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ABSTRACT 
 

Diagnostic Classification Modeling of Rubric-Scored Constructed-Response Items 
 

Eric William Muller 
 

 
 The need for formative assessments has led to the development of a psychometric 

framework known as diagnostic classification models (DCMs), which are mathematical 

measurement models designed to estimate the possession or mastery of a designated set 

of skills or attributes within a chosen construct. Furthermore, much research has gone 

into the practice of “retrofitting” diagnostic measurement models to existing assessments 

in order to improve their diagnostic capability. Although retrofitting DCMs to existing 

assessments can theoretically improve diagnostic potential, it is also prone to challenges 

including identifying multidimensional traits from largely unidimensional assessments, a 

lack of assessments that are suitable for the DCM framework, and statistical quality, 

specifically highly correlated attributes and poor model fit. Another recent trend in 

assessment has been a move towards creating more authentic constructed-response 

assessments.  For such assessments, rubric-based scoring is often seen as method of 

providing reliable scoring and interpretive formative feedback. However, rubric-scored 

tests are limited in their diagnostic potential in that they are usually used to assign 

unidimensional numeric scores.  

It is the purpose of this thesis to propose general methods for retrofitting DCMs to 

rubric-scored assessments. Two methods will be proposed and compared: (1) automatic 

construction of an attribute hierarchy to represent all possible numeric score levels from a 
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rubric-scored assessment and (2) using rubric criterion score level descriptions to imply 

an attribute hierarchy. This dissertation will describe these methods, discuss the technical 

and mathematical issues that arise in using them, and apply and compare both methods to 

a prominent rubric-scored test of critical thinking skills, the Collegiate Learning 

Assessment+ (CLA+). Finally, the utility of the proposed methods will be compared to a 

reasonable alternative methodology: the use of polytomous IRT models, including the 

Graded Response Model (GRM), the Partial Credit Model (PCM), and the Generalized-

Partial Credit Model (G-PCM), for this type of test score data.  
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1 Introduction 

 

The need for more formative assessment, assessment that aids and facilitates student 

learning by pinpointing specific strengths and weaknesses (Garrison & Ehringhaus, 

2007), has led to the development of a psychometric framework known as diagnostic 

classification models (DCMs). DCMs are mathematical measurement models designed to 

estimate the possession or “mastery” of a designated set of skills or attributes within a 

chosen construct (Rupp, Templin, & Henson, 2010). For DCMs to be most effective, they 

must be applied to assessments that are designed underneath the DCM framework, which 

are known as Diagnostic Classification Assessments (DCAs). However, due to the 

significant amount of time and resources required to design, produce, and analyze a 

DCA, developments in DCMs far outpace developments in DCAs (de la Torre & 

Minchen, 2014; Henson, 2009).  

In an attempt overcome this dilemma, much research has gone into the practice of 

retrofitting DCMs to existing assessments in order to improve their diagnostic capability 

and gain meaning insights and knowledge. However, although retrofitting DCMs to 

existing assessments has promise in terms of diagnostic potential, it is also prone to 

challenges including assumptions including identifying multidimensional traits from 

unidimensional assessments, a lack of assessments that are suitable for the DCM 

framework, and statistical quality, specifically highly correlated attributes and poor 

model fit (Huff & Goodman, 2007; Liu, Huggins-Manley, & Bulut, 2017). Similarly, the 

recent trend in assessments towards more formative assessments has paralleled a move to 
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more authentic constructed-response assessments. In order to do this, rubric-based 

scoring is often seen as method of providing reliable diagnostic and formative feedback 

(Banerjee, Yan, Chapman, & Elliot, 2015). However, often rubric-scored tests are limited 

in that they are only able to produce unidimensional results since they are designed to 

measure aptitude or proficiency of a unidimensional construct.  

To serve the objective of retrofitting DCMs to traditional assessments in order to 

produce more diagnostic feedback, this study will propose general methods for 

retrofitting DCMs to rubric-scored assessments. Two methods will be proposed and 

compared: (1) an automatic construction of an attribute hierarchy to represent possible 

numeric score levels from a rubric-scored assessment and (2) using rubric criterion 

descriptions as a proposed content-based attribute hierarchy. This dissertation will 

describe these methods in detail, discuss the technical and mathematical issues that arise 

in using them, and apply and compare both methods to a prominent rubric-scored test of 

critical thinking skills, the Collegiate Learning Assessment+ (CLA+). Finally, the utility 

of the proposed methods will be compared to a reasonable alternative methodology: the 

use of polytomous IRT models, the Graded Response Model (GRM), the Partial Credit 

Model (PCM), and the Generalized-Partial Credit Model (G-PCM), for rubric-scored 

constructed-response data.  

 

 1.1 The Need for more Formative Assessment 

 

One of the greatest challenges that faces educators is to develop a method of educational 

assessment that both gauges and facilitates student learning (Chappuis & Chappuis, 2008; 
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de la Torre & Minchen, 2014; Rupp, Templin, & Henson, 2010). Often a test score only 

serves to inform either the student or a second party as to how well (measured by a single 

numeric index) that student performs on an exam in comparison to their peers or to a 

designated standard. While this kind of test result may be informative to some capacity, it 

may also fail to address specific areas where a student exceeds or falls below average 

expectations, thus failing to provide the student with feedback they could use to improve 

their performance.  These kinds of assessments that provide these unidimensional results 

are classified as summative assessments.  

Summative assessments evaluate the degree to which an individual meets a set 

criterion (Chappuis & Chappuis, 2008). For the majority of high-stakes testing, and 

testing within the educational system, assessments are largely summative (Linn, 2000). 

As a result, there is currently a large amount of effort within the education community to 

create assessments that can aide learning while being able to evaluate its progress as well 

by identifying respondent’s strengths and weaknesses (Lee & Corter, 2011; Leighton & 

Gierl, 2007b; Leighton, Gokiert, Cor, & Heffernan, 2010; Nichols, 1994; Tatsuoka, 

Corter, & Tatsuoka, 2004). The assessments that provide this kind of feedback are known 

as formative assessments.  

Formative assessments are assessments that improve and promote student 

learning by providing information to the student that is both constructive for learning and 

meaningful to the student by informing them of their strengths and weaknesses within a 

particular domain (Garrison & Ehringhaus, 2007). Any assessment can be used for both 

summative and/or formative purposes, although some are better suited for one than the 

other.  
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For example, consider an assessment that evaluates a constructed-response for a 

given prompt. If the assessment were to be used formatively, an instructor could point out 

specific areas where the student performed well and needed improvement, thus informing 

the student of their specific strengths and weaknesses relative to the task at hand. If the 

assessment were to be used for summative purposes, a grade would be assigned that 

merely informed the student how well they performed according to that teacher’s 

criterion. However, although formative assessments are more beneficial for student 

learning than merely summative assessments, formative assessments are difficult to 

administer to larger populations since they require more time and resources to design, 

develop, and score (de la Torre & Minchen, 2014). It is primarily for these reasons that 

assessments such as the SAT, which was administered to over one and a half million 

students in 2015 and 2014 (Klein, 2015), cannot be scored with as much attention to 

detail as assessments designed for smaller class-room sized populations. As a result, the 

desire for educators to shift the focus of assessment from summative to formative 

purposes has generated an impetus to develop methods of formative assessment that can 

be administered to large-scale populations (Bennett, 2015; Huff & Goodman, 2007; 

Organization for Economic Co-operation and Development [OECD], 2004; U.S. 

Department of Education, 2004).  

 

 1.2 Improving the Diagnostic Ability of Assessments 

 

As a response to the demand for formative large-scale assessment, diagnostic 

measurement has emerged as a potential solution. Diagnostic measurement is a 
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framework for developing assessments that can provide students with rich diagnostic, 

multidimensional, classification-based feedback in order to facilitate learning 

development (Dibello & Stout, 2007; Liu, Huggins-Manley, & Bulut, 2017; Rupp & 

Templin, 2008b). The diagnostic measurement framework is able to provide this kind of 

feedback via the application of diagnostic measurement models, known as diagnostic 

classification models (DCMs), to test data. DCMs are a group of probabilistic, 

confirmatory, multidimensional latent class models that attempt to determine the 

presence or absence of mastery in a set of designated skills or test “attributes” for a single 

or group of examinee(s) (Rupp, Templin, & Henson, 2010). Ideally, assessments are 

designed with the diagnostic measurement framework in mind so that the application of 

DCMs to test data can provide the kind of formative feedback that is desired from this 

approach. In contrast, assessments that are not designed within the DCM framework are 

not designed in a way that produces data suitable for DCMs, thus requiring that the 

DCMS be retrofit to that data.  

These kinds of assessments that are designed within the DCM framework and 

measure the skills/attributes deemed necessary for proficiency within a determined 

domain are referred to as diagnostic classification assessments (DCAs) (de la Torre & 

Minchen, 2014). However, despite the apparent utility of using DCAs to create more 

diagnostic and formative tools of measurement, the development of DCMs has far 

outpaced the development of DCAs (de la Torre & Minchen, 2014; Henson, 2009; Lee, 

de la Torre, & Park, 2012; Lee, Park, & Taylan, 2011). The major reason for the lack of 

DCA development is that developing DCAs requires collaboration between experts from 

multiple fields such as subject matter experts, psychometricians, and educators, as well as 
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significant amounts of time and resources (de la Torre & Minchen, 2014; Huff & 

Goodman, 2007).  

 

1.2.1 Retrofitting DCMs to Existing Assessments 

 

As a potential solution for this complication, retrofitting DCMs to existing assessments 

has emerged as a possible method for obtaining diagnostic feedback from assessments 

that were not designed within the DCM framework (Chen & Chen, 2016; Jang, Dunlop, 

Wagner, Kim, & Gu, 2013; Jurich & Bradshaw, 2014; Kim, 2014; Li, Hunter, & Lei, 

2015). The definition of “retrofitting” used in this study will be the same used by Liu, 

Huggins-Manley, & Bulut (2017) which is “the practice of fitting DCMs to responses 

obtained from assessments that are not designed under diagnostic measurement 

frameworks that typically fall under Classical Test Theory (CTT) or Item Response 

Theory (IRT). Diagnostic measurement frameworks essentially itemize categorical traits 

in order to classify each trait as being either present or not present (i.e. a skill that is 

mastered or not mastered) by an examinee. In contrast, traditional measurement 

frameworks delineate one or more continuous traits and essentially places examinees on 

those latent trait continuum or continua (Liu, Huggins-Manley, & Bulut, 2017).  

Take, for example, an assessment that measures reading ability. In a non-

diagnostic measurement framework, reading ability could be measured using a single 

latent trait (e.g. reading ability) or multiple continuous traits (e.g. spelling, grammar, and 

conceptual understanding). In either case, respondents would receive a single score for 

each latent trait, thus placing the respondent on a location on each respective trait’s latent 
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trait continuum. In a diagnostic measurement framework, reading ability would be 

depicted as multiple categorical traits (e.g. spelling, grammar, and conceptual 

understanding) and respondents would be classified as either masters or non-masters of 

each latent trait, based on the estimated probability of mastery for each latent trait.   

Using the same example, but in a case wherein the diagnostic measurement 

framework was retrofitted to an existing assessment (not designed using diagnostic 

measurement framework) that only provided a single score for each latent trait, the 

process of retrofitting would begin by determining what subskills/attributes are necessary 

to master in order to be proficient in each latent trait. As a result, the end user would be 

provided with diagnostic information on what skills each respondent had either mastered 

or not mastered, within each latent trait, thus providing the end user with specific 

feedback on respondent’s potential strengths and weaknesses. In this way, diagnostic 

measurement has been shown to be an effective framework for providing formative 

feedback for test takers, administrators, and developers (Rupp, Templin, & Henson, 

2010) and retrofitting is considered a possible method for extracting such information 

(Liu, Huggins-Manley, & Bulut, 2017). 

However, retrofitting DCMs to assessments is not without its challenges. Liu, 

Huggins-Manley, & Bulut (2017) identify several challenges that can arise as a result of 

either assessment design or statistical quality. In terms of assessment design, the authors 

call attention to three issues. The first is that diagnostic measurement is only effective if 

the assessment is designed with underlying cognitive or educational theories as its 

guiding principles. Otherwise, it is difficult to support any theoretical or empirical claims 

made regarding attribute specifications (Nichols, Kobrin, Lai, & Koepfler, 2016).  
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The second issue is that there is a conflict of goals between the dimensionality 

assumptions of DCMs and unidimensional assessments (which includes most 

assessments not designed using the diagnostic measurement framework) (de la Torre & 

Karelitz, 2009; Gierl & Cui, 2008). Often a major objective of CTT- and IRT-based 

assessment development is to support the assumption that an assessment measures a 

single construct and only one construct (de Ayala, 2009). For example, in an assessment 

that is designed to only measure skills in investment banking, it would be problematic to 

discover that an item were measuring a separate construct such as financial accounting, or 

that the assessment on the whole measures skills both in investment banking and in 

financial accounting. In such a case the construct validity of the exam would be 

compromised and revisions would be made to either the problematic item or the 

assessment as a whole in order to ensure unidimensionality. Therefore, retrofitting 

DCM’s objective to institute multidimensionality into a unidimensional assessment can 

be complicated and not straightforward. In some cases, subject matters experts may even 

be necessary to determine what potential subskills and attributes are necessary for 

demonstrating proficiency in a unidimensional assessment’s measured construct (Lee, 

Park, & Taylan, 2011). 

The third issue regarding assessment design is that in some cases attributes are not 

specified in a way that produces reliable results or makes them identifiable for a given 

test (Chen, Liu, Xu, & Yang, 2015; Tatsuoka, 1995; Templin & Bradshaw, 2014). For 

example, reliable results would not be attained if only a single item measures an attribute. 

In that case the only evidence for skill mastery would be an examinee’s correct or 

incorrect response to that item. An example of a case where attributes are not identifiable 
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would be if two attributes were always paired together across items. In such a case there 

would be insufficient evidence to determine whether or not a single attribute has been 

mastered, since all items that measure them require both attributes. Consequently, it is 

recommended that each attribute should be measured both as singletons and paired with 

multiple attributes per item (Liu, Huggins-Manley, Bradshaw, 2016). 

Regarding statistical quality, Liu, Huggins-Manley, & Bulut (2017) single out 

three issues. The first of these issues is that attributes obtained from unidimensional 

assessments tend to be highly correlated (VanderVeen et al., 2007). Highly correlated 

attributes can be problematic since it contradicts the multidimensional assumption of the 

diagnostic measurement framework that each attribute is its own separate construct. The 

second issue regarding statistical quality that may arise is that fitting DCMs to 

unidimensional assessment data can result in poor model fit (Gierl & Cui, 2008). As with 

most psychometric models, poor model fit typically is considered evidence that the 

mathematical model is not appropriate to be applied to a particular set of data and in the 

case of DCM retrofitting, wherein the objective is usually to find evidence that DCMs are 

not only appropriate for the data but can provide more desirable results than 

unidimensional models, this can also be problematic for establishing result validity and 

reliability (Chen, de la Torre, & Zhang, 2013; Hu, Miller, Huggins-Manley, & Chen, 

2016; Lei & Li, 2016). Finally, the third issue of statistical quality is that correlations 

between attributes and the total score of an exam may be weak or even negative (Buck & 

Tatsuoka, 1998; Svetina, Gorin, & Tatsuoka, 2011). Weak or negative correlations 

between assessment attributes and total score are an issue since such findings would 

contradict the diagnostic measurement framework assumption that mastery of the 
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multidimensional attributes are necessary for demonstrating proficiency in the overall 

construct.  

 Therefore it is the aim of this dissertation to develop techniques for using DCMs 

to analyze rubric scored assessments to improve the diagnostic ability of such 

assessments. Much of the current research that involves retrofitting DCMs has focused on 

producing diagnostic information from assessments and items that were not intended for 

diagnostic purposes. However, little research has gone into formalizing and improving 

the diagnostic ability of rubric-scored constructed-response assessment, which by their 

design specify attributes and associations of attribute mastery with levels of skill and 

attribute proficiency.  
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2 LITERATURE REVIEW 

 

In this chapter a review of the literature on attribute specification, the diagnostic 

classification measurement framework, the statistical nature of diagnostic classification 

models, common diagnostic classification models, assessing model fit, rubrics as 

diagnostic guides, and item response theory models for polytomous data are presented in 

six sections. This is followed by a summary of that literature and a general discussion as 

to how these concepts relate to the issue of diagnostic classification modeling rubric-

scored data. The final section of the chapter then provides the exact goals of the present 

study, including the intended theoretical contributions.  

 

2.1 Attribute Specification 

 

In order for an assessment to be able to fit to the diagnostic framework it is essential to 

delineate the skills or “attributes” required for proficiency in the assessment’s overall 

construct. Each item in the assessment is assumed to require either a single or multiple 

attributes in order to answer that item correctly. When developing DCAs from the ground 

up, these attributes are typically delineated prior to test construction. Furthermore, each 

attribute is represented as a dichotomous ordinal variable that represents either mastery or 

non-mastery. 

 Liu, Huggins-Manley, and Bulut (2017) identify three considerations that should 

be heeded when conducting attribute specification from items that were not designed in 
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the diagnostic measurement framework. The first is that items that measure single 

attributes are more likely to have higher classification accuracy than items that measure 

multiple attributes (Madison & Bradshaw, 2015). Therefore, in cases where two attributes 

are consistently required together, it may be beneficial to combine them into a single 

attribute. The second consideration is that relationships between attributes can be 

correlated or even dependent upon each other (Templin & Bradshaw, 2014; Liu & 

Huggins-Manley, 2016). As discussed earlier, highly correlated attributes may indicate 

evidence of unidimensionality. Attributes that are dependent upon each other require that 

one attribute be mastered before another can be mastered, a condition that is also known 

as an attribute hierarchy (Leighton, Gierl, & Hunka, 2004; Liu & Huggins-Manley, 

2016).  

The third and final consideration that should be taken into account is that it is 

recommended by multiple researchers that it is ideal to try to minimize the total number 

of attributes. As the number of attributes increases, so does the difficulty in parameter 

estimation and also in interpretation of results (Embretson & Yang, 2013; Xu & Zhang, 

2016). As a rule of thumb it is recommended that an assessment measure a maximum of 

10 attributes (DiBello, Roussos, & Stout, 2007). According to research done by Liu, 

Huggins-Manley, & Bulut (2017), most retrofitting studies they encountered specified 

three to five attributes. 

Once the skills/attributes that are necessary for mastering the general construct 

assessed by the DCA have been defined and determined, each item must then be 

constructed so that responses demonstrate skill mastery or non-mastery.  The Q-matrix is 

a matrix that encodes which skills/attributes are required to be mastered by each item in 
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order to answer that item correctly (Tatsuoka, 1983). While the Q-matrix functionally 

acts as a component in the computation of skill mastery probabilities, it also can act as a 

roadmap of a DCA’s design. For example, in Table 1 we observe how a list of six 

theoretical attributes can be encoded for a DCA with six items:  

Table 1. Example of a Q-matrix 

Item Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6 
1 1 0 1 0 0 0 
2 1  0 0 0 0 0 
3 0 1 0 1 0 1 
4 0 1 0 0 0 0 
5 0 0 0 1 0 0 
6 0 0 0 1 1 1 

 

In this example, answering each item correctly represents mastery of a different attribute. 

However, it is possible for an item to demonstrate complete or partial mastery (depending 

on whether or not the DCM used is noncompensatory or compensatory, respectively) in 

multiple attributes.  Likewise, it is also possible for an attribute to be represented across 

multiple items.  

 In essence, attributes are characterized as being either discrete or dichotomous 

and are therefore either present in or absent in a response (Madison & Bradshaw, 2015). 

The combination of attributes that a respondent ultimately possesses is defined as an 

attribute pattern, a, and is represented as a latent vector of length K. In the attribute 

pattern, a, a 0 represents non-mastery of the kth attribute and a 1 represents mastery of the 

kth attribute. Additionally, each item has a corresponding q-vector, q, which is also of 

length K, and indicates which skills/attributes are necessary to solve each particular item 

(Tatsuoka, 1995). For example, the corresponding q-vector for Item 3 in Table 
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 1 is {0,1,0,1,0,1}. Also observable in Table 1 is the fact that a Q-matrix will always be 

of length J, where J is the number of items on the assessment, and of width K, where K is 

the number of attributes measured by the assessment. Furthermore, due to the dichotomy 

of the presence of skill/attribute mastery, there will also always be 2!possible attribute 

combinations. For example, Table 1 has 64 possible combinations of attribute patterns. 

Therefore, the complexity of a DCM’s computation increases exponentially as the 

number of measured attributes increases.  

 Finally, it is essential that when designing the Q-matrix that each attribute is 

measured by an adequate number of items, regardless of it be represented as a singleton 

or conjoined with multiple attributes (Madison & Bradshaw, 2015). As was stated earlier, 

items that measure single attributes tend to have higher classification accuracy. In fact, 

many researchers concur that in order for a Q-matrix to be complete, each attribute that 

exists in a Q-matrix there must be at least one item that only measures that attribute 

(Casella & Berger, 2002; Chiu, Douglas, & Li, 2009; DeCarlo, 2011; DiBello, Stout, & 

Roussos, 1995; Tatsuoka, 1991; Xu & Zhang, 2016). Furthermore, it is critical that the Q-

matrix be specified correctly since a misspecification of the Q-matrix can lead to 

detrimental effects to model fit as well as producing flawed inferences regarding the 

classification accuracy of latent traits (Chen, Liu, Xu, & Ying, 2015; Chiu, 2013; Kunina-

Habenicht, Rupp, & Wilhelm, 2012; Madison & Bradshaw, 2015; Rupp & Templin, 

2008a, 2008b).  

 

2.2 The DCM Framework and the Statistical Nature of DCMs 
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Diagnostic classification models (DCMs) are statistical models capable of making 

diagnostic analyses (Nichols, Chipman, & Brennan, 2009). In statistical terms, DCMs can 

be defined as confirmatory multidimensional latent-variable models with categorical 

latent variables. DCMs are the frameworks upon which diagnostic classification 

assessments, (DCAs) assessments that provide diagnostic information, are built (DiBello, 

Roussos, & Stout, 2007). In order for an assessment to be cognitively diagnostic, it is 

required that the assessment be designed to measure knowledge components or cognitive 

skills that are deemed necessary for proficiency in a determined domain. An assessment 

designed as a DCA must also assume that its design is consistent with up-to-date 

developments in cognitive theories and other relevant fields in order to maintain its 

validity and accuracy (de la Torre & Minchen, 2014). In other words, if an assessment is 

designed within the framework of a DCM and provides diagnostic information, it can be 

classified as a DCA. It is also the objective of all DCMs to classify respondents according 

to selected latent variables, which ultimately leads to the creation of attribute profiles for 

DCA respondents and the production of diagnostic information. As a result, DCMs have 

also been referred to as latent response models, restricted latent class models, multiple 

classification latent class models, structured located latent class models, and structured 

item response theory models although they are all refer to the same construct (Rupp, 

Templin, & Henson, 2010). 

 Currently there are a wide variety of DCMs that have been developed, each one 

assuming a distinct cognitive model that specifies that exact nature of the relationship 

between examinees’ attributes and their ability to answer an item on a DCA correctly. 

Rupp, Templin, and Henson (2010) identify 18 different core DCMs although this paper 
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focuses on four that most sharply contrast each other in order to highlight the salient 

characteristics that separate DCMs from each other categorically. The aforementioned 

researchers also identified three classifications from which to categorize DCMs: manifest 

response variable type (dichotomous or polytomous), latent predictor variable type 

(dichotomous or polytomous), and model type (noncompensatory and compensatory) 

(Rupp & Templin, 2008b). DCMs can be members of any number classifications, for 

example, the log-linear cognitive diagnosis model (LCDM) can be categorized according 

to any combination of the three classifications. A model such as the deterministic inputs, 

noisy “and” gate (DINA) model can only be applied to data with dichotomous observed 

response and latent predictor variables wherein the nature of the relationship between the 

attributes and the items is noncompensatory.   

 

2.2.1 Compensatory vs. Non-Compensatory 

 

There are two types of DCMs: general and specific. The distinctions between these two 

types of DCMs are the assumptions that the models make regarding the compensatory 

nature of the fine-grained skills and attributes measured by the exam. DCMs can be either 

compensatory or non-compensatory. If a DCM is compensatory, it assumes that the lack 

of mastery in one skill or attribute measured by the exam can be made up for by the 

presence of mastery in another skill or attribute measured by the exam. Contrarily, if a 

DCM is non-compensatory, it assumes that the lack of mastery in one skill or attribute 

measured by the exam cannot be made up for by the presence of another skill or attribute 

measured by the exam. DCMs that can only be either compensatory or non-compensatory 
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within a single exam are ‘specific’ DCMs. DCMs that allow for both compensatory and 

noncompensatory relationships within a single exam are ‘general’ DCMs (Ravand, 2016). 

General DCMs operate by allowing each item to pick the model that best fits the data as 

opposed to imposing one single model for all items.  

 

2.2.2 Conjunctive vs. Disjunctive 

 

Additionally, DCMs are also categorized as being either conjunctive or disjunctive. A 

conjunctive DCM assumes that, in order to answer an item correctly, all of the fine-

grained skills and attributes measured by the exam must be mastered by the examinee. 

Contrarily, a disjunctive DCM assumes that not all of the fine-grained skills and 

attributes measured by the exam are required to be mastered in order to answer an item 

correctly. Therefore, due to the nature of the compensatory and conjunctive assumptions, 

DCMs can be conjunctive and non-compensatory, disjunctive and compensatory, or 

disjunctive and non-compensatory, but not conjunctive and compensatory.  

 

2.2.3 Guess vs. Slip Parameters 

 

Another distinction that is made between different DCMs is the use of the guess and slip 

parameters. The guess and slip parameters operate similarly to the guessing parameter 

used in the 3-parameter IRT model. In the DCM framework, a guess represents a case in 

which a respondent has insufficient attribute mastery to answer an item correctly but does 

so anyway. Similarly, a slip represents a case in which a respondent has sufficient 
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mastery to answer an item correctly but answers incorrectly (Junker & Sijtsma, 2001). 

The probability that either of these events occur is estimated by DCMs and become the 

guessing and slipping parameters. The difference in these variables between different 

DCMs is at what point in the model structure they are taken into account and how they 

are to be applied. In essence, the guessing and slipping parameters can be applied at the 

item level across all attributes, at the attribute level across all items, or at both the item 

and attribute levels (de la Torre, 2011; de la Torre & Minchen, 2014). Once the 

skills/attributes that are necessary for mastering the general construct assessed by the 

DCA have been defined and determined, each item must then be constructed so that 

responses demonstrate skill mastery or non-mastery.			

	

2.2.4 Theoretical Frameworks for DCA Design 

 

With regard to DCAs, Rupp, Templin, & Henson (2010) identify two different 

frameworks for the design and development of a DCA. The first framework is the 

cognitive design system (CDS), and it primarily follows current research on cognitive 

mechanics as they relate to assessments that measure basic cognitive abilities such as 

spatial rotation and/or general reasoning. The goal of an assessment designed with a CDS 

framework is to be able to delineate attributes that pertain to the skills measured by the 

assessment so accurately and in such a way that they can be stored while the test is not in 

use and applied to the evaluation of performance on the assessment instantaneously. 

Seven steps must be followed in order to design a DCA within the principled assessment 

design process of the CDS framework.  
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The first two steps of the CDS framework are to determine the construct that the 

assessment is to measure and identify necessary/relevant attributes for accurate 

measurement of the construct. The next three steps of principled assessment design 

according to the CDS framework is to develop a cognitive model for performance on 

assessment tasks, generate items according to the developed cognitive model, and 

evaluate the cognitive model empirically by evaluating each item’s individual 

performance (Embretson, 1994, 1998). The final two steps of the CDS framework is to 

bank the items according to cognitive complexity and validate the model by ensuring that 

the model is indeed only measuring the specified construct. 

