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ABSTRACT 

 

AN EXAMINATION OF THREE-DIMENSIONAL GEOMETRY IN HIGH SCHOOL 

CURRICULA IN THE US AND CHINA 

MENGMENG CAO 

Geometry is an essential branch in mathematics that helps students learn to grasp their 

environment and leverage that grasp into abstract understanding and reasoning. There has been an 

observable decrease in geometrical content in secondary education curricula, and particularly a 

“puzzling scarcity” in three-dimensional geometry, which has led to a decline in students’ 

geometrical abilities, spatial thinking and deductive reasoning abilities. This study addresses this 

issue by scrutinizing the enacted curriculum standards and the most influential textbooks related to 

three-dimensional geometry in two prominent countries, the US and China, both of which embrace 

the interplay of both conventional and innovative practices. This qualitative study used both content 

analysis and cross-cultural comparison methods to inquire about and to understand the current 

situation of three-dimensional geometry in high school. I focused on probing the communication 

types, objects, concepts, and spatial thinking abilities related to three-dimensional geometry in the 

standards and texts. To understand spatial abilities, I synthesized a spatial thinking abilities 

framework with six attributes and used this framework to exam the affordance of these abilities in the 

texts and requirements in the standards.   

The result and analysis reveal the details of each text and standards individually and offer an 

examination of the alignment between the standards and texts. The comparison of the two countries’ 

different approaches also sharpens the understanding of the issue. I also worked to unveil students’ 

multiple ways of making sense of geometry concepts by two geometry learning models, Piaget’s 

model and van Hiele’s model, as well as spatial thinking abilities. 
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CHAPTER I 

INTRODUCTION 

 

Need for the Study 

 Geometry is one of the longest-established and main branches of mathematics. Even still, 

scholars have yet to produce a single, agreed-upon definition of geometry (Hardy, 1925; Atiyah, 

1982; Malkevitch, 1992). Years ago an informal definition might have been that it was the 

branch of mathematics devoted to the study of shapes and space. Now, however, a more apt 

definition might be “the branch of mathematics that studies visual phenomena” (Malkevitch, 

2009). A useful contemporary definition of geometry is that attributed to the highly respected 

British mathematician, Sir Christopher Zeeman: “geometry comprises those branches of 

mathematics that exploit visual intuition (the most dominant of our senses) to remember, 

understand proof, inspire conjecture, perceive reality, and give global insight” (Royal Society, 

2001). Three-dimensional (3-D) geometry is geometry with three dimensions: length, width and 

height, i.e. a geometry which requires three values to determine the position of an element. 

In mathematics curriculum history, the progress of geometry has been more controversial 

and complex than the other branches of mathematics (Price, 1994; Jones, 2002; González & 

Herbst, 2006). For much of modern history, Euclid’s Elements (a collection of 13 books written 

by Euclid in approximately 300 BCE) were the basic content of secondary school geometry. At 

that time, geometry was purely deductive with little attention to the practical. With the effort and 

reform of Felix Klein, Godfrey Harold and other mathematicians (Schubring, 2014; Price, 1994), 

at the beginning of the twentieth century, a “New Geometry” came to secondary schools; it 
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included both practical and deductive geometry, emphasizing understanding, problem solving 

and linking with other branches of mathematics. Later on, in the 1960s, because of the “New 

Math” movement, the curriculum was revised in order to base more of school mathematics on 

the algebraic idea of function and to aim more at the mathematics that would lead to calculus and 

linear algebra (Jones, 2002; Kapadia, 1980). Meanwhile, there have been arguments against the 

transfer value of geometry by educational psychologists and a call for integration with other 

mathematical domains (González & Herbst, 2006). To accommodate these changes, the 

geometry content of the curriculum was reduced, and 3-D geometry was more or less removed 

(Ibid; Jones, 2002). 

However, in contrast to this reduction in the coverage of geometry at the high school 

level, the knowledge base about geometry and geometric ideas has grown considerably since the 

end of the 19th century. It is now possible to classify more than 50 geometries (Malkevitch, 

1992)! These include classical Euclidean geometry but also various other non-Euclidean 

geometries. As a subject, geometric ideas serve as a tool not only for the development of logical 

thinking but also for other subject areas or within mathematics itself. Many new mathematical 

concepts are inspired by geometrical ideas (Krygowska, 1971). And as far as the usage of 

geometry is concerned, many non-mathematical professions use geometrical ideas. Physics 

instructors complain about the lack of geometry in modern syllabi; three-dimensional geometry 

is widely needed in the fields of computer engineering, polymers, tissue engineering, biology, 

and air and sea navigation (Jones, 2000; Alsina, 2010). New developments in computing 

technology mean that in the twenty-first century spatial thinking and visualization ability are 

vital (Jones, 2002; Clements, 2001). As Alsina (2010) claimed, “Three-dimensional citizens do 

not deserve a flatlanders’ education” (p. 147). 
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Despite the increasing need for studying geometry (3-D geometry in particular), the 

reality is that some studies have shown an unacceptably low level of achievement in 2-D 

geometry, with the 3-D case being even worse in the United States (Alsina, 2010) and in 

Malaysia (Meng & Idris, 2012). Mammana, Micale, and Pennisi (2010) argued that 3-D 

geometry is often unfairly neglected in high school and, consequently, students are deprived of 

the fundamental geometry knowledge and important geometric cognitive stimuli. This tendency 

calls for researchers to analyze questions such as: what kinds of topics are covered in high 

school, and how well does the curriculum and school teaching serve the purpose of teaching 

geometry? Little research focuses on these issues. Because different countries may have different 

approaches to teaching 3-D geometry, it will be beneficial to look into these issues cross-

culturally by analyzing and comparing some countries’ curriculum standards, textbooks, and 

assessments. Comparison between certain countries can deepen understanding of the issues and, 

in turn, enable improvements in educational practice (Kubow & Fossum, 2007). According to 

Kubow and Fossum, examining educational issues (3-D geometry in this research) in a 

comparative manner can broaden one’s perspective and sharpen one’s focus. By viewing 

educational issues in 3-D geometry from the perspective of different nations, readers can identify 

content or pedagogical factors that might be missed when considering from the context of their 

own countries alone.   

Spatial Thinking and Three-Dimensional Geometry 

Curriculum standards related to 3-D geometry are always associated with spatial ability. 

For example, the National Council of Teachers of Mathematics (2000) geometry standards 

includes the ability to: (1) Analyze characteristics and properties of two- and three-dimensional 

geometric shapes and develop mathematical arguments about geometric relationships and (2) 
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Use visualization, spatial reasoning, and geometric modeling to solve problems. Most of the 

publications concerning the relations between spatial visualization and students’ mathematical 

abilities underline the importance of promoting the development of students’ spatial ability 

through the teaching of 3-D geometry (Clements & Sarama, 2007; Clements & Battista, 1992; 

Gutierrez, 1996; Presmeg, 2006). Spatial abilities are considered a form of mental activity that 

enables individuals to create spatial images and to manipulate them to solve various practical and 

theoretical problems (Hegarty & Waller, 2005; Kozhevnikov, Motes & Hegarty, 2007). Spatial 

ability and mathematics achievement are related, although we do not fully understand why and 

how (Clements 2004). However, a similar question is raised again: how well do current 

curriculum and instruction serve the purpose of teaching 3-D geometry for cultivating spatial 

abilities? Little research focuses on this issue (Bishop, 1980; Pittalis & Christou, 2010; Jones, 

2010). Thus, there is a need for researchers to identify those spatial abilities associated with 3-D 

geometry and their manifestation (or absence) in the school curriculum (Gutierrez, 1996).  

Purpose of the Study 

The purpose of this research is to identify and review topics in the 3-D geometry 

curriculum and textbooks, primarily at the high school level. The focus is mainly on examining 

and comparing two countries, the US, a relatively reform-based country, and China, a relatively 

conservative country. More specifically, this research seeks to answer the following questions 

about the high school curricula in these two countries: 

1. What are the main topics of the 3-D geometry claimed in each country’s national 

curriculum? What are the primary 3-D objects that appear in each textbook? What are the central 

3-D concepts in each text? What are the main communication types being used in each textbook? 
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What are the commonalities and differences among them, and what are the implications of those 

commonalities and differences? 

2. What kind of spatial thinking abilities are associated with the concepts and examples in 

the textbooks? How are the spatial abilities presented and represented in textbooks? What are the 

commonalities and differences among them, and what are the implications of those 

commonalities and differences?  

Procedure of the Study 

Research settings 

The US is the leading country in terms of economics and education. School in the United 

States has evolved over the past 50 years to a more reform-based approach to secondary 

mathematics, one which emphasizes student-centered teaching, creativity, flexibility, diversity of 

curriculum, and lighter student workloads. Initial inspection indicates that 3-D geometry has 

taken a less prominent place in standards and curriculum documents. International large-scale 

assessments such as PISA (Program for International Student Assessment) and TIMSS (Trends 

in International Mathematics and Science Study) have shown that US students are in the middle 

level, as ranked by mathematics performance scores (OECD, 2014; IEA, 2012). 

Among the major countries in the world, China has maintained a largely traditional 

approach to education. From 1949 to 2012, there have been six curriculum reforms in China 

(Man, Wang & Shen, 2010). Initial inspection indicates that 3-D geometry topics take up a 

significant portion of the National College Entrance Examination (Gao Kao). Its rigorous 

curriculum, emphasizing deductive reasoning, basic knowledge and basic skills, occupies a 

unique place in the world. Although research has shown that students in China demonstrate high 
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performance on international mathematics tests (OECD, 2014), other studies have criticized 

students’ high workloads and high-stakes assessments (Cai, Ding, & Wang, 2014).  

Therefore, the United States and China possess very different and unique characteristics, 

allowing for an insightful comparison. 

Theoretical framework 

In order to keep cross-cultural comparisons of mathematics education neutral and 

decrease bias, researchers call for a theoretical framework on which to base a description or a 

classification of different countries (Kaiser, Hino, & Knipping, 2006; Van den Akker, Jan, et al., 

2006). This research will use a spatial framework adapted from several researchers, including 

Gutiérrez (1996), Pittalis and Christou (2010), and Bishop (1980, 1983). This framework 

involves six spatial abilities: spatial perception, spatial relationship, internal representation, 

external representation, spatial transformation, and spatial reasoning. For further deeper 

understanding of these six spatial abilities and the teaching and learning of 3-D geometry, 

educational psychology theories such as Piaget’s theory and van Hiele’s model will be used to 

discuss, analyze and interpret the six abilities as well as the chosen textbooks.   

Process of analysis 

This research will analyze the teaching of 3-D geometry in China and the United States 

by examining (i) the curriculum standards, which are the “intended curriculum,” and (ii) the 

textbooks, which are the “potentially implemented” curriculum. According to Porter and 

McMaken (2011), the intended curriculum is the educational purpose, which includes the 

intentions, aims and goals and focuses on what students are to learn, but does not suggest how 

the content is to be taught. Most countries use curriculum standards as a way to declare the 

national/statewide intended curriculum. The potentially implemented curriculum comes in the 
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form of textbooks and other organized resource materials. In terms of resource materials, this 

research will only go into detail about textbooks, since textbooks are the most used.  

To answer the first research question, the author will collect curriculum standards as well 

as the most popular textbooks from the two countries. Data such as topics related to the 3-D 

geometry will be assembled and compared. A detailed and systematic content analysis will be 

carried out. The researcher conducted two preliminary examinations of these materials, which 

ultimately provided a systematic schema to inquire into and assess the content related to three-

dimensional geometry in these textbooks.  

To answer the second research question, the researcher will first use the literature to 

compile and develop a spatial thinking framework and then use the spatial thinking framework to 

code the textbook sections which are related to 3-D geometry. The coding process for each 

country will be accomplished by two native experienced high school teachers working together 

with the researcher, in an attempt to avoid misunderstanding or misinterpretation.  

(1) Data collection   

To investigate the “intended curriculum” with respect to 3-D geometry, this study 

collected three curriculum standards; to investigate the “potentially implemented curriculum,” 

this study collected three textbooks.  

In China, education is highly centralized such that there is only one national curriculum 

standard for guiding and regulating high school mathematics. In this study, the researcher chose 

this national curriculum, which is called Mathematics Curriculum Standards for General High 

School (CS-China), as a reference. CS-China was first released in 2003, and experienced some 

minor changes; this study uses the revised 2016 version. In the US, the curriculum standards will 

come from the Common Core State Standards of Mathematics (CS-US). The CS-US standards 



 8 

released in 2010 are intended as the national standards and represent an unprecedented shift 

away from disparate content guidelines across individual states. Porter et al. (2011) called it “The 

new U.S. intended curriculum.”  In 2000, NCTM published a standard Principles and Standards 

for School Mathematics (CS-NCTM), which is referenced and very well accepted by a wide 

range of countries. It has a very profound influence internationally, so this study will also 

analyze this standard, which serves as a representation of internationally recognized standards. 

Each standard served as a unit of analysis for my study with respect to the “intended curriculum” 

of 3-D geometry. 

This study collected three textbooks to examine the various 3-D geometry topics. The 

aim in the selection of textbooks was to examine the textbooks that students are most commonly 

exposed to in the two countries. One textbook is published by Pearson Press, the largest press in 

the US. The specific text used in this study was Prentice Hall Mathematics New York – 

Geometry, abbreviated as the “Pearson Textbook” in this research. The second text has not been 

widely adopted, but it is recommended by senior professors in the field for its high quality, 

careful design, and alignment with reform-oriented practices in mathematics education. The third 

textbook is Mathematics in High School -- People’s Education Press A, published by People’s 

Education Press: it is the most popular and widely circulated high school mathematics textbook 

in China. In this study, the Chinese textbook will be referred to as the “People’s Education 

Textbook.”  

Looking specifically at the chapters and sections within the textbooks which are devoted 

to 3-D geometry, I broke down the text of each textbook into sizeable units. A unit was 

characterized by chunks including a series of statements and adhered graphs, which collectively 

served a singular purpose on the same topic. A unit might be a paragraph or several paragraphs, 
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including the graphs or charts nearby. The rationale and criteria for grouping the content of the 

textbooks into a unit is based on whether they serve the same purpose, to illustrate the same 

concept, or serve the same function. For each unit I identified in the standards and the textbooks, 

I coded various aspects.   

(2) Coding design 

Concerning the language difference of the three textbooks, the researcher recruited two 

groups of teachers to help with the coding. One group, from Mainland China, consisted of two 

doctoral students who majored in mathematics education. They were raised and educated (until 

graduate school) in Mainland China. The second group consisted of two experienced high school 

geometry teachers who live in New York City, USA.  

Each group received coding training from the researcher, discussed the unit and coded 

collaboratively using their respective textbooks. In particular, each standard in the curriculum 

documents and each unit in the textbook was coded for four things: 1) 3-D ability, or abilities, 

present; 2) Communication type; 3) 3-D object, or objects; and 4) 3-D concept, or concepts. To 

increase coding reliability, inter-coder reliability was tested. 

(3) Methods of data analysis 

This qualitative study used both content analysis and cross-cultural comparison methods 

to inquire into and analyze the current phenomena of three-dimensional geometry in high school 

standards and curricula. In order to answer all these research questions, a qualitative method was 

used to examine and analyze topics in detail. Qualitative software (NVivo) was used to code, 

analyze and compare the content analysis of the three textbooks. Excel and SPSS were also used 

to code and show results related to spatial thinking abilities. Most of the results are presented as 

descriptive statistics, using charts and tables.
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Chapter II  

Literature Review 

 

Overview 

The purpose of this chapter is to provide the background, context and a theoretical basis 

for this research. In particular, I aim to answer the following two questions as a part of this 

literature review: 1) for what educational purpose is 3-D geometry being taught in high school; 

and 2) what aspects of spatial thinking might be especially important for conceptualizing the 

relationship between 3-D geometry teaching and learning? It begins with an examination of the 

history of the changes in geometry courses in high school during the 20th century so as to 

understand the trajectory of the development of the current 3-D geometry subject. A further 

investigation of “how geometry can be learned” is followed by reviewing the well-known Piaget 

model as well as the van Hiele model. The study then explores some of the global curriculum 

standards to review the goals and requirements that are set for 3-D geometry. Since one of the 

main aims of 3-D geometry learning is to cultivate spatial thinking abilities, the author reports on 

the literature and its findings concerning a spatial thinking abilities framework. Lastly, the author 

moves to review the function of textbooks as “potentially implemented curriculum” and the 

method of content analysis, which provides theoretical support for the research methods that are 

used in this study.    

A History of the Change in High School Geometry Courses in the 20th Century  
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Alva Walker Stamper (1909), a mathematics educator, surveyed extensively the historic 

development of the teaching of elementary geometry. According to Stamper, when geometry was 

first taught, it was in more advanced classes. Then, it was gradually taught to young students, 

and pretty much in traditional ways. The Egyptians made a great contribution to the work of 

geometry by developing advanced practical geometry. Their skills and knowledge were 

preserved in the priesthood, who constituted the learned class. They then taught the Greeks, who 

later developed geometry into a coherent logical system. For the Greeks, the study of geometry 

was for mature minds and represented a logical viewpoint. Plato believed it should be studied 

between the years of twenty and thirty. The medieval universities taught Euclid in their more 

advanced classes. When universities in the US were founded, they taught geometry in the senior 

year. Later  it was moved to the freshman year, and finally the high school took up the work. By 

1909, geometry was taught in high school generally in the second year, when most pupils are 

about the age of fifteen. It has been taught for its practical and logical values, and has included 

both plane geometry (2-D geometry) and solid geometry (3-D geometry).At the end of the 19th 

century, the Report from the Mathematics Conference of the Committee of Ten claimed the need 

for the geometry course on instrumental grounds: Being structured as an axiomatic-deductive 

body of knowledge, the study of geometry was of great value to all high school students as it 

could train the mental discipline which students could “transfer” to other fields (Gonzalez & 

Herbst, 2006).  

However, Thorndike, a leading educational psychologist around the turn of the 20th 

century, studied this notion of teaching geometry for the value of “transferring” and mental 

discipline. He conducted an influential series of studies of transfer and reached a negative 

conclusion: “Studies of the influence of training . . . show a similar failure to bring large 
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increases of efficiency in allied functions” (Thorndike & Woodworth, 1901). Unlike Thorndike, 

Phillips (2014) describes the importance of transfer in the following statement: “the successful 

use in a new context of intellectual, physical, or social skills, or items of knowledge, that were 

learned in a different context— has long been an important goal of instruction” (p. 818). The 

allure of transfer is based on the assumption that education which does not equip students to deal 

with new problems or situations but that allows them only to be successful with ones identical to 

those met in the course of their instruction has little if any value as a preparation for living.  

The report of the Committee of Fifteen on the Geometry Syllabus published in 1912, led 

by Herbert E. Slaught, a mathematics professor at the University of Chicago, provided a more 

specific vision for geometry courses than those of the Committee of Ten. For example, the report 

of the Committee of Ten acknowledged students’ different abilities and interests, but it 

nevertheless suggested the same curriculum for all (Newcomb et al., 1893). To acknowledge the 

challenges issued by Thorndike’s work, the Committee of Fifteen proposed a balance between 

the practical application and theoretical work, which is quite different from the report of the 

Committee of Ten (Slaught, 1912). Although the Committee of Fifteen encouraged attention to 

applications and the making of connections between algebra and geometry, it fundamentally 

endorsed a geometry syllabus whose main commitment was to students’ development of 

reasoning skills. The syllabus included a set of theorems and separated theorems into formal and 

informal categories.  

Meanwhile, around 1900, Felix Klein, a renowned mathematician, began to take an 

interest in mathematical instruction in schools. According to Schubring (2014), Klein played a 

crucial role in formulating a plan recommending that analytic geometry, the basics of differential 

and integral calculus, and the function concept be taught in secondary schools. Klein first started 
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this reform under the banner of “function reasoning” in Germany. In 1908, Klein was elected 

president of the Internal Commission on Mathematical Instruction at the Rome International 

Congress of Mathematicians. This recommendation was gradually implemented in many 

countries around the world. Under this influence, they also investigated other issues concerning 

geometry: rigor and intuition in geometry and the fusion of plane geometry and solid geometry 

(Barbin & Menghini, 2014).  

Therefore, at the beginning of twentieth century, despite objection from Thorndike et al. 

and the competing needs of integrating “function reasoning” in secondary school, the geometry 

course has continued to exist as a main staple of the college preparatory curriculum with some 

adjustment and evolution (Gonzalez & Herbst, 2006). 

Later on, in the 1960s, in the wake of the launch of the Sputnik by the Soviets in 1957, a 

major revision of school mathematics (the “New Math” movement) was begun in most western 

countries. The main idea was to reform curriculum in order to base more of school mathematics 

on the algebraic idea of function and to aim more at the mathematics that would lead to calculus 

and linear algebra (Jones, 2002; Kapadia, 1980). The impact of this movement on the subject of 

geometry was to reduce the amount of Euclidean geometry, particularly solid geometry, while 

increasing analytic geometry and introducing some transformation geometry (Jones, 2002). 

At the turn of a new century, the publication of Principles and Standards for School 

Mathematics (PSSM) attempted to provide a new vision for the school mathematics curriculum. 

Rather than limiting the study of geometry to a particular course, PSSM established new 

expectations for the teaching and learning of geometry across grade levels. According to PSSM, 

the study of geometry is meant to involve students in the experience of mathematical inquiry as 
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well as make apparent to them how a mathematical domain changes over time (Gonzalez & 

Herbst, 2006).  

By reviewing historical documents, the high school geometry course has survived in 

practice through the 20th century in spite of the arguments against its transfer value by 

educational psychologists and the arguments for integration with other mathematical domains by 

some mathematics educators. By comparing the report of the Committee of Fifteen (Slaught, 

1912) and PSSM (NCTM, 2000), changes in the goals and outcomes of geometry instruction 

over the years can be found. That contrast between expectations at the beginning and end of the 

20th century serve as an initial illustration of  how the geometry course has endured across the 

20th century despite changing expectations.  

Why Teach a Geometry Course?  

Despite the influence of reforms as reviewed earlier, the geometry course has remained as 

a constant in high school curricula throughout the 20th century, but the arguments that justify it 

have been diverse. Gonzalez and Herbst (2006) conducted an historical examination to find the 

justification for teaching American high school students geometry in the 20th century. They 

exhausted a century of historical documents between the report of committee of Fifteen (Slaught, 

1912) to Principles and Standards (NCTM, 2000). These documents include professional articles 

on school geometry, curriculum resources, and geometry textbooks. They then grouped the core 

arguments and themes of these resources by the underlying view of why students need to study 

geometry. 

Four groups of arguments emerged from their investigation, which they called “modal 

arguments” (González, & Herbst, 2006). These four modal arguments are formal argument, 
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utilitarian argument, mathematical argument, and intuitive argument. Each modal argument is 

drawn from a collection of arguments based on various documents.  

A formal argument: geometry teaches students to use logical reasoning  

Gonzales and Herbst define a formal argument based on the notion that geometry teaches 

students to use logical reasoning. The main goal of geometry was to train students to transfer 

geometric thinking and skills to other domains. They derive this argument through discussing a 

series of studies by Christofferson (1938), Fawcett (1970), Meserve (1972), Upton (1930) and 

others.  

For example, Harold Fawcett, the author of  the 13th NCTM yearbook, The Nature of 

Proof, proposed that learning how to do proofs in geometry is a skill needed by educated 

citizens, because this skill can be transferred to the task of analyzing a text logically to reach 

conclusions. He believed the “real purpose of teaching demonstrative geometry is to give the 

pupil an understanding of the nature of proof, the emphasis should not be placed on the 

conclusions reached, but rather on the kind of thinking used in reaching these conclusions” 

(Fawcett, 1935, p. 466).  

Similarly, William Betz, who served as president of the NCTM (1932 -1934), said that 

“geometry is a unique laboratory of thinking, and as such it fosters the persistent and systematic 

cultivation of the mental habits which are so essential to all those who would claim mental 

independence and genuine initiative as their birthright” (Betz, 1930, p. 194). He stressed that 

“geometry shows how thinking must be done if it is to be sound, dependable, rigorous (p.155),” 

and that the main goal of geometry is to combine experiences in the real world with abstract 

knowledge (González, & Herbst, 2006, p14).   
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In sum, the main goal of the geometry course according to proponents of the formal 

argument was to have students learn to transfer skills and ways of thinking learned in geometry 

to other domains. No other high school mathematics course, this argument said, would carry on 

this responsibility to the extent that the geometry course does.  

A utilitarian argument: geometry prepares students for the workplace  

Gonzales and Herbst define a utilitarian argument based on the idea that geometry 

prepares students for future work or non-mathematical studies. They discuss the different views 

of Allendoerfer (1969), Breslich (1938), and Osborne and Crosswhite (1970) towards the 

utilitarian of geometry.  

Carl B. Allendoerfer, a mathematician at the University of Washington and former 

President of the Mathematical Association of America (MAA) from 1959 to 1960, advocates the 

ultimate goal of “apply[ing] our geometry to algebra, calculus, science, art architecture, and 

elsewhere” (Allendoerfer, 1969, p. 169). He suggests that the content of geometry courses should 

make connections and applications of geometric skills to other domains, and such concerns 

constitute the bulk of the case for including solid geometry in the curriculum (Allendoerfer, 

1969, p. 169). 

Breslich (1938) emphasized students’ use of geometry skills in their future jobs. Osborne 

and Crosswhite (1970) document “mathematical content with military uses” around the coming 

of Second World War. They indicate that around that time period, concerns of mathematics 

competence extended beyond military needs and encompassed industrial needs. Euclidean 

geometry was accused of being too abstract and recommendations were made to teach indirect 

measurements and basic engineering as well as military work (p. 232-233). 

A mathematical argument: geometry for the experience and the ideas of mathematicians 
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Gonzales and Herbst define a mathematical argument that the geometry course’s major 

goal is to have students experience the work of mathematicians. This argument is based on the 

work done by Henderson (1947), Fehr (1973), Moise (1975), and others. However, their ways to 

attain this goal are varied.  Some proponents argued that Euclidean geometry is an optimal 

context for students to engage in making and proving conjectures (Henderson, 1947). Some, like 

Fehr (1973), proposed to integrate geometry with other courses and use non-Euclidean 

geometries to align the work in high school with the current work of mathematicians.  

Henderson (1947) was a strong advocate of this mathematical argument. He wrote a 

geometry textbook with the approach of encouraging students to investigate and test possible 

conjectures and outcomes when they handled geometry problems. This approach is modeled on 

the way mathematicians tackle their professional work. Henderson distinguished the way 

mathematicians work from the methods of empirical scientists: “The difference is that the 

scientist relies chiefly on experimental corroboration while the mathematician demonstrates the 

theorem as a necessary consequence of other theorems, postulates, or definitions” (1947, p. 177). 

Henderson also emphasized the importance of public discussion in the development of postulates 

and theorems in the course. Within his view, classroom discussion would render ideas and lead 

to debates among students as they tried to produce convincing arguments. Debates were essential 

in learning geometry as they would force students to experience the work of proving as 

mathematicians.  

Edwin Moise, a Harvard mathematics professor, coauthored a geometry textbook (Moise 

& Downs, 1964) with an approach of engaging students in mathematical activity through 

problem solving. According to Moise, mathematics should be a creative activity for students; 

writing proofs independently is the real test for understanding and the path for becoming a 
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mathematician. He stated, “When students solve such problems—and they do—the gap between 

theory and homework vanishes. On these occasions the student is, probably for the first time in 

his life, working in his capacity as a mathematician” (Moise, 1975, p. 477).  

Henderson and Moise agreed that proofs were an important resource for students to 

understand geometric notions and were more than a mere exercise in logic.  

However, Fehr (1972), president of NCTM from 1956 to 1958, asserted that geometrical 

thinking of his day was vastly different from that used in the narrow synthetic approach. 

Algebra, probability theory and analysis in an elementary and simple manner can help students 

establish the axiomatic structure just as well as Euclidean geometry. Therefore, he suggested an 

integrated mathematics curriculum or using non-Euclidean geometry to enable students to 

experience ideas and the work of mathematicians. 

