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ABSTRACT 

 

The Saccharomyces cerevisiae Srs2 Helicase Regulates Homologous Recombination Through the 

Disassembly of Recombination Intermediates 

 

Kyle S. Kaniecki 

 

Life on Earth relies on a set of instructions encoded within an organism’s genome that is passed 

along from one generation to the next. Inherent to this mechanism of propagation is the need to copy the 

genetic material before passing it along to the progeny. Errors in this process coupled with stochastic 

damage will inevitably lead to changes in these instructions and may result in a reduction of fitness or 

even death of an individual. Yet, these same changes are also responsible for the adaptation mandated 

by our dynamic environment. Thus, there exists a delicate balance between maintenance and alteration 

of genetic material that is embodied to a large part at the various intersections of DNA replication, 

recombination and repair. Homologous recombination (HR) has been well studied and found to play vital 

roles in many cellular processes from the repair of the harrowing double-stranded break, the restart of a 

stalled or collapsed replication fork, as well as proper chromosome segregation during meiosis, all with 

the goal of striking this delicate balance. And yet, while HR is incumbent for the fitness of an organism, if 

left unchecked this same process can become detrimental by preventing better suited DNA repair 

pathways, permanently arresting cell cycle progression and creating some of the very problems it was 

meant to address such as aneuploidy or cancer. Despite a wealth of knowledge, the precise regulatory 

mechanisms remain an active area of research as they provide likely targets to combat these persistent 

diseases. Motor proteins that translocate along DNA have been particularly compelling and elusive due to 

their transitory nature, as well as the inevitability of collisions with bound protein(s) or nucleic acid 

structures that are likely regulated intermediates in the process. The yeast Srs2 helicase/translocase has 

long been regarded as the prototypical “anti-recombinase” as it has been shown to dismantle the Rad51 

presynaptic filament, but also displays contradictory pro-recombinase functions. In vivo studies of Srs2 

have been hampered by its involvement in multiple bioprocesses beyond recombination, while bulk in 



vitro approaches often produce conflicting results. Recent single molecule imaging of these players has 

shed light onto their involvement in the regulation of the various stages of the canonical pathway of HR. 

The Greene laboratory has developed ssDNA curtains to study the pre-synaptic filament and shown that 

Rad51-ssDNA filaments can create bonafide D-loop intermediates that would be incapable of repair and 

thus represent a toxic intermediate. These structures persist far longer than the entire process of DSBR in 

vivo and led us to hypothesize that motor proteins would be a key regulatory element to dismantle 

improperly paired intermediates for redistribution of the bound proteins and reengagement of the 

homology search process. Here I extend the use of ssDNA curtains to study Srs2 as it assembles into 

multimeric complexes to perform long-range disruption of various pre- and post-synaptic filament 

assemblies that include replication protein A (RPA), Rad51, Rad52, and D-loops. For the first time, direct 

observation of Srs2 translocating over RPA filaments is provided and shows these proteins are efficiently 

removed by Srs2. By including Rad52 on the RPA filament, I offer a refined model of the contradictory 

pro- and anti-recombinase activities of Srs2 through its antagonism of the single-strand annealing 

pathway in favor of HR. Additionally, Srs2 was found to initiate Rad51 disruption at breaks in the 

continuity of the filament marked by the persistence of replication protein A (RPA), Rad52, or the 

presence of an improper D-loop intermediate, the latter of which is efficiently disrupted before continuing 

translocation. In contrast to the prevailing model, we demonstrate that direct interaction between Srs2 

and Rad51 is not necessary for long-range Rad51 clearance. These findings offer insights into the 

dynamic regulation of crucial HR intermediates by Srs2 and demonstrate that sub-nuclear concentrations 

of these proteins may be a likely driver for their activities. 
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CHAPTER 1: INTRODUCTION 

 

 

Homologous Recombination (HR), the exchange of nucleic acid information between two identical or 

closely related sequences, is a highly-conserved pathway from viruses to humans. The earliest 

experiments probing recombination in eukaryotes employed segregation analysis of individual meiotic 

products in yeast to dissect the most basic concepts and actors taking part in these processes. These 

experiments led to major theoretical advances exemplified in the Holliday model of recombination, 

followed by the Meselson-Radding model, and later the DSBR model of recombination1,2,3. Each of these 

pivotal papers was aimed at explaining recombination outcomes that the predecessor could not account 

for. Decades of research have now helped define the molecular players (Table 1-1) and pathways 

involved in recombination (Figure 1-1 & Figure 1-2). 

This chapter will introduce three key cellular processes that utilize genetic recombination 

including (i) the repair of damaged DNA such as inter-strand crosslinks and a double strand break, (ii) the 

restart of stalled or collapsed replication forks, and (iii) during programmed events such as the accurate 

segregation of chromosomes during meiosis I. I will then go into more detail to explore some of the pivotal 

proteins that carry out recombination, followed by how SF1 & SF2 helicases operate with an emphasis on 

their perceived regulatory roles in genetic recombination. Throughout this chapter, I will stress how 

recombination is essentially regulated by the dynamic assembly and disassembly of recombination 

intermediates. 

 

1.1 DNA DAMAGE AND REPAIR 

Insults to the genetic code of an organism can be the result of either exogenous or endogenous sources. 

Endogenous sources may include reactive oxygen species (ROS) that are the result of various metabolic 

processes, collisions between genomic machineries, protein-DNA adducts, as well as programmed 

changes that vary widely by organism such as meiotic recombination, lymphocyte development, 
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horizontal gene transfer, and mating type switching in yeast. Exogenous sources of DNA damage include 

genotoxins such as camptothecin (CPT), methyl methanesulfonate (MMS), or hydroxyurea (HU) which 

have historically been used as tools to induce DNA damage with the goal of elucidating various repair 

mechanisms. High-energy particles such as UV- and gamma-irradiation will commonly cause ssDNA 

gaps and double strand breaks, respectively4. The double-stranded break (DSB) is often thought to be the 

most perilous of any type of damage as these lesions can result in chromosomal rearrangements, loss of 

large amounts of genetic information, and cell death5. The importance in combating these affronts to 

genomic integrity is emphasized by the fact that mutations in the genes necessary for their repair may 

result in inviability, neurological, immunologic, or developmental disease and are primary drivers of 

cancer6-8. 

 

1.1.1 Pathways to repair the double-strand break 

The two key pathways to repair a DSB are non-homologous end joining (NHEJ) and homologous 

recombination (HR), with the choice of which pathway to use largely depending upon the state of the DNA 

ends flanking a DSB (Figure 1-1). If the break has <4nt of ssDNA overhang and is absent protein-DNA 

adducts or hairpin caps, NHEJ is often considered the pathway of choice, particularly in mammalian 

cells9. In brief, the canonical pathway for NHEJ uses the Ku70-Ku80 heterodimer (Ku) to bind both ends 

of the DSB, while DNA ligase-IV (LigIV) catalyzes the ATP-dependent transfer of phosphate bonds to 

directly ligate the phosphodiester backbone10. Alternative mechanisms of direct ligation, called alt-NHEJ, 

include micro-homology end joining (MMEJ) and single-strand annealing (SSA)9. 

In contrast to NHEJ, both alt-NHEJ and HR require 3-ssDNA ends and do not rely on Ku and 

LigIV. Clean breaks such as those generated by restriction enzymes can still employ alt-NHEJ or HR for 

their repair, while the decision to forego NHEJ is made by the Mre11-Rad50-Xrs2 (MRX) complex along 

with Sae2, which can displace Ku from the ends flanking a DSB (Figure 1-2). Mre11 and potentially Sae2 

possess endonucleolytic function to nick DNA and remove any protein-DNA adducts or hairpin structures 

from the end of the break 11,12. In the error-prone MMEJ, 1-16nt regions of microhomology that are 

revealed during initial resection may be annealed and directly ligated resulting in deletions flanking the 
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DSB9. The Mre11-generated nick serves as an entry site for Exo1 53 exonuclease to reveal long 3 

ssDNA overhangs at a rate of about 4kb (hr-1)13. The Sgs1-Top3-Rmi1 (STR complex) together with Dna2 

flap endonuclease operate in parallel with, and may also substitute for, Exo1 to reveal long ssDNA tracks 

that vary in length depending on the availability and proximity of a template, with 2-4 kilo-nucleotides (knt) 

being revealed during the repair of DSBs in mitotic yeast cells14.  

The ssDNA that is revealed during resection is rapidly bound by the heterotrimeric replication 

protein A (RPA) in eukaryotes, or single-stranded binding protein (SSB) in E. coli. RPA-ssDNA will recruit 

Ddc2-Mec1 to the DSB15-17 to phosphorylate Rad9 and activate the Rad53 and Chk1 checkpoint effector 

kinases (mammalian ATR pathway) to halt cell cycle progression until DSB repair completion18. In SSA, 

the Rad52 protein binds to RPA-ssDNA to promote the direct annealing of homologous sequences 

(>14bp of homology) flanking a DSB19. While Rad52 has strand annealing activities, its primary purpose 
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is largely thought of as the Rad51 mediator to help displace RPA from the ssDNA and build the Rad51-ss 

DNA “pre-synaptic filament”. The Rad51 filament requires the action of other HR mediators such as the 

heterodimer Rad55-Rad57 and the Shu complex (Shu1-Shu2-Csm2-Psy3) to remain stable. With the aid 

of Rad54, Rad51 promotes homology search for a correct template and strand invasion to create a D-

loop and the “post-synaptic filament”. Once the invading strand pairs with a template, Rad54 switches 

modes and dismantles the Rad51 filament to allow access to the primed substrate by the specialized 

DNA polymerases Pol , Pol , Pol , and in particular Pol 20,21. This commonly occurs with the 

association of the clamp loader replication factor C (RFC), which in turn loads the proliferating cell nuclear 

antigen (PCNA) processivity clamp22. PCNA is a homotrimeric protein that encircles the DNA and is 
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essential for replication by DNA Pol , while further stimulating the processivity of other polymerases20. 

Association of different polymerases with PCNA can impact their processivity and may influence the 

downstream pathway for HR resolution, a feature that is discussed further in sections 1.1.2 and 1.3.322. 

If HR results in the exchange of the arms of a sister chromatid (or homolog for meiotic cells), the 

product is called a crossover (CO), while maintaining the original organization is a non-crossover (NCO) 

product. Because a template dsDNA is used to copy missing information, either CO or NCO events may 

lead to a gene conversion event where copying the information on the dsDNA template leads to loss of 

heterozygocity (LOH) where two distinct allelic sequences become identical (Figure 1-3). Additionally, 

depending on how chromatids segregate, a CO in G2 cells can result in LOH from the site of exchange to 

the telomere. LOH is an important driver of genetic disease and cancer, where a recessive mutation may 

be uncovered through the conversion of the wildtype dominant allele23. 
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After limited extension, the D-loop may be dismantled to directly pair with the unextended second 

end of the DSB and complete repair through the synthesis-dependent strand annealing (SDSA) pathway 

to result in NCO products. In break-induced replication (BIR), DNA synthesis can also replicate through to 

the end of the template chromosome creating half-crossover products24. This feature is useful to maintain 

telomere length under conditions of high proliferation25,26, but as the distance replicated increases, so do 

the chances for LOH. Engagement of the second end of a DSB with the displaced strand of the D-loop 

creates the double Holliday junction (dHJ) structure which can result in both CO and NCO products by 

nucleolytic resolution, while enzymatic dissolution through branch migration results only in NCO. 

Importantly, NCO products are the preferred outcome of mitotic DSBR as they avoid chromosome 

rearrangement events making the extended D-loop a critical intermediate in controlling CO/NCO 

outcome27. 

 

1.1.2 Restart of collapsed or stalled replication forks 

Replication fork stalling leads to gaps that may be recovered by different pathways, including 

translesion synthesis (TLS), template switching by fork regression, or HR28. Genetic evidence points to 

TLS and template switching as the preferred pathway to restarting a stalled replication fork. However, 

mutations to the HR machinery confer sensitivity to fork stalling agents, suggesting that HR does play 

some role in the restart of a fork. In mammalian cells, BRCA2 has been found to be critical for preventing 

MRE11-mediated degradation of stalled replication forks by stabilizing RAD51 filaments, indicating the 

HR machinery is useful in protecting these structures rather than promoting homology directed repair 

(HDR). 

The proliferating cell nuclear antigen (PCNA) clamp is a pivotal hub for signaling which repair 

pathway a fork should choose. Mono-ubiquitination on lysine 164 by the Rad6-Rad18 E2-E3 complex 

recruits TLS polymerases through their ubiquitin binding motifs29. Subsequent poly-ubiquitination of 

PCNA by Ubc13-Mms2 (E2) and Rad5 (E3) induce fork regression, an activity that was recently also 

identified in mammalian cells and dependent upon the DNA translocase ZRANB330. The Mph1 helicase 

has also been shown to induce fork regression in vitro, although this activity has not been shown to 
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depend on PCNA modification31. As opposed to ubiquitination, K164 and K127 may be SUMOylated by 

Ubc9 to prevent HR at the stalled fork through a direct interaction with the helicase Srs2 that utilizes a 

mechanism discussed below. 

 

1.1.3 Programmed genetic recombination 

Beyond its use in resolving stochastic genomic insults, recombination can also be programmed to 

occur in response to various conditions. For example, yeast can undergo mating-type switching through 

HDR of a DSB at the MATa or MAT locus template by transcriptionally silent donor cassettes and 

provided one of the earliest models of genetic recombination. Sexually reproducing organisms utilize 

genetic recombination to randomly allot half of a parental genome to their progeny. Additionally, in 1964 

Hermann Muller introduced the idea of “Muller’s Ratchet” where asexually reproducing organisms will 

accumulate deleterious mutations at each generation, which gave a purpose for recombination in sexual 

reproduction32. As opposed to vertical transfer of genetic information from parents to offspring in sexually 

reproducing organisms, asexually reproducing prokaryotes can avoid Muller’s Ratchet through a process 

called horizontal gene transfer (HGT) where genetic material can be transferred from one organism to 

another in a process requiring genetic recombination. HGT is a primary driver for the spread of antibiotic 

resistance and pathogenicity, as well as providing a key tool for genetic engineering, thus mandating a 

thorough understanding33. 

To ensure accurate chromosome segregation during the first meiotic division in eukaryotes, each 

homolog must create at least one crossover product to create the tension feedback on the microtubule-

organizing center necessary for proper segregation of DNA with the added benefit of allelic diversity34. 

This contrasts with mitotic HR for DSBR that would prefer non-crossover products to avoid potential 

translocations and loss of heterozygocity (LOH). Two discoveries by the Szostak group drew a 

connection between meiotic recombination and mitotic HR for DNA repair; that meiotic repair is initiated 

from DSBs35, and that there was a decrease in gene conversion events further from these DSBs36. The 

conserved gene SPO11 encodes an endonuclease that was soon found to be the initiator of these 

DSBs37,38. 
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While mitotic DSBR relies purely on Rad51, meiotic HR employs two recombinases, Rad51 and 

Dmc139. Rad51 is believed to nucleate a mixed filament and it is Dmc1 that is thought to be primarily 

responsible for the strand exchange during meiosis, with Hed1 inactivating the Rad51 strand exchange 

activity40. Dmc1 is structurally and functionally similar to Rad51, while cells lacking Dmc1 fail to repair 

Spo11-induced DSBs and arrest at the pachytene stage during the first meiotic division41. In contrast to 

Rad51 which is biased toward sister chromatid exchange, Dmc1 is biased toward inter-homolog 

exchange42, a feature that may be mediated by the translocase Rdh54 along with other axis proteins such 

as Hop1, Mek1, and Red1.  

 

1.2 THE MOLECULAR PLAYERS OF HOMOLOGOUS RECOMBINATION 

Early geneticists broadly classified DNA repair from radiation damage into epistasis groups comprising 

three primary pathways; the RAD3 epistasis group including RAD1, RAD3, and RAD4 which are involved 

in excision repair; the RAD6 epistasis group which includes RAD6 and RAD18 are involved in the error-

prone post-replicative repair (PRR); and the RAD52 epistasis group that includes members such as 

RAD51, RAD52, RAD55, RAD57, RAD54, MRE11, and XRS2 which are involved in the recombinational 

repair. The temporal organization of repair factors has been of considerable interest and must take place 

in a concerted fashion to properly function (Figure 1-4). For example, regulating the timing of resection is 

critical as it commits the cell away from the cNHEJ pathway, while DNA synthesis must only recruit 

polymerases after a donor dsDNA template has been identified. Single cell (SC) optical studies, 

analogous to single-molecule (SM) studies that are discussed below, have been integral to deciphering 

this coordinated activity of recombination proteins to address their order of arrival, approximate 

concentration and diffusion characteristics within the environment of a living cell43. 
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1.2.1 Single-strand binding proteins and RPA 

RPA is an essential and modular ssDNA binding protein made up of three subunits, Rfa1, Rfa2, 

and Rfa3 (Figure 1-5). The variety of conformations and interaction partners highlights the diverse utility 

of the protein. RPA participates in all cellular transactions involving a ssDNA intermediate and serves 

several purposes including resisting base-pairing, acting as a hub to coordinate other DNA processes, 

and protection of the ssDNA from nucleolytic degradation44. Paradoxically, while RPA is required for HR 

to occur, it also follows a model of competitive inhibition in the formation of the Rad51-ssDNA filament 

and must thus be efficiently displaced under the correct circumstances. 

RPA has four core ssDNA binding domains (DBD); three of which reside within the large Rfa1 

subunit (binding domains A, B, and C), with a fourth in the intermediate Rfa2 subunit (binding domain D) 
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providing a tight interaction on the order of 10-9–10-10 M with ssDNA45. Although RPA binding is not 

sequence specific, it will bind polypyrimidines over polypurines. The multi-domain nature of RPA allows it 

to bind in at least 3 modes that contact between 8-30nt of ssDNA depending on how many of the DNA-

binding domains are engaged. To achieve the full 30nt binding mode, a sequential engagement from 

53 on ssDNA occurs first through domains A & B to bind 8nt, followed by C to expand the contact to 

12-23 nucleotides, and finally D with all 30nt in contact with the complex46. The C-terminus of Rfa2 

contains a winged-helix domain that is critical for protein-protein interactions, including Rad52, while the 

N-terminus is a target for phosphorylation by CDK and in response to DNA damage by Mec1/Tel147. The 

purpose of these modifications is unclear, and phospho-mutants have a mild phenotype. The 

ATR/Mec1/Rad3 DNA damage checkpoint is activated by RPA bound to ssDNA and thus becomes a 

critical substrate for the regulation of DSBR repair17. 

