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A b s t r a c t . This report can be viewed as an appendix to and a continuation of the paper
[10]. Some remaining or alternative proofs are given here (§§1,3); also new concepts are 
studied like ‘almost c-compactness’ in cases where the base field is allowed to be not 
spherically complete (§5). The remaining sections are elaborations of themes appearing 
in [10].

Thrminology. Throughout we shall freely use notations and conventions of [10].
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1. THE IM A G E  OF A N  E D G E D  c -C O M P A C T  S E T
In §1 we assume that the valuation of i f  is dense. The following was obtained indirectly 
in [10], 7.3; here we present a direct proof.

Proposition  1.1. Let E>F be Hausdorff locally convex spaces over a spherically com
plete K t let T  e  £(E,  F) and let A c  E be edged and c-compact. Then TA  is also edged 
(and c-compact).

Proof. The c-compactness of TA  is well known [11]. Let x G (T A )C; we prove that 
x G TA. For each A G K } |A| > 1 there is an a G A with Ta  =  A~*x i.e., T(Aa) =  x. 
Hence, V\ := T ~ l (x) n  ^  is not empty. Also, each V\ is convex and closed in A A, 
hence c-compact. FVom

Xyf i€K,  1 < |A| < |/i| => VxCVft

it follows that the V\ have the finite intersection property. By c-compactness

0  i  f){V \  = A € K, |A| > 1} -  T '^ x )  n A* =  T ” 1 (x) n A.

Therefore there exists an a G A with x ~ T a  G T A

R em ark  1. If we relax the c-compactness condition into, say, just completeness, 
the conclusion of Proposition 1.1 no longer holds. In fact, let E  := Co, F  := K t let 
Ai, A2,. -  G K ,  0 < |Ai| < IA2I < ..., lim |A„| ~  1. The formula

n —*oo

00

ƒ ( ( £ “  y^^nAn
n = l

defines an ƒ G Cq that sends the closed (edged) unit ball of E  onto B ^  which is complete 
but not edged.

.Remark 2. Let K  be not spherically complete. Corollary 7.4 of [10] shows that a
complete edged compactoid whose continuous linear image is always complete and edged
must be finite-dimensional. But the story does not stop here: there is an example of an
edged (complete) compactoid A in K 3 and a linear map T : K 3 —*■ K 2 such that TA
is not edged ([7], 5.4). So an interesting analogue of Proposition 1.1 does not seem to 
exist.

Hemark 3. In this context the following result may be worth mentioning. It can be 
viewed as an extension of Theorem 6.28 of [3].
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Let K  be not spherically complete, let A be a bounded absolutely convex subset of some 
Hausdorff locally convex space over K , Suppose for each continuous module homomor
phism if of A into a Hausdorff topological B#-module we have that y>{A) is complete. 
Then A is finite-dimensional.

For the proof first observe we may assume that A is a compactoid (consider the weak 
topology on A). So Ac is a complete and edged compactoid hence in Cx. For any X  € Ck  
and ip € Horn(<4, X )  we have <p{A*)c =  is complete hence Ae is epicompact and
by [10] Proposition 7.1 it is equal to Be* where E  is strongly normpolar. Let D  be 
a subspace of E  that is of countable type; we prove that D  is finite-dimensional. Let 
T  : D  *-+ E  be the inclusion map. Then T 'B e• is (for the ^/-topology of D f) metrizable 
so it can be embedded into Co. For every if-Banach space F  and S  € £(co, F) the 
set ST*Be* is closed in F. By [3], 6,28 dimT'BE* < oo. Then, since T* : Ef —► D' is 
surjective, D f = [T'Bb*] is finite-dimensional hence so is D.
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2 . S T R I C T  Q U O T I E N T S  OF  c0

The main part of this section is independent of [10]. It is only Theorem 2.7 in which 
the connection with the theory of [10] will be established.

If E , F  are spaces of countable type over a field K  with a dense valuation and if E  is 
infinite-dimensional then there exists a quotient map tv : E  —> F. This interesting fact 
was proved in [3]. Here we shall consider the question as to what happens if we require 
7t to be a strict quotient map.

If K  is spherically complete the answer is simple:

P roposit ion  2*1 . Let E ,F  be K-Banach spaces of countable type where K  is sphe
rically complete. The F is a strict quotient of E  if and only if F  is (isometrically) 
isomorphic to an orthocomplemented subspace of E.

Proof.  If F  is ortho complemented in E  then there is a projection P  : E  —*■ F  with
< 1, PE  as F. Obviously P  is a strict quotient map.

Conversely, let n : E  —* F  be a strict quotient map. By [4], 5.5, F  has an orthogonal base 
yi}V2t —  By strictness there exist XitX2t . . .  e  E  with 7r(a:n) =  yn and ||jen || =  ||yn || 
for all n. For Ai, A2, * - ♦, A„ £ K  we have

n n
m a x  U r l i l i  >  >  | |tt( ^  A ^ O H  =

1 t = l  i ~ l  
n

= II5 ^  A<Vil[ = max | |Aij/i | |  = max H^Xil
t=l

It follows that x \ , Z2, ■ - ■ is an orthogonal system in E. The map r  o 7r, where r  is given 
by the formula

O O  O 0

Ajj/j) =  ^ 2  XiXi 
i=i t=i

is an orthogonal projection of E  onto a subspace isomorphic to F.

To find further results (that will be interesting only in the case where K  is not spherically 
complete) we introduce a concept that might also become useful in other parts of p-adic 
Functional Analysis. Recall that for a subset X  of a Jf-Banach space E  the set co X  is 
by definition the smallest closed absolutely convex set containing X .  We now define

OO

ÌCCjY :— An^n ♦ An £ Bfi^Xn G Xy lim IjÀn^nll — 0}H-400n=l
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(the set of all infinite convex combinations of elements of X ).  Obviously X  C iccX C 
coX and iccX is absolutely convex. If X  is i-orthogonal for some t G (0,1] then 
iccX =  coX. To see that equality does not hold in general let E  :=  (C(2p —*- JcT), || H^) 
where K  D Qp and let X  := {eo, ej, e2, . . .} where en(x) =  xn (x G Zp) for each n. 
Then iccA* contains only analytic functions, but the function x i-* w(x) := lim xp" is 
in c o X } is locally constant, not constant so it is not a member of iccX.

n —too

L e m m a  2,2 . Let A be a bounded clopen absolutely convex subset of a Banach space E  
of countable type. Then there exists a countable set X  in A, away from 0, such that 
A — iccX.

Proof.  The Minkowski function of A is a norm || || inducing the topology on E. We 
consider two cases.
1. Suppose the valuation of K  is discrete. Then A ~  {x € E  : ||x|| < 1 } and 
j|x|| e \K\ for all x G E. Now E  has an orthonormal base e i ,e2, . . .  and we have
A =  co{ei,e2, . . .}*= icc{ei, e2, . ..}.
2. Suppose the valuation of K  is dense. We have

&e {x £ E  : ||x|| < 1} C A C {x 6 E  : ||x|| < 1} =: B E

Let /z G K y 0 < \fj,\ <  1, and choose a |/z|-orthogonal base e i ,e2i*<* of E  for which 
\fA < l|c»|| <  1 for each i. Set X M := {ei, e?,. . We prove that

/¿2A c  iccX^ C

In fact, let x — ^*e* G Then ||x|| < |/i|2 so |/z|2 > II II >
|/i|max||A^e»|| > |ji|2 max|Ai|. It follows that |A{| < 1 for all i, hence x G iccX^.

OO

Also, if x G iccXp then x =  £  where A,- G B k  so that ||x|| < max||Ajfij|| < 1 i.e.,
i=i

x G B  i
By repeating the above argument for ß  G {/¿i, /i2, •. •} where ßn G K y 0 < |/xi| < \m\ <

OO

. . l im |/z„| =  1 we find easily that B g =  iccV" where Y  :=  (J X hn.
n*-+ oo n̂ =l

Now to complete the proof let Z be a maximal orthogonal system in A \B g .  Then Z is 
countable and orthonormal. If x  G A \ B ^ t x & Z  then ||x|| =  1 and by maximally there

n
exist Ai , . . . ,  An G K  and distinct z u . . . , z n G Z such that ||x -  £  A {Zi\\ < ||x|| =  1.

¿=1

So, x — 53 ^ i z % e &E  an(  ̂ ^  follows that x G icc(^ U K ). Hence, A — iccX where

X ^ Y U Z .

A first application:
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T h e o r e m  2.3. The strict quotients of co are precisely the K-Banach spaces F  of 
countable type fo r  which ||F || =  \K\.

P ro o f . T h a t all strict quotients have the required form is obvious. Conversely, let F  
be a Banach space of countable type, ||F\\ =  K . The ‘closed’ unit ball B p  is by Lemma 
2.2 equal to  iccX where, say, X  =  {xi ,£2> • • * } j  and inf ||:rn || > 0. The formula

OO

7r((Al, A2, . . 0) =  AjJt
i= 1

defines a if-linear map 7r : Co —> F  whose norm is <  1. Because ||F || — \K \t to prove 
strictness it suffices, for a given z G F , \\z\\ =  1, to find an x  G cq with 7r(a:) =  z, ||x|| =  1.

DO
Let z  =  AiXi where Ai,A2, . . .  G B x.  Then lim | | | |  =  0 and inf ||xi|| > 0 implyi= l i—too i
Xi —+ 0 so x  :=  (Ai, A2j • • •) is in co and tt(x) =  z . FVom \\z\\ =  1 it follows tha t 
||Anx n || =  1 for a t least one n, so certainly |An | =  1 . Then ||a:|| =  1 .

R e m a r k  1 . If K  is not spherically complete there exist spaces F  of countable type with 
||F || =  \K\ but for which a, 6 G F , a _L b =* a =  0 or b =  0. ( i f * ,  see [4], p .68 or any 
subspace of countable type of E  in [4], 5E). These ‘weird’ spaces are all strict quotients 
of co bu t are not isomorphic to a subspace of c q .  This shows tha t the conclusion of 
Proposition 2.1 is not true if K  is not spherically complete.

R e m a r k  2. One may ask which spaces have the same strict quotients as c q .  From 
Theorem  2.3 and the next corollary it follows easily tha t a K-Banach space E  has this 
property  and only if E is the orthogonal direct sum of co and a space F  of countable 
type for which ||F || =  \K\.

C o r o l la r y  2 ,4 . For a K-Banach space E  the following are equivalent.
(a) Each K-Banach space F of countable type with ||F || =  \K\ is a strict quotient of

E .
(¡3) E  contains an orthocomplemented subspace isomorphic to cq.

(7 ) cq 15 a strict quotient of E.

P r o o f .  Left to the reader.

We also can formulate a more general version of Theorem 2.3.

P r o p o s i t io n  2.5, Let F be a K-Banach space of countable type. Then there exists a 
K -B an ach  space E  of countable type with an orthogonal base, for which ||2?|| =  ||F ||, 
suck that F  is a strict quotient of E.
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Proof. ||F ||\{0} is the union of at most countably many multiplicative cosets of 
¡/Cr|\{0}. Choose representatives {rn : n 6 5} where either S  =  N or S  =  { 1 , 2 , . . . , y } 
for some j  G N and set p :== inf r n > 0. By Lemma 2.2 for each n  G S  we haven
( l e f :  ||x|| <  r„} — iccZn where Zn :=  {znx, ¿n2> • • •}, ll^nm|| > pa for all 771 where 
a e  \K\, 0 < a < 1.
Now let E  be the set of all x  =  (Anm)nGs,m€N for which lim |Anm |rn =  0 normed

n + m —*oo
b y i M  ||x|| max|Anm|rn .nfm
The canonical unit vectors enm (n  G «S', m  G N) form an orthogonal base of E . The map

(Anm)n€5,m€N ^  AnmCnm Anm^nm
n ,m  n ,m

is easily seen to be a strict quotient map E  F.