The first two initial steps already demonstrate the potential complexity that can go 

into the design and development of a DCA.  Aside from identifying the general construct 

that is to be measured, identifying the skills/attributes that are necessary for measuring 

that construct, depending on the nature of the construct, may require collaboration of 

multiple subject matter experts of various fields (de la Torre & Minchen, 2014). For 

example, if the designated construct to be measured on an assessment were to be a 

subject that is commonly taught in public education such as biology, there would most 

likely need to be a great deal of research that would need to be done in order to establish 

which attributes/skills were most relevant features of that domain as well as agreement 

from multiple subject matter experts as biology encompasses a vast array of different 

subjects, of which all can be considered to have equal importance. Furthermore, once 

these steps have been completed, even more experts from other fields may still be needed 

to contribute to the design of the DCA.  
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In the next three steps we can see that this will require experts from both a test 

construction design standpoint, as well as an expert on relevant cognitive theories. 

Depending on the context of the administration of the exam (virtual or physical domain), 

other experts and resources may be required that have the potential limit the scope of 

what the tasks are able to assess. However, once these five initial steps are complete the 

rest of the DCA design is relatively straightforward.  

At this point in the design of the assessment, which are the final two steps of the 

CDS framework, no further experts are required. However, the determination of the 

validity of the assessment may require parallel research and so it is not necessarily 

guaranteed even at the final stage of the assessment design that the assessment is valid 

with 100% certainty. That being said, the CDS framework highlights the importance of 

designing an assessment in conjunction with underlying theory in order to maximize the 

defensibility of the assessment’s validity. Also, while a CDS framework of design for 

DCAs may require a number of different experts and resources, this depends on the scope 

of the construct that the DCA is designed to measure (Embretson, 1994, 1998). The more 

specific the construct being measured by the assessment, the less time/resource 

consuming and number of experts are necessary for its construction.  

Rupp, Templin and Henson (2010) also discuss the evidence-centered design 

(ECD) framework. The main crux of the ECD framework is that items should be 

constructed in a way that they elicit specific behaviors that are most indicative of an 

individual’s latent ability structure (Mislevy, Steinberg, & Almond, 2003; Mislevy, 

Steinberg, & Lukas, 2006).  An ECD framework consists of five different models that 

operate partially hierarchically and partially in conjunction with each other, unlike the 
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CDS framework that operates procedurally following step after step. At the bottom level 

of the ECD framework is the respondent model and the task model. The respondent 

model specifies which attributes are relevant to be measured by the assessment in order to 

demonstrate skill mastery (Mislevy, Steinberg, & Lukas, 2006). The task model specifies 

how those specified skills are to be measured by the assessment. These models, like the 

first few stages of the CDS framework, may require the collaboration of multiple experts 

in order to accomplish. 

The evidence model links both the respondent model and task model together by 

determining which parts of a response are most salient and what statistical models will be 

used to make assertions on the performance of the respondent model (Mislevy, Steinberg, 

& Lukas, 2006). In other words, the evidence model determines what aspects of the 

responses given, to items that were designed according to the task model on constructs 

specified by the respondent model, are most noteworthy for indicating skill mastery and 

what metrics are used to justify the validity of the items. This means that the evidence 

model operates as a mediator between the respondent model and the task model, with 

each model influencing the other through the evidence model. The final two models of 

the ECD framework encapsulate and are a product of the three aforementioned models. 

These are the assembly model and presentation model.   

The assembly model determines what combination of the evidence model, 

respondent model, and task model will be used for a particular assessment or subsection 

of an assessment (Rupp, Templin, & Henson, 2010). This means that, in an ECD 

framework, a test can measure multiple constructs that comprise an overarching 

construct. In other words, instead of a single result to indicate overall construct mastery, 
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multiple results may be given from multiple subsections. Finally, the presentation model 

specifies whether task modes change for different subsections and, if they do change, 

what are the implications of these changes (Rupp, Templin, & Henson, 2010). For 

example, if the mode of one subsection is multiple-choice and another requires 

constructed responses this can have implications for changes with regards to the task and 

evidence model. 

Ultimately the ECD framework for DCA design highlights the importance of the 

statistical models used in the evidence model. These statistical models become the lens 

through which patterns of behavior from respondents are perceived and interpreted and 

yet the decision of which statistical model to use is at the complete discretion of the DCA 

developer. In other words, DCA developers must make informed and careful decisions on 

which attributes should be represented via variables in the statistical models they choose 

(Rupp, Templin, & Henson, 2010). Although there theoretically is not one correct choice 

for most DCMs, choosing the most appropriate statistical model is possible and can 

depend on a number of different factors including the construct being measured, 

cognitive theory, pedagogical theory, and learning theory.  

	

2.3 Common Diagnostic Classification Models 

 

This section provides a description of the purpose, design, and statistical properties of 

commonly cited and used DCMs. Models that are presented in pairs are typically 

noncompensatory and compensatory or disjunctive and conjunctive analogs of each 

other, meaning that they both hold very similar mathematical structures, but for some 
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critical difference in composition are used to represent different kinds of attribute 

relationships. Other DCMs presented include families of DCMs that may not always fit 

the typical mold of most DCMs and may only be used for unique attribute or data 

situations, such as attribute hierarchies. 

 

2.3.1 The DINA and DINO Models 

 

The deterministic inputs, noisy “and” gate (DINA) model and the deterministic inputs, 

noisy “or” gate (DINO) model are noncompensatory and compensatory analogs of each 

other, respectively. In the case of the DINA model, it is conjunctive and 

noncompensatory (Heartel, 1989; Junker & Sijtsma, 2001; de la Torre & Douglas, 2004). 

In other words, the model assumes that examinees must possess all required skills in 

order to answer an item efficiently and the presence of one skill cannot compensate for 

the lack of presence of another skill. As a result, the DINA model separates participants 

into two latent groups per item: those that have mastered the required attributes of the 

item and those that have not mastered the required attributes of the item. Therefore, 

respondents that lack any of the required attributes in order to answer a particular item 

correctly all have an equal probability of answering the item incorrectly (de la Torre & 

Minchen, 2014).  

For respondent i answering item j, the probability of an examinee having the most 

ideal attribute pattern for that respondent to answer the item correctly, is defined by the 

DINA model as  

𝜂!" = 𝛼!"
!!"!

!!!   
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 (de la Torre, 2009). In essence, n=1 if and only if examinee i has mastered all the 

required attributes for item j. The slipping parameter s and guessing parameter g for the 

DINA model are given by   

𝑠! = 𝑃(𝑋!" = 0|𝜂!" = 1) 

𝑔! = 𝑃(𝑋!" = 1|𝜂!" = 0) 

Therefore, the probability function for an item’s response is given by  

𝑃 𝑋!" = 1 𝜂!" = 1− 𝑠!
!!"  𝑔!!!!!" 

Thus, in the DINA model, the probability of respondent i answering item j correctly, 

given that they have mastered all the required attributes, is equal to the probability that 

they have mastered all the required attributes and did not answer incorrectly times the 

probability that they have mastered all the required attributes and did not guess correctly.  

 Contrarily, the DINO model (Templin & Henson, 2006) is conjunctive and 

compensatory. This means that, similar to the DINA model, examinees are separated 

according to those that either have all of or none of the necessary attributes in order to 

answer and item correctly. However, this also means that, contrary to the DINA model, 

the DINO model allows for the possibility that the lack of presence in a required skill can 

be completely compensated for by the presence of just one other required skill.  

The probability of an examinee having the most ideal attribute pattern for that 

respondent to answer the item correctly, according to the DINO model is given as:  

𝑣!" = (1− 𝛼!")!!"
!

!!!
 

In essence, the presence of just one of the designated attributes is required for a 

respondent to have a high probability of having a correct response to particular item 
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(Templin & Henson, 2006).  The item response function for the DINO model is 

essentially identical to that of the DINA model, and is given as such:  

𝑃 𝑋!" = 1 𝑣!" = 1− 𝑠!
!!"  𝑔!!!!!" 

The difference in interpretation for the DINO model’s response function is that, in this 

case, the probability that an examinee answers an item correctly, assuming that they did 

not slip or guess is also given the probability that they have mastered at least one of the 

designated attributes. 

If a Q-matrix is designed in a way so that all items are singletons, there will be no 

difference between fitting the DINA model and fitting the DINO model, its disjunctive 

counterpart. Assigning all items as singletons essentially removes the effect that a 

difference in “condensation” rule would have on the determination of whether 

respondents in latent class 𝑐 have mastered all measured attributes required for item 𝑖 

(𝜉!" = 1) or not (𝜉!" = 0). The conjunctive kernel that creates the latent response variable 

𝜉!" can be expressed mathematical as: 

𝜉!" = 𝛼!"
!!"

!

!!!

 

If an attribute is not measured by an item, then 𝑞!" = 0, which implies that 

𝛼!" = 1, indicating that it does not matter whether or not that attribute is mastered by the 

respondent in order to answer the item correctly. If an attribute is measured by them item, 

then 𝑞!" = 1, implying that it matters whether a respondent in latent class 𝑐 has mastered 

the measured attribute 𝛼!" = 1 or not 𝛼!" = 0 in order to answer item 𝑖 correctly. As a 

result, 𝜉!" = 1 only if all product terms are 1, which means that all measured attributes 

for item 𝑖 have been mastered by respondents in latent class 𝑐. 
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The difference between the DINA model and the DINO model is in the 

calculation of its latent class variable, which in the DINO model is denoted as 𝜔!". 

Contrarily to the DINA model, the DINO model uses a disjunctive condensation rule to 

determine if at least one measured attribute is present (as opposed to all measured 

attributes). This is expressed mathematically as:  

𝜔!" = 1− (1− 𝛼!")!!"
!

!!!

 

Each parameter in the equation above, functions identically to the parameters in the 

previous equation. Therefore we can see that in the case wherein each item only measures 

a single attribute, the disjunctive condensation rule reduces to the conjunctive 

condensation rule, since if for all other attributes besides being measured 𝑞!" = 0, there is 

no effect on 𝜔!" from other attributes.  

  

2.3.2 The G-DINA Model 

 

The generalized DINA (G-DINA) model is both disjunctive and compensatory, making it 

different from both the DINA and DINO models since both of those models are 

conjunctive. This means that the G-DINA model does not require that all attributes need 

to be present in order for an item to be answered correctly and assumes that the presence 

of one attribute can compensate for the lack of presence in another attribute (de la Torre, 

2011). Furthermore, the DINA and DINO models separate examinees into two latent 

groups, those that have either mastered the necessary attributes or have not, whereas the 

G-DINA model partitions candidates into every possible combination of mastery 
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presence. In other words, the G-DINA model partitions candidates into 2!!
∗
groups, where 

𝐾!∗ is the number of attributes required for item j. This means that the G-DINA model 

increases exponentially in computational complexity as the number of attributes recorded 

by the assessment increases. It is also worthy to note at this point that, if 𝐾!∗ = 1, the 

DINA and G-DINA model become the same model, since there are only 2 possible 

groups that can exist. 

 In order to define the item response function for the G-DINA model, we must first 

assume that the first 𝐾!∗ attributes are required for item j and, subsequently, ∝!"∗  must be 

defined as the attribute vector which constitutes the first 𝐾!∗ elements of ∝!. Thus the item 

response function for the G-DINA model can be defined as follows (de la Torre, 2011): 

𝑃 ∝!"∗ =  𝛿!! + 𝛿!" ∝!"

!!
∗

!!!

+  𝛿!"!∗ ∝!!∗∝!"

!!
∗!!

!!!

!!
∗

!∗!!!!

+⋯+  𝛿!!"!…!!∗ ∝!"

!!
∗

!!!

 

In this equation 𝛿!!represents the intercept, 𝛿!"represents the main effect due to ∝! , 

𝛿!"!∗ represents the two-way interaction effect between ∝!∗  and ∝! , and 𝛿!!"!…!!∗ 

represents the 𝐾!∗-way interaction effect due to ∝!through ∝!∗! (de la Torre, 2011). In 

terms of interpretation, the intercept represents the minimum probability of success when 

none of the required attributes are present, the main effect represents the change in the 

probability of success when one attribute is mastered, and the interaction effects represent 

the change in the probability of success when more than one attribute is simultaneously 

mastered.  
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2.3.3 Hierarchical Diagnostic Classification 

 

The study on Bayesian networks raises the possibility of nested attributes or, in other 

words, the possibility of attribute hierarchies. A study by Templin & Bradshaw (2014) 

sought to address this by forging a link between the Attribute Hierarchy Method (AHM) 

(Leighton, Gierl, & Hunka, 2004) and the Log-linear Cognitive Diagnosis Model 

(LCDM) to create the Hierarchical Diagnostic Classification Model (HDCM). The 

LCDM can be either conjunctive and non-compensatory or disjunctive and 

compensatory, subsuming the DINA, DINO, NIDA, and NIDO models. In an example 

for an item that measures two attributes, where 𝑞!! = 1 and 𝑞!! = 1, conditional on an 

examinee i’s attribute profile for these two attributes, ∝!= [∝!!,∝!!] the LCDM item 

response function is as follows (Templin & Bradshaw, 2014):  

𝑃 𝑋!" = 1 ∝! =
exp (𝜆!,! + 𝜆!,!, ! ∝!!+ 𝜆!,!, ! ∝!!+ 𝜆!,!, !,! ∝!!∝!!)

1+ exp (𝜆!,! + 𝜆!,!, ! ∝!!+ 𝜆!,!, ! ∝!!+ 𝜆!,!, !,! ∝!!∝!!)
 

The attribute pattern parameters (∝!!,∝!!) are equal to either 0 or 1, depending on 

whether or not the examinee i has mastered the attribute. The item intercept (𝜆!,!) is 

interpreted as the log-odds of a correct response for a respondent that has not mastered 

any of the required attributes. Subsequently, the main effects (𝜆!,!, !  and 𝜆!,!, ! ) 

represent the change in log-odds for a correct response if an examinee has mastered the 

respective attribute. The two-way interaction between the two attributes (𝜆!,!, !,! ∝!!∝!!) 

then enables the log-odds of a correct response to change in the event that both attributes 

have been mastered. In terms of the subscripts for the 𝜆 parameters, the first represents 

the corresponding item i, the second indicates the parameter type (in this example it is 0 
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for intercept, 1 for main effect, and 2 for two-way interaction), and the third indicates 

which specific attribute the 𝜆 parameter pertains to (Templin & Bradshaw, 2014). Thus 

the LCDM follows a factorial ANOVA model wherein the attributes can be thought of as 

crossed-factors and it is assumed that all combinations of attributes are possible.  

The LCDM can measured up to A attributes although its computation increases 

exponentially as the number of attributes increases. Therefore, the general form of the 

LCDM item response function is as follows (Templin & Bradshaw, 2014): 

𝑃 𝑋!" = 1 ∝!=∝!) =
exp (𝜆!,! + 𝜆!!ℎ ∝! , 𝑞! )

1+  exp (𝜆!,! + 𝜆!!ℎ ∝! , 𝑞! )
 

The term ℎ ∝! , 𝑞!  represents a vector-valued function of size 2! − 1 ×1, containing 

the information on if a required attribute has been mastered. Formulaically, the response 

function of attributes is (Templin & Bradshaw, 2014):  

𝜆!!ℎ ∝! , 𝑞! = 𝜆!,!,(!) ∝!" 𝑞!" + 𝜆!,!,(!,!) ∝!"∝!"
!!!

!!!

!!!

!

!!!

𝑞!"𝑞!" 

Monotonicity constraints are placed upon the elements of 𝜆! so that the probability of a 

positive response increases if an examinee demonstrates mastery on additional required 

attributes as delineated by the Q-matrix. Therefore the LCDM is a constrained version of 

a more general latent class model wherein the full model contains the attribute 

distribution information in base-rate parameters (𝜋!) that represent the probability of a 

given respondent from a population has a particular attribute mastery pattern 𝑐 (𝑐 =

1,… , 2!). When merged with the item response function, the marginal LCDM likelihood 

function for binary items with binary attributes for a single respondent then becomes 

(Templin & Bradshaw, 2014):  
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𝑃 𝑋! = 𝜋!

!!

!!!

𝑃 𝑋!" = 1 ∝!
!!"(1− 𝑃 𝑋!" = 1 ∝! )!!!!"

!

!!!

 

However, so far this has so far only demonstrated half of the components that are 

necessary for forming the HDCM. The other half of the HDCM formulation requires the 

AHM, which is a probabilistic approach for classifying respondents and requires a formal 

representation of the relationships between the measured attributes of an assessment 

(Templin & Bradshaw, 2014). An AHM analysis begins with the construction of matrix 

of possible attribute profiles given the structure of the attribute hierarchies (Templin & 

Bradshaw, 2014). This is similar to how many DCMs require the construction of a Q-

matrix. Next, in a step that is similar to the creation of DAG representations when 

conducting a Bayesian network analysis, the assessment is mapped onto possible attribute 

profiles. AHM then uses various statistical tests and an index of classification reliability 

in order to determine if the selected attribute profiles matched the data that is observed, to 

assess model fit. However, AHM is ultimately more of a pattern-recognition approach to 

measurement than a statistical measurement model (Templin & Bradshaw, 2014).  

In order to bridge the gap between LCDM and AHM, HDCM combines the 

factorial ANOVA model components of the LCDM and the structural framework of the 

AHM. More specifically, in congruence with the fundamentals of the LCDM, the HDCM 

assumes that every possible combination of attributes in the population being measured 

exists (Templin & Bradshaw, 2014). Simultaneously, keeping in line with the structural 

framework of AHM, the HDCM considers attributes to be nested factors instead of fully 

crossed factors, such as in the LCDM. This latter step has the potential to greatly reduce 

computational complexity, compared to the LCDM, as nesting attribute profiles reduces 



31		

	

the number of possible attribute profiles. As a result, the HDCM changes the 

parameterization of the LCDM to avoid over-parameterization and reflect the nested 

structure of the attributes (Templin & Bradshaw, 2014).  

For example, if an item measures two attributes a and b, and attribute b is nested 

within attribute a, the HDCM item response function for an examinee i on item j is as 

follows (Templin & Bradshaw, 2014): 

𝑃 𝑋!" = 1 𝛼!∗ =
exp (𝜆!,! +  𝜆!,!, ! ∝!"+  𝜆!,!, ! ! ∝!"∝!")

1+ exp (𝜆!,! +  𝜆!,!, ! ∝!"+  𝜆!,!, ! ! ∝!"∝!")
 

The three parameters of the item response function for the HDCM are the intercept (𝜆!,!), 

the main effect for attribute a (𝜆!,!, ! ∝!"), and the interaction for attribute b nested 

within attribute a (𝜆!,!, ! ! ∝!"∝!"). Since an attribute hierarchy suggests that certain 

attribute profiles are impossible, there are no longer 2! base rate (𝜋!) parameters such as 

in the LCDM. However, much like how the nested structure of the Bayesian network had 

to have been predetermined via a modeling sample, the attribute hierarchy in a HDCM 

must be determined before diagnostic classification can begin.  

 Templin & Bradshaw (2014) demonstrate how the LCDM can be used prior to the 

implementation of the HDCM to discover hierarchies in attributes. In a process similar to 

conducting a factor analysis, the parameter estimates for 𝜆 garnered using the LCDM 

provide evidence as to what may be “suspected” hierarchies within the attributes. Simply 

put, by comparing the parameter estimates for the intercepts, main effects, and interaction 

effects (when possible) for each item across all examinees, it can be determined whether 

or not there is a linear hierarchy amongst the attributes. Via this method, the researchers 

determined a suspected attribute hierarchy using a sample of 2,922 examinees that had 
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taken the Examination of Proficiency in English (ECPE) (Templin & Bradshaw, 2014). 

Once the suspected hierarchy in the study was codified into the HDCM, a simulation 

study was conducted in order to assess the HDCM’s ability to detect attribute hierarchies, 

model efficiency, and model fit compared to the LCDM.  

 The conditions of the simulation study included 3000 examinees, 30 items, and 3 

attributes with 500 replications (Templin & Bradshaw, 2014). The results of the study 

indicated that the HDCM’s item parameter estimates were nearly identical to the 

LCDM’s item parameter estimates, with a Pearson correlation 0.999. However, the 

HDCM displayed more stable behavior, with fewer extreme values (item main effects 

estimates that were close to their item intercept estimates) and significantly smaller 

standard errors. The authors then formulated a hypothesis test to determine whether or 

not an attribute hierarchy existed, by constructing a deviance test statistic, using the naïve 

distribution, and 100 simulations to obtain the correct p-value. Based on the results of 

that test, the researchers found no significant difference between the LCDM and HDCM, 

concluding that an attribute hierarchy was indeed present in the data (Templin & 

Bradshaw, 2014). However, the HDCM’s model fit was then also compared to other 

unidimensional DCMs (such as the DINA and DINO models) and it was not found to be 

among the best fitting models.  

 The authors conclude by recommending that HDCMs be used in conjunction with 

other DCMs, along with the LCDM, as a litmus test for detecting attribute hierarchies. 

This top-down approach will enable researchers to become aware of any potential 

hierarchies that may exist within their attributes before creating Q-matrices and applying 

diagnostic models to data that are unable to distinguish hierarchies (such as the DINA 
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and DINO models). In other words, the HDCM is a new psychometric model that can 

theoretically be used to detect attribute hierarchies and restructure model attributes 

(Templin & Bradshaw, 2014). Compared to the DCMs previously discussed in this 

review, this model is not recommended as a stand-alone model for diagnosis, since it is 

most informative when used with the LCDM.  

 

 2.4 Assessing Model Fit 

 

Determining the most appropriate or efficient DCM for a particular set of data is neither a 

straightforward nor simple process. Multiple models must be applied to the data in order 

to compare their performance. Measures of model performance include reliability 

estimates, validity estimates, and model fit statistics. However, unlike other psychometric 

models, there is a not general consensus on the best model fit statistics and procedures for 

assessing the fit of DCMs (Sinharay & Almond, 2007). A case study done by Sinharay 

and Almond (2007) examines a variety of different approaches to assess the model fit of 

DCMs, using Bayesian networks as an example.  

 Bayesian networks were selected as an example for that study because they are 

able to model both complex relationships among proficiency variables and dependencies 

between observable variables that are measured by the same task (Sinharay & Almond, 

2007). However, the study focuses on analysis of the Q-matrix and not the design of the 

Bayesian network. Therefore, the results from the case study are applicable for other 

DCMs that utilize binary or discrete latent variables, such as the DINA, NIDA, and other 

general diagnostic models. The three techniques used by Sinharay and Almond to assess 
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the model fit of the Bayesian networks were Bayesian residual plots, item fit plots, and an 

item fit test statistic. The deviance information criterion (DIC), was also suggested as a 

practical tool for comparing model performance as well, although it applies only to 

models fitted via an MCMC algorithm (Sinharay & Almond, 2007).  

 Bayesian residual plots have the ability to demonstrate model fit along a spectrum 

of skill proficiency by visualizing the posterior mean of the realized residual 𝑅! versus 

the posterior mean expected number of correct responses 𝐸(𝑌!|𝜃! ,𝜋, 𝜆) for each examinee 

𝑖 (Sinharay & Almond, 2007). The expected number of correct score of an examinee 𝑖 is 

computed by 𝐸 𝑌! 𝜃! ,𝜋, 𝜆 = 𝜋!!!(!)
!
!!! , where 𝛿!(!) is a binary indicator that denotes 

whether examinee 𝑖 has mastered the skills needed for tasks requiring the 𝑠th attribute 

from the Q-matrix. The value of 𝛿!(!) is determined by 𝜃! (Sinharay & Almond, 2007). 

The realized residual 𝑅! = 𝑌! − 𝐸(𝑌!|𝜔) , where 𝜔 = (𝜔!,𝜔!,…𝜔!)  represents the 

vector of model parameters. An MCMC algorithm from a previous study, which the 

current case study seeks to replicate various aspects of, was used to estimate the values of 

the parameters and latent class variables. For each examinee, the plot shows how well the 

model predicts the number of correct responses they received, according to their 

respective 𝐸(𝑌!|𝜃! ,𝜋, 𝜆) (Sinharay & Almond, 2007).  Depending on the length of the 

95% posterior credible interval, the location of 𝑅! demonstrates whether or not the model 

has over- or under-predicted an examinee’s correct number of responses, while each 

examinee is placed along an axis of posterior mean expected number of correct scores.  

 With regard to the item fit plots, the same MCMC algorithm used for calculating 

the Bayesian residual plots is used to generate values of 𝜃!. For each iteration of the 

algorithm, 𝑝!"#is the proportion of the examinees that belong to latent class 𝑘 and answer 
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item 𝑗 correctly, and 𝑝!" represents the median 𝑝!"#  over all iterations of the MCMC 

algorithm (Sinharay & Almond, 2007). Functionally, 𝑝!" acts as an observed proportion 

correct for an item 𝑗 and latent class 𝑘 in the item fit plot. Each item fit plot is thus a 

comparison of 𝑝!" versus 𝑝!"# for each item. For each latent class 𝑘, the item fit plot 

visualizes the proportion of examinees that belong to that latent class 𝑘 that answered that 

item correctly. By comparing the Q-matrix, specifically the assigned attributes to each 

item, it is possible to determine based on the assigned attributes to each item and the 

mastered attributes of the latent class members whether or not an item is performing 

efficiently.  

 The item fit test statistic suggested by the authors is also similar to this method in 

that it calculates a statistic represent a proportion of correct responses with regard to 

specific latent classes. Essentially, the test statistic quantifies what is shown in the item fit 

plots and is denoted as 𝜒! (Sinharay & Almond, 2007). For the calculation of this 

statistic, 𝑝!" now acts the observed proportion correct for item 𝑗 for examinees in latent 

class 𝑘. An observed number of examinees for that latent class, denoted as 𝑂!" is then 

calculated by 𝑂!" =  𝑝!"𝑁!, where 𝑁! represents the number of members of latent class 

𝑘. A corresponding predicted number of examinees for the same latent class 𝐸!" can be 

obtained by 𝐸!" = 𝑃!"𝑁!"  where 𝑃!"  is the predicted proportion correct for item 𝑗 for 

examinees in latent class 𝑘. The function for the item fit statistic is then as follows 

(Sinharay & Almond, 2007):  

𝜒!! =  
(𝑂!" − 𝐸!")!

𝐸!"

!

!!!

+
[(𝑁! − 𝑂!!)− (𝑁! − 𝐸!")]!

𝑁! − 𝐸!"

!

!!!

=
𝑁!(𝑂!" − 𝐸!")!

𝐸!"(𝑁! − 𝐸!")

!

!!!
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 The authors conclude that, while these approaches and techniques may be useful 

tools in gauging model fit, they risk being too conservative since their observed values 

are not actually observed but are estimated from the data (Sinharay & Almond, 2007). 

Another limitation of these techniques is that they are experimental and require more 

research across multiple models and datasets in order to determine their reliability and 

validity. As DCMs are still a burgeoning subject within the field of psychometrics, much 

research is still being conducted as to what the most reliable measures of model fit are for 

these statistical models.		

	

2.5 Rubrics as Diagnostic Guides 

 

Rubrics are defined as detailed scoring guides that articulate the expectations for an 

assignment by delineating the assessment’s criteria and describing the levels of quality in 

relation to each of those criteria (Reddy & Andrade, 2010). Rubrics are unique in that 

they are inherently diagnostic in that their objective is to identify a respondent’s location 

on a graded scale in terms of proficiency on at least one attribute, and so they are able 

facilitate formative assessment by their very nature (Panadero & Jonsson, 2013). Scriven 

(1991) identifies three characteristics of diagnostic inference that highlight the inherent 

diagnostic ability of rubrics: 

1. Diagnosis requires that the inherent features of poor performances be 

determined and reported. 

2. The process of diagnosis should result in the classification of cognitive skills 

via an appropriate reporting system. 
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3. The objective of diagnosis is classification.  

