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ABSTRACT

Essays on Microeconomic Theory

Xingye Wu

This dissertation analyzes problems related tomatching in general networks and decision

under uncertainty. Chapter 1 introduces the framework of convex matching games. Chapter

2 discusses three distinct applications of the framework. Chapter 3 develops a new test of

choice models with expected utility.

InChapter 1, I use Scarf’s lemma to show that given a convexity structure that I introduce,

the core of a matching game is always nonempty. This framework can accommodate general

contracting networks, multilateral contracts, and complementary preferences.

In Chapter 2, I provide three applications to show how the convexity structure is satisfied

in different contexts by different assumptions. In the first application, I show that in large

economies, the convexity structure is satisfied if the set of participants in each contract is

small compared to the overall economy. The second application considers finite economies,

and I show that the convexity structure is satisfied if all agents have convex, but not neces-

sarily substitutable, preferences. The third application considers a large-firm, many-to-one

matching market with peer preferences, and I show that the convexity structure is satisfied

under convexity of preferences and a competition aversion restriction on workers’ preferences

over colleagues.

In Chapter 3, I show that some form of cyclic choice pattern across distinct informa-

tion scenarios should be regarded as inconsistent with a utility function that is linear in

beliefs.
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Chapter 1. Theory of Convex Matching Games: A Scarf’s Lemma Approach

1.1 Introduction

Although matching theory has been successfully applied to markets with indivisible

goods, personalized contract terms, and non-transferable or imperfectly transferable payoffs,

the literature has primarily focused on two-sided markets with bilateral contracts and sub-

stitutable preferences1. These restrictions significantly limit the scope of existing matching

models because they are often not satisfied in reality. For example, in a labor market with

firms and workers, substitutable preferences are not satisfied if firms demand workers with

complementary skills or dual-career couples demand two jobs in the same region. Moreover,

the two-sided structure of the market is violated if firms can create joint ventures or workers

can build economic or social relationships, such as marriage or labor unions. In these cases,

relationships occur between firms and workers, as well as among firms and among workers.

Furthermore, multilateral relationships or contracts naturally emerge when we consider joint

ventures or projects that demand a rich set of resources or skills and thus involve more than

two parties. Going one step further, as workers usually value not only the firm for which they

work but also the colleagues with whom they work, we may interpret the nature of a firm as a

multilateral economic relationship among all workers in the firm. Under this interpretation,

a probably more appropriate approach is to model the labor market as a coalition formation

game2 instead of a two-sided market. In a coalition formation game, firms are no longer

exogenous institutions but can be endogenously restructured, liquidated, or created by their

workers. Furthermore, because individuals in reality may be simultaneously involved in

1See, for example, Kelso and Crawford (1982), Roth (1984), Hatfield and Milgrom (2005).

2See, for example, Banerjee, Konishi, and Tayfun (2001), Cechlarova and Romero-Medina (2001), and
Bogomolnaia and Jackson (2002).
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multiple economic and social relationships, we also need to go beyond the narrowly defined

coalition formation games in the literature, in which each agent can join at most one coalition.

Clearly, a labor market with all the complications discussed above is far beyond the scope

of standard matching models that are restricted to two-sided markets with bilateral contracts

and substitutable preferences.

The major difficulty that arises when relaxing these restrictions is the empty core prob-

lem. With arbitrary contracting networks, multilateral contracts, or complementary prefer-

ences, it is well known that the core of a matching model is often empty—that is, there is

no allocation immune to profitable joint deviations by groups of agents. For example, Gale

and Shapley (1962) highlight the possibility of an empty core in a one-sided market using

their unstable roommate example. In Kelso and Crawford (1982), substitutable preferences

are shown to be indispensable for the nonemptiness of the core in a two-sided, many-to-one

matching model. Moreover, Alkan (1988) shows that the core may be empty with multi-

lateral contracts, even if all agents have additively separable preferences. When the core is

empty, every allocation is considered unstable in the sense that there is always a group of

agents who can benefit from ignoring the prescribed allocation and instead taking some joint

action by themselves. Therefore, the possibility of having an empty core is a fundamental

problem when we apply a matching model to either a decentralized or centralized market.

In a decentralized market, the empty core problem renders our model useless because it has

no predictive power. On the other hand, when we explore the possibility of centralizing a

market from a mechanism design perspective, the empty core problem is a substantial threat

to whatever mechanism we might devise, as there is always a group of agents who can benefit

from bypassing the mechanism and instead acting according to some agreement reached by

themselves. Therefore, if we can resolve the empty core problem faced when considering
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arbitrary contracting networks, multilateral contracts, and complementary preferences, the

scope and applicability of matching models will be greatly expanded to markets with more

complicated economic and social relationships.

The first two chapters of my thesis is motivated by the discussions above. I explore the

possibility of obtaining nonempty core results in models that allow for general contracting

network structures, multilateral contracts, and complementary preferences. Moreover, I

also want to maintain, if possible, the strengths of existing matching models, including the

flexibility to cope with indivisible goods, personalized contract terms, and non-transferable

or imperfectly transferable payoffs.

In this chapter, I show that the core is nonempty in all matching games with a convexity

condition that I will introduce, including a large class of models that allow for arbitrary

contracting networks, multilateral contracts, and complementary preferences. In a rough

sense, the convexity of a matching game requires that the allocation space is convex and that

for each potential block, the set of unblocked allocations is also convex. Chapter 2 provides

three applications, and we will see that the convexity of matching games is not directly

related to convex preferences. The matching game may be convex without an assumption of

convex preferences, while in other cases convex preferences are not sufficient to guarantee

the convexity of the matching game. Furthermore, my notion of convex matching games

is not related to the notion of convex cooperative games in Shapley (1971), which requires

the characteristic function to be supermodular. The notion of convex matching games that

I will introduce can handle models in which the characteristic function fails to exhibit

supermodularity.

Scarf’s lemma is central to my approach to the nonemptiness of the core, in contrast

to the standard fixed-point approach in matching theory (see, for example, Adachi 2000,
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Fleiner 2003, Echenique and Oviedo 2004, 2006, and Hatfield and Milgrom 2005). Scarf’s

lemma first appeared in the seminal paper Scarf (1967), where it is used to show that a

balanced non-transferable utility (NTU) game always has a nonempty core. The lemma has

received attention from the combinatorics literature since Aharoni and Holzman (1998). In

particular, Aharoni and Fleiner (2003) use Scarf’s lemma to prove a fractional version of

stable matchings for hypergraphs, which suggests a potential extension of Gale and Shapley

(1962) to general contracting networks if fractionalmatchings in their paper can be interpreted

appropriately as actual matchings. Relating to their paper, the convex matching games I will

introduce can be viewed as a systematic framework for interpreting fractional allocations,

and the applications in this paper provide concrete ways in which the interpretation may work

in different contexts. In Chapter 2, my first and third applications will provide a natural

interpretation of fractional allocations in continuum economies, and my second application

will provide an interpretation when contract terms are taken from a convex set. Nguyen and

Vohra (2017) study a finite two-sided labor market with couples and use Scarf’s lemma to

find a stable fractional matching that may not be interpreted as an actual matching. The next

step in their paper is to use a rounding algorithm to find a nearby integer matching that is

near-feasible and stable. By contrast, in the convex matching game defined in my paper, the

stable fractional allocation found by Scarf’s lemma can be directly interpreted as an actual

allocation that is in the core, and therefore, a second step such as that in Nguyen and Vohra

(2017) is unnecessary.

The remainder of this chapter is organized as follows. Section 1.2 reviews the related

literature. Section 1.3 introduces the framework of convex matching games and states the

nonempty core result. Section 1.4 uses Scarf’s lemma to prove the nonemptiness of the core

in convex matching games, and Section 1.5 concludes.
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1.2 Literature

In the matching literature, a number of papers have attempted to obtain existence results

for core-like solution concepts while relaxing some of the standard restrictions, but they

lack the level of generality offered in this paper. For example, some papers have been

devoted to labor market matchings with complementary preferences, especially those that

emerge because of the presence of dual-career couples. These works show that stable

matchings exist only under very restrictive assumptions on preferences in finite markets

(see, for example, Cantala 2004 and Klaus and Klijn 2005). In large markets, however, the

problem of complementary preferences tends to vanish, as noted in a sequence of recent

papers, including Kojima, Pathak, and Roth (2013), Ashlagi, Braverman, and Hassidim

(2014), Azevedo and Hatfield (2015), and Che, Kim, and Kojima (2017). However, all of

these results, except for Azevedo and Hatfield (2015), only apply to two-sided markets with

bilateral contracts, which is a restriction I wish to relax in this paper.

Some papers attempt to go beyond two-sided markets, and they typically find that some

restrictions on preferences or on the network structure have to be imposed to allow the ex-

istence of the core or stable allocations. For example, in an NTU finite-market framework,

Ostrovsky (2008) and Hatfield and Kominers (2012) show that stable matchings exist in a

vertical supply chain network if preferences are fully substitutable. In a TU finite-market

framework, Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2013) show that com-

petitive equilibria and core allocations exist in an arbitrary trading network given substitutable

preferences. In a TU continuum-economy framework, Azevedo, Weyl, andWhite (2013) and

Azevedo and Hatfield (2015) (in their Section 6) show that when substitutable preferences are

relaxed, competitive equilibria and core allocations still exist. However, my general frame-

work of convex matching games assumes neither TU, nor substitutability of preferences, nor

5



a vertical supply chain network. Furthermore, all results mentioned in this paragraph only

apply to bilateral contracts, but my framework allows for multilateral contracts.

Some papers in the literature consider multilateral contracts and find that a nonempty

core can only be obtained under relatively restrictive assumptions on preferences or on

the contracting network. For example, Dutta and Masso (1997) and Bodine-Baron, Lee,

Chong, Hassibi, and Wierman (2011) study multilateral contracts that emerge as a result

of preferences over peers in many-to-one matching problems. More generally, Banerjee,

Konishi, and Tayfun (2001), Cechlarova and Romero-Medina (2001), Bogomolnaia and

Jackson (2002), Papai (2004), and Pycia (2012) consider coalition formation games, in which

agents endogenously form disjoint coalitions. In this framework, each coalition can be viewed

as a multilateral contract, but each agent only demands at most one contract. However, my

framework of convex matching games is more general in the sense that each agent may be

simultaneously involved in multiple contracts, as is in the first two applications in Chapter

2. Furthermore, in the first application, no assumption on preferences beyond continuity is

needed for the nonempty core result, as opposed to the restrictive assumptions made in the

literature.

1.3 Framework: Convex Matching Games

In this section, I introduce the concept of “convex matching games” and state the central

result of this paper, i.e., a regular convex matching game always has a nonempty core. The

framework of convex matching games is applicable to a large class of models that allow for

arbitrary contracting networks, multilateral contracts, and complementary preferences, as we

will see in Chapter 2. Because of its generality, this framework has to be introduced with

some level of abstractness. The exact meaning of each component of this framework will
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depend on its context. In Chapter 2, when we come to applications, the meaning of those

abstract objects will become clear.

Consider a matching game G := {I,M, φ, (Ai)i∈I}. The set I is a finite set of players.

In applications, a player i ∈ I may represent either one agent or a continuum of identical

agents, i.e., a type of agents. The setM is the set of allocations. For each allocation µ ∈ M,

the vector φ (µ) ∈ [0, 1]I is the characteristic vector of allocation µ. In applications in which

i ∈ I represents one agent, the characteristic value φi (µ) is either 0 or 1, indicating whether

agent i is “involved” in allocation µ. In applications in which i ∈ I represents a continuum

of identical players, the value φi (µ) ∈ [0, 1] represents the fraction of type-i agents involved

in allocation µ. Let the set

Mi := {µ ∈ M : φi (µ) > 0}

be the set of allocations that involve player i. Each player i is associated with a domination

relation Ai fromMi toM. When µ̂ Ai µ, we say that µ̂ ∈ Mi dominates allocation µ ∈ M

at player i. In the set M of allocations, let us assume that there exists a unique “empty”

allocation µ0 that involves no player, i.e., its characteristic vector φ (µ) = 0. In applications,

µ0 is the allocation under which agents do not interact with one another.

In applications, the domination relations (Ai)i∈I are typically derived from agents’

preferences. When i represents one agent, µ̂ Ai µ means that agent i strictly prefers µ̂ to µ.

When i represents a type of agents, I am particularly interested in the domination relation Ai

such that µ̂ Ai µ if and only if there are some type-i agents under allocation µwho are willing

to switch to even the worst position in allocation µ̂. If all players involved in allocation µ̂ are

willing to switch to µ̂ from µ, then allocation µ is unstable in the sense that it is vulnerable to

the profitable joint deviation µ̂. When this is the case, we say that the allocation µ is blocked

by µ̂. This motivates the following definition.
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Definition 1.1 In a matching game G = {I,M, φ, (Ai)i∈I}, an allocation µ ∈ M is blocked

by a nonempty allocation µ̂, if µ̂ Ai µ for each i ∈ I with φi (µ̂) > 0. An allocation µ is in

the core if it is not blocked by any nonempty allocation.