 



 11 

1.2.2 The RecA/Rad51 family of recombinases 

The core recombinase responsible for the pairing and strand invasion steps of HR is Rad51 

(RAD51 in humans, RadA in archaea, and RecA in E. coli). While Rad51 is not essential in yeast, 

mutants show extreme sensitivity to ionizing radiation48. RAD51 is essential in higher eukaryotes49,50 

where its absence results in the accumulation of DSBs51 and cell cycle arrest. Members of the 

RecA/Rad51 family of recombinases form right-handed helical filaments on both ssDNA and dsDNA 

(Figure 1-5)52,53,54,55,56,57. Using fluorescence spectroscopy, a two-step model of filament formation starting 

with a rate-limiting nucleation phase followed by elongation was first proposed for bacterial RecA58 and 

later extended and confirmed in yeast and human Rad5159,60. Stable nucleation events require 6 

monomers of Rad51, which is also roughly the number per turn of the nucleo-protein filament (NPF)61. 

The ssDNA within the NPF adopts a B-form-like conformation over 3nt stretches and thus restricts 

homology search to Watson-Crick type base pairing62. Between these triplets, the sugar-phosphate 

backbone is stretched lending an increase in length and under-wound character to the larger filament that 

is proposed to facilitate dsDNA invasion62. 

Early biochemical work63, in combination with genetic analysis demonstrated these proteins were 

DNA-dependent ATPases64. Basal ATP hydrolysis by Rad51 is slow at ~0.004 (s1)65 and believed to 

occur randomly throughout a filament while ADP is continually replaced by ATP. Crystal structure of a 

Rad51 pre-synaptic filament show that an ATP molecule binds between two monomers of a Rad51 

filament. The Walker-A motif from one monomer is the catalytic core, while a neighboring Rad51 

monomer uses an ATP cap structure to keep the nucleotide cofactor in place. ATP binding is associated 

with an increase in ssDNA affinity and the active presynaptic filament. Hydrolysis of ATP by Rad51 

reduces the affinity for ssDNA leading to spontaneous filament disassembly and is a key regulator of 

recombinase activity that may be modulated through protein-protein interactions or salt. Intriguingly, our 

SM experiments along with other ensemble approaches demonstrate that when calcium is used as the 

coordinating divalent cation, Dmc1, RAD51, and DMC1, all show marked reduction in ATP hydrolysis 

activity, while Rad51 is largely unperturbed66. The mutation of the lysine residue in the Walker A box of 

yeast Rad51 (Rad51K191R) ablates DNA-dependent ATP hydrolysis activity and engenders sensitivity to 
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certain DNA damaging agents63,67-69. However, the Rad51K191R mutant protein still binds to ssDNA and 

promotes DNA strand exchange67-69.  

Rad51 dissociation from ssDNA has been shown to occur in bursts70 arguing for a model where a 

Rad51-ssDNA filament is stable regardless of the nucleotide identity bound by internal Rad51 monomers, 

only so long as the terminal Rad51 has ATP bound. If the last Rad51 monomer within the filament 

hydrolyzes its bound ATP, the number of Rad51 monomers that will dissociate will depend on how many 

Rad51-ADP monomers are directly adjacent to the filament end. Residues 374-381 from a 3 Rad51 

monomer form the ATP cap that orients the ATP molecule that would be hydrolyzed by the 5 neighboring 

Rad51 monomer through a salt bridge between the -phosphate of ATP71. This ATP cap is absent from 

Rad51 paralogues such as Rad55-Rad57 and the Shu complex that are known to stabilize the Rad51 

filament. A HsRAD51D316K mutant displayed reduced ATP hydrolysis enhanced discrimination of ssDNA 

versus dsDNA and significantly enhanced recombinase function arguing the ATP cap plays a prominent 

role in ATP hydrolysis rates and regulation of the recombinase71. 

In vitro studies have shown that salt can have major impacts on the formation and stability of 

Rad51 filaments. Low concentrations of the monovalent potassium ion are better for filament formation72. 

ScRad51 filaments form efficiently in magnesium containing buffers, while ScDmc1, HsRAD51, and 

HsDMC1 all require calcium in the buffer for filament assembly66,73. Calcium in these systems is proposed 

to slow the ATPase activity and leads to more efficient filament assembly74.  

Rad51/RecA recombinases contain a primary DNA binding domain that is necessary for ssDNA 

filament formation, while a secondary DNA binding domain interacts with the incoming dsDNA template to 

align the two molecules for strand invasion39,52. rad51I345T was isolated as a suppressor mutation that 

partially bypasses the requirement for Rad55-Rad57 and is proposed to increase the affinity for ssDNA 

over wtRad5175. This mutation resides in the second of two loops known to interact with ssDNA and the 

presynaptic filament. Alternate protein-protein interfaces show slight differences and have suggested a 

Rad51-dimer is the functional unit within the filament57. These interfaces are species specific and been 

shown to be important for filament formation, stability, ATPase and recombinase activities. 
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Dmc1 is the meiosis specific recombinase in eukaryotes and shows 150/334 identical amino 

acids to Rad51. The largest difference between the two is an additional 64 amino acids at the N-terminus 

of Rad51 that is absent from Dmc1.  

 

1.2.3 Recombination mediators 

The Rad51 mediators, Rad52, Rad55-Rad57, Rad54, and members of the Shu complex (Shu1-

Shu2-Psy3-Csm2) work synergistically through various modes to promote the formation and/or stability of 

the Rad51 presynaptic filament76. By promoting the key intermediate for HDR, these proteins represent a 

key regulatory role in DNA repair and have been of considerable interest. This notion is highlighted by the 

increased incidence of cancer in humans that harbor various mutants.  

The seminal paper that first described the Rad51 protein as functionally similar to RecA also 

provided the crucial insight that Rad51 directly interacts with Rad5263 that was later mapped to the C-

terminus of Rad52. Yeast two-hybrid screening identified three Rad51 point mutants, Rad51A320V, 

Rad51Y388H, and Rad51G393D, that all display reduced Rad52 interaction77. Rad52 forms heptameric ring 

structures78 and helps to overcome the inhibition of RPA-ssDNA for Rad51 filament formation79. Rad52 

and RPA also directly interact and cooperate to promote ssDNA annealing, an activity that is critical for 

Rad52-mediated promotion of SSA between direct repeats80,81. Additionally, Rad52 can directly interact 

with Rad55-Rad5776. 

In contrast to yeast cells where rad52 null mutants display a severe phenotype, mammalian 

RAD52 is largely dispensable due to overlapping function with the tumor suppressor gene BRCA2. 

However, human RAD52 is clearly important for DSBR as it is synthetically lethal with several other 

DSBR proteins including XRCC382, BRCA283, BRCA1 and PALB284. Additionally, lifetime risks of 50-70% 

for breast and 15-55% for ovarian cancers are found to be due to inherited mutations in BRCA1/2, 

demonstrating the high penetrance of these mutations85. The redundancy between human BRCA2 and 

RAD52 indicate HsRAD52p may be a valuable target for cancer therapies to compensate for mutations in 

BRCA2 and thus requires a thorough understanding. 
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Rad55, Rad57, Shu1 and Psy3 are proposed Rad51 paralogues, although they cannot 

independently perform homology search or strand invasion without the core Rad51 recombinase86,87. 

Humans contain 5 RAD51 paralogues RAD51B, RAD51C, RAD51D, XRCC2, and XRCC388,89 and these 

proteins can also be viewed as mediators as they have been shown to stabilize the RAD51 filament90.  

Mutant rad55 or rad57 cells are sensitive to IR and MMS DNA damage, while overexpression of 

Rad51 protein can partially suppress the phenotype. While both members contain the core ATPase 

domain, it appears only ATP binding and hydrolysis is required by Rad55, not Rad5791. Cytological 

studies showed that Rad51 focus formation was independent of Rad55-Rad57, while Rad55-foci required 

Rad51, indicating Rad51 is first to arrive at a DSB43. Biochemical analysis suggested the Rad55-Rad57 

heterodimer exist embedded within the Rad51 filament to potentially “cap” a Rad51 filament and limit the 

ATP hydrolysis at a filament end92. 

The Shu complex was identified in a genetic screen for mutants that suppressed the slow growth 

phenotype of top3 mutants93. Structural information revealed that Psy3 and Csm2 adopt a similar - 

fold reminiscent of the RecA core of the Rad51 recombinase, while Shu1 and Shu2 were dispensable for 

DNA binding94. Fluorescence anisotropy measures implied purified Psy3-Csm2 heterodimers prefer to 

bind forked and flapped ss/dsDNA structures95. A recent crystal structure for the entire Shu complex 

demonstrated Csm2-Psy3 and Shu1-Shu2 form two sets of heterodimers that are structurally similar, 

while residues in Psy3 and Shu1 bridge the two pairs of heterodimers into a V-shaped structure96. This 

study also proposed that the Shu complex contains two separate DNA-binding regions; the first is made 

up of residues within Psy3-Csm2 and primarily binds to ssDNA, while the second resides within the Shu1-

Shu2 heterodimer and primarily binds dsDNA, further implying the Shu complex would prefer to bind 

ss/dsDNA junction structures. Deleting either Psy3 or Csm2 showed reduced Rad55 foci formation, 

suggesting the Shu complex is important for recruiting Rad55-Rad57 dimers to IR-induced DSBs95.  

Rad54 is a member of the Snf2-family of SF2 helicases which translocate on dsDNA without 

strand separation97. Rad54 is also classified as a recombination mediator as it has been shown to 

stabilize the Rad51-ssDNA filament in an ATP-independent manner and is required for efficient strand 

invasion by Rad51, while rad54 mutant yeast display a similar reduction in recombination as rad51 or 

rad52 mutants for spontaneous DSBR. Rad54 does not appear absolutely necessary for meiotic HR as 
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25-65% of meiotic cells remain viable and may be due in part to the redundancy in function of the 

Rdh54/Tid1 protein21. The ATPase activity of Rad54 has been proposed to enhance HR through several 

means including the removal of bound proteins on the dsDNA template, induction of negative supercoiling 

on the template to enhance pairing by Rad51, and simply translocating along the dsDNA to aid in a 1-

dimensional homology search process. Once a Rad51 filament has paired with a donor dsDNA, Rad54 is 

proposed to switch gears to dissociate Rad51 from the filament to give access of the primed substrate to 

DNA polymerase delta98. Species-specific contacts between Rad54 and Rad51 were required to observe 

a six-fold increase in ATPase activity of Rad54 by Rad51-bound to dsDNA99, while Rad54 foci formation 

at DNA damage sites required both Rad55-Rad57 and Rad51 indicating it arrives after the pre-synaptic 

filament has formed43. 

 

1.3 HELICASES IN THE REGULATION OF HR 

All organisms express multiple helicase enzymes owing to their utility in unlocking information sheltered 

within dsDNA and also indicates the specialization of function these proteins can obtain100. These motor 

proteins typically hydrolyze ATP to translocate over nucleic acids and under certain circumstances 

separate the two strands of base-paired nucleic acids. Helicases can play both facilitating and 

antagonizing roles in nearly every DNA metabolic event, including HR and replication fork restart100-102. 

For example, helicases can promote resection around a DSB, remove recombinases from a pre-synaptic 

filament, process the post-synaptic filament to enable DNA polymerase binding, and migrate 

recombination intermediates to affect the CO/NCO ratio of DSBR.  

There are 3 helicases in yeast that have been shown to be key regulators of HR; Srs2, Mph1, and 

Sgs1. Mutation analysis has shown that each of these enzymes carry out multiple specific functions that 

may sometimes overlap103,104. For example, the helicase activity of Sgs1 (human BLM), mediates the 

resection of ssDNA, joint reversal, dHJ dissolution, and DDR signaling105. Both srs2 and sgs1 single 

mutants display mitotic hyper-recombination and elevated levels of chromosome missegregation106 

indicating the proteins are involved in suppressing inappropriate recombination. Mph1 (human FANCM) is 

a member of the SF2 DEAD/H superfamily of helicases and promotes Rad51-dependent restart of stalled 



 16 

replication forks104 as well as robust D-loop dismantling activity in vitro107. Mutation in the genes encoding 

the helicases involved in HR regulation result in human disease such as Fanconi Anemia (FA), Bloom 

syndrome, Warner syndrome, and an increased incidence of cancer, and all highlight the importance of 

these understanding how these enzymes function (Table 1-1). 

 

1.3.1 SF1 helicase mechanisms 

DNA helicases and translocases can be broadly categorized into six superfamilies based on the 

number and sequence of amino acids residing in shared motifs. The two largest superfamilies (SF1 & 

SF2) are highly related, but diverge in the sequence and arrangement of seven core motifs; I, Ia, II, III, IV, 

V, and VI108. Both SF1 and SF2 contain members that may translocate on DNA and/or RNA in a 35 or 

53 direction and have activities in DNA replication, recombination, and translation100.  

UvrD is a bacterial SF1 helicase/translocase that is highly similar to PcrA, Rep, and Srs2 

helicases (Figure 1-6A). These proteins contain the SF1 core helicase domain made up of sub-domains 

1A, 1B, 2A, and 2B with crystallization studies of UvrD, PcrA and Rep showing that sub-domains 1A and 

2A form the ATP binding cleft with structural and sequence similarities to the core of the RecA protein. 

Ensemble studies have suggested these four related proteins exist in a monomeric form in solution which 

are sufficient for ssDNA translocation, while dimers are required for helicase activity. The precise 

orientation and mechanism of this dimerization is not understood and no clear dimer interface has been 

identified to date. Alignment between these relatives shows reduced similarity at domain interfaces109, 

indicating that the interaction between these sub-domains may be involved in regulating protein activity.  

These helicases may differ in their preferred DNA substrate; Studies of UvrD showed that it could 

initiate ssDNA translocase activity at the ss/dsDNA junction of a 5 ssDNA tail and the specificity of 

starting translocation from this area is dependent upon residues within the 2B domain. UvrDD420P point 

mutants showed a six-fold increase for initiating translocation from these junctions110, and this residue is 

already a proline in Rep and Srs2 indicating each of these may have evolved specialized functions. 
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The combination of bulk biochemical, FRET, and structural studies have revealed that these 

helicases may occupy an open or closed conformation109,111,112. In the closed conformation, subdomain 

1B restricts the mobility of domain 2B and prevents it from interacting with domain 2A. This in turn 

ensures that the GIG motif with 2B can interact with dsDNA duplex ahead of the helicase (Figure 1-6B). 

In this case, a ss-dsDNA junction forms a “L” shape with the ssDNA appearing orthogonal to the dsDNA. 

The 3-ssDNA is threaded through a groove made up of domains 1A and 2A at their interface with 1B and 

2B. This closed conformation uses a wrench-and-inchworm model for helicase activity with a two-part 

power-stroke. The binding and hydrolysis of ATP is the first step and induces the separation of the first 

base pair at the ss/dsDNA junction. Release of ADP + Pi is accompanied by a 20 rotation between 

domains 1A and 2A where the nucleotide cofactor is released and the ssDNA is shifted +1nt to repeat the 

process. 
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In the open conformation 2B is rotated between 130-160 away from 1B to interact with 2A 

(Figure 1-6C). This “open” conformation is believed to mediate ssDNA translocase and protein 

displacement activities, while it can also carry out helicase activity using a strand displacement model, 

rather than wrench-and-inchworm. Using fluorescence resonance energy transfer (FRET), it was 

determined that UvrD adopts a more open conformation with increasing lengths of 3 ssDNA tails or 

increasing NaCl concentration indicating both the DNA substrate as well as electrostatic interactions can 

modulate the open/closed state112. The authors also found that the swivel of the 2B sub-domain occupies 

intermediate states that correlate to nucleotide cofactor and ssDNA binding events. The Rep helicase will 

only rotate 2B 130 from 2A, creating an “intermediate” open state, and deleting the entire 2B in Rep 

creates a protein with twice the helicase activity indicating 2B is auto-inhibitory for Rep113. From these 

studies, it becomes evident that these SF1 members occupy several different primary, secondary, tertiary, 

and even quaternary organizations that impart specialized activities under various conditions, thus adding 

to the layers of complexity when studying these enzymes. 

 

1.3.2 The helicase/translocase Srs2 

Genetic studies were the first to identify SRS2 (Suppressor of rad6) as the second of two 

mutations that suppress trimethoprim-sensitivity in a rad6-1 rad18-2 strain114. SRS2 was unique from 

SRS1 in that it also conferred resistance to UV sensitivity in the same background, but not gamma-

radiation, suggesting it had broad and potentially separation of function effects upon DNA repair and did 

not solely function to suppress damage from trimethoprim. Screening for mutations that increased UV-

radiation sensitivity uncovered the RADH gene, while analysis of the primary amino acid sequence 

showed it contained all the consensus domains of an SF1 helicase with a high degree of homology to 

bacterial helicases UvrD and Rep115. The Klein laboratory identified HRP5 in a screen for hyper-

recombination, and after cloning the gene demonstrated it was allelic to both SRS2 and RADH116. The 

purification of a His-tagged Srs2 protein confirmed that the SRS2 gene encoded a DNA-dependent 

ATPase with a 3 to 5 directional bias on ssDNA117. 
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The finding that srs2 suppression of rad6 requires RAD52 served as the first evidence that SRS2 

also functioned through recombinational repair118. One of the many hypotheses the authors concluded 

with was that SRS2 may alter the “level, activity, or stability” of a RAD52 group protein. It wasn’t until 

1992 when Frances Fabre’s group published a paper that confirmed this hypothesis using a screen for 

suppressors of UV- and gamma-ray sensitivity of srs2::LEU2 diploid mutant strains4. It was noted that 

srs2 single mutants were more toxic in diploid strains than haploids, while out of the 11 identified semi-

dominant suppressors, all were heterozygous rad51 mutants. Furthermore, by examining the differences 

between the survival of these mutants when exposed to either UV- or gamma-radiation led to the 

profound proposal Srs2 removes recombinational proteins from ssDNA gaps. The increased sensitivity to 

srs2 in diploids was later shown to be the result of increased inter-homolog recombination119. Two papers 

were simultaneously published in Nature with biochemical and electron microscopy evidence that the 

mechanism of recombination suppression by Srs2 was to dismantle the pre-synaptic Rad51 

filament120,121, a function that is commonly referred to as “strippase” activity. 