Similarly, Wolf & Stevens (2007) identify three steps for designing effective rubrics:  

1. Clearly identify the specific criteria that are necessary for demonstrating 

expertise in the construct. Three to six are recommended in order maximize 

reliability, although increasing the number of criteria increases the formative 

ability of the assessment. 

2. Determine the number of performance levels that are appropriate for the 

assessment. Again, three to six levels are recommended in order to maximize 

reliability, although increasing the number of performance levels increases the 

formative ability of the assessment.   

3. Identify subskills within each criterion that provide sufficient guidance to 

determine a response’s level. It is critical that these subskills maintain a 

parallel structure throughout their respective criteria. Describing the subskills 

at each level using similar language, form, and content can increase 

parallelism across subskills.  

Clearly, rubrics share significant parallels in their purpose, objective, and even 

procedure for design with diagnostic assessment. However, just as there is a dearth in 

DCA development, research in rubric analysis and performance is scarce as well (Hafner 

& Hafner, 2010). Much of the literature on improving rubric performance employs 

intuitive or qualitative methodologies in order to make recommendations for design and 

development (Hawkey & Barker, 2004; Janssen, Meier, & Trace, 2015; Jonsson & 

Svingby, 2007; Knoch, 2011; McNamara, 1996; Panadero & Jonsson, 2013). Of the 

studies that do attempt to use quantitative methods to improve rubric performance, many 
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use the “many facets Rasch model” (MFRM) approach (Linacre, 1989), which is an 

extension to the 1PL Rasch model which allows for additional “facets” to be included in 

parameter estimation such as rater severity/leniency and rating scale step difficulty 

(Janssen, Meier, & Trace, 2015; Knoch, 2009; Meier, 2013). While this approach may 

lend unique insights into the differences in scoring tendencies by raters and rater 

reliability, it does not focus on the diagnostic ability of the rubric itself. Furthermore, the 

MFRM is limited in the scope of its application since it currently can only be run using 

the software FACETS (Linacre, 2010).  

 As a result, there exists a need for data based quantitative methods for designing 

and developing rubrics (Clauser, 2000; Harsch & Martin, 2012; Janssen, Meier, Trace, 

2015; Knoch, 2009), just as there is a need for more DCAs. Conversely, Banerjee, Yan, 

Chapman, & Elliott (2015) developed a method for revising a rating scale for the writing 

section of a large-scale diagnostic assessment. However, the authors acknowledged that 

discussions of scale design and development are rare and that the approach they used was 

both singular and “extremely unusual”. Still, despite the current lack of research in rubric 

revision or development, rubric-scored tests that are currently in use must be monitored 

and modified regularly in order to ensure score reliability and validity (Banerjee, Yan, 

Chapman, & Elliot, 2015).  

Therefore, it seems that there simultaneously exists a need to develop methods of 

improving the diagnostic ability of existing rubrics as well as a need to develop methods 

of retrofitting DCMs to existing assessments.  It is then curious that these two dimensions 

of measurement, that are so similar in objectives and goals as well as their lack of 

investigation, are not more intertwined in the current literature. Reasons for the lack of 
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connection between the study of rubric revision and retrofitting DCMs are somewhat 

unclear but could be related to either their relative novelty in the field of psychometrics 

and/or the relatively complex, sometimes stringent, and unknown nature of the DCM 

framework or the unidimensional nature of rubric-scored assessments.  

Indeed, rubric-scored items are unlike multiple-choice items and even many 

constructed-response items in that they produce graded polytomous data. In research 

wherein DCMs are retrofitted to assessments that have constructed-response items or 

items that produce polytomous data, it is not uncommon for researchers to determine a 

method of dichotomizing the item so that it simply produces answers that are considered 

correct or incorrect (Close, 2012; Lee, Park, & Taylan, 2011; Svetina, Dai, & Wang, 

2017). If that same technique were to be applied to a rubric however, it may result in the 

loss of significant diagnostic information that rubrics provide as a result of their 

multilevel graded structure.   

 

2.5.1 Hierarchical Attribute Structures in DCMs 

 

Earlier it was discussed that a crucial matter to be aware of when conducting DCM 

attribute specification is the potential for attributes to have dependent relationships. In 

such cases, the mastery of one attribute depends upon the mastery of another attribute. 

When this occurs, a hierarchical attribute structure is present. Hierarchical attribute 

structures can have significant effects on Q-matrix design, classification accuracy, model 

fit, and test validity (Liu, Huggins-Manley, & Bradshaw, 2016; Liu & Huggins-Manley, 

2016; Templin & Bradshaw, 2014). However, if their presence is known, then there are 
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techniques that can be applied that can actually lead to deeper insights regarding the 

nature and the relationships within those attribute hierarchies. 

For example, Leighton, Gierl, and Hunka (2004) developed what is known as the 

Attribute Hierarchy Method (AHM), which is a DCM in which it is assumed that the 

measured cognitive attributes have hierarchical relationships and are dependent. The 

AHM is a variation on the rule-space method (Tatsuoka, 1983) in that it still observed 

response patterns of masters and non-masters according to a set of attributes and used Q-

matrices to represent those attribute structures. The motivation to develop the AHM came 

from the authors’ belief that modeling cognitive attributes necessitated the specification 

of a hierarchy and the desire to link cognitive theory to the rule-space method (Leighton, 

Gierl, & Hunka, 2004).  

	
Figure 1. Four forms of hierarchical attribute structures. 

 The authors also identified four forms of hierarchical structures represented by 

five attributes, as seen in Figure 1. The linear hierarchy indicates that all five attributes 

are in succession, which further indicates that in order to master an attribute, it is required 

that that all the attributes that precede it are also mastered. For example, in order to 
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master Attribute 3, an examinee must first master Attribute 1 and Attribute 2. In the 

divergent hierarchy, multiple paths separate from the initial parent attribute. This type of 

hierarchy could be used to represent assessments where there are multiple components 

that could be considered correct or incorrect, such as in constructed-response items 

(Leighton, Gierl, & Hunka, 2004).  

In a convergent hierarchy, at some point in the hierarchy the path of attribute 

mastery diverges from attribute to multiple, and then converges to a common attribute. 

Such an attribute hierarchy may be used to represent an assessment wherein there is one 

desired outcome and multiple paths must be taken to produce it. Finally, the unstructured 

hierarchy represents a case where the only the first attribute is required to be mastered to 

master all other attributes. In this case, there is no unique relationship between the 

attribute structure and the total score.  

One of the earliest examples of a linear attribute hierarchy structure was 

developed by Louis Guttman (1944, 1950) and was known as the Guttman scale or 

‘Guttman scaling’ (Abdi, 2010). Guttman scaling essentially is a process of determining 

the degree of unidimensionality within a set of items (Andrich, 1985). The process is 

done by first defining the construct that the assessment is intended to measure. Next, 

dichotomous items must be developed and then ordered so if an item is to be marked as 0, 

all items that followed that item will also be marked as 0, and all items that precede it 

will be marked as 1. As a result of this process, attribute hierarchies can be clearly 

identified within a group of items (Schultz & Siegel, 1961). The example shown in Table 

2 represents a perfect Guttman scale, in which a unidimensional Q-matrix has its items 
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ranked in order from the least amount of attributes required to answer correctly to the 

most. 

Table 2. Example of a Q-matrix as a Perfect Guttman Scale 

Item Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6 
1 1 0 0 0 0 0 
2 1  1 0 0 0 0 
3 1 1 1 0 0 0 
4 1 1 1 1 0 0 
5 1 1 1 1 1 0 
6 1 1 1 1 1 1 

 

If a Guttman model is valid, the marginal sum of each row or column (depending 

on which represents the attributes) will indicate the order in which they ascend. In 

practical usage perfect Guttman scales are rare since in most cases the construct that is 

being measured is actually multidimensional (Abdi, 2010). Since its conception, Guttman 

scales have been used to identify unidimensional attribute hierarchies in many diverse 

fields such as education, economics (Guest, 2000), social issues (Vimalrajkumar, 

Mathialagan, & Sabarathnam, 2016), and anthropology (Peregrine, Ember, & Ember, 

2004).  

 Returning to the concept of linear hierarchies, since the Guttman scale is 

sequential and requires that all attributes that precede an attribute must be mastered in 

order to master the attributes ahead of it in the sequence, it falls under the category of a 

linear hierarchy. Furthermore, this kind of Guttman scale linear hierarchy can also 

describe the attribute structure of most rubrics. Such an attribute structure may also be 

able to be represented by a Q-matrix. However, the Guttman scale type linear hierarchy is 

not the only simple attribute structure that can be represented by a Q-matrix. 
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Liu, Huggins-Manley, & Bradshaw (2016) present three approaches for 

parameterizing Q-matrices that represent attributes that follow a linearly hierarchical 

structure: the independent approach, the adjacent approach, and the reachable approach. 

The researchers also conducted a simulation study in which the three approaches were 

investigated for their effects on classification results, using fixed sample sizes (N = 

2,000) over 1,000 replications per condition, controlling for guess and slip parameter 

values as well as the tetrachoric correlation between attributes.  For example, Table 3 

shows an example of an Independent Approach Q-matrix (Liu, Huggins-Manley, & 

Bradshaw, 2016). 

Table 3. Example of an Independent Approach Q-matrix 

Item Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6 
1 1 0 0 0 0 0 
2 0 1 0 0 0 0 
3 0 0 1 0 0 0 
4 0 0 0 1 0 0 
5 0 0 0 0 1 0 
6 0 0 0 0 0 1 

 

 The independent approach models a particular form of attribute relationship 

where each item only measures one attribute. Although this may be considered an 

extreme method of attribute isolation, isolating attributes increases diagnostic 

classification accuracy. Specifically, if each attribute is measured the same number of 

times, and in isolation, classification accuracy will be higher than in other Q-matrix 

designs (Liu, Huggins-Manley, & Bradshaw, 2016). It should also be noted that the Q-

matrix in Table 3 is also considered a “balanced” Q-matrix since each attribute is 

measured the same number of times and types (Liu & Huggins-Manley, 2016). 
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Furthermore, increasing the number of times each attribute is measured was also found to 

increase classification accuracy as well.  

However, while measuring attributes in isolation may be the most efficient at 

identifying attribute mastery, it is also rare or unrealistic in some cases, as well as 

unsuitable for making inferences about the compensatory/non-compensatory or 

conjunctive/disjunctive relationships between attributes. Conversely, Liu, Huggins-

Manley, & Bradshaw (2016) recommend that the single attribute item element of the 

independent approach be incorporated into the design of a Q-matrix in order to most 

effectively identify attribute mastery in situations where linear hierarchies exist within 

the attribute structure. Specifically, the researchers commend combining the design of the 

independent approach with the two other approaches for Q-matrix design presented in the 

study, the adjacent approach and the reachable approach shown in Table 4 and Table 5, 

respectively (Tatsuoka, 1983, 2009). 

Table 4. Example of an Adjacent Approach Q-matrix 

Item Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6 
1 1 1 0 0 0 0 
2 0 1 1 0 0 0 
3 0 0 1 1 0 0 
4 0 0 0 1 1 0 
5 0 0 0 0 1 1 
6 0 0 0 0 0 1 

 

The adjacent approach stipulates that each item measures a maximum of two 

directly linked attributes wherein one attribute is a prerequisite for mastering the other 

attribute. Take, for example, the Q-matrix in Table 4. In this example Attribute 1 could 

be a prerequisite of mastery for Attribute 2, and in order to answer Item 1 correctly, both 

attributes need to be mastered. However, in order to answer Item 2 correctly, both 
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Attribute 3 and Attribute 2 have to be mastered, and Attribute 2 is a prerequisite for 

Attribute 3. Therefore, Attribute 1 must be mastered in order to master Attribute 2, in 

order to master Attribute 3. Hence, the linear hierarchy that follows throughout.  

The results of the study found that classification results for the adjacent approach 

either resembled or were better than those of the independent approach in some cases, 

when tests were of similar length. In conditions where item quality was low, the adjacent 

approach also produced better classification results than both the independent and 

reachable approaches as well (Liu, Huggins-Manley, & Bradshaw, 2016). The reason the 

adjacent approach performs better than the independent and reachable approaches is that 

the adjacent approach decreases the number of parameters required to be estimated by the 

model by eliminating impossible attribute mastery patterns as well as limiting the number 

of attributes an item can measure to two.  

Table 5. Example of a Reachable Approach Q-matrix 

Item Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6 
1 1 0 0 0 0 0 
2 1 1 0 0 0 0 
3 1 1 1 0 0 0 
4 1 1 1 1 0 0 
5 1 1 1 1 1 0 
6 1 1 1 1 1 1 

 

  Similarly, the reachable approach (Liu, Huggins-Manley, & Bradshaw, 2016), an 

example of which is shown in Table 5, extends the adjacent approach by permitting the 

maximum number of attributes a single item can measure to be equal to the largest 

number of attributes possible. It should also be noted that this approach, unlike the 

independent and adjacent approaches, directly represents a perfect Guttman scale. In the 

example shown in Table 5, Attribute 1 must be mastered before Attribute 2, and so on 
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and so forth, and so the rules of dependency or rather, the nature of the hierarchical 

relationship between attributes is still the same as it was for the adjacency approach. As a 

result, a major differentiation of the design of the reachable approach to the independent 

approach and adjacent approach is that the reachable approach allows an item to measure 

the maximum possible number of attributes possible. 

 Moreover, the study by Liu, Huggins-Manley, & Bradshaw (2016) showed that 

the reachable approach design was the most affected by item quality. In other words, in 

cases where items had high guess or slip parameter estimates, it becomes more difficult 

to estimate the interactions between attributes as the number of attributes measured by 

the item increases. As a result, the reachable approach for Q-matrix design was the least 

recommended approach by the authors for representing attribute hierarchies.  

 

2.5.2 Alternative Models for Rubric-Scored Tests 

 

 Polytomous-IRT models such as the Graded Response Model (GRM) (Samejima, 

1969), Partial Credit Model (Masters, 1982), and the Generalized Partial Credit Model 

(G-PCM) (Muraki, 1992,1993) are all IRT models used to model items that produce 

graded polytomous data. Graded item responses refer to cases wherein item responses are 

divided into ordered categories in which the lowest category contributes the least to a 

person’s test score and the highest category contributes the most (Baker & Kim, 2004). 

Although these models have existed for at least as long as DCMs, their diagnostic 

potential/capability has not yet been fully researched, although their mathematical theory 

is firmly grounded in IRT. For example, polytomous-IRT models still follow many of the 
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same assumptions as most other IRT models such as the assumption of unidimensionality 

(Immekus & Imbrie, 2008). Furthermore the results from these models are not easily 

translatable to individuals unfamiliar with IRT and therefore may not be the most 

beneficial for students or test administrators, although they may be quite useful for test 

developers. Nonetheless, polytomous-IRT models provide a reasonable alternative to 

analyzing rubric performance and so they will also be applied to the rubric-scored data so 

that the usefulness and depth of their insights may be compared to the proposed method 

of retrofitting.  

	

2.6 Item Response Theory Models for Polytomous Data 

 

In item response theory (IRT), most models are designed to measure and evaluate the 

performance of test items that produce dichotomously scored data, with responses being 

either correct or incorrect. The assumption behind this scoring procedure is that the only 

data available in an item response is the correctness of that response (Baker & Kim, 

2004). In other words, most IRT models assume that the only salient information to be 

gained from an item response is whether or not that item has been answered correctly or 

incorrectly. However, this assumption does not hold true for all test items, especially for 

cases wherein responses are graded, meaning cases wherein responses have varying 

“degrees of correctness” or are nominal, such as rubric-scored test items and items from 

personality tests. In these cases, no response is either correct or incorrect and so the 

salient information is which specific response has been selected.  
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In cases where responses are graded, item responses are divided into ordered 

categories so that the lowest category contributes the least to a person’s test score and the 

highest category contributes the most (Baker & Kim, 2004). In order to model these cases 

that produce graded response data (or any data that is characterized as ordered categorical 

responses), the graded response model (GRM) was developed (Samejima, 1969). 

However, the GRM was only intended to model ordered categorical data in general, 

without taking into account the different forms of ordered categorical data that exist. 

Masters (1982) delineated four different types of graded responses: repeated trials, 

counts, rating scales, and partial credit.  

Masters argued that partial credit data comes from an observation format that 

requires the prior identification of multiple ordered levels that indicate success on an item 

and for which the partial completion of would award corresponding credit (Masters, 

1982). In order to model this type of graded response data, the Partial Credit Model or 

PCM was developed. However, since the PCM model was developed it has also been 

extended by Muraki (1992) to include additional parameters in order to create a more 

flexible PCM, which then became known as the generalized partial credit model (G-

PCM). However, although these polytomous IRT models have been around for some 

time, there is a dearth of research in their theory and application, especially with rubric-

scored data.  

Real rubric-scored data is difficult to produce, since it requires the employment of 

a scorer to evaluate and score each response. Rubric scores are often more preferable to 

multiple-choice scores for students as they are able to provide more detailed feedback. By 

modeling rubric-scored data using polytomous IRT models such as the graded response 
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model (GRM) or the generalized partial credit model (G-PCM), we may be able to make 

inferences about the performance of the test items the rubric is based on, the test 

population, and the rubric itself. Furthermore, what is unique about rubric data compared 

to multiple-choice data, is that rubric-data does not come directly from examinees. 

Rather, a scorer must be involved in order to determine an examinee’s score. Therefore, 

applying polytomous IRT models to rubric-scored data may also lend insights into the 

performance of the scorers as well.  

 

2.6.1 The Graded Response Model 

 

In the GRM each item (𝑖) is described by a slope parameter (𝛼! ) and 𝑗 = 1…𝑚! 

“between-category threshold parameters” (𝛽!" ), where the number of item response 

categories equals 𝑚! + 1 = 𝐾! (Embretson & Reise, 2000). Item slope parameter (𝛼!) 

represents the degree to which an item is able to distinguish how well an individual will 

perform on the exam, much like in dichotomous IRT models (Nering & Ostini, 2010). It 

is important to note that it is not necessary for items to have the same number of response 

categories and no complications arise from having items with different response formats. 

In cases where ∝! remains constant across items, the GRM is deemed a constrained 

graded response model (CGRM) and is the model that is most commonly used. In cases 

where ∝! varies between items, the model is deemed an unconstrained graded response 

model (UGRM) (Samejima, 1969).  

 To compute the category response probabilities in the GRM, two stages must be 

followed. Let us consider an example where a test item has 𝐾 = 6 response options, 
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where examinees receive item scores of 𝑥 = 1… 6. Since there are 6 response options, 

there are 𝑚! = 5 thresholds (𝑗 = 1… 5) between the response options. Thus, one of the 

main issues in fitting the GRM is to determine the location of these thresholds on the 

latent trait continuum (Embretson & Reise, 2000). The first step in using the GRM to 

estimate response probabilities requires computing 𝑚! curves for each item using the 

following equation: 

𝑃!"∗ 𝜃 =  
𝑒∝!(!!!!")

1+ 𝑒∝!(!!!!")
 

where 𝑥 = 𝑗 = 1 ,… ,𝑚!. Each curve 𝑃!"∗ 𝜃  is known as a boundary characteristic curve 

(BCC) and represents the probability of an examinee’s raw item response (𝑥) falling in or 

above a given category threshold (𝑗 = 1…𝑚!) conditional on trait level (𝜃) (Samejima, 

1969).  A visual example of these boundary characteristic curves (BCC’s) can be seen in 

Figure 2, note that in Table 6, we can also see the values of each line’s between category 

threshold parameter (𝛽!"), which indicates the location on the latent trait continuum 

wherein an examinee has a 0.50 probability of responding in or above category 𝑗 = 𝑥. 
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Figure 2. Example of boundary characteristic curves. 

 
Table 6. Between Category Threshold Parameters for Figure 2 

𝛽!! 𝛽!! 𝛽!! 𝛽!! 𝛽!! 
-2.516 -0.651 0.221 2.616 3.301 

 
 For each between category threshold parameter (𝛽!") a BCC must be estimated 

and so, in this example where there are six response categories, five 𝛽!" parameters are 

estimated with one common item slope parameter (𝛼!). Interpretively, the value of each 

𝛽!" parameter represents the trait level necessary to respond above threshold 𝑗 with 0.50 

probability (Baker & Kim, 2004). In essence, the GRM treats each item as a series of 

𝑚! = 𝐾 − 1 dichotomies (e.g., 1 vs 2,3,4,5,6; 1,2 vs 3,4,5,6; 1,2,3 vs 4,5,6; 1,2,3,4 vs 

5,6; 1,2,3,4,5 vs 6) and 2PL IRT models are estimated for each dichotomy assuming that 

the slopes of the BCC’s (𝑃!"∗ 𝜃 ) are equal within each item (Embretson & Reise, 2000). 

Once each  𝑃!"∗ 𝜃  is estimated, the actual category response probabilities for 𝑥 = 1… 6 

are calculated using the following equation:  
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𝑃!" 𝜃 =  𝑃!"∗ 𝜃 −  𝑃!(!!!)∗ 𝜃  

where the probability of responding in or above the lowest category response is  

𝑃!!∗ 𝜃 = 1.0, and the probability of responding above the highest category response is  

𝑃!!∗ 𝜃 = 0.0, by definition. Thus, in the current example, the probability of selecting 

each of the six possible category response options is: 

𝑃!! 𝜃 = 1.0−  𝑃!!∗ 𝜃  
𝑃!! 𝜃 = 𝑃!!∗ 𝜃 −  𝑃!!∗ 𝜃  
𝑃!! 𝜃 = 𝑃!!∗ 𝜃 −  𝑃!!∗ 𝜃  
𝑃!! 𝜃 = 𝑃!!∗ 𝜃 −  𝑃!!∗ 𝜃  
𝑃!! 𝜃 = 𝑃!!∗ 𝜃 −  𝑃!!∗ 𝜃  
𝑃!! 𝜃 = 𝑃!!∗ 𝜃 −  0. 

Each 𝑃!" 𝜃  is known as an item category response curve (ICRC) and represents the 

probability of an examinee selecting a particular response category given their trait level.  

To summarize, the GRM item parameters determine the shape and location of the 

ICRC’s (𝑃!" 𝜃 ) and BCC’s (𝑃!"∗ 𝜃 ). Each BCC (𝑃!"∗ 𝜃 ) represents the probability of an 

examinee’s response falling in or above a given category threshold conditional on trait 

level, and is estimated using between category threshold parameters (𝛽!"). Between 

category threshold parameters (𝛽!") represent the point on the latent trait scale at which 

examinees have a 0.50 probability of responding above a category threshold or, in other 

words, responding in or above category 𝑗 = 𝑥 (Embretson & Reise, 2000). Subsequently, 

each ICRC (𝑃!" 𝜃 ) represents the probability of responding in each category (𝑥 = 1… 6) 

conditional on examinee trait level.  

In order to fit the GRM to data, the item parameters must be estimated. Popular 

parameter estimation algorithms include the joint maximum likelihood estimation 

(JMLE) method and the marginal maximum likelihood estimation (MMLE) method 
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(Bock & Lieberman, 1970). Once a preferred parameter estimation algorithm is chosen, a 

numerical optimization method, such as the Newton-Raphson method or expectation-

maximization (EM) algorithm must be chosen as well. Software such as Parscale (Muraki 

& Bock, 2003) and Multilog (Thissen, 2003) are commonly used for estimating 

polytomous IRT model parameters. More recently R (R Core Team, 2016) software 

packages have also become popular in estimating polytomous IRT model parameters 

such as ‘mirt’ (Chalmers, 2012) and ‘ltm’ (Rizopoulos, 2006).  

 

2.6.2 The Partial Credit Model 

 

The partial credit model (PCM) was originally designed to analyze test items that require 

multiple steps for which it is essential to award partial credit for completing at least one 

or some of those steps in the solution process (Embretson & Reise, 2000). As a result, the 

PCM is ideal for describing item responses to achievement tests where items award 

partial credit, as well as attitude or personality scale items where subjects rate their 

opinions or respond to statements on a multi-point scale. Unlike the GRM, in the PCM 

the probability of responding with a particular category is written directly as an 

exponential divided by the sum of exponentials. Subsequently, the PCM can be 

considered an extension of the 1PL IRT model, having all the standard Rasch model 

features such as the ability to distinguish separate person and item parameters (Masters, 

1982). Using the same example from the previous section on the GRM, let us assume that 

item 𝑖 is scored 𝑥 = 1,… ,𝑚! for an item with 𝐾! = 𝑚! + 1 response categories. Thus for 

𝑥 = 𝑗 the ICRC for the PCM is written as:  
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𝑃!" 𝜃 =  
𝑒[ !!!!"!

!!! ]

[𝑒 !!!!"!
!!! ]!!

!!!

 

where (𝜃 −!
!!! 𝛿!") ≡ 0. 

 The step difficulty term 𝛿!"(𝑗 = 1,… ,𝑚!) is associated with a category score of 𝑗 

and indicates that a higher value of 𝛿!", representing a more difficult level, relative to 

other levels within an item. A more direct interpretation of 𝛿!" would be that it is the 

point on the latent trait scale at which two consecutive category response curves intersect 

(Embretson & Reise, 2000). In other words, the step difficulty term (𝛿!") represents the 

position on the latent trait scale associated with the transition from one category response 

level to the next, and within each item there are 𝑚! step difficulty terms for an item with 

𝑚! + 1 response categories. Thus the step difficulty term (𝛿!") replaces the function of 

the category threshold parameters (𝛽!") in the GRM, but does not represent a point on the 

latent trait continuum where one has a .50 probability of responding above a category 

threshold. Instead, the step difficulty term (𝛿!") represents the relative difficulty of each 

level within an item (Embretson & Reise, 2000).   

 As a result, within an item, some category response levels may be less difficult 

than other category response levels, even though they are ordered higher on the graded 

scale and vice versa. For example, it may possible for it to be more difficult for an 

examinee to go from a score of one to two than it is for an examinee to go from two to 

three. This phenomenon of un-ordered step parameters is known as a reversal (Dodd & 

Koch, 1987). In general, if the step difficulty terms (𝛿!") are ordered within an item, then 

every category response option is most probable on at least one position on the latent trait 

continuum. Alternatively, if there is a “reversal” in step difficulty parameters within an 
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item, it is guaranteed that there will be at least one category response option that is never 

the most likely option at any position on the trait continuum (Andrich, 1988).  

Essentially, the 𝛿!" parameter indicates the location on the latent trait continuum 

where category response curves intersect, thus indicating where on the latent trait 

continuum where one category becomes relatively more probable than the previous 

category (Masters, 1982). A visual example of an item category response curve can be 

seen in Figure 3, how the 𝛿!" parameter values in Table 7 correspond to the location of 

the line intersections.  

 

	
Figure 3. Example of item category response curves. 

 
 
Table 7. Between Category Threshold Parameters for Figure 3 

𝛿!! 𝛿!! 𝛿!! 𝛿!! 𝛿!! 
-5.713 0.360 1.377 6.199 7.387 
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Interpretively, the 𝛿!" parameter points represent where the completion of a step becomes 

more likely than non-completion, given that an examinee has already completed the 

previous steps (Embretson & Reise, 2000). In other words, the ICRC’s calculated by the 

PCM can be used to compute the most probable response for examinees at any point on 

the latent trait continuum.  

 One unique benefit of the mathematical structure of the PCM is that it is possible 

to use the item parameters to graph the expected score for an item along the latent trait 

continuum, thus representing the expected raw item score for examinees at any particular 

trait level. The following equation represents the mathematical procedure for such 

calculations:  

𝐸 𝑋 = 𝑥𝑃!(𝜃)
!!

!!!

 

As a result, an examinee’s raw score becomes a sufficient statistic for estimating 

examinee latent trait ability, which also means that examinees with the same raw score on 

a set of items that fit the PCM are also estimated to possess equal positions on the latent 

trait continuum. However, it must be assumed that all items are uniformly associated to 

the underlying latent trait or, in other words, represent different components of the same 

overarching test construct.  