The goal of this chapter is to obtain nonemptiness of the core, and I find the following

convexity structure to be particularly relevant to that end.

Definition 1.2 A matching game G = {I,M, φ, (Ai)i∈I} is convex if it satisfies the following

three requirements:

(1) The allocation spaceM is a subset of a vector space over the field R, with the empty

allocation µ0 ∈ M being the zero vector.

(2) Whenever
∑m

j=1 w
jφ

(
µ j ) ≤ 1, we have

∑m
j=1 w

j µ j ∈ M, where w j > 0 and µ j ∈ M

for all j = 1, 2, . . . ,m.

(3) For each i ∈ I, there exists a complete and transitive relation Di over Mi s.t.

µ̂ bi
∑m

j=1 w
j µ j if

∑m
j=1 w

jφi
(
µ j ) = 1 and µ j Di µ̂ for each j with µ j ∈ Mi, where w j > 0

and µ j ∈ M for all j = 1, 2, . . . ,m s.t.
∑m

j=1 w
jφ

(
µ j ) ≤ 1.

To facilitate interpretation of the convexity structure defined above, call µ :=
∑m

j=1 w
j µ j

a φi-convex combination of
(
µ j )m

j=1 if
∑m

j=1 w
jφi

(
µ j ) = 1 and

∑m
j=1 w

jφ
(
µ j ) ≤ 1. Then,

statement (2) in the definition essentially requires that for each i the allocation space M

is closed under the operation of taking a φi-convex combination. Statement (3) requires

that µ̂ does not dominate a φi-convex combination of a set of Di-better allocations at player

i. In applications, the relation Di can be roughly interpreted as the preference relation of

player i. When i represents a continuum of identical players, the relation Di is obtained by

comparing the worst position for type-i agents under two allocations, as we will see in the

large-economy application in the first application in the next chapter. Intuitively speaking,
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statement (3) requires that if player i weakly prefers a set of allocations to a potential block,

then player i is unwilling to participate in the block under any φi-convex combination of these

allocations.

In addition to the convexity structure, let us also endow matching games with the

following topological structure.

Definition 1.3 A matching game G = {I,M, φ, (Ai)i∈I} is regular if the following hold:

(1) The allocation spaceM is a compact topological space.

(2) For each i ∈ I, the set {µ ∈ M : µ̂ bi µ} of allocations unblocked by µ̂ is closed for

each µ̂ ∈ Mi.

The regularity condition defined above is relatively mild. Intuitively,3 statement (2) re-

quires that a sequence of undominated allocations cannot converge to a dominated allocation.

In applications, this is typically satisfied by assuming continuous preferences.

Now let us state the central theorem of this chapter.

Theorem 1.4 In a regular and convex matching game G, the core is always nonempty.

The discussion for now has been entirely abstract, and we cannot learn much from this

nonempty core result unless we endow the abstract framework with concrete meanings. In

Chapter 2, I will study three concrete applications, but before doing that let’s first deal with

the proof of Theorem 1.4.

3This intuition is convenient but not entirely precise, because closedness is different from sequential
closedness in general topological spaces. In this paper, however, all three applications have a metrizable space
of allocations, and thus, closeness and sequential closedness are equivalent.
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1.4 Scarf’s Lemma Approach to Core

This section is devoted to the proof of Theorem 1.4 using Scarf’s lemma, which first

appeared in the seminal paper Scarf (1967). Consider an n-by-m non-negative matrix A =(
ai, j

)
, each of whose columns has at least one positive entry. Each row i of A is associated

with a complete and transitive relation Di over those column js with ai, j > 0. It is said that

a vector w in the polyhedron
{
w ∈ Rm

+ : Aw ≤ 1
}
dominates column j at row i if ai, j > 0,∑m

k=1 w
kai,k = 1, and k Di j for all k with wk > 0 and ai,k > 0. In words, a vector w

dominates column j at row i if the inequality Aw ≤ 1 is binding at row i, j is in the domain

ofDi, andDi-dominated by every column k in the support of w, provided that k is also in the

domain of Di. We also say that a vector w dominates column j, without specifying at which

row, if it does so at some row.

Lemma 1.5 (Scarf, 1967) There exists a vector in the polyhedron
{
w ∈ Rm

+ : Aw ≤ 1
}
that

dominates every column of A.4

To see how Scarf’s lemma is related to the core of a convex matching game, consider

a convex matching game G = {I,M, φ, (Ai)i∈I}. Each finite family
(
µ j )m

j=1 of nonempty

allocations induces a matrix A, whose rows are indexed by I and columns are indexed by

j ∈ {1, 2, . . . ,m}. The j-th column of A is the characteristic vector φ
(
µ j ) of the j-th allocation

µ j . Because µ j is nonempty, its characteristic vector φ
(
µ j ) , 0. Let Di associated with row

i be the relation guaranteed to exist by Definition 1.2(3). Then, the following observation is

straightforward.

Proposition 1.6 Given a matrix A induced by a finite family
(
µ j )m

j=1 of nonempty allocations

4This formulation can be found, for example, in Kiraly and Pap (2008). In the combinatorial literature, the
relation ≥i is often assumed to be a total order. However, in fact, we can relax anti-symmetry to allow ties.
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in a convex matching game, if a vector w ∈ Rm
+ with Aw ≤ 1 dominates column j at row i,

then the w-linear combination µ :=
∑m

j=1 w
j µ j is also an allocation inM, and furthermore,

µ j bi µ.

Proof. The linear combination µ =
∑

j:wj>0 w
j µ j is in the allocation spaceM by Definition

1.2(2), as
∑

j:wj>0 w
jφ

(
µ j ) = Aw ≤ 1. We also have µ j bi µ by Definition 1.2(3), as∑

j:wj>0 w
jφi

(
µ j ) = 1 and µk Di µ

j for all k with wk > 0 and µ j ∈ Mi.

Scarf’s lemma claims that there exists a vector w∗ ∈ Rm
+ with Aw∗ ≤ 1 that dominates

every column of A. Then, the w∗-linear combination µ∗ :=
∑m

j=1 w
∗ j µ j is an allocation that

is not blocked by any µ j , as µ j bi µ
∗ by the Proposition above. Then, we have the following

corollary.

Corollary 1.7 Given a finite family
(
µ j )m

j=1 of nonempty allocations in a convex matching

game G = {I,M, φ, (Ai)i∈I}, there exists allocation µ∗ ∈ M that is not blocked by each µ j

in this finite family.

From the corollary above, we know that we can find an allocation µ∗ that is not blocked

by finitely many allocations. However, to obtain an allocation in the core, in general, we have

to rule out infinitely many potential blocks. This gap between finitely and infinitely many

potential blocks is filled by the regularity condition.

LetM∗ ⊂ M be the core of a regular and convex matching game G. By definition, it

can be represented as

M∗ =
⋂

µ̂∈M\{µ0}

M∗µ̂

whereM∗
µ̂
⊂ M represents the set of allocations that cannot be blocked by µ̂. It is well known

that in a compact topological space, a family of closed sets has a nonempty intersection if
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every finite sub-family has a nonempty intersection. By the regularity of the matching game

G, the allocation spaceM is compact. EachM∗
µ̂
is closed inM because it can be represented

as the following union

M∗µ̂ =
⋃

i∈I:φi(µ̂)>0

{µ ∈ M : µ̂ bi µ}

and each component of the union is closed by regularity of the matching game. Finally,

Corollary 1.7 implies that the intersection of every finite family of M∗
µ̂
s is nonempty, and

therefore, the coreM∗, as the intersection of allM∗
µ̂
s, is also nonempty. This completes the

proof of the central result of this chapter, Theorem 1.4.

1.5 Conclusion

In this chapter, I show that the core is nonempty in all matching games that satisfy a

convexity structure. Roughly speaking, the convexity of a matching game requires that the

allocation space is a convex set and that a player is unwilling to participate in a potential

block under a convex combination of allocations that are weakly more preferred to the block.

Scarf’s lemma is central to my approach to the nonemptiness of the core, in contrast to the

standard fixed-point approach in matching theory.

The next chapter will be devoted to three applications of the abstract framework, where

we will see how it can be applied to various matching models with general contracting

networks, multilateral contracts, and complementary preferences. In each application, the

matching model will be shown to induce a regular and convex matching game, and therefore

has nonempty core.
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Chapter 2. Applications of Convex Matching Games

2.1 Introduction

In this chapter, I provide three applications of the theory of convex matching games

introduced in Chapter 1. Aswewill see, convexity is satisfied by a different set of assumptions

in each of the three applications.

Section 2.2 provides the first application, where I consider a continuum large-economy

model. Contracts are assumed to be small, in the sense that the set of participants in each

contract is small compared to the economy as a whole. Each contract is interpreted as

an economic or social relationship among a group of agents, such as employment, school

enrollment, joint venture, or marriage. Given finitely many types of agents and continu-

ous preferences, I show that the core is always nonempty even with arbitrary contracting

networks, multilateral contracts, and continuous, possibly complementary, preferences. In

this application, the convexity condition is satisfied because of the assumptions of small

contracts, and convexity of preferences is not relevant. This model is closely related to one

of the results5 in Azevedo and Hatfield (2015), but my model is more general in that the set

of contract terms is allowed to be rich and agents are allowed to have continuous preferences

over a continuum of alternatives. The model in Azevedo and Hatfield (2015), by contrast,

is restricted to discrete contract terms, and agents are assumed to have strict preferences

over only finitely many alternatives. A rich set of contract terms in my model offers greater

5Remarkably, Azevedo and Hatfield (2015) offer three distinct results. Their first result (Section 4) is the
existence of stable matching in a continuum, two-sided, many-to-many matching market, provided that agents
on one side have substitutable preferences. Their second result (Section 5) is a nonempty core in a continuum
economy with a general contracting network, multilateral contracts, and arbitrary preferences, which is closely
related to, but less general than, my first application. Their third result (Section 6) is the existence of competitive
equilibria in a continuum economy with transferable utility.
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flexibility, in particular, to subsume transferable utility (TU) models by letting each contract

contain a term that specifies monetary transfers for all participants and letting all agents’ util-

ity functions be quasi-linear in money. Furthermore, each contract in Azevedo and Hatfield

(2015) is assumed to have only finitely many participants. Therefore, their large-economy

model can only be viewed as a limit of a sequence of economies where the number of agents

per contract is fixed, while the number of contracts grow proportionally to the size of the

economy. In my model, however, each contract is allowed to involve a continuum of agents

as long as the continuum has zero mass. This may provide a new way to approximate a large

economy, in which both the number of agents per contract and the number of contracts grow

sub-linearly with respect to the size of the economy.

My first application is also related to a sequence of papers by Myrna Wooders. In

Wooders (1983), Shubik and Wooders (1983), and Kovalenkov and Wooders (2003), an

approximate notion of the core is shown to be nonempty in a large, finite cooperative game

under mild regularity assumptions. In particular, the “small group effectiveness” condition in

Kovalenkov andWooders (2003) is similar to my small contract assumption. The small group

effectiveness condition was first formulated in Wooders (1992) for TU cooperative games

and later generalized to NTU games. It requires that “almost all gains to group formation

can be realized by partitions of the players into groups bounded in absolute size”, and it is

sufficient for a nonempty approximate core in large, finite cooperative games. By contrast,

the small contract assumption I introduce is for continuum economies and sufficient for the

nonemptiness of the exact core. Remarkably, Kaneko and Wooders (1986) and Kaneko and

Wooders (1996) prove the nonemptiness of the core for continuum NTU cooperative games.

In these two papers, however, each allocation is assumed to be a partition of players into

coalitions containing only finitely many players, and players across different coalitions are

14



assumed to have no interaction. In my model, by contrast, a set of agents with positive mass

may be connected, directly or indirectly, through a set of contracts, although each contract

only involves a set of agents with zero mass. Another difference is that in those papers by

Wooders and her coauthors mentioned above, the model follows the tradition of cooperative

game theory and starts from the set of feasible payoff vectors for each coalition as primitives.

This approach abstracts from details on how coalitions of players function internally, while

my approach follows the tradition of matching theory and considers these details by taking

contracts as primitives.

Section 2.3 provides the second application, where I consider a finite-economy model

with multilateral contracts. I show that the core is nonempty if all agents have convex and

continuous preferences. The convexity of this matching game is satisfied in a straightforward

way because of the convexity of preferences. In this model, the terms of each contract

can vary continuously within a convex set, and each agent is assumed to have convex, but

not necessarily substitutable, preferences over terms of contracts that involve him or her.