To indicate the connection with the theory of [10], we need the following Icmrna that 
is, in fact, standard.

L e m m a  2.6. Let A }B  be metrizable, absolutely convex subsets of locally convex spaces 
over K ,  let <p : A —► B  be a continuous module homomorphism. Then the following are 
equivalent.
(a) ip is open and surjective.
(/?) For each sequence yi,i/2i - • • in B  tending to 0 there is a sequence X\,X2, . . ,  in A  

tending to 0 such that tp(xn) — y n for all n.

P r o o f ,  (a) => (ft). Let U\ D U% D • • • be a fundamental neighbourhood base of 0 in A 
consisting of absolutely convex sets. Then <p{U\) is open in B  so there exists an m such 
that yn e  <p(Ui) for n > n i. Choose x*, . . . ,  xni _i 6 A with <p(xi) =  t/i for 1 < i < n\ — 1 
and choose xni G U\ with <p(xn i) =  Vm • We also have that ^ ( t/2) is open in B  so there 
exists an n2 >  fti such that pn G ^ ( ^ 2) for n >  n<i. Choose xni+ i , . . . ,  x n2- i  €  Lf\ with 
ip(xt) =  yi for m  < i <  n2 and choose xna G U2 with y?(xn2) =  yna, etc.. Inductively 
we arrive at a sequence x i , X2, . . .  in A with y?(xn) =  yn for all n and lim xn =  0.n—*00
(fi) => (a). Obviously (j9) implies surjectivity. Suppose ip is not open. Then there is 
an absolutely convex open U C A such that <p{U) is not open in B. Then, by absolute 
convexity of ip{U), the interior of ip(U) is empty so that <p(U) is not a neighbourhood of
0 in B. By metrizability of B  there exist 2/1 ,2/21**- G B  with lim yn =  0 but yn £ <p(U)

f t —► OO

for each n. If x \ t X2>. . .  G A with y>(xn) =  yn for each n then x n & U  for each n  implying 
that x i , x 2, . . .  does not tend to 0, a contradiction.

The following theorem provides a partial answer to the final problem of [10], §9.

7



T heorem  2*7. Let D be a dosed subspace of E  : =  c q .  Then the following are equivalent
(а) The adjoint T d : B& B q* of the inclusion map T  : D  —► E  is surjective and 

open.
(¡3) D  is orthocomplemented in E.
(7 ) For every subspace S with D C S C E, dim S /D  < 00, D is orthocomplemented in

S .

If K  is spherically complete these conditions are equivalent to
(б) The quotient map E  —+ E /D  is strict
If K  is not spherically complete we have (f3) =*>■ (£) but not (5) =?► (/?).

Proof* (a) (¡3). Since (0) holds for finite-dimensional D  we may assume that D  
is infinite-dimensional. Then D ~  Co so that Bo> ~  jB/c* ~w it h-the-u/-topology. Let 
ei, e2, . . .  G #D' correspond to the sequence (1,0,0, , . . ) ,  (0,1,0, . , . ) ,  ( 0 , 0 , 1 , 0 , .  
of Bi*>. Then B o f =  lcc{ei,e2,. ■ -} and en —► 0, By Lemma 2.6 we can find / i , / 2,. • - € 
B&  with T df\  =  e„ for each n and f n —* 0.
The formula

OO OO

^ (^   ̂Anen) == Xnfn (Ai j A2> ■ • * ^ Bj()
n = l  n « l

defines a continuous module homomorphism tp : B&  -+ B e '• By [10], Theorem 4.6 
there exists an S  € Horn(E } D) with S d =  ip. The map T d otp is the identity hence so 
is S  o T. We see that S is an orthogonal projection onto D.
The implications (/3) => (a) and (/?) ^  (7 ) are easy. We prove (7 ) =*► (/?). Let 
7r : E  —♦« F /D  be the quotient map. We shall prove that 7r is strict and that E / D  
has an orthonormal base (then we are done since we can define a map p : E / D  —> J? 
for which 7T o p is the identity by ‘pulling back1 the orthonormal base of E /D ) .  Let 
S  be a finite-dimensional subspace of E /D .  Then D  is orthocomplemented in 7r—1 (iS1) , 
say 7x~~l (S) is the orthogonal direct sum of D  and F  where d im F  =  dim S. Then 
7r(F) =  S  and 7r |F  is an isometry. By taking in the above for S  a onedimensional space 
we arrive at strictness of tt. By observing that in the above F , hence also £, has an 
orthonormal base we may conclude that each finite-dimensional subspace of E / D  has 
an orthonormal base. This, together with the fact that E /D  is of countable type, yields 
the existence of an orthonormal base of E /D .  This completes the proof of (7 ) (/?), 
Observe that we also proved (7 ) =*• (¿) in passing. The implication (6) =*► (a) where K  
is spherically complete proved in [10], Theorem 9.5. Finally, let K  be not spherically 
complete. To prove that (5) =>■ (/?) is false, write K% (see [4] p.68) as a strict quotient of 
co (see Theorem 2.3, Remark 1), say, co/D. If D  had an orthocomplement it would be 
isomorphic to K^. Then would be isomorphic to a subspace o f £&, an impossibility 
as K l  has no orthogonal base.
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R e m a rk  1 . If K  is spherically complete and the valuation is dense there exist closed 
subspaces D  oi co that are not ortho complemented ([4], 5.13). Then the adjoint —► 
Boi of the inclusion map is an example of a continuous surjective B k -module map 
between two c-compact sets which is not an open map (See [10], Example 1 .1).

R e m a rk  2. Now let K  be not spherically complete. Then there exist closed subspaces 
D  of cq for which the adjoint £*«> —+ B o i of the inclusion map is not surjective! ([4], 
4.54). But if D  is such tha t B —► Bp* is surjective then does it follow that the map 
is open? In other words, we have the following

P r o b le m . L e t K  be not spherically complete. Suppose D is a closed subspace ofco with 
the property that each ƒ e  D' can be extended to an ƒ € cq such that | |/ | | =  ||/ ||.  Does 
it follow that D  is orihocomplemented?

N o te  to  L em m a 2,6. It is not hard to prove the following variant (see [10], §8 for 
definitions).

L em m a 2 .8 . Let A :B } <p be as in Lemma 2.6 . Then the following are equivalent.
(a) v? is almost pre-open.
(/?) For each A G B ^  and each sequence 2/1 , 3/21-•* in Aip(A) tending to 0 there is a 

sequence ¿ti, X2, . . .  in A tending to 0 such that y>{xn) =  yn for all n.
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3 . A N  IN T R IN S IC  D E F I N IT IO N  O F  T H E  C A T E G O R Y  CK
Recall tha t in [10], 4.2 we defined Ck  to be the category of all absolutely convex edged 
complete compactoids in Hausdorff locally convex spaces over K  with the continuous 
2 3 -module maps as morphisms. This definition, although practical, is rather unelegant 
and clumsy from an abstract point of view. One might prefer a characterization only in 
terms of topological modules so that embeddings in locally convex spaces do not play 
any role. Such an approach is discussed below.

1. A B k -iilodule A is torsion free if Art =  0, A G x  G A implies A ~  0 or x  =  0. 
Obviously, each absolutely convex subset of a K -vector space is torsion free. Conversely, 
each torsion free £ /¿-module A can be embedded into a K -  vector space E  as follows. Let 
D  be the linear subspace of the product K  x A generated by all elements (A, a) — (/¿, 6) 
for which there is a nonzero i' € K  with uX G B k , i//x € B k  and (i/A)a =  Set 
E := K  x A /D  and let i t : K  x A — ► E  be the quotient map. The map i i a n  tt(1 x a) 
is an injective B k -module homomorphism A —► E  and i(A) is absolutely convex and 
absorbing in E . We shall call E the standards extension, write E  »  [A] and view i as 
an inclusion.

2. Let A , B  be torsion free B k -modules, let ip : A —> B  be a B k -module homomorphism. 
Then ip extends uniquely to a linear map $  : [A] —+ [B\. In fact, one is forced to take

(*) $(x) := A” V (^ ;c) (x £ (^])

where A G K } A ^  0 is chosen such that Ax G A. W ithout any trouble one verifies that ,  
indeed, $  is well defined by (*) and satisfies the requirements.

3. FYom 1 and 2 above we may conclude that the category of the torsion free B k - 
modules with the B k -module homomorphisms as morphisms is equivalent to the category 
of all absolutely convex subsets of K-linear spaces with the restriction of linear maps as 
morphisms.

4. A faithful seminorm on a B k -module A  is a map p  : A  [0, oo) satisfying

(i) p(x) > 0

(ii) p(x +  y) <  max(p(x),p(y))

(Hi) p(Az) =  |A|p(a:)

for all x ,y  6 A, A e  B k - If A is torsion free the formula p(x) =  |A|- 1p(Ax) {A €
A ^  0,A:r G A) defines a seminorm p on the standard extension [A], This p  is a 

seminorm in the usual sense i.e. p(Ax) =  |A|p(x) for all x  G [A] and all A € K .  It is the
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unique seminorrn on [A] that extends p. If A admits a separating collection of faithful 
seminorms then A is torsion free (if p(x ) ^  0 then for all nonzero A 6 B k  we have 
p(Xx) =  |A|p(x) ^  0 so that Xx ^  0).

N o t e . The term ‘faithful’ refers to requirement (iii) above. In a more general theory of 
topological B k -modules one may relax (iii) to ‘p(Ax) < |A|p(a;)’ or even ‘p(Ax) < p(x)’ 
but we will not be dealing with it in this paper. Also we shall henceforth drop the 
adjective ‘faithful’ for seminorms on K -vector spaces.

5. A topology r  on a B/f-module A is a BK-module topology, and (A, r)  is called a 
topological BK-module> if the module operations are continuous.

6 . A locally convex topology on a B^-module A is a topology r  on A such that there 
exists a family V of faithful seminorms on A for which r  is the weakest B/<-module 
topology making all p € V  continuous. If A admits a locally convex Hausdorff topology 
then A  is automatically torsion free. If A is a linear space the above notion is identical 
to the usual concept of a locally convex topology.

7. Every absolutely convex subset of a Hausdorff locally convex space is a Hausdorff 
locally convex B^-module in the sense of 6. Conversely, if (A, r)  is a Hausdorff locally 
convex B^-module then A is torsion free (see 4), so the standard extension A —* [A] 
is defined. Let r  be the locally convex topology on [A] defined by the collection V 
of seminorms p (see 4) for which p is a continuous faithful seminorm on A. Then 
t — r\A  and V  =  {q : q is seminorm on \A],q\A is r-continuous}. The topology r  is 
the strongest locally convex topology on [A] that coincides with r  on A. All these 
statements are easy to verify.

8 . Let (A, r)  and (B, v) be two locally convex Hausdorff B*-modules and let </? : A —♦ B 
be a continuous B k -module homomorphism. Then its linear extension $  : [A] -* [B] is 
a continuous linear map ([A],r) — ([B],17).