 

2.6.3 The Generalized Partial Credit Model 

 

In order to account for items within a scale that differ in slope (i.e. items with different 

levels of item discrimination), Muraki (1992; 1993), developed a generalization of the 
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PCM known as the generalized partial credit model (G-PCM). The G-PCM expands on 

the original equation of the PCM by instituting a slope parameter (𝛼!):  

𝑃!" 𝜃 =  
𝑒[ !! !!!!"!

!!! ]

[𝑒 !! !!!!"!
!!! ]!

!!!

 

where 𝛼!(𝜃 −!
!!! 𝛿!") ≡ 0. 

 The step difficulty parameters (𝛿!" ) in the G-PCM do not change in their 

interpretation from the PCM, and continue to represent the intersection point of two 

adjacent category response curves (Embretson & Reise, 2000). In other words, the step 

difficulty parameters (𝛿!") still indicate the points on the latent trait continuum where one 

category response option becomes more probable than the preceding category response 

option, given that the examinee has completed the previous steps. However, the 

interpretation of the slope parameter (𝛼! ) is different from its interpretation in 

dichotomous IRT models. In the G-PCM, the slope parameters (𝛼!) indicate the degree to 

which category response option probabilities change as the latent trait variable 𝜃 changes 

(Muraki, 1992). Consequently, as 𝛼! decreases the ICRC’s flatten and as 𝛼! increases the 

ICRC’s become more peaked.  

 

2.7 Summary of the Literature  

 

To summarize, the need for formative assessments has led to the development of a 

psychometric framework known as the diagnostic measurement framework.  The 

diagnostic measurement framework seeks to maximize the diagnosticity of assessments 
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in order to provide students, stakeholders, and administrators with rich diagnostic 

information on test taker’s specific strengths and weaknesses on a set of skills determined 

necessary to be mastered within a given construct. Rich diagnostic feedback is obtained 

using mathematical models known as diagnostic classification models (DCMs). Ideally, 

an assessment would be designed with the diagnostic measurement framework in mind so 

that the data produced from the assessment is intended to fit to DCMs, thus producing the 

most optimally diagnostic information. Assessments that are designed in this way are 

known as diagnostic classification assessments (DCAs). 

However, development in DCM theory has far outpaced development in DCAs. 

Accordingly, psychometricians began exploring the concept of retrofitting, which is the 

process of applying DCMs to data from exams that were not designed with the diagnostic 

measurement framework in mind.   

One of the major challenges that arose from this endeavor was the issue of 

attribute specification. The diagnostic measurement framework specifies that in an ideal 

situation, the relevant attributes to an assessment should be specified before the 

assessment is developed, in order to ensure that item/attribute measurement construct 

validity. However, in retrofitting the items already exist, so the task then became how 

best to extract or determine what the attributes are from the assessment.  

 The need for more formative assessment has also led researchers to seek ways of 

improving the diagnostic ability of rubric-scored tests. However, similar to the shortage 

of development in DCAs, there is a shortage of development in mathematical techniques 

for improving rubric diagnosticity.  Thus, we might ask if it is possible for DCMs to be 



59		

	

retrofitted to rubrics and rubric-scored items in a way that improves their diagnostic 

capability.  

 

2.8 Goals of the Present Study / Theoretical Contributions 

 

Therefore, it is the theoretical goal of this study to propose methods for 

retrofitting DCMs to rubric-scored constructed-response items. Past research has shown 

that DCMs can be successfully retrofitted to multiple-choice items that were not designed 

within the diagnostic measurement framework, if the necessary attributes are specified 

correctly. However, there is little or no research on retrofitting DCMs to rubrics and 

rubric-scored items.  Developing methods for doing so constitutes the theoretical 

contributions this study aims to make. 

The first specific contribution is to examine whether or not a rubric-scored item 

can reasonably be conceived of as a DCA. Most rubrics, by their design, have multiple 

sub-areas that have even finer-grained subskills within them that a respondent must 

demonstrate mastery of in order to be rated as proficient or higher in those sub-areas. 

Furthermore, each sub-area represents a different factor for demonstrating mastery in the 

same overarching construct, thus being inherently both unidimensional and multi-

dimensional at the same time. Moreover, the graded structure of a rubric’s sub-areas 

translates into a Q-matrix as a nested structure of attributes known as a linear hierarchy 

and in fact, is a Guttman scale.  

The second theoretical contribution is to describe the conditions under which a 

numeric or merely ordinal rubric score can be represented by a Q-matrix. By “conditions” 
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we are referring to the type of DCM model being retrofitted to the data and the specific 

Q-matrix structure. We will also examine the set of nominal skills that define the rubric, 

in order to comment on the related assessment problem, which is when can a set of 

nominal skills described in a scoring rubric be assessed with a unidimensional rubric 

score in a way that maximizes its diagnostic potential? The set of nominal attributes 

within each sub-area defines a large space of possible knowledge states, but the rubric 

scoring defines only some of these as possible. Therefore by retrofitting DCMs to the 

rubric and analyzing the fit, parameter estimates, and potential inferences, we may be 

able to define how well the rubric is actually able to diagnose the nominal-attribute 

knowledge states it is designed to measure. 

The third theoretical contribution is to gain insights regarding the possibility of 

using methods for retrofitting DCMs to rubric-scored data in order to guide future rubric 

design. In other words, if the perceived attribute structure of the rubric can be represented 

within the mathematical space of the Q-matrix, can the results of a DCM analysis of the 

data provide implications for redesigning the Q-matrix in a more optimal way for the data 

and, if so, can the new design of the Q-matrix then have implications for the redesign of 

the rubric. If Q-matrices can be redesigned based on the results of retrofitting DCMs to 

rubric-scored data, by retrofitting DCMs to rubric scored data, it may be feasible to then 

redesign the rubric itself, therefore improving its diagnostic ability. This final 

contribution may be considered the “reverse problem”, in essence the initial quandary 

was to determine whether or not rubrics can viably be represented as a Q-matrix within 

the DCM framework, therefore the reverse situation is to determine if a Q-matrix within a 

DCM framework can then be represented as a rubric. 
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3 Method 

 

This section describes the methods that are proposed for retrofitting DCMs to rubric-

scored constructed-response items, beginning with an overview of each step in the 

process. Next a description is given of the measures used, participants that comprise the 

data, including the demographics of each of the samples. This is followed by an 

explanation of the exact details of the proposed methods for retrofitting a DCM to rubric-

scored constructed-response items, the software used to conduct the analysis, and a 

description on some of the parameters that are examined in the analysis. 

 

3.1 Overview 

	

The goal of the present study is to develop general methods by which a rubric-scored 

essay-based test can be “retro-fit” as a diagnostic test within the context of the diagnostic 

measurement framework, and illustrate these methods using the Collegiate Learning 

Assessment+ (CLA+). This goal will be achieved in six steps. 

1. Describe methods to transform polytomous constructed-response scores into 

dichotomous “pseudo-items” for the Q-matrix by adapting Tutz’s (1997) 

sequential response mechanism, so that the data can be fit to a dichotomous DCM 

framework.  

2. Design Q-matrices for the constructed-response section of the CLA+ based on the 

hierarchical structure of specific skills described in the test rubric specification for 

the three scoring sub-areas.  
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3. As an alternative method, design Q-matrices using an automatic M-attribute 

method that automatically generates Q-matrices based on the number of score 

levels of the rubric.  

4. Apply constrained versions of the DINA model for data with linear attribute 

hierarchies (de la Torre, 2009; de la Torre & Karelitz, 2009) to the constructed-

response section using Q-matrices derived by the above two methods, gathering 

model fit and item fit statistics, attribute correlation, information-based item 

discrimination indices for DCMs,  (Rupp, Templin, & Henson, 2010), and skill 

mastery classification estimates. Five different conditions of parameter constraints 

will be applied in which both the guessing and slipping parameters are 

constrained to zero, only the guessing parameter is constrained to zero, only the 

slipping parameter is constrained to zero, the guessing parameter is constrained to 

always be less than the guessing parameter, and no constraints are placed on 

either parameter.  

5. Analyze and compare the results of the two attribute coding methods by which 

DINA models can be applied to constructed-response tests in order to evaluate the 

effectiveness of the proposed rubric score conversion methods.   

6. For comparison purposes, apply a polytomous IRT Generalized Partial Credit 

Model (G-PCM) to the unconverted constructed-response section. 

7. Analyze and compare the results between the dichotomous DINA model and the 

G-PCM in order to evaluate the utility and effectiveness of the proposed methods 

for retrofitting constructed-responses tests as DCMs 
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3.2 An Application – The Collegiate Learning Assessment +   

 

All participants completed the Collegiate Learning Assessment+ (CLA+), which is a two-

part assessment that measures critical-thinking and written-communication for diagnostic 

purposes and for studying growth in those skills within postsecondary education 

institutions, developed and administered by the Council for Aid to Education (CAE) 

(Steedle, 2012; Zahner, 2014). Traditionally used as an instrument to measure the value-

added growth of an institution (Benjamin, 2014), the CLA+ is currently being used in a 

number of ways, including as a performance-based assessment of generic thinking and 

writing skills, which means that it does not require any specific prior content knowledge, 

but instead  is used to demonstrate the examinee’s current level of skill mastery. Each 

section presents the student with a prompt or scenario, which both the constructed essay 

response and the multiple-choice items are based on, so that the multiple-choice items are 

scenario-based as well. Since its inception in 2002, almost half a million students from 

over 750 institutions have taken the CLA and CLA+ (Lehrfeld, Muller, & Zahner, 2017). 

The assessment is comprised of two sections (multiple-choice and constructed-response), 

administered online, and takes a maximum of 90 minutes to complete in total. A sample 

form of the assessment can be found in Appendix II.   

 The raw scores of each multiple-choice subsection are scaled via a linear 

transformation, in order to correct for variation in difficulty between test versions, and 

equated to the performance of the original multiple-choice section population. Similarly, 

the constructed response section raw scores are summed across all three sub-areas 

measured by the rubric, and scaled by linear transformation and equated to the 
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performance of the norm population. The scaled constructed-response and multiple-

choice section scores are then averaged together to form a raw total CLA+ score, which is 

then also scaled to the total test scores of the norm population as well (Council for Aid to 

Education, 2017). CLA+ test scores have been found to be both reliable at the student 

level (Zahner, 2013) as well as predictive of college GPA (Zahner, Ramsaran, & Steedle, 

2012) and positive post-college outcomes such as employment, salary, and enrollment 

(Zahner & James, 2016).  

 

3.2.1 The Rubric-Scored Constructed-Response Item Section 

 

The constructed-response section is known as the performance task (PT), and measures 

examinees according to three sub-areas: analysis and problem solving (APS), writing 

effectiveness (WE), and writing mechanics (WM). The PT first presents the examinee 

with a problem based on a real-world scenario. It is left entirely up to the examinee to 

decide on a course of action and to justify the decision with information from a document 

library. The document library contains six to eight different documents that they can use 

to provide evidence for and strengthen their argument. These documents range in form 

and include such references as technical reports, data tables, newspaper articles, office 

memoranda, and/or emails (Council for Aid to Education, 2018). Each examinee is given 

one hour to construct their response. Upon completion of the exam, their response is 

scored according to the three sub-areas (APS, WE, WM).  

The analysis and problem solving (APS) sub-area measures the degree to which 

an examinee has made a logical decision or conclusion and supported it by utilizing 
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information from the documents provided. Scorers judge the submitted response on 

whether or not it has a definitive or discernable position on the issue at hand and how 

much analysis has been given on the subject. The writing effectiveness (WE) sub-area 

measures the degree to which the examinee has constructed a well-organized and logical 

response for their argument. Scorers judge a response on whether or not the examinee has 

elaborated on any of their facts or statements provided and whether or not the response 

has been constructed in a clear and coherent manner. Finally, the writing mechanics 

(WM) sub-area measures the degree to which the examinee’s response demonstrates 

facility with the conventions of standard written English and control of the English 

language, including syntax and vocabulary complexity. Each category is measured on a 

scale of 1 to 6, with 1 being the lowest score possible and 6 being the highest score 

possible.   

Each response is graded by two scorers on each of the three sub-areas according 

to the rubric, producing six scores (Council for Aid to Education, 2017). Each pair of 

sub-area scores are then averaged together and summed across sub-areas to produce a 

final total score for the constructed-response performance-test (PT) section. If the 

response given by a participant does not meet the minimum requirements for a score of 

one on the APS sub-area, the constructed response is considered inadmissible and the 

student does not receive a score for their response at all. As a result, the lowest total score 

an individual may receive on the PT section is a three and the highest score they may 

receive is an 18. However, in order for the Q-matrix to be as identifiable as possible 

(Chen, Liu, Xu, & Ying, 2015; Groß & George, 2014) i.e. in order to estimate a class of 

knowledge states in which no attributes are mastered, respondents that did not meet the 



66		

	

minimum requirements for a score of one in the APS sub-area (and therefore both the 

WE and WM sub-areas as well) will be included in the analysis.  

 Before becoming scorers, all scorers must undergo an extensive training process 

lead by CAE item editors and psychometricians (Council for Aid to Education, 2017). All 

operational performance tasks use a combination of automated and human scorers, unless 

the automated system identifies an irregular pair of responses, in which case the response 

is flagged and is sent to a human scorer to be scored by a second human instead. To 

ensure scorer calibration verification system is set in place wherein scorers that fail to 

accurately score multiple verification responses are removed from the scoring system and 

placed in recalibration (Council for Aid to Education, 2017). If a scorer continues to 

score inaccurately, they are either trained further or removed from scoring. 

 

3.2.2 Participants 

 

The participants consist of a total of 1,618 college freshmen and 330 college seniors who 

took the same form of the CLA+ in the fall of 2013 and spring of 2014 from 12 different 

US post-secondary institutions, across two different versions. The total population is 

divided into two samples, according to test version. Sample A consists of the students 

who took Test Form A, specifically 998 freshmen who took the exam in the fall of 2013. 

Sample B consists of the students who took Test Form B, 612 freshmen who took the 

exam in the fall of 2013 and 314 seniors who took the exam in the spring of 2014. 
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3.2.3 Sample A Demographics 

 

Of those students in Sample A, 64% self-reported as female, 34% male, and 2% declined 

to state a gender. The racial composition of the sample was 62% white, 12% Hispanic or 

Latino, 12% African-American, 6% Asian, 1% American Indian/Alaska 

Native/Indigenous, 3% other, and 4% declined to state any race. For 89% of the 

participants, English was their primary language, while the remaining 11% reported that a 

language other than English was their primary language. In terms of parent’s highest 

level of education, 3% of participants reported less than high school, 19% reported high 

school, 24% reported some college, 35% reported a bachelor’s degree, and the remaining 

20% reported graduate or post-grad degree. In terms of field of study, 11% of the sample 

had majors in social sciences, 24% in sciences & engineering, 11% in humanities and 

languages, 13% in business, 27% in helping services, and 14% reported their major as 

“undecided/other/not-applicable”.  

 

3.2.4 Sample B Demographics 

 

Of those students in Sample B, 60% responded as female, 38% male, and 2% declined to 

state a gender. The racial composition of the sample was 54% white, 15% Hispanic or 

Latino, 13% African-American, 9% Asian, 1% American Indian/Alaska 

Native/Indigenous, 5% other, and 4% declined to state any race. For 82% of the 

participants, English was their primary language, while the remaining 18% reported that a 

language other than English was their primary language. In terms of parent’s highest 
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level of education, 17% of participants reported less than high school, 19% reported high 

school, 25% reported some college, 29% reported a bachelor’s degree, and the remaining 

19% reported graduate or post-grad degree. In terms of field of study, 13% of the sample 

had majors in social sciences, 24% in sciences & engineering, 13% in humanities and 

languages, 13% in business, 26% in helping services, and 11% reported their major as 

“undecided/other/not-applicable”.  

 

 

 3.3 Retrofitting the DINA Model to Constructed-Response Items 

 

In this section each step of the proposed methods for retrofitting DCMs to rubric-scored 

constructed-response items is detailed. First described is the proposed process to convert 

polytomous graded scores into dichotomous variables so that they can be modeled using 

dichotomous DCMs. Next, two methods for developing Q-matrices for rubric-scored data 

are explained, beginning with a method that is based on the language of the rubric 

(“Rubric Coding”) and a method that is based on the number of levels of the rubric 

(“Full-Score Coding”).  

 

3.3.1 Polytomous Score to Dichotomous Vector Conversion 

 

Although the multiple-choice section of the CLA+ can be readily analyzed with the 

DINA model, it is not straightforward to do so for the constructed response section. 
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While the constructed-response section produces polytomous rubric scores, the DINA 

model requires items to have only binary “correct” or “incorrect” results. In order to 

resolve this problem, the study will employ nested or hierarchical attribute sets (Leighton, 

Gierl, & Hunka, 2004), which can be used in this case given the graded structure of 

rubric scores. Such nested attribute sets have been used to model a sequential response 

mechanism as used in the sequential model (Tutz, 1997), which was proposed to model 

ordered response categories that represent consecutive steps in problem solving. In other 

words, the sequential model exploits problems in which the next step solving a problem 

can only be performed successfully if all prior steps have also been completed 

successfully.  

 Let the graded response for item 𝑖 and person 𝑗 be given by the response variable 

𝑈!" ∈ {0,… ,𝑚!} and assume item 𝑖 has levels 0,… ,𝑚!, where 0 represents the lowest and 

𝑚! represents the highest level. The sequential model assumes that each item is solved 

sequentially. Let 𝑈!"! , ℎ = 1,… ,𝑚!, represent the step from level ℎ − 1 to level ℎ, where 

𝑈!"! = 1  represents a successful transition and 𝑈!"! = 0  represents an unsuccessful 

transition. The first step in the mechanism always begins at level 0. If the transition to 

level 1 is unsuccessful, the process stops and the examinee’s score is 𝑈!" = 0. If the 

transition to level 1 is successful, the examinee’s score is at least level 1 and 𝑈!" = 1. 

Therefore, 𝑈!" = 0 if 𝑈!"! = 0 and 𝑈!" ≥ 1 if 𝑈!"! = 1. 

The value of 𝑈!" is at least 1 if the individual is successful on the transition from 

level 0 to level 1, because they may also be successful on the next transition, unless 

otherwise indicated. For example, if 𝑈!"! = 1 the individual progresses to the next 

transition, which is from level 1 to level 2. If the transition from level 1 to level 2 is 
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successful, then 𝑈!" ≥ 2 , otherwise, if the transition from level 1 to level 2 is 

unsuccessful, 𝑈!"! = 0 and 𝑈!" = 1. Simply put if the transition from level 1 to level 2 

were to be unsuccessful, 𝑈!" = 1 given 𝑈!" ≥ 1 if 𝑈!"! = 0. Otherwise, if the transition 

from level 1 to level 2 were to be successful, 𝑈!" ≥ 2 given 𝑈!" ≥ 2 if 𝑈!"! = 1. As a 

result, conditioning on 𝑈!" ≥ ℎ is an integral component of the mechanism, since the next 

step is only considered if the previous is successful.  

 In essence, if the transition from a primary level to a secondary level is 

unsuccessful, the response variable is equal to the primary level. Otherwise, the response 

variable is greater than or equal to the primary level if the transition to a secondary level 

is successful. Thus, the sequential response mechanism (Tutz, 1997) is modeled using the 

equation:  

𝑈!" = ℎ  given 𝑈!" ≥ ℎ if 𝑈!",!!! = 0. 

Table 8 shows how the six possible score levels from the CLA+ scoring rubric are 

represented using a nested attribute structure, as in the sequential model.  Each column of 

Table 8 represents a “pseudo-item”, constructed to represent a hypothetical level of 

achievement on the scoring rubric. In this way, the level of each sub-area in the rubric 

becomes a pseudo-item, and each score received indicates how many of those pseudo-

items can be considered to have been answered “correctly” in sequential order. As a 

result, each sub-area’s score on the rubric corresponds to a particular pseudo-item 

response pattern  

Table 8. Table for Converting Rubric Sub-Area Scores into Pseudo-Item Response 
Patterns 

 Score Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 
1 1 0 0 0 0 0 
2 1 1 0 0 0 0 
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3 1 1 1 0 0 0 
4 1 1 1 1 0 0 
5 1 1 1 1 1 0 
6 1 1 1 1 1 1 

 

 

3.3.2 Rubric to Q-matrix Conversion (Rubric Coding) 

 

The process of converting the CLA+ rubric (found in Appendix I), and therefore any 

rubric, can be broken down into three steps: identify and define the sub-areas within the 

rubric, define each sub-area’s attributes and specify the attribute structure of each sub-

area, and determine whether or not at least some degree of mastery must be demonstrated 

for each attribute at each level of the rubric. In the case of the CLA+ the first step is 

relatively straightforward as the rubric is scored according to three sub-areas: Analysis 

and Problem Solving (APS), Writing Effectiveness (WE), and Writing Mechanics (WM). 

The sub-areas are also predefined according to the rubric and their definitions are 

observed in Figure 4. 

Sub-Area Description 
APS Making a logical decision or conclusion (or taking a position) and 

supporting it by utilizing appropriate information (facts, ideas, 
computed values, or salient features) from the Document Library 
 

WE Constructing organized and logically cohesive arguments. 
Strengthening the writer’s position by providing elaboration on facts or 
ideas (e.g., explaining how evidence bears on the problem, providing 
examples, and emphasizing especially convincing evidence 
 

WM Demonstrating facility with the conventions of standard written English 
(agreement, tense, capitalization, punctuation, and spelling) and control 
of the English language, including syntax (sentence structure) and 
diction (word choice and usage) 

Figure 4. CLA+ scoring rubric sub-area definitions. 
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For each identified sub-area, a separate Q-matrix is constructed, thereby in effect 

treating each sub-area score as its own ‘pseudo-exam’ within the context of a DCM 

framework. Using the graded polytomous score to dichotomous item response conversion 

method discussed earlier, the number of levels for scoring each sub-area on the rubric 

then becomes the number of pseudo-items in each pseudo-exam. For example, in the case 

of the CLA+’s scoring rubric, there are three sub-areas scored on six levels each. 

Therefore the CLA+ rubric converts to three “sub-exams” that are each six pseudo-items 

long.  

The second step in the process for conversion is to define within each sub-area the 

individual components that makes up the rubric’s scoring level gradient, treating each 

component as a separate attribute. Each defined attribute should in effect be a summary 

of what that component is thought to measure in the rubric-scoring gradient. In doing so 

each component addressed within the rubric’s sub-area becomes an attribute in that sub-

area’s Q-matrix. As a result, this step also determines the number of attributes measured 

by the Q-matrix. For example, Figure 5 shows the separate components identified within 

the Analysis and Problem Solving (APS) sub-area’s scoring gradient. Three attributes 

have been identified and defined, therefore there are three attributes represented in the 

APS sub-area’s pseudo-exam Q-matrix.  

Attribute Description 
1 Stating or implying a decision/conclusion/position 

 
2 Providing analysis as support by comprehensively addressing relevant 

documents 
 

3 Addressing contradictory information or alternative 
decisions/conclusions/positions 

Figure 5. Analysis and problem solving (APS) sub-area attribute definitions. 
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Once the attributes have been identified and defined, each sub-area’s attribute 

specifications must be delineated according to each level, that is, the association of 

attributes with scoring levels of the rubric. This step is relatively straightforward as this 

process consists of specifying which attribute’s criterion applies to which level, and is 

provided by the rubric. The Analysis and Problem Solving (APS) sub-area’s attribute 

specifications can be seen in Table 9.  

The next and final step is less straightforward. It is the process of determining 

what degree of mastery must be demonstrated for each attribute to be successfully 

displayed at each level, based on the description of each attribute’s criterion at each level. 

In essence, at each level and for each attribute, it must be determined, based on the 

language of the rubric and the attribute definitions, whether or not at least some degree of 

mastery of that attribute must be demonstrated in a response in order for a response to 

meet the criteria of that level.  

Table 9. Analysis and Problem Solving (APS) Sub-Area Attribute Specifications 

Level Attribute 1 Attribute 2 Attribute 3 

1 

May state or imply a 
decision/conclusion/position 

 
 

Provides minimal analysis as 
support (e.g., briefly addresses 

only one idea from one 
document) or analysis is entirely 
inaccurate, illogical, unreliable, 

or unconnected to the 
decision/conclusion/position 

 

N/A 

2 States or implies a 
decision/conclusion/position 

Provides analysis that addresses 
a few ideas as support, some of 
which is inaccurate, illogical, 

unreliable, or unconnected to the 
decision/conclusion/position 

 

N/A 

3 States or implies a 
decision/conclusion/position 

Provides some valid support, but 
omits or misrepresents critical 
information, suggesting only 

superficial analysis and partial 
comprehension of the documents 

 

May not account for 
contradictory information (if 

applicable) 

4 States an explicit Provides valid support that May attempt to address 
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decision/conclusion/position addresses multiple pieces of 
relevant and credible 

information in a manner that 
demonstrates adequate analysis 

and comprehension of the 
documents; some information is 

omitted 
 

contradictory information or 
alternative 

decisions/conclusions/positio
ns (if applicable) 

5 States an explicit 
decision/conclusion/position 

Provides strong support that 
addresses much of the relevant 
and credible information, in a 
manner that demonstrates very 

good analysis and 
comprehension of the documents 

 

Refutes contradictory 
information or alternative 

decisions/conclusions/positio
ns (if applicable) 

6 States an explicit 
decision/conclusion/position 

Provides comprehensive support, 
including nearly all of the 

relevant and credible 
information, in a manner that 

demonstrates outstanding 
analysis and comprehension of 

the documents 

Thoroughly refutes 
contradictory evidence or 

alternative 
decisions/conclusions/positio

ns (if applicable) 

 

 For example, observing Level 1 in Table 9, Attribute 1 can be determined to be 

required since it is required that at a minimum a response at least state or imply a 

decision/conclusion/position. It can be inferred from the description of the attribute at 

that level given by the rubric that at least some degree of mastery must be demonstrated 

in order to qualify as a Level 1 response.  Therefore Attribute 1 is indicated as required in 

the Analysis and Problems Solving (APS) Q-matrix for Pseudo-Item 1. The language for 

Attribute 2 at Level 1 however, may not be considered to appear to indicate that Attribute 

2, which is defined as “providing analysis as support by comprehensively addressing 

relevant documents” as shown in Figure 5, is required to be demonstrated as a 

requirement for Level 1. Therefore Attribute 2 will not be indicated as required in APS’s 

Q-matrix for Pseudo-Item 1. Lastly, Attribute 3 is not addressed as part of the criteria for 

a response to meet the requirements for a response to be considered at Level 1, nor is it 

indicated as required for Pseudo-Item 1 in APS’s Q-matrix. Using this same process for 
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each level, a Q-matrix is constructed that represents the rubric’s Analysis and Problem 

Solving sub-area, final product of which can be observed in Table 10.  

Table 10. Q-matrix Design for Analysis and Problem Solving (APS) Sub-Area 

 Pseudo-Item Attribute 1 Attribute 2 Attribute 3 
1 1 0 0 
2 1 1 0 
3 1 1 0 
4 1 1 1 
5 1 1 1 
6 1 1 1 

  

The process is then applied to the remaining two sub-areas measured by the 

scoring rubric, beginning at the step of attribute definition. Again, it must be defined 

within the sub-area the individual dimensions that comprises the rubric’s level gradient, 

considering each dimension a separate attribute. The attribute definitions for Writing 

Effectiveness (WE) are shown in Figure 6.  

Attribute Description 
1 Developing convincing, logical, and cohesive argument 

 
2 Providing valid and comprehensive elaboration on relevant information 

Figure 6. Writing effectiveness (WE) sub-area attribute definitions. 

In this case, only two separate attributes are identified that make up the criterion used to 

determine whether or not a response is at a particular level on the rubric. Next, the 

attribute specifications for Writing Effectiveness must be delineated, which is shown in 

Table 11. 