An intuitive argument: geometric expression helps students interpret their experiences in 

the world  

The interplay between geometry and intuition permeates the justifications of geometry 

courses, and Gonzales and Herbst define this as an intuitive argument that geometry provides 

students with an interface language and a representation system that allows students to model the 

real world (2006, p. 27). This model considers geometry as a unique opportunity for students to 

apply the knowledge and language of objects to describe the world. This argument can be traced 

back to John Dewey’s (1903) views on psychological and logical elements in the teaching of 

geometry.  

There are variations among intuitive arguments regarding students’ engagement in 

mathematical activity. Peterson (1973) deemed it as informal geometry, and said that “The use of 

informal geometry in what is usually considered a formal geometry course should make the 
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study of geometry more interesting” (p. 90). Moreover, the informal intuitive aspect of geometry 

may not only motivate students but also make students feel less intimidated. Similarly, Philip 

Cox argued that “no longer can geometry be considered an appropriate subject for study only by 

those with a special aptitude for mathematics” (1985, p. 404). He suggests that the first semester 

of the geometry course should be informal and make the study of geometry more inclusive, later 

semesters can move on to a more formal stage. Cox wrote a textbook to illustrate his various 

versions of geometry courses for different populations. 

To bring to the fore a geometry course that takes into account students’ intuition, Usiskin 

and Coxford (1972) used a transformational approach in their geometry textbook. This approach 

connects geometry with relevant mathematical ideas in other courses and aligns with current 

ways of working with geometry. 

The core idea sustaining proponents of the intuitive argument was the principle that 

geometry provides lenses to understand, to experience, and to model the physical world by 

forging stronger connections between experiences, intuition, skills, and geometric notions. 

Unlike other branches of mathematics, geometry was said to merge empirical knowledge about 

physical objects and abstract ways of dealing with those objects. Three-dimensional geometry 

allows bonding with the physical world through studying the spatial features of physical objects.  

In summary, Gonzales and Herbst conclude that the formal argument claims that 

geometry is necessary to prepare educated citizens; the utilitarian argument suggests that 

geometry can connect and have applications in other domains; the mathematical argument views 

all students as budding mathematicians; while the intuitive argument intends to fit different 

geometry courses to students’ needs. They suggest these four modal arguments can be used to 
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“describe specific curriculum approaches and note what is at stake in the geometry instruction of 

specific institutions” (2006, p. 27).  

Moreover, in addition to geometry more broadly, I contend that 3-D geometry satisfies 

some of these arguments in additional ways and should be an important part of the geometry 

course. As we are living in a three-dimensional world and there are so many 3-D geometrical 

relationships and properties around us, 3-D geometry easily satisfies the intuitive argument in a 

unique way. Three-dimensional geometry is also widely needed in the fields of computer 

engineering, polymers, tissue engineering, biology, and air and sea navigation (Jones, 2002; 

Alsina, 2010), satisfying the utilitarian argument in another unique way. New developments in 

computing technology mean that in the twenty-first century spatial thinking and visualization are 

vital skills (Jones, 2002).  

How Geometry Can Be Learned 

In terms of the theoretical work concerned with geometrical ideas, the Piaget model and 

the van Hiele model are probably the most well known.  

Piaget’s work has two major themes (Piaget, Inhelder, & Szeminska, 2013). The first 

theme is that a learner’s mental representation of space is constructed through progressively 

reorganizing our prior active manipulation of our world. It is not a mere perceptual “reading off” 

of what is around them. Rather, as learners, we build up from our mental representation of our 

world through active manipulation and internalization. This theme remains reasonably well 

supported by research. The second theme is that the progressive organization of geometric ideas 

follows a definite order and that this order is more experiential (and possibly more 

mathematically logical, depending on your mathematical perspective) than it is a re-enactment of 

the historical development of geometry. That is, initially topological relations, such as 
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connectedness, enclosure, and continuity, are constructed by the learner, and are followed by 

projective (rectilinearity) and Euclidean (angularity, parallelism, and distance) relations. This 

second hypothesis suggests a learning sequence for geometry beginning with some topological 

ideas and gradually moving through affine and projective geometry to the geometry of metric 

spaces. Unfortunately, such a model has received, at best, only mixed support. The available 

evidence suggests that all types of geometric ideas appear to develop over time, as they become 

increasingly integrated and synthesized (Clements & Battista, 1992). This does not mean that a 

geometry curriculum of the form suggested by the Piagetian model may not work just as well as 

existing geometry curricula, and possibly even better. It is the case that there has been no well-

researched study of the use of such a curriculum.  

The van Hiele model also suggests that learners advance through levels of thought in 

geometry (van Hiele 1986; Crowley, 1987) but in a different way. This model characterized 

these levels as visual, descriptive, abstract/relational, formal deduction, and rigor. Translation of 

these terminologies for his five levels from Dutch to English can vary. At the first level, students 

identify shapes and figures according to their concrete examples. At the second level, students 

identify shapes according to their properties, and here a student might think of a rhombus as a 

figure with four equal sides. At the third level, students can identify relationships between 

classes of figures (for example, that a square is a special form of rectangle) and can discover 

properties of classes of figures by simple logical deduction. At the fourth level, students can 

produce a short sequence of statements to logically justify a conclusion and can understand that 

deduction is the method of establishing geometric truth. At the fifth level, students can work in a 

variety of axiomatic systems, so non-Euclidean geometry can be studied, and the different 

systems can be compared. But, as the last level (rigor) is the least developed in the original 



 22 

research work, it has received little attention (Crowley, 1987), and, therefore, this study only 

includes the first four levels of the model. According to this model, progress from one of the van 

Hiele levels to the next is more dependent upon teaching method than upon age.  

While research is generally supportive of the van Hiele levels as useful in describing 

students’ geometric concept development, it remains uncertain how well the theory reflects 

children’s mental representations of geometric concepts (Clements & Battista, 1992). Various 

problems have been identified with the specification of the levels. Some examples of those 

problems are the labeling of the lowest level as ‘visual’ when visualization is demanded at all 

levels and the fact that learners appear to show signs of thinking from more than one level in the 

same or different tasks, in different contexts. It is important to remember that the model was 

developed in the 1950s at a time when the geometry curriculum was predominantly plane 

geometry in the Euclidean tradition. The model naturally reflects such origins. Its usefulness 

with respect to other approaches to plane geometry (such as via vectors or transformations) and 

to other geometries (such as spherical geometry) is not clear. As a consequence of these various 

factors, the van Hiele model has limitations in determining the geometry curriculum and how it 

should be sequenced for teaching.  

Spatial Thinking and 3-D Geometry in Current School Curriculum Standards 

Similar to the movement that proposed an integrated mathematics curriculum at the 

beginning of the 20th century, the recommendations of the standards movement at the end of the 

20th century included a strong impetus to connect mathematical domains, to connect 

mathematical ideas with those of other disciplines, and to connect mathematical ideas with 

problems from the real world (NCTM, 2000, pp. 64-66). The existence of a geometry standard 

among the five main content standards
 
confirms that students’ development of geometrical 
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knowledge is still valued. One of the consequences of a call for connections is that the 

justifications for the teaching and learning of geometric concepts permeate the mathematics 

curriculum without solely allocating that responsibility to any one course. In addition to that, the 

five process standards (problem solving, reasoning and proof, communications, connections, and 

representations) are all connected to geometric content.  

Geometry is not solely about proofs (Hoffer 1981); it is also about spatial thinking and 

visualization (Jones, 2002). As the UK Association of Teachers of Mathematics noted in 1964, 

“The problem for the schools is so to conduct the discussion of fundamental geometrical 

configurations that (i) the pupil's spatial imagination is stimulated and developed, and (ii) he (sic) 

learns to think in terms and in modes that will support, and not conflict with, his (sic) later 

mathematical activity” (Association of Teachers of Mathematics, 1964). This remains a central 

issue that is not solely about teaching. It also concerns what geometry is to be taught and the 

relative emphasis given to each component.  

The need for the curriculum to be specified in a way that enables learners to link their 

geometrical intuition to the demands of deductive thinking is probably the most crucial issue in 

the design of the contemporary geometry curriculum. It means linking learners’ developing 

spatial awareness and their ability to visualize their developing knowledge with understanding 

of, and ability to use, geometrical properties and theorems.  

Related to three-dimensional geometry, the Principles and Standards for School 

Mathematics (PSSM) (NCTM, 2000) geometry standard requires that students from grades 9-12 

can: 

①. Analyze characteristics and properties of two- and three-dimensional geometric 

shapes and develop mathematical arguments about geometric relationships 

• analyze properties and determine attributes of two- and three-dimensional objects; 
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• explore relationships (including congruence and similarity) among classes of two- 

and three-dimensional geometric objects, make and test conjectures about them, and 

solve problems involving them; 

• establish the validity of geometric conjectures using deduction, prove theorems, and 

critique arguments made by others; 

②. Specify locations and describe spatial relationships using coordinate geometry and 

other representational systems 

• investigate conjectures and solve problems involving two- and three-dimensional 

objects represented with Cartesian coordinates. 

③. Apply transformations and use symmetry to analyze mathematical situations 

• understand and represent translations, reflections, rotations, and dilations of objects in 

the plane by using sketches, coordinates, vectors, function notation, and matrices; 

④. Use visualization, spatial reasoning, and geometric modeling to solve problems 

• draw and construct representations of two- and three-dimensional geometric objects 

using a variety of tools; 

• visualize three-dimensional objects and spaces from different perspectives and 

analyze their cross sections; 

• use geometric ideas to solve problems in, and gain insights into, other disciplines and 

other areas of interest such as art and architecture. 

 

Seemingly, most countries include solid geometry in their high school mathematics 

curricula, but the time devoted to it and its content scopes are varied.   

In the US, there are various curriculum standards related to mathematics in secondary 

school, and the Common Core State Standards (2010) aimed to reunite all the curriculum 

standards. Of the 54 states and territories, 50 states adopted those standards. Common Core State 

Standards dictate that high school students must: 

(1) Explain volume formulas and use them to solve problems 

①. Give an informal argument for the formulas for volume of a cylinder, pyramid, and cone. 

Use dissection arguments, Cavalieri's principle, and informal limit arguments. 

②. Give an informal argument using Cavalieri's principle for the formulas for the volume of 

a sphere and other solid figures. 

③. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. 

(2) Visualize relationships between two-dimensional and three-dimensional objects 

① Identify the objects of two-dimensional cross-sections of three-dimensional objects, 

and identify three-dimensional objects generated by rotations of two-dimensional objects. 

(3) Apply geometric concepts in modeling situations 

①. Use geometric shapes, their measures, and their properties to describe objects (e.g., 

modeling a tree trunk or a human torso as a cylinder). 
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②. Apply concepts of density based on area and volume in modeling situations (e.g., persons 

per square mile, BTUs per cubic foot). 

③. Apply geometric methods to solve design problems (e.g., designing an object or structure 

to satisfy physical constraints oro minimize cost; working with typographic grid systems 

based on ratios). 

 

In China, there is only one national mathematics curriculum standard for secondary 

school; it is called Mathematics Curriculum Standards for General High School (CS-China). 

Content related to three-dimensional geometry is covered in two modules, or two textbooks, 

which are Mathematics Compulsory 2 and Elective 2-1. The National High School Mathematics 

Curriculum Standards contains detailed content and requirements standards, and it is divided into 

four parts: general introduction, content and requirements, explanations and suggestions, and 

reference examples. In this review, I only include the general introduction and requirement parts; 

for more details about 3-D geometry in CS-China, please refer to Appendix A (p. 192). CS-

China states that:  

Mathematics Compulsory 2 

In this module, students will learn preliminary three-dimensional geometry. 

Geometry is the study of shape, size and position of the real world of objects in 

mathematics. People usually use visual perception, operational confirmation, speculative 

reasoning, measurement, computation and other methods to understand and explore 

geometric figures and their properties. We human beings live in a three-dimensional real 

world, thus in the compulsory high school mathematics curriculum, one of the basic goals 

is to establish in students the following basic capacities: recognizing spatial figures, 

spatial imagination ability, spatial reasoning ability, ability to use graphic language to 

communicate, and geometric visualization ability. In this preliminary study section of 

three-dimensional geometry, students will start from the holistic observation of solid 

geometric objects, understanding spatial patterns, then use a cuboid as the carrier, raising 

students’ visual perception and understanding of the positional relationship between 

point, line and plane. Then students will be able to use mathematical language to express 

the nature and determinative characteristics of parallel and perpendicular relationships 

between points, lines and planes, and students can demonstrate some of these 

conclusions. Students will also learn the method for calculating surface area and volume 

of some simple solid objects. 

Elective 2--1 

Spatial vectors offer a new view for dealing with 3-D problems. The introduction 

of spatial vectors aims to provide an efficient tool for solving positional relationship 

problems and measurement problems. In this module, students are able to expand the 
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knowledge of plain vectors into three dimensions and to use vectors to solve problems 

related to positions between lines and planes, to experience the functions of vectors in 

exploring properties of geometry graphs, and to further develop spatial imagination 

abilities and spatial visualization abilities. 

 

Most of the publications concerning the relations between spatial visualization and 

students’ mathematical abilities stress the importance of promoting the development of students’ 

spatial ability in the teaching of 3-D geometry (Clements & Sarama, 2007; Clements & Battista, 

1992; Gutiérrez, 1996; Presmeg, 2006). Spatial abilities are a form of mental activity that enables 

individuals to create spatial images and to manipulate them in solving various practical and 

theoretical problems (Hegarty & Waller, 2005; Kozhevnikov, Motes & Hegarty, 2007). 3-D 

geometry abilities include both relevant knowledge and skills such as constructing nets, 

representing 3-D objects with 2-D figures, identifying solids and their elements, structuring 

arrays of cubes, calculating the surface and the volume of solids, and comparing the properties of 

3-D shapes (National Council of Teachers of Mathematics, 2000). 

Three-dimensional geometry knowledge and “spatial sense” is emphasized by the 

NCTM, which further states that students should acquire the first three Van Hiele levels through 

the K-12 curriculum. But why do we need to develop children’s “spatial sense,” especially in 

mathematics classes? Spatial ability and mathematics achievement are related. Although we do 

not fully understand why and how, children who have strong spatial sense do better at 

mathematics (Clements 2004). In order to have spatial sense, learners need spatial abilities. Two 

major abilities are spatial orientation and spatial visualization (Bishop, 1980).   

Geometry and spatial reasoning are inherently important, just as Freudenthal said, 

because they involve “grasping…that space in which the child lives, breathes and moves…that 

space that the child must learn to know, explore, conquer, in order to live, breathe and move 

better in it” (Clements, 2004, p.38). 
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A study by Pittalis and Christou (2010) found that the relationship of spatial abilities to 

reasoning in 3-D geometry suggests that 3-D geometry teaching should integrate activities that 

develop spatial competences. This is supported by Berthelot and Salin (1998) who claimed that 

the traditional teaching of geometry demands many spatial abilities of pupils. The backbone of 3-

D geometry teaching should be tasks that require the mental manipulation of visuospatial 

relations to conceive and edit geometric properties and to take advantage of students’ 

visuospatial experiences that are provided by the world surrounding them. 

 

In Search of a Spatial Thinking Abilities Framework 

Del Grande (1990) claims that "Geometry has been difficult for pupils due to an 

emphasis on the deductive aspects of the subject and a neglect of the underlying spatial 

abilities"(p. 19). This notion of raising awareness of spatial abilities in learning geometry is 

emphasized by other scholars and researchers as well. Numerous mathematicians and 

mathematics educators have suggested that spatial ability and visual imagery play a vital role in 

mathematical thinking and particularly in learning geometry (Clements & Battista, 1992; Bishop, 

1980, 1983; Gutierrez, 1996). Bishop brings this attentiveness to spatial ability further by linking 

it to teaching practices in his influential work Spatial Abilities and Mathematics Education - A 

Review (1980). He suggests that successful teaching requires more detailed analysis resulting in a 

clear relationship between the teaching and the ability being taught (p. 265). The underlying 

assumption of his suggestion is that spatial abilities not only are vital in learning geometry, but 

also can be taught through teaching mathematics.   

This consideration brings in fruitful research in mathematics education as well as 

increasing interests in what spatial abilities are and how they are connected with school geometry 
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and mathematics in general (Clements & Battista, 1982; Duval, 1999; Presmeg, 2006). Duval 

(1999) claims that mathematical activity has two sides. The visible or definite side is the so-

called mathematics content, which are the mathematical objects, concepts and processes of 

problem solving. The hidden and crucial side is the one of “cognitive operations” which anyone 

needs to conduct in order to understand the visible side (mathematics content) and then perform 

the valid processes. From a didactic view the two sides are equally valuable. However, according 

to Duval, the cognitive operation is often neglected as if mathematical processes were natural 

and cognitively transparent. He proposes that any cognitive operation depends on several 

cognitive variables, which must be taken into account in the same way as the mathematical 

structure for "concept construction" (Duval, 1999). These variables include “cognitive 

architecture” of various registers of semiotic representation and visualization.  

To find out what these variables are and how they interrelate is an important field of 

research for learning mathematics.  

Finding a solid body of complete spatial abilities has been the goal of numerous scholars 

with a variety of research interests, such as teaching and curriculum design (Jones, 2002; 

Gutierrez, 1996), psychology or educational psychology (Presmeg, 2006; Carroll, 1993; Maier, 

1996), and recently Dynamic Geometry Software designing (Christou& Jones, etc. 2006). 

Christou, Jones, Mousoulides, and Pittalis set out to look for a spatial abilities framework for the 

developing the 3DMath learning environment. To design successful educational software, it calls 

for pedagogy which is fully integrated as a basis for technological design. That pedagogy must 

rely on solid theoretical frameworks. 

Therefore, in this part of literature review, I aim to find a body of solid spatial abilities 

which underlie geometry learning, and which are cognitive variables. A difficulty that arose 
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immediately is that the terminologies and definition of spatial abilities are varied, and there is not 

even a consensus as to whether it is a singular form or a plural form. The terms I discovered 

include spatial thinking, visualization, imagery, and mental image. Another difficulty which 

arose is that in the literature related to spatial abilities (ability), the disagreement and arguments 

are vast. The last difficulty is that research related to spatial abilities (ability) appear both in the 

psychology field and the mathematics education field, among others, which makes the 

identification and categorization even harder. These difficulties not only make the review and 

identifying challenging, but also make the understanding and presentation of these ideas vague 

and sometimes confusing.  

To overcome these difficulties, I focus on presenting research which has a relatively 

complete theoretical body and is influential. I begin with the definition of spatial abilities (spatial 

thinking or spatial reasoning) in general, followed by different authors’ theoretical framework 

chronologically in the fields of psychology and mathematics education. Terms which are 

important are given definitions or even illustration. The difference among some confusing terms 

is not discussed in the beginning, but is handled in the summary.  

1.1 Definition of spatial abilities (ability) in general 

Historically, spatial abilities have attracted a lot of research interest ever since Galton 

(1883) began his systematic psychological inquiry. It received more attention when psychologist 

Louis Leon Thurstone (1938) proposed a set of Primary Mental Abilities including 7 factors 

using very sophisticated statistical methods: word fluency, verbal comprehension, spatial 

visualization, number facility, associative memory, reasoning, and perceptual speed. Spatial 

visualization is recognized as a primary mental ability and is defined as the ability to organize 
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and manipulate spatial patterns. However, the terminology and definitions used to describe this 

notion vary dramatically when used by different authors and in different fields.  

For example, McGee (1979) defines spatial abilities as “the ability to mentally 

manipulate, rotate, twist or invert pictorially presented stimuli.” Spatial abilities are used 

interchangeably with terms likes spatial thinking, spatial reasoning, or visualization, particularly 

in the mathematics education field. Yakimanskaya (1991) describes "spatial thinking" as a form 

of mental activity which makes it possible to create spatial images and manipulate them in the 

course of solving various practical and theoretical problems (p. 21). Spatial reasoning (Clement 

& Battista, 1982) consists of the set of cognitive processes by which mental representations of 

spatial objects, relationships, and transformations are constructed and manipulated. Presmeg 

(2006) considers visualization to be "the process involved in constructing and transforming 

visual mental images..."(p.304), whereas a visual image is a "mental construct depicting visual or 

spatial information". Clearly, these three definitions share some commonality. They all include 

two processes (activities): creating spatial images (mental representations) and manipulating 

(transforming) them. However, Yakimanskava’s definition involves the further goal of solving 

problems compared with the latter which only create and manipulate the mental representation. 

Clement’s and Battista’s definition specifies that the mentally represented subjects are spatial 

objects, relationships and transformations, while the former authors didn’t give such details. 

Presmeg’s definition is closer to latter one.  

The first two definitions come from the field of psychology, and the latter three come 

from mathematics education. These differences indict the discrepancy and different emphasis 

between the two fields, which will be further illustrated. Below, I reviewed some of the relatively 

well-known theoretical works concerned with spatial abilities and geometry in both fields.  
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1.2 Spatial abilities in the field of Psychology 

MacFarlane Smith (1964) reviewed and analyzed some previous studies and preferred a 

gestaltist view of spatial ability. He asserted that the spatial loading of a test “depends on the 

degree to which it involves the perception, retention and recognition (or reproduction) of a figure 

or pattern in its correct proportions. Success in the item must depend critically on ability to retain 

and recognize (or reproduce) a configuration as an organized whole (p. 96).” However, most 

researchers do not agree with this unitary construct and think it is inadequate for conceptualizing 

the complexity of the intellectual processes of spatial tasks. Rather, they prefer to break down the 

concept of spatial abilities into several factors that seem to contribute to spatial comprehension 

(Brennan, etc. 1972; McGee, 1979; Lohman, 1979; Linn & Petersen, 1985; Carroll, 1993; 

Kimura, 1999). One of the most common methods used to describe the underlying structure of 

spatial abilities is factor analysis. Factor analysis is a statistical method which uses psychometric 

tests to find out variability among observed, correlated variables and then to identify a 

potentially lower number of unobserved variables called factors. 

Brennan, Jackson, and Reeve (1972), among others, suggest that spatial perception does 

not consist of a single skill or ability. They identify nine skills or abilities: visual copying, hand-

eye coordination, left-right coordination, visual discrimination, visual retention, visual rhythm, 

visual closure, figure-grounded relationship, and language and perception. 

McGee (1979) reviewed spatial abilities literature exhaustively in factor analytic studies 

done since the 1930s. He concluded that at least two distinct spatial abilities existed: 

visualization and orientation (1979, p909). 

 Spatial visualization is the ability to mentally rotate, manipulate, and twist two- 

and three-dimensional stimulus objects. 

 Spatial orientation ability includes the comprehension of the arrangement of 

elements within a visual stimulus pattern, the aptitude to remain unconfused by the 
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changing orientations in which a spatial configuration may be presented, and an ability to 

determine spatial orientation with respect to one’s body.    

  Almost simultaneously with McGee, Lohman (1979) reviewed hundreds of 

investigations that followed Thurstone’s (1938) Primary Mental Ability study. He concluded 

with a three-factor model for spatial ability: spatial visualization (VZ), spatial orientation (SO) 

and spatial relations (SR). Although Lohman acknowledged the existence of other factors, he 

labeled them as minor factors that are not central to “spatial abilities.” Compared with McGee’s 

model, he has an extra ability of SR and defines VZ and SO quite similarly. 

The spatial visualization factor (VZ) refers to the ability to comprehend imaginary 

movements in a 3-D space or the ability to manipulate objects in imagination. It is defined by 

difficult spatial tasks that require a sequence of transformations of a spatial representation and 

more complex stimuli. An example of VZ is to imagine the folding and unfolding of a piece of 

paper.  

SO is defined as the ability to follow the orientations correctly when the position of a 

configuration of spatial objects is changed physically or mentally. The awareness of whether one 

object is to the right or left, higher or lower, or nearer of farther than another is the essential 

nature of this factor. An example of SO is to imagine how a shape would appear from a different 

perspective and then to make a judgment from that imagined perspective.  

SR is defined by the speed in manipulating simple visual patterns such as mental 

rotations. It describes the ability to mentally rotate a spatial object as a whole fast and correctly. 

An example of SR is to mentally perform rotation of 2-D figures or 3-D items.  

As a result of a meta-analysis of studies carried out between 1974 and 1982, Linn and 

Petersen (1985) differentiate three categories of factors from measures of spatial ability in 

psychometric analyses: spatial perception, spatial visualization and mental rotation.  
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Spatial perception is defined as the ability to determine spatial relations despite 

distracting information and can be done efficiently using a gravitational/kinesthetic process. 

Spatial visualization is the ability to manipulate complex spatial information when several stages 

are needed to produce the correct solution and can be done efficiently using an analytic process. 

Mental rotation is defined as the ability to rotate, in imagination, quickly and accurately two- or 

three-dimensional figures and can be done efficiently using a Gestalt-like mental rotation process 

analogous to physical rotation of the stimuli (p. 1485). 

Linn and Petersen’s model overlaps with McGee and Lohman concerning the factor of 

spatial visualization. Their definition of “mental rotation” is quite similar with Lohman’s spatial 

relations. Their model has a distinguishing factor of spatial perception, which seems to 

differentiate spatial relations broadly and include spatial orientation as a subset.   

Later, Carroll (1993), in a large factor-analytic survey, established five sub-factors in the 

domain of spatial ability: spatial visualization, spatial relations, closure speed, flexibility of 

closure, and perceptual speed. Spatial visualization is quite similar to the one previously 

mentioned. Spatial relation requires mental transformation and usually involves rotation of 2-D 

objects in a short time. The other three factors do not play prominent roles in visualization 

studies, so I have not included their definitions.  

Carroll’s model overlaps Lohman’s model in the areas of spatial visualization and spatial 

relations, but omits spatial orientation and adds three less noticeable abilities, which are related 

to speed and flexibility. 

Kimura (1999) identifies six spatial factors that are influential: spatial orientation, 

targeting, spatial location memory, spatial visualization, disembodying, and spatial perception (p. 

54-55).  

Spatial orientation is the ability to accurately estimate changes in the orientation 

of an object. This skill is evaluated with tests that present 2-D objects (e.g., letters, 

figures in the center of a clock face, and simple shapes) and 3-D objects (e.g., cubes, sets 

of cubes, and photos of real objects) rotated in 2-D or 3-D space.  

Targeting refers to the ability to intercept projectiles or throw them at a target. It 

is difficult to categorize this ability, since it is highly related to motor ability. Targeting is 

often measured with tests that require throwing a physical object to a target.  
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Spatial location memory is the ability to recall the position of objects in an array. 

The commercial game, Memory Game, is a good test for spatial memory. Tests of spatial 

location memory present an array of realistic or geometric objects that should be 

memorized. Then, participants are presented with a second array or with portions of an 

array where discrepancies with the original array must be identified. Spatial visualization 

is the ability to recognize and quantify the orientation changes in a scene. Although this 

ability looks very similar to mental rotation, this skill does not require mental rotation of 

objects, but, rather, the estimation of one’s position in relation to a static object. Spatial 

visualization is also defined as the ability to imagine a result after folding or assembling 

parts of an object. The most characteristic tests of spatial visualization require 

participants to imagine what the final result is after a piece of paper is folded.  

Disembedding is the skill that allows a person to find a simple object when it is 

embedded in a more complex figure. This factor is also referred to as flexibility of 

closure or field independence. Tests of this factor require participants to find a model that 

is embedded in a distracting pattern.  

Spatial perception refers to a person’s ability to determine what the prevailing 

horizontal and vertical directions are in a scene where distracting patterns are present. 

One test of this ability requires participants to draw the water level line inside a 

transparent jar that has been tilted. Other tests require subjects to align (horizontally or 

vertically) a pattern that is surrounded by a frame.  

 

Kimura’s model overlaps with Linn and Petersen’s model in the areas of spatial 

visualization and spatial perception. His model does not specify mental rotation as a separate 

factor, but includes it in spatial orientation. His model includes three new terms: targeting, 

disembedding and spatial location memory.  

Unlike these researchers in factor analysis, Kosslyn (1980) defines a spatial thinking 

process with four stages, each of which is led by a verb that describes the action that stage takes. 