9. FYom 4-8 above we may conclude that, unth the continuous B k -module homomor- 
phisms as morphisms, the category of the Hausdorff locally convex modules is equivalent 
to the category of all absolutely convex subsets of locally convex spaces over K . From 8 

we infer that in the second category each morphism is, after choosing suitable embed
dings into locally convex spaces, the restriction of a continuous linear map. Why one 
cannot just take any embedding is illustrated by the following example.
Let p e  K ,  0 <  |p| < 1 , let

A ■■= {(6 ,&,•••) 6 CO : Ifni < |p|2n for each n}

B  :=  {(6 , 6 , ■ • •) € co : |f„ | < |pP for each n}.

11



The B k -module map ip ; A —► B  defined by

is continuous (since B  is a compactoid, coordinatewise convergence coincides with norm 
convergence) but its linear extension [A] —* [B] is not norm continuous.

10 . We define a Hausdorff locally convex B^-module A to be a  compactoid if for every 
zero neighbourhood U of 0 and every A € B ^  there exists a finite set F  C  A  such that 
XA C U +  coF, where coF is the B^-submodule generated by F. Finally let us say 
that a torsion free B^-moduIe A is edged if A is edged in the standard extension [j4]. 
With all this, the following is easy to see.

11. The category Ck  of [10] 4.2 is equivalent to the category of all locally convex Haus
dorff complete edged compactoid B k -modules with the continuous B k -module homo- 
morphisms as morphisms.

R em a rk .  The objects of Ck  appear in [10] 4.2 as unit balls of duals of Banach spaces. 
Let us observe that knowing A 6 Ck  as an algebraic object implies already the knowledge 
of the norm on that dual: it is just the Minkowski function of A on [A].

4
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4. K E R N E L S  I N  CK
D efin it ion  4.1. A submodule B  of an A G CK is called Cx-kemel (in A) if there exist 
an X  G Ck and a ip G Hom(A, X )  such that Ker ip =  B.

P r o p o s i t io n  4.2. Let B  be a submodule of A  g Ck, where A *= B& and E  G Bk> 
Then the following are equivalent 
(a) B  is a Ck -kernel
(¡3) For each a G A \B  there exists a ç  Hom(A% B k )  such that (p(a) ^  0, <p(B) =  {0}. 
(7 ) There exists a collection V of continuous faithful (§3,4) seminorms on A such that 

B  =  f|{K er p : p G V }.
(<5) B  is the intersection of a w'-closed subspace of E f and A.
(ei) [ B ] n A  =  B  (where the bar indicates the wf-closure).
(e2) [B] 0  A  *  B  and [B] is wf-closed.

Proof, (a) =► (£2)* Let B  = Ker where ip G Hom(A,A') for some X  G Ck < By
[10] Theorem 4.6 we may assume that X  has the form BF> where F  e  Bk  and by [10], 
Proposition 3.5 <p : B E' Bp> extends to a linear ^/-continuous $  : E f —* F ‘. Then 
[Æ] =  Ker 3> is w'-closed and [B] n  A =  Ker tp ~  B.
The implications (£2) (¿i) => (tf) are obvious,
(Æ) =► (7 ). Let B — H  n  A where A is a w'-closed subspace of E*. Then H — p) Ker 6

eex
for some subset X  of (E \  w f)f. Thus, B  «  Dee* Ker|0|A| and each \9\A\ is a continuous 
faithful seminorrn on A.
(7 ) =* (/?). Let a G A \B .  There is a continuous faithful seminorm p on A such that 
p — 0 on By p(a) ^  0. We may assume that p  < 1 on A. This p extends uniquely to a 
seminorm p on E f which is W -continuous by definition (see [10], §3). Since (E'^bw') 
is of countable type ([9],3.2) there exists a bw*~continuous (hence uj;-continuous by [10], 
Corollary 3.3) linear function $  on E* such that |$ | < p, |$(a)| > $p(a). Then ip := $|A  
is in Hom(A, B k ), tp =  0 on B, <p(a) ^  0.
(0) => (a). For each a G X  := A\i?, choose a <pa G Hom(A,i?K-) such that <pa(o) ^  0, 
tpa =  0 on B . The map

$  : X ^  (<Pa(x))aeX

is a continuous homomorphism A  -♦ B $  where B $  carries the product topology. Now 
B $  is in Ck since it is isomorphic to the unit ball of the dual of cq(X). Hence, $  G 

Hom(A, £ $ )  and B  =  Ker $  is a Ck-kernel.

R e m a rk  2. The separation property (0) can be compared to the more usual ones as 
follows. Let B  be a submodule of A G Ck - Then (see [7]&[6]) B  is pseudopolar <=*■ 
for each a G A \B  there is a G Hom(A, B k ) for which <p(a) ^  <p(B). B is polar <=>
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for each a € A \B  there is a y? € Hom(>i, £*■) for which tp(a) £  <p(B)*. B  is a C^-kernel 
<=> for each a € A \B  there is a y? € H om (A,Bx)  for which <p(a) & [p(B )]. (Observe 
that from this it follows that <p{B) =  {0}.)

R em ark  2. The p-adic Krein-Smulian Theorem ([9], 2.2) says that if E  is strongly 
polar (e.g. if K  is spherically complete or E  is of countable type) a subspace H  of E* is 
w '~closed if and only if H  0  Be* is ^/-closed. The same conclusion holds for arbitrary 
E  G Bk  and finite codimensionai H  ([9], 3.1). Thus, if E  is strongly polar or [B] has 
finite codimension we may add

(ea) [B] n  A =  B and. B  is wf-closed.

to the list of Proposition 4.2. However in general (£3) is not equivalent to (£2), as follows 
from [9], 3.6.

For a Banach space E , for X  C E } Y  C E f we set

X x  := {ƒ € E f : f (x )  «  0 for all x e  X }

Y - ^ ' ^ & e E :  f {x)  «  0 for all ƒ € Y }

Proposit ion  4.3. Let E s  B r ,  The map 9\ : D  ■-+ D 1- D B & is a bijection from the 
set of all weakly closed subspaces of E  onto the set of ail Cx-kernels of B w  Its inverse 
is 82 ' B B

P ro o f» For any X  c  E  the set X x  is tiZ-closed and, by (a) (6) of Proposition
4.2, X x n B E' is a C k -kernel. Also Ô2 maps any B  C Be* into a weakly closed subspace 
of E. To show that 0i and 02 are each others inverses, let D  be a weakly closed 
subspace of E. Then 62O1 (D) =  (D x  n  B ^t)^1 =  =  D\ the final equality holds
since D  is a polar set. Conversely, if B is a C^-kernel in Be> then by Proposition 4.2 

(a) =* (£2) we have B =  [B] Pi Be* and [B] is lu'-closed so that [B]11-1 =  [£]. We find
o,02(B) = 01 (B11-) = b-u-l  n b e, =  n  b e, =  [s] n  b e> =  b .

We also introduce the algebraic version of Definition 4.1.

Definition 4.4, Let B  C A be absolutely convex subsets of a K -vector space. Then 
B is called a kernel (in A) if there exists a K~vector space X  and a homomorphism 
ip : A —► X  such that Ker (p =  B.

It is not difficult to describe kernels in the spirit of Proposition 4.2:
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P r o p o s i t io n  4,5. Let B c  A be  absolutely convex subsets of a K-vector space Y . Then 
the following are equivalent 
(a) B  is a kernel
(/?) For each a 6 A \£  there exists a homomorphism y> : A K  such that tp(a) ^  0,

V7(B) =  {0}.
(7 ) There exists a collection V  of faithful seminorms on A such that B  »  f|{Ker p : 

p  G “P}.
(¿) B  is the intersection of a linear subspace of Y  and A.
(e) [ B } n A  =  B.
(rj) A / B  is torsion free (§3.1).

Proof, (a) =$> (77). The obvious decomposition of tp of 4.4

A ^  X

7 T \ f i

A /B

yields an injection i of A / B  into a if-vector space. Hence A /B  is torsion free.
(77) =>■ (e). If x  G [£] fl A then x — Xb where b e  £ , A 6 K .  If |A| < 1 then x  G B so 
assume )A| >  1 . Then b ~ X ~ lx. With tt as above, 0 — ir(b) =  A"*1̂ ^ )  so that, by (77), 
7r(x) =  0 i.e. x e  B.
The implication (e) => (6) is trivial. To prove (£) =$> (/?), let £  =  H  fl A where H  
is a subspace of Y . Let 7r : V —+ Y /H  be the quotient map and let (Y /H )* be the 
algebraic dual of Y / H . If a G A \B  then a $  H  so there exists an ƒ  G (Y/H)* for which 
ƒ o n(a) ^  0. Then (/?) holds with <p f  o 1r\A.
(p) =>• (a). For each a G A \£  choose a homomorphism ipa : A -+ K  such that <p(a) ^  0, 
<p(B) =  {0}. The map

$ : I H  (v«W)aeA\D

is a homomorphism of A into the K-vector space whose kernel equals £ .
The implications (¡3) => (7 ) and (7 ) =>• (e) are simple.

U

R e m a r k ♦ We have seen in the previous Remark that if E  is not a Krein-Smulian space 
a kernel in A  G Ck that is also closed need not be a £tf-kernel! Now let £  be a Krein- 
Smulian space e.g. E  =  co and let £  be a kernel in B e '• Does it follow that the (w'~) 
closure of £  is again a kernel? (If it is then it is automatically a Cx-kernel). This 
question is part of a more general

P ro b lem . For B  c  A 6 B e 1 , describe the Ck-kernel generated by B i.e. the smallest 
Ck -kernel in A that contains £ .
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It is, of course, the intersection of all Cx-kernels containing £ , but one would also like 
to have a description by means of operations acting on elements of B .

We now define two related notions, needed in the next section.

Definition 4.6.
(i) Let A be an absolutely convex subset of a K-vector space. A subset M  of A  is 

called a (linear) manifold in A if M  is either empty or an additive coset of a kernel 
in A.

(ii) Let A 6 C/c. A subset C  of A is called a Cx-manifold in A if C  is either empty or 
an additive coset of a Cx~kernel in A.

P roposit ion  4,7. Let E  € Bx and let M  C B e 1 be a nonempty subset. Then M  
is a manifold (Ck -manifold) if and only if M  is the intersection of a subspace of E ( 
(w*-closed subspace of E l)  andBg'.

Proof.  If M  «  g -j- B  where B is a kernel (Cx-kernel) and g € B&  then M  =  g +
[5] C\Be' — (p+ [B]) DBe*, and g +  [I?] is ti/-closed when B  is a C^-kerneL Conversely, 
let M  = (h + H) n where H  is a subspace of Ef (w'-closed subspace of E f) and 
h € E f. Since M  ^  0  we can take a g G M. Then h +  H  =  g -\- H  so that M  =  
(g -f H) fl B e > =  g +  H  n B e 1 and H  D B&  is a kernel (Cx-kernel) by Proposition 4.5 
(a) <*=>■ (6) (Proposition 4.2 (a) 4=3- (¿)).
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5. A L M O S T  c -C O M P A C T N E S S
The notion of c-compactness is only useful if the base field is spherically complete; it 
is well known and easily shown that, if K  is not spherically complete, each convex c- 
compact subset of a Hausdorff locally convex space over K  is either empty or a singleton. 
In Theorem 5.2 we show that a somewhat weaker form of c-compactness does make good

♦

sense for non-spheric ally complete base fields as well.

D efin it ion  5 .1 . A compactoid A e  Cjc is said to be almost c-compact if, for every 
collection {Af* : t e  /}  of Ck -manifolds in A for which {Mi 0  XA : i e  /}  has the finite 
intersection property for some A € B # , we have f] Mi ^  0 .