Table 11. Writing Effectiveness (WE) Sub-Area Attribute Specifications 

Level Attribute 1 Attribute 2 

1 

Does not develop convincing 
arguments; writing may be 
disorganized and confusing 

 

Does not provide elaboration on facts or ideas 

2 Provides limited, invalid, over-stated, 
or very unclear arguments; may 

Any elaboration on facts or ideas tends to be 
vague, irrelevant, inaccurate, or unreliable 
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present information in a disorganized 
fashion or undermine own points 

 

(e.g., based entirely on writer’s opinion); 
sources of information are often unclear 

3 

Provides limited or somewhat unclear 
arguments. Presents relevant 

information in each response, but that 
information is not woven into 

arguments 
 

Provides elaboration on facts or ideas a few 
times, some of which is valid; sources of 

information are sometimes unclear 

4 

Organizes response in a way that 
makes the writer’s arguments and logic 

of those arguments apparent but not 
obvious 

 

Provides valid elaboration on facts or ideas 
several times and cites sources of information 

5 

Organizes response in a logically 
cohesive way that makes it fairly easy 

to follow the writer’s arguments 
 

Provides valid elaboration on facts or ideas 
related to each argument and cites sources of 

information 

6 
Organizes response in a logically 

cohesive way that makes it very easy 
to follow the writer’s arguments 

Provides valid and comprehensive elaboration 
on facts or ideas related to each argument and 

clearly cites sources of information 
  

When deciding whether or not to indicate each attribute as required for a chosen 

level, the decision must again be based on the language used in the rubric for each 

identified attribute. For example, in Table 11 we see that for Attribute 2, Level 1’s 

description is that the response given “does not provide elaboration on facts or ideas”. 

Given that the definition of Attribute 2 is “providing valid and comprehensive elaboration 

on relevant information”, it may be inferred that it is not necessary to demonstrate some 

degree of mastery of Attribute 2 in a response in order for that response to meet the 

requirements of Level 1. As a result, Attribute 2 will not be indicated as required for 

Pseudo-Item 1 in the Writing Effectiveness (WE) Q-matrix. Similarly, the language for 

Attribute 2 in Level 3 states that a response “provides elaboration on facts or ideas a few 

times, some of which is valid; sources of information are sometimes unclear”.  

This particular case is an example wherein the determination of whether or not an 

attribute is required for a particular level may need to be judged on the language of 

preceding or subsequent levels. While the description for Attribute 2 in Level 3 indicates 
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that, while the response does provide elaboration, not all of the elaboration is valid and 

the sources are somewhat unclear. On its own, the description of Attribute 2’s criterion at 

Level 3 may not make for a definitive judgment on whether or not at least some degree of 

mastery is being demonstrated of “providing valid and comprehensive elaboration on 

relevant information”. However, when compared to the description of the preceding 

level’s criterion “any elaboration on facts or ideas tend to be vague, irrelevant, inaccurate, 

or unreliable” and its subsequent level’s criterion “provides valid elaboration on facts or 

ideas several times”, one could make the case that “provides elaboration on facts or ideas 

a few times” is at least some degree of mastery of the attribute. Based on this logic, and it 

is indicated that Attribute 2 is required to be mastered for Pseudo-Item 3 in the Writing 

Effectiveness (WE) pseudo-exam Q-matrix. The resulting Q-matrix for the Writing 

Effectiveness (WE) is shown in Table 12.  

Table 12. Q-matrix Design for Writing Effectiveness (WE) Sub-Area 

 Pseudo-Item Attribute 1 Attribute 2 
1 1 0 
2 1 0 
3 1 1 
4 1 1 
5 1 1 
6 1 1 

 

 Following the same process as the Analysis and Problem Solving (APS) and 

Writing Effectiveness (WE) sub-areas, the Writing Mechanics (WM) sub-area’s attributes 

are also defined. Figure 7 shows the attributes defined to be the Writing Mechanics 

(WM) sub-areas three skills/attributes measured by the rubric gradient. Here, as in the 

Analysis and Problem Solving (APS) sub-area, three attributes have been identified and 

defined. 
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Attribute Description 
1 Demonstrating control of grammatical conventions 

 
2 Writing well-constructed, complex, and varied sentence structure 

 
3 Displaying an adept use of vocabulary 

Figure 7. Writing mechanics (WM) sub-area definitions. 

Next, the attribute structure is specified and is observed in Table 13. Again these attribute 

specifications will be used to determine, based on the language of the criterion for each 

attribute and at each level, whether or not at least some degree of mastery of each 

attribute must be demonstrated in order a response to qualify at each level. 

Table 13. Writing Mechanics (WM) Sub-Area Attribute Specifications 

Level Attribute 1 Attribute 2 Attribute 3 

1 

Demonstrates minimal 
control of grammatical 
conventions with many 

errors that make the 
response difficult to read 
or provides insufficient 

evidence to judge 
 

Writes sentences that are 
repetitive or incomplete, and 

some are difficult to understand 

Uses simple vocabulary, and 
some vocabulary is used 

inaccurately or in a way that 
makes meaning unclear 

2 

Demonstrates poor 
control of grammatical 

conventions with frequent 
minor errors and some 

severe errors 
 

Consistently writes sentences 
with similar structure and 
length, and some may be 

difficult to understand 

Uses simple vocabulary, and 
some vocabulary may be used 
inaccurately or in a way that 

makes meaning unclear 

3 

Demonstrates fair control 
of grammatical 

conventions with frequent 
minor errors 

 

Writes sentences that read 
naturally but tend to have 

similar structure and length 

Uses vocabulary that 
communicates ideas 

adequately but lacks variety 

4 

Demonstrates good 
control of grammatical 
conventions with few 

errors 
 

Writes well-constructed 
sentences with some varied 

structure and length 

Uses vocabulary that clearly 
communicates ideas but lacks 

variety 

5 
Demonstrates very good 
control of grammatical 

conventions 

Consistently writes well-
constructed sentences with 
varied structure and length 

Uses varied and sometimes 
advanced vocabulary that 
effectively communicates 

ideas 
 

6 
Demonstrates outstanding 

control of grammatical 
conventions 

Consistently writes well-
constructed complex sentences 
with varied structure and length 

Displays adept use of 
vocabulary that is precise, 

advanced, and varied 
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 In the case of Attribute 2, based on the language of the criterion for a Level 1 

response, “writes sentences that are repetitive or incomplete, and some are difficult to 

understand”, and the attribute’s definition, which is “writing well-constructed, complex, 

and varied sentence structure”, it was not determined that at least some degree of mastery 

of Attribute 2 was required to be demonstrated in a Level 1 response for Writing 

Mechanics. Similarly, the language of the criterion for Attribute 3 at Level 1 and Level 2 

also indicated that demonstration of at least some degree of mastery of that attribute was 

not required at those levels. Specifically, the descriptions of the criterion in both levels 

that a response at those levels used vocabulary in a way that “makes meaning unclear” 

contributed to the decision not to mark those attributes as required for those levels. 

However, based on the description of their respective criterion, all other combinations of 

attributes and levels were indicated as requiring at least some degree of mastery to be 

demonstrated in a response. The resulting Q-matrix for Writing Mechanics (WM) is 

shown in Table 14.   

Table 14. Q-matrix Design for Writing Mechanics (WM) Sub-Area 

 Pseudo-Item Attribute 1 Attribute 2 Attribute 3 
1 1 0 0 
2 1 1 0 
3 1 1 1 
4 1 1 1 
5 1 1 1 
6 1 1 1 

 

It is important to note that the three of the resulting Q-matrices shown in Table 10, 

Table 12, and Table 14 all simultaneously represents a perfect Guttman scale (Guttman, 

1944, 1950), linear hierarchy (Leighton, Gierl, & Hunka, 2004), and reachability matrix 

(Tatsuoka, 1983, 2009). Therefore the DINA model must be constrained when being fit 
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to the data as the number of identifiable latent classes becomes limited as a result (de la 

Torre, 2009). This restriction, however, was expected given the design of rubrics, as it 

would be theoretically impossible to identify mastery of a single attribute that is only 

specified within pairs in the Q-matrix.  

Finally, a Q-matrix that contains all three sub-areas combined can be designed once 

all three sub-areas have been individually specified and coded. As a result, sub-areas can 

be treated as either their own independent pseudo-exam or as one combined pseudo-

exam. Since each level is treated as its own independent item as well, the order in which 

the sub-areas are combined does not affect the model fit, item fit, or parameter estimates 

as long as the attribute structure is correctly specified and each item in the Q-matrix still 

corresponds to its pertinent pseudo-item. However, in order to simplify the 

interpretability of the results, sub-areas should remain grouped together. An example of 

such a Q-matrix is shown below in Table 15. 

Table 15. Example of Q-matrix Design for All Sub-Areas Combined 

Pseudo-Item A1 A2 A3 A4 A5 A6 A7 A8 
1 1 0 0 0 0 0 0 0 
2 1 1 0 0 0 0 0 0 
3 1 1 0 0 0 0 0 0 
4 1 1 1 0 0 0 0 0 
5 1 1 1 0 0 0 0 0 
6 1 1 1 0 0 0 0 0 
7 0 0 0 1 0 0 0 0 
8 0 0 0 1 0 0 0 0 
9 0 0 0 1 1 0 0 0 

10 0 0 0 1 1 0 0 0 
11 0 0 0 1 1 0 0 0 
12 0 0 0 1 1 0 0 0 
13 0 0 0 0 0 1 0 0 
14 0 0 0 0 0 1 1 0 
15 0 0 0 0 0 1 1 1 
16 0 0 0 0 0 1 1 1 
17 0 0 0 0 0 1 1 1 
18 0 0 0 0 0 1 1 1 
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In the version of the combined sub-area Q-matrix shown in Table 15, attributes one 

through three represent the attributes measured by the APS sub-area, attributes four and 

five represent the attributes measured by the WE sub-area, and attributes six through 

eight represent the attributes measured by the WM sub-area. While the order in which the 

sub-areas are combined does not affect model fit or item parameter estimates, combining 

the sub-areas into a single Q-matrix greatly increases the number of parameters estimated 

by the DINA model (de la Torre, 2009) as well as the number of possible attribute 

mastery profiles. For example, a DINA model, constrained for the relevant attribute 

hierarchies, applied to the single-sub-area Q-matrix for APS has a total of four possible 

attribute mastery profiles {0,0,0; 1,0,0; 1,1,0, 1,1,1}. Comparatively, the combined sub-

area DINA model shown in Table 15, also constrained for the relevant attribute 

hierarchies, has a total of 48 possible attribute hierarchies, one for each combination of 

all three sub-area’s possible attribute mastery profiles (four for APS, three for WE, and 

four for WM). The combined sub-area design therefore significantly affects both model 

and item fit negatively as it increases the number of parameters estimated by the model 

and affects item and attribute discrimination positively as it increases the number of 

possible attribute mastery profiles.  

It should be noted at this point that the specification of the Q-matrix is an integral 

component of DCM analysis, and that the misspecification of the Q-matrix can be 

detrimental to the validity and interpretability of the results, especially in the presence of 

attribute hierarchies (Chen, Liu, Xu, & Ying, 2015; Liu & Huggins-Manley, 2016; Groß 

& George, 2014; Liu, Huggins-Manley, & Bradshaw, 2016; Madison & Bradshaw, 2015; 

Rupp & Templin, 2007; Templin & Bradshaw, 2014). Therefore in practice subjective 
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inference alone should not be the only method used in Q-matrix construction. Various 

other methods such as the consultation of subject-matter experts (Choi, Lee, & Park, 

2014; Lee, Park, & Taylan, 2011) as well as statistical methods for Q-matrix validation 

and design (Chiu, 2013; Cui, Gierl, & Chang, 2012; de la Torre, 2008; Xu & Zhang, 

2016) should also be employed.  

 

 

3.3.3 An Automatic M-attribute Method (Full-Score Coding) 

 

Similar to the technique proposed for converting rubric scores into dichotomous pseudo-

items, the proposed automatic 𝑀 -attribute (aMa) method is an adaptation of the 

sequential response mechanism (Tutz, 1997) that offers a method for creating Q-matrices 

for rubric sub-areas. In the automatic 𝑀-attribute method, a rubric 𝑟 is represented as 

having 𝑀 scoring levels that range from {1,… ,𝑚!}, where 1 represents the lowest score 

level in the rubric and 𝑚! represents the highest score level. The aMa method then 

assumes that each sub-area 𝑠 in the rubric 𝑟, is measured by the same number of levels, 

and can be represented by a 𝐿 𝑥 𝐶 Q-matrix (𝑄!) of 𝑚! length and 𝑚! width, where 𝐿 

represents each level in the rubric and 𝐶 represents which level’s criteria must be met by 

the response in order for the response to be classified as level 𝑙. Each level 𝑙 in the sub-

area Q-matrix corresponds to a level in the rubric, and has a corresponding 𝑞-vector that 

represents the criteria for which level that have been met by the response. If level 𝑙 

requires that criteria for {1,… , 𝑙} levels be met, then 𝑞!{!,…,!} = 1, otherwise 𝑞!" = 0. 
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 As a result, a perfect Guttman scale (Guttman, 1944, 1950) is formed. An 

example of a sub-area Q-matrix for a rubric with eight levels is shown in Table 15. The 

theoretical rubric sub-area Q-matrix as conceived by the aMa method can be expressed in 

the following equation:  

𝑄! =
𝑞!! ⋯ 𝑞!!
⋮ ⋱ ⋮
𝑞!! ⋯ 𝑞!"

 where 𝑐 = 1…𝑚!  and 𝑙 = 1…𝑚! . 

 

Table 16. Example of a Sub-Area Q-matrix for a Rubric with Seven Levels, Designed 
using the Automatic 𝑀-Method 

Level 𝑐! 𝑐! 𝑐! 𝑐! 𝑐! 𝑐! 𝑐! 𝑐! 
1 1 0 0 0 0 0 0 0 
2 1 1 0 0 0 0 0 0 
3 1 1 1 0 0 0 0 0 
4 1 1 1 1 0 0 0 0 
5 1 1 1 1 1 0 0 0 
6 1 1 1 1 1 1 0 0 
7 1 1 1 1 1 1 1 0 
8 1 1 1 1 1 1 1 1 

 

The CLA+ scoring rubric scores all three sub-areas according to six levels. As a result, 

the Q-matrix designed using the automatic 𝑀-method, shown in Table 16, can be applied 

to all three sub-areas. 

Table 17. CLA+ Rubric Sub-Area Q-matrix Designed using the Automatic 𝑀-Method 

Level 𝑐! 𝑐! 𝑐! 𝑐! 𝑐! 𝑐! 
1 1 0 0 0 0 0 
2 1 1 0 0 0 0 
3 1 1 1 0 0 0 
4 1 1 1 1 0 0 
5 1 1 1 1 1 0 
6 1 1 1 1 1 1 

 



84		

	

Finally, as was shown in the previous section, all three sub-areas can be combined to 

form a 𝑀 𝑥 𝑀 Q-matrix. Again, the effect of such a design greatly increases both the 

number of parameters estimated by the model and the number of possible attribute 

mastery profiles. Also, as long as the attribute hierarchy is specified correctly, the order 

in which the sub-areas are combined will not affect the model fit, item fit, or parameter 

estimates, although sub-areas should remain grouped together for ease of interpretability.   

 

3.4 Software for Fitting the Proposed Models 

 

The computer program R (R Core Team, 2016) was the tool used to conduct the 

following analysis. Specifically the study will be using the R software package ‘CDM’ 

(Robitzsch, Kiefer, George, & Uenlue, 2017) to apply various constrained-DINA models 

(de la Torre, 2009) to the converted constructed-response data. Parameter estimation for 

the DINA model followed the steps outlined in the EM algorithm presented by de la 

Torre (2009). In order to fit the G-PCM to the polytomous constructed-response data, the 

R software package ‘mirt’ (Chalmers, 2012) is used. G-PCM parameters were estimated 

using the standard EM algorithm described by Bock & Aitken (1981).  

 

 3.5 Diagnostic Classification Model Analysis 

 

This section describes the analyses used to assess the methods for retrofitting DCMs to 

rubric-scored constructed-response data. First, an overview of the conditions for DINA 
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analysis are presented, followed by the specific model fit statistics used, with guidelines 

for their interpretation. Next, a description of DCM framework specific item fit statistics 

are shown, also including guidelines for their interpretation. Finally, a brief description of 

attribute tetrachoric correlation and information-based item discrimination indices for 

DCMs and their significance in DCM analysis is discussed. 

 

3.5.1 Conditions for DINA Model Analysis 

 

The DINA model was fit to the data in eighteen conditions between three factors: Q-

matrix coding method, single sub-area or combined sub-area Q-matrix design, and 

guessing and slipping parameter constraints. The Q-matrix coding factor contains two 

conditions, in which rubrics are designed using either the rubric based method (rubric 

coding) or the automatic M-method (full-score coding). Likewise, the single sub-area or 

combined sub-area Q-matrix design factor also involves two conditions, one in which 

each sub-area is treated as its own pseudo-exam and thus has its own Q-matrix and one in 

which all sub-areas are combined and thus one Q-matrix is used to represent all three 

sub-areas simultaneously. Lastly, the guessing and slipping parameter constraints factor 

consists of five conditions in which both the guessing and slipping parameters are 

constrained to zero, only the guessing parameters are constrained to zero, only the 

slipping parameters are constrained to zero, the guessing parameter is constrained to be 

less than the slipping parameter, and no constraints are placed on either parameters. Table 

18 exhibits the intersection of the three factors that create the eighteen conditions 

explored in this study.  
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Table 18. Conditions in DINA Model Analysis 

 Q-matrix Design 
 Rubric-Coded Full-Score Coded 

Parameter 
Constraints 

Single Sub-Area  Combined Sub-
Area  

Single Sub-Area  Combined Sub-
Area  

Guess and Slip to 
Zero 

- - Condition 1 Condition 2 

Guess to Zero Condition 3 Condition 4 Condition 5 Condition 6 
Slip to Zero Condition 7 Condition 8 Condition 9 Condition 10 
Guess < Slip Condition 11 Condition 12 Condition 13 Condition 14 

No Constraints Condition 15 Condition 16 Condition 17 Condition 18 
 

	 The cells for the rubric-coded Q-matrix designs are left blank for the ‘Guess and 

Slip to Zero’ parameter constraints condition because the DINA model will not converge 

if both the guess and slip parameters are set to zero, unless the latent response vector is 

identical to the manifest or observed variable (de la Torre, 2009). This is due to the first 

two steps in the EM algorithm that is used for DINA model parameter estimation. The 

first step of the algorithm begins with setting initial values for the guessing parameter 𝑔 

and slip parameter 𝑠. The next step in the algorithm involves solving the two equations 

shown below:   

𝑔! =
𝑅!"(!)

𝐼!"(!)
 

𝑠! = [𝐼!" ! − 𝑅!"(!)]𝐼!"(!) 

where 𝐼!"(!) represents the expected number of examinees lacking at least one attribute for 

item 𝑗, 𝑅!"(!) represents the expected number of examinees among 𝐼!"(!) that correctly 

answered item 𝑗, 𝐼!"(!) represents the expected number of examinees that have mastered 

all the required attributes for item 𝑗 , and 𝑅!"(!)  represents the expected number of 

examinees among 𝐼!"(!) that correctly answered item 𝑗, for all attribute mastery states 𝑙 
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(de la Torre, 2009). Based on the initial values for 𝑔 and 𝑠, 𝐼!"(!), 𝑅!"(!), 𝐼!"(!), and 𝑅!"(!) 

are calculated.  

Interpretively, the second step of the algorithm stipulates that in order for both the 

guess and slip parameters to be zero, two states must be met simultaneously. The first 

state is that none of the examinees that lacked at least one of the required attributes for 

item 𝑗 answered item 𝑗 correctly. The second state is that all of the examinees that 

mastered all of the required attributes for item 𝑗  also answered item 𝑗  correctly. 

Therefore, both conditions can only exist concurrently if the attribute mastery pattern is 

identical to the observed item response pattern, since the attribute mastery pattern is 

merely a reflection of the item response pattern, and so this is the only condition in which 

both states are a certainty. As a result, only the full-score coded Q-matrix designs can be 

fit to this condition. Furthermore, both the ‘Guess and Slip to Zero’ and ‘Guess < Slip’ 

parameter constraint conditions represents forced conditions of monotonicity 𝑔 < 1− 𝑠, 

which is the assumption that the probability of answering an item correctly without 

mastering its required attributes is less than the probability of answering an item 

correctly, having mastered its required attributes (Rupp, Templin, & Henson, 2010).  

In the ‘Guess < Slip’ condition, the guess parameters have been constrained to a 

minimum value of zero and a maximum value of 0.20 while the slip parameters have 

been constrained to a minimum of 0.20 and a maximum of one. These values were 

chosen based on the simulation study done by de la Torre (2009). Interpretively, in this 

condition there is a maximum of a 20% chance that a level may be scored without a 

respondent having actually mastered the required attributes and a minimum of a 20% 

chance that a candidate may not have been scored at a particular level although they have 
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mastered the respective attributes. Initial values for the EM algorithm were then set as 

0.10 and 0.30 for the guess and slip parameters, respectively.  

 

3.5.2 Model Fit Statistics 

 

In order to determine the quality of model fit, the study examined the absolute model fit 

of the data by estimating model fit indices for each test subsection and comparing those 

estimates. Traditional IRT relative model fit indices such as the corrected Akaike 

information criterion (AICc; Akaike 1974) and Bayesian information criterion (BIC) 

(Schwarzer, 1976) were used to compare model fit between test subsections. Absolute 

model fit indices were also used in order to objectively examine the quality of the model 

fit to the data:  

 

1. Mean Absolute Difference for the Item-Pair Correlations (MADcor)  

• The average absolute difference between the calculated observed 𝑟!" and 

model-predicted 𝑟!"  item correlations for item pairs (𝑖, 𝑗)  (DiBello, 

Roussos, & Stout, 2007): 

𝑀𝐴𝐷𝑐𝑜𝑟 =
1

𝐽(𝐽 − 1)/2 𝑟!" − 𝑟!"  
!!!

 

2. Standardized Root Mean Square Residual (SRMSR) 

• Designed by Maydeau-Olivares (2013) to estimate the approximate fit of 

large models for ordinal data while being unaffected by the number of 

items if all other factors are held constant. It is recommended that a cut-off 
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of SRMR values ≤ 0.05 be used as an indication of good model fit 

(Maydeu-Olivares, 2013). Like the MADcor statistic, the SRMSR is also 

based on comparing the observed and predicted pairwise correlation 

between item pairs (𝑖, 𝑗): 

𝑆𝑅𝑀𝑆𝑅 =
1

𝐽(𝐽 − 1)/2 (𝑟!" − 𝑟!")!
!!!

 

3. Q3 Statistic (MADQ3) 

• The Q3 statistic represents the mean absolute values of pairwise 

correlations of the difference between the observed and model-predicted 

responses for each examinee (Yen, 1984). In order to compute the value of 

𝑄3!" for item pairs (𝑖, 𝑗), residuals of observed and expected responses for 

examinees 𝑛 and item 𝑖 (i.e. 𝜀!" = 𝑋!" − 𝑒!") and item 𝑗 (i.e. 𝜀!" = 𝑋!" −

𝑒!") are first calculated. Next, the correlation is found between residuals 

𝜀!"  and 𝜀!"  and over examinees 𝑛 so that 𝑄3!" = 𝑟!!"!!"  where 𝑟!!"!!" =

!"#(!!",!!")
!!!"!!!"

. MADQ3 is then estimated by averaging the absolute value of 

the calculated Q3 values for all item pairs. MADQ3 values below 0.05 

indicate good model fit. 

Previous studies have shown that such indices can be useful in model as well as Q-matrix 

selection in DCM settings (Galeshi & Skaggs, 2014; Hu, Miller, Huggins-Manley, & 

Chen, 2016; Lei & Li, 2016). In the case of the MADcor and SRMSR, the absolute 

difference between observed and predicted correlations 𝑟!" is based on the formula from 

Chen, de la Torre, & Zhang (2013): 
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𝑟!" = 𝑍 𝐶𝑜𝑟𝑟(𝑋! ,𝑋!) − 𝑍 𝐶𝑜𝑟𝑟(𝑋! ,𝑋!)  

where 𝑍 ∙  is the fisher transformation, 𝑋! and 𝑋! are the observed and predicted response 

vectors for item 𝑖, respectively, and 𝑋! and 𝑋! are the observed and predicted response 

vectors for item 𝑗, respectively.  

 

 

3.5.3 Item Fit/Parameter Estimates 

 

The root mean square error of approximation (RMSEA; Kunina-Habenicht, Rupp, & 

Wilhelm, 2009) is used as an item fit statistic and indicates how well an item harmonizes 

with the model. As a rule of thumb, it is recommended that items with fit indices below 

.05 indicate good model fit, while items below .10 indicate moderate fit, and items with 

indices greater than .10 indicate poor fit. In the DINA model the additional constraint of 

𝑔! < 1− 𝑠! dictates that the probability of answering an item without having mastered 

the required skills is less than the probability of answering an item correctly when the 

required skills have been mastered. This constraint can be checked using the item 

discrimination index (IDI) where 𝐼𝐷𝐼! = 1− 𝑠! − 𝑔! (Lee, de la Torre, & Park, 2012).  

A negative value for IDI indicates a violation of this restraint. In this way, the IDI 

can be viewed as a diagnostic index, indicating how well that item discriminates between 

respondents that possess all the required skills (i.e. a response probability of 1− 𝑠!) and 

respondents that do not possess all the required skills (i.e. a response probability of 𝑔!). 

As a rule of thumb, an IDI value that is close to 1 indicates good item discrimination or 
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diagnosticity and an IDI value that is close to 0 indicates low item discrimination or 

diagnosticity (Kunina-Habenicht, Rupp, & Wilhelm, 2009). 

 

3.5.4 Attribute Tetrachoric Correlation 

 

The calculation of tetrachoric correlation between the estimated attributes is based on two 

assumptions. The first assumption is that latent continuous variables underlie the latent 

dichotomous skill variables. The second assumption is that the correlation between two 

skill variables is equal to the correlation between the two underlying continuous variables 

(Templin & Henson, 2006; Templin, Henson, Templin, & Roussos, 2008). In other 

words, the tetrachoric correlation between skills posits to represent the correlation 

between two attributes in the Q-matrix. Strong positive tetrachoric correlation 

relationships may be considered evidence of unidimensionality or attribute hierarchy 

(Templin & Bradshaw, 2014).  

 Past research has found that setting tetrachoric correlations between attributes to 

fixed values of 0.70 is reasonable in an educational context as values at or below 0.70 

appear to indicate that the constructs being measured may still be multidimensional 

(Bradshaw & Templin, 2014; Cui, Gierl, & Chang, 2012; Liu, Huggins-Manley, & 

Bradshaw, 2016; Sinharay, Puhan, & Haberman, 2011). However, if it is assumed that 

attributes are part of a hierarchical structure, tetrachoric correlations should not be low 

and in fact, may result in an increased number of iterations for model convergence or 

non-convergence (Liu, Huggins-Manley, & Bradshaw, 2016). Therefore we expect that 

the tetrachoric correlations between attributes in this study will not be low and in fact, as 
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we assume the presence of an attribute hierarchy for all attributes, will have strong 

positive relationships.   

 

3.5.5 Information-Based Item Discrimination Indices for DCMs 

 

Another approach to determining the discriminatory ability of an item other than item-fit 

and model parameter estimates is the IRT concept of statistical information. Statistical 

information refers to the amount of information that an item can provide regarding 

different values of latent variables (Rupp, Templin, & Henson, 2010). In IRT 

frameworks, statistical information is calculated using the Fisher information algorithm, 

and provides evidence for locations on a latent trait continuum where an item provides 

the most information. The amount of information an item provides is determined by the 

item-discrimination parameter, with higher estimates of item information indicating 

higher estimates of discrimination (Embretson & Reise, 2000). However, the Fisher 

information algorithm is defined for models that measure continuous latent variables, and 

cannot be applied to DCMs, which measure discrete latent variables.  