While the Srs2 helicase has never been crystalized, the primary organization of Srs2 shows the 

conserved SF1 helicase domain resides in the N-terminus from residues 1-776, while the ~400aa Srs2-

specific C-terminus is involved in protein-protein interactions and is the target of PTMs (Figure 1-6A). 

Mutating the Lysine at position 41 to an alanine or serine within the Walker A motif abolishes ATPase, 

helicase/translocase and Rad51 antagonism activities120,122. Interestingly, the ATPase dead srs2K41A 

mutant displayed an enhanced hyper-recombination phenotype beyond that of srs2 deletion strains, 

suggesting that the presence of Srs2K41A can prevent a redundant mechanism from rescuing the 

phenotype, or that the protein is toxic123. Srs2 hydrolyzes ATP at a rate of  50 sec-1, and can unwind 

forks, flaps, blunt end dsDNA, and 5 ssDNA overhangs while the preferred substrate to initiate helicase 

activity from is a 3 ssDNA overhang of at least 10nt124. Stop flow experiments with monomeric Srs2 

demonstrated a translocation velocity of 300nt (sec-1) on naked ssDNA65. 

Using a yeast two-hybrid system, the Rad51 interaction domain of Srs2 was mapped to residues 

783-914125. Subsequent sequence analysis of residues 833-864 revealed a variant of the BRC (BRCv) 

repeat present in BRCA2 that is known to interact with, and stabilize a Rad51-ssDNA filament. This BRCv 

is also present in other helicases known to partake in HR regulation including Sgs1 and HsRECQ5, while 
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the Srs2L844A point mutant protein was strongly deficient in both Rad51 interaction and inhibition of D-loop 

formation in vitro126. The Rad51 mutants, Rad51Y388H and Rad51G393D, that were identified as impaired for 

their interaction with Rad5277 also display a reduced interaction with Srs2, implicating the C-terminus of 

Rad51 as the location where Srs2 interacts127. Moreover, these lines of evidence imply that Srs2 and 

Rad52 may compete for the same binding location on a Rad51 filament to fulfill their anti- and pro-

recombinase functions, respectively. This assertion was supported by an in vitro strand exchange assay 

that showed that Srs2 antagonism of Rad51-mediated D-loops could be partially overcome by the 

addition of Rad52, although higher concentrations of Srs2 was able to partially overcome this inhibition128, 

suggesting the concentration of Srs2 at a repair center could impact whether Rad52-promoted HR, or by 

extension SSA, would be successful.  

Important for this work, C-terminal truncation mutants of Srs2 that include a minimum of residues 

1-860 demonstrate unperturbed ATPase/helicase activities on a 3-tailed substrate125,65 and ATPase 

activity on circular M13mp18 ssDNA. Furthermore, we and others have found these truncation mutants 

are less prone to aggregation and ease the production of large amounts of soluble protein that elutes 

from a gel filtration column as a single peak roughly corresponding to a monomer. Bulk biochemical 

approaches indicate the truncated Srs21-860 mutant that lacks a large portion of the Rad51 interaction 

domain is severely compromised for its Rad51 antagonistic activity65,125,129. The apparent binding between 

Srs21-898 and Rad51 was measured as KD = 15M  5M65. 

In stop flow measurements, the ATPase dead Srs21-898:K41A could not antagonize Rad51 

filaments, even at high concentrations (1.5M Srs2:4M Rad51) and is strong evidence that translocase 

activity is required for Rad51 filament antagonism. Analogously, a synthetic peptide corresponding to 

residues 861-898 failed to interact with Rad51, and high concentrations of this peptide failed to inhibit 

Rad51 filament clearing activity of Srs21-898, while an alternative explanation could be that the peptide 

failed to fold properly. Using the Rad51 mutant proteins Rad51K191R that hydrolyzes ATP 4-fold slower 

than wtRad51, and Rad51E221D that hydrolyzes ATP 10-fold faster than wtRad51, Srs2 was proposed to 

induce ATP hydrolysis within the Rad51 filament and catalyze its removal one monomer at a time65. In 

contrast, in vivo SC studies found that the srs2875-902 mutant that lacks a large portion of the Rad51 

interaction domain could still antagonize Rad51 foci accumulation122. 
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Adding to this complexity, Srs2 also displays pro-recombination roles. In one study, deleting 

either sgs2 or srs2 increased the number of CO events 3-4 fold in an ectopic recombination assay (5% of 

HR events in WT cells are resolved as COs), and deleting srs2 in a RAD51 overexpression strain almost 

completely eliminated NCOs, while overexpression of Srs2 nearly eliminated CO events130. These results 

promoted the idea that Srs2 is involved in shuttling recombination events into the SDSA pathway, a 

hypothesis that is supported when observing that GC events occur primarily on a single side of individual 

DSBs when Srs2 is properly functioning. possibly either by preventing second end capture, or by 

dismantling an extending D-loop. In vitro, Srs2 was capable of antagonizing paired D-loop structures, 

although Mph1 appears to be better suited for this task107. In fact, Rad54, Mph1, Sgs1, and Srs2 have all 

been proposed to remove Rad51 from paired D-loops to one degree or another, although Rad54 is 

generally considered the primary modality for these purposes, further adding speculation as to which 

substrate, the presynaptic or post-synaptic filament, Srs2 acts upon99. 

Finally, srs2 deletion strains that had delayed repair kinetics sufficient to activate the Rad53 

checkpoint showed that they were impaired in recovering from cell cycle arrest, even though these cells 

are capable of completing repair of the DSB131. These cells were later found to have persistent Ddc2 and 

RPA foci, and despite the completion of repair and removal of the 9-1-1 clamp, Dpb11 remained 

associated with chromatin132.  

 

1.3.3 Regulation of Srs2 activity 

Given the various and sometimes contradictory functions ascribed to Srs2, the regulation of 

activity would appear paramount for proper function. Four potential modalities of Srs2 regulation have 

been suggested and include regulation at the level of transcription, post-translational modifications 

(PTMs), recruitment, and protein-protein interactions. 

Null srs2 mutants are UV-sensitive only when treated in the G1 phase of the cell cycle4, as these 

produce lethal recombination intermediates between homologous chromosomes rather than sister 

chromatids that are present in S and G2 phases. SRS2 is expressed at low levels throughout the cell 

cycle, but is induced at the G1 to S phase boundary coincident with the expression of other DNA 
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synthesis genes in mitotic cells, as well as under DNA damage conditions, but only during G2133. 

Additionally, SRS2 expression is induced in meiotic cells that have just begun replicating their DNA. 

Overexpression of SRS2 in meiotic cells removes Rad51 foci from the chromosomes, but does not impact 

the level of fluorescent Dmc1 foci, indicating that Srs2 cannot disassemble Dmc1 filaments, although this 

feature had not been tested in vitro122. 

Cdk1 targets several residues in the C-terminal domain of Srs2 for phosphorylation including 

T604, S698, S833, S879, S890, S893, S933, T935, S938, S950, and S965. To decipher how PTMs may 

regulate Srs2, Soponaro and colleagues created a mutant Srs27AV construct that could not be 

phosphorylated to compare with the constitutively phosphorylated Srs27DE counterpart134. It appeared that 

while phosphorylation was not necessary for the removal of toxic Rad51 filaments, Cdk1-dependent 

phosphorylation targets Srs2 to bias recombination outcomes into the SDSA pathway. 

The C-terminus of Srs2 was found to interact with PCNA that has been SUMOylated on K164 by 

Siz1 in response to stalled replication forks135-137. Later refinement of this Srs2 region showed a 

degenerate PCNA-interacting motif in residues 1149-1156 and a conserved SUMO-interaction motif (SIM) 

in the residues 1169-1174 and both are required to specifically recognize SUMO-PCNA135. These 

interactions tether Srs2 to the replication fork machinery to antagonize Rad51-mediated HR at a 

collapsed, but not stalled fork128 and shuttle them into the PRR pathway over HR.  

The impact of recombination mediators on Srs2 activity has also been an area of active research, 

and there are reports, sometimes conflicting, about the influence of these proteins on Srs2 activity. Using 

SC analysis in combination with in vitro strand exchange assay, it was proposed that while Srs2 removes 

Rad51 filaments indiscriminately, Rad52 can resist the Srs2-mediated clearance of Rad51 filaments and 

acts as a quality control mechanism to restrict HR to proper events128. Interestingly, rad51Y388H and 

rad51G393D are simultaneously impaired for Rad52 and Srs2 interaction suggesting a competitive binding 

model may play a role in Rad51 promotion versus antagonism127. Rad52 could indirectly resist Srs2-

mediated antagonism of the Rad51 filament by promoting Rad51 filament formation kinetics, or by directly 

preventing Srs2 from clearing Rad51 by inhibiting Srs2 binding, translocation or interaction with Rad51. 

Both members of the Rad55-57 heterodimer are paralogues to Rad51 and stabilize the 

presynaptic filament when challenged with high salt92. These proteins contain the RecA ATPase domain 
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but differ from Rad51 in that they lack the N-terminal ~40aa while also containing an additional C-

terminus absent in Rad51. Pull down assays showed that Srs2 directly interacted with the Rad55-Rad57 

heterodimer with a higher affinity than Rad51-Srs2. Mixed Rad51-Rad55-Rad57 filaments were shown in 

vitro to resist the filament clearance activity of Srs2 when viewed by EM. Bulk biochemical experiments 

showed that Rad51-Rad55-Rad57 on a 3-tailed ss/dsDNA junction resisted Srs2 helicase activity, even 

when Srs2 was in 5-fold molar excess to Rad55-57 and suggested that the heterodimer prevents Srs2 

translocation rather than binding in solution to sequester it away from Rad51 filaments. Further supporting 

this hypothesis is that Rad55-Rad57 heterodimers were able to pull down Rad51 and Srs2 in a 1:1:1 

stoichiometry, implicating the binding location of Srs2 on Rad55 is separate from Rad55 binding to 

Rad5192. Surprisingly, Rad55-Rad57 did not alter Srs2 ATPase activity in bulk, arguing against a model 

where Srs2 cannot translocate past a Rad55-Rad57 heterodimer, or alternatively that Rad55-Rad57 

decouples Srs2 ATPase activity from its translocase activity92. 

The Shu complex has also been suggested to attenuate Srs2 anti-recombinase activity. In 

comparison to Rad55-Rad57 which is proposed to function by halting Srs2 translocation, Srs2 foci at 

induced DSBs significantly increased in a shu1 mutant cell line, indicating the Shu complex functions to 

limit the recruitment of Srs2 to DSBs87. 

 

1.3.4 The search for the human Srs2 homologue 

While a direct human homologue to Srs2 has yet to be identified, RTEL1 and RECQ5 are 

proposed to be functional homologues because they also dismantle presynaptic RAD51 filaments138,139. 

Reminiscent of the interaction between Srs2 and Rad51, RECQ5 has been shown to directly interact with 

RAD51 using a 70 amino acid region that lies outside the conserved helicase domain and also contains a 

BRCv motif that is found in Srs2138. Mutants that impair this interaction show equivalent ATPase activity, 

but have a moderate reduction in their displacement of RAD51 from ssDNA.  

S. pombe, mice and humans all possess a SF1 helicase, FBH1, bearing an amino-terminal F-box 

domain known to ubiquitinate target proteins, while S. cerevisiae do not have this protein. HsFBH1 can 

directly interact with RAD51 to disrupt a RAD51-ssDNA filament in vitro, as well as RAD51 foci formation 
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in vivo, arguing it is a functional homologue to ScSrs2140. Interestingly, providing HsFBH1 in yeast srs2 

cell lines can rescue the MMS-sensitivity but not a rad6 synthetic lethality, supporting the idea that the 

helicase activity of Srs2 alone, without a clear Rad51 interaction, can function in certain steps of HR 

regulation. HsFBH1 is often mutated in melanoma cells, arguing these activities are relevant to human 

cancer141. Similarly, the human PARI UvrD-like helicase appears to antagonize RAD51-mediated HR. 

Like Srs2, PARI also interacts with PCNA and RAD51 to tether the helicase to a replisome and prevent 

HR at replication forks142.  

Taken together, while humans do not contain a direct Srs2 homologue, several helicases 

including RECQ5, FBH1, and PARI have evolved to perform specific functions of the multi-functional 

Srs2. Mutations in the human helicases BLM, WRN, and RECQ4 helicases give rise to Bloom’s 

syndrome, Werner’s syndrome, and Rothmund-Thomson syndrome, respectively, and demonstrate a 

need for clear understanding of helicase activity in regulating HR. 

 

1.4 CONCLUSION 

Although HR is critical for cell survival, it must be kept in check to keep it from blocking replication forks, 

creating toxic intermediates, and preventing better suited repair pathways. To this end, the dynamic 

formation and stability of the Rad51 pre-synaptic filament intermediate serves as a key control center to 

dictate the eventual success of HR. Recombination mediators enhance the forward reaction, while the 

Srs2 helicase has been shown to dismantle the Rad51 presynaptic filament to drive the reverse direction. 

The balance between Rad51 filament formation and disassembly may be partially mediated through post-

translational modifications and/or relative concentrations of each protein at a repair center. 

Srs2 has drawn the fascination and ire of researchers given that mutations exhibit pleiotropic 

effects from anti- to pro-recombination, as well as its redundant function with other yeast helicases. 

Furthermore, Srs2 is involved in DNA metabolic processes outside recombination including the 

maintenance of the replication fork, post-replication repair, checkpoint responses, DNA triplet repeat 

maintenance and NHEJ, complicating genetic approaches. The transient nature of motor proteins makes 

them elusive targets for ensemble approaches that rely on discrete snapshots of population averages that 
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may progress through several intermediates. Due to these factors, several critical questions surrounding 

Srs2 remain; How does Srs2 dismantle Rad51 filaments, and is this dependent upon the Rad51 

interaction domain? What is the activity in dismantling mixed recombination filaments composed of RPA, 

Rad51, Rad52 and other mediator proteins? Does the oligomeric state impact helicase and/or strippase 

activities? Can Srs2 dissociate Rad51 D-loops, and under what context(s)? The purpose of this thesis 

was to develop new experimental methods to help address some of these questions, as well as poise 

future experiments for a deeper understanding of genetic recombination. 

 

  

Table 1-1. Functional grouping of E. coli, S. cerevisiae, and human recombination proteins with associated 

human diseases. This is not meant to be an exhaustive list, but more so to identify homologues that are 

discussed within the text.
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CHAPTER 2: VISUALIZING GENETIC RECOMBINATION BY SINGLE-MOLECULE OPTICAL 

MICROSCOPY 

 

 

 

Portions of this chapter have been adapted from the following publications: 

 

Pokhrel N, Origanti S, Davenport EP, Gandhi D, Kaniecki K, Mehl RA, Greene EC, Dockendorff C, 

Antony E. Monitoring Replication Protein A (RPA) dynamics in homologous recombination through site-

specific incorporation of non-canonical amino acids. Nucleic Acids Res. 2017 Sep 19;45(16):9413-9426. 

 

Kaniecki K, DeTullio L, Greene EC. A change of view: homologous recombination at single-molecule 

resolution. Nat Rev Gen. 2018 Apr;19(4):191-207. 

 

Kaniecki K*, DeTullio L*, Greene EC. Single-stranded DNA curtains for studying the Srs2 helicase 

using total internal reflection fluorescence microscopy. Methods Enzymol. 2018;600:407-437. 

 

 

2.1 OVERVIEW 

Notwithstanding the impressive detail genetic and bulk biochemical approaches have offered into the 

mechanisms of HR, SM studies have the potential to further our understanding by providing even more 

detailed insights into reaction mechanisms, and these methods are particularly beneficial for reactions 

that involve heterogeneous populations, transient intermediates, or both, as is often the case with 

reactions involving helicases. Indeed, SM methods have proven deeply insightful for understanding 

helicases, and some examples include SM studies of the RecBCD complex143,144, which is involved in 

DNA end-processing in E. coli, the bacterial Rep, UvrD, and PcrA helicases145-147, the archaeal helicase 

XPD148, and the eukaryotic helicases Srs2 and Pif1149,150. To help expand this tool box of methods 
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available for SM studies of helicases involved in HR, I applied the ssDNA curtain assay to study Srs2 

activities at the single molecule level151,152. This chapter will detail the purification of Srs2 variants, the 

ssDNA curtain methodology, including data analysis, as well as the supporting bulk methodology I applied 

to generate the results described in chapters 3 and 4. 

 

2.2 SSDNA CURTAINS FOR STUDYING PROTEIN-SSDNA INTERACTIONS 

We have developed DNA curtains as a tool for real time visualization of protein-nucleic acid interactions 

at the single molecule level using total internal reflection fluorescence microscopy (TIRFM)153-155. In brief, 

DNA curtains are prepared by first depositing metal barriers and anchors on the surface of a fused silica 

microscope slide by electron beam lithography. The slide is then coated with a fluid lipid bilayer, which 

prevents nonspecific surface adsorption and provides a mobile platform for anchoring DNA molecules 

through a biotin-streptavidin linkage. Buffer flow is used to push the DNA molecules into the barriers 

where they all align with one another153,155. If desired, the second DNA end can be attached to a 

downstream anchor point154. This approach can be used with dsDNA or ssDNA and allows for the direct 

visualization of hundreds of individual DNA molecules by TIRFM, thus offering a flexible experimental 

platform that can be adapted to the study of many types of protein-DNA interactions66,73,156-163. We have 

recently provided detailed descriptions of the TIRFM instrumentation used for these assays, the 

nanofabrication methods for making patterned slide surfaces with electron beam lithography, and the 

procedures for preparing microfluidic flow cells164-166. Here, we describe methods for how ssDNA curtains 

can be used to study the S. cerevisiae helicase Srs2 as it acts upon ssDNA substrates bound by either 

Rad51 or RPA. Included in this information are details on fluorescent protein purification, ssDNA 

substrate preparation, and further details on bilayer deposition and ssDNA curtain preparation. We then 

provide a detailed overview on experiments using fluorescently-tagged or unlabeled Srs2, and analysis of 

the resulting data. 
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2.2.1 Protein and ssDNA Preparation. 

