’s transverse intensity profile. The localization length  of guided light 

beam and the mean free path l* of photons propagating in the nanostructured fibers can be 

estimated by using equations 

I ~ exp(-2|r|/)                         (4.1) 



 

100 

 = l*exp(k⊥l*2/2)                         (4.2) 

where I is the beam intensity profile, r is the distance from the beam center, k⊥ = 2/o is 

the transverse wavenumber, and o is the initial width of the beam at the entrance facet of 

the fiber.[20] 

 

4.4.1 Observation of transverse Anderson localization 

We characterized how a light beam broadens and eventually reaches full confinement as 

a result of transverse Anderson localization in comet moth fibers. A set of fiber segments 

with different lengths (L = 300, 400, 720, and 1500 μm) were cut and the facets polished 

using FIB milling. All the fiber segments were from the same fiber and cut next to one 

another to minimize variations of their cross-sectional void pattern. A high numerical 

aperture (NA = 0.55) objective was used to launch a focused beam at one facet of a fiber 

segment, and the exit facet was imaged with a matching objective to characterize the 

beam upon exiting the segment. Figure 4.9A shows the intensity distribution at the exit 

facet of a fiber segment (L = 720 μm, λ = 600 nm). The black curve within Figure 4.9A 

shows the logarithm of the average line intensity profile through the center of the beam, 

and its linear slopes are an indication of transverse Anderson localization. The line 

intensity profiles for the four fiber segments with different lengths (Figure 4.9B) show 

the evolution of the beam profile from initial diffusive broadening to eventual full 

confinement as L increases. Figure 4.9C shows the line intensity profiles for the fiber 

segment with L = 720 μm at various wavelengths (λ = 450, 500, 600, and 700 nm). It is 

observed that, while the beam stays localized with increasing wavelengths (at least up to 
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λ = 850 nm), the localization length ξ increases with increasing wavelengths. The 

localization length ξ of the fiber at λ = 600 nm, for example, can be estimated by fitting 

equation. (4.1) to the exponentially decaying tail of the line intensity profile, yielding ξ = 

4.6 μm, which is smaller than that of recent work utilizing a man-made high refractive-

index contrast system of glass and air.[41]  The mean free path l* at λ = 600 nm can be 

calculated using equation (4.2), where the entrance beam size 𝜔0 is ~2 μm, yielding l* ~ 

0.98 μm, which is significantly smaller than those reported in early demonstrations of 

transverse Anderson localization with low refractive-index contrast systems,[20], [24]   
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Figure 4.9 Transverse Anderson localization in comet moth cocoon fibers. a) Intensity 

distribution of a beam at λ = 600 nm under transverse localization exiting the end facet of 
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a cocoon fiber ~720 μm in length. The dotted line shows the outer edge of the fiber. The 

black curve in the figure shows the logarithm of the averaged line intensity profile of the 

beam. b) Logarithm of averaged line intensity profiles at the exit facet for fibers of 

different lengths. c) Logarithm of averaged line intensity profiles at the exit facet for a 

fiber with length L = ~720 μm at different wavelengths.  

4.4.2 Waveguiding and image transport in comet moth cocoon fibers 

The small localization length compared to the transverse size of the fibers also enables 

the fiber system to transport simple patterns. Figure 4.10F shows an optical image of a 

series of apertures 1 μm in diameter, milled using FIB in a gold thin film and forming a 

30-μm diameter ring. The aperture pattern was then butt coupled to the entrance facet of a 

fiber segment of length 400 m, and illuminated with a large-diameter beam at λ = 600 

nm. The image at the exit facet of the fiber segment (Figure 4.10G) is a discernible ring 

pattern, where the resolution of the transported image is limited by the localization length 

of the system.  

As the position of the fiber facet moves with respect to the input beam, light can 

sometimes be tightly confined in certain regions of the fiber that are free of voids (thus 

serving as a waveguide core) and surrounded by a high density of scattering centers. 

Figure 4A-D shows one of these confined hotspots, where the confinement is maintained 

as the wavelength varies from 425 to 650 nm. The full-width at half-maximum (FWHM) 

sizes of the hotspot at  = 425, 550, and 650 nm are 0.75, 0.94, and 1 μm, respectively, 

which are smaller than the spot size of the entrance beam (~2 μm). The focusing abilities 

of the cocoon fibers have the potential to be further enhanced through wavefront shaping 
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and optimization with adaptive optics.[22] Aside from waveguiding through transverse 

Anderson localization, Figure 4.10E shows that these silk fibers can also act as a slab 

waveguide: the sericin region free of voids can act as a waveguide core and lateral 

confinement is provided by scattering centers in the fibers.  