T heorem  5*2. Let E  € Bk • Then E is strongly normpolar if and only if B e' is almost 
c-compact

P roof .  We may assume that the valuation of K  is dense. Suppose E  is strongly 
normpolar. Let {Mi : i € E ]  be a collection of C#-manifolds in B & } let A € B^  be 
such that {Mi D AB& : i E 1} has the finite intersection property. To prove f) Mi ^  0  

we may suppose that {Mi : i e  1 } is closed for the forming of finite intersections. 
Choose, for each i e / ,  any ƒ< 6 Mi for which ƒ< e  A B e 1 (i-e- ||/i|| < |A|). Then by 
Propositions 4.7 and 4.3 there exists for each i a unique weakly closed subspace £)» of 
E  such that M{ =  fi  -f 0  Be*. If j t k £ I  are such that Mk =  Mi D Mj, then
fk + d £  n Be' = Mk = (fk + Di~ n B e 0 n (fk + Dj- n B&)  = fk + D t  n Dj- n Be> —
fk +  ((£>i - f D j)1“)1' D B e We see that Dk =  Di -f D jW and hence {Di l i e / }  is a 
directed set and it is easily seen that the formula

f (x)  -  f i (x)  if i € / ,x  e Di

defines a linear map ƒ : D  —*■ K  whose norm is < |A|. By strong normpolarness ƒ
extends to an ƒ 6 i?£'. Clearly ƒ € f l

tt
Conversely, let B eu almost c-compact. Let D  be a subspace of E t let ƒ G D, || ƒ || < I; 
we prove tha t ƒ can be extended to an ƒ e E* with || ƒ || < 1 (then we are done by [10] 
Proposition 7.1). Let V  be the collection of all finite-dimensional subspaces of D, By 
normpolarness for each F  G V  we can make an f p  € E* such that f p  =  f  on F  and 
||f p || <  |( 1  +  ||/ ||) . For each F  e  V  set

M f :=  / f  4- F x n  B E<-

Each M f is a C^-manifold in B e»- For any A e  K  with j( l+ 1 | ƒ ||) < |A| < 1, the system 
{M p  fl XBEf : F  6 V]  has the finite intersection property. By almost c-compactness,
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f ) { Mf  : F  G V)  ^  0 . Any ƒ  in this intersection is an extension of ƒ. Of course,
f e B E'-

Corollary  5.3. An A G Ck is almost c-compact if and only if A is epicompact in 
the sense of [10], Proposition 7.1. In particular, every metrizable A e  Ck is almost 
c-compact

We also can prove a version of Theorem 5.2 and Corollary 5.3 in which A =  1 rather 
than |A| < 1 :

T h eorem  5,4» Let E  6 Bk • Then the following are equivalent
(a) For every collection : i 6 1} of Ck-manifolds in B e • with the finite intersection 

property we have f |  Mi =  0 .
I

(/?) For each subspace D  of E and each f  € D f with || ƒ  || < 1 there is an extension 
f  € E* of f  for which ||/ || <  1.

(7 ) A is strictly epicompact in the sense of [10] §7.

P r o o f  For (a) <*==>• (/?) just reread the proof of Theorem 5.2 with A G B k  replaced by 
A =  1. For ((3) (7 ) apply [10] Proposition 7.3.

However, from [10], Corollary 7.4 it follows that if K  is not spherically complete and 
(ck) holds then E  is finite-dimensional!

4
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6. H A H N -B A N A C H  P R O P E R T IE S
As an introduction to §7 we study here extensions of continuous linear functions. It is 
well-known ([4], 4.54) tha t the ‘full’ Hahn-Banach Theorem holds if and only if AT is 
spherically complete. Most results of this section will therefore be of interest only if K  
is not spherically complete. Hence, to avoid unnecessary elaborations we

ASSUME THROUGHOUT §6 THAT K  HAS A DENSE VALUATION.

We recall a few notions introduced in [1] (I renamed them slightly).
Let D  be a subspace of a K-Banach space E. We say that D  has the WHBP ( Weak 
Hahn-Banach Property) if every ƒ e  D f has an extension ƒ e  E f,
D  has th e  AHBP  (Almost Hahn-Banach Property) if for every ƒ  G D* and e >  0 there 
is an  extension ƒ  e  E' w ith  | | / | |  <  (1 -f e) || ƒ  ||,
D  has the HBP (Hahn-Banach Property) if each ƒ e  D f has an extension ƒ G E  with

ii/ii =  ii/ ii-

We shall say that an f  e  D f is extendable if it has an extension ƒ e E f. The extendable 
ƒ G D f form a linear subspace E f\D :=  { f \ D  : ƒ G J5;}. We shall also be interested in 
weak closedness of D  and in conditions under which E / D  is a normpolar space. Several 
notions introduced here will return in §7.

P ro p o s itio n  6.1. Let D  be a subspace of a K-Banach space E, let R be the restriction 
map E* —* D*.
(i) D  has the WHBP iff R  is surjective.

(ii) D  has the AHBP iff R  is a (norm) Quotient map,
(iii) D  has the HBP i f fR  is a strict quotient map.
(iv) R E f is (norm) closed in D' iff there is a C >  0 such that every extendable f  G D f 

has an extension ƒ  with || ƒ || < <7|| ƒ  ||.

Proof, (iv) is a simple application of the Open Mapping Theorem, while (i) - (iii) are 
obvious.

P ro p o s itio n  (5.2. Let D  be a (norm) closed subspace of a K-Banach space E. Then
(i) D  is weakly closed iff J e / d  15 injective,

(ii) E / D  is normpolar iff J e / d  &n isometry.

Proof.  Straightforward.

For normpolar if-Banach spaces E  we shall, in Proposition 6.4, characterize normpo- 
larness of E / D  by linking it to certain Hahn-Banach properties of D 1 . First:
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P roposition  6.3 . Let E be a K-Banach space. The map D D 1  is a 1-1 correspon
dence between the weakly closed subspaces D of E  and the w(-closed subspaces of E f. Its 
inverse is S  *-*■ 5 11 (see the preamble to Proposition 4.3).

Proof\ Easy.

P roposition  6.4« Let D be a norm closed subspace of a K-Banach space E  G B #. Let 
7t : E -+ E /D  be the quotient map.
(i) The statements (a) and (ft) below are equivalent 

(a) E /D  is normpolar.
(P) D is weakly closed and for every w*-continuous 9 G (D x)/ and e >  0 there 

exists a w'- continuous extension 9 G E n such that ||0|| < (1 +  c)||0||.
(ii) Also (a)' and (0)' below are equivalent

(a)f E / D  is normpolar and n : E  -* E /D  is strict
(PY D is weakly closed and every wl-continuous 9 G (D± y  has a w* - continuous 

extension 9 € E n with \\9\\ ~  \\9\\.

P r o o f  (a) => (P). The adjoint tt7 : (E / D ) f —*■ E f maps (E / D Y  isometrically onto 
So there is a unique H : (E/D)* —* K  such that the diagram

( E/ DY ^  D x

n \  ye

K

commutes. This ft is continuous with respect to the w f-topology of (E / D )'. Then by
[6], Lemma 7.1 there is a z  G E / D  such that H =  j E / p (z)> and there is an x  G E  
with 7r(i) = z , ||x|| < (1 4- e)||^||. We prove that j&(x) extends 6. Let ƒ G D *L. 
Then ƒ =  7rf(g) where g G (E/D)'  and 9(f)  =  9(Tr'(g)) =  il(^) =  j‘e / o W (p) =  9(z) =  
g(ir(x)) =  f(x).  We prove the norm inequality. By Proposition 6.2, 3b/D is an isometry
so \\jB(x)\\ < Ml < (1 + 6)||Z|| = (l +  e)||iBWII -  (1 +  OIMI = (l +  £)\\9\l
(P) => (a). We prove that j s / o  is an isometry (Proposition 6.2 (ii)). Let z G E / D , 
let e > 0. Then j B / o ( z ) — 9 o n 1 for some tt/- continuous 9 : D L —* K.  There is a 
wl-continuous 9 G E t! making

( E / D) f ^  E '

3b/ d (z) \  [e / *

K
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commute such that ||0|| < (1 -f £ )P ||- Then 8 =  J e ( x ) for some x  6 E  and we have 
3e / d ( k ( x ) )  =  7Tuj B{x) =  7r " o 0 =  0 o 7r' =  J e / d W -  By injectivity o f ^ / o  (Proposition 
6*2(i)) we have ir(x) =  * and so ||z|| > WJe/dMW =  =  ||0|| > (l +  e)_ 1 ||0 || =
(1 4* ~  (1 +  e)_ l ||x|| >  (1 +  e)- 1 ||7r(x)|| «  (1 4- e)“"1 As this holds for
each e > 0 w e  have \\jE/D(z)\\ =  INI*
To obtain a proof of (a)* 4=^ (0Y just read the above proofs with e replaced by 0. 

C oro lla ry  6 .5 .
(i) Let D  be a weakly closed subspace of a reflexive E  £ Bk - Then E /D  is normpolar 

*=* D x  has the AHBP in E'.
E / D  is normpolar and tt : E  —* E / D  is strict 4=^ D x has the HBP in E f,

(ii) Let E  £ Bk and let S be a finite dimensional subspace of E l > Then for every e > 0 

and 0 £ S ' there exists a w*-continuous extension 9 € E n with ||0|| < (1 +  e)||0||.

R e m a rk .  For a dual of Proposition 6.4 see Proposition 6.14.

Let E  6 Bk  j let I? be a closed subspace. If we dualize the exact sequence 0 -♦ 
l

D~*E~^E/D  —* 0 (where E / D  may not be in BjcO we obtain the sequence

0 — ( B / D Y ^ E ^ D 1 0.

It is easily seen that tt; is an isometry and that Im 7r' =  Ker i' =* D 1 . To see when this 
exactness at E f is also in the sense of the norm we consider two obvious seminorms on
E*

pi : ƒ dist ( f , D x ) ~  dist ( /,Im  nf)

P2 : f ^ \ \ f \ D \ \  =  \\if(f)\\

We always have pi > ¿>2*

P ro p o s itio n  6.6. Let D  be a closed subspace of an E  £ B k • The following are 
equivalent
(a) The extendable f  £ D ( form a closed subspace of D f.
(0) The seminorms p \ } and p% of above are equivalent

*+ .

(7 ) There is a C  >  0 such that every extendable f  £ D f has an extension f  £  E for 
which || ƒ  || < C7||/1|.

P roof .  If Im i' is closed then the quotient norm on Im i ' induced by i ' is equivalent to the 
norm on Im if inherited from the operator norm on D \  and we have (0). Conversely, if 
Pi p2 then since i '( / )  p \ ( f )  is the quotient norm hence complete, also i ' (f)  *-* p2( f )  
is complete hence i f(D)  is closed in D'. Finally, (7 ), together with the fact that p\ > P2t 
implies (0) and (0 ) =*► (7 ) is obvious.
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N o te . By reading the above proof one sees that the conclusion of Proposition 6.6 also 
holds for closed subspaces D  of any K -Banach space E.

R e m a r k . One may wonder whether (a) — (7 ) of Proposition 6.6 are always satisfied 
if D is a closed subspace of an E  e Bk> If K  is spherically complete this is indeed 
the case since by the Hahn-Banach Theorem the extendable ƒ 6 D* form all of D f. 
Before looking into the non-spherically complete case we make a small digression by 
-in a sense- generalizing (a) of Proposition 6.6 and showing the p-adic version of the 
well-known classical “closed range theorem5’.