A key aspect of using ssDNA curtains for studying the activities of Srs2 and other HR-related 

proteins, is the need to prepare and purify proteins. For much of our work on HR we rely upon proteins 

that are labeled with GFP or mCherry; when denoting a protein that may contain either GFP- or mCherry 

tag, I will use the XFP (X Fluorescent Protein) label. Although GFP and mCherry are perhaps not as 

bright and photo-stable as many organic fluorophores, they offer the advantage of providing a 

homogenous protein preparation where all of the proteins are labeled. Moreover, GFP-tagged versions of 

many HR proteins have already been evaluated through in vivo studies, including GFP-Srs2 and GFP-

RPA, thus validating their biological functions43,128,167. For all GFP-labeled proteins, we employ the 

GFPA206K mutation to prevent dimerization by the label168. For XFP-labeled proteins that have not yet 

been tested, genetic assays are readily available to validate biological activities. Here, we will describe 

the procedures for producing unlabeled and XFP-tagged Srs2 and RPA. For ssDNA curtains using 

Rad51, we rely upon unlabeled version of the protein, as GFP-tagged Rad51 is not functional in vivo43; 

procedures for purifying unlabeled S. cerevisiae Rad51 have been described elsewhere68. 

2.2.2 Purification of GFP-tagged Srs2. 

Several Srs2 variants were purified including N-9xHis-XFP-GGPGG-Srs2898, N-9xHis-XFP-

GGPGG-Srs21-898:K41A, N-9xHis-XFP-GGPGG-Srs21-860, unlabeled N-9xHis-Srs21-898, or N-9xHis-Srs21-860. 

The labeled variants retained biological activity in vivo when including the GGPGG linker between the 

fluorescent tag and Srs2. 

1. XFP-Srs2 variants were expressed in E. coli from a pET15b vector, while unlabeled Srs2 was 

expressed from a pET11c vector.  

 

2. Bacteria are grown at 37C to an OD600 of ~1.0. The temperature is then reduced to 16˚C before 

initiating protein expression by the addition of 0.1-0.5 mM isopropyl-β-D-thiogalactopyranoside 

(IPTG).  
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3. Cells are grown for an additional 20 hours at 16˚C. Cells are then harvested by centrifugation, 

and the cell pellet is frozen at –80˚C.  

 

4. The frozen cell pellet is thawed at 37˚C and resuspended in cell breakage buffer containing 40 

mM NaHPO4 [pH 7.5], 600 mM KCl, 5% glycerol, 10 mM imidazole [pH 7.8], 0.1 mM Tris(2-

caroxyethyl)phosphine hydrochloride (TCEP), 0.05% Tween-20, 10 µM E-64, 100 µM 4-(2-

Aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), 1 mM Benzamindine and 1 mM 

Phenylmethanesulfonyl fluoride (PMSF). The cells are then lysed by sonication on ice, and the 

lysate was clarified by ultracentrifugation. 

 

5. The clarified lysate is then incubated for 30 min with a Talon metal affinity resin equilibrated with 

Nickel Buffer A (40 mM NaHPO4 [pH 7.5], 300 mM KCl, 5% glycerol, 15 mM imidazole, 0.02% 

Tween-20, 1 mM Benzamidine, 1 mM PMSF, 0.125% myo-inositol). Before elution, the column is 

washed extensively with Buffer Nickel A. 

 

6. Proteins are eluted from the Talon metal affinity column with a step of Buffer Nickel A containing 

400 mM imidazole [pH 7.8]. Immediately after elution, the sample is adjusted to 5 mM EDTA [pH 

8] and 1 mM TCEP. 

 

7. The eluate is then dialyzed against Heparin Buffer (20 mM NaHPO4 [pH 7.5], 100 mM KCl, 5% 

glycerol, 0.01% Tween-20, 1 mM TCEP, 2 mM EDTA, 0.125% myo-inositol) for 1.5 hours, with 1 

L buffer changes every 30 min. 

 

8. The dialyzed eluate is then loaded onto a 5 ml HiTrap Heparin column equilibrated with Heparin 

Buffer, and proteins are eluted with a single step of Heparin Buffer containing 500 mM KCl. 
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9. The HiTrap Heparin purified fraction (~ 4 ml) is then dialyzed against Storage buffer (40 mM 

NaHPO4 [pH 7.5], 300 mM KCl, 10% glycerol, 0.01% Tween-20, 1 mM TCEP, 0.5 mM EDTA, 

0.125% myo-inositol) for 2 hours at 4˚C. 
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Figure 2-1. Multimeric state of purified GFP-Srs2. (A) A semilog plot of elution volumes versus molecular weight 

(log) was generated using a set of globular protein standards to determine the multimeric status of the purified

Srs2.  The yellow dotted line indicates the predicted size of the peak containing Srs2 as determined by SDS-PAGE

in (C).  The green dotted line indicates the predicted elution volume of monomeric Srs2.  (B) Elution profile of 

GFP-Srs2-898 from a Superdex200 16/600 size exclusion column with absorbance traces at 280 & 488nm

to determine protein and GFP elution locations respectively.  The elution volume aligns with the numbers

displayed at the top x-axis of (A).  Numbers at the bottom indicate fractions collected with arrows pointing down

to their corresponding lane.  (C) An SDS-PAGE analysis of several fractions taken at regular intervals from the elution

profile in (B).  A protein ladder is included on the left with appropriate sizes, and the location of GFP-Srs2-898 is

denoted by an arrow on the right.
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10. The sample is then applied to a Superdex 200 size exclusion column previously equilibrated with 

Storage Buffer. 

 

11. Peak fractions from the Superdex 200 corresponding to monomeric Srs2 are then pooled, flash 

frozen in liquid nitrogen, and stored in single-use aliquots at -80˚C (Figure 2-1, see below). 

 

Note with Figure 2-1 that while the GFP-Srs2 protein elutes at a size that is ~50kDa heavier than 

predicted, we attribute this to the non-globular shape of the tagged protein that would increase its 

apparent size relative to the standard curve generated using globular proteins. This apparent increase in 

molecular weight was seen for all Srs2 variants. We conclude that the Srs2 protein within this narrow 

peak is monomeric, as dimeric Srs2 molecules are predicted to elute at ≥260kDa (≤63ml). 

 

2.2.3 Purification of fluorescently tagged RPA 

We use RPA to remove secondary structure from the ssDNA so that the molecules can be easily 

extended by buffer flow, and the fluorescent proteins also allow us to visualize the ssDNA with no need 

for any addition DNA-labeling dyes169. In addition, RPA-ssDNA is the physiological substrate for the early 

stages of HR in eukaryotes170,171. We used both wtRPA (Rfa1-6xHis) and fluorescent RPA (N-Rfa1-7A-

XFP-6xHis) which bears the GFP or mCherry fusion on the C-terminus of the Rfa1 separated by a 7-

alanine linker; note, that this GFP-tagged version of RPA retains biological function in vivo43. 

 

1. S. cerevisiae RPA variants were encoded in a pET11d plasmid and expressed in E. coli. 

 

2. Cells are harvested by centrifugation, and the cell pellet is frozen at -80˚C.  

 

3. The cell pellet is then thawed and resuspended in cell lysis buffer (50 mM NaHPO4, 250 mM KCI, 

5 mM imidazole [pH 7.9], 5% glycerol, 0.1mM TCEP, 0.02% Tween-20, 10 µM E-64, 100 µM 

AEBSF, 1 mM Benzamindine, 1mM PMSF and myo-Inositol 0.25%), and lysed by sonication. 
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4. The lysate is clarified by ultracentrifugation and applied in batch to a Talon metal affinity resin 

previously washed with Buffer A (30 mM NaHPO4 [pH 7.5], 250 mM KCl, 5% glycerol, 10 mM 

imidazole, 0.02% Tween-20, 0.1 mM TCEP, 1mM Benzamidine, 1 mM PMSF, 0.125% myo-

inositol), and incubated with rotation for 30 min at 4˚C.  

 

5. The column is extensively washed with Buffer A, and the bound RPA is then eluted with Buffer A 

containing 400 mM imidazole [pH 7.8].  

 

6. The eluted protein is then dialyzed against Superdex buffer (30 mM NaHPO4 [pH 7.5], 250 mM 

KCl, 10% glycerol, 0.02% Tween-20, 1 mM TCEP, 0.5 mM EDTA, 0.25% myo-inositol). 

 

7. The dialyzed fraction is injected onto a Superdex 200 16/600 column. The peak containing 

trimeric RPA is pooled, concentrated and flash frozen for -80˚C storage.  

 

2.2.4 Preparation of single-stranded DNA 

An important benefit of ssDNA curtain assays is that they allow of the use of long ssDNA 

substrates, on the order of ≥40,000 nucleotides in length. Use of this long ssDNA is important because 

TIRFM imaging allows one to visualize along the entire contour lengths of the molecules and thus obtain 

spatial and temporal information from many different regions at once. These ssDNA substrates are 

prepared by rolling circle replication using a circular ssDNA template and a biotinylated primer (Figure 2-

2)165,169, as described below.  

 

1. The biotinylated primer is annealed to a circular M13 DNA template by slow cooling. 

2. Rolling circle reaction was set up by mixing annealed M13 template, dNTPs and purified 29 

polymerase and incubating at 30C for 20 minutes169 
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2.3 PROCEDURES FOR SSDNA CURTAIN ASSEMBLY 

An important aspect of DNA curtain experiments is the requirement for a supported lipid bilayer, which is 

deposited onto the nano-patterned surface of the sample chamber; detailed descriptions of 

nanofabrication and flow cell assembly procedures have been described elsewhere164,165. The bilayer 

passivates the surface to minimize nonspecific adsorption of proteins, as well as serving as a mobile 

anchor point for tethering the 5 ends of the ssDNA substrates. Tethering is achieved by spiking the 

bilayer with a small fraction of biotinylated lipids to which the biotinylated ssDNA molecules are anchored 

through a biotin-streptavidin linkage (Figure 2-3). 

 

2.3.1 Liposome stock solutions 

A liposome stock solution is required to deposit the lipid bilayer onto the sample surface, and 

here we describe basic procedures for preparation of the liposome stock.  
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1. Lipid stocks are prepared by dissolving 1g DOPC, 100mg PEG-2000 DOPE, and 5mg 

biotinylated DOPE in 10ml chloroform. 

 

2. Transfer 200 µl of the lipid stock to a 2-ml glass vial and apply a gentle stream of nitrogen gas to 

slowly evaporate the chloroform from the lipid stock; this step should take several minutes. When 

complete, the lipid stock should appear as a solid residue visible on the side of the glass vial. 

 

3. The vial is further placed in a vacuum desiccator overnight to eliminate any traces of chloroform. 

 

4. 2 ml of lipid buffer (10 mM Tris-HCl [pH 8.0], 100 mM NaCl) is then added to the dried lipid 

residue. The dry lipids are resuspended into the buffer with the help of an automatic pipet. The 

sample should be incubated at room temperature for approximately 1 hour to help hydrate the 

lipids. Following this incubation, the sample is then vortexed until all the dried lipids are 

suspended into solution as judged by visual inspection.  

 

5. The dissolved lipid mixture is then sonicated in an ice bath in 5-10 second bursts, with 1-minute 

intervals between bursts. Sonicate until the turbid lipid solution becomes clear – this typically 

takes ~3-5 minutes of total sonication time.  

 

6. After sonication, the resulting liposomes are syringe filtered and is ready for use or 4C storage.  

 

2.3.2 Lipid bilayers and ssDNA substrate attachment 

Here, we describe how the bilayer is deposited onto the flow cell surface and how the ssDNA is 

attached to the bilayer. Note, that if air bubbles pass through the sample chambers they will destroy the 

lipid bilayer; in our experience, disruption of the bilayer due to passage of an air bubble through the 
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sample chamber is a common failure point. Drop-to-drop connections and degassing buffers prior to use 

can help minimize bubble accumulation and is highly recommended.  

 

1. Connect two syringes to the inlet and outlet flow cell ports and flush with MilliQ water, followed by 

lipid buffer (10 mM Tris-HCl [pH 8], 100 mM NaCl)164,165.  

 

2. Mix 40 µl of the liposome stock solution with 960 µl of lipid buffer and inject ~200 µl of the mixture 

into the flow cell, and then repeat this process every 5-8 minutes until all of the liposome mixture 

is used. After the final injection, wash the flow cell with 3 ml of lipid buffer and incubate for ~20 

minutes at room temperature to allow formation of the bilayer. 

 

3. Any areas of the flow cell surface that remain exposed after bilayer deposition are then blocked 

by gently flushing 3 ml of HR buffer (30 mM Tris-Ac [pH 7.5], 50 mM KCl, 5 mM MgAc, 1 mM 

DTT, 0.3 mg/ml BSA) through the chamber and the flow cell is incubated for an addition ~5 

minutes at room temperature.  

 

4. Slowly flush a solution of ~10 ng/ml streptavidin in HR buffer to saturate the biotinylated lipids 

with streptavidin to provide anchor points for the biotinylated ssDNA.  

 

5. Flush the sample chamber with HR buffer to remove all traces of free streptavidin.  

 

6. Dilute 200µl of the rolling circle reaction stock from section 2.2.4 in 800 µl HR buffer and inject 

into the sample chamber to tether the ssDNA to the lipid bilayer. 

  

7. Once complete, the flow cell can be mounted onto the microscope stage and connected to a 

sample injection system; our group uses a simple injection system comprised of a syringe pump 

and a high-pressure switch valve, which can be used for sample injections164,165. 
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Figure 2-3. ssDNA curtains to observe single molecule Srs2 activity. (A-C) Schematic depiction of the ssDNA 

curtain assay with a top view on the left showing the array of tethered ssDNA molecules, and a side view on the 

right of a single ssDNA molecule. In (A), ssDNA has already been tethered to the artificial lipid bilayer and RPA has 

bound the length of the DNA. (B) Unbound RPA in solution has been flushed out and Rad51 is injected. Because 

RPA has a fluorescent tag, the Rad51 exchange is visualized by the rapid loss of fluorescence along with a length-

ening of ssDNA as Rad51-ssDNA has a persistence length that is 1.5 times longer than RPA-ssDNA. (C) Adding 

catalytic amounts of Srs2 along with RPA shows a rapid reappearance of fluorescent RPA signal as the Srs2 clears 

a ssDNA-Rad51 filament in the expected 3’ to 5’ direction. 
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2.3.3 Using RPA-GFP to visualize ssDNA  

We use GFP- or mCherry-tagged RPA to both fluorescently label the tethered ssDNA molecules 

and to help remove the ssDNA secondary structure prior to testing the activities of other HR proteins 

(Figure 2-3A)169. The use of GFP-RPA offers the additional benefit that RPA-ssDNA is the physiological 

relevant substrate for early steps in HR170,172. Here, we outline a typical procedure for labeling and 

extending double-tethered ssDNA curtains with RPA-GFP or RPA-mCherry. It should be noted that the 

same procedures can be used with unlabeled RPA, but the ssDNA will not be visible by TIRFM until 

another fluorescently-tagged molecule, such as GFP-Rad52 (Chapter 3) or dsDNA (Figure 4-6), is 

injected into the sample chamber173. 

Note that for experiments using the combination of GFP and mCherry, we use a two-color prism-

type TIRFM system equipped with a 488-nm laser for detecting GFP, and a 561-nm laser for detecting 

mCherry. To avoid the bleed through from the green into the red channel during image acquisition, we 

use a custom-built shuttering system in which the image from the green (GFP) and the red (mCherry) 

channels are recorded independently, and the green and red images are offset by 100 milliseconds. With 

this shutter system, when one camera records the red channel image, the green laser is shuttered off, 

and vice versa.  

 

1. At the start, HR buffer containing 100pM RPA variant is passing through the sample chamber 

containing prepared ssDNA curtain from the previous section. 

 

2. A 500 µl sample loop is opened to deliver a 6 M urea pulse through the sample chamber at a flow 

rate of 0.8 ml/min. This pulse of 6 M urea does not affect the lipid bilayer or disrupt the biotin-

streptavidin linkages, and is used to help remove any residual ssDNA secondary structure, 29 

DNA polymerase, or M13 circular ssDNA template. 

 

3.  The urea is flushed with HR buffer containing 100pM RPA variant for approximately 5-10 minutes 

(Figure 2-4,B,C; time point i).  
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4. The location and the quality of the RPA-bound ssDNA curtains can now be verified by visual 

inspection using TIRFM (Figure 2-4A). The RPA-ssDNA molecules are ready to directly proceed 

to either section 2.4.1 or 2.4.2. 

 

2.4 VISUALIZING SRS2 TRANSLOCATION ACTIVITY USING SSDNA CURTAINS 

Here, we provide detailed examples of experimental methods for visualizing the behavior of either 

unlabeled (Figure 2-4B) or XFP-Srs2 (Figure 2-4C) as it acts upon Rad51- or RPA-bound ssDNA.  
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2.4.1 Visualizing Srs2 binding and translocation on RPA-ssDNA  

 

Srs2 translocating over RPA-bound ssDNA has never been directly visualized. The following 

procedure describes how to visualize mCherry-Srs2 translocation on ssDNA curtains bound by RPA-GFP 

(i.e. in the absence of Rad51).  

1. At the start, HR buffer containing 100pM GPF-RPA is passing through the sample chamber 

containing prepared ssDNA curtain from section. 