In the contexts of consumption and production, having convex preferences over contract

terms corresponds to quasi-concave utility functions of consumption and quasi-convex cost

functions of production. When applied to pure exchange economies, the result reduces to

the classic one that the core is nonempty given convex preferences, but my model is more

general because goods are allowed to be agent-specific, which is a common feature shared

by existing matching models with contracts (Hatfield and Milgrom 2005). However, the

assumption of a convex set of contract terms in my model usually implies continuously

divisible goods, in contrast to standard matching models, which are able to handle indivisible

goods. My model is related to the multilateral-contract model in Hatfield and Kominers

(2015), where competitive equilibrium and, therefore, core allocations are shown to exist
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under TU and concave utility functions. By contrast, my model does not assume TU and can

therefore be applied to markets in which utilities are imperfectly transferable. Another subtle

difference is that convexity of preferences in my model corresponds to the quasi-concavity

of utility functions, which is weaker than the concavity assumed in Hatfield and Kominers

(2015).

Section 2.4 provides the third application, where I study a large-firm, many-to-one

matching model with peer preferences. There are finitely many firms and a continuum of

workers in the market, and each firm is large in the sense that it can hire a continuum of

workers. Workers may have preferences over their peers, in the sense that they value not

only the firm for which they work but also the colleagues with whom they work. With peer

preferences, each contract in this model is multilateral because it involves a firm and the

set of all workers that firm employs. Because firms may hire a continuum of workers with

positive mass, the assumption of small contracts in the first application is not satisfied, and

therefore, this model is not a special case of the first application. In this model, I show that

the core is nonempty if all firms and workers have convex and continuous preferences, and

in addition, all workers’ preferences over peers satisfy a “competition aversion” condition.

Roughly speaking, the competition aversion condition requires that each worker does not

like colleagues of his or her own type, possibly because workers of the same type have to

compete for projects, resources, and promotions when employed by the same firm. A striking

observation is that the core may be empty without the competition aversion condition, even if

all firms and workers have convex and continuous preferences. As we will see, the convexity

of this matching game is only satisfied when the convexity of preferences is combined with

competition aversion. This model is related to that of Che, Kim, and Kojima (2017), which

shows that stablematchings always exist in a large-firm, many-to-onematchingmodel without
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peer preferences, provided that all firms have continuous and convex, but not necessarily

substitutable, preferences. By contrast, my model additionally allows for peer preferences

and highlights the importance of competition aversion for a nonempty core, although without

peer preferences, my notion of the core is slightly different from the notion of stablematchings

in Che, Kim, and Kojima (2017). Furthermore, their paper allows for a compact space of

worker types, but I only consider finitely many types of workers.

2.2 Large Economies with Small Contracts

In the first application, I consider a large-economy model with a continuum of agents,

which is shown to be a regular and convex matching game and, therefore, have a nonempty

core. The model allows for general contracting networks and multilateral contracts, the terms

of which are allowed to vary continuously. While agents can hold a bundle of contracts, I

only impose a continuity assumption on an agent’s preferences over bundles. In particular,

I do not assume agents’ preferences to be substitutable. Utility is non-transferable in this

model in general, but the model also accommodates the TU framework when each contract

contains a term that specifies monetary transfers for all participants and agents’ preferences

are quasi-linear in money. Moreover, this model accommodates coalition formation games in

the sense of Banerjee, Konishi, and Tayfun (2001), Cechlarova and Romero-Medina (2001),

and Bogomolnaia and Jackson (2002) by restricting each agent to demand atmost one contract

at a time.

The nonempty core result only relies on three relatively mild assumptions. First, I

assume that there are finitely many types of agents in the economy. Agents of the same type

have the same preferences and are considered identical by all other agents. Second, I assume

that all contracts in the economy are small compared to the overall economy, in the sense
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that the set of participants in each contract has mass of zero, while the set of all agents in the

economy has positive mass. This assumption rules out global public goods that affect a large

set of agents, but it still allows us to consider local public goods that affect a continuum of

agents with zero mass. Third, I assume that preferences are continuous.

There is a finite set I of agent types in this economy. For each agent type i ∈ I, there

exists a mass mi > 0 of type-i agents. Let R be the set of all possible roles, where each role

r ∈ R specifies an agent’s tasks and compensations in an economic or social relationship

with other agents. For example, in the roommate matching context, a typical role r ∈ R can

be “being a type-1 agent in a type-1-2 match responsible for cleaning the kitchen but only

paying 40% of the rent”. Let us assume the set R of roles to be a compact metric space, and

roles that are close under the metric contain similar tasks and compensations.

In this economy, roles performed by different agents are coordinated by contracts, and

each contract type x ∈ X represents a consistent combination of roles in a certain economic

or social relationship among a group of agents. In applications, a contract may represent an

employment relationship between a firm and a worker, an enrollment relationship between a

school and a student, a joint venture by several firms, a marriage relationship between two

individuals, or any other relationship among people. Formally, each contract type x is a Borel

measure over the set R of roles, which represents the quantity of each role r ∈ R involved in a

type-x contract.6 Endow X with the weak-* topology, and let us assume that X is a compact

set that does not contain the zero measure over R.7

6The measure x may carry different units in different contexts. When x represents a type of contracts that
only involve finitely many agents, the measure x is integer-valued, measuring the head count of each role. When
x represents a type of contracts that contain a continuum of agents, the measure x is real-valued, carrying some
proper unit for the continuum.

7The weak-* topology on X is the weakest topology that makes the linear functional L f : X → R defined
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Each agent in this economy may wish to simultaneously participate in multiple relation-

ships with different groups of agents, in which case an agent will hold a bundle of multiple

roles. Let us assume that all agents demand at most N ∈ N roles at one time, and therefore,

an acceptable bundle β of roles is a Borel measure over R that assigns measure 1 to at most

N , possibly duplicate, roles in R. Let B be the set of all such bundles, and endow B with

the weak-* topology. Note that both a bundle β and a contract type x are a measure over R,

but they are conceptually unrelated because a bundle β measures the number of roles held by

one agent, while a contract of type x measures the number of roles contained in a contract,

most likely to be held by different agents. Each agent type i is associated with a complete

and transitive preference relation %i over B. Assume %i to be continuous in the sense that

all upper contour sets and lower contour sets are closed inB. A bundle β ∈ B is individually

rational (IR) for agent type i if β %i 0, where 0 is the zero measure over R that represents the

empty bundle. Let Bi be the set of nonempty IR bundles for type-i agents.8

An allocation µ specifies, for each i, the mass of type-i agents holding each nonempty IR

bundle β ∈ Bi, subject to some feasibility requirement. Formally, an allocation is µ := (µi)i∈I ,

where µi is a Borel measure over the set Bi of nonempty IR bundles for type-i agents. First,

feasibility requires the measure µi to respect the total mass constraint µi (Bi) ≤ mi for each

agent type i. Second, all roles present under the allocation µ = (µi)i∈I need to be able to fit

into a set of contracts, i.e., there exists a Borel measure µx over the set X of contract types

as
L f (x) :=

∫
R

f dx

continuous in x for all continuous functions f : R → R. Under the weak-* topology, the compactness
assumption requires no more than boundedness and closedness, by the Banach-Alaoglu theorem. See Appendix
C for details.

8I can show that the set Bi is compact. Closedness is because of the continuity of %i , and removing the
empty bundle 0 from Bi is not a threat to closeness because a sequence of nonempty bundles never converges
to the empty bundle 0. See Appendix C for details.
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s.t. the following accounting identity holds:

∑
i∈I

∫
β∈Bi

βdµi =

∫
x∈X

xdµx

In the accounting identity above, both sides are measures over the set R of roles.9 The left-

hand side calculates the quantity of roles from the perspective of agents, while the right-hand

side calculates the same quantity from the perspective of contracts.

Define addition and scalar multiplication on allocations component-wise, i.e.,

µ + µ′ :=
(
µi + µ

′
i
)
i∈I

λµ := (λµi)i∈I

but with the caveat that the set of feasible allocations is not always closed under these two

operations due to the total mass constraint. Among all feasible allocations, notice that there

is an empty allocation µ0 under which all agents hold the empty bundle and no contract is

present, i.e., µ0i is the zero measure.

The assumption of small contracts is implicit in the feasibility structure above. Notice

that if µ is a feasible allocation, then λµ with λ > 0 subject to the total mass constraint is

still a feasible allocation, in which the quantity of contracts of each type is multiplied by λ.

9To formally understand the accounting identity, on the left-hand side, each β is a measure over R, and µi
is a measure over βs. Therefore the integral

∫
β∈Bi

βdµi is again a measure of R. More formally, the integral∫
β∈Bi

βdµi is defined as the linear functional Lµi : C (R) → R

Lµi ( f ) :=
∫
β∈Bi

(∫
r ∈R

f dβ
)

dµi

where C (R) is the set of continuous functions on R. By the mass constraint µi (Bi) ≤ mi , the linear functional
Lµi is bounded, and therefore, it is isomorphic to a finite Borel measure over R due to the Riesz representation
theorem. Analogously, the integral on the right-hand side is also interpreted as a measure over R.

20



This implies that there must be a continuum of contracts of each type under an allocation,

and therefore, each contract can only involve a set of agents with zero mass. To see this

in another way, suppose, by contradiction, that there exists a type of large contracts, each

of which involves positive mass of agents. Then, an allocation can only contain finitely

many contracts of this type. When µ represents an allocation with one such contract, µ/2

cannot be interpreted as a feasible allocation, which contradicts the feasibility structure of

the model.

Now, we are in a position to define the notions of blocking and the core. Because a

block may involve a rich set of contracts arranged in an arbitrary way, it is convenient to

use nonempty allocations to represent all potential blocks. For a nonempty allocation µ̂ to

block an allocation µ, we require that if bundle β̂ for type-i agents is present under the block

µ̂, we need to find a positive mass of type-i agents under allocation µ who are willing to

switch to β̂. These type-i agents may come from two sources: (1) agents who hold the empty

bundle under allocation µ, and (2) agents who hold some nonempty bundle under µ that

is strictly less preferred to β̂. Following these intuitive descriptions, we have the following

definition.

Definition 2.1 An allocation µ is blocked by a nonempty allocation µ̂, if for each i with

µ̂i (Bi) > 0, we have either µi (Bi) < mi or µi

({
β ∈ Bi : β̂ �i β

})
> 0 for all β̂ ∈ Supp (µ̂i).

An allocation is in the core if it is not blocked by any nonempty allocation µ̂.10

Themodel formulated above is closely related to the second result (Section 5) ofAzevedo

10Conceptually, a block is identified by a set of contracts of certain types assigned to agents in a certain way,
and the mass of this set of contracts is irrelevant. Therefore, rigorously speaking, a block is the support of a
nonempty allocation µ̂. In the definition, I directly use nonempty allocations to represent blocks for the sake
of convenience, but bear in mind that µ̂ and λµ̂, where λ is a small positive number, represent the same block.
This also explains why in the definition we only need to find a positive mass, instead of a sufficient mass, of
agents in the allocation µ who are willing to participate in the block µ̂.
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and Hatfield (2015), where the set R of roles, the set X of contracts, and the set of Bi of IR

bundles for type-i agents are assumed to be finite, and agents have strict preferences. This

level of discreteness makes their model difficult to compare with, for example, TU models, in

which monetary transfers can vary continuously. In contrast, the compact set of roles in my

model offers greater flexibility to accommodate TU models by letting each contract contain

a term that specifies monetary transfers for all participants and all agents’ utility functions be

quasi-linear in money. More generally, my model can also handle situations in which utility

is non-transferable or imperfectly transferable.

Furthermore, each contract in Azevedo and Hatfield (2015) is assumed to have only

finitely many participants. As a consequence, their model can only be interpreted as a limit

of a sequence of economies where the number of agents per contract is fixed, while the

number of contracts grows linearly with respect to the size of the economy. In my model,

however, each contract may also involve a continuum of agents as long as the continuum has

zero mass. Therefore, mymodel may provide another way to approximate a large economy, in

which both the number of agents per contract and the number of contracts grow sub-linearly

with respect to the size of the economy.

Now, let us consider a simplistic example to illustrate the model and clarify the nota-

tions.

Example 1 Consider a continuum roommate problemwith three types of agents, I = {1, 2, 3};

each type of agents has mass 1. Each pair of agents may choose to become roommates, but

all agents only accept a roommate of a different type than their own. Further, type-i agents

strictly prefer having a type-(i + 1) roommate to having a type-(i − 1) roommate and prefer

having a type-(i − 1) roommate to living alone.11 In this example, let us assume that no

11In this example, let 3 + 1 := 1 for indices of agent types.

22



monetary transfer is allowed.

In the terminology of themodel, there are 6 roles R = {1/12, 2/12, 1/13, 3/13, 2/23, 3/23},

where i/i j represents the role “being a type-i agent in a roommateship between a type-i and

a type- j agent”. There are 3 contract types X = {12, 23, 13}, where i j := δi/i j + δ j/i j rep-

resents the type of roommateship that involves one type-i and one type- j agent.12 Because

each agent can only join at most one roommateship, the set of acceptable bundles is sim-

ply B := {δr : r ∈ R}, and the set of IR bundles for type-i agents is Bi =
{
δi/i,i+1, δi/i,i−1

}
.

Moreover, we define %i on Bi s.t. δi/i,i+1 �i δi/i,i−1.