P roposition  6*7* Let E ,F  e Bk , let K  be spherically complete (or, more generally, 
let every continuous linear function defined on a subspace of F have an extension in 
F l). For a T  6 F) the following are equivalent.
(a) T E  is norm closed in F.
(P) T E  is weakly closed in F .
(7) T'F' is w*-closed in E '.

Proof. The equivalence of (a) and (p) is a simple consequence of the extension property 
for linear functionals. To prove (a) => (7 ) we decompose T  as usual:

(*) E - ^ E /  Ker T ^ T E ^ F

where 7r is a quotient map and i is an isometry. Now i f is surjective and T[ is a linear 
homeomorphism. Thus, (Ti oi)f is surjective and T'F1 =  Im 7r' =  (Ker T)x , a u/-closed 
subspace. Finally we prove (7) (a). A glance at (+) tells us that we may assume 
that T is injective. Then T 'F ' is w(-dense in E f (see 7.3). Together with (7 ) this makes 
T* into a bijection. Then so is T n. FYom the commutative diagram

E X. F

Ur
E" — > F"

and the fact that and j p  are isometries we conclude that T is a homeomorphism of 
E  into F implying that T E  is closed.

Next, we shall, for a nonspherically complete K , give an example for which (a) of 
Proposition 6.6 fails. Observe that it also yields a counterexample to (P) => (7 ) of 
Proposition 6.7. In fact we prove much more:
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E x a m p le  6*8* There exists a set I  and a weakly closed subspace D of cq(I) such that 
the set of all extendable f  G D f is not (norm) closed

To establish the example we need some preparations.

P r o p o s i t io n  0.9. Let D  be a closed subspace of a K-Banach space E  G Bk -
(i) An ƒ  € D f is extendable if and only if f  is weakly continuous (i.e. with respect to 

a(E ,E ') \D ).
(ii) D  has the WHBP if  and only i f a ( E , E*)\D =  v ( D y D ').

A *  + 0

Proof* (i) If ƒ G E f is an extension of ƒ G D f then obviously ƒ is weakly continuous 
and so is its restriction ƒ. Conversely, if ƒ G D ( is weakly continuous then, since

^  ƒ

(E t a ( E } E')) is strongly polar, ƒ  can be extended to an ƒ  G (E } a ( E } E')) . Then also
ƒ g E*.
(ii) This follows from (i) (and is also proved in [1]).

Now we start with the construction proper. It is inspired by [4] Exercise 4.L Note that 
our Banach spaces will not be always supposed to be in Bk .
For n G N define the norm || ||n on £°° by

x | | „  ||x ||oo V n dist(rc, co)

and let £%* be the vector space £°° but normed by || ||n . Since the two norms are 
equivalent is, as a locally convex space, a polar space. Let ci, e2, . . .  be the canonical 
unit vectors and hn := (1,1,.■ ■) £ Then ||ei||n =  ||e2 ||n =  • * • — 1 and \\hn \\n =  n.

L e m m a  6*10. Let K  be not spherically complete. Let f  be the function Xhn »-* A 
(A G K )  and ƒ G (£{f)' any extension. Then ||/ || > n\\f ||.

P roof .  Since K  is not spherically complete (¿if) =  (i00)' ^  co so there exists a y  G Co 
such that f ( x )  =  Exjj/* for all x  G i We have

= iDTif -  ^  max I -M in n

ll/ll > sup l/Ce*) I = max Ik

and the lemma is proved.

L e m m a  6.11. Let K  be not spherically complete, There exists a K-Banach space X , 
q weakly closed subspace Y , such that the range of the restriction map X* —> Y* is not 
closed.
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Proof. For X  we take OO
Y  *— < T \ f ° °A •— tn

n = l

with the sup norm || ||. We have the obvious embeddings

i„ : C  —* *  (n 6 N)

and ‘coordinate m aps’

tt„ : X — * C  ( n e  N)-

Set V := [¿i(/ii), 12(^2)} • * •]• To prove that Y  is weakly closed in X  let x  G X \ Y .  Then, 
by orthogonality of ¿1 (/ii), ¿2(^2)» • • *j there exists a j  G N for which 7̂ (a;) & Khj ,  There 
is a <p G (£j°Y for which <p(nj(x)) =  1, ip{hj) = 0 .  Then y? o nj sends a: into 1 and all 
im(hm) into 0 so that tpo nj is 0 on Y } and separates V and {1 }.
Next we prove that the range of X ; —► Y f is not closed. By the note to Proposition 6.6 

it suffices to show that for n 6 N there is a nonzero extendable g G V7 such that for any 
extension g G X f we have ||p|| > n\\g\\. With ƒ as in Lemma 6.10, set g := ƒ o 7rn | Y.  
Then g is obviously extendable, \\g\\ =  ||/ ||.  Now let g G X* be any extension of g . 
Then g o in extends g o in \ K h n — ƒ. By Lemma 6.10, ||£ o in \\ >  n ||/ | |.  Then
llffll > llpotnll > «11/11 =  nllffll-

Construction of Example 6.8. The defect of the result so far is that the X  con
structed above is not in B k * To obtain an example in B k  set E  := cq(I) where /  is 
large enough to allow a quotient map tt : cq{I) —> X } and set D  := 7r“ 1(y ). Then 
D  is weakly closed (Y is weakly closed and 7r is weakly continuous). Consider the 
commutative diagram

D  ^  c0(I)

7TD I J.7T

Y  — y X
i y

where i p  and i y  are the obvious inclusion maps and where no  := ir\D. W ith n and 
g g  Y f as in the previous proof, choose

h =  g o 7ro.

Then \\h\\ =  ||p|| (as ttd is a quotient map). If h G co(/)' is any extension of h it is zero 
on Ker 7r so that it has the form g o n  where g G X f:

24



D ---» co (/)

l^D J.7T

Y --- ►
iy

X

g \

K

/ 9

It is easily seen that g is an extension of g (i.e. g o i y  =  g). FYom the previous lemma 
we know tha t ||^|| > n||^||. Then also \\h\\ =  ||p o 7r|| =  ||^|| > n\\g\\ =  n\\h\\ and, again, 
by the note to Proposition 6.6 , we are done.

N o t e . By ‘properly dualizing* the Example 6.8 one may obtain an example of an 
operator whose range is not norm closed while its adjoint has a w*-closed range (a 
counterexample to (7 ) =*► (a) of Proposition 6,7) as follows. Let I  and D  *—► go (I) be 
as in Example 6.8 and assume in addition that cq(I)  is reflexive. (For example, if # K  
is nonmeasurable then the I  constructed above can be assumed to have a cardinality
< # B x  which is nonmeasurable so co(I) is reflexive by [4] 4.21). The restriction map 
Co{iy —► D ( has not a norm closed range (this we just have proved), we now show that 
its adjoint D " -4 co(/)w as a u/-closed range. (We have to be a little careful as it is 
not sure whether D  is reflexive!). This follows from the fact that D  is weakly closed in 
Co (I) and the following.

L em m a 6*12 , Let E yF  e  B k , let T  e  Hom{B)F). If F  is reflexive and i f T E  is 
w-closed in F  then T f,E ,f is wf-closed in F ft.

P roof ,  Consider the commutative diagram (in which j p  is an isomorphism)

r r \ t t

E" F"

J£?T T JF

E  — ► F
T

Let 9 e  F n\ T nE u; we construct an ƒ  £ F* such that 9(f)  =  1 and (TnE n)(f)  =  {0}. 
Let x €  F  be such that j F(x) =  9. This x  is not in TE.  Since T E  is weakly closed 
there is an ƒ e  F f with ƒ =  0 on T E , f (x)  =  1 . Then 9(f)  =  j r ( x ) ( f )  =  f (x)  =  1 
and for all Q 6 E" we have r"(Q)(/) =  (fio  T) ( f )  =  Q(T o ƒ) -  n(0) = 0. Hence,
( r '£ " )(ƒ ) =  {0}.
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We now shall construct an example tha t looks even more weird than Example 6.8.

E x a m p le  6.13 . Let K  be not spherically complete. Then there exists a set I  and a 
norm closed subspace D  of cq (I) with the following properties.
(i) B q is weakly closed in co(I) while D  itself is not.

(ii) D has codimension 1 in its weak closure D
(iii) The map, assigning to each extendable element of D f its unique extension in (D )f 

is not norm continuous. More precisely, for each n €  N, there exists a non-zero 
f  €  co ( iy  such that \\f | Z^U > n\\f  j D\\.

P roof.  By 6.8 there exists a weakly closed subspace S  of some C o ( I )  such tha t the
*

extendable ƒ 6 S* do not form a closed subspace. Let ƒ € S f be not extendable while 
/ i  > / 2i * • • € &  are and ||ƒ -  /nil —► 0 and set D  := Ker ƒ, E  :== cq(I).
By Proposition 6.9, ƒ  is not <T(Et i?')-continuous so that D  is not o-(i£, E')-c\osed in
»S', hence neither in E  (as S  3s <r(E, Z£')-closed). Thus, TT* =  S  and we have (ii). To 
prove (i) observe that ƒ is, on the unit ball of S t the uniform limit of the f n which 
are extendable hence weakly continuous by Proposition 6.9. Hence ƒ | B s  is weakly 
continuous so B p  =  Ker ƒ n  B s  is weakly closed.
Finally, to prove (iii) observe that, for each n e  N, the ball Z?d (0, n) is weakly closed
and edged hence a polar set. So, let x  e  D  \ D } ||x|| < 1 . Then x £  Bp( 0 , n)  and 
there exists an ƒ 6 E* with \f(x)\ >  1 and |ƒ | <  1 on ¿?/j(0, n). The latter means 
| | /  | D\\ <  Then n \\f  | D\\ <  1 <  |/ (x ) | < || ƒ | D “ || ||x|| < H ƒ | V “ |.

R e m a r k . Statement (i) of above means that D  is closed in the bounded weak topology 
bw but not in w  (see [8]).

We conclude this section by keeping our promise made after Corollary 6.5. We have 
just seen that for closed subspaces D  of an E  € Bk  and f  € E* we may have that 
|| ƒ | i) || <  | | /  | D  ||. This explains why the next Proposition is restricted to weakly 
closed D,

P r o p o s i t io n  6 .14 . (A dual version of Proposition 6.4). Let D  be a weakly closed 
subspace of a K-Banach space E  G Br . Then the following are equivalent
(a) For each f  G J5 ',d ist(/,D -L) =  | | /  | D\\.
(/3) (A ^/-version of polarness of E / V ’L). For any f  E ^ D 1  and e > 0 there exists a 

non-zero vj*-continuous B 6 E ,f that is 0 on D ^ and such that \0(f)\ >
(l +  e )~ ld is t( / ,i? x)||0||.

P r o o f  (a ) => (ß ), We can find a non-zero d € D  such that |/(d ) | >  ( l - t -e)  | | /  
D II ||d||. By (a) we have ||ƒ | D|| =  dist(ƒ ,D x ) and so, by setting Q := jß (d ) we find 
tha t 0 ( DX) =  {0} and \0(f)\ =  \f(d)\ >  (1 +  e)“'1d is t( / l D x )||0||.
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(/3) =* (a). We only have to prove that ||ƒ  | £>|| >  dist(ƒ, D 1 ) ( f  € E'). This is trivial 
for ƒ € D 1- so assume ƒ € E'XD1 . Let e > 0, By (/3) there exists a non-zero 1 6 ^  such 
that j s ( x )  is 0 on D L and \f(x)\  > ( 1 4 -  e)“ 1dist(/, £>-*-)| | . 7 e ( x ) | | .  The first statement 
means x 6 D ±1L =  D  (D  is weakly closed) so that |/(x ) | < [|ƒ | D\\ ||x||. Combined 
with the other inequality this yields ||ƒ | D\\ > (1 4- e)~ ldist(/, I?1 ), which holds for 
each e >  0 and we are done.
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7. O PE R A T O R S B E T W E E N  B A N A C H  S P A C E S  A N D  T H E I R  
A D J O I N T S

By the anti-equivalence between the categories B k  and Ck  ([10]? Theorem 4.6) any 
property of some T  £  H om (£,F) where E ,F  €  B k ,  should be reflected in a dual 
property of T d : Bp* B e 1 which is a homomorphism between compactoids. In fact, 
Theorem 5.1 and Proposition 8.1 of [10] are examples of this duality. In this section we 
shall carry out some more of these translations. Sometimes it will turn out that certain 
properties of T  reflect more naturally in a statement about T l : F f —► E f rather than of 
T d : Bpi

We shall formulate the main results in one theorem and prove it in due course. We need 
a few more definitions.