 Therefore, in order to devise an information statistic that can be used in the DCM 

measurement framework, researchers have suggested using the Kullback-Leibler 

information (KLI) statistic (Kullback & Leibler, 1951) as an alternative for estimating the 

ability for DCM items to discriminate between attribute masters and non-masters 

(Henson & Douglas, 2005; Henson, Roussos, Douglas, & He, 2008). The KLI measures 

the amount of difference between a target distribution 𝑓(𝑋) and a reference distribution 

𝑔(𝑋), by computing the expected value of the natural logarithm of the ratio between the 
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density of the target distribution 𝑓(𝑋)  and the reference distribution 𝑔(𝑋)  (Rupp, 

Templin, & Henson, 2010): 

𝐾𝐿𝐼 𝑓 𝑋 ,𝑔 𝑋 = 𝐸! 𝑙𝑛 !(!)
!(!)

. 

As a result, if 𝑓(𝑋) and 𝑔(𝑋) are equal, 𝐾𝐿𝐼 = 0 and KLI does not require that either 

function be continuous, thus allowing them to be applied to the DCM framework.  

 In order to apply the KLI to the DCM measurement framework, the target 

distribution 𝑓(𝑋)  and the reference distribution 𝑔(𝑋)  are defined as the conditional 

distribution 𝑓(Χ| ∝!) and 𝑔(Χ| ∝!) where ∝! and ∝! represent two attribute profiles and 

Χ represents an observed item response pattern. The objective of this restructuring is to 

set up the KLI equation to compare the expected item response pattern on a DCA 

between respondents with attribute profiles ∝! and ∝!. Thus, the KLI equation can be 

rewritten as follows: 𝐾𝐿𝐼 𝑓 Χ ∝! ,𝑔 Χ ∝! = 𝐸! 𝑙𝑛 ! ! ∝!
! ! ∝!

. As a result, in the 

context of dichotomously scored items the KLI is the sum of the two distinct outcomes 

for the item (𝑋! = 0 and 𝑋! = 1) (Henson, Roussos, Douglas & He, 2008):  

𝐾𝐿𝐼 𝑓 Χ! ∝! ,𝑔 Χ! ∝! = 

𝑃 Χ! = 1 ∝! 𝑙𝑛
! !!!! ∝!
! !!!! ∝!

+ 𝑃 Χ! = 1 ∝! 𝑙𝑛
! !!!! ∝!
! !!!! ∝!

. 

 Interpretively, the magnitudes of the KLI values represent the unique diagnostic 

power of each DCA for determining skill mastery classification. In order to compute the 

overall discriminatory power of a DCA, all possible comparisons of KLI values between 

attribute profiles must be represented within a matrix 𝐷 by computing a 𝐷! matrix for 

each item and summing them together (Henson, Roussos, Douglas & He, 2008):  
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𝐷 = 𝐷!

!

!!!

 

where 𝐷  is a 2!× 2!  matrix for 𝐾  attributes, representing 2!(2! − 1)  possible 

comparisons of KLI values between attributes profiles and  

𝐷! = 𝐸! ln !(!!|∝!)
!(!!|∝!)

. 

By being computed in this way, the KLI statistic operates much like the Fisher 

information statistic how it identifies the locations on a latent trait continuum where 

psychometric information is the highest or lowest for an item by identifying which items 

contribute the most towards attribute mastery discrimination. However, a major limitation 

of this method is that matrix 𝐷!  expands exponentially as the number of attributes 

increases. 

 As a solution, Henson and Douglas (2005) propose simplifying the information in 

each 𝐷!  by defining an index called the Cognitive Diagnostic Index (CDI), which 

calculates the average of all the values in 𝐷! while weighting each comparison between 

different attribute profiles by the number of attributes by which the two profiles do not 

share. The CDI is therefore defined by the following equation:  

𝐶! =  
ℎ ∝!,∝! 𝐷!,!"!!!

ℎ(∝!,∝!)!!!!!
 

where 𝐷!,!" is the entry in 𝐷! associated with attribute profiles ∝! and ∝! and 

ℎ ∝!,∝! = ∝!"−∝!"!
!!! . 

Interpretively, ℎ ∝!,∝!  represents the frequency of the number of attributes that are not 

shared between two attribute profiles. As a result, the final discriminatory power of a 

diagnostic assessment can be computer as: 
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𝐶 = 𝐶!!
!!! . 

 DCAs with higher estimates of 𝐶 are expected to be able to correctly classify 

masters and non-masters of individual attributes more frequently than DCAs with lower 

estimates of 𝐶 (Henson & Douglas, 2005). Similarly, items with higher 𝐶! values are 

expected to be more useful in identifying masters and non-masters of the attributes 

measured by the DCA than items with lower 𝐶! values. Furthermore, in addition to global 

item discrimination the KLI can also estimate attribute-specific item discrimination as 

well. 

 The objective of attribute-specific item discrimination is to identify which items 

in a DCA provide the most diagnostic information in determining an attribute’s mastery 

or non-mastery (Kuo, Pai, de la Torre, 2016). The calculation of this index is similar to 

that of 𝐶! in that it is based on elements of 𝐷! except in this case the only values that are 

relevant are those cells that contain KLI values related to differences in attribute mastery 

profiles wherein the targeted attribute is included. In addition, in calculating 𝐷! in the 

attribute-specific case for item discrimination, only attribute patterns of mastery that only 

differ by one attribute will be used since attribute patterns that differ by only one 

component are the most difficult to discriminate (Henson, Roussos, Douglas, & He, 

2008). Consequently the attribute-specific item discrimination index is defined as:  

𝐶!" =
!
!!

𝐷!,!"!"" !"#"$%&' !"##$ . 

3.6 Generalized Partial Credit Model (G-PCM) Analysis 

 

Researchers have noted that the practical justification for employing parametrically 

complex DCMs is limited, and is still an ongoing debate (Gorin, 2009; Haberman, von 
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Davier, & Lee, 2008; Rupp & Templin, 2009; Sinharay, Puhan, & Haberman, 2011; von 

Davier, 2009; von Davier & Haberman, 2014). This is especially true when these 

methods are compared to simpler and more established IRT models. Recent research has 

also shown that a combination of DCM and IRT analysis may be beneficial for improving 

the diagnostic ability of assessments as well (Bradshaw & Templin, 2014). Therefore the 

polytomous IRT generalized partial credit model (G-PCM) will also be applied to the 

data in order to analyze the performance of the rubric-scored data as a comparison for the 

efficacy and practicality of the DCM method.  

4 Empirical Results/Application to the CLA+ 

 

The results from the selected-response section and constructed-response section are 

presented in this chapter. First, the results of the constructed-response section will be 

presented, starting with an examination of the two proposed techniques for representing 

each rubric sub-area as a Q-matrix for the DCM framework, followed by an analysis of 

polytomous IRT models applied to the constructed response data with each sub-area 

represented as an item.  

 

4.1 Descriptive Statistics 

 

The descriptive statistics shown in Table 19 and Table 20 both show that a majority of 

test scores in both samples are either a score of two, three, or four, for all sub-areas. 



97		

	

Moreover, it appears that at least 90% of the data in all three sub-areas for both samples. 

This disproportionate distribution of scores also appears to be weighted towards 

particular score levels in some sub-areas. For example, in Test Form B approximately 

49% of the scores for Writing Mechanics (WM) are a score of four, compared to only 

0.86% for level five.  

Table 19. Test Form A Sub-Area Score Proportions 

Sub-Area 0 1 2 3 4 5 6 
APS 0.30% 3.31% 38.28% 24.85% 31.56% 1.40% 0.30% 
WE 0.30% 4.21% 46.79% 19.24% 27.05% 2.20% 0.20% 
WM 0.30% 1.30% 29.66% 23.85% 41.88% 2.40% 0.60% 

N = 988 

 

Table 20. Test Form B Sub-Area Score Proportions 

Sub-Area 0 1 2 3 4 5 6 
APS 1.30% 5.18% 33.91% 28.40% 29.16% 1.84% 0.22% 
WE 1.30% 4.75% 31.32% 27.97% 32.72% 1.73% 0.22% 
WM 1.30% 1.30% 15.44% 31.75% 49.14% 0.86% 0.60% 

N = 926 

Similarly, the proportion of scores in both samples for all sub-areas for level five are on 

average 1.74%%, compared to level four for all sub-areas, which is 35.25%.  

In Table 21 we can see that Cronbach’s alpha for the exam overall was high for 

both samples at 0.93 for Form A and 0.92 for Form B, indicating strong test reliability. 

However, reliability appeared to drop noticeably with the exclusion of APS and WE, and 

appeared to be largely unaffected with the exclusion of WM. Furthermore, the exclusion 

of WM appears to approve the overall reliability of test Form B.  

Table 21. Cronbach's Alpha for Overall Test Reliability 

  Form A Form B 
All Items 0.93 0.92 

Excluding APS 0.87 0.88 

Excluding WE 0.88 0.86 
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Excluding WM 0.93 0.94 

  
 

On the whole, the different sub-areas, being treated as separate polytomous items 

in this case, appear to have strong correlations, which would suggest that the IRT 

assumption of local independence has been violated. However, the two components to the 

assumption of local independence are that only one latent trait is being measured by the 

assessment and that the response to one item is not contingent upon the response to 

another question (Yang & Kao, 2014). By the very nature of the rubric, the items (which 

are in fact sub-areas of the rubric) are measuring separate components of the same 

overarching construct (which is the examinee’s overall performance on the constructed-

response). Similarly, each sub-area of the rubric is scored based on that sub-area’s 

criterion alone and not the criterion or the examinee’s score in the other sub-areas. 

Therefore it would appear that the assumption of local independence is not violated 

despite strong item correlations, due to the operational parameters of the rubric. 

Table 22. Form A: Item (Sub-Area) Correlations 

  APS WE WM 
APS - 0.86 0.78 
WE <0.001 - 0.77 
WM <0.001 <0.001 - 

N = 998 
   *upper diagonal contains correlation coefficient estimates 

*lower diagonal contains corresponding p-values 
 

Table 23. Form B: Item (Sub-Area) Correlations 

  APS WE WM 
APS - 0.88 0.73 
WE <0.001 - 0.76 
WM <0.001 <0.001 - 

N = 926 
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*upper diagonal contains correlation coefficient estimates 
*lower diagonal contains corresponding p-values 
 

4.2 Constructed-Response Section Retrofit Results 

 

In this section the results from retrofitting a constrained DINA model to the rubric-scored 

constructed-response data are presented, beginning with an overview of the model fit. In 

each subsection, the results for both proposed methods for designing Q-matrices for 

rubric-scored items are shown separately for both test forms A and B. Next, item fit 

statistics are shown, displaying the behavior of typical DCM parameters when 

constrained to the parameters of rubric-scored data. Tetrachoric correlations between 

attributes are then shown next, which may lend insight into the dimensionality of each 

rubric sub-area. Finally, skill classification estimates are presented, providing an 

illustration of the amount of diagnostic information that can be yielded from the proposed 

methods. 

 

4.2.1 Model Fit  

 

Observing the model fit statistics for the Rubric Coded Q-matrix designs in Table 24 and 

Table 25, the relative fit indices indicate little difference between the sub-areas in both 

Forms A and B, although the WM sub-area in Form B appears to have better model fit 

than the other sections. Furthermore, the combined sub-area Q-matrix designs all appear 

to have substantially poorer model fit than the single sub-area Q-matrix designs. 
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Similarly, the No Constraints condition appears to have the best model fit universally in 

both samples and for both single sub-area and combined sub-area Q-matrix designs. The 

absolute fit statistics for rubric coded Q-matrices in both Form A and Form B indicate 

poor model fit as the mean absolute differences between the mean absolute Q3 values 

(MADQ3) and standardized root mean square residual (SRMSR) values for all three sub-

areas are over 0.05. Furthermore, the mean absolute difference of the item-pair 

correlations (MADcor) absolute fit statistics for the single sub-area Q-matrix designs, 

with the exception of WM in Form B, indicate good model fit, as they are less than 0.05. 

However, overall the absolute model fit statistics do not suggest that the DINA model fits 

the rubric scored data parsimoniously, although some conditions and sub-areas may be 

more so than others.   

Table 24. Form A Rubric Coded Q-matrix Design Model Fit Statistics 

Parameter 
Constraints 

Q-matrix 
Design AICc BIC MADcor MADQ3 SRMSR 

Guess to 
Zero 

Single APS 3049.844 3093.813 0.075 0.069 0.182 
Single WE 2653.208 2692.308 0.055 0.050 0.102 
Single WM 2600.667 2644.636 0.041 0.051 0.118 
Combined 7193.869 7503.537 0.100 0.115 0.204 

Slip to 
Zero 

Single APS 3104.224 3148.193 0.088 0.077 0.179 
Single WE 3230.126 3269.226 0.101 - 0.196 
Single WM 3095.642 3139.611 0.088 - 0.175 
Combined 9246.517 9556.185 0.146 - 0.263 

Guess < 
Slip 

Single APS 3829.383 3902.480 0.135 0.126 0.214 
Single WE 3421.098 3489.351 0.089 0.083 0.127 
Single WM 3611.259 3684.356 0.119 0.100 0.182 
Combined 9659.979 10051.900 0.161 0.115 0.266 

No 
Constraints 

Single APS 2628.977 2702.075 0.045 0.083 0.125 
Single WE 2610.387 2678.640 0.028 0.080 0.076 
Single WM 2600.081 2673.179 0.040 0.084 0.115 
Combined 6192.776 6584.698 0.085 0.106 0.196 
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Table 25. Form B Rubric Coded Q-Matrix Design Model Fit Statistics 

Parameter 
Constraints 

Q-matrix 
Design AICc BIC MADcor MADQ3 SRMSR 

Guess to 
Zero 

Single APS 2924.234 2967.515 0.063 0.062 0.154 
Single WE 2681.694 2720.184 0.063 0.059 0.120 
Single WM 2210.496 2253.777 0.037 0.050 0.117 
Combined 6889.442 7193.472 0.099 0.128 0.208 

Slip to 
Zero 

Single APS 3044.144 3087.426 0.103 0.086 0.190 
Single WE 3100.020 3138.510 0.108 0.093 0.187 
Single WM 2548.680 2591.961 0.099 0.076 0.173 
Combined 8401.290 8705.320 0.151 0.178 0.259 

Guess < 
Slip 

Single APS 3626.853 3698.788 0.152 0.138 0.223 
Single WE 3392.789 3459.960 0.133 0.108 0.190 
Single WM 3185.765 3257.701 0.165 0.136 0.255 
Combined 9352.006 9736.408 0.182 0.126 0.289 

No 
Constraints 

Single APS 2643.483 2715.419 0.047 0.080 0.128 
Single WE 2601.634 2668.805 0.034 0.082 0.092 
Single WM 2261.390 2333.326 0.060 0.088 0.141 
Combined 5973.937 6358.339 0.096 0.120 0.209 

 

In cases where the value for MADQ3 is not shown, the pseudo-exam contained 

item pairs (which are in this case represent levels), where either one item had no 

difference between respondent observed and expected score residuals or both items had 

no difference between respondent observed and expected score residuals. If for an item 

there is zero difference between respondents in the difference between the observed and 

expected scores, the average difference is zero, and thus the estimate for MADQ3 

becomes infinity once the correlation is calculated, as zero will divide the covariance of 

the residuals (i.e. 𝑟!!"!!" =
!"#(!!",!!")
!!!"!!!"

= ∞ when 𝑠!!"𝑠!!" = 0). This is what occurs in the 

Slip to Zero and No Constraints conditions in Form A. In the Guess and Slip to Zero 

condition, both the covariance of the item pair residuals 𝑐𝑜𝑣 (𝜀!", 𝜀!") and standard 

deviations 𝑠!!"𝑠!!" are equal to zero, producing non-real numbers.  
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Table 26. Form A Full-Score Coded Q-matrix Design Model Fit Statistics 

Parameter 
Constraints 

Q-matrix 
Design AICc BIC MADcor MADQ3 SRMSR 

Guess and 
Slip to 
Zero 

Single APS 2577.039 2606.389 0.000 - 0.000 
Single WE 2553.936 2583.286 0.000 - 0.000 
Single WM 2529.484 2558.834 0.000 - 0.000 
Combined 6312.945 7632.526 0.000 - 0.000 

Guess to 
Zero 

Single APS 2589.552 2648.104 0.000 0.406 0.001 
Single WE 2566.218 2624.771 0.000 0.372 0.001 
Single WM 2541.982 2600.534 0.000 0.497 0.000 
Combined 6398.819 7756.852 0.000 0.294 0.000 

Slip to 
Zero 

Single APS 2589.348 2647.900 0.000 - 0.001 
Single WE 2566.261 2624.814 0.000 - 0.001 
Single WM 2542.023 2600.576 0.000 0.054 0.001 
Combined 6398.985 7757.018 0.000 - 0.000 

Guess < 
Slip 

Single APS 3491.666 3579.271 0.081 0.061 0.118 
Single WE 3418.419 3506.023 0.075 0.056 0.109 
Single WM 3571.908 3659.513 0.094 0.073 0.146 
Combined 9622.647 11014.140 0.108 0.073 0.199 

No 
Constraints 

Single APS 2601.755 2689.360 0.000 0.041 0.001 
Single WE 2578.652 2666.256 0.000 0.044 0.001 
Single WM 2554.390 2641.995 0.000 0.043 0.001 
Combined 6489.662 7881.154 0.000 - 0.000 

 

Table 27. Form B Full-Score Coded Q-matrix Design Model Fit Statistics 

Parameter 
Constraints 

Q-matrix 
Design AICc BIC MADcor MADQ3 SRMSR 

Guess and 
Slip to 
Zero 

Single APS 2567.776 2596.670 0.000 - 0.000 
Single WE 2549.239 2578.133 0.000 - 0.000 
Single WM 2176.762 2205.656 0.000 - 0.000 
Combined 5969.191 7218.928 0.000 - 0.000 

Guess to 
Zero 

Single APS 2580.089 2637.717 0.000 0.486 0.001 
Single WE 2561.565 2619.194 0.000 0.226 0.001 
Single WM 2189.420 2247.049 0.001 0.008 0.001 
Combined 6062.962 7342.041 0.000 0.297 0.000 

Slip to 
Zero 

Single APS 2580.122 2637.751 0.000 0.037 0.000 
Single WE 2561.594 2619.222 0.000 0.039 0.000 
Single WM 2189.125 2246.754 0.000 0.022 0.000 
Combined 6062.978 7342.058 0.000 0.085 0.000 

Guess < 
Slip 

Single APS 3367.486 3453.688 0.108 0.084 0.163 
Single WE 3376.587 3462.788 0.111 0.087 0.169 
Single WM 3166.286 3252.487 0.134 0.101 0.223 
Combined 9087.607 10389.868 0.131 0.090 0.226 
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No 
Constraints 

Single APS 2592.488 2678.689 0.000 0.038 0.001 
Single WE 2573.960 2660.162 0.000 0.039 0.001 
Single WM 2201.694 2287.895 0.000 0.140 0.001 
Combined 6162.648 7464.909 0.000 0.123 0.000 

 

The MADcor and SRMSR absolute model fit statistics for the full-score coded q-

matrices in shown in Table 26 and Table 27 both indicate that, with the exception of the 

Guess < Slip parameter constraints condition, the data has fit well with the model. In 

almost all conditions where the slip parameter was left unconstrained the MADQ3 

statistic values appear to rise significantly, especially when the guess parameter is also 

constrained in some way, either to zero or to less than the slip parameter. This may be 

evidence that the inclusion of the slip parameter has a detrimental effect to model fit in 

cases where the Q-matrix represents a full-score coded rubric structure. In both samples 

the Guess < Slip parameter constraint condition has the highest absolute model fit 

estimates within the sample, indicating that these parameter constraints fit the full-score 

coded Q-matrix data the least parsimoniously. Contrarily, both the absolute and relative 

model fit statistics in both samples indicate that the Guess and Slip to Zero parameter 

constraint conditions have the lowest model fit statistics for both the single sub-area and 

combined Q-matrix designs. 

 

4.2.2 Item Parameter Estimates 

 

For space, the results presented will now focus on only the No Constraints parameter 

constraint conditions for rubric-coded and full-score coded Q-matrices. For example, 



104		

	

Table 28 and Table 29 both compare the item parameter estimates for rubric-coded Q-

matrices in the no constraint condition. 

Table 28. Form A Rubric-Coded Q-matrix Design Item Parameter Estimates without 
Guess or Slip Parameter Constraints 

  Single Sub-Area Q-matrix Combined Sub-Area Q-matrix 
 Item Guess Slip RMSEA IDI Guess Slip RMSEA IDI 
APS1 0.965 0.000 0.000 0.035 0.000 0.000 0.000 1.000 
APS2 0.914 0.000 0.012 0.086 0.914 0.000 0.194 0.086 
APS3 0.002 0.000 0.000 0.998 0.000 0.000 0.000 1.000 
APS4 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
APS5 0.000 0.949 0.000 0.051 0.000 0.949 0.006 0.051 
APS6 0.000 0.991 0.000 0.009 0.000 0.991 0.001 0.009 
WE1 0.934 0.000 0.000 0.066 0.933 0.000 0.075 0.067 
WE2 0.014 0.000 0.000 0.986 0.000 0.000 0.000 1.000 
WE3 0.272 0.000 0.084 0.728 0.069 0.000 0.068 0.931 
WE4 0.000 0.003 0.000 0.997 0.000 0.344 0.258 0.656 
WE5 0.000 0.919 0.000 0.081 0.000 0.946 0.031 0.054 
WE6 0.000 0.993 0.000 0.007 0.000 0.996 0.003 0.004 
WM1 0.465 0.000 0.000 0.535 0.000 0.000 0.000 1.000 
WM2 0.004 0.000 0.000 0.996 0.004 0.000 0.000 0.996 
WM3 0.433 0.000 0.078 0.567 0.389 0.000 0.207 0.611 
WM4 0.000 0.000 0.000 1.000 0.000 0.080 0.040 0.920 
WM5 0.000 0.933 0.000 0.067 0.000 0.938 0.043 0.062 
WM6 0.000 0.987 0.000 0.013 0.000 0.988 0.009 0.012 

 

Table 29. Form B Rubric Coded Q-matrix Design Item Parameter Estimates without 
Guess or Slip Parameter Constraints 

  Single Sub-Area Q-matrix Combined Sub-Area Q-matrix 
 Item Guess Slip RMSEA IDI Guess Slip RMSEA IDI 
APS1 0.857 0.000 0.000 0.143 0.000 0.000 0.000 1.000 
APS2 0.840 0.000 0.047 0.160 0.840 0.000 0.256 0.160 
APS3 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
APS4 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
APS5 0.000 0.934 0.000 0.066 0.000 0.934 0.005 0.066 
APS6 0.000 0.993 0.000 0.007 0.000 0.993 0.001 0.007 
WE1 0.786 0.000 0.000 0.214 0.786 0.000 0.143 0.214 
WE2 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
WE3 0.001 0.000 0.001 0.999 0.167 0.000 0.146 0.833 
WE4 0.000 0.446 0.000 0.554 0.000 0.372 0.317 0.628 
WE5 0.000 0.969 0.000 0.031 0.000 0.965 0.033 0.035 
WE6 0.000 0.997 0.000 0.003 0.000 0.996 0.004 0.004 
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WM1 0.165 0.000 0.000 0.835 0.000 0.000 0.000 1.000 
WM2 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
WM3 0.628 0.000 0.147 0.372 0.578 0.000 0.226 0.422 
WM4 0.000 0.026 0.001 0.974 0.000 0.124 0.065 0.876 
WM5 0.000 0.979 0.000 0.021 0.000 0.981 0.019 0.019 
WM6 0.000 0.996 0.000 0.004 0.000 0.996 0.004 0.004 

 

The results in both Table 28 and 29 indicate that the usage of the combined sub-

area Q-matrix results in an increases in IDI values for most sub-area levels. For example, 

the IDI values across Q-matrix designs for level one for APS increase from 0.035 to 

1.000 and 0.143 to 1.000 in Forms A and B, respectively. In other cases, however, IDI 

decreases in the combined sub-area Q-matrix design, such as in level four for WE in 

Form A or level three for WE in Form B. These changes reflect the increased number of 

possible attribute skill mastery profiles that occur as a result of the combination of the 

sub-area Q-matrices.  

However, they also may be considered evidence of to what degree the diagnostic 

ability of a sub-area is subject change when viewed in the context of the other sub-areas. 

Furthermore, it appears that for all cases in which IDI is low, the cause appears to be 

either high values for the guess parameter or high values for the slip parameter, with no 

levels showing moderate values for both parameters simultaneously. This may indicate 

that if a respondent were to be assigned or not assigned a level inaccurately, the cause is 

either due to one or the other, without a strong probability of both. The same effect 

wherein combining each sub-area into a single Q-matrix appears to improve model 

estimates for diagnostic ability can also be observed in the full-score coded Q-matrix 

design item parameter estimates shown in Table 30 and Table 31. 
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Table 30. Form A Full-Score Coded Q-matrix Design Item Parameter Estimates without 
Guess or Slip Parameter Constraints 

  Single Sub-Area Q-matrix Combined Sub-Area Q-matrix 
 Item Guess Slip RMSEA IDI Guess Slip RMSEA IDI 
APS1 0.689 0.000 0.000 0.311 0.000 0.000 0.000 1.000 
APS2 0.011 0.000 0.001 0.989 0.000 0.000 0.000 1.000 
APS3 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
APS4 0.000 0.001 0.000 0.999 0.000 0.000 0.000 1.000 
APS5 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
APS6 0.000 0.481 0.000 0.519 0.000 0.000 0.000 1.000 
WE1 0.739 0.000 0.000 0.261 0.000 0.000 0.000 1.000 
WE2 0.014 0.000 0.001 0.986 0.000 0.000 0.000 1.000 
WE3 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
WE4 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
WE5 0.000 0.003 0.000 0.997 0.000 0.000 0.000 1.000 
WE6 0.000 0.687 0.000 0.313 0.000 0.000 0.000 1.000 
WM1 0.464 0.000 0.000 0.536 0.000 0.000 0.000 1.000 
WM2 0.004 0.000 0.000 0.996 0.000 0.000 0.000 1.000 
WM3 0.006 0.000 0.001 0.994 0.000 0.000 0.000 1.000 
WM4 0.000 0.001 0.000 0.999 0.000 0.000 0.000 1.000 
WM5 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
WM6 0.000 0.442 0.000 0.558 0.000 0.004 0.000 0.996 

 

Table 31. Form B Full-Score Coded Q-matrix Design Item Parameter Estimates without 
Guess or Slip Parameter Constraints 

  Single Sub-Area Q-matrix Combined Sub-Area Q-matrix 
 Item Guess Slip RMSEA IDI Guess Slip RMSEA IDI 
APS1 0.439 0.000 0.000 0.561 0.000 0.000 0.000 1.000 
APS2 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
APS3 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
APS4 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
APS5 0.000 0.008 0.000 0.992 0.000 0.000 0.000 1.000 
APS6 0.000 0.631 0.000 0.369 0.000 0.000 0.000 1.000 
WE1 0.418 0.000 0.000 0.582 0.000 0.000 0.000 1.000 
WE2 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
WE3 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
WE4 0.000 0.001 0.000 0.999 0.000 0.000 0.000 1.000 
WE5 0.000 0.008 0.000 0.992 0.000 0.000 0.000 1.000 
WE6 0.000 0.616 0.000 0.384 0.000 0.000 0.000 1.000 
WM1 0.161 0.000 0.000 0.839 0.000 0.000 0.000 1.000 
WM2 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
WM3 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 
WM4 0.000 0.012 0.002 0.988 0.000 0.001 0.000 0.999 
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WM5 0.000 0.003 0.000 0.997 0.000 0.003 0.000 0.997 
WM6 0.000 0.445 0.000 0.555 0.000 0.000 0.000 1.000 

 

 In these cases, the single sub-area Q-matrix design parameter estimates indicate 

that level one has observable levels of guess parameter estimates and while level six has 

significant levels of slip parameter estimates as well. However, these results are due to 

large proportion of students that received a score of at least a one in all three sub-areas, 

the low proportion of students that received a score of six in any of the three sub-areas, 

and the small number of possible attribute mastery class profiles. Consequently, once the 

number of potential attribute mastery class profiles was increased, as seen in the 

combined sub-area parameter estimates, all levels for the full-score coded Q-matrix 

design have perfect diagnostic ability. The unconstrained full-score coded combined sub-

area results also essentially mirror the parameter estimates from the Guess and Slip to 

Zero parameter constraint condition.  