These four stages are: generating a mental image from some given information; inspecting a 

mental image to observe its position or the presence of parts or elements; transforming a mental 

image by rotating, translating, scaling, or decomposing it; and using a mental image to answer 

questions. However, if we reinterpret these four stages through the abilities mentioned, they are 

the abilities of mental representation, spatial relations, transforming, and spatial reasoning 

(problem solving).      
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1.3 Spatial ability in the field of mathematics education 

Beyond psychology, educators and researchers in the field of mathematics education who 

are concerned with spatial abilities either borrow theories directly from the field of psychology 

or integrate or invent their theories based on them. Hoffer (1977) defines spatial perception as 

the ability to recognize and discriminate stimuli in and from space and to interpret those stimuli 

by associating them with previous experiences. He proposes seven "visual perception abilities," 

which are relevant to the study of geometry and mathematics in general. These seven abilities are 

eye-motor coordination, figure-ground perception, perceptual constancy, perception of position 

in space, perception of spatial relationship, visual discrimination, and visual memory. The first 

five were identified earlier by Frostig and Horne (1965). The following are the definitions of 

each ability, as reviewed by Grande (1990): 

Eye-motor coordination is the ability to coordinate vision with movement of the body. 

Figure-ground perception is the visual act of identifying a specific component in a situation and 

involves shifts in perception of figures against complex backgrounds where intersecting and 

"hidden" forms are used. Visual memory is the ability to recall accurately objects no longer in 

view and relate their characteristics to other objects either in view or not in view. Perceptual 

constancy, or the constancy of shape, is the ability to recognize that an object has invariant 

properties in spite of the variability as sizes, shadings, textures, and positions in space and 

discriminate it from similar geometric figures. Position-in-space perception is the ability to relate 

an object in space to oneself. Perception of spatial relationship is the ability to see two or more 

objects in relation to oneself or in relation to each other. Visual discrimination is the ability to 

identify the similarities and differences between or among objects.  
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Bishop (1983) defined two components of visual ability constructs in an attempt to 

describe spatial thinking in mathematics education terms: “visual processing of information” 

(VP) and “interpretation of figural information” (IFI).  

VP (visual processing of information) includes the translation of abstract relationships 

and non-figural data into visual terms, the manipulation and extrapolation of visual imagery, and 

the transformation of one visual image into another.  

IFI (interpretation of figural information) involves knowledge of the visual conventions 

and spatial vocabulary used in geometric work, graphs, charts, and diagrams of all types as well 

as the “reading” and interpreting of visual images, either mental or physical, to get from them 

any relevant information that could help to solve a problem.  

Gutierrez (1996) presented a complete theoretical framework, integrating partial results 

from several researchers like Bishop, Hoffer, Presmeg, and Yakimanskaya. His framework 

considered visualization in mathematics as "the kind of reasoning activity based on the use of 

visual or spatial elements, either mental or physical, performed to solve problems or probe 

properties." It includes four main elements: mental imagination, external representation, process 

of visualization, and visualization abilities. 

Mental imagination is cognitive representation of a mathematical concept or property by 

means of visual or spatial elements. 

External representation is verbal or graphical representation of concepts or properties 

including pictures, drawings, diagrams, etc. that helps to create or transform mental images and 

to do visual reasoning.  

Process of visualization is a mental or physical action where mental images are involved.  
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Visualization abilities refers to students’ capacity to choose among several visual abilities 

depending on the characteristics of the mathematics problem to be solved and the images 

created. These abilities are “figure-ground perception,” “perceptual constancy,” “mental 

rotation,” “perception of spatial positions,” “perception of spatial relationships,” and “visual 

discrimination.” 

Maier (1996) distinguishes spatial abilities with five elements: spatial perception, spatial 

relations, spatial visualization, mental rotations, and spatial orientation. 

Although Duval (1999) doesn’t clearly specify a solid body of spatial abilities, his 

sketching of the complex cognitive architecture is very helpful for understanding these 

terminologies and different theoretical models. His architecture underlies three cognitive 

processes in mathematical thinking: representations, vision, and visualization in mathematical 

thinking (1999, p. 4). According to Duval, representation speaks of a large range of activities 

involving meaning: steady and holistic beliefs about something, various ways to evoke and to 

denote objects, and how information is coded. On the contrary, visualization stands for images 

and empirical intuition of physical objects and actions. Vision refers to visual perception and, by 

extension, to visual imagery (p. 3, 12).  

Duval reckons that visualization is different from representation as well because the 

construction of any representation requires only local apprehension of units and not the final 

configuration. Visualization, however, requires the opposite change: one must go from the whole 

graph to some visual values that establish the characteristic features of the represented 

phenomenon. Therefore, learning how to construct graphs or geometrical figures does not 

constitute for visualization in mathematics. 
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Vision is the opposite of representation because it provides direct access to any physical 

object. Unlike vision, visualization is based on the production of a semiotic representation. 

Visualization cannot be reduced to vision because it makes visible all that is not accessible to 

vision. Therefore, the gap between visual perception and visualization is that vision (visual 

perception) needs exploration through physical movements because it never gives a complete 

apprehension of the object, while visualization can get at once a complete apprehension of any 

organization of relations. However, what visualization apprehends can be the start of a series of 

transformations and that gives it inventive power. 

1.4 Summary of spatial thinking frameworks 

Clearly, no general agreement has been reached about the terminology and definitions to 

be used concerning spatial abilities. Different authors may use different terms to mean the same 

ability, or they may use the same term to indicate different abilities. Such an apparent turmoil is 

merely a reflection of the diversity of areas where spatial abilities are considered relevant as well 

as the variety of researchers who are interested in the subject. However, there are some general 

patterns are evident through the review.  

Scholars in the psychology field tend to favor the term “abilities” or “factors,” except for 

Kosslyn (1980) who uses “stages” (processes) to describe the underlying sub-constructs of 

spatial abilities. The quantity of factors in each scholar’s model ranges from 1 to 9. Most of their 

concerns are: spatial visualization, spatial relations, spatial orientation, mental rotations, and 

spatial perceptions. Some less recognized terms are perceptual speed, disembedding, closure 

speed, flexibility of closure, targeting, etc. These terms are not often cited by many researchers.  

It might be because they are sub factors of the former common recognized factors, or at least that 

they are not on the same level, since some scholars (like Carroll) acknowledge that some of them 
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are not prominent factors. If they are factors of the same level, then they should have similarly 

significant effects. 

While mathematics educators have a more diverse approach to describing the underlying 

sub-constructs of spatial abilities. Bishop (two-process model) and Duval (three-process model) 

prefer to use “processes,” whereas Maier (five-factor model) and Hoffer (seven-factor model) 

align with factor analysis approaches. Gutierrez tries to integrate both approaches and comes out 

with a model with four elements and six sub-factors of the elements of abilities of visualization. 

The terminologies used in the field are varied as well. The most frequently appearing words are 

process of visualization, perception, relationship, mental images, and representation.  

Moreover, the terminologies they use also tell the different emphases of the two fields. 

Psychologists are interested in the abilities of spatial orientation, spatial position or location 

memory, and disembedding, which are correlated to spatial navigation. However, these are not 

the interests of mathematics education researchers, who prefer to talk about relationship in 

general. They are curious about representations, like how mental images or external 

representation is constructed mathematically.  

Although spatial abilities are common interests of both fields, the way researchers 

interpret and define them are varied. Therefore, researchers need to be mindful in choosing 

which convention and model to use in conducting their investigations related to spatial abilities.  

Just as Bishop (1980) generalized: 

     The concerns of the developmental psychologist are essentially focused on the 

'natural' development of the child, while the concerns of the mathematics educators are 

essentially on the 'unnatural' development. The former is interested in revealing what it is, 

and the latter is interested in intervention. Thus the goals of the psychologists may lead in 

a direction which is away from the concerns of mathematics educators, so therefore we 

must exercise caution and keep judgment in selecting those ideas and approaches which 

will enable us to develop our own field.  
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Mathematics Textbooks, Cross-Culture Comparison and Content Analysis 

Any consideration of the content of the mathematics curriculum must consider both what 

is to be learned as well as whether and in what order it can be learned. In the case of the 

geometry curriculum, this means attending both to the structure of geometry and to what is 

known about how geometry can be learned. However, some of the curriculum standards, such as 

the Common Core State Standards, only state content standards in general. They do not 

sufficiently illustrate and explain the structure and order of the content, much less how to teach 

it, or how it can be learned. However, mathematics textbooks as a potential implemented 

curriculum often complement this deficiency, as they offer a more detailed view of how 3-D 

geometry is intended to be taught in school. Because of the diversity of geometry textbooks and 

teaching across the world, it might be fruitful to examine geometry textbooks internationally.  

Mathematics textbooks as potentially implemented curriculum 

Textbooks are “designed to provide an authoritative pedagogic version of an area of 

knowledge” (Stray, 1994, p. 2). They are special kinds of books, intended to be used in 

educational settings; they hold a unique and significant social function in relation to other texts 

since they “represent to each generation of students an officially sanctioned, authorized version 

of human knowledge and culture” (de Castell, Luke, & Luke, 1989, p. vii).  

Mathematics textbooks were historically the main resources for mathematics teaching 

and learning. Consider the famous work of Euclid (born ca. 325 BC) as an example: The 

Elements was the center of geometrical teaching for 2000 years, and it even has an impact today. 

In most countries, the hierarchical arrangement of topics in current curriculum models 

can be described as the curriculum being designed at one level, handed down (primarily via 

textbooks) to the next level (the teachers), and received by the third (the students). As shown in 
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Figure 2-1, the intended curriculum is about intention, aims, and goals of teaching, which 

normally derives from national or state curriculum standards or guidelines; the potentially 

implemented curriculum is about how to carry out the intended curriculum and is reflected in 

textbooks and other organized resource materials; the implemented curriculum is the actual 

classroom teaching and student learning, which are strategies, practices and activities carried out 

by teachers and students. Textbooks are regarded as artifacts that translate policy into pedagogy, 

the link between the intended and the implemented curriculum.  

Figure 2-1: Textbooks and the Tripartite Model  

 
 

For example, China used to have only one national mathematics textbooks in school 

teaching from 1949-1970, and it used to have national guidelines and national textbooks from 

1970 to 2000. Since 2000, China has had national curriculum standards and individualized 

textbooks, which must be created by following the standards (Zhang, 2003). In the US, 

historically, there were no national textbooks, and districts and schools were authorized to 

choose which textbooks to use. Later, there were state curriculum standards, but districts and 

schools still had the autonomy to choose textbooks. Around 2000, there appeared a movement 

towards building a national curriculum around the Common Core State Standards; however, it is 

not very well accepted by most states.  
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The role of the textbooks as links between the national guidelines and the teaching of 

mathematics in schools is very well discussed by Johansson (2005) in her paper “Mathematics 

Textbooks: The Link between the Intended and the Implemented Curriculum?”  

She has shown that textbooks:  

   a) Are artifacts that preserve and transmit knowledge in educational systems,  

   b) Facilitate the daily work of the teachers,  

   c) Can be seen as some kind of guarantee that the students have the necessary basic 

knowledge and training for the next level in the school system,  

   d) Can be regarded as tools to accomplish uniformity and consistency within the school 

system, for example with respect to a reform,  

   e) Are tools with constraints and weaknesses, 

   f) Seem to reduce both the freedom and the responsibility of teachers.  

 

From a classroom perspective, one can see textbooks as tools, or instruments, that 

facilitate the daily work of the teachers. They identify the topics and order them in a way that 

permits students’ exploration. They also attempt to specify how classroom lessons can be 

structured by providing suitable exercises and activities. In principle, this means that hardly any 

other definitions, conventions, or rules than what the textbook offers are presented to the 

students. It also means that the mathematical procedures taught in the classroom, for example 

how to solve an equation, are mainly the same as in the textbook. For better or for worse, they 

provide an interpretation of mathematics to teachers, students, and their parents.  

A typical evaluation (Lindqvist, Emanuelsson, Lindström, & Rönnberg, 2003) shows the 

surprisingly dominant role of textbooks in teaching. Content as well as arrangement of teaching 

are to a high degree directed by the textbook. Mathematics is often, for both students and 

teachers, simply what is written in the textbook.  

As a predominant source in many mathematics classrooms, textbooks have a unique 

status. Therefore, to understand the processes of teaching and learning mathematics, it is 

essential to examine textbooks and how they are used.  
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Some of the micro differences from textbook to textbook are: 

(1) A view of learning is, in some sense, inherent in each textbook. One could, for 

example, recognize the ideas of behaviorism in a book that focuses on getting the 

right answers to well-defined questions. From a constructivist and sociocultural 

perspective, it would be more important to start from the students’ own experiences 

and create problems that nurture discussions and cooperation (Brown & Edelson, 

2003).  

(2) Topics covered and sequences of the topics are varied.  

(3) Structure differs in terms of how the content and exercises are presented and 

organized.   

Cross-cultural comparison 

Because different countries may have different approaches to teaching 3-D geometry, it 

will be beneficial to look into these issues cross-culturally, by analyzing and comparing some 

countries’ curriculum standards, textbooks, and assessments. Comparison between certain 

countries can deepen understanding of the issues and, in turn, enable improvements in 

educational practice (Kubow & Fossum, 2007). According to Kubow and Fossum, examining 

educational issues (3-D geometry in this research) in a comparative manner can broaden one’s 

perspective and sharpen one’s focus. By viewing educational issues in 3-D geometry from the 

perspective of different nations, readers can identify content or pedagogical factors that might be 

missed when considering from the context of their own countries alone.   

Why content analysis? 

The implementation of curriculum, which includes strategies, practices and activities, can 

be varied by different teachers, students and the interaction of teachers and students. So some 
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might argue that the presence of a textbook in a classroom is not a clear indicator of how 

instruction is carried out in the classroom. Textbooks cannot give information on how they are to 

be used or how they influence classroom teaching. It might not seem useful to analyze the 

content of textbooks. However, previous research suggests that: 

(1) Mathematical topics in textbooks are those most likely to be presented by the teacher 

(Freeman & Porter, 1989), whereas mathematical topics not included in textbooks are 

most likely not presented by the teachers (Brown & Edelson, 2003). 

(2) Teachers’ pedagogical content knowledge and strategies are often influenced by the 

instructional approach of the textbook material (Reys et al., 2003; Ma, 1998) 

(3) Teachers report that textbooks exert great influence in their decisions about how to teach 

and how to present content (Schmidt et al., 2001; Brown & Edelson, 2003). In some 

countries, such as Sweden and Finland, teachers are highly reliant on textbooks 

(Johansson, 2003); some countries like China teach to the textbooks (Ma, 1998).  

 Therefore, it is reasonable to conclude that a content analysis of textbooks can show a 

great deal of what and how 3-D geometry is intended to be learned and is taught in the 

classroom. 
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Chapter III 

 A Spatial Thinking Abilities Framework 

From the literature review of spatial abilities, it is clear there are several different 

terminologies and theories outside or even within the mathematics education field. Common 

agreement seems impossible, and debates will go on. To avoid the turmoil, and for the purpose 

of finding a framework which will help mathematics educators and teachers to clarify not only 

spatial abilities, but also the teaching methods behind them, the author has synthesized a new 

framework from previous literature. 

This chapter serves the purpose of identifying a framework, the rationale behind it, the 

interpretation and examples of each ability, and the inner connection and logics of the abilities 

within the framework. This research will follow Bishop’s approach by choosing the notion of 

different spatial abilities (in the plural), as “this makes the construct far more accessible for 

educational use.” Therefore, spatial abilities are a set of appropriate cognitive variables by which 

mental representations for spatial objects, relationships, and transformations are constructed and 

manipulated while solving various practical and theoretical problems.   

A Complete Collection of Spatial Abilities and Their Structure 

Spatial abilities are a main topic of inquiry in this research. However, the investigation 

into a spatial abilities framework does not end up with a definitive result because of the 

discrepancies among different authors. So, I chose to unite them. My approach is consistent with 

the foundations of an axiomatic system in mathematics. Namely, an axiomatic system needs to 

be satisfiable, consistent, independent (independence of axioms), and complete. In this sense, for 
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example, the use of factor analysis is productive; however, a factor analysis primarily 

emphasizes independence (i.e., each factor is independent), but does not necessarily claim 

completeness (that the factor analysis resulted in a complete list of factors). In synthesizing the 

literature to generate a spatial abilities framework for this study, I tried to create a framework 

that maintained each of the four qualities of axiomatic systems. In particular, by exhausting all 

the factors (abilities, processes) identified in the literature, I was able to obtain a relatively 

complete collection of those abilities. To achieve the other qualities, I focused on the definition 

and examples of each identified ability to make sure that there was no overlap. 

I found that six themes emerged from the terminologies of all investigated research. 

Below I describe these six themes, from which I determine six factors to construct a new spatial 

thinking abilities framework. 

1.1 Spatial perception versus perception of position and figure-grounded perception etc. 

Several terms which emerged relate to spatial perception, such as perception of position, 

figure-grounded perception, visual discrimination etc. They are not primary factors, because 

when one takes the effort to perceive the presented visual stimulus, he or she can offer only a 

minor aspect of the visual stimuli. In contrast, one has to utilize spatial perception ability in 

general and several sub-abilities to perceive more global information. Therefore, I call “Spatial 

perception ability” a primary ability, and under this umbrella I include several sub-abilities like 

figure-grounded perception.  

1.2 Spatial relationship versus spatial orientation, spatial relations etc. 

As discussed previously, mathematics education researchers are interested in a broad 

spectrum of relationships, rather than only navigation or rotation. This is quite true, as for any 

visual stimuli, images, or 3-D objects, one can observe or differentiate many more relationships 



 47 

beyond position, such as parallel, perpendicular, whole-part, angles (degree of tilt) etc. 

Therefore, I categorize them as a sub-category of “spatial relationship ability.” The reason for 

using “relationship” instead of “relations” is to emphasize that this ability enables one to group 

the elements in the visual stimulus into kinds of relations, rather than specify the relations. It is a 

macro approach.      

1.3 Representation versus mental images, mental representation and external 

representation 

Apparently, mental images and mental representation are used interchangeably by several 

authors, to mean the constructing of an inner representation of spatial information. These terms 

are similar to the term “spatial visualization.” The formats of representation are very diverse and 

can be pictoral, symbolic, formal or informal language etc. Yakimanskaya (1991) discussed that 

the creation of images was possible because of the accumulation of representations that serve as 

the starting point. The richer and more diverse the stock of spatial representations, the easier it is 

to use images in solving problems. 

Yakimanskaya’s view indicates that external representation ability is critical in enhancing 

mental representation. This is confirmed by research conducted by Pittalis & Christou (2013 

coding and decoding), which finds that conceptualization of the representation of 3D shapes is a 

cornerstone of 3D geometry thinking. 

Although mental representation (mental images) and external representation are 

distinguished mostly by researchers in mathematics education, they are nevertheless primary 

abilities which enable learning geometry and carrying out any spatial activities. Considering that 

the spatial information represented internally is not necessary in the forming of images, I think it 

is better to avoid using terms like “mental images,” or even absurd and vague words like 
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“visualization” and “vision” to describe this ability. Accordingly, I choose to use a relative new 

term— “internal representation”—to contrast with external representation. Further, I propose 

another two primary abilities: “internal representation ability” and “external representation 

ability.” 

1.4 Mental rotation versus spatial relation and spatial transforming 

 Mental rotation is recognized as an ability in several research studies conducted by 

authors like Lohman (1979) and Kimura (1999). Although they do share the concern of 

performing rotations of 2-D figures to generate 3-D items, they group them in the ability of 

spatial relations or spatial orientation. Kosslyn does not specify mental rotation; he displays it in 

a more diverse continuum as part of the process he defined as transforming a mental image by 

rotating, translating, scaling, or decomposing it. This broader transforming concern is evident in 

Bishop’s model. By Bishop’s definition, VP (visual processing of information) includes 

manipulation and extrapolation of visual imagery, as well as transformation of one visual image 

into another.       

 Certainly, mental rotation is an independent ability compared with spatial perception or 

internal representation abilities. For example, some students might be good at constructing a 

prism in the mind, but they have no idea how to rotate that prism or rotate a right-triangle into a 

cone. However, just as in Kosslyn and Bishop’s model, there are more broad transforming 

concerns beyond rotation, involving dynamic movement or manipulation of some internal 

representation. Therefore, I propose a primary ability of “spatial transformation ability.” 

1.5 Problem solving versus spatial reasoning 

The majority of researchers’ models include at most the prior identified five primary 

abilities and end up with their last activity as manipulation or transformation. However, a few 
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researchers define spatial abilities as a model for solving spatial problems, thus they include an 

ability of problem solving (Kosslyn, 1999; Bishop, 1983; Yakimanskaya, 1991). For example, 

Kosslyn’s fourth stage is defined as using a mental image to answer questions. Bishop’s IFI has 

problem solving as its goal as well. In fact, any activity involving transformation and 

manipulation won’t end there; it needs a reasoning action to make sense of the transformation’s 

outcome. This activity is based on a reasoning ability which is independent from transformation 

ability.  

Most humans’ activities are motivated by the desire to solve a problem, especially in the 

setting of geometry learning. However, problem solving can be a very complicated process and 

can involve all the prior five primary abilities. Normally, this includes associating, generating, 

interpreting and other types of logical reasoning. Therefore, I think for the completeness of this 

ability axiom system, it should include a primary ability of “spatial reasoning ability.”  

1.6 Visualization versus vision, representation, visual perception 

These terms are quite confusing and require clear definition. Duvel (1999) distinguishes 

these terms very effectively. He describes them as three cognitive processes. Vision is quite 

similar to visual perception and means a process of taking perspective and discerning 

information, as well as interpreting information towards a presented visual stimulus. Therefore, it 

relies on spatial perception and spatial relationship abilities. The representation process mainly 

happens in two places: outside of the mind (external) or inside the mind (internal). Visualization, 

as Duvel said, cannot be reduced to vision or representation, as it involves whole graphs and 

pinpointing characteristic features. Therefore, learning how to read graphs or construct graphs or 

geometrical figures is not enough for visualization in mathematics. Visualization requires all five 

abilities mentioned in themes 1.2-1.5, and occasionally spatial reasoning ability as well.   
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1.7 Summary: a completed spatial abilities framework 

Through the preceding generalization and categorization of themes 1.1 to 1.6 related to 

spatial abilities, I find that there are six kinds of abilities. Therefore, I synthesize a completed 

spatial abilities framework with six abilities: spatial perception, spatial relationship, internal 

representation, external representation, spatial transformation and spatial reasoning.  

Furthermore, I think there is a hierarchal relationship among the six abilities. These 

abilities can be differentiated into three levels: perception, representation, and visualization 

(based on problem solving).  

In the following section, I will illustrate more details of this framework, most particularly 

the definition of each ability and the hierarchal structure.   

A Spatial Thinking Abilities Framework 

The theoretical framework includes six spatial abilities: spatial perception, spatial 

relationships, internal representation, external representation, spatial transformation, and spatial 

reasoning. The framework is new, but the ideas and the particular spatial abilities accounted for 

in this research are all derived from past studies. The six abilities and terms used in the 

framework are chosen by the author not only because they represent those sub-abilities involved 

in spatial thinking, but also because they can demonstrate what and how we should teach 

students to cultivate their spatial thinking abilities.  

In the following section, the author will give a detailed definition and example of each 

ability, referring to common or similar terminologies mentioned in previous literature. A 

summary of the six abilities is presented in Table 3-1.  

2.1. Spatial perception 
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I define spatial perception as the ability to identify a specific figure and its intrinsic 

information by isolating it from a complex background, as well as to generate the figure into 

abstract geometry elements. In his framework, Gutierrez (1996) includes three perceptual 

abilities. These are figure-ground perception, perception of spatial positions, and perception of 

spatial relationships. In this research, the author thinks there is not much educational value in 

differentiating the perception process in such a detailed way. 

According to the van Hiele model of developing geometrical thinking, the first stage 

(zero level) is visualization, and the second stage (first level) is analysis. For van Hiele, 

visualization is similar to spatial perception. It seems to be more natural that students first 

process the information (perception), and then differentiate position and relationship. Although 

scholars use different terminology, they all assert the importance of the visualization process. In 

addition to the visualization process, there is subtle thinking involved, so the author chooses to 

use the term “spatial perception.” It includes the process and the global thoughts, and it 

represents the process of visualization in a more intuitive way, but without including too many 

analytical elements.  

When learning skew lines, if teachers give rich real-world examples like column versus 

edge in their classroom, or sky-bridge versus the road underneath as is shown in Figure 3-1, etc., 

students can perceive the difference and generate the definition for skew lines. Although students 

are already very familiar with these examples, the connection might never occur to them until the 

teacher brings these examples deliberately into their classroom discussion. It also shows that 

spatial perception is teachable, and it can be enhanced by practice.  

Spatial perception is an ability that enables observers to progress from the prior state of 

lacking awareness to a stage of paying selective attention or directed orientation. Thus, it 
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Table 3-1: Summarizes the Six Abilities and Those Relative Similar Terminologies from Other Scholars’ Research 

Six spatial 

abilities  

Definition Similar terminologies in other 

scholars’ research 

Hierarch

ical 

levels 

Spatial 

perception 

(McGee, 1979; 

Kimura, 1999) 

The ability to identify a specific figure and its intrinsic 

information by isolating it from a complex background, and 

to generate the figure into abstract geometry elements.   

Figure-ground perception (Gutierrez, 

1996), interpretation of figural 

information (IFI) (Bishop, 1983) 

First 

level - 

percepti

on 

Spatial 

relationships 

The ability to determine relationships between different 

spatial objects (McGee, 1979), and the ability to compare and 

analyze the relationship between different parts or different 

elements within an object.   

Perception of spatial relationships 

(Gutierrez, 1996), mental relations 

(McGee, 1979), spatial relations 

(Lohman, 1979) 

Internal 

representation 

The ability to create a quasi-picture from memory without 

any physical support, and in mathematics particularly it also 

includes mental representation of a mathematical concept, 

property, and other information which are attached to the 

quasi-picture.   

Mental image (Kosslyn 1980; 

Gutierrez, 1996), spatial visualization 

(McGee, 1979; Lohman, 1979; 

Gutierrez, 1996; Kimura, 1999), 

visual image (Bishop, 1980) 

Second 

level - 

represen

tation 

External 

representation 

(Gutierrez, 

1996) 

The ability to create any kind of verbal or graphical 

representation of 3-D objects, concepts, or properties 

(including pictures, drawings, diagrams etc.) that helps to 

create or transform mental images and to carry out visual 

reasoning (Gutierrez, 1992). 

 

Non-mental representation, graphs, 

charts, visual convention, spatial 

vocabulary (Bishop, 1980) 

Spatial 

transformation 

An ability involving transforming a mental image by 

rotating, translating, scaling, (un)folding, decomposing, or 

transformation it into another format of images etc. in the 

mind, but it also can be the transforming of concrete objects. 

Mental rotation (McGee, 1979; 

Gutierrez, 1996) 

Third 

level - 

visualiz

ation 

Spatial 

reasoning 

An ability to reason in a figural context while using the form 

of internal representation or external representation, or both. 

Spatial thinking (Kosslyn, 1980), 

geometrical thinking (van Hiele, 

1985) 
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Figure 3-1: Skew Lines Examples in the Real World 

 

stimulates the observer to arrive at an intuitive understanding by provoking some related long-

term memories and information unconsciously. 

2.2. Spatial relationships 

I define spatial relationship ability as 1) the ability to determine relationships between 

different spatial objects; 2) the ability to compare and analyze the relationship between different 

elements within an object. It is an ability that enables observers to progress from the prior state 

of relative globality and lack of differentiation (spatial perception) to a stage of increasing 

differentiation, articulation, and hierarchic integration. This ability is very intuitive and is an 

informal method of deduction.  

Spatial relationships is a critical ability in Bishop’s IFI (Interpretation of Figural 

Information) because it enables the observer to interpret the visual stimulus, either mental or 

physical, and get from it any relevant information that could help to solve a problem. Language 

plays vital role in this ability, because only by defining and naming the perceived relations can 

one arrive at a stage of discerning and describing a spatial phenomenon. Spatial perception 

ability enables one to have an unconscious understanding (reading) of a spatial stimulus, while 
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spatial relationship ability enables one to raise that understanding into active awareness. Thus, 

one is capable for carrying out some conjunction or informal deduction.  