 

2. To visualize mCherry-Srs2 binding and translocation, inject a 150 µl aliquot of mCherry-Srs2 

(typically 100 pM) in HR buffer while maintaining a constant flow rate of 0.2 ml/min. This 

procedure results in a 45-second injection window during which mCherry-Srs2 can bind to the 

RPA-ssDNA molecules; after this time period the HR buffer behind the injection loop does not 

contain any Srs2. Therefore, any unbound mCherry-Srs2 will be flushed from the sample 

chamber. This produce helps minimize the number of mCherry-Srs2 binding events, which makes 

interpretation of the resulting data much easier 

 

3. As an alternative to the procedure described above, one can also assay the ability of mCherry-

Srs2 to remove RPA-GFP from the ssDNA (Figure 3-5). For this, RPA-GFP is simply omitted from 

the HR buffer that is flushed through the sample chamber following the 150 µl injection of 

mCherry-Srs2. It should however be noted that the ssDNA can readily break when RPA is 

absent, making these types measurements more challenging. 

 

2.4.2 Visualizing Srs2 as it acts upon Rad51-ssDNA  

The following procedure describes how to prepare Rad51 filaments (Figure 2-3B) and visualize 

Srs2 translocation (Figure 2-3C) beginning with double-tethered ssDNA curtains bound by RPA-GFP. 

These assays can be used with unlabeled Srs2, and in this case, the movement of Srs2 along the Rad51-
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ssDNA can be revealed by the rebinding of fluorescent RPA (Figure 2-4B). Alternatively, fluorescently-

tagged Srs2 can be visualized as fluorescent molecules that bind to and translocate along the Rad51-

ssDNA, while the tracts of Rad51 that are removed from the DNA can be concurrently visualized by the 

reappearance of fluorescent RPA (Figure 2-4C). 

 

1. Rad51 filament assembly is initiated by injecting 1-2 µM S. cerevisiae Rad51 in HR buffer 

containing 2 mM ATP in the absence of RPA (Figure 2-4B,C; timepoint ii). Rad51 filament 

formation can proceed in the presence of RPA, but is inhibited with increasing concentrations of 

RPA in solution.  

 

2. The sample is then incubated in the absence of flow for 10-15 minutes at 32˚C to allow for Rad51 

filament assembly. If using fluorescent RPA, the Rad51 assembly reaction can be monitored by 

visual inspection of the RPA-GFP, which will be displaced from the ssDNA upon Rad51 binding.  

 

3. Buffer flow is then resumed with HR buffer containing 2 mM ATP and 100 pM RPA-GFP to flush 

away any remaining free Rad51 (Figure 2-4B,C; time point iii). The Rad51 filaments will remain 

stable so long as ATP is present in the buffer, so the RPA-GFP present in the buffer should not 

bind to the ssDNA, but rather serves to verify that the Rad51 filaments remain intact. 

 

a. In SM experiments with D-loop structures (Figure 4-8), a step exists here where the 

Rad51-ssDNA filament is incubated with 5-ATTO-565-labeled 70mer dsDNA. This 

dsDNA contains a 15-bp region of homology is flanked by regions of no more that 7-bp 

homology to the M13ssDNA template. This restricts dsDNA binding to bonafide Rad51-

mediated recombination events as demonstrated previously73. 

 

b. After a 10-minute incubation without flow or illumination, the laser shutters are opened 

and the chamber is flushed with HR buffer containing ATP and RPA. The experiments 

then proceeded to step 4. 



 41 

 

4. A 150 µl in-line loop containing Srs2 (typically, at a concentration of 100 pM) diluted in HR buffer 

containing RPA and ATP is opened, and the ssDNA molecules are observed by TIRFM while 

continuously flushing with HR buffer. This procedure results in a short pulse of Srs2 in solution 

(Figure 2-4B,C; time point iv), coinciding with the 150 µl injection, while free Srs2 will quickly be 

flushed from the sample chamber by the continuous buffer flow. This procedure restricts the 

number of Srs2 molecules that bind to the ssDNA during the initial injection, thus facilitating data 

analysis by helping to ensure that a relatively small number of translocation trajectories will occur 

on any given ssDNA molecule.  

 

2.5 DATA ANALYSIS 

In the following sections, we describe general procedures for analyzing Srs2 data from ssDNA curtain 

experiments using measurements of GFP-Srs2 translocating on Rad51-ssDNA in the presence of free 

RPA-mCherry as an example. Similar procedures can be used to analyze the behavior of dark Srs2 on 

Rad51-ssDNA in the presence of RPA-GFP, or mCherry-Srs2 on RPA-ssDNA, and pertinent details of 

these procedures are also highlighted below. The general work flow for these analysis procedures is 

shown in Figure 2-5.  

 

2.5.1. Generating kymographs from wide-field images 

All TIRFM data are collected as raw TIFF files using Nikon NIS Elements software, and then 

these raw TIFF files are converted to kymographs for data analysis (Figure 2-4B,C). 

 

1. First, the raw TIFF files are used to create a tiff stack (i.e. movie) showing the entire field of view 

using Fiji software. 
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2. The resulting tiff stack is then used to generate kymographs that illustrate the events which take 

place on individual ssDNA molecules during the experimental observation period. Kymographs 

are generated using the “Reslice” function in Fiji. For this, a 1 pixel wide region of interest (ROI) is 

superimposed on a selected ssDNA molecule from within the tiff stack, and the corresponding 

information for every image within the entire tiff stack is compiled as single kymograph. Within 

each kymograph, the y-axis reflects the spatial information along the length of the ssDNA, and x-

axis represents time.  

 

3. The resulting kymographs can then be used to determine the sites at which Srs2 initiates 

translocation, translocation velocities, and the processivity of each translocating protein. 
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Figure 2-5. Work flow for data analysis procedures for two-color analysis of Srs2 trajectories. (A) Schematic 

illustration of the TIRFM system for analysis of Srs2-mCherry (shown in magenta) translocation on dark Rad51-

ssDNA filaments (shown in black) in the presence of RPA-GFP (shown in green); color coding formCherry-Srs2 

(magenta) and RPA-GFP (green) is the same throughout the figure. (B)  Cartoon illustration of a hypothetic set of 

raw TIFF files representing the initial binding of Srs2-mCherry to the Rad51-ssDNA (beginning is frame i=1) and 

following its movement along the ssDNA over the course of an entire experiment (ending in frame i=n). (C) The raw 

TIFF files are then used to generate a tiff stack (i.e. a movie). (D) Two-color kymographs are then extracted from 

these movies with NIH ImageJ based upon user-defined ROIs (regions of interest), which represent 1-pixel wide 

areas encompassing individual ssDNA molecules from within the ssDNA curtain. 
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2.5.2. Analysis of Srs2 translocation trajectories 

All analysis of Srs2 translocation is performed from the kymographs that are generated as 

described above.  

 

1. Individual dark Srs2 trajectories were manually analyzed by selecting the starting and ending 

point of a “wedge” of fluorescent-RPA. These wedges are evaluated as linear traces to estimate 

velocity, whereas fluorescent Srs2 trajectories are tracked in NIH ImageJ, as described below. 

 

2. To analyze fluorescently-tagged Srs2 trajectories, we use the NIH ImageJ plugin NeuronJ174. 

NeuronJ is a semi-automated algorithm that can be used to define and track contiguous changes 

in signal intensity, also called “ridges” or “ridge pixels”, in a 2-dimensinal image. In the case of 

GFP- or mCherry-tagged Srs2, the ridges are the bright fluorescence signals observed for the 

moving molecules of Srs2.  

 

3. The user defines a starting and end points within the image, and then the program defines and 

tracks the ridge pixels, and records the x,y coordinates of each trajectory. For our analysis, we 

define the endpoints as either when the Srs2 signal disappears (i.e. dissociation) or when the 

slope of the Srs2 trajectory reaches a plateau (i.e. Srs2 stalls). 

 

4. The x-coordinate values are readily converted from pixel values to units of time. For instance, 

assuming that data is collected using 5 second shuttering, then a kymograph that started at x = 

10 (where “x” corresponds to the x-axis pixel value) and ending when x = 20 would have activity 

that occurred over a 50-second time period. 

 

5. The y-coordinate pixel values are converted to nucleotides values based upon the estimated 

lengths of the protein-bound ssDNA substrates. While a single pixel always corresponds to 0.27 
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m, the amount of nucleotides within this are will differ based upon the filament composition. For 

example, naked ssDNA is expected to formextensive secondary structure to efficiently compact 

DNA, Rad51 extends ssDNA to near B-form, while RPA-ssDNA was measured as 1.5x shorter 

than Rad51-ssDNA73,173. For Rad51-ssDNA, a single pixel corresponds to 0.27 m or ~725 nt of 

Rad51-ssDNA per pixel. This calculation was made based upon the observation that dsDNA with 

homology to a single location within a single repetition of M13mp18 ssDNA displayed peak-to-

peak distances of 2.7 m 73. A single repetition of M13mp18 ssDNA is 7,249 nt and each pixel 

within our 60x objective is 0.27 m. Thus, there are 7,249 nt of Rad51-ssDNA within 10 pixels. 

For RPA-ssDNA, multiplying the Rad51 value by 1.5 corresponds to ~1,087 nt of ssDNA-RPA 

filament in a single pixel. Therefore, it must be emphasized that the apparent velocities when 

converted from pixels/sec to nt/sec values will depend upon these assumed contour lengths of 

the extended Rad51-ssDNA and RPA-ssDNA complexes within the ssDNA curtains.  

 

6. Once these conversions are completed, translocation velocity (in nt/sec) can be calculated from 

the kymographs based on the slope of each Srs2 trajectory, which is readily obtained by fitting 

the tracking data to a linear equation. The resulting data can be presented as distribution 

histograms to obtain the mean and standard deviation for the Srs2 translocation velocities under 

any given experimental condition.  

 

7. Srs2 processivity can also be defined from the same analysis of the kymographs. The distance of 

each translocation event is defined as the total length in nucleotides from each initial Srs2 binding 

position to the end of the translocation trajectory and defined by the location were Srs2 either 

dissociated from the ssDNA, photo-bleached, or stopped moving. The resulting values are used 

to generate survival probability plots, where the apparent processivity values reflect the distance 

at which 50% of the Srs2 complexes dissociate, photo-bleach or stop moving. Note that the 

reported error bars for the survival probability correspond to standard deviation calculated by 

bootstrap analysis using a custom Python script that has been reported elsewhere166. 
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2.6 BULK BIOCHEMICAL ASSAYS 

 

 

2.6.1 Comparing Srs2 variant activities 

Comparison of each Srs2 variants ATP hydrolysis activity was performed to ensure these 

proteins behaved as expected (Figure 4-6).  

 

1. Reactions were carried out at 32˚C in HR buffer (30 mM Tris-Ac [pH 7.5], 50 mM KCl, 5 mM 

MgOAc, 5 µM nucleotides in the form of M13mp18 ssDNA, 1 mM DTT, 0.1 mg/ml BSA, 2 mM 

ATP and 14 nM [γ-32P]ATP). 

 

2. Reactions were initiated by the addition of 10 nM Srs2. Aliquots were removed after 10 minutes 

and quenched by the addition an equal volume of 500 mM EDTA. 
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3. The quenched reactions were then spotted onto PEI (polyethyleneimine) TLC plates (Millipore) 

and resolved in buffer containing 0.5 M LiCl and 0.5 M formic acid. The TLC plates were then 

exposed to a phosphorous screen and imaged. ATPase activity from minus Srs2 controls was 

subtracted as background. Values plotted were the mean of triplicate reactions with error bars 

representing standard deviation (s.d.). 

 

2.6.2 Analyzing Srs2 ATPase activity on HR intermediates 

By varying the experimental setup, Srs2 ATPase activity could be assessed on various HR 

intermediates to corroborate SM data. For these purposes, a series of 3 pre-incubation periods was 

performed prior to Srs2 addition (Figure 2-7A). 

 

1. Reactions were carried out at 32˚C in HR buffer (30 mM Tris-Ac [pH 7.5], 50 mM KCl, 5 mM 

MgOAc, 5 µM nucleotides in the form of M13mp18 ssDNA, 1 mM DTT, 0.1 mg/ml BSA, 2 mM 

ATP and 14 nM [γ-32P]ATP). 

 

2. Reaction buffer or 200nM wtRPA was added and incubated for 5 minutes before adding a 

concentration series of 0-100nM SNAP-Rad52(orf3) followed by another 5-minute incubation. 

Buffer or 2μM Rad51 was next added followed by a final 5-minute incubation before adding 10nM 

Srs21-898 and starting a timer. 

 

3. Alliquots were removed at the indicated time points and quenched with an equal volume of 

500mM EDTA. 

 

4. The quenched reactions were analyzed by TLC the same as in section 2.6.1 and results are 

plotted in Figure 2-7. Discussion of the results is found in Chapters 3 and 5. 
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Figure 2-7. Srs2 ATPase activity in the presence of HR proteins. (A) Schematic of reaction setup. (B) Plot 

of ATPase activity with or without RPA and/or Rad51, but in all cases lacking Rad52.  RPA and Rad51 both 

slightly inhibit Srs2 ATPase activity compared to Srs2 on naked ssDNA. (C-F) Bar graphs of the effect of 

increasing concentrations of Rad52 on Srs2 ATPase activity. The additions and their order are listed above 

each plot, with the “>” symbol representing a 5-minute incubation. For each plot, the [0nM] Rad52 corre-

sponds to those values plotted in (B). In all cases, Rad52 had no effect on the ATPase activity of Srs2 

beyond that attributed by RPA and/or Rad51. Values plotted were the mean of triplicate reactions with error 

bars representing standard deviation.
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2.7 CONCLUSIONS AND FUTURE DIRECTIONS 

Helicases play crucial roles in all aspects of nucleic acid metabolism, and mutations in these important 

motor proteins can give rise to severe genetic disorders and cancer-prone syndromes105,175,176. Here, we 

have described assays that can be used to visualize the behaviors of the S. cerevisiae helicase and anti-

recombinase Srs2 as it acts upon long ssDNA substrates bound by either Rad51 or RPA. We anticipate 

that relatively simple modifications of the procedures described here will allow these protocols to be 

applied to many other types of helicases and motor proteins that act upon single-stranded DNA. We can 

also envision some technical improvements that may increase the utility of this approach. In particular, 

the long ssDNA molecules used in these assays are inherently more challenging to work with than 

dsDNA, which is a relatively stiff molecule that is well behaved in flow. Therefore, although we can directly 

measure distances in micron or pixels, we can only estimate the lengths (in nucleotides) of the ssDNA 

molecules under observation. One way to overcome this problem may be to include fluorescent fiduciary 

markers at known locations along the ssDNA, which would allow for more accurately measure the lengths 

of Rad51-ssDNA and RPA-ssDNA rather than relying upon length estimates. In addition, the 

methodologies described here for tracking Srs2 movement rely upon relatively simple tracking procedure 

found in the NIH ImageJ plugin NeuronJ. This approach is fast and relatively simple, so it is very suitable 

for many types of investigations. However, it cannot be used to decipher high-resolution features of the 

trajectories – for instance, we can clearly see examples of pauses and changes in velocity in the Srs2 

kymographs. Analysis of these detailed features would require implementation of a more intensive 

particle tracking algorithm that could be utilized for tracking the progress of GFP- or mCherry-tagged 

Srs2. 

SM studies are technology driven, and advances in these technologies offer the potential for 

greater spatial and temporal resolution, which in turn will lead to more detailed biophysical insights. 

Examples of such advances could include faster cameras with greater spatial resolution and higher 

sensitivity, as well as brighter, more stable fluorophores that can be imaged for longer periods of time 

without photo-bleaching. It is also important that existing SM methods be used to tackle questions that 

are perhaps more reflective of recombination as it takes place within the living cell. These types of 

questions do not necessarily require any new technology development, but instead require continued 
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study and development of the biochemical systems already under investigation. As with any reductionist 

biochemical approach, many of the SM studies of recombination have focused on trying to understand 

the detailed properties of one or two proteins in order to infer their particular contributions to the overall 

recombination pathway. Therefore, a major challenge faced by researchers in the SM field will be to 

gradually increase the complexity of the systems under investigation as they strive to further define the 

biophysical basis for biological processes. For instance, most of the SM studies of recombinase filaments 

have been confined to analysis of only the recombinases (e.g. RecA or Rad51), and therefore reflect only 

the basal properties of these proteins. It is clear from many years of genetic, cell biology and biochemical 

studies that the presynaptic complex contains many other proteins in addition to the recombinases, 

although the precise protein composition and spatial organization of these proteins within the presynaptic 

complex remain ill–defined. Moving forward, it will be essential to begin trying to understand whether and 

how the presence of these additional recombination accessory proteins influence filament assembly and 

dynamics, the homology search, and strand invasion. Similarly, it will also be important to determine how 

these processes take place within the context of chromatin, how chromatin–remodeling factors work 

together with recombination machinery, and how recombination is coordinated with DNA replication. 

As these studies continue to mature, they are likely to provide further insights into recombination 

mechanisms. In the groundbreaking paper describing the DSBR model, the authors conclude that while 

genetic studies have been invaluable in the elucidation of recombination pathways, “…we suggest that 

biochemical experiments will be necessary to determine the actual mechanism of initiation of … 

recombination”3. We extend this sentiment by indicating that the biochemical information must span a 

range of spatial and temporal scales, and this information must also be integrated with an in–depth 

understanding of the biology of recombination and the consequences of its outcomes. The new optical 

microscopy tools available for single molecule investigations of homologous recombination can help 

make this a reality, and the coming years should prove extremely fruitful for those investigating 

recombination mechanisms. 
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CHAPTER 3: YEAST SRS2 HELICASE PROMOTES REDISTRIBUTION OF SINGLE-STRANDED 

DNA-BOUND RPA AND RAD52 IN HOMOLOGOUS RECOMBINATION REGULATION 

 

 

This work was originally published as: De Tullio L, Kaniecki K, Kwon Y, Crickard JB, Sung P, Greene 

EC. Yeast Srs2 Helicase Promotes Redistribution of Single-Stranded DNA-Bound RPA and Rad52 in 

Homologous Recombination Regulation. Cell Rep. 2017 Oct 17;21(3):570-577. 