An allocation is µ = (µi)
3
i=1, where µi

({
δi/i j

})
is the mass of type-i agents in a type-i j

roommateship. The total mass constraint requires that µi
({
δi/i,i+1

})
+ µi

({
δi/i,i−1

})
≤ 1, and

the accounting identity requires that µi
({
δi/i j

})
= µx ({i j}) for each (i, j), where µx ({i j})

is the mass of type-i j roommateship. Notice that the accounting identity essentially requires

that the mass µi
({
δi/i j

})
of type-i agents in a type-i j roommateship is equal to the mass

µ j
({
δ j/i j

})
of type- j agents in a type-i j roommateship.

Let us further use the example above to illustrate the notions of blocking and the

core. Let µi j be the allocation under which each type-i or type- j agent is in a type-i j

roommateship, and all agents of the third type are unmatched. Formally, we let µi j
i

({
δi/i j

})
=

µ
i j
j

({
δ j/i j

})
= µ

i j
x ({i j}) = 1. Using Definition 2.1, it is straightforward to verify that the

allocation µi,i−1 is blocked by µi,i+1. To see this, under the block µi,i+1, only type i and type

i+1 may hold a nonempty bundle, the only bundle for type i is δi/i,i+1, and the only bundle for

type i + 1 is δi+1/i,i+1. Under the allocation µi,i−1, we can find a positive mass of type-i agents

who are willing to accept the bundle δi/i,i+1 since, in fact, all type-i agents are holding the

less-preferred bundle δi/i,i−1. We can also find a positive mass of type-(i + 1) agents who are

12The measure δr over R is the Dirac measure that assigns measure 1 to r and measure 0 elsewhere.
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willing to accept the bundle δi+1/i,i+1 because, in fact, all type-(i + 1) agents are unmatched

under the allocation µi,i−1. Therefore, by Definition 2.1 the allocation µi,i−1 is blocked by

µi,i+1, and thus, the allocation µi,i−1 is not in the core. Therefore, none of the allocations µ12,

µ23, or µ31 is in the core. It is not difficult to verify that the unique allocation µ∗ in the core

is

µ∗ :=
(
µ12 + µ23 + µ31

)
/2

where half of type-i agents are matched with type-(i+1) agents, and the other half are matched

with type-(i − 1) agents, for each agent type i.

The roommate example is a simplistic illustration of the model, as it only involves bilat-

eral contracts and unit-demand agents, where substitutability of preferences holds trivially.

The next example, by contrast, involves multilateral contracts, multi-demand agents, imper-

fectly transferable utility, and complementary preferences, and its aim is to demonstrate the

generality of the model.

Example 2 Consider a board game club in which people meet to play chess and bridge.

The bridge game involves four players and the chess game involves two players. There is a

continuum of male players and a continuum of female players. Players care about the gender

of their opponents in each round of the game they play. When playing chess, the players

additionally care about who moves first. When playing bridge, players may gamble, and they

value the stake s ∈ [0, 1]. No player demands more than 5 rounds of chess and 20 rounds

of bridge in one meeting. Each player’s preferences are defined over all rounds of chess

and bridge he/she plays during the meeting. See Appendix B for a formal description of this

example using the notations of the model.

This example involves multilateral contracts, multi-demand agents, imperfectly trans-
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ferable utility, and possibly complementary preferences. Contracts are multilateral because

bridge involves 4 players, and players have multi-demand because they wish to play multiple

rounds. The two players in a chess game can imperfectly transfer their payoffs by transferring

the right to move first. Furthermore, players’ preferences may exhibit complementarity. For

example, male players may insist that at least half of their opponents during a meeting must

be female. When this is the case, a male player will reject a round of chess against another

male player if this will be his only round of play but is likely to accept it if he has just played

two rounds of bridge against three female players. Moreover, because the amount staked s

on bridge can vary continuously in [0, 1], this example is outside the scope of Azevedo and

Hatfield (2015).

Now, let us relate the model to the framework of convex matching games introduced in

the previous section. A large-economy model with small contracts induces a matching game

G = {I,M, φ, (Ai)i∈I}, where I is the set of agent types andM is the set of feasible allocations.

The characteristic vector of an allocation µ is defined as φ (µ) := (µi (Bi) /mi)i∈I , i.e., φi (µ)

represents the fraction of type-i agents holding some nonempty bundle under allocation µ.

Let Mi := {µ ∈ M : µi (Bi) > 0} be the set of allocations that involve a positive mass of

type-i agents, and define the domination relation Ai from Mi to M s.t. µ̂ Ai µ if either

µi (Bi) < mi or µi

({
β ∈ Bi : β̂ �i β

})
> 0 for all β̂ ∈ Supp (µ̂i). In words, µ̂ dominates µ

at agent type i if, for every bundle β̂ that might be held by type-i agents under µ̂, there is

positive mass of type-i agents under µ who are willing to switch to β̂. It is straightforward to

verify that the core of the induced matching game G as defined in Definition 1.1 reduces to

that defined in Definition 2.1.

Now let us state the regularity of the induced matching game G.

Proposition 2.2 The matching game induced by a large-economy model with small contracts
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is regular.

Proof. See Appendix C.

For the regularity of G, the topology we endowM with is again the weak-* topology,

which in this context is the weakest topology that makes
∫
β∈Bi

f dµi continuous in µ for each

i ∈ I and each continuous function f : Bi → R. The closedness of a set of unblocked

allocations is a result of the continuous preference relation %i. The detailed arguments are

in Appendix C.

Furthermore, we can also show that the induced matching game G has the convex

structure defined in Definition 1.2.

Proposition 2.3 The matching game induced by a large-economy model with small contracts

is convex.

Proof. Let us check the three requirements of a convex matching game.

(1) The allocation spaceM is a subset of the vector space

{
µ =

(
(µi)i∈I

)
: µi is a finite signed Borel measure over Bi, for each i

}
with addition and scalarmultiplication defined component-wise. Clearly, the empty allocation

µ0 is the zero vector.

(2) If
∑m

j=1 w
jφ

(
µ j ) ≤ 1, where w j > 0 and µ j ∈ M for all j = 1, 2, . . . ,m, then the

linear combination µ :=
∑m

j=1 w
j µ j is also a feasible allocation. To see this, note that the

total mass constraint

µi (Bi) =

m∑
j=1

w j µ
j
i (Bi) = mi

m∑
j=1

w jφi

(
µ j

)
≤ mi
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is satisfied. Moreover, define µx :=
∑m

j=1 w
j µ

j
x , and the accounting identity

∑
i∈I

∫
β∈Bi

βdµi =∫
x∈X xdµx holds because it holds for each µ j and is preserved under the linear combina-

tion.

(3) For each µ ∈ Mi, let βi
(µ) be the set of worst nonempty bundles for type-i agents

under allocation µ, i.e.,

β
i
(µ) := arg min

%i

Supp (µi)

The minimizers exist because Supp (µi) is closed in Bi, which is compact, and %i is contin-

uous.13 Define the relation Di overMi s.t. µ′ Di µ if β
i
(µ′) %i βi

(µ), where β
i
(µ) should

be viewed as an arbitrary selection from the minimizers, and the relation Di defined clearly

does not depend on the selection.

Now consider a φi-convex combination µ :=
∑m

j=1 w
j µ j , i.e., w j > 0 and µ j ∈ M for all

j s.t.
∑m

j=1 w
jφi

(
µ j ) = 1 and

∑m
j=1 w

jφ
(
µ j ) ≤ 1. Further assume that µ j Di µ̂ for each of its

component µ j ∈ Mi. Clearly, µ is a feasible allocation by (2), and it is sufficient to show that

µ̂ bi µ. By definition, we need to show that µi (Bi) = mi and µi

({
β ∈ Bi : β

i
(µ̂) �i β

})
= 0,

i.e., all type-i agents are holding some nonempty bundle under allocation µ, and all bundles

for type-i agents under µ are weakly more preferred to the worst bundle under block µ̂. First,

notice that

µi (Bi) =

m∑
j=1

w j µ
j
i (Bi) = mi

m∑
j=1

w jφi

(
µ j

)
= mi

13The minimizers in Supp (µi) can be obtained by taking the intersection of all lower contour sets within
Supp (µi). The intersection is nonempty because Supp (µi) is compact, all lower contour sets are closed, and
the intersection of finitely many lower contour sets is nonempty.
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Second, arbitrarily take a bundle β ∈ Supp (µi). Because

Supp (µi) = Supp

(
m∑

j=1

w j µ j

)
=

⋃
j:µji (Bi)>0

Supp(w j µ
j
i ) =

⋃
j:µji (Bi)>0

Supp(µ j
i )

we know that there exists j0 with µ j0 ∈ Mi s.t. β ∈ Supp(µ j0
i ), and thus, β %i βi

(
µ j0

)
%i

β
i
(µ̂), where the second %i is due to µ j0 Di µ̂. Therefore, the set

{
β ∈ Bi : β

i
(µ̂) �i β

}
is

disjoint with Supp (µi) and thus has zero measure.

Intuitively, the convexity of a matching game requires that µ̂ does not dominate a φi-

convex combination of a set of Di-better allocations at player i. In the large-economy model

with small contracts, the relation Di is obtained by comparing the worst nonempty bundles

under two allocations. To understand how convexity is satisfied by the large-economy model

with small contracts, first notice that under the φi-convex combination, all type-i agents are

holding some nonempty bundle since
∑m

j=1 w
jφi

(
µ j ) = 1 by definition. Furthermore, every

bundle β that is possibly held by type-i agents under the φi-convex combination must come

from some component µ j0 of it that involves type-i agents. By assumption, we have µ j0 Di µ̂,

which implies that the bundle β is weakly preferred by type-i agents to the worst bundle under

µ̂. As a consequence, under the φi-convex combination, no type-i agent is willing to switch

to the worst bundle under µ̂, and therefore, µ̂ does not dominate µ at agent type i. Notice that

the convexity of the induced matching game is satisfied purely because of the structure of the

game and is irrelevant to convex preferences.

With regularity and convexity, by Theorem 1.4, we have the following nonempty core

result.

Theorem 2.4 In the large-economy model with small contracts, the core is always nonempty.
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This nonempty core result is remarkably general because, essentially, only three assump-

tions have been made: (1) small contracts, (2) finitely many agent types, and (3) continuous

preferences. It does not rely on the two-sided structure of the market, substitutable prefer-

ences, or TU, in contrast to the existing results for various core-like solution concepts in the

matching literature.

The continuum roommate example (Example 1) serves as an ideal illustration of how

Scarf’s lemma and convexity work together to give us nonempty core. Consider the three

allocations µ12, µ23, and µ31, which induce the matrix A:

µ12 µ23 µ31

Type 1 1 0 1

Type 2 1 1 0

Type 3 0 1 1

whose rows are indexed by agent types and columns are indexed by the three allocations. For

each row i ∈ {1, 2, 3} and column µ ∈
{
µ12, µ23, µ31

}
, the (i, µ)-th entry is the fraction of

matched type-i agents under µ. For each row i, we define µi,i+1 Di µ
i,i−1 since type-i agents

prefer a type-(i + 1) roommate to a type-(i − 1) roommate. I use bold 1 to indicate the more

preferred allocation for each row.

Scarf’s lemma asserts that there exists a vector in the polyhedron
{
w ∈ R3+ : Aw ≤ 1

}
that dominates all columns. In this example, it is not difficult to verify that this dominating

vector is unique, which is w∗ := (1/2, 1/2, 1/2). Then, allocation µ∗ is constructed as the

w∗-linear combination of the three allocations

µ∗ :=
1

2
µ12 +

1

2
µ23 +

1

2
µ31
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For each i, the allocation µ∗ is a φi-convex combination of µ12, µ23, and µ31, and the relevant

µi,i+1 and µi,i−1 are both Di-better than µi,i−1. By convexity, the allocation µi,i−1 does not

dominate µ∗ at player i, i.e., no type-i agent under µ∗ has incentive to switch to µi,i−1.

Therefore the allocation µ∗ is in the core.

The assumption of small contracts plays an important role in convexity of the matching

game. The following example shows that when contracts are large, convexity may fail and

the core may be empty even in a continuum economy.

Example 3 Consider a continuum of agents of three types, each of which has mass 1. Any

set of agents with total mass no greater than 2 can form a coalition, and each agent can

participate in at most one coalition. Each agent values the mass of each type of agents in the

coalition in which he participates. The preferences of a type-i agent are represented by the

utility function

ui (x) = xi · (9 + 2xi+1 + xi−1)

where x ∈ [0, 1]3 is the mass vector of the coalition in which he participates. The utility of

being alone is 0.

It can be shown that the core is empty in this example, and the detailed arguments

are left for Appendix A. As a brief insight, notice that with the preferences specified above,

agents of the same type have a strong incentive to participate in the same coalition. When

all type-i agents participate in one coalition (xi = 1), their utility is at least 9. However, if,

for example, they are equally separated into two coalitions (xi = 1/2), their utility is at most

1/2 · (9 + 2 + 1) = 6. In fact, we can show that all agents of the same type must stay together in

the same coalition; otherwise, the allocation is blocked. With this observation, a continuum

of three types of agents is equivalent to three discrete agents, and we are essentially back to
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the unstable roommate problem in Gale and Shapley (1962), where the core is empty.