An example of this ability is that when one sees a railway track, one can recognize and 

name the parallel relationship between the two rails. Or, as in the example of Figure 3-1, one can 

immediately recognize them as skew lines and can recall all the relationships (like the definition 

and characteristics) associated with skew lines.  

2.3. Internal representation 

I define internal representation as an ability to create a quasi-picture from memory 

without any physical support.  In mathematics, it also includes mental representation of a 

mathematical concept, property, or other information which is attached to the quasi-picture.  

This term is quite close to terms like mental representation and visual images. Therefore, 

research about visual (mental) images, such as that contributed by Presmeg (1986) and Kosslyn 

(1980), can continually offer further and deeper understanding of this domain. It includes two 

major components. The first is a surface representation, the quasi-pictorial entity present in the 

active memory, such as concrete, pictorial images. The second is a deep representation, such as 

pattern images, images of formulas, kinesthetic images, and dynamic images. An example is 

given in Figure 3-2. 

2.4. External representation 

I define external representation as an ability to create any kind of verbal or graphic 

representation of 3-D objects, concepts, or properties (including pictures, drawings, diagrams 

etc.) that helps to create or transform mental images and to carry out visual reasoning (Gutierrez, 

1996). 
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Figure 3-2: An Example of Internal Representation of a Solid 

 
 

Several researchers (Duval, 1999; Pittalis & Christou, 2013; Bishop, 1983) have shown 

the positive effects of diagrammatic training on pupils of low spatial ability. The effectiveness of 

these teaching methods is due to their utility in enhancing students’ representation ability. Duval 

(1999) asserts that external representations include conventional symbolic systems of 

mathematics or graphical representation. 

Brown and Wheatley (1997) found that the representation of 3-D objects by 2-D nets is 

directly related to students’ ability to combine and analyze visual images, which involves both 

spatial relationship and internal representation abilities. Their conclusion indicates the 

interconnection between internal representation and external representation and that they can 

enhance each other. Two examples are given in Figure 3-3. 

2.5. Spatial transformation  

I define spatial transformation as an ability involving transforming a mental image by 

rotating, translating, scaling, (un)folding, decomposing, or transforming it into another image in 

the mind, but it also can be the transforming of concrete objects. One has to use internal or 

external representation ability to imagine before one can conduct the transformation.  



 

 56 

Figure 3-3: Examples of External Representation 

 

Figure 3-4: Examples of Spatial Transformation 

 

Mental rotation is a typical example which requires this ability. It demonstrates an ability to 

imagine in the mind, but also the ability to differentiate the relationships of different parts and 

properties involved in the rotation, and to tell the relative positions of elements of the rotating 

object before and after the rotation. An example is given in Figure 3-4. 

2.6.  Spatial reasoning 

 “Reasoning” refers to a set of processes and abilities that acts as a logical tool in problem 

solving and enables us to go beyond the information given. I define spatial reasoning as an 
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ability to reason in a figural context while using the form of internal representation, external 

representation, or both. It includes sub-skills such as measurement, orientation, formal deduction, 

rigor, etc. It involves cognitive activity such as associating, recognition, generalizing and logical 

reasoning. It is a connection between spatial abilities and mathematical abilities.  

An example is shown in Figure 3-5. Given a cube with six different shapes on each side 

as follows, what would the relative sides of the cube look like? 

Figure 3-5: Example of Spatial Reasoning 

 

 

2.7. The hierarchies within the six abilities 

There is no clear hierarchy of these abilities because most of the time they are interacting 

with each other. However, there are subtle developmental differences, and thus they can be 

roughly divided into three different developing stages. It is not that one student goes through all 

three stages, and when he/she comes to the highest stage, just stays there forever. It is a process 

students have to go through again and again when they learn different objects and different 

concepts. But the more times students go through these stages, the more their ability levels in 

each of the six spatial abilities will increase, as long as each of the abilities are involved in the 

process. Students need these abilities to learn 3-D geometry concepts, but they also develop and 

improve these abilities as they learn 3-D geometry.  

(1) The first level, or the lowest stage, is spatial perception and spatial relationships. 

Although we are living in a 3-D real world, we are actually too familiar with the environment to 
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notice any specific characteristics of the space we are living in. In this stage, it is important for 

both teachers and educational resources to offer students sufficient spatial materials for the 

targeted lesson goals. Then students will get enough stimulation from and perception of the new 

mathematics concepts from the resources, and they will be prepared for the next stage of 

generalizing thoughts and concepts. Spatial perception is a very basic ability, but it cannot be 

assumed that students possess it already. The neglecting of this ability will cause students huge 

difficulties later on. Along with the process of spatial perception, students observe, compare, and 

deconstruct learning objects. They begin to pay attention to particular parts of the objects, and 

they specify the relationships between parts and the whole, or parts and other parts. Instead of 

taking a 3-D object or 3-D space for granted, now they perceive it in a more detailed way and 

identify the relationships they observe. They absorb the information through observing 3-D 

objects, and they get more intuitive ideas from the information; then they generate new 

knowledge.  

(2) The second level is internal representation and external representation. Through the 

first level, students generate or possess certain knowledge; thus, they need a place to store their 

knowledge and a tool to also recall and present their knowledge. One way to store the knowledge 

is in the mind. This can be shallow or deep, depending on the level of students' understanding. 

Teachers and educational resources should help to provide students with rich concrete examples 

and discussions so as to promote students' perception and comprehension of the new concepts. 

The storage of information can be pictorial, symbolic, or verbal. These representations not only 

include storage but also include redeployment and transformation between different 

representations. For example, given a net of a cube with different shapes on each of its six sides, 

if students can fold it in their minds and tell the relative positions of the shapes on the sides of 
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the cube, this is an example of transformation between external representation and internal 

representation.   

(3) The third level is spatial transformation and spatial reasoning. These two abilities 

require students to acquire the two representation skills first, and then they can rotate or reason 

internally in their mind's eye or externally on paper. These are higher level cognitive abilities. 

Consider the previous six shapes on each side of the cube in Figure 2-5, for example; if students 

can tell the relative positions of the shapes after rotating the cube to another position, they show 

ability in spatial transformation and spatial reasoning. Not every student can do that; research 

done by Cohen (2003) shows that most students do poorly in this task.  

These three stages manifest partially in some scholars’ spatial abilities model as a form of 

processes, such as Duval’s (1999) three-process model. For example, the first stage is quite like 

the process of vision (spatial perception), while the second stage is quite like the process of 

representation. However, the process of visualization requires all three stages.  

2. 8. Purpose of this framework in this study 

 This spatial abilities framework serves two purposes. Firstly, it represents a kind of 

cognitive architecture behind 3-D geometry and it provides a complete collection of spatial 

abilities to cultivate along with the teaching of 3-D geometry. Secondly, it is a pedagogical tool 

for understanding and teaching 3-D geometry. Cohen’s research (2003) indicated that the 

visualization of nets involves mental processes that students may not yet have, but they are able 

to develop them through appropriate instruction. Just as Cohen indicates, the six abilities in this 

framework are not stable abilities, but, rather, abilities which can be developed through 

deliberate interaction with and learning of 3-D geometry. Meanwhile, the acquisition of these 

abilities also enhances the learning of 3-D geometry.       
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Chapter IV   

Methodology 

 

Overview 

This chapter provides a description of the methods used to collect and analyze data for 

this study. It begins with a restatement of the research questions that guided the study. The 

second section provides a description of the data collection: how the curriculum standards and 

textbooks used in the study were selected; how the topics analyzed in each textbook were 

selected; and the methods used for coding and analyzing the content of each textbook. The third 

section describes the methods used for coding and analyzing the spatial abilities data. Finally, the 

fourth section describes the limitations of the study.  

The following research questions were considered in this study:  

1. What are the main topics of 3-D geometry claimed in each country’s national 

curriculum? What are the primary 3-D objects which appear in each textbook? What are the 

central 3-D concepts in each text? What are the main communication types being used in each 

textbook? What are the commonalities and differences among them, and what are the 

implications of those commonalities and differences? 

2. What kind of spatial thinking abilities are associated with the concepts and examples in 

the textbooks? How are the spatial abilities presented and represented in textbooks? What are the 

commonalities and differences among them, and what are the implications of those 

commonalities and differences?  
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This qualitative study used both content analysis and cross-cultural comparison methods 

to inquire about and to understand the current state of three-dimensional geometry in high 

school. The data of the study included: (1) two national and one internationally recognized 

statements of curriculum standards and (2) three textbooks. It is based on the notion that 

curriculum standards and textbooks, the intended and potentially implemented curriculum, serve 

as a framework through which classroom teaching might occur. Data analyses of the study 

included multi-layered processes.  

To answer the first research question, I conduct two rounds of preliminary data analyses. 

The first round of data analysis is done to find out some emerging features of content contained 

within the textbooks and the standards. The second round is designed to use the newly identified 

emerged features to check out the validity of the features in resource materials and whether some 

features are missing. Then I grouped these themes into three categories: (1) 5 communication 

types, (2) 10 types of objects, and (3) 14 kinds of concept sets. To better understand the content, 

I dissected each section of the textbook into chunks to form units for analysis. Then I designed a 

coding schema to code each unit across the three categories to understand and compare its topics, 

to report the general distributions of these categories, and also to conduct comparisons between 

them.     

To answer the second question, the researcher used the spatial thinking framework 

created in chapter two to code the spatial thinking abilities in each unit so as to understand how 

abilities are presented and conveyed across the texts. It also used both content analysis and cross-

cultural comparison methods to inquire about and analyze the distribution in the texts of the six 

spatial thinking abilities: spatial perception ability, spatial relationship ability, internal 
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representation ability, external representation ability, spatial transformation ability, and spatial 

reasoning ability.   

In summary, this research carefully examined the way in which high school curriculum 

standards and textbooks handle 3-D geometry topics in the US and China and used a qualitative 

method to answer all these questions. 

Data Collection 

This research analyzes the teaching of 3-D geometry in the China and the United States 

in a systematic way by examining the curriculum standards, which are the “intended 

curriculum,” and the textbooks, which are the “potentially implemented” curriculum. According 

to Porter and McMaken (2011), the intended curriculum does not concern itself with how the 

content is to be taught, but, instead, focuses on what students are to learn. It is basically a 

statement of intentions, aims, and goals. Most countries use curriculum standards as a way to 

declare the national/statewide intended curriculum. Potentially implemented curriculum refers to 

textbooks and other organized resource materials. This research will not go into detail on other 

kinds of resource materials because textbooks are the most used resource materials.  

Selection of curriculum standards  

This study examined three curriculum standards related to 3-D geometry. In China, 

education is highly centralized such that there is only one national curriculum standard for 

guiding and regulating high school mathematics. In this study, the researcher chose the national 

curriculum standard, which is called Mathematics Curriculum Standards for General High 

School (CS-China), as a reference. This curriculum standard was first released in 2003 and has 

experienced some minor changes. This study uses the revised 2016 version. In the US, the 

chosen curriculum standard is the Common Core State Standards of Mathematics (CS-US). The 
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CCSSM standards, released in 2010, are intended as the national standards and represent an 

unprecedented shift away from disparate content guidelines from individual states. Porter et,al. 

(2011) call it “The new US intended curriculum.”  In 2000, the NCTM published Principles and 

Standards for School Mathematics (CS-NCTM), which is referenced and accepted by a wide 

range of countries and has a very profound influence internationally, so this study will also 

analyze this standard, which serves as a representation of internationally recognized standards.  

Selection and acquisition of textbooks  

This study examined 3-D geometry topics presented in three textbooks, one from 

mainland China, and two from the US. The aim in the selection of textbooks was to examine the 

textbooks that students are most commonly exposed to in the two countries.  

In the US, education is decentralized, so states and districts can choose different 

curriculum standards to implement, and schools have the autonomy to choose which textbooks to 

use; therefore, the textbooks are very commercial and diverse. It is hard to tell even how many 

textbooks are available for high school mathematics teaching. These mathematics textbooks 

differ in a variety of ways, so the researcher turned to various teachers and mathematics 

educators for advice. I decided to use two different US textbooks. One textbook is published by 

Pearson Press, the fourth largest textbook publisher in US. The specific text used in this study 

was Prentice Hall Mathematics New York – Geometry, abbreviated as “Pearson Textbook” in 

this research. The second US textbook in this study, published by Key Curriculum Press, is 

Discovering Geometry – An Investigative Approach, shortened as “Discovering Textbook” in 

this research. The second text has not been widely adopted, but it is recommended by senior 

professors in the field for its high quality and careful design. 
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In China, education is highly centralized. For a long period, before 2003, there was only 

one standardized course guideline statement and textbook for each subject across the country in 

each period of education reform (Zhang, 2003). Therefore, there used to be only one commonly 

used geometry textbook, published by the People’s Education Press and authorized by the 

Ministry of Education of the People’s Republic of China, for high schools across the whole 

country. However, the situation began to change early in the 21st century under the name of New 

Curriculum Reform. In 2003, the ministry authorized the People’s Education Press to release the 

High School Mathematics New Curriculum Standards (CS-China). Meanwhile the Ministry of 

Education encouraged different presses to create and publish different versions of high school 

mathematics textbooks. The aim was to increase textbook diversity and implement curriculum 

innovation in basic education. However, the new textbooks were required to rigorously follow 

the national standards in CS-China. Eventually, five textbooks were approved by the ministry 

among all the textbooks designed by different presses (approximately 13 versions), and they are 

all currently in use. Each province can choose one of these five versions as the province’s 

common-use textbook, and normally districts or schools have no rights to choose beyond that. 

Among the five, the most popular and widely circulated version is called People’s Education 

Press A Edition.  People’s Education Press released two versions of the textbooks, edition A and 

edition B. The difference between the two versions is not significant, and edition A is used in 

more provinces, so this study chose edition A as representative of China’s textbooks. On the 

pages that follow, People’s Education Press A Edition will be referred as “People’s Education 

Textbook.”  

However, People’s Education Textbook is bit more complicated than the US texts 

because there is no individual textbook for geometry. In the new reformed curriculum standards, 
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CS-China, one of the distinctive features is an integrated approach toward all branches of 

mathematics. Regular mathematics branches are intertwined together and are no longer each in 

individual books. Textbooks are not named after the mathematics subjects, but, rather, by 

number. There are a total of eighteen books in the People’s Education Textbook series. Among 

them, five books, which are named Compulsory 1 to Compulsory 5, contain all of the mandatory 

mathematics content. These numbers do not indicate the order of these books to be taught. The 

rest of the thirteen books are elective books, the topics of which are optional for students. 

However, there are five elective books, which are Elective 1-1, Elective 1-2, Elective 2-1, 

Elective 2-2, and Elective 2-3 which are required by most of the provinces and are treated 

essentially as compulsory books. Therefore, this study included all of the five compulsory 

textbooks and those five elective textbooks in order to investigate 3-D geometry content. The 

researcher identified two of these books that contained a series of 3-D geometry topics, which 

are Compulsory 2 and Elective 2-1.  

The textbooks eventually selected are summarized in Table 4-1, with more detailed 

information, including publication information and selected pages. 

Table 4-1. Textbooks Included in the Study 

 China textbook                        USA textbooks 

Textbook Name General High School 

Curriculum Standard 

Experimental Textbook A 

Edition: 

Mathematics Compulsory 

2; 

Mathematics Elective 2-1 

Prentice Hall 

Mathematics New 

York · Geometry 

Discovering 

Geometry · An 

investigative 

Approach 

Publisher People’s Education Press Pearson 

Education 

Key Curriculum 

Press 

Year of Publication  2007 2007 2008 

Simplified Name in 

this research 

People’s Education 

Textbook 

Pearson Textbook Discovering 

Textbook 
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Selection of 3-D geometry content from the textbooks 

In all three textbooks, the researcher looked through the entire textbook and chose 

content belonging to 3-D geometry. In the Pearson Textbook, the 3-D geometry content appears 

in two chapters. In the Discovering Textbook, the content appears in four chapters.  In the 

People’s Education Textbook, three chapters appear in “Mathematics 2,” the compulsory part, 

and another chapter in Elective 2-1. Although the latter is not mandatory, most provinces require 

those concepts to be tested in the final college entrance examination, so most teachers teach them 

as well. The selected chapters and pages (related to 3-D geometry) can be found in Table 4-2.  

Table 4-2: Three-Dimensional Geometry Covered in the Three Textbooks 

Textbooks Chapters  Pages  

Pearson Textbook Chapter 1: 1.2, 1.3, 1.4 

Chapter 11: 11.1-11.7 

80 pages in total.  

Page 10-27, 597-659 

Discovering Textbook Chapter 1: 1.1, 1.8 

Chapter 8, 8.7 

Chapter 10, 10.1-10.7 

Chapter 11, 11.5-11.6 

82 pages in total 

Page 28-29,74-79, 174-177, 

461-467, 519-565, 608-619 

People’s Education Textbook Compulsory 2: 

Chapter 1: 1.1-1.3 

Chapter 2: 2.1-2.3 

Chapter 4: 4.3 

Elective 2-1: 

Chapter 3: 3.1-3.2 

121 pages in total. 

Page 1-80, 134-138, 83-118 

 

 Designing a schema for content coding and analyzing 

The structure and organization of these three textbooks differ in a number of ways, such 

as the book length, format, topics covered, and layout. Moreover, a deeper examination reveals 

notable differences in sequencing and complexity of the content. But in general, all textbooks are 

structured under a framework of “Chapter->Section”. Sections contain the serious concepts 

which are under the same chapter title and share some objects or concept, and they are normally 

implemented in classrooms over 1-2 class instruction periods. A chapter is a series of sections 
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which share some common topics, study subjects, or agenda. Sections are structured under a 

framework of “Introduction->Concepts->Examples->Exercises,” a very common framework for 

mathematics textbooks. For most users, teachers and students, these four structures form the four 

legs of the textbooks. The introductory part mostly provides some real-world context for the new 

mathematics subject and is generally very brief. The concepts part is the core of the section, 

providing the definitions of and relevant information about the new concepts, formulas and the 

derivation of formulas, as well as theorems and the derivation of theorems. Examples are mostly 

questions for students to think about and solve, and normally begin with a model example, 

showing how to solve the problem and how to write answers in the required format. Concepts are 

mostly inter-twined with examples, and in some texts examples immediately follow the new 

concepts, while in other texts examples tend to come all together at the end of the sections, after 

all the concepts have been illustrated. In most texts, concepts and examples go hand in hand and 

combine together as the main content of the section. For the purpose of analyzing these 

textbooks, the researcher thinks it is better to differentiate examples from concepts because they 

serve quite different purposes. Different exercises serve a variety of purposes, such as in-

classroom practice, after-school practice, and advanced or extra learning resources, so the 

purpose of exercises and thus the number of exercises differ greatly from textbook to textbook. 

In this regard, exercises might be very lengthy, and they cannot really reveal the core content of 

the textbooks, so this study eliminated exercises from examination. Furthermore, users are more 

likely to pay attention to the other three parts, which are the introduction, content, and examples, 

and there is much to do in analyzing these three parts. It is for these reasons as well that this 

study excludes the exercise sections. Different textbooks may also have some extra readings, 

explorations or appendices. However, these are not usually required by the curriculum standards, 
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so most teachers and students tend to skip them. Therefore, this study excludes the extra 

readings, explorations, and appendices. To sum up, the researcher chose all the introductions, 

concepts, and examples relating to 3-D geometry in the texts as the main content for analysis.  

After conducting two preliminary studies of the three textbooks, the researcher came 

across some main characteristics which serve very important roles in teaching and learning 3-D 

geometry objects and concepts. These main characteristics can be grouped into three areas.  

I first conducted a preliminary pioneering study on the three textbooks and explored the 

teaching and learning of 3-D geometry in terms of the content. This aimed at conducting a set of 

research procedures to lead to the emergence of conceptual categories. I read through the texts 

several times at the outset, and there were three distinguishing classifications that emerged from 

the exploration; they served very important roles in understanding and analyzing the content.  

The first noticeable area is the statements in the texts. Textbooks are aiming to deliver 

mathematics knowledge and communicate with the readers. Because they are different from 

other kinds of books, geometry textbooks tend to use narrative tones or fact listing tones. 

Geometry books mostly use written statements and graphs to illustrate and deliver geometry 

concepts. Unlike novels, which are written in a narrative tone and interconnected, these three 

texts tended to use a list style, employing a format of written statements aided by graphs to 

communicate key mathematics ideas and concepts. Therefore, the researcher was interested in 

looking at further details in these statements to identify the types of written communication 

involved. The first area that emerged was the communication types.  

 The second noticeable feature was the 3-D concepts. I found that the written statements 

within one section can generally be chunked into several small concepts. These chunks have 

individual purposes, and most of the time they have clear separation from each other. For 
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example, some paragraphs are statements designed to communicate the same concept or serve 

the same purpose as an illustration or definition of a concept, or modeling how to do a 

mathematics problem. I thought it might be more helpful to dissect the content in each section 

into small chunks, to produce a micro-analysis of the content. I decided to use each content 

chunk as the basic unit of content analysis.  

The third distinctive area is the 3-D objects involved. Geometry, most of the time, is a 

subject which involves learning shapes and relationships. Graphs of 3-D objects are very 

important components in 3-D geometry, and can aid geometrical understanding and learning. 

Also, 3-D geometrical concepts or topics are one of the main concerns of my research. So I 

explored the 3-D objects and concepts in the texts as well. In summary, these main 

characteristics can be grouped into three areas: communication types, 3-D objects, and 3-D 

concepts. 

Then I conducted a second-round pioneering study. In this round, I first divided the 

content in each section into chunks and marked each chunk as a unit of study. Then I looked into 

each unit to identify the communication types, 3-D objects, and 3-D concepts involved. I 

detected roughly four communication types, 10 objects, and 8 concepts. Lastly, I did a 

preliminary coding of these three areas in the spreadsheet, by simply checking each unit to see 

whether it included the above perceived types, objects and concepts. In the process, I discovered 

one more communication type, as well as some other objects and concepts. The categories of 

these will be further discussed in the following section. 

In summary, these two pioneering studies identified the units of analysis and three areas 

for content analysis in addition to spatial thinking abilities. These are introduced and defined in 

the data analysis section.  
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Data Analysis 

Unit of analysis 

(1) Unit of analysis for Curriculum standards 

The unit for analysis in this study is defined as a chunk or series of statements and 

adhered graphs, which serve the same purpose or share the same topic. A unit might be a 

paragraph or several paragraphs and include the graphs or charts nearby. The rationale and 

criteria for grouping content into a unit is based on whether they serve the same purpose, 

illustrate the same concept, or serve the same function. For mathematics textbooks, it is 

challenging to identify or define a unit of analysis. A general section can be defined as a unit of 

analysis; however, the sub-content within the section might also serve as units of analysis. 

However, this study chose the latter, aiming for detailed micro-content analysis. 

Figure 3-1 displays a unit extracted from the Pearson Textbook. This sample unit is a 

content chunk concerning “Theorem 11-5 Cavalieri’s Principle.” It includes three parts: a real-

world context of the principle, a statement of the theorem, and explanation of it. I took out this 

unit from the section on “Volumes of Prisms and Cylinders.” Figure 4-2 and Figure 4-3 display 

all of the content in that section. The section is dissected into 11 units, which are: check skills 

you’ll need, hands-on activity, definition of volume, theorem 11-5 Cavalieri’s Principle, volume 

of a prism, example 1, example 2, volume of a cylinder, example 3, definition of composite 

space figure, and example 4.  
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Figure 4-1: An Example of a Unit from the Pearson Textbook 
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Figure 4-2: A Section from Pearson Textbook Page 1-2 
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Figure 4-3: A Section from Pearson Textbook Page 3-4 
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(2) Unit of analysis for curriculum standards 

In order to keep consistency in analyzing the curriculum standards of textbooks, this 

study also needs to establish a unit of analysis for those standards. However, the three curriculum 

standards are dramatically different not only in size or word count but also in format.  

CS-NCTM and CS-US tend to use bullet formats to give the standards, and they state the 

required standards in 1-2 sentences. The CS-US includes two levels of bullets, and the first level 

indicates headings, while the second level indicates required standards for students to achieve. 

So, this study treats each bullet in the second level as one standard, and thus a unit of analysis. 

The CS-NCTM geometry standards include two levels of bullets, and the first level signals 

content standards, while the second level gives the specific expectations. The section ongeometry 

includes four standards, which are consistent requirements from pre-k through grade12. Each of 

these standards then has specific expectations for grades 9-12. This study follows the convention 

of the CS-NCTM in treating each standard as a unit of analysis.  

The CS-China states standards in a very detailed way, including four parts: general 

statements of educational purpose and goals, content and requirements, explanations and 

suggestions, and some reference examples. The bullet standards appear in the “content and 

requirements” part, so this study focuses on this part fort standards analysis. CS-China has three 

levels of bullets. The first level provides headings for the chapter, the second level specifies the 

required content and expectations, and the third level occasionally appears and each bullet 

indicates one particular element of content (theorems throughout the abstracted CS-China). 

Therefore, the third level displays theorems inside a standard rather than denoting a required goal, 

and this study treats each second level bullet in the “content and requirements parts” as a unit, no 

matter how big or small it is.  
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In summary, there is no uniformity in format across the three curriculum standards, and 

thus it is difficult to select a common form as a unit of analysis. However, by considering them 

comparatively, the author was able to identify a bullet level to denote a standard and thus a unit 

of analysis accordingly. Although this identification has drawbacks, it still provides a relatively 

fair unit across the three curriculum standards.    

Communication types 

The first area concerns the communication types involved. Communication types are 

defined as styles, or established structure or conventions in a chunk of written statements in this 

research. They are normally declared by the texts, either labeled as such or following established 

structures and conventions. For example, as can be seen from Table 3-3, in front of each unit (a 

chunk of statement), there is a leading word, like “Example” or “Theorem” to indicate the type 

of that unit.  

There are five such types identified, and each has its own distinct purpose. These include: 

(1) Example, which is generally a series of statements which has a general statement of a 3-D 

geometry problem/question and an answer to that problem, which aims to illustrate and model 

how to solve problems; (2) Investigation, which is a series of activities that direct students to 

observe, manipulate, explore, think, discuss and analyze; (3) Definition, which is a series of 

statements to specify or define objects or concepts, which form rigorous and common 

understanding for future reference; (4) Theorem, which is a concise mathematical truth statement 

which expresses a complicated phenomenon and displays rigorous reasoning; (5) Formula, 

which is a concise mathematical symbolic expression that abstractly represents a mathematical 

relationship or rule and aids in simplification. Among the five types, only the definition type has 

no leading denoted word. But, in all texts, all new concepts and new terminologies are bolded 
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and followed by a series of descriptions and clarifications. Thus, I categorized this sort of 

statement as a definition. The other four types all had specific leading words to indicate their 

type; that is, an example was preceded by the word “example”, etc.  

 Although these five types are common among the three texts, different textbooks denote 

theorems and formulae with different conventions and terms. For example, the Discovering 

Textbook uses “conjecture” to assert both formula and theorem. The Pearson Textbook indicates 

formula, postulate, and theorem types. However, formula occured only once, when the text 

declares “Euler’s Formula,” while formulae of volume are signaled as theorems. The People’s 

Education Textbook labeled formula, postulate, and theorem as well. But they are explained 

differently.  

The terms in the three texts differ slightly, but the meaning is quite similar. A theorem is 

a collection of sentences to describe a fact that has been proved or can be proved – but the proof 

may or may not be given in the text. A postulate is a collection of sentences which describe a 

commonly recognized fact that cannot be proved or has not been proved. Conjecture is a 

statement that is unproven but is believed to be true. A formula is an abstract equation associated 

with a group of symbols (such as letters and numbers) to express geometrical facts concisely. 

Therefore, a formula is a special kind of theorem or conjecture with unique symbolic expression.  

To make a common ground among the three texts, I decided to treat them using the 

following approaches. I separated formulae from theorems or conjectures. I merged theorem, 

conjecture, and postulate, into the category of “theorem.” This is because formulae are abstracted 

into symbolic representation and theorems are abstracted with normal language. Normally the 

former seems easy for students to visualize, while the latter requires a comprehensive process to 

visualize it.   
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Some may argue against considering definition, theorem, and formula as communication 

types, since those three are not considered as communication terms at all in the literature, but, 

rather, general terms for mathematics concept formats. However, this study treated them as such, 

attending to the conventions of mathematics textbooks.  