Let S  be a subspace of the dual of a Banach space E  e  B k • We say tha t E f/ S  is 
w'-polar if for each ƒ 6 E f\ S  and e >  0 there is a non-zero ^/-continuous 6 € E" that is
0 on S  and such that |0 (/)| > (1 +  £)~ld ist(/,£ )||0 ||; in other words, if for each ƒ e  E* 
we have H/l#-11!! =  dist(ƒ, S). (Compare Proposition 6.15)
Further, we introduce Hahn-Banach properties for modules in Ck  (compare the analo
gous properties introduced in the beginning of §6).
Let A be a submodule of a B e  Ck - We shall say that A has the WHBP if every 
cp € Hom(A, B k )  can be extended to a continuous Bx-module map <p : B  —► K \ A  
has the AH BP  if for each A G B ^ and each tp 6 Hom(A, A B k ) there is an extension 
(p 6 Hom (£,£/c); A has the HBP if each ip 6 Hom(A, B k ) can be extended to a 
(p £ Hom(B,B/f).

We also need to extend the definition of [10] §8 to more general objects. Let A, B  be 
topological £j<-modules, let <p : A —► B be a (continuous) homomorphism. We will say 
that ip is pre-open if ip is an open mapping A —* ip(A) (where in ip(A) the restriction 
topology of B). Then ip is open if tp is pre-open and y?(A) is open in B. Further, <p is 
almost pre-open if for each A 6 B £  and each open neighbourhood U of 0 in A the set 
ip(U) 0  Ay?(A) is open in Ay?(A). Finally, ip is almost open if for each A €  B £  and each 
open neighbourhood U of 0 in A the set ip(U) n  AB is open in AB. Observe that, if A 
and B are if-vector spaces ‘almost (pre-)open’ equals ‘(pre-)open’.

ALTHOUGH IT IS NOT NECESSARY AT ALL INSTANCES, ALSO IN §7 
WE SHALL ASSUME, TO AVOID NEEDLESS EXCEPTIONS 

AND COMPLICATIONS, THAT THE VALUATION OF K  IS DENSE.

We now shall formulate the main theorem and -after some comments- spend the rest 
of the section to prove it step by step. For every statement there are references for

$
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a proof and additional information. In the formulation the word ‘homeomorphism1 is 
abbreviated to ‘homeo’. For the term ‘homeo into' see the preamble to Proposition 7.5. 
Recall that w(w/) stands for the weak (weak star) topology, and that the adjoint of a 
T  G Hom(J5, F)  is written T f : F' -*■ E f and that its restriction T'\Bpt —♦ B e* is written 
T d.

T h e o re m  7.1 . Let E ,F  G Bk , let T  e  JJom(Et F), Then we have the following.

1. T  is injective

2. T  is a norm homeo into

3. T  is an isometry
4. T \B e is a w-homeo into
5.a T  is a w-homeo into
5.b T  4s norm homeo tnio, TE has WHBP
6. T  is an isometry, TE has AHBP
7. T  is an isometry, TE has HBP

T fF f is w'-dense in E r (7.3, 7.4). 

<=$> T dB p>W is norm open in E f (7.10).

TdB F> D Bg, (7.10).
4=$* T*Ff is norm dense in E f (7.7). 

T f is surjective (7.5).
T ' is surjective (7.15).
T* is a quotient map (7.15).
T f is a strict quotient map (7.15).

Also we have the following dual statements.

1 '. T* is injective
2'. T $ is a norm homeo into
3'. T f is an isometry
4'. T'\Bpt is a w l-homeo into
5/a. T l is a wf-homeo into
5/b. T $ is a w f-homeo intot T dB F> has WHBP
6'. T ' is an isometrical w*-homeo into, T dB F/ has AHBP
7'. T* is an isometrical w (-homeo inio, T dB Ft has HBP

T E  is weakly dense in F (7.3). 
*4=*- T B e ° is norm open in F  (7.10).

T b T  d  B?  (7.10).
<=► T E  is norm dense in F  (7.7). 
<r=¥ T  is surjective (7.6).

T  is surjective (7.15).
T  is a quotient map (7.15).
T  is a strict quotient map (7.15).

Furthermore we have (the bars in 9 and 9' indicating norm closure)

8. T E  is w-closed in F  
8'. T'F' is w f-closed in E '
9. F / T E  is normpolar 
9'. E ' /T 'F ' is wf-polar

<=> T f ; F 1 —► E f is w l-pre-open (7.11).
T  : E  F  is iu-pre-open (7.11).

<=*> T d : B Ft —* B e* is wf-almost pre-open (7.12) 
<=> T\B e : B e —*• B F is w-almost pre-open (7.13)

Before starting with the actual proof we make a few comments. Let us ‘par abus de no
tation’ denote by 1 , 2, . . . ,  9 resp. 1 ', 2' , . . .  9' either one of the corresponding equivalent 
statements mentioned in the above theorem (rather than the equivalence itself!). It is 
easily checked that (by using the Theorem if necessary)
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7=>6=^5=t»4
I I I
3 =¡>2=*!

7 'a*6'=»5,=»4'

* U ^
3/^2 '= ^ l/

For the general case this is the best possible implication scheme. In fact, if K  is not 
spherically complete the embedding co £°° violates 3 => 4, any compact injective 
operator £°° —*■ £°° conflicts 4 =» 2 the embedding K  —► JCj via A t-* Ae (see [4], p.68) 
contradicts 6 7. The other counterexamples to the missing arrows in the first picture 
are obvious. All these counterexamples have been (or can be) chosen in reflexive spaces, 
so by dualizing we obtain counterexamples to the missing arrows in the second picture.

A counterexample to 7 => 8 and 7 =>■ 9 is furnished by the inclusion map D  «-♦ £°° where 
D  is the subspace defined in [4], 4.J.
There is a slight asymmetry between the statements 1-9 and l ,-9/. In fact, after rea
ding 5-6-7 one might expect in the left hand statements of 5' b,6',7 ' conditions on norm 
topology rather than u/. But it is easy to see that, for example,

T '  is a norm homeo into, T dBp» has the WHBP’ 
is not equivalent to surjectivity of T, The inclusion map T : D £°° of above is not 
surjective while T f is an isometrical bijection (i00)' —► (¿°°)'!
Further asymmetry comes in when we observe that the implication 7 ' => 8' is true! We 
even have 5' 8'; If T  is surjective then Im T f = (KerT)^ is uZ-closed. The embedding 
Co *-► £°° however yields a counterexample for 3' 8' if K  is not spherically complete.
I do not know whether 7' implies 9;, I even do not know the answer to the following 
(easier)

P r o b le m . If D is a closed subspace of E e  Bx such that E /D  € Bx (and E  E / D  
is strict) , does it follow that E f/ D x  e  Bx*?

The asymmetry signaled above appears once more when we consider the special case 
where K  is spherically complete. Then 3,6,7 are equivalent (Hahn-Banach Theorem) 
and so are 2,5,4. The first picture therefore reduces to

3,6,7 => 2,5,4 1

However for the dual case we have that 3',6' are equivalent, also 2',5' (if TB&W is norm 
open then so is T B E =  T B e , and is T B E by the proof of the Open Mapping Theorem),
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and l 7,^  (if T* is injective then T* \ B y  is automatically a w ' ~ho met> mor p hi s m onto 
T* B y  since B y  is c-compact) and the second picture becomes

7' 3',6' 2',5' =s> l',4 '

A final comment on 4 =* 2. We have seen that this implication holds when K  is 
spherically complete, not in general But we do have the following,
Let E  be an (OP)-space (i.e. each weakly convergent sequence is norm convergent, ace
[2]). Suppose T  £ Horn(E t F), let T\B$ be a w-homeomorphism into. Then T  %s a 
norm homeomorphism into (i.e. 4 2 holds). The proof is simple. In fact, it suffices to 
prove that T\BE is a norm homeomorphism into, so let x i , x 2i • • > t € B e be such that 
||!Txn || —► 0. Then Txn —* 0 weakly, hence xrt —» 0 weakly By assumption, (jx„|| -♦ 0. 
We leave it to the reader to establish a ‘dual* theorem.

Before starting with the proof of Theorem 7.1 we first present a counterpart of [10] 
Proposition 3.5. Recall that the bounded weak topology bw on a JC-Banach space E is 
the strongest locally convex topology that, on bounded sets, coincides with the weak 
topology w.

L em m a 7,2, Let E t F £ B#. For a linear map T : E F the following are equivalent.
(а) T  is norm continuous.
(ft) T  : —* (F, w) is continuous.
(7 ) T  | B e • (BE, w) —+ (F, us) is continuous.
(б) T  : (B, bw) (F, bw) is continuous.

Proof,\ (a) =» (0). Let 11—► x» be a net in E tending weakly to zero. Then (ƒ oT) (xt) —*
0 for all ƒ £ Fl which implies Tx» —> 0 weakly in F. The implication (j.3) =» (7 ) is 
obvious. To prove (7 ) => (<5) first observe that, by definition, from (7 ) it follows that 
T : (E, bw) —* (F,iii) is continuous. Then T  sends (£»ii/~)bounded sets into (lu-)bounded 
sets. If q is a foo-continuous seminorm on F  then q o T  is tu~continuous on bounded sets 
hence bw-continuous and we have (0). Finally, suppose (6). FYom [8], 1.5 it follows that 
(Etbw) and (2?, || (I) have the same bounded sets. Then T  sends norm bounded sets 
into norm bounded sets and (a) follows.

P roposition  7.3. (Proof of 1 and 1' of 7.1) Let T  £ Hom(Ei F) where E ,F  £ Bk - 
Then
T is injective T fF * is w*-dense in E ‘
Tf is injective <=> T E  is w-dense in E.
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P ro o f.
(i) If T  is injective then let 0 G ( E \  wf)f be zero on T 'F '; we prove tha t 0 =  0. By [10] 
Corollary 3.3, 6 =  j E{x) for some x G E. Then 0 =  6(T' f )  =  T f ( x )  =  f ( T x )  for all 
ƒ G F '.  By polarity of F we have Tx  = 0, by injectivity, x  =  0, hence 0 =  0. Conversely, 
let T'F'  be tu'-dense in E f} let x G E  and Tx  =  0. Then T '( /)(x ) — f ( T x )  =  0 for all

______________u /

ƒ G F ' so, by assumption, p(:r) =  0 for all g G T 'F ' =  F ' so, by polarity of F , x =  0.
(ii) Let V  be injective. Let ƒ G F \  f  =  0 on T E . Then 0 =  /(T x ) =  T '( /) (x )  =  0 for 
all x G E  i.e. T ' /  =  0. It follows that ƒ =  0 and T E  is u>-dense in F . Conversely, let 
T E  be tu-dense in E  and let T*(f) =  0 for some ƒ  G F '. Then ƒ o T  =  0 so ƒ =  0 on 
T F  hence on TFT*1 =  F. We see th a t ƒ =  0 and T l is injective.