In fact, the large coalition formation model in the example above fails the convexity

condition. While using the Scarf’s lemma approach to obtain a core allocation, the matrix

A is the same as that in the continuum roommate example, and we obtain the same unique

dominating vector w∗ = (1/2, 1/2, 1/2). Without convexity, however, we cannot interpret this

dominating vector w∗ as a core allocation.

2.3 Finite Economies with Convex Preferences

As the second application, I show that the core is nonempty in a finite-economy model

with multilateral contracts if all agents have convex and continuous preferences. In this

model, the terms of each contract may vary continuously within a convex set, and each

agent is assumed to have convex, but not necessarily substitutable, preferences over terms of

contracts that involve him. When applied to general equilibrium models, the result reduces

to the classic one whereby the core is nonempty given convex preferences and production

technologies, but my model is more general because goods are allowed to be agent-specific,

which is a common feature shared by existing matching models with contracts (Hatfield and

Milgrom (2005)). Moreover, my model does not assume TU and can therefore be applied to

markets in which utilities are imperfectly transferable.

Consider an economy with a finite set I of agents who interact through a finite set X of

pre-contracts. Each pre-contract x ∈ X involves a nonempty set Ix ⊂ I of agents and has a set

Tx of contract terms. In this setup, a contract is a pre-contract x ∈ X paired with a contract

term tx ∈ Tx . Let us assume that for each pre-contract x ∈ X , the setTx of its terms is a convex

and compact subset of a normed vector space. Further, let Tx contain the zero vector 0x of
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the normed vector space, which represents the null contract under which the pre-contract x is

inactive. For example, a pre-contract type x ∈ X may be “agent i sells apples to agent j”, and

we have Ix = {i, j}. A contract term tx ∈ Tx may be (10, 15), which represents “agent i sells

10 pounds of apples to agent j, and j pays i $15”. Under the null contract term (0, 0) ∈ Tx ,

agent i sells no apples to agent j and j pays i nothing, and therefore, the pre-contract x is

inactive. More generally, the contract terms may quantities, prices, probabilities, time share,

etc.

For each agent i, let Xi := {x ∈ X : i ∈ Ix} be the set of pre-contracts that involve agent

i, and each agent i only cares about the terms of the pre-contracts in Xi. Formally, each agent

i has a complete and transitive preference relation %i over Ti :=
∏
x∈Xi

Tx . Let us assume that

agents have convex and upper semi-continuous preferences, in the sense that for each i, the

upper contour set
{
ti ∈ Ti : ti %i t̂i

}
is convex and closed for all t̂i ∈ Ti.

In this economy, an allocation is t = (tx)x∈X , under which each pre-contract x is assigned

a term tx ∈ Tx . Let T̄ :=
∏
x∈X

Tx be the allocation space. Notice that there is an empty allocation

0 ∈ T̄ , under which each pre-contract x is assigned its null term 0x , and therefore, all pre-

contracts are inactive. Given an allocation t ∈ T̄ , let It := {i ∈ I : ∃ x ∈ Xi s.t. tx , 0x} be

the set of agents involved in some non-null contract under t, and let ti be the projection of

t ∈
∏
x∈X

Tx onto the subspace
∏
x∈Xi

Tx . Let T denote the set of IR allocations, i.e.,

T :=
{
t ∈ T̄ : ti %i 0i for all i

}
Now we are in a position to define blocking and the core. Intuitively, an allocation t̂

blocks allocation t if all agents involved in t̂ strictly prefer t̂ to t.
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Definition 2.5 An IR allocation t ∈ T is blocked by a nonempty IR allocation t̂ ∈ T\ {0}

if t̂i �i ti for each i ∈ It̂ . An IR allocation t ∈ T is in the core if it is not blocked by any

t̂ ∈ T\ {0}.

Thismodel is related toHatfield andKominers (2015), inwhich competitive equilibrium,

and therefore core allocations, are shown to exist under TU and concave utility functions.

In their model, each contract term tx ∈ Tx is a combination of a non-monetary term and

the monetary transfer for all participants in pre-contract x. All agents’ utility functions are

quasi-linear in money and concave in the non-monetary term. By contrast, my model does

not assume TU and can therefore be applied to markets in which utilities are imperfectly

transferable. Another subtle difference is that convexity of preferences in my model corre-

sponds to quasi-concavity of utility functions, which is weaker than the concavity assumed

in Hatfield and Kominers (2015).

Now, let us relate the model to the framework of convex matching games introduced in

Section 1.3. The finite-economy model with convex preferences induces a matching game

G = {I,M, φ, (Ai)i∈I} in the following way. Let I be the set of agents andM := T be the set

of IR allocations. The characteristic vector of an allocation t ∈ T is defined as

φi (t) :=


1, if i ∈ It

0, otherwise

for each i, i.e., the characteristic value φi (t) indicates whether agent i is involved in some

non-null contract under allocation t. LetMi := {t ∈ T : φi (t) = 1} be the set of allocations

that involve agent i, and define the domination relationAi fromMi toM s.t. t̂ Ai t if t̂i �i ti.

In words, allocation t̂ dominates t at agent i if agent i under allocation t is willing to switch

to t̂. It is straightforward to verify that the core of the induced matching game G as defined
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in Definition 1.1 reduces to that defined in Definition 2.5.

Now let us make the crucial observation that the induced matching game has the convex

structure defined in Definition 1.2. The convexity of the induced matching game is a direct

result of convex preferences.

Proposition 2.6 With convex preferences, the matching game induced by the finite-economy

model is convex.

Proof. Let us check the three requirements of a convex matching game.

(1) Because each Tx is a subset of a vector space, the allocation spaceM := T is a subset

of the product vector space, with addition and scalar multiplication defined component-wise.

Clearly, the empty allocation 0 is the zero vector of the product vector space.

(2) If
∑m

j=1 w
jφ

(
t j ) ≤ 1, where w j > 0 and t j ∈ M for all j = 1, 2, . . . ,m, then the

linear combination t :=
∑m

j=1 w
j t j is also a feasible IR allocation. To see this, for each agent

i, we have

ti =
m∑

j=1

w j t j
i =

m∑
j:φi(t j)=1

w j t j
i ∈ Ti

because
∑m

j:φi(t j)=1
w j =

∑m
j=1 w

jφi
(
t j ) ≤ 1, and therefore, t is a feasible allocation. Further-

more, because t j
i %i 0i for each j with φi

(
t j ) = 1, by the convexity of %i, we have ti %i 0i.

Therefore, allocation t is IR.

(3) Define the relation Di over Mi s.t. t′ Di t if t′i %i ti. Consider a φi-convex

combination t :=
∑m

j=1 w
j t j , i.e., w j > 0 and t j ∈ M for all j s.t.

∑m
j=1 w

jφi
(
t j ) = 1 and∑m

j=1 w
jφ

(
t j ) ≤ 1. Further assume that t j Di t̂ for each of its components t j ∈ Mi. Clearly,

t is a feasible IR allocation by (2), and it is sufficient to show that t̂ bi t. However, this is
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trivial because

ti =
m∑

j=1

w j t j
i =

m∑
j:t j∈Mi

w j t j
i %i t̂i

because
∑m

j:t j∈Mi
w j =

∑m
j=1 w

jφi
(
t j ) = 1 and %i is convex.

We can also demonstrate the regularity of the matching game G induced by the finite-

economy model given upper semi-continuous preferences.

Proposition 2.7 With upper semi-continuous preferences, the matching game induced by the

finite-economy model is regular.

Proof. (1) Compactness of T .

The space T of IR allocations can be represented as

T :=
⋂
i∈I

{
t ∈ T̄ : ti %i 0i

}
Because T̄ :=

∏
x∈X

Tx and each Tx is compact, we know that T̄ is compact. By the upper

semi-continuity of %i, the set
{
t ∈ T̄ : ti %i 0i

}
is closed in T̄ . Thus, T is closed in T̄ and

therefore compact.

(2) Closedness of sets of undominated allocations.

The set
{
t ∈ T : t̂ bi t

}
=

{
t ∈ T : ti %i t̂i

}
is closed by the upper semi-continuity of%i.

With convexity and regularity, by Theorem 1.4, we have the following nonempty core

result.

Theorem 2.8 With convex and upper semi-continuous preferences, the finite economy has a

nonempty core.

35



2.4 Large-firm Matching with Peer Preferences

As the third application, I study a large-firm many-to-one matching model with peer

preferences. There are finitely many firms and a continuum of workers in the market, and

each firm is large in the sense that it can hire a continuum of workers. Workers may have

preferences over their peers, in the sense that they value not only the firm for which they work

but also the colleagues with whom they work. With peer preferences, each contract in this

model is multilateral and involves a firm and the set of all workers the firm employs. Notice

that the nonempty core result in Section 2.2 does not apply because contracts are large since

firms may hire a continuum of workers with positive mass.

In this model, I show that the core is nonempty if all firms and workers have convex

and continuous preferences and, in addition, all workers’ preferences over peers satisfy a

“competition aversion” condition. Roughly speaking, the competition aversion condition

requires that each worker does not like colleagues of his own type, possibly because workers

of the same type have to compete for projects, resources, and promotions when employed by

the same firm. A striking observation is that the core may be empty without the competition

aversion condition, even if all firms and workers have convex and continuous preferences. In

other words, convexity of preferences is not sufficient for convexity of the induced match-

ing game, in contrast to the model in the last section. As we will see, convexity of the

induced matching game is only satisfied when convexity of preferences is combined with the

competition aversion condition.

Consider a finite set F of firms and a continuum of workers of finitely many types. Let

Θ be the set of worker types, and for each worker type θ ∈ Θ, let m (θ) > 0 be the mass of

type-θ workers in the market. Then, a set of workers can be represented by a non-negative
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mass vector x ∈ RΘ+ subject to the constraint x (θ) ≤ m (θ). Let X be the set of all such

mass vectors. An allocation is defined as µ =
(
µ f

)
f ∈F , where µ f ∈ X is the mass vector

representing the set of workers employed by firm f . For the matching µ to be feasible, it has

to respect the total mass of workers of each type, i.e.,
∑

f ∈F µ f ≤ m.

The firms’ preferences are defined over sets of workers. Formally, each firm f has a

complete and transitive preference relation % f over X that is assumed to be upper semi-

continuous and convex, i.e., the upper contour set
{

x ∈ X : x % f x0
}
is closed and convex

for each x0 ∈ X . Workers value not only the firm for which they work but also the colleagues

with whom they work, and therefore, each worker has a complete and transitive preference

relation %θ over (F × X) ∪ {∅}. The pair ( f , x) ∈ F × X represents the state of being

employed by firm f and the whole set of f ’s employees is represented by the mass vector x.

The symbol ∅ represents the state of being unemployed. Let us assume each worker type θ’s

preference relation %θ to be upper semi-continuous and convex, i.e., the upper contour set

{x ∈ X : ( f , x) %θ a} is closed and convex, for each alternative a ∈ (C × Xθ) ∪ {∅} and each

firm f ∈ F.

We say that a match ( f , x) ∈ F × X is IR if firm f and the workers involved in x find

the match acceptable, i.e., x % f 0 and ( f , x) %θ ∅ for each worker type θ with x (θ) > 0. A

feasible matching µ is said to be IR if
(
f , µ f

)
is IR for all firms f ∈ F. LetM be the set of

all feasible and IR matchings. Notice that there is an empty matching µ0 ∈ M under which

all workers are unemployed, i.e., µ0f = 0 for all f ∈ F. In the remainder of this section, a

matching always refers to a feasible and IR matching, unless otherwise stated.

Now let us define the notions of blocking and the core.

Definition 2.9 A matching µ ∈ M is blocked by a nonempty matching µ̂ ∈ M\
{
µ0

}
if for
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each f ∈ F with µ f , 0, we have µ̂ f � f µ f and for each f̂ and θ with µ̂ f̂ (θ) > 0, we have

either
∑

f ∈F µ f (θ) < m (θ) or there exists f ∈ F with µ f (θ) > 0 s.t. ( f̂ , µ̂ f̂ ) �θ
(
f , µ f

)
. A

matching µ ∈ M is in the core if it is not blocked by a nonempty matching.

Intuitively, a matching µ̂ blocks another matching µ if all firms involved in the block

µ̂ are willing to switch to µ̂ from µ, and for each worker type θ that is employed by firm

f̂ under the block µ̂, we have to find a positive mass of type-θ workers under µ who are

willing to switch to ( f̂ , µ̂ f̂ ). These type-θ workers may come from two sources: workers are

unemployed under µ and workers who are employed by some firm f under µ, but strictly

prefer ( f̂ , µ̂ f̂ ) to
(
f , µ f

)
.