Definitions encourage students to observe, group or categorize 3-D geometry objects or 

concepts by a series of abstract characteristics. They teach students to clearly define and 

recognize objects by their properties, rather than only through concrete visual examples. 

Formulas express a mathematical relationship or rule abstractly and symbolically, and then 

students can apply this simplified formula to solve mathematics or real-world problems. 

Theorems describe a serious geometrical truth by using conjecture to establish a short sequence 

of statements as well as using the deduction method or other methods to justify the truth. Both 

formulas and theorems are great tools for communicating high levels of abstract thinking.  

Considering all these benefits as well as the educational meaning of definitions, formulas, 

and theorems, the researcher thinks those terms are not only mathematics terminology, but they 

are also communication tools, and therefore has decided to treat them as communication types 

like examples and investigation.  

Three-dimensional geometry objects (3-D objects)  

A three-dimensional geometry object is an object that has three measurable dimensions: 

length, width, and height. Examples of objects are prisms, pyramids, cylinders, spheres, etc. In 

this study, the researcher uses 3-D objects to refer to all kinds of 3-D geometrical subjects, such 

as polyhedrons, as well as abstract graphic representations of 3-D geometrical phenomena.  
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Table 4-3. Examples of Unit and Communication types 
Unit Examples of unit 
Definition  Definition from Discovering  

 
 
Definition from Pearson  

 
Definition from People’s 

Education
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Translation:  
In general, we define polyhedron as a geometry object enclosed by several planar polygons. 

This polygon which forms the polyhedron is called the surface of the polyhedron, such as 

surface ABCD, surface BCC’B’; the line along which two adjacent surfaces of a 

polyhedron meet is called edge, such as the edge AB, edge AA’; the common point of 

edges is called the vertex of the polyhedron, such as vertex A, D’. These objects (2), (5), 

(7), (9), (13), (14), (15), (16) all have the shape of a polyhedron.   
We define solid of revolution as a closed body obtained through rotating a plane figure 

around a straight line in its plane. This fixed line is called the axis of the rotating body. 

These objects (1), (3), (4), (6), (8), (10), (11), (12) are solids of revolutions. 
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Theorem 

 

 

No Theorem from Discovering  

 

Theorem from Pearson 
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Theorem from People’s Education 

 

 
  

Translation: As shown in the figure 2.2-8, with the aid of a cuboid model, two 

intersecting straight lines in the plane ABCD are parallel to two parallel lines of the 

plane A’B’C’D’. By the determination theorem of a line is parallel to the plane, then 

these two intersecting lines AC and BD are parallel to the plane A’B’C’D 

respectively. In this case, the plane ABCD is parallel to the plane A’B’C’D. 

     In general, we have the following determination theorem of plane parallel to 

plane.  

    Theorem: If two intersecting lines of a plane are parallel to another plane, then 

the two planes are parallel to each other.  

The above theorem is called the determination theorem of plane paralleling to 

another plane. It enables us to determine the parallel relationship of two planes 

through the parallel relationship of line with plane.  

The symbolic notations of determination theorem of plane paralleling to plane are 

following:   

 
Example Example from 

Discovering
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Example from Pearson 

 
 
Example from People’s Education 
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Translation: Given cubic ABCD- AB’C’D, prove that plane AB’D’// plane C’BD.  
Proof: Because ABCD- AB’C’D is a cubic,  

So D’C’ // A’B’, D’C’=A’B’. 
In addition to that because AB//A’B’, AB=A’B’, 
Therefore, D’C’//AB, D’C’=AB. 
Therefore, D’C’BA is parallelogram, and D’A//C’B. 

Because D’A  plane C’BD, C’B  Plane C’BD, 
By the determination theorem of a line parallel to a plane, 
Therefore, D/A // Plane C’BD. Similarly, D’B’// Plane C’BD. 

Meanwhile, D’A  D’B’=D’, 
Therefore, plane AB’D’ // plane C’BD. 

 
Investigati
on 

 
Investigation from Discovering 
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Investigation from Pearson 

 
Investigation from People’s Education 

 
Translation: Investigation: Prisms, pyramids and pyramid frustums are polyhedrons 

enclosed by plane polygons as well. What do their nets look like? And how can you 

calculate their surface areas? 
Formula Formula from Discovering (same as shown in the Investigation example) 

Formula from Pearson 

 
 
Formula from People’s Education 

 
Translation: (in the box) transforming 3-D objects to plane objects is a fundamental and 

basic strategy in solving 3-D problems.  
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However, considering the great variety of 3-D objects in the texts, I used two rounds of 

preliminary research to detect and synthesize all possible 3-D objects that were evident in these 

textbooks. The researcher looked into each unit and coded the key words or 3-D objects found in 

the written statements and graphs. After the coding processes, the most common 3-D geometry 

objects in all of the considered texts are: prisms, pyramids, pyramid frustums, cones, cylinders, 

circular frustums, spheres, abstract graphs, platonic solids, and composite solids or real-world 

models. Most of these objects are very common recognized solids; only a few of them might not 

be generally familiar. Below are descriptions and definitions for some of the objects that are less 

well known.  

 A pyramid frustum is a type of 3-D object obtained by using a cross section which is 

parallel to the base of a pyramid to cut the pyramid into two parts. One part is a pyramid similar 

to the original, and the other part is called a pyramid frustum. A circular frustum is a type of 3-D 

object obtained by using a cross section which is parallel to the base of a cone to cut the cone 

into two parts. One part is a cone similar to the original, and the other part is called a circular 

frustum. An abstract graph displays a 3-D geometrical phenomena through an abstract drawing 

which still has three dimensional attributes but does not necessary have identifiable solids 

involved. An example of pyramid frustum, circular frustum and abstract graph is shown in 

Figure 4-4, from left to right. The Platonic solids, also called the regular solids or regular 

polyhedrals, are convex polyhedrals with faces composed of congruent convex regular polygons. 

There are five such solids: the cube, dodecahedron, icosahedron, octahedron, and tetrahedron, as 

was proved by Euclid in the last proposition of the Elements. A composite solid or real-world 

model is a solid or a 3-D geometry model that is comprised of several regular solids or regular 

real-world objects. The reason to combine the composite solid with a real-world model is that 
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sometimes the real-world model is composited by more than one solid. The composite solids in 

the texts sometimes represent  real-world objects, sometimes just display geometric objects 

without real-world objects, and sometimes just display geometric objects without real-world 

contexts. So, the researcher combined them into one type of 3-D object considering their overlap.  

Figure 4-4: Some Examples of 3-D Objects     

 

*: From left to right, the first object is a pyramid frustum, the middle three show the forming of a 

circular frustum, and the very right object is an abstract graph.    

Three-dimensional geometry concepts (3-D concepts) 

A three-dimensional geometry concept is a general geometrical relationship or 

concept/topic of 3-D geometry. They represent attributes that one might study about geometric 

objects. A concept related to 3-D geometry can be very specific, such as the volume of a prism or 

the volume of pyramid. However, the main mathematics concept or relationship behind them, 

volume, is the same. Geometry is not only about objects but also attributes of those objects; 

therefore, for this study the research is oriented toward concepts and relationships that apply to 

many “objects”. The second area does not concern itself with the objects themselves but, rather, 

similar mathematical concepts or properties. 3-D concepts can be volume, surface area, or 

drawing. In terms of identifying what kind of concepts are involved, the researcher conducted 

two rounds of coding of the key ideas or key words from each unit, from which the larger 

conceptual categories emerged. Table 4-4 to Table 4-6 display these key ideas or key words in 
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the three texts. It is clear from these three tables that these key ideas can be very narrow, such as 

point, line, plane, coplanar, prim, volume of prism, and volume of cylinder. Thus, the researcher 

grouped the first four into a 3-D concept of “spatial positional relationships,” and put definitions 

like prism, cylinder and sphere into a 3-D concept of “categorizing.” The volume of prism and 

cylinder is grouped into a 3-D concept of “volume.” 

Table 4-4: Key Ideas or Key Words in Discovering Textbook 

Point, line, plane, collinear and coplanar 

Space, Isometric Drawing, Three-dimensional Objects, Cylinder, Prism, Pyramid, Sphere, 

Hemisphere, Space Geometry, Perspective Drawing, One-point Perspective Drawing 

Surface Area of Prism, Cylinder, Pyramid, Cone  

The Geometry of Solids; Volume of Prisms, Cylinders, Pyramids, cones; 

Displacement and density; 

Volume of a sphere; Surface area of a sphere 

Proportions with area; Proportions with volume 

 

Table 4-5: Key Ideas or Key Words in Pearson Textbook 

Isometric Drawing, Orthographic Drawing 

Foundation drawing, Net, Drawing Net 

Definition of Point, line, space, collinear and coplanar; Postulate 1 and 3 

Parallel lines, skew lines, parallel planes 

Polyhedron, Euler’s formula, cross section 

Perspective drawing 

Surface area of Prisms and Cylinders; 

Surface area of Pyramids and Cones; 

Volume of Prisms and Cylinders; Volume of Pyramids and Cones; 

Surface Areas and Volumes of Spheres 

Areas and Volumes of Similar Solids 

 

Table 4-6: Key Ideas or Key Words in People’s Education Textbook 

Space geometry; polyhedron, solids of rotation,  

Prism, Pyramid, Pyramid Frustum, Circular cylinder, Cone, Frustum of a Cone, Sphere, 

Composite Space figure; 

Projection, Projection line and plane; Central Projection, Parallel Projection; 

Orthography drawing, isometry drawing; 

Surface area of Tetrahedron, Cylinder, cone, frustum of a cone; Volume of cone, pyramid, 

sphere, surface area of spheres 

Plane, Drawing plane and representing plane 

Axiom 1-4, skew lines, Theorem 1-10; 

Relationships between point with line, line with line, line with plane, plane with plane; 

Parallel relationships; perpendicular relationships; dihedral angel, skew lines angle, angle 



 

88 

 

between line and plane 

Three-dimensional Cartesian coordinate system, origin, axis, coordinate plane, coordinates; 

Distance of two points in space 

Space vector, collinear vectors or parallel vectors 

Direction vector, coplanar vector, angle of two vector, inner product, base vectors, normal 

vectors, dihedral angel, skew lines angle, angle between line and plane 

Space vector, modulus, zero vector, unit vector, equal vector, opposite vector,  

Associative law, commutative law, distributive law, collinear vectors or parallel vectors, 

theorem for two vectors parallel to each other, direction vector, coplanar vectors, theorem for 

coplanar vectors, angle of two vectors, inner product, Foundation theorem of space vector, 

base, base vectors 

Using the base vectors to represent any other coplanar vector, vectors operations in three-

dimensional Cartesian coordinates, calculate angle of a pair skew lines, direction vector, 

normal vector, vectors representations and operations of lines and planes in terms of parallel 

and perpendicular 

 

Finally, fourteen common 3-D concepts emerged: drawing graphs, nets, categorizing, 

volume, surface area, cross section, parallel relationships, perpendicular relationships, spatial 

positional relationships, distance, angles, similar solids, spatial coordinate systems, and spatial 

vectors. Some of these concepts are commonly recognized, while some are not. What follows are 

some rudimentary definitions for those concepts that are less commonly recognized.  

“Parallel relationship” is about the possible parallel associations between points, lines and 

planes. It includes three kinds: parallelism between lines, parallelism between lines and planes, 

and parallelism between planes. 

“Perpendicular relationship” is about the possible perpendicular associations between 

points, lines and planes. It includes three kinds: perpendicularity between lines, perpendicularity 

between lines and planes, and perpendicularity between planes. 

“Spatial positional relationship” is about the possible positional associations between 

points, lines and planes . The scope of it is very wide, including collinearity, coplanarity, 

intersection or parallelism of lines with lines, intersection, inclusion and parallelism of lines with 

planes, intersection and parallelism of planes with planes, and perpendicular relationships.  
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“Distance” describes the 3-D geometrically defined distance between points, lines and 

planes. It includes four kinds of distance: distance between points and lines, distance between 

two lines, distance between lines and planes, and distance between planes and planes.   

“Angle” describes the 3-D geometrically defined angle between lines and planes. It 

includes four kinds of angles: angles between two lines, angles between a line and a plane, and 

angles between two planes. 

Spatial thinking abilities (3-D abilities)  

Spatial thinking abilities are another big concern in this study, and in chapter II and III, I 

have discussed the relative importance as well as related terminologies and theories of them. 

Considering the diverse—sometimes contradictory—terminology and research results, I 

synthesized a framework of spatial thinking abilities. This framework aims to serve as the 

underlying abilities associated with geometry learning and as a pedagogical tool to understand 

and facilitate geometry teaching. It includes six spatial thinking abilities, which are spatial 

perception ability, spatial relationship ability, internal representation ability, external 

representation ability, spatial transformation ability, and spatial reasoning ability. For detailed 

definition of these six abilities please refer to Table 3-1 in chapter III.  

Related to the second research question, I use this framework to examine both what 

learning opportunities the three texts offer as well as how they display these abilities. More 

specifically, this study used the synthesized framework to code and analyze the prevalence of 

spatial thinking abilities in each unit of the three curriculum standards and texts. When the unit 

has provided a scenario connecting with one particular spatial ability or students have to carry 

out a particular ability to finish the learning of that unit, then it will be marked as having 

affordance of that ability.  
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Most of the abilities are self-evident by their definitions and are easy to identify in each 

unit of the texts. However, internal representation abilities are difficult to identify in the 

textbooks and standards. Textbooks and standards as external materials cannot disclose whether 

students will use internal representation ability. In such instances, I chose to examine whether the 

unit contains some specific phenomena: it uses some terms which requires students to think 

about and recall an internal representation and visualize it or it involves a series of words which 

are difficult to understand without carrying out an internal representation and interpretation. An 

example of the former is to use a term like ‘ice-cream’ to describe the shape of cone without 

giving a figure of it. An example of the latter is to give a series of words like “the volume of a 

pyramid is 1/3 of a prism which has same base and height.” 

Considering that curriculum standards only specify the requirements of learning 

outcomes for the students, I then only check whether each unit (standard) details a particular 

ability as the desired goal or not.  

Coding rubrics  

These four areas, which are communication types, 3-D objects, 3-D concepts, and 3-D 

abilities, construct the schemas for coding and analyzing these textbooks, and they are 

summarized in Table 4-7. Table 4-7 displays the subareas for examining the existence of one 

such type/object/concept. Whenever a unit shows a clear demonstration of one such 

type/object/concept, then the research participant marks 1 under the detected kind. For a unit, the 

research participants then identify the prevalence of one of these five communication types, ten 

3-D objects, fourteen 3-D concepts and six spatial thinking abilities respectively. The rubrics for 

coding the existence or non-existence of the subareas in types/objects/concepts are shown in 

Table 4-8.  
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Normally, a unit would include one sort of communication type, or one more than one 

sort in the area of objects and concepts. However, exceptions happen occasionally where a unit 

will not belong to any of the types, or objects, or concepts. For example, a unit is normally 

presented as a communication type, an investigation, definition, formula, theorem, or example. 

For more detailed examples of each type of unit in the three textbooks, please refer to Table 4-3. 

Occasionally, it can happen that a unit is none of the above communication types because the 

chunk of the statements doesn’t serve any of the purposes above. An example of this exception 

can be found in Figure 4-2; the first unit of that section is ‘check skills you’ll need’ which 

conforms to none of the communication types.  

Formulae and theorems need particular attention while coding the two American texts. 

As discussed in the last section, formulae are a special kind of theorem, and formulae and 

theorems are both declared as conjectures in the Discovering Textbook and theorems in the 

Pearson Textbook. Therefore, coders had to examine a conjecture/theorem/conjecture statement 

to see whether it involves a symbolic equation expression. If yes, then it is a type of formula; if 

not, then it is a theorem. In addition to doing that, coders also needed to pay attention to the 

details of a statement of the investigation type in the Discovering Textbook. Sometimes an 

investigation activity is followed by a conjecture statement or a sentence with a blank line which 

is for inputting the newly uncovered formula. In this case, the investigator classifies them as two 

units of statements, one as investigation type and one as formula type.  

The rubrics for coding the coverage of the six 3-D abilities are presented in Table 4-9. 

However, 3-D abilities are different from the other three areas, as such a unit can include 

multiple abilities, as long as it demonstrates those 3-D abilities in the statements or graphs.  
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Table 4-7: Subareas to Be Examined in the Four Areas 

 Subareas to be examined in each area  

Communication 

types 

Five types: Investigation, Example, Definition, Theorem, Formula 

3-D Objects  Ten objects: Prism, Pyramid, Pyramid Frustum, Cone, Cylinder, Circular 

frustum, Sphere, Abstract graph, Platonic Solids, Composite solid or real-world 

model 

3- D Concepts Fourteen concepts: Drawing graphs, Net, Categorizing, Volume, Surface area, 

Cross section, Parallel relationship, Perpendicular relationship, Spatial 

positional relationship, Distance, angles, Similar solids, Space coordinate 

system, and Space vector 

3-D abilities Six abilities: Spatial perception ability, Spatial relationship ability, Internal 

representation ability, External representation ability, Spatial transformation 

ability, and Spatial reasoning ability 

 

Table 4-8: Rubric for the Assessing the Coverage of One Kind of Type/Object/Concept 

Code Type Rubric used for coding each type 

0 No Justification or 

reasoning present 

Does not display or describe the examined type/object/concept/ability 

 

1 Some form of 

justification is 

present 

Display or describe the examined type/object/concept/ability 

 

 

Table 4-9: Rubric for Assessing the Coverage of the Six Abilities in Each Unit 

Code Type Rubric used for coding each type 

0 No Justification or 

reasoning present 

Does not attempt to show any of the assessed ability 

Does not call upon any of the assessed ability 

1 Some form of 

justification is present 

Attempts in some way to convince or show the assessed ability 

May call upon, take effort or involve the assessed ability 

 

Coding design 

The researcher dissected the units first in each text, and marked an ID for each unit. Take 

the section from the Pearson Textbook in Graph II and Graph III for example, the 11 units were 

marked as U1-U11. Although the researcher had conducted the coding herself in the 

preliminarily study, in this coding section I recruited four teachers to help with the coding, to 

reduce my own bias.     

In consideration of the language difference in the textbooks, the researcher recruited two 

groups of teachers to help with the coding. One group, from mainland China, consisted of two 



 

93 

 

doctoral students who majored in mathematics education. They were raised and educated (until 

graduate school) in mainland China. The second group consisted of two experienced high school 

geometry teachers who are located in New York City, USA. The researcher first explained the 

goals and methods of this study to the research coding participants and then explained the 

definition for all the terminologies involved in coding, such as communication types and the 

definition of each of the spatial thinking abilities. Then each group received coding training from 

the researcher and discussed the unit as well as all the definitions relating to the four areas of the 

coding schema. They discussed any concerns or confusions with the researcher and with the 

partner. The goal was to make sure the coders understood the coding process and the coding 

rubrics fully. Then during the coding process, they coded each unit in all four areas as 

communication types, 3-D objects, 3-D concepts, and spatial thinking abilities. In the 

communication types, they identified one or none of the sort; for the other three areas, they could 

identify more than one sort or none. 

Inter-reliability test  

To increase coding reliability, coder-inter reliability was tested. This test aims to raise the 

common understanding between the coders and illuminate personal bias, so that they can keep 

the coding as neutral as possible. The research first extracted ten consecutive units from the 

Pearson Textbook, and the People’s Education Textbook respectively. Then the four teachers 

first coded the ten units independently in their examined language, with no collaboration 

allowed. Then, within each group, the two participants’ results were compared in terms of their 

agreement. Any agreement between the two coders in one group was marked as correct, and 

otherwise was marked as failed. The percentage of agreement was calculated in each category, as 

well as the average percentage of the agreement. The percentage of agreement is named 
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reliability in this study. When the reliability of each category surpassed 80%, it was concluded 

that reliability was reached, and the analysis was set to begin.  

In this study, in the Chinese group, the rate of reliability in the communication types and 

3-D objects and concepts are very high; all passed 80%. There were some disagreements in 

spatial reasoning, where the reliability was 70%. It means that there were three units among the 

ten units that the two coders did not agree upon. They then worked on the disputed units again 

separately and checked their results, and this time the rate was 90%. This process is documented 

in the Appendix B (p. 202). They discussed the disagreement in all the categories and reached 

some common understanding. It was very similar with the US group, except this time the 

disagreement was in spatial perception, the reliability of which was 70%. Then the two coders 

similarly worked the disputed units again separately and checked their results again, and the rate 

improved to 90%. 

After that, the coding began, and this time the coders worked collaboratively rather than 

separately. They reached a common agreement before they marked, and if they did not agree 

with each other, they discussed that with the researcher.   

Methods of Data Analysis 

To answer the research questions, this qualitative study used both content analysis and 

cross-cultural comparison methods to examine and analyze the 3-D geometrical content in the 

texts in detail. Qualitative software, NVivo, was used to code, analyze and compare the content 

analysis of the three textbooks. SPSS and Excel were also used to code and show some 

descriptive data results related to spatial thinking abilities. The content analysis is demonstrated 

in the coding designing and coding process of the four areas. The reports of the content analysis 

in the result chapter are mainly presented as accounts of the distributions across the texts.  
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This study carried out a comparative analysis across the three texts in each of the four areas, 

which are communication types, 3-D objects, 3-D concepts and 3-D abilities. Each comparison 

result was summarized in a table and followed by a description of each text as well as a general 

comparison of the three texts. Because the nature of curriculum standards which are just debriefs 

and general requirements of 3-D geometry without specific content, this study only conduct 

report and comparison analyses on 3-D objects and concepts. Therefore, the result included at 

least six comparison tables. Extra tables and graphs are used as well to offer an alternative 

illustration of the results. In terms of analyzing the interplays and connections among the six 

spatial thinking abilities, the researcher carried out Spearman Correlations of each text and 

compared them in a similar manner.  
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 Chapter V  

Results and Analysis 

Research Questions 

 

This chapter presents results and analysis of the data collected for the study, aiming to 

answer the two research questions: 

1. What are the main topics of the 3-D geometry claimed in each country’s national 

curriculum? What are the primary 3-D objects that appear in each textbook? What are the central 

3-D concepts in each text? What are the main communication types being used in each textbook? 

What are the commonalities and differences among them, and what are the implications of those 

commonalities and differences? 

2. What kind of spatial thinking abilities are associated with the concepts and examples in 

the textbooks? How are the spatial abilities presented and represented in textbooks? What are the 

commonalities and differences among them, and what are the implications of those 

commonalities and differences?  

These two research questions are addressed below by discussing the findings of the study, 

and they provide the order for this chapter. This chapter begins with a very detailed description 

of content analysis results about individual curriculum standards and textbooks and then 

compares the commonalities and differences among the three curriculum standards and 

textbooks. The resultant findings answer the first research question. The chapter then moves to 

the spatial thinking (3-D abilities) results. I addressed the second question by focusing on the 
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distribution of six spatial abilities across the three textbooks, and then by a correlation analysis of 

the recorded spatial thinking abilities.  

 

Research Question 1 

 What are the main topics of the 3-D geometry claimed in each country’s national 

curriculum? What are the primary 3-D objects that appear in each textbook? What are the 

central 3-D concepts in each text? What are the main communication types being used in each 

textbook? What are the commonalities and differences among them, and what are the 

implications of those commonalities and differences? 

To answer the first research question, a detailed content analysis of the coverage of the 

topics in the three curriculum standards and textbooks was performed. This part of the analysis is 

necessarily more descriptive in nature in order to narrate the distributions of the content and 

capture the differences among these curriculum standards and texts. The analysis proceeds from 

units covered, communication types, 3-D objects, and 3-D concepts. In each of these four parts, I 

begin with a summarized table about the curriculum standards and textbooks respectively; then I 

move to a general report of the results and findings in each text. I then describe the general 

findings or features of some sub-classes in each category and finally compare the three texts 

overall.   

1. Units covered 

The overall counts of units are captured in Table 5-1, which shows the numbers of units 

of analysis in curriculum standards, and in Table 5-2, which shows the numbers of units of 

analysis in each textbook. The specific topics in each unit of the three texts are stated in Table 3-

4 to 3-6.  
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Table5-1: Summary of Units in the Three Curriculum Standards 

 CS-US CS-China CS-NCTM  

Units in total 7 18 4 

 

Table5-2: Summary of Units in the Three Textbooks 

 Discovering Textbook Pearson Textbook People’s Education Textbook 

Units in total 72 89 104 

              

There are seven units in CS-US, eighteen units in CS-China, and four units in CS-NCTM 

respectively. The three standards differ dramatically as they contain from 4 required standard 

units to 18 units, and the latter is 4.5 times of the former.  

There are 72 units in the Discovering Textbook, 89 units in the Pearson Textbook, and 

104 units in the People’s Education Textbook. Although the difference in the counts among the 

three texts is large, it is less significant compared with curriculum standards since the largest 

count is only 1.44 times of the smallest count.   

For vividly illustrating the most frequently used words in each textbook, I assembled a 

word frequency cloud query in NVivo. Figure 5-1 to Figure 5-3 show the result clouds. As can 

be seen from Figure 5-1, the most dominant words in the Discovering textbook are "volume, 

surface-area, finding, drawing, plane, lateral, prism, cylinder, points, similar, connection, 

identifying, points, lines, cone, etc." While The most dominant words in the Pearson textbook, as 

shown in Figure 5-2, are "volume, surface-area, prism, drawing, cylinder, points, similar, find, 

perspective, sphere, pyramid, cone, isometric." In Figure 5-3, the most dominant words in the 

People’s Education Textbook are “plane, line, plane, perpendicular, parallel, vector, points, angle, 

coordinates, intersection, theorem, projection.” In contrast with both US texts, volume, surface-

area, prism, cylinder, pyramid, cone, etc. do not appear as frequently in the People’s Education 

textbook. 
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Figure 5-1: Word Frequency Cloud for the Discovering Textbook    
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Figure 5-2: Word Frequency Cloud for the Pearson Textbook 
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  Figure 5-3: Word Frequency Cloud for the People’s Education Textbook 

line

p
la
n
e

p
a
ra
ll
e
l

two

perpendicular

ve
c
to
r

p
o
in
ts

a
n
g
le p
ro
ve

theorem

base

p
ro
b
le
m

s
u
rf
a
c
e intersection

cone

d
ra
w
in
g

la
w real

skew

space

w
o
rl
d

a
re
a

projection

vo
lu
m
e

coordinates

re
la
ti
o
n
s
h
ip

axis

e
d
g
e

lateral d
ih
e
d
ra
l

face

fr
u
s
tu
m

o
n
e

e
xt
e
rn
a
l

pyramid

solid

s
p
h
e
re

d
e
te
rm
in
e

containing

id
e
n
ti
fy
in
g

a
s
s
o
c
ia
ti
ve

cartesian

c
h
a
ra
c
te
ri
s
ti
c

c
o
m
m
o
n

coplanar

cylinder

equal

fo
u
r

isometry

third

th
re
e

vertex

vi
e
w

c
a
lc
u
la
te

c
h
a
p
te
r

c
o
m
m
u
ta
ti
ve

crystalline

diameter

d
ir
e
c
ti
o
n

distributive

exactly

g
e
o
m
e
tr
ie
s

hexagon

in
te
rn
a
l

lie

o
p
e
ra
ti
o
n
s

o
rt
h
o
g
ra
p
h
ic

pair

re
p
re
s
e
n
t

re
p
re
s
e
n
ta
ti
o
n

s
id
e

tetrahedron

to
p

100

101

102

103

a
d
d
it
io
n

also

c
a
te
g
o
ry

c
e
n
te
r central

c
ir
c
u
la
r

c
o
ll
in
e
a
r

c
o
m
p
e
n
s
a
te

c
o
m
p
o
s
it
e

cuboid

d
a
m

diagonal
difference

d
if
fe
re
n
ti
a
te

d
im
e
n
s
io
n
a
l

d
is
ta
n
c
e

false

figure

fi
n
d

foot

fo
rc
e

fo
u
n
d
a
ti
o
n

g
e
n
e
ra
tr
ix

 



 

100 

 

2. Communication types 

This research uses five kinds of communication types to describe the format of the 

written statements in the texts: definition, example, formula, investigation, and theorem. Table 5-

3 presents the examination result of the five types of the three textbooks.  