We now formulate this result in terms of T d rather than T.

P ro p o s i t io n  7.4. Let T  G Hom(E, F) where F , F  e  Bk - Then the following are 
equivalent.
(a) T  is injective.
(P) T d is an epimorphism in the category Ck •
(7 ) If X  G Ck and ip G Hom(BEr%X ) } tp =  0 on T d( B Fi) then ip =  0.
(<5) If  ip g Hom(B£?/, B k ) , <p =  0 o n T d(BFt) thentp^O.
(e) I f  p  is a continuous faithful seminorm on B& that is 0 on T d( BFt) then p  =  0.
(77) The Ck -kernel generated by T d(BFf) is B e '■

P ro o f. Injectivity of T  is equivalent to lT  is a monomorphism in Z?#1. Then (a)
(P) follows from the anti-equivalence between B k  and Ck  ([10] Theorem 4.6), and 
(P) <=*■ (7 ) is true by definition of ‘epimorphism’. (7 ) => (<S) is obvious. The 
equivalence of (£), (e), (ry) follows from Proposition 4.2. Finally, to prove (7 ) (a) 
observe that if x G F , Tx  =  0 then jE(x) (Tl ƒ) =  0 for all ƒ G F ' so j E{x) \ T d(BF>) =  0. 
Then Je{x)  =  0 by (7 ), so x  =  0.

For the next lemma, recall [10] that a map a  from a topological space X  into a topolog
ical space Y  is said to be homeomoryhism into if a  : X  —*■ a ( X)  is a homeomorphism 
where arpf) carries the inherited topology.

P r o p o s i t io n  7.5. (Proof of 5° of 7.1) Let T  G Hom(E^F) when F , F  G Bk • Then the 
following are equivalent
(a) T  : (F, w) —*■ (F, tu) is a homeomorphism into,
(P) T  : (F, ¿>w) —> (F, bw) is a homeomorphism intox 
(7 ) T* : F ; —* El is surjcctive.

P ro o f ,  (a) =*► (p ). By Lemma 7.2 it suffices to show tha t T ~ l : ( T E ybw \ TE)  —► 
(F, bw) is continuous. That is, we have to prove that if i »— jSi is a bounded net in T E
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with w — lim Zi = 0 then bw -  lim T ~ lz% =  0. In fact, the net t Zi is weakly bounded
i i

hence so is i *->■ T -1^  by (a). Also by (a), w  — limT'"’1#  =  0, which by boundedness 
implies bw — lim T ^Z j =  0.
(/?) => (7 ). Let 9 e  E f. There is a unique linear map h : T E  —► K  making the diagram

E  T E  F

9 \  S h

K

commute. By (/?) this h is continuous for the restriction to T E  of the bw-topology of 
F. Since (F, bw) is of countable type ([8J, 1.5) h extends to an ƒ € (FrbwY =  F f ([8],
1.5). So, g =s 71' /  and T is surjective.
(7) (a). Let i h  i j  be a net in E  such that w -  HinTx* =  0. Then T f(f) (xi )  = 
f [Txi )  —*• 0 for all ƒ  e  F ' implying g(xi) —+ 0 for all g €  T 'F ' =  E We see that x* —► 0 
weakly. This, together with Lemma 7.2, proves (a).

9

R e m a rk , The following direct proof of (7) => (¡3) may also be of some interest. Let
bw — lim Txi =  0 where i X{ is a net in F . Let p be a ¿^-continuous seminorm on t
E. Then by [8], 1.4 (a) =>■ (e), there exist G E* with ||/n || —♦ 0 such that
p < m ax |/n |. By (a) and the Open Mapping Theorem there exist g u S 2y >  £ F* withn
T*gn =  fn for each n and ||^n|| —► 0. Then max|p„| is a feu;-continuous seminorm and

n
p(z<) < max | / n |(xj) =  max |0n(Tx*)| —► 0. We see that bw — lim X* =  0*

n  n  t

We also have a dual version of Proposition 7.5:

P roposition  7.6. (Proof of 5'a of 7.1) Let T  e  Hom{E,F) where E ,F  € Bk - Then 
the following are equivalent.
(a) T  : E  —► F  is surjective.
(/?) T ' : (F ;, it/') ~+ (F ', tu') is 0 homeomorphism into.
(7) T ' ; (F ', 6u/) —► (F ', bwf) is a homeomorphism into.

Proof,\ (Similar to the one of Proposition 7.5) (or) =* (/3). Let i m be a net in F ' 
such that w f — limT'#* =  0. Then gi(Tx)  =  T fgi{x) —► 0 for all x G E,  hence ► 0 
pointwise on T E  »  F . In other words, u> — limp*- =  0. With [10] Proposition 3.5 this 
yields (/?).
(0) (7 ). It suffices, by [10j Proposition 3.5, to show that (T*)~l : (T'F^bw*) 
(F',feit/) is continuous. So let i gi be a bounded net in T 'F ' with w ' — lim <7» =  0.
Then the net i (T ')““1̂  is «/-bounded by (¡3), Also by (/?), u/ — lim (T ')"1̂  =  0

t

which by u/-boundedness implies bw' — lin^T ')“ 1#  =s 0.
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(7 ) =» (a). Let y  € F.  There is a unique linear map h : T ' Ff K  making the diagram

p t  JL> t ' F '  E '

j> ( y ) \  / h

K

commute, By (7 ) this h is continuous if on T*Ff is taken the 6u/-topology inherited 
from E f. Since bw' is of countable type ([8], §2) h extends to a Ô € (E',bw'y =  Je (E)  
([8], 2.1). So j p(y)  =  T l(j&(x)) for some x G E,  hence for each ƒ 6 F* we have 
f (y)  =  J(Tx).  As F  is polar, y =  Tx.  We see that T  is surjective.

R em ark . If X } Y  are if-Banach spaces and T  : X  —* Y  is a continuous linear map the 
following are equivalent. (The bar indicates norm closure.)
(а) T  is surjective.
(P) There is a A £ K } A ^  0 such that T B x  3  XBy.
(7 ) There is a A e  K ,  A ^  0 such that TI?* D A By.
((7 ) ^  (/?) is the Open Mapping Theorem, (a) (7 ) and (P) => (o?) are obvious.) 
Thus in Proposition 7.5 we may add (Æ) and (e) to (a), (/?), (7 ) where 
(<5) There is a A e B k , A ^  0 such that T*Bp> 3  AB e*
(e) There is a A G I?«”, A 7  ̂0 suc/i that T'Bp' D \ B e*>

Similarly we may add in Proposition 7.6
(б) There is a A £ B k,  A ^  0 suc/i ¿/îü£ 77?# D XBp 
(e) There is a A e B k ,  A ^  0 such that T B e  D A Bp.

These rather trivial observations furnish a nice comparison between 2,3,5 resp. 2', 3', 5' 
of Theorem 7.1.

Looking at Lemma 7.2 and Proposition 7,5 one might guess that also *T | B e is a 
w- ho mco morph ism into’ is equivalent to surjectivity of T. But this is not the case:

P ro p o sitio n  7.7. (Proof of 4 and 4/ of 7.1) Let T  € Hom(Ei F) where E }F  G Bk  • 
Then
T  11?# is a w-/iomeomor7)/»sm into Bp <=t> T 'F ' is norm dense in E ' 

is a u/^/iomeomorp/iism of Bp> into B e* T E  is norm dense in F.

Proof,  The second equivalence is [10] Theorem 5.1 (i). We shall derive the first one 
from it and the p-adic Goldstine Theorem [10] Proposition 3.4. (Alternatively, one can 
prove it in the spirit of [10] Theorem 5.1 by using Corollary 6.5(ii).) Suppose T  | B e is 
a tu-homeomorphism into. To show that T'Ff is norm dense it suffices to show that in
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the commutative diagram „
B b B P

j e l  U r

Be** — ► Bpu 
T " \ B b

T n | B e » is a a^ '^ ii^-hom eom orph ism  into Bpn. (Apply the second equivalence). 
To this end, let i 0% €  Be** be a net such that T"(6i) —+ 0 in a{ Ff,%F >), For each 
u/-neighbour hood JJ of 0 in E ,f there is, by the second part of the p-adic Goldstine 
Theorem [10] Proposition 3.4 an Xitu with Ha t̂/1| < 2 and J e ^ ^ u )  ~9 i € U .  The pairs 
(i, U) form a directed set in the obvious way. By assumption (i, U) T f/$i tends to 0 
in tr(F", F ') , by construction

(*) (i, U) h- je(xi,u) -  ft —* 0 in *(£", #)•

Hence by applying T n in (*) we find T"jE(z*(t;) -+ 0, in other words, j p ( T x i tu) —► 0 
in a ( F f,yF'). By the first part of Goldstine Theorem j p  is a homeomorphism so that 
T(xi tu)  0 in o( FtF f). By boundedness of the Xi,u and our assumption on T  we find 
£»,(/ - + 0 in cr(F, E')t Then J e ^ u )  —► 0 in a ( Elti E l) and hence, from (*), 6i -+ 0 in
a ( E " , E f).
Conversely, suppose T fF f is norm dense in E*t Let i Xj be a net in B e such that 
Txi  —► 0 weakly in F. Then g(x{) —*■ 0 for all g € T*Ff. Now let h € E f. Then there 
exist <7i,<72j ■ ■ • G T'F* such that ||p„ -  g\\ —► 0. FVom

\h(Xi)\ <  |(/l -  Sn)(x»)l V 19n(Xi

— \\h ~~ || V |^n(^i)l 

for each i and n one arrives easily at h(7») —* 0. It follows that weakly.

R em ark . In the terminology of §4, Definition 4.4 we can say that T  \ B e is a tu- 
homeomorphism into Bp if and only if the kernel in Bp* generated by T dBp / is equal 
to B e*- This is obvious by the observation that this kernel is [TdBp*]r[BE* (Proposition
4.5) and by Proposition 7.7. Compare Proposition 7.4 (77).

We now consider norm homeomorphisms into rather than weak ones. First a lemma.

L em m a 7.8. Let T  6 Hom(E^F) where E 'F  e  6 %, tei X € B/<- The following are 
equivalent.
(a) |A| < i n f { ^  : x  6 E ,x  ^  0}.

(0) ^ [ B f T ' y  3  AJJ*.
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Proof\ (a) => (/?). If (/?) were not true then there is an ƒ G B e* such that A ƒ can
........... ... 0

be separated from T d( B y )  by a w f-continuous linear function, i.e. by a Je {x) where 
x  G E. Thus |A/(x)| > 1 and \Td{Bp>)(x)\ < 1. Prom the first inequality we obtain
1 < |A| |/(x ) | < |A| ||x||, from the second one \g(Tx)\ < 1 for all g G B y  i.e. ||Tx|| < 1 . 
Hence, < |A|, a contradiction.
03) (a). Let x G E\ we prove that ||Tx|| > |A| ||x||. First, let g G T d( B y ) ,  so 
g =  T '( /)  when ƒ G B y .  Then

(*) i K i ) ( - m / ) w i - i / ( r x ) i < i i T x i i .

(*) holds for all g G T d(Bpf), also for all g G T d( B y )  and all g G T d(BF>) . From (/?) 
we obtain that (*) holds for all g G A B e*- Hence, for all h G B e'

|/i(Ax)| =  |A/i(x)| < ||Tx||

We see that, by polarity, ||Ax|| < ||!Tx|| and we are done.