4.2.3 Cognitive Diagnostic Indices (CDI) 

 

Similar to the item parameters shown in subsection 4.2.2, the CDI values indicate the 

amount of diagnostic information that is produced by each level. Figure 8 and Figure 9 

compare the amount of diagnostic information produced by each level by the single and 

combined sub-area Q-matrix designs. Similar to the estimates for item discrimination 

shown in the item parameter estimates, the estimates for the amount of diagnostic 

information produced by each increases substantially for the first level APS 1. 
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Figure 8. Form A Test Diagnostic Information 

Furthermore, in Form A it appears that the levels that produce the most diagnostic 

information for each section appear to be level three for APS, level four for WE, and 

level two for WM in the single sub-area Q-matrix designs. However, in the combined 

sub-area Q-matrix design, the levels that produce the most diagnostic information for the 

exam are also level three for APS, but level two for WE, and level one for WM. There is 

also a clear gradient in the amount of diagnostic information produced by each level in 

WE, where levels one, five, and six appear to produce very little diagnostic information, 

while level two produces the most diagnostic information, and then levels three and four 

both produce less and less.  



109		

	

	

Figure 9. Form B Test Diagnostic Information 

	
	 Similarly, the amount of diagnostic information produced by APS level 1 increase 

significantly in the combined Q-matrix designs. However, unlike Form A, there seems to 

be relatively small changes in diagnostic information otherwise. The only other 

significant change in diagnostic information is the increase in WM level 1; again from 

single to combined sub-area Q-matrix design. The item attribute discriminations shown in 

Table 32 provide a more complete perspective of the amount of information provided by 

each level, by showing the degree of discrimination each level is in identifying masters 

and non-masters of each attribute. For example, in both samples, level two for WE is the 

most discriminating for determining masters and non-masters of Attribute 1 for WE.	
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Table 32. Item Attribute Discrimination Values for Rubric Coded Combined Sub-Area 
Q-matrix Designs with no Parameter Constraints 

  Form A Form B 
Item Attribute 1 Attribute 2 Attribute 3 Attribute 1 Attribute 2 Attribute 3 

APS1 16.12 0.00 0.00 16.12 0.00 0.00 
APS2 0.00 0.59 0.00 0.00 1.16 0.00 
APS3 0.00 16.10 0.00 0.00 16.12 0.00 
APS4 0.00 0.00 13.09 0.00 0.00 13.19 
APS5 0.00 0.00 0.34 0.00 0.00 0.44 
APS6 0.00 0.00 0.05 0.00 0.00 0.04 
WE1 0.45 0.00 - 1.59 0.00 - 
WE2 16.12 0.00 - 16.12 0.00 - 
WE3 0.00 8.71 - 0.00 7.38 - 
WE4 0.00 5.50 - 0.00 5.23 - 
WE5 0.00 0.35 - 0.00 0.23 - 
WE6 0.00 0.02 - 0.00 0.02 - 
WM1 16.12 0.00 0.00 16.12 0.00 0.00 
WM2 0.00 10.68 0.00 0.00 16.12 0.00 
WM3 0.00 0.00 5.06 0.00 0.00 3.34 
WM4 0.00 0.00 8.53 0.00 0.00 7.91 
WM5 0.00 0.00 0.41 0.00 0.00 0.11 
WM6 0.00 0.00 0.07 0.00 0.00 0.02 

 

4.2.4 Tetrachoric Correlations 

 

Table 33 and Table 34 both show the tetrachoric correlations for Form A and Form B in 

the rubric-coded combined sub-area q-matrix design without guess or slip parameter 

constraints. Both tables indicate that all attributes are highly correlated, which may be 

considered evidence of unidimensionality. Indeed, the lowest correlation between 

attributes is attribute two for Analysis and Problem Solving (APS2) and attribute three 

for Writing Mechanics (WM3) in Form A. These results however are not unexpected 

since not only are the attribute scores highly correlated but the attributes also follow a 

linear attribute hierarchy as well.  
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Table 33. Form A Rubric Coded Combined Sub-Area Q-matrix Design Attribute 
Tetrachoric Correlations 

Attribute APS1 APS2 APS3 WE1 WE2 WM1 WM2 WM3 
APS1 1.00 0.95 0.95 0.99 0.94 1.00 1.00 0.94 
APS2 0.95 1.00 1.00 0.98 0.96 0.95 0.97 0.90 
APS3 0.95 1.00 1.00 0.97 0.97 0.95 0.95 0.95 
WE1 0.99 0.98 0.97 1.00 0.98 0.99 1.00 0.98 
WE2 0.94 0.96 0.97 0.98 1.00 0.94 0.96 0.95 
WM1 1.00 0.95 0.95 0.99 0.94 1.00 1.00 0.94 
WM2 1.00 0.97 0.95 1.00 0.96 1.00 1.00 0.97 
WM3 0.94 0.90 0.95 0.98 0.95 0.94 0.97 1.00 

 

Table 34. Form B Rubric Coded Combined Sub-Area Q-matrix Design Attribute 
Tetrachoric Correlations 

Attribute APS1 APS2 APS3 WE1 WE2 WM1 WM2 WM3 
APS1 1.00 0.97 0.94 1.00 0.97 1.00 1.00 0.97 
APS2 0.97 1.00 1.00 0.99 1.00 0.97 0.97 0.94 
APS3 0.94 1.00 1.00 0.98 1.00 0.94 0.96 0.92 
WE1 1.00 0.99 0.98 1.00 0.99 1.00 0.93 0.99 
WE2 0.97 1.00 1.00 0.99 1.00 0.97 0.98 0.94 
WM1 1.00 0.97 0.94 1.00 0.97 1.00 1.00 0.97 
WM2 1.00 0.97 0.96 0.93 0.98 1.00 1.00 0.97 
WM3 0.97 0.94 0.92 0.99 0.94 0.97 0.97 1.00 

 

4.2.5 Skill Classification Estimates 

 

The latent class profile population membership probabilities in Figure 10 and Figure 11 

show the estimated for each parameter constraint condition for each sub-area in the rubric 

coded single sub-area Q-matrix designs. In test Form A, for the Analysis and Problem 

Solving (APS) sub-area, the Guess < Slip parameter constrained DINA model estimates 

that approximately 80% of the population belongs to latent class profile {1,1,0}, 

indicating that they have mastered attributes one and two but not three. Similarly, the slip 

parameter constrained DINA model estimated that approximately 98% of the population 
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that took test Form A is a member of the latent class {1,1,0} for Writing Mechanics 

(WM). 

	

Figure 10. Form A Rubric Coded Single Sub-Area Latent Class Profile Population 
Membership Probabilities 
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Figure 11. Form B Rubric Coded Single Sub-Area Latent Class Profile Population 
Membership Probabilities 

	 	

Figure 11 shows that condition without parameter constraints DINA model 

estimates that in the population of test Form B, approximately 35% of the population 

belonging to latent class profiles {1,0,0}, {1,1,0}, and {1,1,1} each.  Likewise, 

approximately 50% of the population is a member of either latent class {1,1,0} or {1,1,1} 

for WM, according to the unconstrained DINA model. Next, the unconstrained DINA 

model estimated sample mastery profiles for the rubric coded combined Q-matrix design 

for Form A is shown in Table 35.  
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Table 35. Form A Unconstrained DINA Model Rubric Coded Combined Sub-Area 
Sample Attribute Mastery Probability Profiles 

Profile Number APS1 APS2 APS3 WE1 WE2 WM1 WM2 WM3 Proportion 
1 0 0 0 0 0 0 0 0 0.3% 
2 1 0 0 0 0 1 0 0 1.3% 
3 1 0 0 0 0 1 1 0 2.9% 
4 1 0 0 1 0 1 1 0 23.1% 
5 1 0 0 1 0 1 1 0.02 10.2% 
6 1 0 0 1 0 1 1 1 2.3% 
7 1 0 0 1 0.01 1 1 0.03 0.8% 
8 1 0 0 1 0.47 1 1 1 0.7% 
9 1 0 0 1 1 1 1 1 0.2% 

10 1 1 0 1 0 1 1 0 2.6% 
11 1 1 0 1 0 1 1 0.08 5.1% 
12 1 1 0 1 0 1 1 1 3.1% 
13 1 1 0 1 0.62 1 1 0 0.8% 
14 1 1 0 1 0.7 1 1 0.26 4.7% 
15 1 1 0 1 0.9 1 1 1 6.1% 
16 1 1 0 1 1 1 1 0 0.1% 
17 1 1 0 1 1 1 1 0.34 0.6% 
18 1 1 0 1 1 1 1 1 1.7% 
19 1 1 1 1 0 1 1 0 0.1% 
20 1 1 1 1 0 1 1 0.05 0.4% 
21 1 1 1 1 0 1 1 1 0.1% 
22 1 1 1 1 0.98 1 1 0.96 1.0% 
23 1 1 1 1 1 1 1 0 0.1% 
24 1 1 1 1 1 1 1 0.98 0.9% 
25 1 1 1 1 1 1 1 1 30.7% 

N = 998 

The above table represents for test Form A what proportion of the sample population was 

estimated to have as their most likely sample mastery probability profile. According to 

the results in test Form A, 30.7% of the population is most likely to have a 100% 

probability of mastering all of the required attributes of the CLA+ constructed-response 

section. Similarly, 10.2% of the population is estimated to have a 100% probability of 

having mastered attributes APS1, WE1, WM1, and WM2 as well as a 2% chance of 

being a master of WM 3.  
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4.3 G-PCM Analysis: Constructed-Response Section 

 

This section presents the results of the Generalized Partial Credit Model (G-PCM) 

analysis, beginning with the typical descriptive statistics that would be presented in a 

polytomous-IRT model analysis, including CTT statistics such as test reliability. Next, 

tables and figures specific to G-PCM analysis are presented including item category 

response curves and difficulty step parameter estimates. Item information and test 

information figures and parameter estimates are then shown, providing insights as to at 

how much diagnostic information from the rubric is yielded from each rubric sub-area, as 

well as the entire rubric, on a latent trait continuum. Finally, the model fit of the G-PCM 

is compared to its Rasch model equivalent, the Partial Credit Model (PCM) in order to 

provide evidence that utilizing a discrimination parameter for each sub-area is 

appropriate for modeling rubric-scored data.  

 

4.3.1 G-PCM Analysis 

 

In Table 36 it is evident that all of the items in Form A have ordered step 

difficulties and that none of the steps are reversed, indicating that at some point on the 

latent trait continuum all category response options will be the most probable response 

option (Andrich, 1988). Writing Mechanics (WM) has the easiest transition possible, as it 

has the lowest step difficulty value (-3.093) for 𝛿!!, which is the transition of going from 

a score of zero to a score of one. Alternatively, it appears that Writing Effectiveness 

(WE) has the most difficult transition, with a step difficulty parameter value of 2.901 for 



116		

	

𝛿!!, indicating that the most difficult transition to make on the assessment is the transition 

from getting a score of five to a score of six for WE. We can also see that WE also has 

the highest discrimination parameter, indicating that that sub-area has the highest degree 

of ability to discern how well an examinee will perform on the assessment, overall. 

Table 37 indicates that the largest difference on the latent trait continuum between 

two step-difficulty parameters for Form A is between step-difficulty parameters two and 

three in Writing Mechanics (WM). This means that of all the items (which in our case are 

actually sub-areas) in the assessment, the transition from category response two to 

category response three requires the longest distance on the latent trait continuum. 

Alternatively, the shortest difference on the latent trait continuum between two step-

difficulty parameters is between step difficulty parameters three and four in writing 

effectiveness. This means that of all the items in the assessment, the transition from 

category response three to category response four requires the least amount of distance on 

the latent trait continuum.  

Table 36. Form A: Estimates of Coefficients from Fitting a G-PCM 

Item 𝛿!! 𝛿!! 𝛿!! 𝛿!! 𝛿!! 𝛿!! ∝! 
APS -3.036 -1.871 -0.205 0.428 2.199 2.773 6.491 
WE -3.001 -1.729 0.028 0.536 2.034 2.901 8.340 
WM -3.093 -2.449 -0.463 0.074 2.143 2.608 3.523 

 
 

       

Table 37. Form A: Latent Trait Ability Distances between G-PCM Difficulty Step 
Parameters 

Item Step 1 to 2 Step 2 to 3 Step 3 to 4 Step 4 to 5 Step 5 to 6 
APS 1.165 1.666 0.632 1.771 0.573 
WE 1.273 1.756 0.508 1.498 0.868 
WM 0.644 1.986 0.537 2.069 0.465 
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Table 38 shows that all of the items in Form B have ordered step difficulties and 

none of the steps are reversed, which indicates that at some point on the latent trait 

continuum all category response variables will be the most probable response option. 

APS has the easiest transition possible, as it has the lowest step difficulty value (-2.428) 

for 𝛿!! , which is the transition of going from a score of zero to a score of one. 

Conversely, it appears that WM also has the most difficult transition, with a step 

difficulty parameter value of 2.970 for 𝛿!!, indicating that the most difficult transition to 

make on the assessment is the transition from getting a score of five to a score of six for 

WM. However, APS as well as WE have their most difficult parameters for 𝛿!! as well 

and the difference between their values are not more than 0.10. Again WE has the highest 

discrimination parameter, indicating that that sub-area has the highest degree of ability to 

discern how well an examinee will perform on the assessment, overall for Form B. 

Table 39 indicates that the largest difference on the latent trait continuum between 

a pair of difficulty parameters for Form B is between step difficulty parameters four and 

five in Writing Mechanics (WM). This indicates that the transition from receiving a score 

of four to a score five for members of Form B requires the longest distance on the latent 

trait continuum. Alternatively, the shortest difference on the latent trait continuum 

between a pair of difficulty parameters is between step difficulty parameters one and two 

in WM. This means that the transition from receiving a score of three to a score of four in 

WM was easiest for the sample in test Form B.  

Table 38. Form B: Estimates of Coefficients from Fitting a G-PCM 

Item 𝛿!! 𝛿!! 𝛿!! 𝛿!! 𝛿!! 𝛿!! ∝! 
APS -2.428 -1.549 -0.233 0.502 2.114 2.952 6.246 
WE -2.375 -1.532 -0.311 0.402 2.068 2.871 13.312 
WM -2.308 -2.271 -0.980 -0.021 2.643 2.970 3.318 
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Table 39. Form B: Latent Trait Ability Distances between G-PCM Difficulty Step 
Parameters 

Item Step 1 to 2 Step 2 to 3 Step 3 to 4 Step 4 to 5 Step 5 to 6 
APS 0.879 1.316 0.735 1.611 0.838 
WE 0.844 1.220 0.713 1.666 0.804 
WM 0.038 1.291 0.958 2.664 0.327 

 
 

    Comparing Figures 12, 13, and 14, it is evident that on the whole, item category 

response curves (ICRC’s) 0,1,2,4, and 6 all tend to have maximum estimates of 

probability at or around 1.0, with the exception being ICRC 1 in writing mechanics 

(WM). This suggests that there are positions on the latent trait continuum wherein it is 

essentially 100% certain that a respondent will receive a score of zero, one, two, four, or 

six. Alternatively, the category response curves for 3 and 5, on the whole, appear to have 

maximums below 0.8, with the one exception being ICRC 5 for writing effectiveness 

(WE), which has a maximum of around 0.95. This suggests that for all sub-areas, there is 

never a 100% probability of receiving a score of three or five for any level on the latent 

trait continuum. Indeed, for WM it appears as though the maximum probability of 

receiving either a three or a five as a response on the latent trait continuum is 

approximately 0.6, which is substantially lower than the maximum probability estimates 

for all other ICRC’s.  
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Figure 12. Form A: Item (sub-area) category response curves for analysis and problem 
solving (APS). 

 

	
Figure 13. Form A: Item (sub-area) category response curves for writing effectiveness 
(WE). 
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Figure 14. Form A: Item (sub-area) category response curves for writing mechanics 
(WM). 

Figures 15, 16, and 17, show that in Form B, ICRCs 0,4, and 6 continue to have 

maximum estimates of probability at or around one. Still it appears as though the second 

sample contributes more evidence to support the conclusion that there are points on the 

latent trait continuum where it is very certain that a respondent will receive a score of 

zero, four, or six. However, the ICRCs for writing effectiveness (WE) seem to indicate 

that there are positions on the latent trait continuum where it is 100% probable for a 

response to receive a score for each level, although the distance that this is true is longer 

for some levels more than others, such as level four. Indeed, the ICRCs for WM for Form 

B show that level four remains the most probable response from an ability level of -0.021 

to an level ability of 2.643. This compared to the short amount of distance that ICRCs 1 

and 5 are the most probable response levels as well as their significantly low maximum 

probability values of around 0.40, indicates that there may be evidence that the WM sub-

area is being scored disproportionately.  
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Figure 15. Form B: Item (sub-area) category response curves for analysis and problem 
solving (APS). 

 

	

Figure 16. Form B: Item (sub-area) category response curves for writing effectiveness 
(WE). 
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Figure 17. Form B: Item (sub-area) category response curves for writing mechanics 
(WM). 

 

4.3.2 Item and Test Information 

	

The amount of information from an item response category 𝐼!"(𝜃) measures the degree of 

information or certainty that responses in that category provide regarding an examinee’s 

ability (Baker & Kim, 2004). Higher values for information indicates where on the latent 

trait continuum there is lower uncertainty regarding the 𝜃 estimate and vice versa (Li & 

Baser, 2012). The area underneath the item information curve 𝐼!" 𝜃 𝑃!"(𝜃), known as the 

“item information share”, represents the percentage of information contributed by each 

item to the overall test information (Baker & Kim, 2004). Observing Figures 18 and 19, 

we see that information values have a multimodal distribution along the latent trait 

continuum for all sub-areas. This indicates that there are sections on the latent trait 
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continuum, for all sub-areas, in which the degree of certainty that responses in those sub-

areas estimate latent trait ability is low.  

For example, the item information curves for test Form A, shown in Figure 18, the 

two common points on the latent trait continuum where information is lowest, for all sub-

areas, also happen to be the points on the latent trait continuum where the ICRCs for 2 

and 4 have their maximum probability estimates. Specifically, these maximums are 

approximately where 𝜃 equals -1.6 and 1.6 on the latent trait continuum in sub-areas APS 

and WE for categories P2 and P4, respectively. For sub-area WM, these maximums are 

approximately where 𝜃 equals -1.9 and 1.6 on the latent trait continuum.  

 

	
Figure 18. Form A: Item (sub-area) information curves. 
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Figure 19. Form B: Item (sub-area) information curves. 

 

 As we can see in Table 40, Writing Mechanics (WM) contributes the least amount 

of information to the overall test information for both Form A and Form B. It is also 

evident that Writing Effectiveness (WE) contributes the most to the overall test 

information, which is interesting considering that WE also has the highest value for item 

discrimination (𝛼!). These findings corroborate the distribution of the ICRCs for WE in 

Figures 13 and 16, as well as the ICRCs for WM in Figures 14 and 17. 

Table 40. Item (Sub-Area) Information Shares 

 Form A Form B 

 
Information Percentage Information Percentage 

APS 38.95 35% 37.47 27% 
WE 50.04 45% 79.87 58% 
WM 21.14 19% 19.91 15% 

Test Information: 110.13 100% 137.25 100% 
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4.3.3 Comparing G-PCM and PCM Model Fit 

 

The results in Table 41 and Table 42 indicate that the AICc, SABIC, and log-Likelihood 

values are closer to zero for the G-PCM than for the PCM, indicating model fit. The 

results of the chi-squared test were also significant for both test forms, indicating that the 

G-PCM had significantly better fit than the PCM. These results suggest that for the data, 

an unconstrained discrimination parameter model fits the data better than a constrained 

Rasch model. This indicates that the inclusion of a slope parameter has a more 

parsimonious fit to the data than its exclusion, and so there is evidence that item 

discrimination is not equal between test items. Therefore, there is evidence to suggest that 

some sub-areas are more or less discriminating than others.  

Table 41. Form A: Polytomous-IRT Model Fit Statistics and ANOVA Results 

Model AICc SABIC logLik X2 df p 
PCM 5700.373 5732.460 -2830.798 - - - 

G-PCM 5373.757 5409.134 -2665.405 330.786 2 0 
	

Table 42. Form B: Polytomous-IRT Model Fit Statistics and ANOVA Results 

Model AICc SABIC logLik X2 df p 
PCM 5418.623 5449.229 -2689.892 - - - 

G-PCM 5021.771 5055.504 -2489.375 401.035 2 0 
 

 

 

 



126		

	

4.3.4 G-PCM Examinee Ability Estimates 

 

Ability estimates were calculated using the expected a-posteriori (EAP) method 

(Embretson & Reise, 2000). In essence, theta values were estimated for every unique 

combination of Analysis and Problem Solving (APS), Writing Effectiveness (WE), and 

Writing Mechanics (WM) scores, of which there were 44 total for test Form A and 39 for 

test Form B. Figures 20 shows a comparison of the distribution of the ability estimates for 

respondents from tests Form A and Form B, respectively. 

	

Figure 20. Form A distribution of ability estimates. 
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5 Discussion and Conclusions 

	
	
This chapter will present a discussion of the results as they relate to the theoretical goals 

and contributions of the study. Specifically, the chapter will examine the efficacy of the 

proposed methods for retrofitting DCMs to rubric-scored constructed-response items. 

This will be followed by a discussion of limitations and ideas for future research.  

 

5.1 Discussion of the Analyses 

 

 The descriptive statistics of both samples indicated that a disproportionate number 

of responses fell between scores of two and four for all three sub-areas of the rubric: 

Analysis and Problem Solving (APS), Writing Effectiveness (WE), and Writing 

Mechanics (WM) (see Table 19, 20). Values for Cronbach’s Alpha indicated that, in both 

samples, the WE subsection had the greatest contribution to overall test reliability while 

the WM subsection had no substantive effect and, in the case of test Form B, a negative 

effect (see Table 21). These first two results indicated two findings with regard to the 

initial diagnostic capability of the rubric. The first finding was that some levels within the 

rubric might not be operating with equal diagnostic discrimination, and the second being 

that some sub-areas may also be operating with more diagnostic capability than others. 

However, despite these findings, sub-area score correlations appeared to indicate that the 

rubric scores were essentially unidimensional (see Table 22, 23).  Thus, there was also 

evidence to suggest that sub-area scores were strongly associated, perhaps measuring the 
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same underlying latent trait. These results were further confirmed by the tetrachoric 

correlations shown in Table 33 and Table 34. 

 

5.1.1 Model Fit Results  

 

For the rubric-coded Q-matrix design, the relative model fit indices for both samples 

indicated that in most cases, the unconstrained parameters condition fit the data most 

parsimoniously for both single and combined sub-area analyses (see Table 24, 25). The 

exception to this finding was the single sub-area Writing Mechanics (WM) in test Form 

B, which had lower values for AICc and BIC when the guess parameter was constrained 

to zero. Within each parameter constraint condition, the single sub-area analyses had 

considerably better relative model fit than the combined Q-matrix analyses, although this 

finding is expected because AICc and BIC values penalize increasing model complexity, 

and by combining Q-matrices across sub-areas the number of parameters estimated by the 

DINA model increases (de la Torre & Douglas, 2008; Rupp, Templin, & Henson, 2010). 

In summary, the results of the relative model fit indices for rubric-coded Q-matrix 

designs suggest that an unconstrained DINA model is most appropriate for fitting rubric-

scored data.  

The absolute model fit indices of the rubric coded Q-matrices for both samples 

did not give definitive results regarding most parsimonious fit with the data (see Table 

24,25). In test Form A, MADcor values for all three single sub-area Q-matrix designs in 

the unconstrained parameter condition and the WM single sub-area Q-matrix design in 

the Guess to Zero parameter condition indicated good model fit, with values less than 
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0.05. Similarly, for test Form B, MADcor values for the WM single sub-area Q-matrix 

design in the Guess to Zero parameter constraint condition indicated parsimonious model 

fit as well, although only the APS and WE single sub-area Q-matrix designs in the 

unconstrained parameter condition had values less than 0.05 in this sample. In both 

samples and across all conditions, the MADQ3 and SRMSR values were either equal to 

or above 0.05, indicating poor model fit for the rubric-coded Q-matrix designs.  

Differences in absolute model fit statistics between study conditions are caused by 

differences in the correlation of observed responses of item pairs within Q-matrix design 

and guess/slip parameter estimates. For example, in test Form A, constraining the slip 

parameter to zero resulted in some items for the sub-areas WE and WM and combined Q-

matrix designs to estimate an average difference of zero between observed and expected 

responses, resulting in non-convergence. The APS sub-area was still able to converge for 

MADQ3 in the Slip to Zero condition since the guess parameter values were large 

enough in all items to produce differences between examinees in observed and expected 

responses. 

Based on the results of the absolute model fit indices, it is not justified to 

conclude that the DINA model fits parsimoniously with rubric-scored data when using 

rubric coded Q-matrix designs. Interpretively, the MADcor and SRMSR indices for the 

rubric coded Q-matrix designs indicate that there are large differences between pseudo-

items in terms of the correlation of their observed values and the correlation of their 

expected values. Furthermore, the MADQ3 values for most parameter conditions indicate 

that there are large differences between observed and expected values for examinee 

responses as well.  
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 Contrarily, for the full-score coded Q-matrix designs (see Table 26, 27) the 

relative model fit indices (AICc, BIC) indicated that in both samples setting constraining 

both the guess and slip parameters to zero yielded the best model fit for both single sub-

area and combined Q-matrix designs. For the constrained Guess < Slip parameter 

condition, the relative model fit indices were noticeably higher than those in the Guess 

and Slip to Zero condition, but only slightly higher in the other conditions. Again, the 

combined Q-matrix designs produced significantly higher AICc and BIC values than the 

single sub-area Q-matrix designs.  

In contrast to the results of the rubric coded Q-matrices, in both samples the full-

score coded Q-matrix designs yielded almost uniformly perfect model fit for both 

MADcor and SRMSR values, with the exception of the Guess < Slip parameter constraint 

condition (see Tables 26, 27). These indices reflect the highly correlated observed and 

expected values for item pairs, indicating that there is little to no difference between the 

pairwise correlations of item observed values and the pairwise correlation of item 

expected values.  In other words, the model perfectly reproduces the observed data, as 

expected. 

The implications of this finding are that the latent response vectors are indeed 

mathematically identical to the observed data within the DINA model, and each level is 

free from guess or slip error (de la Torre, 2009). Model parsimony in this case is 

attributable to the polytomous score to dichotomous item response pattern conversion 

method as well. Given the guaranteed linear or “sequential” nature of the observed data, 

non-permissible observations are impossible, such as an examinee responding correctly 

to pseudo-item 4 but not to pseudo-item 3. If such a situation were to occur, the latent 
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response vectors would cease to reflect the observed item response patterns, thus 

introducing error and model divergence.  