Table 5-3: Types across Three Texts 

 USA Discovering 

textbook 

 USA Pearson 

Textbook 

China People's 

Education 

textbook 

1: Definition 26 (36.6% of Total) 19 (24.1% of 

Total) 

36 (34.6% of 

Total) 

2: Example 19 (26.8% of Total) 40 (50.6% of 

Total) 

33 (31.7% of 

Total) 

3: Formula 11 (15.5% of Total) 12 (15.2% of 

Total) 

12 (11.5% of 

Total) 

4: Investigation 15 (21.1% of Total) 3 (3.8% of Total) 6 (5.8% of Total) 

5: Theorem 0 (0% of Total) 5 (6.3% of Total) 17 (16.3% of 

Total) 

Total 71 79 104 

Units in total 72 89 104 

*Each unit can have one count at most of each communication type. 

In general, the Discovering Textbook has slightly lower content loads, as the total 

references are 72 counts. It has a unique character of using investigation (15 counts) as the 

primary way of conceptualizing geometry, compared with six counts and three counts in the 

other texts. All the “conjectures” are about symbolic expression of volume or surface-area; 

therefore, we categorized them as formulae. It does not cover or name any theorem at all. 

Although Cavalieri's principle appears in the text as an investigation activity, it does not specify 

it as a conjecture or theorem. In general, it shows a new trend of emphasizing students' 

mathematical research ability and reasoning ability and emphasizing the content less. The total 

counts of communication types are less than the total units in this text because there is one unit 

which has sizable contextual information that belongs to none of these types. This unit cannot be 

clustered with the units nearby, as the topics are not related. 
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The Pearson textbook tends to use example (40 counts, 50.6% of total) as the dominant 

type of presenting content and half of the units are this kind. This text has few investigations and 

theorems, only three and five references respectively. It seems that the Pearson textbook 

emphasizes drilling practices considering the relative proportion of the example counts to the 

total units. There are ten count differences between the totals of communication types and of of 

units. This is because, in the Pearson Textbook every section contains a block of statement called 

"Check skills you will need" at the very beginning. This is a block of content showing up at the 

very beginning of the section for students to check their prerequisite skills and most of the time it 

is not about 3-D geometry. There are ten sections, so there are ten counts of this sort in total. 

Because these ten blocks are officially stated in the ten sections, the researcher still included 

them as ten units. However, maybe it is better to exclude these ten units because they do not 

correlate with any of the communication types identified in this research. 

The People’s Education textbook tends to have much more intense content loads 

compared with the US texts; it has 104 references in total. Definition, examples, and theorems 

are the main types used in the People’s Education textbook, the counts of which are 36, 33, and 

17 respectively. This textbook seems to cover most types evenly, and each unit can be identified 

as one of the five types. It doesn't have extra unrelated information, and it is easy to identify a 

content cluster as a unit. 

The definition is the prevailing type across the three texts, the percentage of which ranges 

from 24.1% to 36.6%. However, the definitions of a concept are sometimes different from one 

textbook to another. For example, the definitions of polyhedron across the three texts are quite 

similar, and they are shown in Table 3 of chapter three. In contrast, the definitions for cone vary 

among the three texts. The Discovering Textbook defines the cone using an analogy, which 
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states “Another type of solid with a curved surface is a Cone. Funnels and ice cream cones are 

shaped liked cones. Like a pyramid, a cone has a base and a vertex (Discovering Textbook, page 

523).” The Pearson Textbook defines the cone quite similarly; it states “A cone is “pointed” like 

a pyramid, but its base is a circle (Pearson Textbook, page 619).” Howver, the People’s 

Education Textbook uses rotation to define cone by imitating the definition of cylinder; it states 

"A solid generated by rotating a right triangle over one of its legs is called circular cone. The 

circle formed by the rotation of the other leg is the base of the cone. The curved area formed by 

the rotation of the hypotenuse is the lateral face of the cone (People’s Education Textbook, page 

5).” It seems that the definitions in the People’s Education Textbook are relatively more 

mathematically precise and rigorous than the US texts. In general, all texts emphasize definitions 

in geometry; however, the rigor of the definitions varies.  

Example is the second prevailing type across the three texts, ranging from 26.8% to 

50.6%. This shows that all texts place emphasis on showing students typical problems and 

modeling how to solve and write the process. Examples in the Pearson and the Discovering texts 

are very straightforward and mainly simple applications of the concepts. However, in the 

People’s Education text, an example involves several small problems and several layers of 

thinking, and nothing is straightforward. This variation is noticeable in the examples in Table 4-

3.    

The formula type seems almost evenly distributed across the three textbooks, with 

percentages of 15.5%, 15.2%, and 11.5% respectively. It is a typical and classical 

communication format because of its precise and concise quality in capturing geometry ideas. 

However, the three texts differ in strategies and manners of communicating formulae to readers. 

The Pearson Textbook tends to give a formula immediately after showing one or two case 
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examples and presents the formula in a micro way, which means that every specific type of 3-D 

object has a formula for surface area or volume. The Discovering Textbook tends to not give the 

formula directly, but rather use investigation activities for students to explore and find the 

formula by themselves it leaves a blank for students to fill in the discovered formula themselves. 

In addition to that, in contrast to the Pearson Textbook, the Discovering Textbook tends to 

classify a formula in a macro way, such as for a generalized group rather than individual 3-D 

object. For example, prism and cylinder share one common volume formula, V=S*h, in the 

Discovering textbook, but they are treated separately as two different formulae in the Pearson 

Textbook. Most formulae in the US texts concern surface area and volume. The People's 

Education Textbook states formulas in an even more global manner. It uses four formulae to 

represent surface area and four formulae for volume of all 3-D objects, which are grouped into 

polyhedrons, cylinders, cones, and circular frustums. The other formulae involve arithmetic in 

spatial coordinates systems and space vectors. 

The investigation type is a new communication and pedagogical approach, and it serves 

the function of inspiring students’ mathematical thinking and reasoning. It appears quite 

differently in the three texts, the percentage of which are 21.1%, 3.8% and 5.8%. The 

Discovering Textbook uses this approach the most. Discovering tends to offer a background that 

students can relate to or activities that students can have some concrete materials to manipulate 

and operate on as well as a relatively open question that can guide students to explore and think. 

The Pearson Textbook uses the investigation communication type least, having only three 

counts. Although Pearson inclines to use familiar or real-life contexts, the questions/activities in 

investigations are relatively closed and mechanical. Therefore, there is no space for students to 

explore and investigate by themselves. The Peoples’ Education Textbook tends to use real-world 
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problems to set a context for students to investigate, and the questions are relatively open-ended. 

However, the investigations are mainly through thinking and discussion, seldom through 

manipulation and operation of concrete materials.    

The theorem type is a conventional communication type and is a statement that concisely 

and abstractly captures a geometrical phenomenon. It is a reference when proving other 

statements. However, it seems to almost disappear from the US textbooks. No theorems are 

mentioned in the Discovering textbook. Although five theorems appear in Pearson, they are 

mostly postulates, and no rigorous applications or proofs are given. In contrast, in the Chinese 

textbook, theorems are organized and connected with 17 counts in total. Four postulates are 

given first, and the rest of the theorems are deduced from them. The majority of theorems are 

proved by the traditional deduction method. For theorems that are not formally proved, some 

explanation is given to help make sense of the underlying logic. Theorems are applied to deduce 

and prove related theorems or examples. All theorems can be found in Appendix C.   

3. Three-Dimensional objects (3-D objects) 

By examining the three textbooks, the researcher generalized ten sets of objects evident 

in the three textbooks. These ten objects are: 

1: Abstract Graph 

2: Circular Frustum 

3: Cone 

4: Cylinder 

5: Pyramid Frustum 

6: Platonic Solid 

7: Prism 



 

105 

 

8: Pyramid 

9: Real-World or Composite Solid 

10: Sphere 

The distribution of the counts of 3-D objects in each curriculum standard is captured in 

Table 5-4, and Table 5-5 illustrates the counts in each textbook. The total counts of 3-D objects 

are slightly larger than the total counts of units in both tables because some of the units include 

more than one 3-D object. 

In the CS-US, real-world or composite solid is the most used object, which is due to the 

emphasis on mathematical modeling and the connection to the real world. Cylinder, sphere, cone, 

and pyramid are almost equally required with counts of 2, 1, and 1 respectively. In the CS-

NCTM, among the 4 standards, virtually no specific 3-D object type is mentioned, but there is a 

mention in mathematical modeling of connecting geometry to arts and architecture. CS-NCTM 

tends to give general requirements rather than denote the objects. CS-China states eight types of 

3-D objects identified in this study, all except the circular frustum and Platonic solids. Clearly, 

CS-China acknowledged more varieties of 3-D objects than the other two standards, as CS-US 

only identified five types, and CS-NCTM recognized just one type.  

The Discovering Textbook covers nine types of objects, among the total ten objects. 

Real-world or composite solid, prism, and pyramid are the most used objects, which generate 30, 

18 and 11 references. The least used objects are abstract graph, pyramid frustum and platonic 

solid, which have one or two counts. The circular frustum doesn’t appear in the text at all. This 

text seems to use relatively diverse objects in the unit because the entire objects counts are 

slightly larger than the counts of units, and real-world and composite solids account for almost 

half of the units. 
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Table 5-4: Three-dimensional Objects across Three Curriculum Standards  

 CS-US CS-China CS-NCTM  

1: Abstract Graph 0 1 0 

2: Circular Frustum 0 0 0 

3: Cone 1 2 0 

4: Cylinder 2 2 0 

5: Pyramid Frustum 0 2 0 

6: Platonic Solids 0 0 0 

7: Prism 0 4 0 

8: Pyramid 1 2 0 

9: Real-world or 

Composite solid 

6 3 1 

10: Sphere 2 3 0 

Total 12 19 1 

Units in total 7 18 4 

*Each unit can have one count at most of each sort of 3-D object. However, there might be 

multiple sorts of objects evident in one unit. 

 

Table 5-5: Three-dimensional Objects across Three Texts  

 USA Discovery 

textbook 

USA Pearson 

Textbook 

China People's 

Education 

Textbook 

1: Abstract Graph 1 4 48 

2: Circular Frustum 0 0 4 

3: Cone 6 8 3 

4: Cylinder 6 7 4 

5 : Pyramid Frustum 1 0 1 

6: Platonic Solids 2 0 0 

7: Prism 18 31 28 

8: Pyramid 11 10 7 

9: Real-world or 

Composite solid 

30 21 21 

10: Sphere 7 5 4 

Total 82 86 120 

Units in total 72 89 104 

*Each unit can have one count at most of each sort of 3-D object. However, there might be 

multiple sorts of objects evident in one unit. 

 

The Pearson textbook covers seven objects out of the total ten objects. Prism, real-world 

or composite solid, and pyramid are the most used three objects, which account for 31, 21 and 10 

references. The least used two objects are abstract graph and sphere, which have 4 and 5 
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references respectively. Three objects, which are the circular frustum, pyramid frustum, and 

platonic solids are not shown in the text at all. 

In the People's Education textbook, among the total ten objects, nine objects appear in the 

content, all except platonic solids. It tends to use abstract graph, prism and real-world or 

composite solids more frequently, which account for 48, 28, and 21 references. The least 

frequent objects are frustum and cone, which have 1 and three references respectively. This text 

tends to use relatively diverse objects in each unit similarly to the Discovering Textbook.  

Prism and real-world or composite solid are the primary objects across the three texts, 

which number around 20-30 in each text. It shows that all texts underscore connection to the real 

world, and students’ own experiences. Although all texts mention cone, cylinder, pyramid, and 

sphere almost equally, they are less visible, around 5-6 counts in each document. The circular 

frustum is not mentioned at all in either US text. While in Chinese text, the pyramid frustum is 

integrated with prism and pyramid, to show the connection between the three, and similarly, the 

circular frustum is associated with cone and cylinder. The logic behind associating the three 

types is: prisms and cylinders are the most common objects, and the top bases and bottom bases 

are parallel and congruent; pyramids and cones are extreme cases of prisms and cylinders, whose 

top bases become points; while pyramid frustums and circular frustums are the partial leftovers 

of pyramids and cones when dissected by a cross-section parallel to the bottom base. The 

Discovering Textbook only mentions platonic solids as unique regular solids. Abstract graphs 

seldom appear in the US texts but are the most popular object in the Chinese text. This is mainly 

because China text stresses abstract thinking. The US texts tend to emphasize volume and 

surface areas of specific objects. 
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The author also compared the differences and commonalities among the three textbooks 

in a diagram, Figure 1-3 in Appendix D.  

4. Three-Dimensional concepts (3-D concepts) 

  After a preliminary coding and refined coding processes, fourteen sorts of 3-D concepts 

emerged.  They are the following:  

1: Angles 

2: Categorizing 

3: Cross sections 

4: Distance 

5: Drawings 

6: Net 

7: Parallel relationship 

8: Perpendicular relationship 

9: Similar Solids 

10: Space coordinate system 

11: Space Vector 

12: Spatial Position Relationship 

13: Surface area 

14: Volume 

The distribution of the counts of 3-D objects across the three curriculum standards and 

the three texts are captured in Table 5-6 and Table 5-7 correspondingly.  

In the CS-US, there is one count targeted to cross-section, and three counts towards 

volume. Beyond these two objects, there is no mention of other identified 3-D concepts in the 
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standards. CS-NCTM indicates seven sorts of 3-D concepts. These are categorizing, space 

coordinate system, cross section, drawing, similar solids, space vector, and spatial positional 

relationship, of which the first two have two counts and the rest each has one count. CS-China 

declares 11 sorts of 3-D objects which are identified in this study, all of them except the concepts 

of cross sections, net, and similar solids. CS-China requires 8 areas (counts) of content standards 

on space vector and five counts on spatial position relationship. These two are the most frequent 

in CS-China. In summary, CS-China acknowledged more types of 3-D concepts than the other 2 

standards, as CS-US only identified 2 sorts, and CS-NCTM recognized just 7 varieties. 

The Discovering textbook covers 7 sorts of 3-D concepts in total, which is half of the 14 

types of concepts. Volume, surface area, and categorizing are the most dominant 3-D concepts in 

the text, which has 23, 12 and 10 references respectively. Nets, drawings and similar solids are 

the least covered 3-D concepts. Concepts like angle, cross section, distance, parallel relationship, 

perpendicular relationship, space coordinate system, and space vector are almost absent.  

Pearson textbook covers nine sorts of 3-D concepts over the total of fourteen varieties of 3-D 

concepts. The most dominant 3-D concepts are volume, surface area, and spatial position 

relationship, which have 19, 17, and 16 references respectively. The least appearing 3-D 

concepts are parallel relationship, cross-section, and similar solids, which have three references. 

Angles, distance, perpendicular relationship, space coordinates system, and space vector do not 

occur in the text. 
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Table 5-6: Three-dimensional Concepts across Three Curricula  

 CS-US CS-China CS-NCTM  

1: Angles 0 1 0 

2: Categorizing 0 2 2 

3: Cross sections 1 0 1 

4: Distance 0 1 0 

5: Drawings 0 3 1 

6: Net 0 0 0 

7: Parallel relationship 0 3 0 

8: Perpendicular relationship 0 3 0 

9: Similar Solids 0 0 1 

10: Space coordinate system 0 3 2 

11: Space Vector 0 8 1 

12: Spatial Position Relationship 0 5 1 

13: Surface area 0 1 0 

14: Volume 3 1 0 

Total  4 30 9 

Units of total 7 18 4 

Table 5-7: Three-dimensional Concepts across Three Texts  

 USA Discovering 

textbook 

USA Pearson 

Textbook 

China People's 

Education textbook 

1: Angles 0 0 10 

2: Categorizing 10 5 12 

3: Cross sections 0 3 0 

4: Distance 0 0 4 

5: Drawings 6 4 9 

6: Net 4 6 3 

7: Parallel relationship 0 3 24 

8: Perpendicular 

relationship 

0 0 16 

9: Similar Solids 6 3 0 

10: Space coordinate 

system  

0 0 8 

11: Space Vector 0 0 5 

12: Spatial Position 

Relationship 

7 16 26 

13: Surface area 12 17 8 

14: Volume 23 19 6 

Total  68 76 131 

Units of total 72 89 104 

*Each unit can have one count at most of each sort of 3-D concepts. However, there might be 

multiple sorts of concepts evident in one unit. 
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The People’s Education textbook covers 12 concepts of the total of 14 sorts of 3-D 

concepts. Spatial Position relationship, parallel relationship, and perpendicular relationship 

appear the most with 26, 24, 16 references respectively. Net, distance, and volume are the least 

evident 3-D concepts, with 3, 4 and 6 references respectively. Cross sections and similar solids 

are not visible at all. 

Comparing the differences and commonalities pairwise among the three texts generates 

three diagrams, as is vividly illustrated in Figure 5-6 in Appendix D. This chapter only 

summarizes the comparisons’ results below; for details, please refer to appendix. 

Compared with Discovering, People's Education covered six other more 3-D concepts, 

which are perpendicular relationship, distance, space vector, parallel relationship, angles, and 

space coordinate system, but it lacked the concept of similar solid. Compared with Pearson, 

People's Education covered five more 3-D concepts, which are perpendicular relationship, 

distance, space vector, angles, and space coordinate system, but it lacked the 3-D concepts of 

similar solid and cross-sections. Compared with Discovering, Pearson covered two extra 3-D 

concepts, which are parallel relationship and cross-sections.  

There are six 3-D concepts, which are drawing, categorizing, surface area, volume, net 

and spatial position relationship, and are visible across the three texts. However, they are stressed 

differently in each text. For example, People's Education uses nine references to highlight and 

cultivate the ability of drawing, while the US texts only use 6 and 4 references. In the US texts, 

volume and surface area are the dominant 3-D concepts and consume more than 20 calculations 

respectively; however, in the Chinese book, it is only mentioned 14 times in total. Although the 

US texts have larger counts, they cover less content. The reason for this paradox is in the 

communication approach of the texts, which is detailed in Table 5-5 (about 3-D objects). For 
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example, volume of prisms, pyramids, cones, cylinders, and spheres are separate topics in the 

Pearson Textbook, so there are five formulae. Moreover, each might have two to three examples 

and applications in the concept of similar solids, so there are 19 counts in total of volume in 

Pearson. However, in People’s Education, prism and cylinder are combined by giving one 

formula, which is V=S*h; pyramid and cone are coupled by one formula, which is ; 

pyramid frustum and circular frustum are mentioned together with the formula 

. These three formulas, plus a volume formula for sphere and two 

examples of application of volumes in real-world, account for the six references in People's 

Education.  

Five 3-D concepts, angle, distance, perpendicular relationship, space coordinates system, 

and space vector, appear only in the Chinese text while not at all in the US texts. These five 

concepts are highly abstract, aiming to increase the theoretical magnitude of 3-D geometry. It 

seems that Chinese text is trying to maintain the traditional topics (3-D concepts) and theoretical 

aspects of 3-D geometry, while the US texts do not participate in this trend. These two different 

trends and approaches among the USA and China puzzle the researcher, and further discussion 

and research are needed to understand these two patterns.  

5. Cross-analysis of each text 

 In the midst of analyzing the results, I was curious about the connection of 3-D concepts 

with communication types of the 3-D objects. Therefore, I conducted further cross-analysis to 

probe two correlations: what kind of 3-D concepts are associated with a particular kind of 

communication type, or vice versa; and what type of 3-D objects are used to illustrate a 

particular concept, and vice versa. Each text has a different emphasis and concentration on 

communication types, 3-D objects and concepts, so I conducted a cross-analysis of each textbook 
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and didnot compare the results across the three texts. Therefore, Table 5-8 to Table 5-13 display 

the results using 2*3=6 matrices. I only targeted the three texts and didn’t analyze the curriculum 

standards. Because the counts in the curriculum standards are relatively small, it is not practical 

or necessary to perform similar analyses. Table 5-8, 5-10, and 5-12 show how the 

communication types occur among the 3-D concepts or vice versa; Table 5-9, 5-11, and 5-13 

display how 3-D concepts spread among the 3-D objects. Of all the six tables, each count in the 

cell means the number of the intersections or common units that share the same type of object 

and concept, or object and type. The sum of the counts in each row or column is not necessarily 

equal to the original counts of that specific type, object or concept, as some counts are calculated 

more than once if there is some overlapping among them.     

Considering Table 5-8 and Table 5-9 separately and also collectively reveals more 

detailed information about the Discovering Textbook. Most of the definition communication 

types pair with categorize 3-D objects, drawings, and spatial position relationship, as is shown in 

Table 5-8. All the drawings are about real-world or composite solids, and prisms, with 8 and 2 

counts correspondingly, as is shown in Table 5-9. Drawing only these two types of objects might 

cause students to lack familiarity with drawing a cone, pyramid, and cylinder. More than half of 

the examples of communication types occur with the 3-D concept of volume, 10 out of the total 

19 counts, as is displayed in Table 5-8. Investigation activities run through all concepts, as do the 

counts of investigation, except where volume is concerned.  

Considering Table 5-10 and Table 5-11 separately and then collectively, discloses 

detailed information about the Pearson Textbook. In Pearson, definitions run almost evenly 

through all concepts, which shows rigorous treatment of each new concept. The same pattern is 

true for example type. It is clear that most formulae pair with surface area and volume, and 
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theorems concern spatial position relationship. Most drawings are about prisms and real-world or 

composite solids, so there is a lack of diversity of objects. Prisms and real-world or composite 

solids are also demonstrated in all concepts, while pyramids, cones, and cylinders are not. 

In the People's Education Text, as is illustrated in Table 5-12 and Table 5-13, example 

and definition almost run through all the concepts, which might mean most concepts are defined, 

demonstrated and practiced by example. Prisms, real-world or composite solids, and abstract 

graphs show up in all concepts. This aligns with the requirements and suggestions from CS-

China, which suggest using prisms as the primary vehicle for understanding complex concepts as 

well as for visualization. Standards suggest that real-world objects be used to help students 

establish representation of geometrical objects and concepts. This trend is identified in the other 

two texts as well, although the latter two do not use abstract graphs very much. Theorems mostly 

pair with parallel relationship, perpendicular relationship, space vector and spatial position 

relationship.     
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Table 5-8: Three-D Concepts over Communication Types in the Discovering Textbook 

 A: 

Definition 

B: Example C: Formula D: 

Investigation 

E: 

Theorem 

2: 

Categorizing 

10 0 0 0 0 

5: Drawings 6 2 0 2 0 

6: Net 0 0 0 4 0 

9: Similar 

Solids 

1 2 1 2 0 

12: Spatial 

Position 

Relationship 

5 0 1 2 0 

13: Surface 

area 

3 5 1 4 0 

14: Volume 3 10 7 9 0 

 

Table 5-9: Three-D Objects over Concepts in the Discovering Textbook 

 B: 

Categorizing 

E: 

Drawings 

F: 

Net 

I: 

Similar 

Solids 

L: Spatial 

Position 

Relationship 

M: 

Surface 

area 

N: 

Volume 

1: Abstract 

Graph 

0 0 0 0 1 0 0 

3: Cone 2 0 1 1 0 2 1 

4: Cylinder 2 0 0 0 0 1 3 

5: Pyramid 

Frustum 

0 0 0 0 1 0 0 

6: Platonic 

Solids 

1 0 1 0 0 0 0 

7: Prism 4 2 0 1 1 2 7 

8: Pyramid 4 0 1 0 1 3 2 

9: Real-

world or 

Composite 

solid 

4 8 1 2 5 4 9 

10: Sphere 2 0 0 0 0 3 5 

 

* Some columns are deleted if all of the numbers in that column are zero; in other words, if the 

3-D concept does not appear in the text, then that column will be eliminated from the table. 

* The sum of the counts in each row or column is not necessarily equal to the original counts of 

that specific type, object or concept, as some counts are calculated more than once if there is 

some overlapping among them.
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Table 5-10: Three-D Concepts over Communication Types in the Pearson Textbook 

 A: Definition B: Example C: Formula D: Investigation E: Theorem 

2: Categorizing 5 0 0 0 0 

3: Cross sections 1 2 0 0 1 

5: Drawings 3 7 0 0 0 

6: Net 2 5 1 0 0 

7: Parallel relationship 2 1 0 0 0 

9: Similar Solids 1 2 1 0 0 

12: Spatial Position 

Relationship 

3 9 1 1 4 

13: Surface area 3 10 6 0 0 

14: Volume 2 9 6 2 1 

 

Table 5-11: Three-D Objects over Concepts in the Pearson Textbook 

 B: 

Categorizing 

C : 

Cross-

sections  

E: 

Drawings 

F: 

Net 

G: Parallel 

relationship 

I: 

Similar 

Solids 

L: Spatial 

Position 

Relationship 

M: 

Surface 

area 

N: 

Volume 

1: Abstract Graph 0 0 0 0 0 0 4 0 0 

3: Cone 1 1 0 0 0 0 0 3 3 

4: Cylinder 0 1 0 1 0 2 0 2 3 

7: Prism 2 3 6 4 3 3 7 6 7 

8: Pyramid 1 0 0 0 0 1 1 4 5 

9: Real-world or 

Composite solid 

1 1 4 1 0 2 2 6 8 

10: Sphere 1 0 0 1 0 0 0 3 2 
* Some columns are deleted if all of the numbers in that column are zero; in other words, if the 3-D concept does not appear in the text, then that column 

will be eliminated from the table. 

* The sum of the counts in each row or column is not necessarily equal to the original counts of that specific type, object or concept, 

as some counts are calculated repeatedly. For example a unit might have two objects which correspond to one concepts.
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Table 5-12: Three-D Concepts over Communication Types in the People’s Education Textbook 

 

 A: 

Definition 

B: 

Example 

C: 

Formula 

D: 

Investigation 

E: 

Theorem 

1: Angles 4 5 1 0 0 

2: Categorizing 11 0 0 1 0 

4: Distance 0 2 1 0 0 

5: Drawings 5 4 0 0 0 

6: Net 1 0 0 2 0 

7: Parallel 

relationship 

5 9 0 2 8 

8: Perpendicular 

relationship 

2 8 0 1 4 

10: Space 

coordinate system 

0 5 2 0 0 

11: Space Vector 10 10 5 0 4 

12: Spatial Position 

Relationship 

9 9 0 1 7 

13: Surface area 1 3 4 1 0 

14: Volume 0 2 4 0 0 

 

* Some columns are deleted if all of the numbers in that column are zero in other words, if the 3-D concept does not appear in the text, 

then that column will be eliminated from the table. 

 

* The sum of the counts in each row or column is not necessarily equal to the original counts of that specific type, object or concept, 

as some counts are calculated more than once if there is some overlapping among them. 
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Table 5-13: Three-D Objects over Concepts in the People’s Education Textbook 

 
 A: 

Angle

s 

B: 

Categorizin

g 

D: 

Distanc

e 

E: 

Drawing

s 

F: 

Ne

t 

G: Parallel 

relationshi

p 

H: 

Perpendicula

r 

relationship 

J: Space 

coordinat

e system 

K: 

Space 

Vecto

r 

L: Spatial 

Position 

Relationshi

p 

M: 

Surfac

e area 

N: 

Volum

e 

1: 

Abstract 

Graph 

5 2 2 2 0 15 11 3 14 16 0 0 

2: 

Circular 

Frustum 

0 1 0 0 1 0 0 0 0 0 2 1 

3: Cone 0 1 0 0 1 0 0 0 0 0 1 1 

4: 

Cylinder 

0 2 0 0 1 0 0 0 0 0 2 1 

5: 

Pyramid 
Frustum 

0 1 0 0 0 0 0 0 0 0 0 0 

7: Prism 3 3 1 3 2 7 4 4 5 9 1 1 

8: 

Pyramid 

1 1 0 0 0 1 2 1 3 2 1 1 

9: Real-

world or 

Composit

e solid 

2 3 2 4 0 2 2 2 2 5 1 1 

10: 

Sphere 

0 1 0 0 0 0 0 0 0 0 2 2 

* Some columns are deleted if all of the numbers in that column are zero; in other words, if the 3-D concept does not appear in the text, 

then that column will be eliminated from the table. 
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Research Question 2 

What kind of spatial thinking abilities are associated with the concepts and examples 

in the textbooks? How are the spatial abilities presented and represented in textbooks? What  

are the commonalities and differences among them, and what are the implications of those 

commonalities and differences?  