This model is related to the recent paper by Che, Kim, and Kojima (2017), who show

that stable matchings always exist in a large-firm many-to-one matching model without

peer preferences, provided that all firms have continuous and convex, but not necessarily

substitutable, preferences. Without peer preferences, my notion of the core is slightly different

from the notion of stable matchings in Che, Kim, and Kojima (2017). Moreover, their paper

allows for a compact space of worker types, but I only consider finitely many types of

workers.

Surprisingly, the assumptions of convexity and upper semi-continuity I have imposed

on preferences thus far are not sufficient for a nonempty core. The following provides a

counter-example.

Example 4 Consider two firms and three worker types θ1, θ2, and θ3, and each type of

worker has a mass of 1. All firms strictly prefer to have more workers but have a capacity

constraint of mass 2. For each worker type θi, all type-θi workers’ preferences over F × X
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are represented by the utility function

ui ( f , x) = xi · (9 + 2xi+1 + xi−1)

According to preferences specified above, the two firms are essentially dummy agents that pas-

sively accept workers. Therefore, this example is equivalent to the large coalition formation

example (Example 3), in which the core is empty.

As in Example 3, the crucial observation from the example above is that if workers of

the same type have a strong incentive to stay together by working for the same firm, the model

essentially becomes a finite roommate problem, in which the core may very well be empty.

Therefore, to obtain a nonempty core, some assumption has to be made such that agents of

the same type are willing to be separated into different firms. Following the observation

above, I find that the following additional restriction on workers’ preferences is sufficient for

a nonempty core.

Definition 2.10 The workers of type θ ∈ Θ are competition-averse if ( f , x′) %θ ( f , x) for

every pair of IR matches with x (θ) > 0 and x′ (θ) = 0.

The competition aversion restriction defined above requires that a type-θ worker ap-

proaches his bliss point when the mass of type-θ colleagues approaches 0. This implies

that the worker does not like colleagues of the same type, possibly due to competition for

projects, resources, and promotions among the same type of workers employed by the same

firm. Admittedly, in applications where there is strong synergy between workers of the same

type, the competition aversion condition is not satisfied, and so the core is not guaranteed

to be nonempty. As Example 3 demonstrates, if same-type synergy is sufficiently strong

that all workers of the same type always wish to stay together in one firm, we are back to a
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finite coalition formation problem where the core is often empty. However, if the same-type

synergy is dominated by the competition effect, then the competition aversion condition is a

reasonable assumption, in which case the core is guaranteed to be nonempty.

Now, let us relate the model to the framework of convex matching games introduced in

Section 1.3. The large-firm matching model with peer preferences induces a matching game

G = {I,M, φ, (Ai)i∈I} in the following way. Let I := F ∪Θ, andM be the set of feasible IR

matchings. The characteristic vector of an allocation µ ∈ M is defined as

φ f (µ) :=


1, if µ f , 0

0, otherwise
, for each f ∈ F

φθ (µ) :=

∑
f ∈F µ f (θ)

m (θ)
, for each θ ∈ Θ

i.e., the characteristic value φ f (µ) indicates whether firm φ is involved in matching µ,

and φθ (µ) represents the fraction of type-θ workers employed under matching µ. Let

Mi := {µ ∈ M : φi (µ) > 0} for each i ∈ F ∪Θ, and define the domination relation Ai from

Mi toM. For a firm f , let µ̂ A f µ if µ̂ f � f µ f , i.e., firm f prefers the set of employees

under µ̂ to µ. For a worker of type θ, let µ̂ Aθ µ if either
∑

f ∈F µ f (θ) < m (θ) or for each

f̂ with µ̂ f̂ (θ) > 0 there exists f ∈ F with µ f (θ) > 0 s.t. ( f̂ , µ̂ f̂ ) �θ
(
f , µ f

)
. In words, a

matching µ̂ dominates a matching µ at worker type θ if there exists a positive mass of type-θ

workers under matching µ willing to switch to any position for type-θ workers in matching

µ̂. It is straightforward to verify that the core of the induced matching game G as defined in

Definition 1.1 reduces to that defined in Definition 2.9.

Now let us make the crucial observation that the induced matching game has the convex

structure defined in Definition 1.2. The convexity of the induced matching game is a result
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of convex preferences and competition aversion.

Proposition 2.11 If all firms and workers have convex preferences and all workers are

competition-averse, the matching game induced by the large-firm matching model with peer

preferences is convex.

Proof. See Appendix D.

Intuitively, the convexity of a matching game requires that for each i, an allocation

µ̂ ∈ Mi does not dominate a φi-convex combination of a set ofDi-better allocations at player

i. In this model, the convexity of preferences alone is insufficient for the convexity of the

induced matching game. This is because the relation Dθ is only concerned with the firms

that employ a positive mass of type-θ agents, but some of the components of a φθ-convex

combination may involve firms that do not employ type-θ workers. Therefore, to ensure

that the φθ-convex combination is unblocked, we need to require that a mass vector x with

x (θ) = 0 is preferred to mass vectors with x (θ) > 0. In this large-firm model with peer

preferences, a notable difference from the first application in this paper is that a component

of a φθ-convex combination with φθ (µ) = 0 may affect type θ workers’ payoff, while in a

large economy with small contracts, a component with φi (µ) = 0 is not relevant to type-i

agents.

Moreover, we can demonstrate the regularity of the matching game G induced by the

large-firm matching model, given upper semi-continuous preferences.

Proposition 2.12 If all firms and workers have upper semi-continuous preferences, the

matching game induced by the large-firm matching model with peer preferences is regu-

lar.

Proof. (1) Compactness ofM.
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Let M̄ be the set of feasible but not necessarily IR matchings, i.e.,

M̄ :=
µ = (

µ f
)

f ∈F : µ f ∈ R
Θ
+ and

∑
f ∈F

µ f ≤ m


Clearly, M̄ is compact (w.r.t. Euclidean metric). Then, the spaceM of feasible IR matchings

can be represented asM =
⋂
f ∈F

M f ∩
⋂
θ∈Θ

Mθ , where

M f :=
{
µ ∈ M̄ : µ f % f 0

}
Mθ :=

{
µ ∈ M̄ :

(
f , µ f

)
%θ ∅ for each f with µ f (θ) > 0

}
The setM f is closed by upper the semi-continuity of % f , and the setMθ is closed by the

upper semi-continuity of %θ . Therefore,M is closed in M̄ and thus compact.

(2) Closedness of sets of undominated allocations.

For each firm f , the set

{
µ ∈ M : µ̂ b f µ

}
=

{
µ ∈ M : µ f % f µ̂ f

}
is closed by the upper semi-continuity of % f .

For each worker type θ, the set
{
µ ∈ M : µ̂ b f µ

}
can be represented as

{
µ ∈ M :

∑
f ∈F µ f (θ) = m (θ)

}
∩

⋃
f̂ ∈F:µ̂ f̂ (θ)>0

{
µ ∈ M :

(
f , µ f

)
%θ ( f̂ , µ̂ f̂ ) for each f with µ f (θ) > 0

}
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Clearly, the set
{
µ ∈ M :

∑
f ∈F µ f (θ) = m (θ)

}
is closed. Moreover, the set

{
µ ∈ M :

(
f , µ f

)
%θ ( f̂ , µ̂ f̂ ) for each f with µ f (θ) > 0

}
is closed by the upper semi-continuity of % f .

With convexity and regularity, by Theorem 1.4, we have the following nonempty core

result.

Theorem 2.13 In the large-firm matching model with peer preferences, the core is nonempty

if all firms and workers have upper semi-continuous and convex preferences and all workers

are competition-averse.

The model subsumes the case in which workers have no peer preferences by letting

( f , x′) ∼θ ( f , x) for all x, x′ ∈ X . Thus, the next corollary is immediate.

Corollary 2.14 In the large-firm matching model without peer preferences, the core is

nonempty if all firms and workers have upper semi-continuous and convex preferences.

The corollary above does not subsume the main result of Che, Kim, and Kojima (2017),

as their notion of stable matchings is slightly different from my notion of the core. Further-

more, their model allows for a compact space of worker types, but I only consider finitely

many types of workers.

2.5 Conclusion

In this chapter, three distinct applications of the framework of convex matching games

are provided. In each application, the model induces a regular and convex game, and therefore

has nonempty core.
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As a final remark, the solution concept studied in my framework of convex matching

games is the notion of core, while the notion of stability is also widely used in matching

theory literature. These two notions are very similar but different in subtle ways. Neither

implies the other in general, and in fact the core and the set of stable matchings may be

both nonempty but disjoint. In special cases, however, core and stability are more closely

related, which allows us to show the existence of stable matchings by showing nonempty core

under some modified preferences. I use a special case of Azevedo and Hatfield (2015) as an

example to illustrate how this can be done in Appendix E.
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Chapter 3. Consistency Requirement of Expected Utility Models

3.1 Introduction

Information economics typically assumes a decision maker (DM) who relies on her

belief over states to evaluate possible actions using expected utility14. The DM’s utility

function is state-dependent, and she updates her belief upon receiving new information, and

subsequently changes her preferences over actions.

In this chapter, I provide a new test of this expected utility framework. Because pref-

erences may change when beliefs are updated, rational choices across different information

scenarios need not be transitive: for instance, the DM choosing a over b, b over c, c over

a, in three distinct information scenarios, need not contradict rationality. However, I show

that some form of cyclic choice pattern even across distinct information scenarios should be

regarded as inconsistent with the linearity of preferences in beliefs. For instance, if there

are two payoff-relevant states, then a DM preference ordering a > b > c under one belief,

b > c > a under another belief, and c > a > b in yet another belief, violate the linearity

assumption in expected utility models.

Let’s consider a concrete context to demonstrate the main result of this paper. Consider

a case with two suspects of a crime. Police investigations show that one and only one of the

two suspects committed the crime. The court is trying to make a decision regarding which

suspect to convict, and three possible actions are

• Action 0: Convict no one

14See, for example, Crawford and Sobel (1982), Bikhchandani, Hirshleifer, and Welch (1992), Kamenica
and Gentzkow (2011).
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• Action 1: Convict Suspect #1

• Action 2: Convict Suspect #2

Evidence will be submitted to the court throughout the process of the trial. Upon

receiving new evidence, the jurors update their beliefs, and therefore their preferences change

over time. Suppose that a juror has the following three preference orderings over the three

actions at three distinct times:

• Preference (1): 0 � 1 � 2

• Preference (2): 2 � 0 � 1

• Preference (3): 1 � 2 � 0

Now the interesting question is: Can we explain the observed preference pattern of the

juror by an expected utility model? Formally, does there exist a Bernoulli utility function

of the juror defined over action-state pairs, together with three beliefs at the three distinct

times that rationalizes the three preference orderings respectively, assuming the juror to be

an expected utility maximizer? The answer to this question turns out to be negative. The

set of three preference orderings above constitute what I call a 3-cycle, which I will show is

inconsistent with the expected utility framework given only two payoff-relevant states in this

case. The limited number of payoff-relevant states limits the degrees of freedom we have to

rationalize a set of preference orderings, even though the Bernoulli utility function and beliefs

can be chosen arbitrarily. More generally, I am going to show that given n payoff-relevant

states, an (n + 1)-cycle is not rationalizable by expected utility models.
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3.2 Model

Consider a decision maker (DM) choosing over a set A of actions under uncertainty. Let

Ω be the set of all payoff relevant states, and I assumeΩ to be finite. Given some information

available to theDM, shewill form certain belief over the states, and then evaluate actions using

expected utility. This is the decision framework shared by a variety of information-theoretic

models, including Crawford and Sobel (1982), Bikhchandani, Hirshleifer, and Welch (1992),

Kamenica and Gentzkow (2011). Different from this strand of literature, I’m going to abstract

away from specific information structures as well as how the DM updates her belief.

An information scenario i indexes the information available to the DM at some stage

before a decision is made, and let πi be the DM’s posterior belief over states given the

information available in scenario i. For the purpose of this paper, the specific information

available in scenario i is not relevant, neither is the way the DM updates her belief. Let I

be the set of all information scenarios in question. In each information scenario i ∈ I, with

belief πi the DM evaluates each action using expected utility and then obtains her preference

relation %i on A.

Let’s summarize the decision framework discussed above by the following defini-

tion.

Definition 3.1 A set of preference relations {%i}i∈I across different information scenarios

admits an expected utility (EU) representation if there exists a Bernoulli utility function

u : A × Ω → R together with beliefs {πi}i∈I ⊂ ∆ (Ω) s.t. for each information scenario

i ∈ I, the associated preference relation %i is represented by the utility function Ui : A→ R

defined as

Ui (a) :=
∑
ω∈Ω

πi (ω) u (a, ω)
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Notice that the only assumption of this expected utility framework is, as the terminology

suggests, the linearity of the utility function in beliefs. Now let’s define the cyclic pattern

which I am going to show is inconsistent with the expected utility framework.

Definition 3.2 A set of preference relations {%i}i∈I across different information scenarios

contains an k-cycle, if there exist a set of k information scenarios i1, i2, . . . , ik ∈ I and a set

of k actions a1, a2, . . . , ak ∈ A s.t.