Author contributions: L.D.T. designed and conducted the single molecule experiments and data 

analysis with assistance from K.K. L.D.T. and K.K. cloned, purified and characterized Srs2 constructs. 

Y.K. expressed and purified Rad51, and J.B.C. assisted with bulk biochemical analysis of Srs2. E.C.G. 

supervised the project and wrote the manuscript with input from L.D.T., K.K. Y.K., J.B.C., and P.S.  

 

3.1 SUMMARY 

Srs2 is a Super-Family 1 helicase that promotes genome stability by dismantling toxic DNA recombination 

intermediates. However, the mechanisms by which Srs2 remodels or resolves recombination 

intermediates remain poorly understood. In this chapter, single molecule imaging is used to visualize Srs2 

in real time as it acts on single-stranded DNA (ssDNA) bound by protein factors that function in 

recombination. For the first time, we directly observe that Srs2 is capable of rapid translocation (~170 

nucleotides per second) over RPA-bound ssDNA in a processive and 35 directional bias. RPA is 

evicted from DNA during the passage of Srs2. Remarkably, Srs2 also readily removes the recombination 

mediator Rad52 from RPA-ssDNA, and in doing so promotes rapid redistribution of both Rad52 and RPA. 

Interestingly, Srs21-860 that lacks the Rad51 interaction domain also has difficulty initiating this RPA 

eviction activity and suggests this domain may be generally required for loading onto protein-coated 

ssDNA. These findings have important mechanistic implications for understanding how Srs2 and related 

nucleic acid motor proteins resolve potentially pathogenic nucleoprotein intermediates. 
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3.2 RESULTS 

3.2.1 Visualizing the behaviors of Srs2 on RPA-coated ssDNA 

Srs2 has a robust ssDNA-dependent ATPase activity, and ATP hydrolysis is observed even in the 

presence of RPA, raising the possibility that Srs2 can translocate along ssDNA substrates bound by 

RPA177. Analysis of Srs2 bound to RPA-ssDNA by electron microscopy also suggests that Srs2 

translocates along RPA-bound ssDNA178. However, RPA binds to ssDNA with affinities on the order of 

~10-9-10-10M170,172, and we detect no turnover of ssDNA-bound RPA for ≥2 hours in ssDNA curtain 

assays when free RPA is absent173,179. These findings raise the question of how RPA might impact Srs2. 

To address this question, we visualized mCherry-tagged Srs2 molecules as they interacted with ssDNA 

bound by GFP-RPA, specifically aiming to characterize binding and translocation events (Figure 3-1A & 

B). GFP-tagged Srs2 supports DNA replication and recombination in vivo128 and mCherry-Srs2 retained 

near wild-type levels of ATP hydrolysis activity in vitro (Figure 2-7B). Full-length Srs2 has a tendency to 

aggregate, so unless stated otherwise, the single-molecule experiments were conducted with a C-

terminally truncated version of Srs2 comprised of amino acids 1 to 898 (Srs2898). The truncated Srs2 

retains wild-type levels of ATPase, DNA helicase, and Rad51 filament disruption activities65,125 and is 

referred to as Srs2 within this chapter (Figure 2-7B). Experiments were performed at 32˚C and all buffers 

contained 100 pM RPA and 2 mM ATP, unless otherwise stated. Fluorescent Srs2 (150 µl at 100 pM) 

was injected into the sample chamber, and we then observed its interactions with the RPA-coated ssDNA 

under constant buffer flow (0.2 ml/min). These reaction conditions, allowed us to observe only those Srs2 

molecules that associated with the RPA-ssDNA substrate during the ~45 second incubation time window. 

This strategy helps minimize overlapping Srs2 binding and translocation events.  

The mCherry-Srs2 was able to interact with RPA-ssDNA and translocated rapidly over 

surprisingly long distances (Figures 3-1B & 3-2A). Srs2 translocation occurred in the 35 direction, as 

expected117. Similar findings were made for mCherry-Srs2 on ssDNA bound by either GFP-tagged or 

unlabeled RPA, confirming that the properties of RPA are not altered by either the GFP or mCherry tag 

(Figure 3-2). The combined data sets for mCherry- and GFP-tagged Srs2 revealed that Srs2 translocated 

at an apparent velocity of 170 ± 80 nucleotides per second (nt/sec) (mean ± s.d.) (N=396) 
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(Figure 3-1C) and exhibited an average processivity of 14,400 ± 370 nucleotides (Figure 3-1D). Srs2 

translocation initiated at seemingly random positions along the RPA-ssDNA, indicating that there was no 

preferred site for initial Srs2 binding (Figure 3-1E). Experiments using the ATPase deficient Srs2-K41A 

mutant protein (100 pM), which bears a lysine to arginine mutation in the Walker A box123 showed that 

ATP hydrolysis is indispensable for translocation (Figure 3-3A,B).  
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3.2.2 Deletion of the Rad51-interaction domain reduces Srs2 association with RPA-ssDNA 

Srs2 possesses a domain that allows for interaction with Rad51125 (Figure 1-6A) and the 

truncation mutant Srs2860 lacking this domain has ATPase and helicase activities that are comparable to 

wild-type Srs2 (Figure 2-7). However, cells expressing Srs2860 exhibit a hyper-recombination 

phenotype125, and the truncated mutant is unable to efficiently disrupt Rad51 filaments65,125. It remains 

unclear whether the deficiencies ascribed this mutant stem from impaired Rad51 interaction, or that the 

mutant protein harbors other functional deficiencies. To our surprise, we were unable to detect significant 

association of mCherry-Srs2860 with RPA-ssDNA at the same concentration (100 pM) of Srs2898 described 

above. Specifically, we observed a total of only nine Srs2860 translocation events, revealing an average 

velocity of 160  70 nt/sec (N=9) and a processivity of 12,700 ± 2,750 nucleotides. These results 

suggested that Srs2860 is compromised for initial association with the RPA-ssDNA complex, but once 

bound, the Srs2 mutant is nonetheless proficient in translocation through the RPA-coated DNA. In 

agreement with this conclusion, we detected many more translocation events when the concentration of 
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mCherry-Srs2860 was increased to 1 nM (Figure 3-4A), revealing an average apparent velocity of 170  90 

nt/sec and an average processivity of 9,900 ± 870 nucleotides (Figure 3-4B,C). Together, these 

observations suggest that the C-terminal domain of Srs2 is necessary for efficient association with RPA-

ssDNA.  

3.2.3 Srs2 evicts RPA from ssDNA  

Inspection of the GFP-RPA signal in the kymographs suggested that Srs2 might be stripping RPA 

from the ssDNA during translocation (e.g. Figure 3-1B). Specifically, short tracts of dark ssDNA that were 

transiently devoid of GFP-RPA were observed, and these tracts always coincided with the passage of 

mCherry-Srs2. However, in the experiments described above, free GFP-RPA (100 pM) was always 

present, and this available protein pool could easily replenish any GFP-RPA that might have been 

displaced by Srs2. As a consequence, the transient tracts of naked ssDNA did not persist for more than a 

few seconds after the passage of Srs2 (Figure 3-1B). 

We sought to more definitely determine whether Srs2 removes RPA during translocation using 

mCherry-Srs2 and GFP-RPA (Figure 3-5A). Free GFP-RPA was omitted from the buffer to minimize the 
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possibility that free RPA would occupy ssDNA after the passage of Srs2. These experiments 

demonstrated that mCherry-Srs2 clears GFP-RPA from ssDNA during translocation, such that ~80% of 

the GFP-RPA becomes dislodged (Figure 3-5B,D). Given the high binding affinity of RPA for ssDNA170,172, 

the residual GFP-RPA that remained after passage of Srs2 may have been due to rebinding of free GFP-

RPA that had been displaced by Srs2 elsewhere.  

 

3.2.4 Srs2 translocation on near naked versus RPA-bound ssDNA 

Inspection of the Srs2 kymographs revealed additional features reflecting the interactions 

between Srs2 and RPA-ssDNA. Under the conditions of our experiments, the initial Srs2 binding events 
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were relatively rare; we typically observed no more than two to three initiation events per ssDNA molecule 

(e.g. Figure 3-1B & 3-5B). However, once Srs2 began translocating, many new Srs2 binding events 

occurred in its wake, and these latter events were especially prevalent in experiments in which free RPA 

was absent (i.e. Figure 3-5B). Indeed, upon stripping GFP-RPA from the ssDNA, subsequent Srs2 

binding events appeared to occur more frequently on the newly created near naked ssDNA (Figure 3-5B). 

We will refer to Srs2 molecules that became associated with the RPA-ssDNA substrate initially as the 

“lead” Srs2 molecules, and the Srs2 molecules that bound the newly created near naked ssDNA as 

“trailing” Srs2 molecules (Figure 3-6A). We use to the term “near naked DNA” to indicate that there is a 

small amount of GFP-RPA still present (as indicated above; Figure 3-5D). At the concentration of 

mCherry-Srs2 required to efficiently nucleate the initial translocation events (100 pM), subsequent loading 

of Srs2 onto the near naked ssDNA became so prevalent that we were unable to accurately document its 
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frequency. However, we were able to quantitate the translocation characteristics of the leading and 

trailing Srs2 molecules. This analysis revealed that the lead Srs2 had an apparent velocity of 190  120 

nts/sec and processivity of 13,300  790 nts (N=131)(Figure 3-6B,D), slightly faster, but otherwise 

comparable to reactions in which free RPA was present (Figure 3-1C,D). Remarkably, the trailing Srs2 

translocated ~2.5-fold faster, displaying an apparent velocity of 460  130 nts/sec and processivity of 

14,600  850 nts (N=83)(Figure 3-6C,E).  

 

3.2.5 Srs2 evicts Rad52 from ssDNA 

Rad52 is one of the first recombination proteins to arrive at RPA-coated ssDNA present at the 

ends of processed DSBs19. Interestingly, Rad52 is thought to counteract the anti-recombinase activity of 

Srs2127,128, although the molecular basis for these observations remains unknown. We have shown that 

Rad52 is readily recruited to RPA-ssDNA and remains tightly bound to these complexes with lifetimes  2 

hours173. This remarkable stability raises the question of whether Rad52 might regulate Srs2 by restricting 

its translocation on ssDNA. To address this issue, we determined how Srs2 would behave in the 

presence of Rad52 (Figure 3-7A). For these experiments, RPA-ssDNA complex was prepared with 

unlabeled RPA. Then, GFP-tagged Rad52 (5 nM, 150 µl) was injected into the sample chamber at a 

constant flow rate of 0.2 ml/min, and any unbound GFP-Rad52 was flushed from the sample chamber. As 

reported before173, Rad52 associated with the RPA-ssDNA complex avidly. Next, mCherry-Srs2 (100 pM) 

was injected in buffer containing 100 pM unlabeled RPA and 2 mM ATP. Remarkably, Srs2 was able to 

translocate on the ssDNA complexes, with Rad52 being rapidly stripped from the ssDNA during Srs2 

translocation (Figure 3-7B). Inspection of the GFP-Rad52 kymographs revealed that Srs2 was able to 

push at least some of the Rad52 along the ssDNA, although there was not a pronounced accumulation of 

GFP-Rad52 towards the 5 ends of the ssDNA, indicating that Rad52 was being evicted from the ssDNA 

(Figure 3-7B).  

Analysis of the translocation velocities revealed that the leading Srs2 molecules displayed an 

apparent translocation velocity of 200  80 nt/sec (Figure 3-7C) and a processivity of 14,000  1,500 nt on 
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the Rad52-RPA-ssDNA complexes (Figure 3-7E,F), indicating that the presence of Rad52 has no 

inhibitory effect on Srs2 translocation. Interestingly, the trailing Srs2 molecules translocated more rapidly 

than the leading ones, displaying an apparent translocation velocity of 290  90 nt/sec and a processivity 

of 18,600  1,100 nt (Figure 3-7D). Moreover, we found that the apparent velocity of Srs2 increases from 

170  80 nt/sec in the absence of Rad52 (Figure 3-1C) to 200  80 nt/sec in the presence of Rad52 
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Figure 3-7. Srs2 can strip Rad52 from the RPA-ssDNA complex. (A) Schematic for experiment to determine 

whether Srs2 can remove GFP-Rad52 from the RPA-ssDNA complex. (B) Kymographs depicting examples of what 

takes place when mCherry-Srs2 acts upon unlabeled RPA-ssDNA in the presence of bound GFP-Rad52. During 

data collection, the reaction buffer contained 100 pM free RPA (unlabeled), but did not contain free GFP-Rad52. 

Velocity distribution histograms for the (C) leading and (D) trailing mCherry-Srs2 complexes taken from data 

collected in the presence of bound GFP-Rad52. Survival probability plots for the (E) leading and (F) trailing 

mCherry-Srs2 for experiments conducted with GFP-Rad52 bound to unlabeled RPA-ssDNA complexes; error bars 

represent s.d. calculated from bootstrapping analysis. There was no free Rad52 present in solution when Srs2 was 

injected. 
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(Figure 3-7C). However, Rad52 has little or no effect on the rate of ATP hydrolysis by Srs2, which would 

seem to argue against a stimulatory effect of Rad52 on Srs2 translocation velocity (Figure 2-7). We 

speculate that the faster translocation rate of Srs2 stems from an alteration in the tension on the tethered 

ssDNA by Rad52.  
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3.2.6 Srs2 promotes redistribution of both RPA and Rad52 

We next sought to determine whether Srs2 could promote Rad52 recycling. To address this 

issue, we conducted experiments where GFP-Rad52 (5 nM) and unlabeled RPA (100 pM) were present 

in the reaction buffer together with Srs2 (Figure 3-8A). The results demonstrated that GFP-Rad52 re- 
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associates with ssDNA after the passage of Srs2 (Figure 3-8B). Under these conditions, Srs2 traveled at 

an apparent velocity of 215  95 nt/sec (Figure 3-8C) and exhibited an average processivity of 13,000  

880 nts (Figure 3-8D). In addition, experiments using unlabeled Rad52 (5 nM) and GFP-RPA (100 pM) 

confirmed that GFP-RPA is also able to rebind ssDNA after passage of the translocating Srs2 when 

Rad52 was present (Figure 3-9). Note that these data were not ascribed to lead and trailing Srs2 

molecules as they would experience a similar environment when free Rad52 and RPA were present and 

both proteins would rapidly re-associate with the ssDNA. This treatment of the Srs2 translocation data is 

supported by the observation of a single well-defined peak for the translocation velocity when free RPA 

and Rad52 were present (Figure 3-8C & Figure 3-9C). We conclude that Srs2 can remove both RPA and 

Rad52 from ssDNA, and as a consequence promotes the redistribution of both proteins.  
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CHAPTER 4: DISSOCIATION OF RAD51 PRESYNAPTIC COMPLEXES AND HETERODUPLEX DNA 

JOINTS BY TANDEM ASSEMBLIES OF SRS2 

 

 

 

This work was originally published as: Kyle Kaniecki, Luisina De Tullio, Bryan Gibb, Youngho Kwon, 

Patrick Sung, & Eric C. Greene. Dissociation of Rad51 presynaptic complexes and heteroduplex DNA 

joints by tandem assemblies of Srs2. Cell Rep. 2017 Dec 12;21(11):3166-3177. 

Author contributions: K.K. designed and conducted the single molecule experiments and data 

analysis with assistance from L.D.T. B.G. established the initial ssDNA curtain assays for Srs2. Y.K. 

expressed and purified Rad51 and Dmc1. E.C.G. supervised the project and wrote the manuscript with 

input from K.K., L.D.T., B.G., Y.K., and P.S.  

 

 

4.1 SUMMARY  

In chapter 1, Srs2 was presented as a SF1 member helicase/translocase and an efficient anti-recominase 

that acts to disrupt Rad51-ssDNA filaments. In order to better understand the mechanisms that regulate 

Srs2, we directly visualized purified Srs2 as it acts upon single-stranded DNA (ssDNA) molecules bound 

by the Rad51 recombinase. We demonstrated that Srs2 is a highly processive translocase capable of 

stripping thousands of Rad51 molecules from ssDNA at a rate of ~50 monomers per second. We showed 

that Srs2 is recruited to RPA clusters embedded with the Rad51 filaments, and that multimeric arrays of 

Srs2 assemble during translocation on ssDNA through a mechanism involving iterative Srs2 loading 

events at sites that have been cleared of Rad51. We also demonstrate that Srs2 acts on heteroduplex 

DNA joints through two alternative pathways, both of which result in rapid disruption of the heteroduplex 

intermediate. Based upon these findings, we present a model describing the recruitment and regulation of 

Srs2 as it acts upon homologous recombination intermediates.  
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4.2 RESULTS 

4.2.1 Disruption of Rad51-ssDNA filaments by Srs2 

S. cerevisiae Srs2 contains a core SF1 helicase domain that is homologous to the bacterial 

helicase UvrD, a C-terminal region responsible for interactions with Rad51, and a second C-terminal 

domain that mediates protein-protein interactions and is a target for post-translational modifications 

(Figure 1-6A)122,180. For our experiments, we used Srs2 preparations that were either unlabeled, or tagged 

at the N-terminus with either GFP or mCherry, as indicated. This labeling strategy was selected because 

N-terminal GFP-Srs2 fusion constructs are functional in vivo128. Full-length Srs2 is prone to aggregation, 

so unless stated otherwise, all constructs were truncated at amino acid 898, yielding Srs2898. Previous 

studies have shown that Srs2898 is proficient in ATP hydrolysis and in the disruption of Rad51-ssDNA 

filaments65,125,149. We also prepared Srs2K41A, which is defective in ATP hydrolysis123, and the truncation 

mutants Srs2860 and Srs2Δ875-902, which lack the Rad51 interaction domain65,125. The different purified 

forms of Srs2 were all tested for ATP hydrolysis activity (Figure 2-6A,B). 