In this part, I use the spatial thinking ability framework synthesized in Chapter III to 

analyze the three curriculum standards and the three textbooks. I focus on showing the result 

of how these six abilities are presented and distributed in the texts. Therefore, it is necessary 

to examine them individually in each text and compare them in general, as well as to explore 

them from a micro aspect to a macro manner. I conducted the analysis on three levels, which 

are on the individual unit level, on the accumulated sections level, and on the accumulated 

units level. Furthermore, to understand the correlations among these spatial abilities, I 

performed Spearman’s Rho Correlation Test among all the six abilities in each text. In each 

category, I first describe the results and findings according to individual text and then 

compare them overall.   

1. General results in curriculum standards 

I examined the six abilities as to whether they are specifically declared as learning 

expectations in each curriculum standard. The result, as shown in Table 5-14, doesn’t show 

the affordance of the abilities but, rather, displays which abilities are expected for students to 

acquire.  

CS-US declares four spatial thinking abilities among the six abilities, all except the 

internal representation and external representation abilities. Spatial reasoning ability is the 

main focus, as it occupies six out of the seven units. CS-NCTM requires all six abilities, 

although it stresses spatial relationship, external representation, and spatial reasoning abilities. 

CS-China covers five abilities with 24 counts in total. It has very strong emphasis on spatial 
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reasoning, spatial perception, and external representation, with counts of 10, 5, and 4 

respectively. It does not mention the spatial transformation ability. 

Table 5-14: Distribution of Six Spatial Abilities across the Three Curriculum Standards 

 CS-US CS-China CS-NCTM  

Spatial Perception 1 5 1 

Spatial Relationship 2 3 4 

Internal Representation 0 2 1 

External Representation 0 4 3 

Spatial transformation 1 0 1 

Spatial Reasoning 6 10 4 

Total 10 24 14 

Total of units  7 18 4 

* Numbers in this table mean the total unit counts of a specified ability in a curriculum 

standard. In one unit, multiple abilities might be evident; therefore, each unit can have up to 6 

abilities. Although a particular ability might be stated more than once in one unit, it will only 

be counted once.    

In summary, all standards have specified requirements in spatial thinking abilities.   

As can be seen in Table 5-4, Table 5-5 and Table 5-14, through the relatively small counts of 

3-D objects and concepts, CS-NCTM seems to focus more on the spatial thinking abilities and 

less on specifying 3-D objects and concepts. CS-US seems to emphasize the contents like 3-D 

objects and concepts more, and the spatial thinking abilities less. CS-China maintains a fairly 

equal focus on both contents and abilities. 

2. General results of six abilities across three textbooks by units 

I first look at the distribution of the six abilities in each text, which is illustrated in 

Figure 5-4 and Table 5-15 and then analyze the six abilities by comparing them across texts.  

In the Discovering Textbook, the most frequent three abilities are spatial relationship, 

external representation, and spatial perception, which have 68, 64, and 52 counts respectively. 

The least demonstrated three abilities are spatial transformation, spatial reasoning, and 

internal representation, which have 3, 37, and 46 counts respectively. 
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Figure 5-4: Distribution of the Six Abilities across Three Textbooks 

* Numbers in this table mean the total unit counts of a specified ability as it appears in the 

denoted text. In one unit, multiple abilities might be demonstrated; therefore, each unit can 

have up to 6 abilities. Although a particular ability might be stated more than once in one unit, 

it will only be counted once.    

In the Pearson Textbook, the most frequent three abilities are external representation, 

spatial relationship, and spatial reasoning, which have 78, 75, 48 counts respectively. The 

least demonstrated three abilities are spatial transformation, spatial perception, and internal 

representation, which have 4, 39, and 45 counts respectively. 

In the People's Education Textbook, the most common three abilities are spatial 

relationship, external representation, and spatial reasoning, which have 101, 93, and 74 counts 

respectively. The three least outstanding abilities are spatial transformation, spatial 

perception, and internal representation, which have 4, 11, and 26 counts respectively.  

Figure 5-4 shows the distribution of counts of each ability across the three textbooks. 

However, it cannot show the proportion of the abilities in the texts, considering the content-

load (number of units) is varied among the three texts. Therefore, I define the term “density of 

ability” to describe the degree of compactness of spatial thinking abilities in a unit. The 

density is calculated by dividing the counts of individual ability by the total units of that text, 

the formula of which is the following: Density= . For example, in 
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Table 5-15, the first number 0.72, means that there are 72 units bearing spatial perception 

ability in every 100 units in the Discovering Textbook. The third number, 0.11, means that in 

every 100 units of the People's Education Textbook, there are 11 units which bear spatial 

perception ability. Apparently, the density of spatial ability in Discovering is much higher 

than in People's Education. The distribution of density of ability in individual texts is shown 

in Table 5-15. 

Table 5-15: Density of Each Individual Ability per Unit in Each Text 

  Discovering 

Textbook 

Pearson 

Textbook 

People's 

Education 

Textbook 

1 
Spatial Perception 0.72 0.44 0.11 

Spatial Relationship 0.94 0.84 0.98 

2 
Internal Representation 0.64 0.51 0.26 

External Representation 0.89 0.88 0.90 

3 
Spatial transformation 0.04 0.04 0.05 

Spatial Reasoning 0.51 0.54 0.72 

 Total 3.75 3.25 3.02 

 Total units 72 89 104 

 

Spatial perception ability is not evident in the People's Education Textbook, the 

density of which is only 0.11. However, it serves a critical role in Discovering and Pearson, 

the density of which are 0.72 and 0.44. Spatial reasoning is quite opposite, the frequency of 

which is 0.72, 0.51 and 0.54 correspondently. As has been discussed in the literature review, 

spatial perception ability helps students to build and make sense of concepts better; while 

spatial reasoning is a higher level ability and is typically at the end of the abilities spectrum. 

Discovering tends to use and cultivate more spatial perception ability and emphasize spatial 

reasoning less. Pearson behaves quite similarly to Discovering. People's Education seems to 

favor developing spatial reasoning ability while focusing less on spatial perception. Spatial 

transformation ability rarely appears in any of the texts. It might be because of the difficulty 

of spatial transformation activities and of integrating them into paper-based texts. External 

representation and spatial relationship abilities are the two most frequently appearing abilities. 
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It shows that in geometry, the relationship between different elements, -such as points, lines, 

planes or solids, is the primary learning object; it also indicates that 3-D geometry concepts 

and objects depend highly on external representation.   

External representation ability is the only ability that is evenly distributed across the 

three texts. The percentage of external representation ability in each individual text ranges 

from 0.89 to 0.9, which means that nine out of every ten units contain this ability. This is 

unavoidable, because all the texts rely heavily on the external representation, mostly 2-D 

graphs, to illustrate concepts. 

The distribution of internal representation across the three texts is varied the most 

compared with other abilities; its density is 0.26, 0.64, and 0.51 accordingly. When correlated 

with the density of external representation, it seems People's Education tends to use more 

external representation and less internal representation. And both the US texts tend to have a 

better balance. According to the literature, it is essential to cultivate students' internal 

representation ability. Therefore, People's Education may lack enough support and resources 

for students to cultivate this ability. 

3. The accumulation of abilities by the sections 

To understand how these abilities are accumulated and developed along the timeline, 

or by the sequential of the texts, a line-chart (Figures 5-5 to Figure 5-7) is used to illustrate 

how the accumulated abilities are distributed across the sections. The numbers (y coordinates) 

of the six abilities in Figure 5-5 to Figure 5-7 are the counts of the units in total which 

associate with that particular ability within the same section. For example, in Figure 5-5, the 

highest line means the counts of spatial relationship ability in each section per the sequential 

of text. The first point is 12, and second is 8, which means there are 12 counts/units of spatial 

relationship ability associated with the concepts in the first section, and eight counts/units in 

the second section. 
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Figure 5-5 is the distribution of the counts of each ability accumulated by section in 

People's Education Textbook. It seems that spatial relationship, external representation, and 

spatial reasoning are having quite a similar trend, either moving up together or moving down 

together. Internal representation and spatial perception are seemingly intertwining together, 

and closely correlated. The former three have more ability counts than the latter two, which 

means the above three abilities are given more attention and emphasize. The previous three 

also tends to increase in general; while the last two tends to decrease. It fits the general theory 

of the literature: firstly, direct learner to perceive the understanding and notion of the concepts 

by using concrete 3-D objects or real-world circumstantial; with the attention being paid to 

the 3-D objects, learners increased their recognition of the objects, and they have the potential 

to internalize and externalize the representation, and eventually have the capability to reason 

spatially. Therefore, more and more the former three abilities are added on to the text by the 

timeline. 

By Figure 5-6, the distribution of the counts of each ability accumulated by section in 

Discovering Textbook, spatial perception, spatial relationship, internal representation, and 

external representation interconnect with each other. The counts of these four abilities are 

higher in the early section, and the numbers decrease along the timeline, and eventually 

become stable. The reason might be because in those few sections there are higher content-

loads, and later each section has very smaller topics. Spatial reasoning sometimes goes along 

with this trend, and sometimes it does not. 

Figure 5-7 is the distribution of the counts of each ability accumulated by section in 

Pearson Textbook. There are less observed patterns among the six abilities compared with 

previous two texts.  It seems that spatial relationship has a very negative relationship with 

spatial perception ability and internal representation ability. The spatial relationship has a 

similar trend as external representation in the first eight sections. 



 

125 

 

4. The accumulation of total abilities across the timeline 

To understand how these abilities are accumulated along the timeline, a line plot is 

used to illustrate the accumulated counts of all abilities in each unit. Figure 5-8 presents the 

line plots for the three texts, and the coordinate of any point (X, Y) in these lines, means that 

up to unit X, there are Y counts of abilities in total so far. These counts, or the Y coordinates, 

are achieved by adding the total counts of the six abilities in each unit, from its beginning to 

the X unit. It combines all the abilities within a unit of the text, and compares the summed 

abilities across time among the three texts.  

The Discovering Textbook has the sharpest line, the Pearson Textbook has the second 

sharpest line, and the People’s Education has the least sharp line. It shows that Discovering 

tends to have more and more abilities involved in the contents as time goes by.  Pearson and 

People's Education have a relatively static approach, increasing less dramatically as time goes 

on. This is an interesting fact because it means that the total number of “abilities” per “unit” is 

larger in Discovering and Pearson than the People’s Education. That is, the units in Peoples 

Education do things in a more “discrete” manner, whereas the US texts do things in a more 

“clumped together” manner. 

5. Correlation analysis among the six abilities  

To understand the correlations among these spatial abilities, I performed a Spearman’s 

Rho Correlation Test among all the six abilities in each text. I described and analyzed the 

results first by each text individually, and then compared them in general. Table 5-16 to Table 

5-18 show the correlation results among the six abilities in each text. The numbers in these 

tables are the Spearman’s correlation coefficients. 
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Figure 5-5 Abilities Accumulated by Section in People's Education Textbook per Ability 

 

Figure 5-6 Abilities Accumulated by Section in Discovering Textbook per Ability 
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Figure 5-7 Abilities Accumulated by Section in Pearson Textbook per Ability 

 

Figure 5-8: Total Abilities Accumulation Compared Across Three Textbooks 
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In the Discovering Textbook, it is evident that spatial perception is significantly 

positively correlated with external representation and spatial relationship, the correlation 

coefficient is 0.940 and 0.899 respectively. The spatial relationship ability is significantly 

positively correlated with internal representation, external representation, and spatial 

perception, and the coefficients are 0.805, 0.984 and 0.899 respectively. The internal 

representation is positively correlated with both external representation and spatial 

relationship, and the coefficients are 0.754 and 0.805 respectively. External representation is 

positively correlated with spatial perception, spatial relationship, and internal representation, 

and coefficients are 0.940, 0.984 and 0.754 respectively. High level abilities, spatial 

transformation and spatial reasoning, are not associated with other constructs. In general, 

these significant correlations are present between relative low-level abilities, either from level 

1 to level 2, or within level 1. 

In the Pearson Textbook, spatial relationship is significantly positively correlated with 

external representation with a correlation coefficient of 0.734. Spatial perception is negatively 

associated with spatial reasoning, and the coefficient of that is -.0.708. High level abilities, 

Spatial transformation and spatial reasoning, are not associated with other constructs.  

In the Peoples’ Education Textbook, there are seven pairs of correlations evident. For 

example, spatial perception is significantly positively correlated with spatial transformation. 

Spatial relationship is significantly positively correlated with internal representation, external 

representation, and spatial reasoning. Moreover, spatial reasoning is associated with external 

representation significantly, and less significantly with spatial relationship and internal 

representation. Those correlations progress from first level to second level, and to third level. 

Apparently, the correlations of these abilities are varied among the texts; therefore, I 

focused on the top four strongest correlations in each text, as summarized in Table 5-19.   
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Table 5-16: Spearman’s Rho Correlation among Six Spatial Abilities in the Discovering Textbook  

 Sp 

Perceptio

n 

Sp 

Relationshi

p 

Internal 

Representatio

n 

External 

Representatio

n 

Sp 

Rotatio

n 

Sp 

Reasonin

g 
Sp Perception 1.000 .899** .620* .940** .335 .051 

Sp 

Relationship 
.899** 1.000 .805** .984** .272 .186 

Internal 

Representatio

n 

.620* .805** 1.000 .754** .068 .125 

External 

Representatio

n 

.940** .984** .754** 1.000 .236 .110 

Sp Rotation .335 .272 .068 .236 1.000 .548 

Sp Reasoning .051 .186 .125 .110 .548 1.000 

 

Table 5-17: Spearman’s Rho Correlation among Six Spatial Abilities in the Pearson Textbook  

 Sp 

Percepti

on 

Sp 

Relationshi

p 

Internal 

Representatio

n 

External 

Representatio

n 

Sp 

Rotatio

n 

Sp 

Reasonin

g 
Sp Perception 1.000 .058 .360 .527 .362 -.708* 

Sp 

Relationship 
.058 1.000 .032 .734* -.178 -.019 

Internal 

Representation 
.360 .032 1.000 .053 .534 -.063 

External 

Representation 
.527 .734* .053 1.000 .000 -.321 

Sp Rotation .362 -.178 .534 .000 1.000 -.236 

Sp Reasoning .708* -.019 -.063 -.321 -.236 1.000 

 
Table 5-18: Spearman’s Correlation among Six Spatial Abilities in the People’s Education Textbook  

 Sp 

Perceptio

n 

Sp 

Relationshi

p 

Internal 

Representatio

n 

External 

Representatio

n 

Sp 

Rotatio

n 

Sp 

Reasonin

g 
Sp Perception 1.000 .352 .206 .230 .791* -.193 

Sp 

Relationship 
.352 1.000 .670* .958** .506 .755* 

Internal 

Representatio

n 

.206 .670* 1.000 .705* .140 .765* 

External 

Representatio

n 

.230 .958** .705* 1.000 .504 .815** 

Sp Rotation .791* .506 .140 .504 1.000 .046 

Sp Reasoning -.193 .755* .765* .815** .046 1.000 

 
**. Correlation is significant at the 0.01 level (2-tailed).  

*. Correlation is significant at the 0.05 level (1-tailed).    Sp is short for Spatial.
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Table 5-19: The Top Four Most Correlated Abilities in Each Text 

 Discovering Textbook Pearson Textbook  People’s Education 

Textbook 

Strongest  
correlation 

Sp relationship with 
external representation 

(.984) 

Sp relationship with 

external 

representation (.734) 

Sp relationship with 
external representation 

(.958) 

Second 

strongest 

correlation 

Sp perception with external 

representation (.940) 
Sp perception with 

sp reasoning 

(Negatively 

correlated, -.708) 

External representation with 

Sp reasoning (.815) 

Third strongest 

correlation 
Sp perception with Sp 

relationship (.899) 
None Sp perception with Sp 

rotation (.791) 

Fourth 

strongest 

correlation 

Sp relationship with 

internal representation 

(.805) 

None Internal representation with 

Sp reasoning (.765) 

The strongest correlation among all the texts is between spatial relationship and external 

representation. One possible reason for this pattern might be that in order to represent the objects 

externally, it is essential for learners to discern the relationship among the elements of those 

objects and build concepts of the involved relationships. Meanwhile, being able to represent the 

3-D object externally using techniques such as 2-D graphs, helps learners have a better 

understanding of the relationships. These two abilities are naturally correlated, and thus have 

very strong connection in the text. The implication for this correlation might be that if we want to 

cultivate one of these two abilities, it is a good strategy to emphasize the other. For example, if 

we could expose and direct learners to discern spatial positional relationships, parallel 

relationships and perpendicular relationships, then it might help leaners in graphing 3-D objects. 

When students become more aware of relative position of the 3-D objects, they may recognize 

and graph the objects with better understanding, accuracy and features. Similarly, if learners are 

exposed to rich external representations of 3-D objects, then they may make better sense of the 

involved spatial relationship by assimilating the rich information carried within that external 

representation.  
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The rest of the pairs of the associated abilities in Table 5-19 are totally different, with no 

common pair identified. This means that the correlations of the six abilities are varied rather than 

fixed. Two interesting questions arise: how can the correlations among these abilities be so 

diverse across the texts, and are there are natural connections amongst these abilities? To 

understand this phenomenon and answer these two concerns, I went back to analyze the content 

in the three texts and referred back to the results presented early on in this chapter.  

In the Discovering Textbook, after reviewing content and the general structure, I 

identified some distinctive characteristics which might explain the marked correlations in Table 

5-19. This text tends to use a lot of graphs and real world objects to demonstrate or illustrate 3-D 

objects and concepts, which gives rise to a considerable amount of spatial perception and 

external representation ability. These two abilities are pervasive across the units, as is described 

in Table 5-15. This text also uses graphs as well as more than a third of its definitions to discern 

objects and geometrical relationships. Although the content load in the Discovering Textbook is 

low, with 72 content units in total, the density of spatial thinking abilities in general is the 

highest among the three texts, which is 270/72=3.75, compared with 3.02 and 3.25 in the other 

two texts. These characteristics might explain the strong connection of spatial perception with 

external representation and spatial relationship. A possible explanation of the fourth strongest 

correlation, spatial relationship with internal representation, is that cultivating spatial relationship 

ability will help learners to differentiate the elements, objects and relationships involved in 

geometrical circumstances; then they eventually can assimilate and internalize the representation 

in the mind.  

Spatial perception is negatively associated with spatial reasoning in the Pearson Textbook. 

This is the only significantly negative correlation among all examined correlations for that book. 
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The reason for this negative association between spatial perception and spatial reasoning might 

be that the Pearson Textbook tends to use spatial perception at the beginning of the lesson to 

pave the way for learning new concepts or objects, and tends to use spatial reasoning after that 

by applying these concepts and objects to solve problems. Therefore, the two abilities are in 

totally opposite tracks, and negatively correlated. This separates spatial reasoning from concrete 

real-world scenarios, which are normally the source of spatial perception. If the reasoning is 

based on spatial perception, then it might be easy for students to intuitively make sense and 

justify and then be able to conduct spatial reasoning. In addition to that, if the text is designed to 

underlie any spatial scenario with spatial reasoning, it might increase students’ intuitive 

understanding to a higher level of informal, formal or even rigor reasoning according to the van 

Hiele model. Therefore, this negative correlation might decrease students’ growth of spatial 

reasoning ability.    

Similarly, in the People’s Education Textbook, some distinctive traits are evident which 

might help explain the rest of the three significant correlations in Table 5-19. This text has a 

considerable number of theorems and examples. It also tends to use abstract graphs, prisms and 

real-world or composite solids to present 3-D objects, which represent 48, 28 and 21 respectively 

out of the total of 104 contents units. External representation ability, spatial relationship ability 

and spatial reasoning ability appear almost in every unit, with a density of 0.90, 0.98 and 0.72 

correspondingly.  

The second strongest correlation in this text is between external representation and spatial 

reasoning. Normally, spatial reasoning in People’s Education is very complicated and involves 

several objects, complex concepts and relationships. One explaining for this correlation might be 

that it is very difficult for students to represent the complexity of the spatial reasoning objects 
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and concepts in their mind internally; therefore, an external representation can resolve that 

difficulty by employing external tools and external forces. The above reasoning is based on a 

hypothesis, that external representation can help untangle the complexity of mental 

representation and mental reasoning by bringing objects straight out into an external medium, 

thus decreasing the level of spatial thinking abilities and also reducing the level of cognitive 

difficulties. The implication of this correlation and explanation is that if we want to increase 

students’ spatial reasoning ability, we need to teach them to cultivate good external 

representation ability.  

Spatial transformation is not associated with other constructs except in People’s 

Education, where it is associated with spatial perception. One reason for spatial transformation 

significantly associating with spatial perception is that it is always accompanied by the latter in 

the spatial thinking abilities database, and it always goes side by side with illustrating graphs as 

is evident in the text.  

Lastly, another noticeable result from Table 5-19 concerns the spatial thinking abilities 

levels. As proposed in Chapter III, considering the hierarchy of the six abilities, spatial 

perception and spatial relationship abilities belong to the first level (lowest); internal 

representation and external representation abilities are in the second level (middle); and spatial 

transformation and spatial reasoning abilities are in the third level (third). In both US texts, the 

most significant correlations are established between relatively low levels, either from level 1 to 

level 2, or within level 1. However, in People’s Education, those correlations progress from first 

level to second level, and even to third level.  

In summary, the significant correlations recognized in this study are due to the design of 

the textbooks, and these correlations are varied by the texts because of the contexts, information 



 

134 

 

and arrangements of contents. Through deliberately offering connections among the educational 

materials, it is possible to build correlations among these abilities in the texts, and further 

cultivate students’ abilities. These abilities might have some natural connections between them; 

however, the results of this study cannot explain this concern and it needs further study.  

The statistical results regarding the six spatial abilities serve as a core understanding of 

the spatial thinking framework synthesized in the literature review. They also reveal the validity 

and feasibility of the spatial thinking framework. The understanding of the interconnections, 

interplays, and interactions among the six abilities will help educators and teachers to enhance 

students’ learning outcomes and foster their spatial thinking abilities in general. How to use these 

interconnections and the apparent interplay of these abilities within the textbooks to improve 

students’ learning is a good question for further studies.   
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Chapter VI 

Summary and Recommendations 

 

Summary 

Three-dimensional geometry is a long-established branch of the subject of mathematics 

in high school. However, it experienced tremendous change in the 20th century and was 

marginalized in the school mathematics curriculum. With the advancement of technology in 

aiding 3-D visualization and the vast utility of 3-D geometry in different workplaces, there is a 

need to inspect 3-D geometry curricula in high school. This study addresses the issue with an 

investigation of how 3-D geometry is covered in high school mathematics curriculum standards 

and textbooks in the US and China. This study examined three curricula and three high school 

mathematics textbooks to inquire as to the purpose of teaching 3-D geometry as well as the main 

topics, objects, concepts and communication types represented in the major geometry textbooks. 

This study also proposed a spatial thinking abilities framework to understand spatial thinking 

abilities and to examine the requirements/affordances of these abilities in the curricula and texts. 

By carrying out a comprehensive content analysis, this study demonstrates how 3-D geometry as 

a mathematics subject is detailed in the high school curriculum standards and facilitated by 

textbooks in the two countries.  

This study asserts that the purpose of including 3-D geometry in high school curricula is 

to cultivate students’ spatial thinking abilities and their argumentation ability as well as to teach 

them about 3-D geometrical objects, properties, and relationships. These are the common goals 
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stated by most curriculum standards. However, the details differ dramatically between the two 

countries and their different standards.    

The study revealed that the main topics of 3-D geometry demanded in US curriculum are 

volume and surface area of prisms, pyramids, spheres, and real-world objects. US curriculum 

emphasizes the connection of 3-D geometry with students’ real life through mathematical 

modeling. In China, the central topics required in the national curriculum are abstract reasoning 

in spatial positional relationships, parallel relationships, perpendicular relationships and angles, 

as well as incorporating algebraic methods with spatial vectors. Volume and surface of 3 types of 

polyhedrons (prisms, pyramids, and pyramid frustums), and 4 type of solids of revolution 

(cylinders, cones, circular frustums, and spheres) are required but only slightly touched upon in 

Chinese curriculum as compared with abstract reasoning.   

Findings indicate that in the Discovering Textbook, the central 3-D concepts are volume, 

surface area, categorizing, and drawings. The most visible 3-D objects are real-world or 

composite solids, prisms, pyramids, and spheres; investigation, definition, and example are the 

main communication types used to deliver the 3-D geometrical content.  

In the Pearson Textbook, the dominant concepts are volume, surface area, spatial position 

relationships, and nets. In addition, prisms, real-world or composite solids, pyramids, and cones 

appear most frequently to illustrate geometrical occurrences. Example, definition, and formula 

are the primary formats for delivering the desired geometrical concepts and objects.  

Spatial position relationships, parallel relationships, perpendicular relationships, angles, 

and categorizing are essential concepts in the Peoples’ Education Textbook. This text 

concentrates on 3-D objects like abstract graphs, prisms, real-world or composite solids, and 

pyramids. Its main communication types are definition, example, and theorem.  
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Hence, the two countries have very different topics in their 3-D geometry texts. In the 

US, the primary 3-D geometry topics taught in school are volume, surface area, and 

categorization of objects like prisms and real-world or composite solids. Conversely, in China, 

volume and surface area are not the main focuses; rather, spatial position relationships, parallel 

relationships, perpendicular relationships and angles based on abstract graphs, as well as real-

world or composite solids and prisms are the leading 3-D geometry topics. In addition, the 

results revealed that topics covered in the Chinese text are relatively complicated and have a 

wide spectrum; moreover, the content load and cognitive demand is moderately higher than those 

of the US texts.     

One of the most desired educational goals for 3-D geometry is cultivating students’ 

spatial thinking abilities, and this study explores their relative influence on the learning of 3-D 

geometry objects and properties. To that end, the study needed to have a framework for 

describing spatial thinking abilities. By reviewing literature from both mathematics education 

and educational psychology, the researcher generated a framework with six spatial thinking 

abilities: spatial perception ability, spatial relationship ability, internal representation ability, 

external representation ability, spatial transformation ability, and spatial reasoning ability. These 

six abilities can describe what kinds of competencies are required for students in a 3-D geometry 

activity. Another concern of the study is how the six spatial abilities are presented in the three 

texts as well as how the six abilities are related to each other through the topics. To address this 

concern, the researcher used the six abilities to code each small unit in the texts in order to check 

whether they are present in the units or not.  

By compiling simple descriptive statistics on the spatial thinking abilities data, this study 

finds that all texts present relatively high concentrations of spatial thinking abilities, as an 
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average of at least three abilities show up per unit. Spatial relationship and external 

representation appear most frequently in all three texts. Spatial transformation ability appears 

least frequently and is not emphasized by any of the texts. The People’s Education Textbook and 

the Pearson Textbook both display relatively high demands in the area of spatial reasoning as 

well, while the Discovering text focuses on spatial perception. However, in the Peoples 

Education Textbook, the abilities progressed along the timeline in a more “discrete” manner, 

whereas the progression in the US textbooks in a more “clumped together” manner.  

Upon inspecting the statistical correlation of the spatial thinking abilities data, it is 

evident that spatial relationship and external representation ability are the most significantly 

correlated in all texts. However, the rest of the significant correlations among the abilities vary 

dramatically the texts. In the People’s Education Text and the Discovering Textbook, it seems 

the spatial relationship, external representation, and spatial reasoning abilities are highly 

correlated with each other; however, it is only in the former text that spatial reasoning ability and 

internal representation ability are significantly correlated as well. There is less evidence of 

correlation in the Pearson Textbook, and spatial perception and spatial reasoning are negatively 

correlated.   