%i1 : ak �i1 ak−1 �i1 ak−2 �i1 · · · �i1 a1

%i2 : a1 �i2 ak �i2 ak−1 �i2 · · · �i2 a2

%i3 : a2 �i3 a1 �i3 ak �i3 · · · �i3 a3
...

%ik : ak−1 �ik ak−2 �ik · · · �ik a1 �ik ak

Notice that if a set of preference relations {%i}i∈I indeed contains a k-cycle, we must

have |I | ≥ k and |A| ≥ k in the first place. As a special case of the definition above, the

juror’s preferences discussed in the introduction clearly contains a 3-cycle.

Now it is ready to formally state the main result of this chapter.

Theorem 3.3 With only n payoff-relevant states, a set of preference relations {%i}i∈I across

different information scenarios that contains an (n + 1)-cycle does not admit an expected

utility representation.

In other words, with n payoff-relevant states, an expected utility maximizer cannot

exhibit an (n + 1)-cycle in her preferences across information scenarios. The intuition is that

with |Ω| = n, the belief space ∆ (Ω) only has n−1 degrees of freedom, which is not sufficient
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to accommodate the n + 1 distinct preference relations in an (n + 1)-cycle.

My proof relies on a simple result in convex geometry, which is known as Radon’s

theorem, first introduced by Radon (1921). It can also be seen in, for example, Peterson

(1972).

Theorem 3.4 (Radon 1921) Any set of n + 1 points in Rn−1 can be partitioned into two sets

whose convex hulls intersect.

Let’s now prove the main theorem by contradiction.

Proof of the Main Result. Suppose that the set of preference relations {%i}i∈I in the main

theorem admits an expected utility representation. By definition, there exists a Bernoulli

utility function u : A×Ω→ R together with beliefs {πi}i∈I ⊂ ∆ (Ω) s.t. for each information

scenario i ∈ I, the associated preference relation %i is represented by the utility function

Ui : A→ R defined as Ui (a) :=
∑
ω∈Ω πi (ω) u (a, ω).

Let the (n + 1)-cycle contained in the DM’s preferences {%i}i∈I involve information sce-

narios i1, i2, . . . , in+1 and actions a1, a2, . . . , an+1, and by definition, for each k = 1, 2, . . . , n+1,

we have a j �ik a j−1 for all j , k. (For notational convenience in this proof, let’s define

1 − 1 := n + 1.)

Because∆ (Ω) is (n − 1)-dimensional, by Radon’s theorem the set of beliefs
{
πik

}l
k=1 can

be partitioned into two sets
{
πik

}
k∈T1

and
{
πik

}
k∈T2

s.t. Conv
({
πik

}
k∈T1

)
andConv

({
πik

}
k∈T2

)
intersect. Let π∗ ∈ ∆ (Ω) be a belief in the intersection of the two convex hulls. Let %∗ be

the preference relation over A induced by the utility function U∗ (a) :=
∑
ω∈Ω π

∗ (ω) u (a, ω),

and clearly %∗ is a transitive relation.

Now I am going to show that a j �
∗ a j−1 for all j = 1, 2, . . . , n + 1, which contradicts

the transitivity of %∗ and concludes the proof. To see this, if j ∈ T1, we have a j �ik a j−1 for

49



all k ∈ T2, and therefore a j �
∗ a j−1 because π∗ ∈ Conv

({
πik

}
k∈T2

)
and utility is linear in

beliefs. Symmetrically, if j ∈ T2, we have a j �ik a j−1 for all k ∈ T1, and therefore a j �
∗ a j−1

because π∗ ∈ Conv
({
πik

}
k∈T1

)
. This concludes the proof of the main result.

The result is in fact stronger than what it formally states, since a set of preference

relations {%i}i∈I may implicitly contain a cycle rather than explicitly does so, in which case

we can still conclude that the set of preference relations does not admit an expected utility

representation. For example, let’s consider the following set of four preference orderings over

three actions 1, 2, and 3:

%1: 1 �1 2 �1 3

%2: 1 �2 3 �2 2

%3: 2 �3 3 �3 1

%4: 3 �4 2 �4 1

We can verify that no 3-cycle is contained in this set of preference relations, and therefore

Theorem 3.3 does not apply directly. However, we can still conclude that this set of preference

relations does not admit an expected utility representation under 2 states because it contains

a 3-cycle implicitly in the following sense. Notice that %1 and %3 have the same relative

ranking of action 2 and 3, but one ranks action 1 as the top choice and the other ranks action 1

as the last choice. Then there must be some convex combination of the corresponding beliefs

π1 and π3 that induces the preference ordering

%5: 2 �5 1 �5 3

which ranks action 1 in the middle. Then the preference relations %2, %4, and %5 form a
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3-cycle, and therefore do not admit an expected utility representation under 2 states. In this

example, the set of preference relations {%i}
4
i=1 does not explicitly contain a 3-cycle, but

it does contain a 3-cycle when combined with some preference relation it implies, such as

%5.

3.3 Conclusion

In this paper, I provide a new test of the expected utility decision framework studied in

various information theoreticmodels. When there are n payoff relevant states, an (n + 1)-cycle

cannot be explained by the expected utility decision framework.

This result crucially relies on linearity of the utility function in beliefs, as the terminology

“expected utility” suggests. Without linearity the result would fail easily. Mymodel abstracts

away from specific information structures and the way the DM updates her belief, and thus

whether the DM is a Bayesian is not relevant.

It remains an open question whether the converse of the main result is also true. Under

n states, if a set of preference relations does not contain an (n + 1)-cycle (not even implicitly),

can we conclude that it admits an expected utility representation? This question is left for

future studies.
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Appendix A. Empty Core in Example 3

I provide the formal arguments for empty core in Example 3. In fact, we can show that

every allocation is blocked by at least one of these three allocations: µ12, µ23, and µ31, where

µi j stands for the allocation under which all type i and type j agents form a large coalition of

mass 2, and each agent of the third type stays alone.

To see this, suppose that there is an allocation µ that is not blocked by any of these three

blocks. An type i agent’s utility is at most 11, which is only achieved under allocation µi,i+1.

However, µi,i+1 is blocked by µi+1,i−1, and therefore all agents’ utility must be strictly less

than 11 under allocation µ. As a consequence, all type i agents are willing to participate in

the block µi,i+1.

For each i, because µi−1,i does not block µ while all type i − 1 agents are willing to

participate, it must be the case that there is some type i agents who are unwilling to participate

in µi−1,i. This can only happen when their utility is weakly greater than 10 under µ. This

implies that these type i agents are in some coalition xi with xi
i > 5/6. Suppose that the

coalition xi is not the same coalition as xi+1 or xi−1, then we have xi
i+1 < 1/6 and xi

i−1 < 1/6,

which contradicts xi
i ·

(
9 + 2xi

i+1 + xi
i−1

)
> 10. Therefore, the three coalitions x1, x2, and

x3 must be the same coalition x. However, xi > 5/6 for each i contradicts the maximum

capacity of a coalition. This concludes the proof that every allocation is blocked by at least

one of the three blocks µ12, µ23, and µ31.
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Appendix B. Example 2 Continued

In the terminologies of the model, there are two types of agents, I = {m, f }. The set of

roles is

R =
{
ci

j,l : i, j ∈ I, l = 1, 2
}

∪

{
bi

k,s : k = 0, 1, 2, 3, s ∈ [0, 1]
}

where ci
j,l represents “playing one round of chess as a gender i player against a gender j

player, and being the l-th mover”, and bi
k represents “playing one round of bridge as a gender

i player, where k of my opponents are male”. The set of contract types is

X =
{
c0, c1, f , c1,m, c2

}
∪

{
bk,s : k = 0, 1, 2, 3, 4, s ∈ [0, 1]

}
where the contract type c2 (or c0) represents a round of chess with 2 male (or female) players,

the contract type c1, f (or c1,m) represents a round of chess with a male and a female player

where the female (or male) player is the first mover, and the contract type bk,s represents a

round of bridge with k male players and 4 − k female players and stake s. All contract types

in X are measures over R, which are specified as follows:

c0 = δ[c
f
f ,1] + δ[c

f
f ,2]

c1, f = δ[c
f
m,1] + δ[c

m
f ,2]

c1,m = δ[c
f
m,2] + δ[c

m
f ,1]

c2 = δ[cm
m,1] + δ[c

m
m,2]

bk,s = k · δ[bm
k−1,s] + (4 − k) · δ[b f

3−k,s]

56



for k = 0, 1, 2, 3, 4 and s ∈ [0, 1], where δ[r] is the degenerate measure that assigns measure

1 to r and measure 0 elsewhere.

A bundle β of roles is an integer-valued measure over R that assigns measure 1 to at

most 5 chess roles and 20 bridge roles, possibly duplicate. Then allocations and the core are

defined in a straightforward way.
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Appendix C. Technical Notes on Large Economies with Small Contracts

This appendix deals with some technical aspects of Section 2.2, and finally I will arrive

at the proof of proposition 2.2. Throughout this appendix, I’m going to repeatedly use the

following mathematical fact.

Lemma C.1 Let K be a compact metric space, and h be a positive real number. Then the set

of Borel measures µ over K with µ (K) ≤ h, endowed with the weak-* topology, is compact

and metrizable.

See Che, Kim, and Kojima (2015) for a proof of this result using Banach-Alaoglu

theorem. The next corollary is immediate, which states that compactness w.r.t. weak-*

topology is no more than sequential closedness and boundedness.

Corollary C.2 A setM of Borel measures over a compact metric space K is compact w.r.t.

the weak-* topology, iffM is sequentially closed and there exists h > 0 s.t. µ (K) ≤ h for all

µ ∈ M.

Proof. “If”:

Let M̄ be the set of all Borel measures µ over K with µ (K) ≤ h. By the previous

lemma, M̄ is compact and metrizable. Because µ (K) is continuous in µ,M is sequentially

closed in M̄. Then by metrizability,M is closed in M̄, and therefore compact.

“Only if”:

Because µ (K) is continuous in µ, and M is compact, the image {µ (K) : µ ∈ M} is

compact in R. Therefore, there exists h > 0 s.t. µ (K) ≤ h for all µ ∈ M. Then setM is a

subset of M̄, which is metrizable by the previous lemma. Then compactness ofM implies

closedness, which is equivalent to sequential closedness.
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In the large-economymodel with small contracts, the setB of bundles is defined as

B :=

{
N ′∑

n=1

δrn : rn ∈ R for each n, N′ ≤ N

}
where δr is the Dirac measure.

Proposition C.3 The set B of bundles is compact.

Proof. Let’s show that the set B is sequentially closed in the compact set

B̄ := {Borel measure β over R : ‖β‖ ≤ N}

which is going to imply compactness of B. Take any sequence
(
βl ) in B convergent to β0 in

B̄. I want to show that β0 is also inB. Let βl =
∑nl

k=1 δr l
k
. Because βl (R) = nl is convergent,

we know that nl = n when l is large enough. Consider the sequence
(
r l
1

)
, take a subsequence

convergent to r1. Take the indices l in the subsequence, and consider the sequence
(
r l
2

)
, find a

subsequence convergent to r2. Repeat this process, we find a subsequence βl =
∑n

k=1 δr l
k
s.t.

r l
k → rk for each k. Then we have δr l

k

w∗

→ δrk and so βl w∗

→ β∗ :=
∑n

k=1 δrk in the subsequence.

Because the whole sequence converges to β0, we know that β0 = β∗, which is in B.

Let Bi be the set if nonempty IR bundles for type i agents, i.e.

Bi := {β ∈ B\ {0} : β %i 0}

where the zero measure 0 represents the empty bundle. We know that Bi ∪ {0} is closed by

continuity of%i. Also, since a sequence of nonempty bundle with β (R) ≥ 1 cannot converge

to the empty bundle, we know that Bi is closed in B̄, and therefore compact.
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C.1 Proof of Proposition 2.2

Now I prove the regularity of the matching game induced by the large-economy model

with small contracts.

1. Compactness of the allocation spaceM

Let

Mi := {Borel measure µi on Bi : µi (Bi) ≤ mi}

For an allocation µ ∈ M, we have µi ∈ Mi by the total mass constraint, and therefore we

haveM ⊂ M̄ :=
∏
i∈I

Mi.

Because Bi is a compact metrizable spaces, we know thatMi with the weak-* topology

is compact and metrizable. Then the product space M̄ endowed with the weak-* topology is

also compact and metrizable. Therefore, to showM to be compact, it is sufficient to show

thatM is sequentially closed in M̄. Arbitrarily take a sequence
(
µk ) inM convergent to

µ0 ∈ M̄, I want to show (1) the total mass constraint µ0i (Bi) ≤ mi for each i, and (2) there

exists Borel measure µ0x over X s.t. the accounting identity
∑

i∈I

∫
β∈Bi

βdµ0i =
∫

x∈X xdµ0x

holds.