We have previously used double-tethered ssDNA curtains and total internal reflection 

fluorescence microscopy (TIRFM) to visualize the behaviors of Srs2 on RPA-coated ssDNA in the 

presence and absence of Rad52181. Here, we use single- and double-tethered ssDNA curtains to 

visualize the movement of Srs2 on Rad51-coated ssDNA (Figure 2-3). Presynaptic complexes were 

prepared using wild-type S. cerevisiae Rad51, as described 66,73. Rad51 was not fluorescently labeled, 

instead the assembly and disassembly of the presynaptic complex was assessed by monitoring the 

binding of GFP-tagged RPA. Once assembled, the Rad51 filaments remain intact for hours in the 

presence of ATP 73.  

To determine whether Srs2 could remove Rad51 from the ssDNA, we injected unlabeled Srs2898 

in 150 µl of buffer containing 2 mM ATP and 100 pM GFP-RPA. Reactions were observed under constant 

buffer flow (0.2 ml/min), and Srs2 that did not bind during the initial sample injection was flushed away by 

buffer flow, so the resulting observations only report the behaviors of Srs2 proteins that bind to the RPA-
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ssDNA during a ~45 second time window. This strategy was necessary to help minimize overlapping Srs2 

binding and translocation events. Under these conditions, we observed extensive Srs2-dependent 

removal of Rad51 from the ssDNA, as evidenced by the reappearance of GFP-RPA (Figure 4-1A & 

Figure 2-4B). Rad51 removal did not occur when the ATPase defective Srs2K41A mutant protein was 

tested, confirming that the observed activity required ATP hydrolysis by Srs2 (Figure 4-2). Moreover, 

inspection of the kymographs revealed that GFP-RPA reappeared in distinctive wedge-shaped patterns 

(Figure 4-1A, Figure2-4B & Figure 4-2). These patterns suggested that Rad51 removal stemmed from the 
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35 motor activity of Srs2, with each track of GFP-RPA resulting from the processive translocation of 

Srs2 along the ssDNA. 
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gradual time-dependent loss of GFP-RPA signal is due to photo-bleaching, and the photo-bleached RPA molecules 
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 We conducted two-color experiments using GFP-Srs2 and mCherry-RPA to validate the 

expectation that Srs2 was positioned at the leading 5 edge of each growing tract of GFP-RPA. As 

predicted, GFP-Srs2 could be seen translocating in the 35 direction along the presynaptic complexes 

leaving behind extended tracks of mCherry-RPA on the ssDNA (Figure 4-1B & Figure 2-4C) . Similar 

results were obtained in two-color experiments using mCherry-Srs2 and GFP-RPA (see below). 

Experiments using GFP-Srs2K41A revealed that GFP-Srs2K41A bound to the Rad51-ssDNA filaments, but 

was unable to initiate translocation. These findings provide further evidence that Srs2 movement 

dependent upon ATP hydrolysis. 

Analysis of the GFP-RPA tracks yielded an apparent velocity for unlabeled Srs2 on Rad51 

filaments of 142 ± 56 nucleotides per second (nt/sec). Moreover, Srs2 was remarkably processive, with 

the observed complexes traveling an average distance of 20,800 ± 1,100 nt (N=420) before stopping 

(Figure 4-1C & 4-1D). The apparent velocity and processivity values for GFP-Srs2 were 142 ± 77 nt/sec 

and 18,500 ± 650 nt (N=798), respectively (Figure 4-1E,F & Table 4-1). In all cases, the movement of 

Srs2 occurred in the 35 direction. We conclude that S. cerevisiae Srs2 is a highly processive ssDNA 

translocase capable of rapidly stripping Rad51 from the presynaptic complex. 

 

4.2.2 Srs2 is recruited to RPA clusters within the presynaptic complex 

It has remained unknown how Srs2 is recruited to recombination intermediates. To address this 

question, we next mapped the locations at which Srs2 bound to the presynaptic complexes. The initial 

Srs2 binding positions appeared randomly distributed along the ssDNA, with a moderate preference for 

regions closer to the 3 end of the ssDNA (Figure 4-3A). The Rad51 filaments in our assays are not 

contiguous, but instead contain short clusters of RPA that were also randomly distributed along the length 

of the presynaptic complex (Figure 4-3B,C)173. Based on measurements of the cumulative GFP-RPA 

signal before and after presynaptic complex assembly, the remaining RPA clusters constitute ~2–5% of 

the total RPA that was present on the ssDNA prior to Rad51 binding, and the majority of the ssDNA (~95-

98%) is bound by Rad51173. Comparison of all Srs2 initiation sites with the entire population of RPA 

cluster distributions revealed no obvious correlation (c.f. Figure 4-3A,B). However, when examined 
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on an individual basis, Srs2 had a marked preference for initiating translocation at sites that coincided 

with RPA (Figure 4-3C). We observed that 54% of the Srs2 recruitment events occurred at these RPA 

clusters, even though these RPA clusters only make up a very small fraction (~2–5%) of the total ssDNA 
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present (Figure 4-3D). These values suggest a ~20- to ~60-fold greater likelihood for Srs2 to initiate 

translocation at an RPA cluster relative to locations at which we detect no RPA. Importantly, the 

remaining Srs2 recruitment events may also be occurring at RPA clusters that are either too small to 

detect or may have been photo-bleached over the time scales of our measurements. These results were 

further validated by examining the binding locations of GFP-Srs2K41A on presynaptic complexes prepared 

with mCherry-RPA and dark Rad51, which revealed that GFP-Srs2K41A had a strong preference for 

binding to mCherry-RPA (Figure 4-3E,F). Taken together, these findings support a model in which Srs2 is 

recruited to small clusters of RPA embedded within the Rad51 presynaptic complex.  

 

4.2.3 Tandem assemblies of Srs2 promote efficient Rad51 disruption  

Interestingly, our data hinted at the possibility that the processive disruption of Rad51 filaments 

observed in our assays may involve more than just one Srs2 molecule. Specifically, in experiments using 

100 pM Srs2, we observed highly processive translocation activity (Figure 4-4A). However, at lower Srs2 

concentrations (10 pM) we observed mostly short patches of Rad51 removed from the ssDNA (Figure 4-

4A), and the apparent velocity also increased with Srs2 concentration (Figure 4-4B). These results 

suggested that at low concentrations Srs2 was less able to catalyze the highly processive filament 

disruption.  

We often observed fluorescent Srs2 molecules colliding with one another while stripping Rad51 

from ssDNA, or larger Srs2 complexes separating into smaller independent units, suggesting that 

assemblies of Srs2 might be traveling along the same ssDNA molecules. Moreover, we also often 

observed multiple Srs2 binding and translocation events on the same ssDNA molecule, especially over 

regions of the ssDNA that had already been cleared of Rad51 (Figure 4-4C), consistent with the notion 

that Srs2 binds preferentially to RPA-ssDNA relative to Rad51-ssDNA. Interestingly, the trailing Srs2 

complexes traveling along RPA-ssDNA often caught up to and merged with the leading Srs2 complexes 

that are at the 3 edge of the Rad51 filament. Examples of these mergers were especially evident in 

cases where the leading Srs2 displayed fortuitous reduction in velocity (Figure 4-4C).  
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Visual inspection of the GFP-Srs2 trajectories also suggested that these complexes were much 

brighter than might be expected for a single GFP molecule. To validate this interpretation, we used 561-

nm laser illumination to first identify tracts of Rad51 that were being dismantled by GFP-Srs2 (100 pM) 

based upon the appearance of mCherry-RPA (Figure 4-4D). We then quickly viewed the sample with 

high-intensity 488-nm laser illumination while continuously imaging the GFP-Srs2 signal (Figure 4-4D). As 

expected, GFP-Srs2 was located at the leading edges of the growing tracts of mCherry-RPA, and the 

GFP signal quickly photo-bleached under these conditions, allowing us to estimate the number of GFP 

molecules present in the Srs2 complexes based upon the number of photo-bleaching steps (Figure 4-4D). 

These experiments confirmed that the majority of the GFP-Srs2 complexes displayed multiple photo-

bleaching steps, with ~97% of the Srs2 complexes exhibiting two or more bleaching steps (N=84/97), and 

~44% exhibiting at least four bleaching steps (N=38/97)(Figure 4-4E).  

Finally, we performed two-color mixing experiments using a combination of GFP-Srs2 and 

mCherry-Srs2. If Srs2 acted as monomeric units while disrupting the Rad51 filaments, then GFP- and 

mCherry-Srs2 should appear as separate entities on the ssDNA. However, if Srs2 multimers were 

responsible for disrupting the Rad51 filaments, then the fluorescence signals from GFP- and mCherry-

Srs2 should overlap on the ssDNA. Consistent with this latter interpretation, when GFP-Srs2 (50 pM) and 

mCherry-Srs2 (50 pM) were pre-mixed and injected into the sample chamber, only ~5% of the observed 

signals could be ascribed to only one color (N=10/195), whereas ~95% of the observed complexes 

(N=185/195) contained overlapping GFP and mCherry signals (Figure 4-4F,G). These observations all 

support the conclusion that the highly processive Srs2 complexes observed in our assays were 

comprised of multiple Srs2 molecules traveling together along the ssDNA. 

 

4.2.4 The Rad51 interaction domain is required for Srs2 loading 

Efficient removal of Rad51 from ssDNA requires a direct contact between Rad51 and Srs2 

(Figure 1-6A)65,125. In vitro studies have shown that an srs2 mutant (Srs2860) lacking these amino acids 

cannot interact with Rad51 and also showed greatly diminished ability to disrupt Rad51 filaments65. 

However, these in vitro studies have shown that the interaction defective Srs2860 mutant protein has  
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residual activity in Rad51-ssDNA filament disruption, and overexpression of this Srs2860 mutant can 

provide some biological activity65,125. We considered two possibilities for the reduced displacement of 

Rad51 from ssDNA upon deletion of the Rad51 interaction domain from Srs2: (i) it could attenuate initial 

association of Srs2 with the Rad51-ssDNA filament; or (ii) it might reduce Srs2 processivity, velocity or 

both. To distinguish between these models, we assessed the ability of the C-terminally truncated GFP-

Srs2860 to dismantle Rad51 filaments. These assays revealed that most of the Rad51 filaments (~98%) 

remained fully intact upon injection of Srs2860, confirming that truncation of the Srs2 C-terminus greatly 

diminishes its ability to disrupt the Rad51 filaments. Remarkably, there were a few examples (24 total) of 

Rad51 filaments being dismantled by Srs2860 (Figure 4-5A). These rare Srs2860 translocation events were 
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~40% slower than reactions with Srs2898, exhibiting a rate of 86  22 nt/sec (N=24) (Figure 4-5B & Table 

4-1). Although Srs2860 was not as processive as Srs2898, the mutant protein still traveled an average 

distance of 8,400 ± 1,200 nucleotides before stopping (Figure 4-5C). We next tested Srs2Δ875-902, which 

lacks the Rad51 interaction domain, but retains all of the remaining C-terminal amino acids125. 

Interestingly, we were able to observe more translocation events for Srs2Δ875-902 compared to Srs2860, 

revealing translocation and processivity values of 107 ± 63 nt/sec and 13,000 ± 380 nt (N=193), 

respectively (Figure 4-5D,F & Table 4-1). Together, these findings suggest that truncating the Srs2 C-

terminal domain markedly reduces the number of initial binding events, but once bound, the core SF1 

helicase domain of Srs2 retains the ability to disrupt Rad51 filaments, albeit at a reduced velocity relative 

to Srs2898. Taken together, these results indicate that the Rad51 interaction domain in Srs2 is not 

necessary for Rad51 filament disruption. These findings also imply that amino acids located within the C-

terminal region of Srs2 help promote its association with the presynaptic complex.  

 

4.2.5 Disruption of human Rad51 by yeast Srs2 

We next asked whether S. cerevisiae Srs2 could clear human RAD51 from ssDNA. If species-

specific contacts were necessary for Rad51 clearance from DNA, then yeast Srs2 should not be able to 

dismantle filaments of human RAD51. We found no evidence for disruption of the human RAD51 

filaments under the same conditions (i.e. 100 pM Srs2) where S. cerevisiae Rad51 was efficiently 

removed from the ssDNA. However, S. cerevisiae Srs2 is capable of removing human RAD51 from 

ssDNA at a Srs2 concentration (1 nM) that is 10-times greater than used in experiments with S. 

cerevisiae Rad51 (Figure 4-5G). When clearance of human RAD51 was evident, Srs2 exhibited a 

translocation velocity of 80  40 nt/sec and an average processivity of 6,400 ± 540 nt (N=101) while 

clearing human RAD51 (Figure 4-5H,I & Table 4-1). In addition, these Srs2 complexes were much 

brighter than observed in experiments with S. cerevisiae Rad51, and it was evident that this increase in 

signal intensity was the consequence of multiple trailing Srs2 complexes moving rapidly along the RPA-

ssDNA and then merging with the slower Srs2 ensembles positioned at the receding 3 edge of the 

human RAD51 filaments (Figure 4-5G). We conclude that species-specific protein-protein contacts help 
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promote efficient Srs2-mediated removal of Rad51 from ssDNA, but are not an absolute requirement in 

this regard. 
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4.2.6 Rad51 ATP hydrolysis is required for efficient Srs2 activity 

The mutation of the lysine residue in the Walker A box of yeast Rad51 (Rad51K191R) ablates DNA-

dependent ATP hydrolysis activity and engenders sensitivity to certain DNA damaging agents63,67-69. 

However, the Rad51K191R mutant protein still binds to ssDNA and promotes DNA strand exchange67-69. 

Previous bulk biochemical analysis has suggested that Srs2 is not as capable of removing Rad51K191R 

from ssDNA65. Interestingly, Rad51K191R is not efficiently recruited to DNA breaks, but this deficiency is 

suppressed by the srs2 mutation, suggesting that Srs2 may remove Rad51K191R from ssDNA in vivo67. 

We asked whether Srs2 could remove Rad51K191R from ssDNA in our assays. We approached this 

problem by first assessing the assembly and disassembly properties of Rad51K191R. These results showed 

that while Rad51K191R is compromised for filament assembly, it also dissociated from the ssDNA ~2.5-fold 

more slowly than wt Rad51 (Figure 4-6). Importantly, Srs2 was able to remove Rad51K191R from ssDNA 

(Figure 4-7A), but translocated at just 36  20 nt/sec and exhibited a processivity of 7,700  590 nt 

(N=120) while moving along the Rad51K191R-ssDNA filaments (Figure 4-7B,C & Table 4-1). This ~75% 

reduction of the translocation velocity is quite striking and provides clear evidence for enhanced 

resistance of the Rad51K191R filament to Srs2.  

 

3.2.7 Rad51 suppressor mutations of Rad55-Rad57 are resistant to Srs2 disruption 

The stability of the Rad51 presynaptic filament is modulated by a balance between the stabilizing 

function of Rad55-Rad57 and the destabilizing function of Srs292. Interestingly, Rad51I345T was isolated as 

a suppressor mutation that partially bypasses the requirement for Rad55-Rad57, suggesting that the 

Rad51I345T presynaptic complex might be more resistant to Srs275. We therefore examined the ability of 

Srs2 to disrupt presynaptic complexes prepared with Rad51I345T. These experiments revealed that Srs2 is 

able to remove Rad51I345T from ssDNA (Figure 4-7D), albeit more slowly than observed with wild-type 

Rad51, revealing velocity and processivity values of 85  48 nt/sec and 11,300  920 nt (N=239)(Figure 

4-7E,F & Table 4-1). In agreement with previous findings182, Rad51I345T assembled more rapidly into 

filaments on ssDNA compared to wt Rad51, and also displayed a delay in filament disassembly when  
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chased with buffer lacking ATP (Figure 4-6). Together, these findings suggest that Rad51I345T may 

overcome the genetic requirement for Rad55-Rad57 due to an increased affinity for ssDNA, which in turn 

lowers Srs2 velocity and processivity. 
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Rad51K191R. (D) kymograph, (E) velocity distribution, and (F) survival probability analysis for mCherry-Srs2898 

translocation on presynaptic complexes prepared with Rad51I345T. Error bars for the survival probability plots 

represent s.d. calculated by bootstrap analysis. The velocity distributions in (B) and (E) are superimposed on the 

Gaussian fit (blue dashed line) for the velocity distribution of unlabeled Srs2 taken from Figure 4-1C.
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4.2.8 Srs2-mediated disruption of heteroduplex DNA joints 

We have previously established assays for observing interactions between the Rad51 

presynaptic complexes and short (70-bp) dsDNA substrates66,73. We next asked whether Srs2 could 

process nucleoprotein intermediates that harbor ATTO 565-labeled dsDNA substrates bearing 15-nt of 

homology to the ssDNA that is bound by Rad5166,73. The fluorescently-tagged dsDNA substrates were 

pre-incubated with the Rad51 filaments, and then GFP-Srs2 was injected into the sample chamber to 

determine its impact upon the fluorescent dsDNA molecules. Under these conditions, the dsDNA 

substrates undergo homologous pairing to form a paranemic joint that resembles a D-loop (Figure 4-

8A,B). 
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Srs2 interactions with these short dsDNA substrates could be segregated into two classes: (i) 

direct recruitment events where Srs2 appeared to bind directly to the DNA joint (Figure 4-8A); and (ii) 

collision events involving translocation of Srs2 along the Rad51-ssDNA presynaptic complex until the 

DNA joints were encountered (Figure 4-8B). Direct recruitment was the most common outcome for both 

substrates, accounting for ~55% of all interactions between Srs2 and the bound dsDNA substrates 

(Figure 4-8A). The most common outcomes for the direct recruitment events were the rapid dissociation 

of the dsDNA substrates followed by continued Srs2 translocation along the presynaptic complex (54.2%, 

N=58/107)(Figure 4-8C,D). We also observed other types of less common events when Srs2 was directly 

recruited to the D-loops, including Srs2 stalling with concomitant displacement of the dsDNA (15.9%, 

N=17/107), dissociation of both Srs2 and the dsDNA (10.2%, N=11/107), and examples where the 

dsDNA appeared to move with Srs2 (8.4%, N=9/107)(Figure 4-8C,D). Finally, a small fraction of the 

events assigned as direct recruitment had no effect on the dsDNA, and Srs2 continued translocation 

towards the 5 ends of the ssDNA (6.5%, N=7/107)(Figure 4-8C,D). One possible explanation in these 

later cases was that Srs2 was unable to unwind the DNA joint sufficiently to allow it to dissociate from the 

presynaptic complexes, and these events may be mechanistically related to what takes place when Srs2 

bypasses a bound dsDNA. Alternatively, Srs2 may have been recruited near the dsDNA, but did not 

actually interact with the dsDNA itself.  