Considering whether it is necessary to teach 3-D geometry in high school, with the aid of 

the results and analysis, I find that 3-D geometry greatly supports the four arguments for 

teaching geometry to high school students. Three-Dimensional geometry gives students the 

experience and the ideas of mathematics (mathematics argument); brings out students’ intuition 

and helps them to interpret their experience in the world (intuitive argument); prepares students 

for the workplace (utilitarian argument); and teaches students to use logical reasoning (formal 

argument). Therefore, 3-D geometry is a good branch of geometry to teach as well as a good 
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course to teach to high school students in general. However, the utilitarian perspective of 3-D 

geometry is not fully realized in all texts. The formal argument perspective involving the use of 

logical reasoning is not fully executed in the two US texts, but it is fully demonstrated in the 

Chinese text.  

Spatial thinking abilities have direct effects on geometric abilities and learning. An 

improvement of students’ spatial abilities would take place if curriculum developers enriched 

geometry curriculum with explicit spatial abilities objectives.  

The order of the 3-D geometrical content influences students’ learning. By analyzing the 

sequences carried out in the three texts, it seems that most texts progress mainly according to 3-

D concepts, and use objects as a sub-order. Piaget proposed that the organization of geometry 

content should be experiential and mathematically logical rather than a re-enactment of the 

historical development of geometry, and he suggested a learning sequence: begin with some 

topological ideas and gradually move through affine and projective geometry to the geometry of 

metric space. The Chinese text, largely due to its inclusion of a broader array of 3-D geometry 

concepts, fits the order promoted by Piaget well.    

This study correlated each US text with its associated national curriculum standards, or 

Principles and Standards for School Mathematics (CS-NCTM), to examine the alignments of 

textbooks with the desired curriculum standards. Surface area, volume, Cavalieri’s principle, and 

visualizing relationships between 2-D and 3-D objects are highly desired in the US curriculum 

standards (CS-US). However, visualizing relationships between 2-D and 3-D objects is not very 

well covered in either US text. The Chinese curriculum standard (CS-China) explicitly states the 

desired educational goals, required content and skills, explanations and suggestions, and some 

reference examples. For example, CS-China states clearly all the required theorems as well as 
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how to deal with theorems and whether students have to use deductive reasoning to prove them 

or not. The Chinese textbook follows the standards rigorously. The expected educational content 

goals from CS-NCTM for 3-D geometry are 3-D geometrical objects and their properties as well 

as geometrical relationships; the expected abilities and skills are visualization, spatial reasoning, 

geometric modeling, and deductive reasoning. However, CS-NCTM states the expected 

educational goals in a relatively general and abstract manner; for example, it does not specify the 

kinds of geometric relationships that are required. Therefore, although all the texts seem to cover 

the desired content, it is not clear whether they are sufficient enough. It seems that formal 

deduction and proving theorems are not demonstrated in either US text, but they occupy a very 

substantial position in the Chinese text. In summary, there is considerable mismatch between 

curriculum standards and texts. It would be helpful if the standards could have more clear and 

detailed requirements and explanations, and if the textbook designers could interpret the 

standards carefully and fully demonstrate the standards in the texts. 

Limitation of the Research Method and Data 

Because of the limitation of time and scope of this research as a dissertation, I chose to 

eliminate the exercises parts of each text. This excludes a great amount of information about the 

materials students are using to practice and enhance 3-D geometry learning. It would be very 

beneficial to analyze how exercises relate to other communication types and to compare the 

different emphasis of each text on exercises.  

 The classification of communication types also has some deficiencies. It was difficult at 

times to distinguish formulae from theorem, because the former is a special case of the latter. 

However, in this study, I neglected this dispute to accommodate the need of finding the 

proportion of geometrical conjectures which are expressed by abstract symbolic equations 
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(formulae) to those which are expressed by natural language (theorems). While coding the 

People’s Education Textbook, we also found that the investigation activities are quite different 

from the US texts. Although the majority of investigation-type units use a series of manipulation 

activities to conduct exploration, the former sometimes tends to use a question or questions to 

initiate the inquiry. There is a fundamental difference between questions and activities; thus, 

there is disagreement within this type as well. Therefore, a slightly different way of dealing with 

these disputes might have an impact on the research results and findings.  

Another limitation is that the process of coding the six spatial abilities cannot be entirely 

objective. Although the researcher tried to increase the coder inter-reliability by pretesting and 

having the coders collaborate, the data is bound to be coded slightly differently depending on the 

coders used. It is very difficult to identify whether a unit in the text provides the affordance of 

internal representation. In addition to that, the research and coders found that the spatial 

relationship ability is prevalent in almost all the units analyzed. One way to address this issue 

would be by narrowing down the definition of relationships, and by eliminating low-level 

relationships and concentrating on specific relationships, such as parallelism or perpendicularity. 

However, this change will influence the results and findings dramatically. 

Only a few coders participated in this research. More coders, and having several coding 

groups, would provide more reliable results. The identification of units was challenging, and in 

some of the circumstances, it was difficult to arrive at a common conclusion. 

Recommendations  

Recommendation for educators  

        Recommendation for textbook design 
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Spatial thinking abilities are essential for enhancing students’ learning of 3-D geometry. 

However, current paper-based textbooks have limitations in terms of presenting 3-D geometrical 

phenomena and objects. Some geometry concepts and the supporting materials are difficult for 

students to perceive or understand through paper representation, and that increases learning 

difficulties and blocks students from using certain spatial thinking abilities or improving these 

abilities. However, with the aid of new computer technology, such SketchUp, this is easily done.  

One implication for textbook design is that maybe it is time to upgrade the traditional 

paper-based textbook into a multi-media based text. It could be digital text or a combination of 

digital and paper text together, but most importantly, it needs to integrate content with different 

types of media. The paper-based part of the texts can be thin and simple, keeping the main 

content, questions or activities; it is easy for students to carry as a reference. The non-paper-

based parts of texts can aim to provide more visual aid experience, dynamic and interactive 

activities, and hands-on physical or virtual manipulations. Some examples for these multi-media 

sections are, SketchUp for 3-D geometry, GeoGebra for 2-D geometry, and Desmos Graphing 

Calculator for functions, as well as animations and videos. Although online learning platforms 

and textbooks are now very pervasive, most of them just digitize paper textbooks rather than use 

multi-media to serve the purpose of helping students to understand better and to cultivate 

abilities through these multi-media. 

Teaching mathematics as a professional is not easy, and to teach well, teachers need 

specific detailed explanations of the curriculum standards, guidance, resources, and references 

that they can depend on. Textbooks can serve these needs in many ways. Teachers might get a 

lesson model from the textbook. Or they might rely on some materials in the textbook to inspire 

them to bring in some new ideas and creative activities. Teachers can use it as road map to see 
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where they should go and what kind of level they should bring students to, so that they will not 

get lost. Students can rely on texts for reviewing or self-studying, as well as practice.  

As discussed previously, the Pearson textbook tends to have examples and solutions 

together in the same place, and it is difficult to differentiate the question from its solution. It 

might be harmful for students to get the solution immediately without a chance to think 

independently. Therefore, the researcher calls for a multi-structured text that separates the 

questions, key learning activities, concepts, examples, and exercises from their answers. The 

answers can be appended at the end of the texts, or in a separate version. In this way, students 

can think independently first, then check answers with peers and teachers, or texts. Some 

exercises can also be eliminated from the main texts, because they are not very useful. This will 

make the texts thinner and less intimidating to students, as well as easy to carry. The conciseness 

of the textbook will also help students to grasp the essence of each lesson. A rough idea for a 

multi-structured textbook is a textbook with a thin paper version to carry the essence of the 

content, and more detailed digital version to carry most of the text. Considering the 

pervasiveness of online learning, this can be easily done. 

This multi-media, multi-structured, and multi-functional textbook model will benefit 

students and teachers, and it will enhance teaching and learning. A small change in the structure 

might lead to a good result. A good but simply structured textbook might surpass the expensive 

giant textbooks.  

      How to teach 3-D geometry and how to improve spatial thinking abilities 

The backbone of 3-D geometry teaching should be tasks that require mental manipulation 

of visual-spatial relations to conceive and edit geometry properties and take advantage of 

students’ visual-spatial experiences that are provided by the world surrounding them. 
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Echoing to the appeal from researchers like Bishop (1980) and Grande (1990) etc. as 

reviewed in chapter II, that spatial abilities are critical in learning geometry and that the 

mathematics education community should fully recognize the possibility or the desirability of 

such spatial training, I recommend a few approaches to train the six spatial abilities included in 

my framework. These approaches are based on the results and analysis as well as literatures 

reviewed in this study. 

The way to improve spatial perception ability is through selective visual exposure and 

direct inquiry. The more the learner is visually exposed to learning objects, the better he/she can 

improve and increase this desired ability. However, it does not necessarily mean exposing 

students to more objects, but, rather, exposing students to quality materials that will attract their 

attention and interests, objects that are close to their own life experience, or provoke more 

intuitive thoughts. 

Spatial relationship ability can be developed through guided observation, directed 

investigation, explicit orientation, and scaffolding. These supports aim at helping students to 

differentiate and distinguish geometrical elements, thus practicing mathematical understanding 

of them. It is important to present descriptive language associated with the specified properties or 

relationships. 

Spatial transformation ability can be improved through exposing students to more 

physical movement of objects, by using technological tools to show the movement process or 

through dissecting the movement into small motions. 

Internal representation ability is a mental rendition of 3-D geometry objects or 

relationships. These can be stored as images, symbolic notation, vocabularies, and inner dialogue 

(thoughts). The ways to enhance this ability are increasing exposure to figures but also to active 
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vocabulary and dialogues. The latter two are linguistic approaches, which can lead to more 

thoughts. Thoughts are mental representations of ideas and concepts, and they are essential to 

internal representation ability.   

External representation ability is an external physical representation of 3-D geometry 

objects or relationships. The formats of external representation are varied, such as figures, 

physical models of 3-D objects, symbolic notions, written statements, and dialogues. Training of 

graphical drawing on paper or by computer and the acquisition of symbolic notions will enhance 

students’ external representation ability. If students can represent 3-D geometry concepts in 

many diverse ways, they can better manipulate 3-D objects. The improvement of this ability will 

have direct impact on the rest of their geometric abilities.   

Spatial reasoning ability is a process of active manipulation and progressive 

reorganization. The manipulation includes mental manipulation, hands-on manipulation, and 

logical manipulation. This is a critical ability for making sense of geometrical concepts and 

building mental representations of 3-D geometry. The improvement of the other abilities will 

help to develop this ability. It can be trained by investigation activities, teachers’ scaffolding, 

discussions, debates, and deliberate proof practices.  

Moreover, it is important to determine and describe an individual’s particular strengths 

and weakness in these six abilities. Teachers need proper strategies to help each individual 

improve the weak abilities. Just as Sherman (1979) argued “Research needs to be directed 

towards factors affecting the development of spatial skills not only during early years, but even 

during adult years…… For a swimmer with a weak kick we provide a kick board and 

opportunities to develop the lags. We do not further exercise the arms. (p. 27)” 
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 Recommendation for future research  

Because of the advantage of modern technologies in providing spatial visualization, they 

will have great potential to enhance learner’s spatial thinking abilities. Therefore, further 

research is needed to explore the use of technological tools to improve 3-D geometry teaching 

and learning by increasing understanding of the connection between spatial thinking abilities, 3-

D geometry objects or concepts, and the efficacy of the technology tools themselves. They will 

yield great value and contributions to the field.    

Considering the limitation of this research by only including two countries and three 

textbooks, further research is necessary. It would be of great value to include a larger scope of 

countries, perhaps involving a representative country from each of the five continents. 

Researchers could also conduct similar studies to examine the curriculum standards and 

textbooks within one country.  

Although this study finds a tremendous content gap relating to 3-D geometry between the 

Chinese text and the US texts, it cannot evaluate and explain the impacts for the students’ 

cognitive development and skills-set development. More specifically, the following research 

questions need scholars’ attention: with the gap in curriculum standards and texts in the two 

countries, what does the achievement gap look like?; is it necessary to teach such a high level of 

math in high school in China, and does this approach suit students’ cognitive development or 

not?; do US curriculum standards and texts deprive students of the opportunity of being exposed 

to high level mathematics and argumentation activities, or do they protect students’ learning by 

offering more experiential exploration, less content load and less drilling?  
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The spatial thinking framework synthesized in this study can be used in understanding 

the teaching and learning of plane geometry as well. Further research could be conducted to 

apply this framework and research method to 2-D geometry to answer similar research questions.  

Further research is needed to dive deep into the understanding of spatial thinking abilities 

through the lenses of learning theories and the application to geometrical learning.
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Appendix A:  Three Curriculum Standards 

1. US-CS (Common Core State Standards, 2010) 

US-CS states students in high school should: 

(1) Explain volume formulas and use them to solve problems 

①. Give an informal argument for the formulas for volume of a cylinder, pyramid, 

and cone. Use dissection arguments, Cavalieri's principle, and informal limit 

arguments. 

②. Give an informal argument using Cavalieri's principle for the formulas for the 

volume of a sphere and other solid figures. 

③. Use volume formulas for cylinders, pyramids, cones, and spheres to solve 

problems. 

(2) Visualize relationships between two-dimensional and three-dimensional objects 

① Identify the objects of two-dimensional cross-sections of three-dimensional objects, 

and identify three-dimensional objects generated by rotations of two-dimensional objects. 

(3) Apply geometric concepts in modeling situations 

①. Use geometric shapes, their measures, and their properties to describe objects 

(e.g., modeling a tree trunk or a human torso as a cylinder). 

②. Apply concepts of density based on area and volume in modeling situations (e.g., 

persons per square mile, BTUs per cubic foot). 
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③. Apply geometric methods to solve design problems (e.g., designing an object or 

structure to satisfy physical constraints or minimize cost; working with typographic 

grid systems based on ratios). 

 

 

 

2. China-CS (Mathematics Curriculum Standards for General High School, 2016) 

China-CS states the guidelines and standards for high school students: 

Mathematics Compulsory 2 

In this module, students will learn preliminary three-dimensional geometry. 

Geometry is the study of shape, size and position of the real world of objects in mathematics. 

People usually use visual perception, operational confirmation, speculative reasoning, 

measurement, computation and other methods to understand and explore geometric figures and 

their properties. As we human beings live in a three-dimensional real world, thus in the 

compulsory high school mathematics curriculum, one of the basic goals is to establish in students 

the following basic capacities: recognizing spatial figures, spatial imagination ability, spatial 

reasoning ability, the ability to use graphic language to communicate, as well as geometric 

perception ability. In this preliminary study section of three-dimensional geometry, students will 

start from the holistic observation of solid geometry objects, understanding spatial patterns; then, 

using cuboids, students will cultivate visual perception and understanding of the positional 

relationships between point, line and plane. Finally, students will be able to use mathematical 

language to express the nature and determining characteristics of parallel and perpendicular 

relationships between points, lines and planes, and students will also be able to demonstrate 
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some of these conclusions. Students will also learn the method for calculating surface area and 

volume of some simple solid objects. 

Contents and requirements  

1. Preliminary three-dimensional geometry objects (about 18 instructional hours)  

(1) Three-dimensional geometric objects 

①By the aid of graphical mock-ups and computer software, students will be exposed to 

a vast number of three-dimensional objects and will be able to recognize the characteristics of 

cylinders, cones, pyramid frustums, spheres and simple combinations of those. Students then can 

use these characteristics to describe the structures of simple objects in real life. 

② Students will draw simple three-view graphs (of cuboids, spheres, cylinders, cones, 

pyramids and simple combinations); recognize the original solid objects expressed by three-view 

drawings; use materials (such as cardboard) to create solid models; and use the oblique-two-

sided drawing method to represent three-dimensional objects in two-dimensional graphs.  

③After observing graphs drawn using the central projection and parallel projection 

methods, students will understand the different representations of spatial objects.  

④ Students will complete a project in which they draw some architecture by the three-

view method or the oblique, two-sided method.   

⑤ Students will know the formulas for calculating surface area and volume of spheres, 

prisms, and pyramids (formulas are not required to be memorized). 

 (2) The positional relationships among points, lines, and planes 

① With the aid of cuboid models, students will derive the definitions of relative 

positions among points, lines and planes by intuitively recognizing and understanding the 



 

159 

 

positional relations among the three subjects. The following axioms and theorems should be 

understood as reasoning references. 

• Postulate 1: If two points lie in a plane, then the line joining them lies in that plane. 

• Postulate 2: Through any three noncollinear points, there is exactly one plane. 

• Postulate 3: If two distinct planes have one common point, then they share one 

 and only one common line, which passes through the common point.  

• Postulate 4: If two lines are parallel to the same line, then they are themselves 

 parallel. 

• Theorem: If the two sides of an angle are parallel to another angle’s, then the two 

 angles are either equal or complementary to each other.   

②Based on the above definitions, postulates, and theorems, through activities such as 

visual perception, operational confirmation, and speculative reasoning, students will recognize 

and understand the parallel and perpendicular relationships between lines and planes as well as 

the related properties and determination criteria.  

  By visual perception and operational confirmation, students will use conjecture to 

generalize the following theorems: 

• If a line outside a plane is parallel to a line in that plane, then this line is parallel to the 

plane. 

• If two intersecting lines in a plane are both parallel to another plane, then the two 

planes are parallel. 

• If a line is perpendicular to two intersecting lines of a plane, then this line is    

perpendicular to the plane. 
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• If a plane includes a line which is perpendicular to another plane, then the two planes 

are perpendicular. 

By visual perception and operational confirmation, students will use conjecture to 

generalize the following theorems and prove them as well:   

• If a line is parallel to a plane, then the intersection of any plane which passes through 

this line with this plane is parallel to this line. 

• If two planes are parallel, then the intersection lines of any plane with these two 

planes are parallel to each other. 

• If two lines are perpendicular to the same plane, then they are parallel to each other. If 

two planes are perpendicular to each other, and a line from one of the planes is 

perpendicular to the intersection line of the planes, then this line is perpendicular to 

the other plane. 

 ③Students will prove some simple propositions related to spatial positional relation-

 ships by using the deductive reasoning method with the postulates and theorems acquired 

 so far.  

(3) Spatial Cartesian coordinate system 

            ① By letting students experience specific contexts, students will sense the necessity of 

 establishing a spatial Cartesian coordinate system, understand that system, and know how 

 to use the system to describe the location of a point. 

            ② Students will derive the formula for distance between two points in three-dimensional 

 space by labeling and investigating the coordinates of the vertex of cuboid.  

Explanations and suggestions 
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The key instruction point of this module is to help students gradually cultivate their 

spatial imagination ability. 

The design of the content structure is based on the principles of whole to local, and 

specific to abstract. Teachers should provide sufficient three-dimensional objects either through 

physical models or use computer software to help students to recognize the constructional 

characteristics of 3-D objects. They can then use these characteristics to describe real-world 

objects; to solidify and improve their understanding of three-view drawing; and to further master 

the methods and skills of representing 3-D objects on plain graphs by using parallel projection 

and central projection.  

When teaching geometry, teachers should lead students to translate their language into 

graph language and symbolic language, by acquainting them with physical models. Teachers can 

use the points, lines, and planes in cuboids as the transforming carrier, from which students can 

grasp basic spatial perception to gain understanding of the positional relationships among general 

points, lines and planes. By observing, experimenting and reasoning, students can further 

understand the nature and determination of parallel and perpendicular relationships; can learn to 

use mathematics language to describe the positional relationships of 3-D objects correctly; and 

can do simple deductive reasoning and simple application. 

During the teaching of this part, the characteristic theorems of lines parallel to planes as 

well as lines perpendicular to planes need to be proven rigorously; however, these determining 

theorems only need to be acquired through spatial perception and operation, as further proofs 

involving vector methods will be provided in a later chapter. 
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References 

  Example 1. As shown in the figure, this is a three-dimensional view of the trophy. Please 

draw its visual diagram and find out the size of the trophy. 

 

 

Figure 1: Graph for Example 1 

Notification: The first graph is the front view, side view, and top view. 

Example 2. Observe your classroom, state the observed positional relationships among 

points, lines, and planes, and explain your reasons. 

Elective 2--1 

Spatial vectors offer a new way of dealing with three-dimensional problems. The 

introduction of spatial vectors provides an efficient tool for solving positional relationship 

problems and measurement problems. In this module, students will expand their knowledge of 

plain vectors into three dimensions and use vectors to solve problems related to positions 

between lines and planes as well as experience the functions of vectors in exploring properties of 

geometric graphs and further develop their spatial imagination and spatial perception abilities. 
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Contents and requirements  

Spatial vector and three-dimensional geometry (approximately 12 instruction hours) 

(1)Spatial vectors and their computation  

①. Students will experience the process of expanding vectors from two dimensions to 

three dimensions by making the necessary computations. 

②. Students will understand the concept of spatial vectors as well as prime theorem and 

its implications; they will master the orthogonal decomposition of spatial vectors and 

representation using coordinates.  

③. Students will master the linear operations of spatial vectors, as well as their 

coordinate representation and computation.  

④. Students will master the scalar product of spatial vectors, as well as their coordinate 

representation and computation. Students will use scalar products to judge whether 

two vectors are collinear or perpendicular.  

              (2) Application of spatial vectors 

①. Students will understand the direction vector of a line and normal vector of a plane. 

②. Students will use the language of vectors to describe the parallel and perpendicular 

relationships of lines to lines, lines to planes, and planes to planes.  

③. Students will use the vector method to prove some theorems related to lines and 

planes.  

④. Students will use the vector method to calculate the angles created by lines and other 

lines, lines and planes, and planes with other planes. They will also apply vector 

methods in investigating geometry problems.  

Explanations and suggestions 
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5. Students should be directed to use the method of analogy and experience the process of 

expanding vectors and their computation from two dimensions to three dimensions. During the 

teaching, particular attention should be paid to the impacts that result from the increase in 

dimensions.  

6. Students should be encouraged to choose flexibly from the vector methods and 

integrated method, and tackle three-dimensional geometry problems from different angles.   

 

3. CS-NCTM (Principles and Standards for School, NCTM, 2000) 

Related to solid geometry, CS-NCTM states the standards and the expectation for high 

school students from grades 9–12 are:  

①. Analyze characteristics and properties of two- and three-dimensional geometric 

shapes and develop mathematical arguments about geometric relationships 

• analyze properties and determine attributes of two- and three-dimensional objects; 

• explore relationships (including congruence and similarity) among classes of two- 

and three-dimensional geometric objects, make and test conjectures about them, and 

solve problems involving them; 

• establish the validity of geometric conjectures using deduction, prove theorems, and 

critique arguments made by others; 

②. Specify locations and describe spatial relationships using coordinate geometry 

and other representational systems 

• investigate conjectures and solve problems involving two- and three-dimensional 

objects represented with Cartesian coordinates. 

③. Apply transformations and use symmetry to analyze mathematical situations 
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• understand and represent translations, reflections, rotations, and dilations of objects in 

the plane by using sketches, coordinates, vectors, function notation, and matrices; 

④. Use visualization, spatial reasoning, and geometric modeling to solve problems 

• draw and construct representations of two- and three-dimensional geometric objects 

using a variety of tools; 

• visualize three-dimensional objects and spaces from different perspectives and 

analyze their cross sections; 

• use geometric ideas to solve problems in, and gain insights into, other disciplines and 

other areas of interest such as art and architecture. 
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** In this appendix, any bullet notation of the kind ○1 , ○2, ○3  indicates these lines are considered as 

standards, and any bullet notation with type of (1), (2) indicates this line is field, which is above 

standards, which is a collection of standards into a field. Bullet notation with “ • “ specifies 

expectation or sub-standards for a particular standard, which is a sub-branch of standards. 
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 Appendix B: Inter-reliability Test Records 

FIGURE 1: Test Record of the Two Mathematics Teachers from US Text 
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FIGURE 2: Test Record of the Two Graduate Students from Chinese Text 
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Appendix C: All Theorems Related to Three-Dimensional Geometry which Appeared in 

the Three Texts 

 

1. Theorems which show up in the Pearson Textbook 

Postulate 1: If two planes intersect, then they intersect in exactly one line. 

Postulate 2: Through any three noncollinear points, there is exactly one plane. 

Theorem (Cavalleri’s Principle): If two space figures have the same height and the 

same cross-sectional area at every level, then they have the same volume. 

Euler’s Formula: The numbers of faces (F), vertices (V), and edges (E) of a 

polyhedron are related by the formula F+V=E+2 

Theorem (Areas and Volumes of Similar Solids): If the similarity ratio of two similar 

solids is a:b, then 

(1) the ratio of their corresponding area is a2:b2, and  

(2) the ratio of their corresponding volume is a3:b3. 

 

*: It is very confusing to identify theorems in the Pearson Textbook, since the book 

denotes every formula of surface area, lateral area and volume as theorem. For example: 

Theorem 11-7 Volume of a Cylinder: 

The volume of a cylinder is the product of the area of the base and the height of the 

cylinder. V= , or V=  

*Theorems are not identified in the Discovering Textbook, although this text mentions 

Cavalleri’s Principle.It appears as an investigation activity, and there is no use of the 

terminology of this principle, but, rather, “Oblique Prism-Cylinder Volume Conjecture.”   
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2. Theorems which Show up in the People’s Education Textbook 

Postulate 1: If two points lie in a plane, then the line joining them lies in that plane. 

Postulate 2: Through any three noncollinear points, there is exactly one plane. 

Postulate 3: If two distinct planes have one common point, then they share one and 

only one common line, which passes through the common point. 

Postulate 4: If two lines are parallel to the same line, then they are themselves parallel. 

Postulate (Cavalleri’s Principle): If two space figures have the same height and the 

same cross-sectional area at every level, then they have the same volume. 

Theorem: If the two sides of an angle are parallel to another angle’s, then the two 

angles are either equal or complementary to each other.   

Theorem: If a line outside a plane is parallel to a line in that plane, then this line is 

parallel to the plane. 

Theorem: If two intersecting lines in a plane are both parallel to another plane, then 

the two planes are parallel. 

Theorem: If a line is perpendicular to two intersecting lines of a plane, then this line is    

perpendicular to the plane. 

Theorem: If a plane includes a line which is perpendicular to another plane, then the 

two planes are perpendicular. 

Theorem: If a line is parallel to a plane, then the intersection of any plane which 

passes through this line with this plane is parallel to this line. 

Theorem: If two planes are parallel, then the intersections of any plane with these two 

planes are parallel to each other. 

Theorem: If two lines are perpendicular to the same plane, then they are parallel to 

each other.  
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Theorem: If two planes are perpendicular to each other, and a line from one of the 

planes is perpendicular to the intersection line of the planes, then this line is perpendicular to 

the other plane. 

Theorem (vector): If two vectors a and b are not collinear, then a vector p is coplanar 

to a and b, if and only if there exists a pair of real number (x,y), such that p=x*a+y*b.    

Theorem (vector): If three vectors a, b and c are not coplanar, then any vector p in that 

space, there exists a group of real number {x, y, z}, such that p=x*a+y*b+zc. 

Theorem: If a line in a plane is perpendicular to the projection of another line which 

intersects with this plane, then these two lines are perpendicular to each other. 

 

*: The People’s Education Text includes 5 postulates and 13 theorems. However, for 

the purpose of this study, I treat them all as theorems to simplify this study and not go into 

detail concerning the difference between postulates and theorems. 
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Appendix D:  Three-Dimensional Objects and Concepts Pairwise Comparisons 

 

Figure 1: Comparison Diagram between the Discovering textbook’s and the Pearson 

Textbook’s Use of Objects 

 

Figure 2: Comparison Diagram between the Discovering Textbook’s and the People’s 

Education Textbook’s Use of Objects             
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Figure 3: Comparison Diagram between the People’s Education Textbook’s and the Pearson 

Textbook’s Use of Objects 

 

Figure 4: Comparison Diagram between the People’s Education Textbook’s and the 

Discovering Textbook’s Use of Themes 

 

Figure 5: Comparison Diagram between the People’s Education Textbook’s and the Pearson 

Textbook’s Use of Concepts 
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Figure 6: Comparison Diagram between the Discovering Textbook’s and the Pearson 

Textbook’s Use of 

Concepts
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