It’s crucial to note that the silk materials have intrinsic absorption in the visible spectrum 

(sericin being more absorptive than fibroin in shorter wavelengths), and that the 

filamentary voids in fact slowly morph along the longitudinal direction. As a 

consequence, these interesting optical properties and potential applications discussed 

above related to transverse Anderson localization cannot be realized in fibers longer than 

a few millimeters. Potential reduction in propagation losses, however, is possible by 

chemically removing the sericin coating surrounding silk fibers.[42] 
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Figure 4.10 (A-C) Intensity distributions showing a highly localized hotspot in a fiber 

with length L = ~150 μm at three wavelengths. (D) Profiles of the hotspot at the three 

wavelengths. (E) Intensity distribution showing light being guided by a sericin slab 

region between two cocoon fibers. The black curve shows the profile of the guided mode 

at a location indicated by an arrow. (F) Optical image of a ring of 1-m apertures used 
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for image transport through a cocoon fiber with length L = ~400 μm. (G) Intensity 

distribution at the exit facet of the fiber showing the transport of the ring pattern. 

4.5 Conclusion 

In summary, we explored nanostructured voids discovered in the silk fibers of the comet 

moth. We characterized the one-dimensional nature of these voids and their scattering 

strength through polarization dependent reflectance measurements, time-of-flight 

measurements, and far-field 9 scattering pattern measurements. We explored the radiative 

cooling properties of the silk fibers enabled by high solar reflectance through back-

scattering of nanostructured voids in the visible and near-infrared, and high thermal 

emissivity enabled by intrinsic materials absorption in the midinfrared. Drawing 

inspiration from the natural system, we spun biomimetic fibers using regenerated silk 

fibroin and PVDF, which showed exceptional optical properties for radiative cooling 

applications. Furthermore, we observed for the first time transverse Anderson localization 

in a natural biological fiber system. These silk fibers have the potential to be used for 

delivering optical power and transporting images in situations where the fiber needs to be 

biocompatible and bioresorbable, such as optical therapy and imaging inside living 

tissues. Future work may benefit from investigating the mechanism behind the fiber 

pulling process utilized by wild silk moths that create silks with filamentary voids, in 

order to create bioinspired fibers with longitudinally invariant voids. 
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Appendix 1 

Related contributed research 

A1.1 Temperature of butterfly wing 

Insect wings are complex tissues composed of both living and non-living components, 

and their function requires a suitable range of temperatures. They are strengthened by a 

characteristic matrix of veins that are closely associated with many mechanical and 

sensory receptors, and, in some butterfly species, pheromone-producing cells. Wings can 

rapidly overheat in the sun given their small thermal capacity. We develop an infrared 

technique to map wing temperatures, and show that despite diverse visible colors and 

patterns, regions containing living cells are always the coolest. Non-uniform wing 

thickness and diverse scale nanostructures create a heterogeneous distribution of radiative 

cooling that largely determines temperature across the wing. A series of assays also 

demonstrate how butterflies employ specialized behaviors to prevent overheating or 

overcooling of their wings. 

A1.2 Selective solar absorber 

A galvanic displacement reaction-based ‘dip-and-dry’ technique is demonstrated for 

fabricating selectively solar absorbing plasmonic nanostructure-coated foils (PNFs). The 

technique, which allows for facile tuning of the PNFs’ spectral reflectance to suit different 

radiative and thermal environments, yields PNFs which exhibit excellent, wide-angle solar 

absorptance (0.96 at 15°, to 0.97 at 35°, to 0.79 at 80°) and low hemispherical thermal 

emittance (0.10) without the aid of antireflection coatings. The thermal emittance is on par 
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with those of notable selective solar absorbers (SSAs) in the literature, while the wide-

angle solar absorptance surpasses those of previously reported SSAs with comparable 

optical selectivities. In addition, the PNFs show promising mechanical and thermal 

stabilities at temperatures of up to 200°C. Along with the performance of the PNFs, the 

simplicity, inexpensiveness and environment-friendliness of the ‘dip-and-dry’ technique 

makes it an appealing alternative to current methods for fabricating selective solar 

absorbers. 

 

A1.3 Passive radiative cooling devices based on polymer phase 

separation 

 

The research study reports a simple, scalable and inexpensive phase-inversion-based 

method for fabricating hierarchically porous polymer coatings that exhibit high-

performance passive daytime radiative cooling (PDRC). The room-temperature and 

solution-based technique can be applied to various surfaces by conventional approaches 

like painting and spraying, can incorporate colors, and is compatible with a range of 

polymers. In particular, hierarchical porous poly(vinylidene fluoride-co-

hexafluoropropene) (P(VdF-HFP)HP) coatings created using the technique exhibit 

excellent, substrate independent hemispherical solar reflectances (0.96 ±0.03) and LWIR 

thermal emittances  (0.97 ± 0.02) which surpass those of notable PDRC 

designs,4,5,7,9 and allow them to attain a high cooling power of 96 Wm-2 under a solar 

intensity of 750 Wm-2. Furthermore, P(VdF-HFP)HP coatings show durability under 
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accelerated thermal, environmental and mechanical tests, and are compatible with colors. 

The high performance of the coatings, and the simplicity of fabrication, make the method 

promising as an affordable and eco-friendly way to achieve high-performance PDRC. 
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