Collison events accounted for ~45% of all observed interactions between Srs2 and the dsDNA 

bound to the Rad51-ssDNA presynaptic complexes. The most common outcome for these collision 

events was rapid displacement of the dsDNA from the presynaptic complex followed by continued 

movement of Srs2 along the presynaptic complex (61.6%, N=53/86)(Figure 4-8E,F). In addition to dsDNA 

dissociation, we also observed instances where Srs2 stalled or dissociated upon encountering the dsDNA 

(2.3%, N=2/86 and 11.6%, N=10/86, respectively), (Figure 4-8E,F). In addition, a significant fraction of the 

collisions resulted in Srs2 bypassing the dsDNA (19.8%, N=17/86)(Figure 4-8E,F). Because the ssDNA 

itself is not labeled, one explanation for these apparent bypass events may be that Srs2 was bound one 

of two overlapping ssDNA molecules. If this is the case, then our reported value (61.6%) for dsDNA 

dissociation during the collision events would represent a lower bound for the Srs2-mediated disruption of 

the dsDNA during the collisions events. Taken together, we conclude that Srs2 can readily remove short 
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dsDNA fragments that are bound to the Rad51-ssDNA presynaptic complex and can do so through either 

direct recruitment to the heteroduplex DNA joint or by colliding with the heteroduplex DNA after 

approaching from the 35. 

  

Table 4-1. Comparison of translocation velocities from Chapter 4 experiments. Summarized are the translo-

cation velociteis for each combination of Srs2 and Rad51. Significantly difference velocities from Srs2898 were 

measured using Student’s paired t-test. Only the GFP-Srs2898 was not different from Srs2898

4-1C

4-1E

4-5B

4-5E

4-5H

4-7B

4-7E
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CHAPTER 5: DISCUSSION 

 

 

 

5.1 OVERVIEW 

This work has examined some of the key ways Srs2 can moderate genetic recombination through the 

disassembly and redistribution of some of the molecular players of this pathway. Chapter 1 explored 

some of the key ways life employs genetic recombination, the dynamic nature of the molecular players 

involved, and examined how helicases function with a particular emphasis on Srs2. Chapter 2 outlined 

the advantages of SM approaches and detailed ssDNA curtains as a new tool to study helicase and 

translocase activity within the context of recombination proteins. Chapters 3 and 4 presented the results 

of employing our helicase assay on nucleoprotein filaments that would include various combinations of 

RPA, Rad51, Rad52 and donor dsDNA. The results are undergirded by conforming to many of the 

previously ascribed activities of these molecules (e.g., Srs2 stripes Rad51 from ssDNA in a 35 biased 

direction), while also adding new features not previously described (e.g., Srs2 dissociating RPA-Rad52 

complexes). 

As is often the case with the development of a new tool, there is much work left to be done on this 

system. New members in the Greene lab along with our collaborators will be ideally placed to take 

advantage of this foundation and build upon the complexity by adding recombination mediators (ex. 

Rad55-Rad57, Shu complex, etc.), examining various dsDNA donor templates, and mutational studies to 

gain an unprecedented depth of knowledge about these complex and elusive molecules. Furthermore, a 

similar approach could be used to investigate different helicases that are known to interact with the 

recombination machinery (ex. Mph1, Rad54, HsRECQ5, etc.). 
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5.2 MECHANISM OF SRS2 RECRUITMENT  

While it is established that Srs2 dismantles Rad51 filaments, it has remained unclear how Srs2 is 

recruited to the presynaptic complex and other HR intermediates65,120-122,149,180,183,184. C-terminal truncation 

mutants, Srs2898 and Srs2860, have equivalent ATPase activity on naked ssDNA in bulk assays (Figure 2-

6). However, in chapters 3 and 4, we provided evidence that Srs2860 is compromised in its ability to initiate 

translocation on both RPA (Figure 3-4) and Rad51 (Figure 4-5) filaments. In chapter 4, we provided 

evidence that Srs2898 is preferentially recruited to small clusters of RPA that remain embedded within the 

Rad51 presynaptic complex (Figure 4-3, Figure 5-1). These results indicate residues 861-898 are likely 

important for initiating processive translocation on RPA-ssDNA. 

As an alternative explanation, we should consider the possibility that the RPA puncta that remain 

after Rad51 exchange are hairpin structures and that Srs2 is recruited to the 5 flap structure. It is worth 

note that the Shu complex has been demonstrated to preferentially bind forked and flapped ss/dsDNA 

junctions in vitro and antagonizes Srs2 recruitment to sites of DSBs in vivo. Indeed, UvrDD402P has been 

shown to have a 6-fold increase for binding to 5 flaps and the corresponding residue in Srs2 is already a 

proline110. If this were the case, ssDNA curtain experiments employing Rad51 and fluorescent Shu protein 

complexes would likely co-localize with these mediators to RPA puncta and potentially prevent Srs2 

initiation from these locations. Our lab recently obtained purified Csm2-Psy3 heterodimer bearing a SNAP 

tag for fluorescent labeling and will be testing this hypothesis in the near future. 

Experiments with 1nM Srs2860 on RPA filaments resulted in more processive translocation events 

with a similar velocity and processivity to 100pM Srs2898 activities. While the equivalent 1nM Srs2860 

experiment was not performed on a Rad51 filament, the velocity and processivity measures for the rare 

processive events have significantly reduced velocities when compared with Srs2898 (Table 4-1). These 

results suggest residues 861-898 may be involved in two separate activities; generally initiating 

translocation at RPA-bound ssDNA and specifically in disrupting Rad51 filaments during translocation. 

Challenging Rad51 filaments with 1nM Srs2860 could provide additional support for this hypothesis. 
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Chapter 3 demonstrated that Srs2 can strip RPA from the ssDNA and observed that new Srs2 

recruitment events take place even more readily on the newly cleared naked ssDNA. Analyzing Srs2 

trajectories over the newly cleared ssDNA demonstrated an apparent 2.5-fold and 3.25-fold increase in 

translocation velocities when compared to densely packed RPA or Rad51 filaments, respectively181. An 

important implication of this finding is that as Srs2 begins stripping Rad51 from ssDNA, the newly created 

near-naked ssDNA that forms behind the leading Srs2 complex becomes available for the recruitment of 

additional Srs2 molecules that quickly catch up to the leading molecule.  

Thus, the recruitment mechanism may consist of interactions with RPA, ssDNA, or both. To 

further explore these possibilities, Y2H experiments, far westerns, or ssDNA curtains employing SSB in 

place of RPA could be used to test for interaction between Srs2 and RPA. Additionally, electro-mobility 

shift assays (EMSA) testing the binding preference for Srs2898 and Srs2860 for various DNA structures, 

including flaps, overhangs, and hairpins, could indicate whether these residues are involved in loading 

Srs2 to various nucleic acid substrates. 

In summary, the findings presented here suggest that Srs2 may preferentially associates with 

RPA clusters between Rad51 filaments. Furthermore, Srs2 also preferentially initiates Rad51 clearance 

from the location of a paired 15bp D-loop intermediate, representing a different structure Srs2 is likely 

recruited to (Figure 4-8). Given that Srs2 translocates in the 35 direction, and the Rad51Y388H and 
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Rad51G393D mutants are impaired for their interaction with Srs2, we propose that the access of Srs2 is 

restricted to the 3 end of the Rad51 filament. Within this context, the purported negative regulators of 

Srs2 anti-recombinase activity, which include the Rad55-Rad57 heterodimer, the SHU complex, and 

Rad52, may act by limiting access of the 3 end of the Rad51 presynaptic complex. 

 

5.3 ROLE OF TANDEM SRS2 ASSEMBLIES IN PROCESSIVE TRANSLOCATION 

The functional oligomeric states of DNA helicases have proven remarkably difficult to 

determine185. In many cases, there is evidence that helicases can behave as tandem assemblies while 

acting upon nucleic acids, and that the changes in their oligomeric state regulate their activities185. 

Specific examples of tandem helicase assemblies include the bacteriophage T4 SF1 helicase DdaA186, 

the hepatitis C virus SF2 helicase NS3187, and E. coli RecQ188. In addition, recent studies have shown 

that E. coli UvrD translocates either as a monomer or as two tandem monomers, and that the tandem 

monomers are more processive than a single monomer147,189. Similarly, recent biochemical results have 

suggested that more than one Srs2 monomer is required for efficient DNA unwinding190. 

Our work now demonstrates that processive disruption of Rad51 filaments involves multiple Srs2 

molecules acting upon the same filament end. This conclusion is also consistent with electron microscopy 

images of Srs2 on Rad51-ssDNA, which revealed Srs2 species that are oligomeric in appearance178. We 

propose that Srs2-dependent removal of Rad51 from the ssDNA lead to new tracts of RPA-ssDNA or 

near naked ssDNA, which can then function as loading sites for additional Srs2 molecules (Figure 5-

2A,B). Separate measurements presented in chapter 3 indicate that Srs2 translocates on RPA-ssDNA at 

a rate that is ~20% faster than that on Rad51-ssDNA and travels even faster on naked ssDNA181. The 

ability of Srs2 to translocate more rapidly on RPA-ssDNA would allow any newly loaded Srs2 molecules 

to quickly catch up to and merge with the leading Srs2 ensemble already present at the receding 3 edge 

of the Rad51 filament. It should be noted that although our work shows that tandem assemblies of Srs2 

are involved in processive disruption of Rad51 filaments in vitro, we do not know the oligomeric state of 

Srs2 in vivo. The observation that fluorescent Srs2 foci are observed in SC experiments indicates Srs2 

may be in high enough concentration to build such arrays of Srs2 at sites of DSBs in vivo. Similarly, the 
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oligomeric state of Srs2 when tethered to a PCNA is unknown and may modulate the response of a 

replisome to certain replication stressors. 

Srs2 translocation has been examined by bulk biochemical and single molecule FRET 

assays65,149. Results from these studies have suggested that Srs2 remains monomeric while acting on its 

substrates, translocating at ~300 nt/sec over an estimated distance of ~1,500 nucleotides on naked 

ssDNA, and removing Rad51 at a rate of ~12 monomers per second, corresponding to ~36 nt/sec65. In 

contrast, our results suggest that arrays of Srs2 can translocate over remarkably long distances (~18,000 

nt) on Rad51-ssDNA while traveling at an apparent velocity of ~140 nt/sec, corresponding to the 

disruption of ~6,000 Rad51 monomers at a rate of ~50 monomers per second. We attribute the 

differences between our findings and the published results to the use of much longer ssDNA substrates 

and the inclusion of free RPA in our study, thus enhancing assembly of the tandem Srs2 ensembles that 

possess greater processivity and velocity.  
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5.4 SRS2 TRANSLOCATION ON RPA-COATED SSDNA  

For the first time, we have directly observed rapid Srs2 translocation on ssDNA that is saturated 

with RPA and can travel over distances spanning thousands of nucleotides, giving no indication that RPA 

offers a serious impediment despite it’s extremely high affinity for ssDNA170,172. Assuming that RPA has a 

maximum binding site size of ~30 nucleotides under the buffer conditions used for our measurements193, 

and that the ssDNA was saturated with RPA, then an apparent translocation rate of ~170 nt/sec and 

processivity of ~15,000 nt would correspond to the removal of ~6 molecules of RPA per second and ~500 

molecules of RPA removed from the ssDNA per Srs2 translocation event. 

Recent studies have shown that S. cerevisiae Pif1, and the E. coli UvrD and Rep helicases can 

push isolated E. coli SSB tetramers along ssDNA150. However, it remained unclear how helicases might 

behave when the ssDNA is fully coated by single strand binding proteins. Our results point to an 

alternative scenario for Srs2 acting on ssDNA substrates densely populated by RPA, namely, highly 

efficient eviction of RPA from the ssDNA. Interestingly, RPA-ssDNA complexes act as conserved signal to 

help trigger the DNA damage checkpoint by activating the ATR (ataxia telangiectasia mutated- and Rad3-

related; Mec1 in S. cerevisiae)-ATRIP (ATR-interacting protein; Ddc2 in S. cerevisiae) protein kinase 

complex17. However, srs2 strains fail to recover from the DNA damage checkpoint-mediated growth 

arrest even after DNA repair has taken place, and these recovery defects are alleviated by mec1131. 

Consistent with our findings, one possible explanation for these genetic results is that checkpoint 

recovery requires a clean-up process involving Srs2-mediated removal of persistent RPA from repaired 

intermediates. 

 

5.5 SRS2 DISRUPTION OF RAD52-CONTAINING RECOMBINATION INTERMEDIATES 

Although the best characterized role of Srs2 is to dismantle recombination intermediates 

containing Rad51, we have little understanding of how this activity is regulated. The clearest evidence for 

Srs2 regulatory control have come from experiments showing that the Rad55-Rad57 heterodimer may 

inhibit Rad51 filament disruption by limiting Srs2 translocation. However, the authors also noted that 



 86 

Rad55-Rad57 does not impair Srs2 ATPase activity in bulk. Similarly, while Rad52 is a proposed negative 

regulator of Srs2 anti-recombinase activity, we found Srs2 ATPase activity was largely unperturbed using 

various combinations of RPA, Rad52, and Rad51 (Figure 2-7).  

Preliminary SM experiments challenging mixed GFP-Rad52/Rad51 filaments show results that 

are difficult to interpret and thus were not published. Srs2 appears to be able to bypass Rad52 on Rad51-

ssDNA, although this requires some molecular gymnastics whereby Rad52 generally appeared dynamic 

upon bypass. It could be that Srs2 is capable of dismantling Rad52, while the multiple RPA, Rad51 and 

DNA binding sites present on Rad52 allow it to quickly rebind after passage of an Srs2. Future studies will 

be necessary to explore the impact of Rad51 mediators on Srs2 translocation. However, our results argue 

against a direct action of Rad52 as an antagonist of Srs2 binding or translocation on RPA-ssDNA 

filaments. Instead, our findings suggest that, by releasing Rad52 from ssDNA, Srs2 helps redirect Rad52-

dependent Rad51 presynaptic filament assembly to alternative locations128. 

Chapter 1 detailed the mechanisms of SSA as an alternative NHEJ pathway that is reliant upon 

both RPA and Rad52. The finding that Srs2 removes Rad52 from RPA-ssDNA suggests the possibility 

that Srs2 could antagonize this error-prone pathway. In contrast to this idea, srs2 deletion resulted in a 

decrease of SSA194. The double rad51 mutation suppressed the decreased frequency of SSA in the srs2 

mutant, indicating that while Srs2 might inhibit both HR and SSA, the kinetics of building Rad51 filaments 

in srs2 deletion outpaces those of SSA by Rad52. 

 

5.6 SRS2 IS DIRECTLY RECRUITED TO HETERODUPLEX DNA JOINTS 

Genetic and biochemical studies have implicated Srs2 in disrupting strand invasion intermediates 

such as D-loops and extended D-loops27,130,191. The ability of Srs2 to disrupt these structures is thought to 

play two important roles during homologous recombination. First, Srs2 dismantles inappropriate 

intermediates, some proportion of which may be comprised of D-loops. Second, Srs2-mediated 

heteroduplex DNA disruption promotes synthesis-dependent strand annealing (SDSA), and in doing so 

suppresses the formation of crossover recombination products, which is important to prevent loss of 

heterozygosity and chromosomal rearrangements. These studies raise the question of how Srs2 is 
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targeted to strand invasion intermediates. Our findings show that Srs2 can engage dsDNA paired with the 

Rad51-ssDNA presynaptic complex by either translocating along the Rad51-ssDNA until encountering the 

DNA joint, or by binding to the heteroduplex DNA joint directly. Indeed, our finding that over half of all 

observed Srs2 recruitment at sites of Rad51-filament bound dsDNA is especially notable given that there 

were only ~3-5 dsDNA fragments bound per ~35,000 nt of presynaptic ssDNA, and would correspond to 

≤2% of the total available DNA present66,73. These considerations highlight the strong enrichment for Srs2 

binding interactions with the bound dsDNA molecules compared to the remaining portions of the 

presynaptic complex and support a model in which Srs2 is directly recruited to Rad51-generated 

heteroduplex DNA joints. 

It should be noted that the DNA structures created by our SM experiments do not contain a 3-

ssDNA end that is invading a dsDNA template as would be expected for a properly paired D-loop. 

Instead, the structures we generate are likely to be recognized as improperly paired intermediates. While 

fully homologous 70mer dsDNAs would also not represent a proper D-loop, measuring Srs2 activity on 

these structures would add to our knowledge of how Srs2 potentially mediates HR (Figure 5-1B). 

 

5.7 CONCLUDING REMARKS 

Here, we have established methods for examining anti-recombinases in real time as they act on long 

ssDNA substrates mimicking early homologous recombination intermediates, and these experiments 

have provided insights into the action of Srs2 on HR intermediates. Other helicases, such as yeast Mph1 

and mammalian FBH1, RECQ5, and RTEL1, have been implicated in the regulation of homologous 

recombination either via disruption of the Rad51 presynaptic filament or strand invasion 

intermediates175,176,195. Preliminary experiments with RECQ5 on HsRAD51 filaments indicate this helicase 

functions similar to Srs2 in presynaptic filament disruption and underscore the general utility of the assay 

to study helicase-mediated regulation of HR (Figure 5-3). 

However, we have only a rudimentary understanding of how Srs2 and other regulators of 

homologous recombination act to prevent the formation of aberrant recombination intermediates. 

Moreover, Rad52, Rad55-Rad57, and the SHU complex, have all been implicated in the negative 
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regulation of Srs2 activity87,92,128. Future studies using our single molecule assays will likely shed light on 

the mechanisms of anti-recombinases and how the activities of these DNA motor proteins are regulated 

by the aforementioned factors and their orthologs in other eukaryotes. 
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