To show (1), notice that µk
i (Bi) =

∫
Bi

1dµk
i →

∫
Bi

1dµ0i = µ
0
i (Bi) because the constant

function 1 is continuous on Bi. Because µk
i (Bi) ≤ mi due to µk ∈ M, we have µ0i (Bi) ≤

mi.

To show (2), let µk
x be the Borel measure over X that corresponds to each allocation µk .

Define

Mx :=

{
Borel measure µx on X : µx (X) ≤

N
∑

i∈I mi

xmin

}
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where xmin := minx∈X x (R) is well-defined and positive, because x (R) is continuous in x,

and X is a compact set that does not contain the zero measure. For each µx that corresponds

to a feasible allocation, we have µx ∈ Mx because

N
∑
i∈I

m (i) =
∑
i∈I

∫
β∈Bi

Ndµi

≥
∑
i∈I

∫
β∈Bi

β(R)dµi =

∫
x∈X

x(R)dµx

≥

∫
x∈X

xmindµx = xminµx (X)

Because X is a compact metrizable spaces, we know thatMx with the weak-* topology is

compact and metrizable. Therefore the sequence
(
µk

x
)
has a subsequence (µkl

x ) convergent to

some µ0x ∈ Mx . Now I claim that
∑

i∈I

∫
β∈Bi

βdµ0i =
∫

x∈X xdµ0x .

Take an arbitrary f ∈ C (R). Because µk
i → µ0i , we have∫

β∈Bi

(∫
R

f dβ
)

dµk
i →

∫
β∈Bi

(∫
R

f dβ
)

dµ0i

since
∫

R f dβ is a continuous function in β, which is in turn because f is a continuous function

on R. By accounting identity for each allocation µk , we have

∫
x∈X

(∫
R

f dx
)

dµk
x =

∑
i∈I

∫
β∈Bi

(∫
R

f dβ
)

dµk
i →

∑
i∈I

∫
β∈Bi

(∫
R

f dβ
)

dµ0i

Along the subsequence indexed by l, we have

∫
x∈X

(∫
R

f dx
)

dµkl
x →

∫
x∈X

(∫
R

f dx
)

dµ0x

because
∫

R f dx is a continuous function in x, which is in turn because f is a continuous
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function on R. Since the limit of the subsequence has to be the same as the limit of the whole

sequence, we have

∑
i∈I

∫
β∈Bi

(∫
R

f dβ
)

dµ0i =
∫

x∈X

(∫
R

f dx
)

dµ0x

which is the accounting identity I want to show.

2. Closedness of sets of undominated allocations Ai

For each agent type i and allocation µ̂ ∈ Mi, by definition the set

{µ ∈ M : µ̂ Ai µ} =
{
µ ∈ M : µi (Bi) = mi and µi

({
β ∈ Bi : β

i
(µ̂) �i β

})
= 0

}
BecauseM is metrizable, it is sufficient to show the set above to be sequentially closed in

M. Arbitrarily take a sequence
(
µk ) of allocations in the set above that is convergent to

a allocation µ0 ∈ M, I want to show that the limiting allocation µ0 is also in the set, i.e.

µ0i (Bi) = mi and µ0i

({
β ∈ Bi : β

i
(µ̂) �i β

})
= 0. Because µk → µ0 implies µk

i → µ0i ,

we have µk
i (Bi) → µ0i (Bi). Because µk

i (Bi) = mi for each k, we have µ0i (Bi) = mi. On

the other hand, continuity of %i implies that
{
β ∈ Bi : β̂i �i β

}
is an open set in Bi. By

Portmanteau theorem15 of weak convergence, we have

lim inf µk
i

({
β ∈ Bi : β

i
(µ̂) �i β

})
≥ µ0i

({
β ∈ Bi : β

i
(µ̂) �i β

})
Because µk

i

({
β ∈ Bi : β̂ �i β

})
= 0 for each k, we have µ0i

({
β ∈ Bi : β̂ �i β

})
= 0. This

completes the proof of Proposition 2.2.

15See, for example, Ash (1972), Theorem 4.5.1.
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Appendix D. Proof of Proposition 2.11

Let’s check the three requirements of a convex matching game.

(1) Thematching spaceM is a subset of the vector space
{
µ =

(
µ f

)
f ∈F : µ f ∈ R

Θ
}
with

addition and scalar multiplication defined component-wise. Clearly, the empty matching µ0

is the zero vector of the vector space.

(2) If
∑m

j=1 w
jφ

(
µ j ) ≤ 1, where w j > 0 and µ j ∈ M for all j = 1, 2, . . . ,m, then

the linear combination µ :=
∑m

j=1 w
j µ j is also a feasible IR matching. To see this, first we

have

∑
f ∈F

µ f (θ) =
∑
f ∈F

m∑
j=1

w j µ
j
f (θ) =

m∑
j=1

w j ©­«
∑
f ∈F

µ
j
f (θ)

ª®¬ = m (θ)
m∑

j=1

w jφθ (µ) ≤ m (θ)

for each θ, and therefore µ is a feasible matching. To see IR, for each firm f we have

µ f =

m∑
j=1

w j µ
j
f =

∑
j:φ f (µj)=1

w j µ
j
f % f 0

by convexity of % f because
∑

j:φ f (µj)=1 w
j =

∑m
j=1 w

jφ f
(
µ j ) ≤ 1 and µ j

f % f 0 for each j

with φ f
(
µ j ) = 1.

On the other hand, for each worker type θ with µ f (θ) > 0, I need to show
(
f , µ f

)
%θ ∅.

Because µ f (θ) > 0, there exists ̂ s.t. µ ̂f (θ) > 0. Then by competition aversion, for every IR

match ( f , x)with x (θ) = 0 we have ( f , x) %θ ( f , µ
̂
f ) %θ ∅. Therefore, we have

(
f , µ f

)
%θ ∅
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by convexity of %θ because

µ f =
∑

j:φ f (µj)=1,µ
j
f
(θ)>0

w j µ
j
f +

∑
j:φ f (µj)=1,µ

j
f
(θ)=0

w j µ
j
f +

©­­«1 −
∑

j:φ f (µj)=1

w j
ª®®¬ · 0

Therefore, the linear combination µ :=
∑m

j=1 w
j µ j is a feasible IR matching.

(3) For each firm f , define the relationD f overM f s.t. µ′ D f µ if µ′f % f µ f . For each

worker type θ, define the relation Dθ overMθ s.t. µ′ Dθ µ if there exists f with µ f (θ) > 0

s.t. ( f ′, µ′f ′) %θ

(
f , µ f

)
for all f ′ with µ′f ′ (θ) > 0. In other words, the relationDθ is obtained

by comparing the worst position for type θ workers under two matchings.

For an arbitrary i ∈ F ∪ Θ, let’s consider a φi-convex combination µ :=
∑m

j=1 w
j µ j , i.e.

w j > 0 and µ j ∈ M for all j s.t.
∑m

j=1 w
jφi

(
µ j ) = 1 and

∑m
j=1 w

jφ
(
µ j ) ≤ 1. Further assume

that µ j Di µ̂ for each of its component µ j ∈ Mi. Clearly, µ is a feasible IR matching by (2),

and it is sufficient to show that µ̂ bi µ.

If i ∈ F, this is trivial because

µ f =
∑

j:φ f (µj)=1

w j µ
j
f % f µ̂

by convexity of % f , because
∑

j:φ f (µj)=1 w
j =

∑m
j=1 w

jφi
(
µ j ) = 1 and µ j

f % f µ̂ for each j

with φ f
(
µ j ) = 1.

If i ∈ Θ, by definition we need to show
∑

f ∈F µ f (θ) = m (θ) and there exists f̂ with
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µ̂ f̂ (θ) > 0 s.t.
(
f , µ f

)
%θ ( f̂ , µ̂ f̂ ) for all f ∈ F with µ f (θ) > 0. First, we have

∑
f ∈F

µ f (θ) =
∑
f ∈F

m∑
j=1

w j µ
j
f (θ) =

m∑
j=1

w j ©­«
∑
f ∈F

µ
j
f (θ)

ª®¬ = m (θ)
m∑

j=1

w jφθ (µ) = m (θ)

Second, let ( f̂ , µ̂ f̂ ) be the worst position for type θ students in matching µ̂, i.e.

( f̂ , µ̂ f̂ ) ∈ arg min
%θ

{(
f , µ̂ f

)
: µ̂ f (θ) > 0

}
Then for each f with µ f (θ) > 0, there exists ̂ s.t. µ

̂
f (θ) > 0. By competition aversion,

for every IR match ( f , x) with x (θ) = 0 we have ( f , x) %θ ( f , µ
̂
f ) %θ ∅. Therefore we have(

f , µ f
)
%θ ( f̂ , µ̂ f̂ ) by convexity of %θ , because

µ f =
∑

j:φ f (µj)=1,µ
j
f
(θ)>0

w j µ
j
f +

∑
j:φ f (µj)=1,µ

j
f
(θ)=0

w j µ
j
f +

©­­«1 −
∑

j:φ f (µj)=1

w j
ª®®¬ · 0
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Appendix E. From Core to Stability

In this appendix, I demonstrate how we may show the existence of stable matchings by

showing nonempty core under somemodified preferences. Themodel I study in this appendix

is a two-sided many-to-one matching model with a continuum of firms and workers, which

is a special case of the first model in Azevedo and Hatfield (2015).

Consider a continuum of firms and a continuum of workers. Let F be the finite set of

firm types, and Θ be the finite set of worker types. Let m ( f ) > 0 be the mass of type f firms,

and m (θ) > 0 be the mass of type θ workers. Each coalition consists of one firm and finitely

many workers, and a coalition type is denoted as x, which is an nonnegative integer vector

over F ∪ Θ. We require that x ( f ) = 1 if a type x coalition involves a type f firm, and 0

otherwise. For each worker type θ, the integer x (θ) is the number of type θ workers involved

in a type x coalition. Assume that there are only finitely many types of coalitions that are

acceptable to all their members, and let X be the set of all such coalition types.

An allocation µ is a nonnegative mass vector over X , and µ (x) represents the mass of

type x contracts present under the allocation µ. Feasibility requires the total mass constraint∑
x∈X µ (x) · x ( f ) ≤ m ( f ) for each firm type f and

∑
x∈X µ (x) · x (θ) ≤ m (θ) for each worker

type θ. Let X f be the set of coalition types that involve a type f firm, and preferences % f

of type f firms are defined over X f , i.e. firms value the composition of their workers. Let

%θ be the preferences of type θ workers over firms, i.e. the workers only value the firm that

hires them. We extend %θ to coalition types according to the firm type they contain.

The following notion of core is standard.

Definition E.1 A coalition type x̂ c-blocks an allocation µ, if
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(1) For the firm type f involved in x̂, either not all type- f firms are matched, or there

exists x that also involves f s.t. µ (x) > 0 and x̂ � f x, and

(2) For each worker type θ with x̂ (θ) > 0, either not all type-θ workers are matched, or

there exists x with µ (x) > 0 and x (θ) > 0 s.t. x̂ �θ x.

An allocation is in the core if it is not c-blocked by any coalition type.

We can also define the following notion of stability.

Definition E.2 A coalition type x̂ s-blocks an allocation µ, if for the firm type f involved in

x̂, either

(1) There exists x that also involves f s.t. µ (x) > 0 and x̂ � f x, and for each worker

type θ with x̂ (θ) > x (θ), there exist type-θ workers who are either unmatched or matched to

a strictly less preferred firm under µ, or

(2) There exists unmatched type- f firms, and for each worker type θ with x̂ (θ) > 0,

there exist type-θ workers who are either unmatched or matched to a strictly less preferred

firm under µ.

In the blocking notion of stability, a firm may bring some of its existing workers into

a blocking coalition, although these workers are indifferent. In the blocking notion of the

core, however, all participants of a blocking coalition are required to strictly benefit from

the block. To connect these two solution concepts, let’s consider a modification of workers’

preferences by using the relevant firm’s preferences to break ties. Formally, the modified

workers’ preference relation%′θ is the same as the original%θ when comparing two coalition

types that involve different types of firms, but follows % f when comparing two coalition

types that both involve f .
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Then the following observation is straightforward.

Proposition E.3 If allocation µ is in the core under the modified preferences %′, then µ is

stable under the original preferences %.

Proof. Suppose that there exists x̂ that s-blocks allocation µ under the original preferences

%. I want to show that x̂ also c-blocks µ under the modified preferences %′, which would

contradict the assumption in the proposition and conclude the proof.

First, we know that �′f=� f , and so the firm wants to participate in the block. The

new workers in the s-block is willing to participate in the block by definition. The existing

workers strictly prefer the new coalition under the modified preferences, because they follow

the preferences of the firm. Therefore x̂ c-blocks allocation µ under %′. Contradiction.

By Theorem 2.4, the core under the modified preferences is nonempty. Therefore, stable

matchings exist under the original preferences, and this result, stated below, is a special case

of Azevedo and Hatfield (2015).

Theorem E.4 (Azevedo and Hatfield, 2015) In the two-sided many-to-one matching model

with a continuum of firms and workers, stable matchings exist.
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