Moreover, while the combination of guess and slip parameters constrained to zero 

and a full-score Q-matrix design may allow the DINA model to fit rubric-scored data 

perfectly and parsimoniously, it implies the assumption that each score on the rubric 

represents the true score without error. As a result, unique insights regarding rubric 

performance are limited from retrofitting DCMs to rubric-scored data in this manner. In 

other words, simply being able to represent rubric-scored data and its scoring structure as 

a Q-matrix within the DINA model framework does not necessarily yield useful insights 

(except to offer a point of reference for the rubric-based Q-matrix coding). 

It is also important to note that model fit indices are not and should not be 

definitive measures for determining the efficacy of retrofitting a DCM to an existing 

assessment (Thissen, 2016). Determining which model fit statistics is most suitable for 

analyzing DCMs is still an ongoing area of research, especially with regard to absolute 

model fit indices (Chen, de la Torre, & Zhang, 2013; Galeshi & Skaggs, 2014; Hu, 

Miller, Huggins-Manley, & Chen, 2016; Lei & Li, 2016). For example, the absolute 

model fit indices used in this study, which are commonly used and suggested in DCM 

research (George, Robitzsch, Kiefer, Groß, & Ünlü, 2016; Liu, Huggins-Manley, & 

Bulut, 2017), are calculated based upon item pairwise correlations that are in turn 

calculated using expected values estimated by the DINA model. Yet, in most DCM 

retrofitting cases, it is expected that the attributes measured by a diagnostic classification 

assessment be highly correlated (see Table 33, 34) since the process of retrofitting DCMs 

to standard assessments typically requires the identification of multidimensional traits 
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from unidimensional assessments (de la Torre & Karelitz, 2009; Sinharay, 2010, 2011, 

2014). In other words, while it is known that some of the most commonly used model fit 

indices for DCMs are negatively affected by highly correlated attributes, much of the 

research on DCM analysis attempts to retrofit DCMs to existing assessments, a process 

which is known to produce highly correlated attributes. For reasons such as these, it is not 

usually expected that retrofitting DCMs to existing assessments will result in adequate 

absolute model fit (Gierl & Cui, 2008; Rupp & Templin, 2009). 

Thissen (2016) argues that in general, IRT model fit indices should not be used as 

definitive criterion for decision-making with regard to assessment development, 

especially when applied to non-simulated data, since no model can ever perfectly fit a 

data set and no data set is ever perfectly unidimensional. Instead, rather than regarding 

relative and absolute model fit indices as verdicts for determining model functionality, 

they should be perceived as guidelines towards achieving the planned objective of the 

assessment (Thissen, 2016). Therefore, although the absolute fit indices of the rubric-

coded model did not give clear indication of parsimonious model fit using the rubric 

coded Q-matrix design, it may still be preferable to use rubric coded Q-matrices over the 

full-score coded Q-matrices, as they can potentially provide useful insights regarding the 

rubric’s measured attributes and the validity of the rubric-defined associations of specific 

skills with score levels. 

 

5.1.2 Item Fit Results 
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Returning to the discussion regarding the poor model fit of the Guess < Slip parameter 

constraint condition, these findings were consistent across all forms of Q-matrix designs 

and across both samples (see Table 24, 25, 26, 27). The poor model fit of this condition 

was caused by two factors. The first factor is that, although the guess and slip parameters 

were constrained, there were as many parameters estimated in the Guess < Slip condition 

as there were in the No Constraints condition. The second factor that caused the Guess < 

Slip condition to have poor model fit for all Q-matrix designs was the minimum value of 

the slip parameter.   

By restricting the slip parameter constraint to have a minimum value of 0.20, 

pseudo-items that would otherwise have slip parameter estimates of zero (had they been 

left unconstrained) could only have minimum slip parameter estimates of 0.20. This 

caused the DINA model to estimate expected values that were substantially different 

from the observed item response patterns, since the probability of a correct response in 

the DINA model is equal to the probability of a correct response for item 𝑗, given that a 

respondent has mastered all the required attributes i.e. 1− 𝑠!  where 𝑠!  is the slip 

parameter for that item, or in this case, pseudo-item (de la Torre & Douglas, 2004). This 

creates larger differences between observed and expected values, which results in a lower 

maximum likelihood for all respondents, thus increasing the value of -2 log likelihood 

and AICc/BIC. In addition, larger differences between observed and expected values 

result in larger differences between item pairwise observed and expected value 

correlations, all of which increases the value of MADcor, MADQ3, and SRMSR.  

The interpretation of the guess and slip parameters for rubric-scored data is 

perhaps unique compared to most other DCM analyses, in that the estimates for guess 
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and slip are not direct measurements of an examinee’s possible response, since each 

rubric-score is given by (in the case of the CLA+ exam) the average of two or, in cases 

where a response is flagged as unusual, three ratings (Council for Aid to Education, 

2017). Furthermore, the guess and slip parameters estimated here appear to be either 

extremely high or extremely low, although, like DCM model fit indices, there is not yet 

an established consensus for determining what is considered too high or low (Rupp, 

Templin, & Henson, 2010).  

Note that in both samples, item parameter estimates either have a high estimate 

for the guess or slip parameter, but not both simultaneously. This may indicate that in a 

rubric-scored data context, the DINA model’s estimates for the guess and slip parameters 

represent something other than the probability of a correct response given their attribute 

mastery profile. Rather, due to the linear/sequential nature of the pseudo-item response 

patterns as well as the fact that the pseudo-item response patterns themselves are not 

elicited by the respondents but by separate raters, the guess and slip parameters may 

either represent scorer error or levels in the rubric that are not be performing as intended. 

However, because CLA+ constructed responses are double scored, all scorers undergo an 

extensive training process (Council for Aid to Education, 2017), and these results are 

consistent across both samples, makes it seem unlikely that high guess and slip parameter 

estimates are caused by scorer error.  

For example, in Table 28 the single sub-area Q-matrix designs estimate for the 

guess parameter for sub-area WM levels 1 and 3 are 0.465 and 0.433 respectively, while 

the guess parameter estimate for level two is 0.004.  Therefore, according to the DCM 

framework, WM level 1 and level 3 both have at least a 40% chance of being answered 
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correctly by an examinee who has not mastered the required attributes. Comparing these 

results to the Item Category Response Curves (ICRCs) shown in Figure 14, we also see 

that levels 1 and 3 for WM also have very low probabilities as well as very few values 

(compared to levels 0, 2, 4, and 6) for theta 𝜃 (which represents ability on the latent trait 

continuum) where either level is estimated to be the most probable response. 

Furthermore, we see in Table 36 that the distance from Step 1 to 2 and Step 3 to 4 are 

both extremely small compared to the distance from Step 2 to 3. This pattern suggests 

that large DINA model guess parameter estimates in a rubric-scored data context 

represent levels that are being consistently skipped or passed over by the raters/graders. 

Similarly, the same sub-area item parameter estimates in Table 28 for WM show 

that level 5 and level 6 have slip parameter estimates of 0.933 and 0.987, respectively. In 

the usual DCM framework context this would mean that there is at least a 93% chance 

that a respondent who has mastered the required attributes for level 5 and level 6 of WM 

will not be scored as such. If we look at the proportion of responses for scores of 5 and 6 

for Form A in Table 19, we see that only 3% of all the scores for the sample are either a 5 

or a 6. Furthermore, the ICRC for WM in Form A (see Figure 14) also shows that not 

only is the maximum probability of obtaining a score of 5 on WM estimated to be 

approximately 50%, but the width of the range on the latent trait continuum in which it is 

the most probable is small in comparison to the other levels as well. This finding suggests 

that large DINA model slip parameter estimates in a rubric-scored data context may 

represent levels that are too difficult.  
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5.1.3 Cognitive Diagnostic Indices 

	
The cognitive diagnostic indices (CDIs) also appear to have the potential to 

identify levels that may be problematic. In Figure 8 and Figure 9 for example we can see 

that the some levels, consistent across Q-matrix designs, are not estimated to produce any 

diagnostic information. The values of the CDI indices also appear to be consistent 

between samples as well, which may be considered further evidence that the phenomenon 

that is being observed may be due to the design of the rubric rather than being sample 

specific. For example, according to the CDI indices, levels 5 and 6 do not produce any 

diagnostic information in any of the three sub-areas. In essence, these CDI indices can be 

understood much like the item parameter estimates in that they appear to identify 

potentially faulty rubric levels.  

In contrast, the item attribute discrimination values presented in Table 32 show 

the estimated degree to which each level can discriminate masters and non-masters of 

each attribute. Comparing the results of the values in Table 32 to the single sub-area CDI 

values in Form A (see Figure 8) and Form B (see Figure 9), it is evident that total amount 

of diagnostic information each level produces for the test is the sum of its attribute 

discrimination values.  Interestingly, it seems that in both samples, item discrimination 

for attribute 2 in APS increases dramatically at level 3 compared to level 2. Alternatively, 

in WM, the lowest score level at which attribute 2 is implicated (level 2), is the most 

discriminating between masters and non-masters. However, this result is most likely due 

to the fact that level 2 is the only level that measures only attributes 1 and 2 for WM -- 

the others either only measure attribute 1 or all three attributes at once. 
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5.1.3 Skill Classification Estimates 

 

The skill classification estimates provided examples of the kinds of results that test takers 

and administrators could hope to see from applying DCMs to rubric-scored constructed-

response data. Normally, test takers are given three different scores (one for each sub-

area) on a scale of one to six. Theoretically, there exist 216 possible combinations of the 

three sub-area scores. As seen in Figure 10 and 11, a test taker can instead be classified 

into one of three or four latent class profiles for each sub-area, classifying them as either 

masters or non-masters of the attributes measured by each subsection. This process 

reduces the number of possible combinations of skill mastery to 48.  

However, the sub-area scores tend to be highly correlated (see Table 22, 23).  

Furthermore the present results reframe the perception of successful test performance. 

Instead of focusing on averages and percentile ranks of the individual sub-area scores, 

test stakeholders should perhaps frame their results in terms of attribute mastery class 

probabilities instead. For example, Table 34 demonstrates how a test sample population 

can be broken down by DCMs into proportions of different attribute mastery classes. 

Each student is placed, based on the maximum likelihood estimated by the DINA model, 

into one of the 25 classes shown in the table.  

Using these skill classifications, the language of the test results go from being 

summative and comparative (e.g. a score of five versus a score of four for APS) to being 

more formative and probabilistic (e.g., members of profile 13 have a 62% chance of 

exhibiting mastery of the second attribute of Writing Effectiveness, WE). Thus, DCMs 

may have potential for improving the diagnostic and formative capabilities of rubric-
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scored tests. However, this is assuming that these test scores behave in a way that is in 

fact more formative and diagnostic in actual practice. Much research is still needed, not 

only in the context of this study that demonstrates the validity of the assumption that the 

results DCAs produce are in fact more formative and diagnostic than the results that 

typical unidimensional assessments produce.  

Furthermore, compared to the G-PCM analysis, the results of the DINA model 

application to rubric-scored data are less straightforward in terms of interpretation. 

Unlike the DINA model, the G-PCM is able to identify, for exact locations on a 

theoretical latent trait continuum, the probability of being scored at one level in the rubric 

over another (see Table 35, 37). Like the guess and slip parameters estimated by the 

DINA model, these step difficulty parameters may provide evidence of inefficiencies in 

rubric sub-area scoring that may be occurring as a result of the rubric’s design.  

Additionally, treating each sub-area as its own item within the G-PCM also 

allows for the calculation of item information shares of a sub-area for the entire 

assessment, which highlights the sub-areas that contribute the most or the least towards 

overall test information. Model fit estimates and model fit tests between the G-PCM and 

PCM, in both samples, indicate that the G-PCM is more appropriate to be fit to the data 

than the PCM, which is evidence that the inclusion of an item discrimination parameter 

fits the data more parsimoniously (see Table 40, 41).  

Lastly, the G-PCM is also able to provide ability estimates for individuals based 

on their combination of APS, WM, and WE scores (see Figure 20). These ability 

estimates are able to place each unique combination of test scores at its own position on 

the latent trait continuum. For example, normally a total constructed-response score of 10 
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on the CLA+ is equal to any other total score of 10, regardless of what combination of 

sub-areas constitute that score. According to the G-PCM ability estimates, each 

combination of sub-area scores is on a different location on the latent trait continuum, 

therefore an individual that has a score of three for APS, four for WE, and three for WM 

may be higher or lower on the latent trait continuum than an individual that has a score of 

five for APS, three for WE, and two for WM.  

However, these kinds of G-PCM results do not fulfill the original objective of the 

present study, which was to propose and evaluate method to provide students as well as 

test administrators and developers with more formative and diagnostic feedback from 

rubric-score tests. If the ability estimates from the G-PCM are used merely to rank 

student performance, then the method does not change the unidimensional summative 

nature of the assessment. However, if the ability estimates were to be used as weights for 

sub-area scores or score combinations, or by test administrators to identify which sub-

areas required more attention, then the G-PCM ability estimates could also be 

conceivably used to improve the diagnostic/formative ability of a rubric-scored exam as 

well.  

 

5.2 Conclusions 

 

The theoretical objective of this study was to propose methods for retrofitting DCMs to 

rubric-scored constructed-response items with three specific goals in mind: to examine 

whether or not a rubric-scored item can reasonably be conceived of as a DCA and 

describe the conditions under which a numeric or ordinal rubric score can be represented 
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by a Q-matrix, to propose specific methods for retrofitting DCMs to rubric-scored data, 

and to evaluate these methods and gain insights into their usefulness by applying them to 

a specific example of rubric-scored test, the CLA+. These results also provide an 

additional specific benefit, namely insights and guidance for future rubric design. With 

regard to the first goal, the study showed that a scoring rubric represents inherently 

hierarchical structures that can be represented in a mathematical space, such as a Q-

matrix. These Q-matrices are unlike the Q-matrices originally designed for multiple-

choice format DCMs in that each ‘item’ in the Q-matrix represents a level on the rubric. 

Put another way, the design of these Q-matrices must take into account the linear 

hierarchical structure of the attributes, because only certain attribute mastery classes will 

be permissible (Liu & Huggins-Manley, 2016; Liu, Huggins-Manley & Bradshaw, 2016; 

Madison & Bradshaw, 2015).  

Regarding the second goal, the results showed that numeric, graded, or ordinal 

rubric scores can be represented by a Q-matrix when rubric sub-areas and sub-area 

attributes are identifiable and the graded nature of the rubric-scored data can also be 

represented in the same mathematical space. Within each sub-area, an attribute hierarchy 

as it relates to each level in the rubric must be delineated, preferably using research 

backed techniques such as those found in the Rule Space Method (Tatsuoka, 1983) or the 

Attribute Hierarchy Method (Leighton, Gierl, & Hunka, 2004). The present study 

proposed two methods for representing a Q-matrix in such conditions, the first being a 

rubric-based method, in which the language of the rubric criterion determined attribute 

loadings for each level and the second being a score based method, in which a Guttman 

scale (Guttman, 1944, 1950) was formed according to the magnitude of each sub-area’s 
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highest score. The optimal way to identify sub-areas and sub-area attributes would be 

through collaboration with multiple subject matter experts, in order to ensure the validity 

of the sub-areas as well as the attributes being measured (Lee, Park, & Taylan, 2011).   

In addition to identifying rubric sub-areas and sub-area attributes, the graded 

nature of the rubric data must also be represented within the same mathematical space as 

the Q-matrix. Unlike typical DCM analysis, the attribute hierarchies in rubric-scored data 

are already known, as well as which classes are permissible or impermissible as a result 

of the attribute hierarchy. The study satisfied this condition by a method essentially 

equivalent to Tutz’s (1997) sequential response mechanism, that created pseudo-item 

response patterns wherein items that were marked correct unconditionally had all items 

that preceded it marked as correct as well.  If the Q-matrix and the rubric-scored data can 

be represented within the same mathematical space, the study has shown that DCMs can 

be applied to rubric-scored data in a way that produces attribute mastery estimates 

derived from fine-grained skills either described in the criterion of the rubric or implied 

by its inherent linearly hierarchical structure.  

With regard to the third theoretical contribution, the study showed that both the 

DCM and G-PCM analysis were able to identify signs of inconsistent or uneven 

performance for different levels within each sub-area, using the parameter estimates and 

indices presented in this study. For example, the DCM analysis showed that in both 

samples, the item parameter estimates for Writing Mechanics (WM) (see Table 28, 29) 

begin high at level 1 and level 2, decrease sharply at level 3 due to a sudden increase in 

guess parameter value, and then increase sharply at level 4. These results are 

corroborated by the cognitive diagnostic indices (CDIs) as well (see Figure 8, 9) where 
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the amount of diagnostic information from WM is noticeably lower between level two 

and level four. The G-PCM analysis then shows that the most difficult transition to make 

on the latent trait continuum, for both samples, is the transition from a score of four to a 

score of five in WM (see Table 36, 38). The item category response curves (ICRCs) of 

both samples (see Figure 14, 17) then clearly demonstrate the inordinate amount of space 

that level four in WM occupies in both samples. Furthermore, the item information shares 

in Table 39 show that WM contributes the least amount of information towards the 

overall test information. From these results, it may be possible to conclude that the levels 

within WM appear to not be functioning at their fully intended diagnostic capacity.  

Assuming that the methods of rubric analysis demonstrated in this study are 

effective at identifying levels or sub-areas that are performing below the desired level of 

diagnostic ability, it may be possible to use such an analysis to make recommendations 

for future rubric design. In both samples, IDI, CDI, and step difficulty parameters show 

that levels 5 and 6 appear to offer little to no diagnostic value when using rubric-coded 

Q-matrices. Using these findings as evidence, one possible conclusion may be that six 

levels is unnecessary for the rubric, or alternatively, that the language of the rubric 

gradient needs revisions in order to produce less disproportionate score distributions.  

Another possible conclusion is that it may not be necessary to measure certain 

attributes in every level of the rubric or that there may some attributes may need to be 

broken down into multiple attributes. For example, it appears that Attribute 1 in APS has 

high estimates for the guess parameter in level 1 (see Table 28, 29). This may be an effect 

of the CLA+ scoring method in which scorers are aware that in order for a response to be 

scored, it must meet the minimum requirements for a score of 1 on APS.  
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Also, one can argue that the language of the rubric for APS implies that a level 

score of 1 seems to imply non-mastery of Attribute 1 (see Table 9). If this Q-matrix entry 

is changed to ‘0’, then no skills are present for a score level of 1, which is not allowed in 

the DINA model. Therefore, if this alternate Q-matrix is used, it must be extended with 

an additional “universal” attribute, which is required by all skill levels. An example of the 

resulting revised Q-matrix is shown below in Table 43. Such revisions may also be 

applied to the WE and WM subsections as well, if appropriate.   

Table 43. Example of a Revised Q-matrix for Analysis and Problem Solving (APS) 

Pseudo-Item Attribute 1 Attribute 2 Attribute 3 Attribute 4 
1 1 0 0 0 
2 1 1 1 0 
3 1 1 1 0 
4 1 1 1 1 
5 1 1 1 1 
6 1 1 1 1 

 

 Table 32 shows that the item attribute discrimination values identify which levels 

are the most discriminating for classifying masters and non-masters of each attribute. 

When values equal zero, this indicates that the level has no diagnostic ability to 

determine masters and non-masters of the attribute. In such cases, this may be considered 

evidence of levels on the rubric where those attributes no longer need to be measured. 

The implication is that, once a discovered threshold has been reached, attribute mastery 

has already occurred and so no subsequent levels can demonstrate further mastery. These 

attribute discrimination values then, combined with the rest of the DCM and G-PCM 

analysis can then guide the design of new Q-matrices by specifying new loadings for the 

attributes.   Specifically, the results could be considered evidence to suggest reducing 

the number of pseudo-items in the Q-matrix. The descriptive statistics indicated that, in 
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all three sub-areas and across both samples, of the six levels measured by the rubric, at 

least 90% of the responses were scored as a 2, 3, or 4. The results of the DCM and G-

PCM analysis also showed that levels 5 and 6 might have been too difficult. Based on 

these results, the number of pseudo-items could be reduced from six to five.  

The results of the item parameter estimates and fit statistics (see Table 28, 29, 30, 

31) also appear to show trends wherein lower levels in the rubric have higher estimates 

for guess parameters and higher levels in the rubric have higher estimates for slip 

parameters. Interpretively, in the case of applying DCMs to rubric-scored data (as 

opposed to directly measuring examinee responses) the guess parameters in this analysis 

represent the probability of being scored at a particular level or higher on the rubric 

without actually having mastered the required attributes. Similarly, the slip parameter in 

this analysis can be interpreted as the probability of not being scored at a particular level 

although the required attributes have been mastered. Therefore, in effect, the guess and 

slip parameters represent rater leniency and severity, respectively, when the DINA model 

is applied to rubric-scored data.  

 This interpretation of the guess and slip parameters is consistent with recent work 

by Tu, Zheng, Cai, Gao, & Wang (2017) wherein the researchers proposed a version of 

the DINA model for graded data (DINA-GD). In the DINA-GD model, the guess 

parameters are constrained so that respondents are more likely to guess on lower item 

scores i.e. the probability of guessing decreases as item scores increase. Similarly, the 

DINA-GD model constrains the slip parameter so that respondents are more likely to slip 

on higher item scores i.e. the probability of slipping increases as item scores increase. 

The main difference between the model proposed by Tu, Zheng, Cai, Gao, & Wang 
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(2017) and the approach to analyzing rubric-scored data in this study, is that in this study 

the graded nature of the data is inherently captured by the polytomous to dichotomous 

score conversion method, whereas in the DINA-GD model study the graded nature of the 

data is captured by the model parameters.  

 Finally, to frame the results of the study in terms of improving the formative and 

diagnostic ability of rubric performance, it is useful to consider how conducting a DINA 

model analysis of rubric-scored data as described in this study benefits test developers, 

administrators, and users. For test developers, the benefits to conducting a DINA model 

analysis of rubric-scored are centered on the identification of problematic or 

disproportionately scored rubric levels. A DINA model analysis of rubric-scored data is a 

method of supplying evidence for cases wherein rubric levels may be providing little to 

no diagnostic information. Specifically, item fit and parameter estimates, as well as 

cognitive diagnostic indices (CDI) showcase the probability that respondents will be 

scored at particular levels with respect to the attributes that they measure.  

 From these results, test developers may then be able to make recommendations to 

test administrators for potential changes that can be made to the rubric so that the rubric 

performs at an efficiency that is more optimal.  If the revised rubric performs with greater 

efficiency as a result of the revisions made to the rubric based on the DINA model 

analysis of the rubric-scored data, then, within the context of the DCM framework, the 

rubric is classifying attribute masters and non-masters with greater efficiency as well. If 

the revised rubric is distinguishing between attribute masters and non-masters with 

greater efficiency, than the diagnostic of the rubric has been improved as a result of the 

DINA model analysis, and therefore its formative ability has been improved as well.  
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 Lastly, the skill classification estimates provided by the DINA model, wherein 

respondents are given their most probable latent class profiles may be a more formative 

experience than summative test scores, which is one of the main objectives of the DCM 

framework in most educational contexts (Rupp, Templin, & Henson, 2010). Students 

may find that being classified as either masters or non-masters of the skills measured by a 

rubric, or their probability of having mastered particular skills or attributes, may be more 

conducive towards learning than graded numeric scores. However, this is the main theory 

that motivates research in DCMs within educational contexts, and has yet to be 

established or verified. Future research should attempt to validate the premise of research 

in DCM application within educational contexts that providing students with skill 

classification estimates and probabilities is more advantageous to learning development 

than numeric or summative test scores. 

 The disadvantages of the method proposed in this study for analyzing rubric-

scored data using the DINA model lay within its difficulty of application, complexity in 

interpretation, and experimental nature. While the method may be statistically helpful, it 

is most likely not practically convenient for most test developers or administrators as its 

application requires a significant breadth of knowledge in psychometrics, specifically in 

DCMs, which is still a burgeoning topic in the field. Furthermore, the interpretation of 

the results from such an analysis is unlike those seen in most current applications of the 

DINA model, which are normally to dichotomous correct/incorrect multiple-choice data. 

Therefore, even those who are well versed on the topic of DCMs may still have difficulty 

in interpreting the meaning of their results as well.  
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 Moreover, the G-PCM analysis appeared to provide a much more direct 

interpretation of the same kinds of anomalies found in the DINA model analysis. While 

being able to compare the results of the DINA model and G-PCM analysis proved to be 

effective at creating a more complete concept of what was occurring in the rubric-scored 

data statistically, the main difference between the DINA model and G-PCM analysis was 

that the DINA model was able to provide insights as to how the performance of the rubric 

related to the measured attributes. The G-PCM was also able to provide estimates for 

ability based on the combination of rubric sub-area scores (see Figure 20), in effect 

demonstrating that different combinations of sub-area scores represent different locations 

on the theoretical latent trait continuum. In fact, due to differences in item (which in this 

case are sub-areas on the rubric) discrimination, some combinations of sub-area scores 

may have higher ability level estimates even though their summed total is less than 

another combination’s summed total.  

 For example, two respondents may both have total scores of 17, while one 

respondent has a score of 6 for APS, 5 for WE, and 6 for WM and the other has a score of 

6 for APS, 6 for WE, and 5 for WM. In this case, the second respondent will have a 

higher estimate for ability on the latent trait continuum due to the fact that the WE sub-

area has a higher value for discrimination than WM. These results then provide evidence 

to test developers and administrators of differences in performance between rubric levels. 

However, much like how research has not yet determined whether or not the effect of 

providing respondents with DINA model skill mastery classification or probability 

estimates is more formative for students than typical summative test scores, the same can 

also be said for G-PCM theta ability estimates. Future research should also examine the 
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effect that providing students with theta ability estimates have on improving test 

formative and diagnostic ability, especially since theta ability estimates in effect rank 

student scores even further.  

 

5.3 Limitations and Future Research 

 

One of the major limitations of the study was that the design of the Q-matrix was based 

on the subjective interpretation of the researcher, guided by the language of the test’s 

scoring rubric. Ideally, a subject matter expert would have been consulted to help identify 

the number of attributes in each sub-area of the rubric. Because Q-matrix 

misspecification has a significant influence on the outcome of a DCM analysis, it is 

integral that the Q-matrices be specified correctly (Chen, Liu, Xu, & Ying, 2015; Chiu, 

2013). Future research should examine the effects of differently rubric-coded Q-matrix 

designs in order to determine the root cause of changes in the results.  

 Another limitation of the study is the potential for sample-specific results. 

Although the sample population used in this study was not small, similar studies should 

use both alternative samples and simulation studies in order to establish maximally 

generalizable results. Rubrics from other assessments should also be analyzed, with 

varying lengths and numbers of attributes, in order to better clarify the causality of 

different effects. Subsequent research should also investigate simulations that manipulate 

variables that have the potential to effect the results, such as Q-matrix design, model 

parameter constraints, the DCM condensation rule, sample size, test length, or score 

distribution.  A follow up simulation study, for example, may choose random initial 
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values for the DINA model guess and slip parameters and average the results over many 

iterations in order to determine their effect on model convergence and parameter 

estimation. By generalizing the results over multiple populations and measurement tools, 

it may be possible to establish statistically based protocols for improving the diagnostic 

ability of rubrics and rubric based assessments. If the reliability   

 In conclusion, the comparison of efficacy between DCMs and traditional IRT 

models should be further explored. Although DCMs have emerged as a potential for 

providing test takers and administrators with more formative feedback, their complexity 

may sometimes negate their advantages over simpler mathematical models that can 

accomplish the same goals (Gorin, 2009; von Davier & Haberman, 2014).  The results of 

this study demonstrate the value of comparing the present proposed retrofitting methods 

for DCMs with more established methods of psychometric research. Recent research has 

also proposed using a combination of DCM and IRT methods for analyzing data as well 

(Bradshaw & Templin, 2014). Researchers should continue to compare and contrast the 

difficulties and benefits of DCMs and more traditional mathematical models such as IRT, 

applied to a variety of test formats and application areas. 
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