In a similar way we have

Lem m a 7.9. Let T  £ tfom (F,F) where E ,F  6 J3k , let A G B k -
The following are equivalent
(a) |A |< inf{ilf^lt: f e F ’J f O ) .  

(p) CFEb ’Y  3  A D f .

P roof,  (a) => (¡3). If (¡3) were not true then there is an y e  Bp  such that Ay  can be 
separated from (TBe ™)* by an element ƒ of F ' i.e. | A ƒ (y)| > 1 and |/T x | < 1 for all 
x G B e • From the first inequality we get 1 < |A| ||/ || ||2/|| < |A| | |/ | |,  from the second 
one \\T'f\\ <  1 hence ||T '/1 |/|| ƒ |j < |A|, a contradiction.
(0) =* (a). Let ƒ G F f. We have | | r ' / | |  -  ||ƒ o T\\ =  aup{|/(Tx)| : x G B E] =  
sup{|/(z)| : Z G T B s ]  =  sup{|/(z)| : z G ( T B ^ ) * }  > su p { |/(* ) |: z G AB p }  =  |A| ||ƒ || 
and (a) follows.

Corollary  7.10. (Proof of 2,3,2' and 3' of 7.1) Let T  G Hom(E,F) where E , F  6  Bk • 
Then
(1) T  is a norm homeomorphism into <=* T d(Bp>) is norm open in E f.

(ii) T  is an isometry <=* (Td( B y )w )e ~  B e>-
(i)' T' is a norm homeomorphism into T ( B e )W is norm open in F.

(ii)' T" is an isometry <=$ (T(Be )WY  — Bp.

P r o o f  (i) If T  is a norm homeomorphism into then there is a non-zero A G B k  such 

that (a) of the previous lemma holds. But then also (0) is true implying T dBp™ D
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D liB&  for any \i G B # , 0 < \fi\ < |A|. We see that T dBp> contains a norm 
open set and therefore is itself norm open by absolute convexity. The converse follows 
by reasoning ‘backwards’.
(ii) This is a simple application of Lemma 7.8 for A := 1 . (Also this is proved in [10] 
Theorem 5.X (ii).)
The proofs of (i)' and (ii); are similar to the ones of (i) and (ii), but now with the help 
of Lemma 7.9 rather than 7.8.

We look at conditions involving closed range.

P ro p o s i t io n  7,11 (Proof of 8 and 8' of 7.1) Let T  G i/om(i£, F) where E>F G Bk - 
Then
(i) T E  is w-dosed in F  T ' is a w'-open map F' —► T'F'

(ii) T'F' is w'-dosed in E' <i=*> T  is a w-open map E  —► TE,

Here the topology on T'F'  is understood to be the restriction of the ^/-topology of E'\ 
similarly, the topology on T E  is the restriction of the iu-topology of F  (which is not 
always equal to the ur-topology of TE),

P roof.  We first consider (i).
Let U be a u/-neighbour hood of 0 in F'. To show that T'U is a u/-neighbourhood 

of 0 in T fF ' we may assume that

U ^ { g e F *  -, |p(Vi)| < 1, \g(Y2)\ <  1}

where Y\ }Y2 are finite sets in F  for which Y\ C T S ,  [Vi] C\TE =  {0}. (There is a finite 
set Z  C F  such that {g G F f : \g{Z)\ < 1} C U> There are finite-dimensional subspaces 
D \ } D 2 of F  such that Di  C T E , [£>2] H T E  — {0} and Z C D\  4- £>2. Choose bases Y\ 
of D\  and Vj of D 2 such that Z  C co{Yi U >2}*) Choose a finite set X  C E  such that 
T X  =  Vi. We claim that

V := {ƒ G E'  : \ f (X) \  < 1} n  T'F' C T'U.

In fact, let ƒ  G V; we construct a g € F' with g G U and T'g =  ƒ. First choose any
01 G F' with T'gi =  ƒ. Then for each i € X w e  have \gi(Tx)\ =  \T'(gi)(x) \ =  \f(x)\  < 1 
so that |i?i(Fi)| < 1 . Now T E  is weakly closed so by [6], 4.8 there is a g2 € F ' that is 
zero on T E  and g*i — g\ on [Y2], We see that p2 =  0 on 7\E, hence o n T X  =  Y\ and 
hence, with g ;= g\ -  g2, |ÿ(Ki)| =  ItfiW)! < 1* By construction \g{Y2)\ =  0 < 1 . We 
see that g G U and T'g — g o T  =  o T  - 52 o T — g\ ° T  =  T'gi =  ƒ.

I— ! | !
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“■£=". Let a £ TE \TE\  we prove that T'U is not u>'-open in T F ' where U := { f  £ F f : 
| ƒ (a) | < 1 }. For each finite subset X  of TE  we construct a gx  £ Ff such that gx =  0 
on X, <7x(a) = 1 (this is possible since KaC\ [X] =  {0}). These gx form in a natural

way a net. We have Tfgx =  gx ° T ^O  by construction.
Now openness of T'U would imply T fgx € T'U for X  large enough. Then, for such X y 
gx =  ƒ + h where ƒ £ U and h £ KerT'. Now | ƒ (a) | < 1 and h = 0 on T E  hence on 
TE* so that h(a) =  0. It follows that |£x(a)| < 1 , a contradiction. We see that T'U is
not open.
The proof of (ii) runs similarly.

Let U be a w-neighbourhood of 0 in E . To show that TU is a ^-neighbourhood
of 0 in TE  wc inay assume that

U = {x e E : \Yi(x)\ < l,\Y2{x)\ < 1}

where Vi, Vi are finite sets in E( for which Vi C T 'F ', [Y iJnT 'F ' =  {0}. Choose a finite 
set X  C F' such that T'X  = Y\. We claim that

V := {y £ F  : |*(y)| < 1} D TE  C TU

In fact, let y £ V; we construct an x £ U with Tx  =  y. First, choose any x\  £ E  
with T x i = 2/, Then for each g £ X  we have |T '(p)(xi)| =  |<?(Txi)| =  |p(y)| < 1, so 
|Vj(xi)| < 1. Now T'F' is tiZ-closed so by [6], 4.8, 7.1 there exists an x2 € E  such that 
3e{%2) is zero on T'F ' and 3e{x2) =  on [Y2]. Then j s ( x 2) is zero on T 'X  *= yi
and hence, with: x : xi - 0:2, |Yi(x)| =  |Yi(xi)| < 1. By construction |Y2(x)| =  {0}. 
We see that x e U and Tx — j&(xi) o T  — j&(x2) o T = Tx\ ~ y.

Let ƒ £ T*F,W \T fF'] we prove that TU is not u/-open in TE  where U :=
{x £ E : \f{x)\ < 1}. For each finite subset X  of T'F ' we construct an xx  € E  such 
that X(xx)  = {0}, / (xx )  =  1. These x x  form a net in a natural way. We have for 
every g £ F' that g(T(xx)) = Tf(g)(xx) =  0 as soon as T7(g) £ X,  so that T(xx) -* 0 

weakly.
Now openness of TU would imply that T(xx)  £ TU for X  large enough. For such X , 
xx  ~  y +  z where y £ U and z £ Ker T. Then \f(y)\ <  1 and 0 =  T(z) — j'e(z) 0 T ' t 
so j e { z )  — 0 on T'F', hence on its ui'-closure, hence at ƒ. So f(z)  =  0 and | / ( xx ) |  —
|f(y) + f(z)\ < 1 , a contradiction. We see that TU is not open.

The next Proposition is an extension of [10] Proposition 8.1 (iii).

Proposition 7.12. (Proof of 9 of 7.1) Let F, F  £ Bk, let T  £ Hom(E, F).
Then the follounng are equivalent

4
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(a) F / T E  is normpolar (the bar indicates norm closure).
(p) T d : Bpf —» B e• is w'-almost pre-open.

P roo f. Decompose T  as in [10], §5

E ^ T E ^ F

By Proposition 7.7, T (  is a u/-ho meo morphism into. It follows easily that T* is u/- 
almost pre-open if and only if T d is itAalmost pre-open. But the latter is equivalent to 
normpolarness of F / T E  ([10] Proposition 8.1 (iii)).

For the ‘dual’ statement, recall that the notion of (almost) (pre-) openness for general 
topological B k -modules (not necessarily in Cx) were stated in the beginning of this 
section.

P ro p o s itio n  7.13. (Proof of 9' of Theorem 7.1, see also Proposition 6.14) Let E y F  G 
Bk , let T  e  Hom(E, F ) . Then the following are equivalent 
(a) E '/T 'F ' is w'-polar.
(/?) T \B e • B e —♦ B p  is w-almost pre*open.

P roof.  (It resembles the proof of [10] 8,1 (iii), with the difference that Corollary 6.5(ii) 
is used rather than normpolarity.) To prove (p) (a), let ƒ G jE7/\T /F /, e > 0. Choose 
a t G (0,1) such that (1 +  e)_I < t3 < 1. Without harm, assume d is t( /,T 'F ')  > £|[/||. 
Now

U := {x e  B b : |/(* )| < t3||/||}

is a 10-neighbourhood of 0 in B e - Choose any A € B k  with t < |A| < 1. By assumption
TU  ft XT B e is to-open in XT B e so there is a finite set X  C F'  such that

(*) {y e  T B b : |*(j/)| <  1} n  XT B e CTU  n  XTBe .

Now choose a n € K  such that t3||/ | |  < \n\ <  |A|t2||/ || and consider the linear map 
K f  +  [T ' X ] -  K  given by

eZ +  V’ - i / i  (f G K, tp 6 [T'X])

Because |&t| = M ll/ir'llf/ll < ImI | | / | - 1r Idist(/1I ’P )  < r 1M WfV'Uf + v\\ its
norm is <  Il/ll^1* So by Corollary 6.5(ii) it can be extended to a ti/-continuous
H G E" with IInil < || ƒ U^1. Set H =  jE{o)  for some a G E.  Then ||a|| =  ||n || < |A|
so Ta  G AT B e > By construction ft =  0 on T' X  meaning that X(Ta)  — {0}. So by 
(*) (with y  =  Ta), Ta  =  Tb where b e  U. Now set 0  =  jE{a  -  b). Then 0 = 0  
on T 'F ' (since T(a  -  b) =  0). We have | ƒ (a)| =  \Q{f)\ — |/x| while b e U so that
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|j'b (î»)(/)I =  l/(*>)l ^  t3ll/ll < M- We see that l0 (/)l =  m ax (|/(û ) |,|/(6 ) |)  =  |#x| >
¿3||/ || > ¿3||/ll ll^ll > 5 dist(/, Tt/Jt7,/) ||0 || and we are done.
(a) =ï (¡3). Let À G B £, let U be a w-open neighbourhood of 0 in B#, we shall prove 
the existence of a finite set X  C F' such that

(**) TU D {y G XT B e : |* (y ) | < 1}

There is a finite set Y  C E* such that U D {z G B^ : |F (x ) | < 1}, Choose a t 6 (0,1) 
with ¿-2 |A| < 1 and let P  be a projection of [Y] 4- T*F* onto T'F' with norm < i -1 . 
Set X  := P Y  and Z (I -  P)Y.  Then certainly

{ x e B E : \ X ( x ) \ < l ) \ Z ( x ) \ < l } c U

We now prove (**). Let y  G XTBE) \X(y)\  < 1. Then y — Tx  where x € E,  ||a;|| < |A|. 
The map

[y] + TTp;LS[Z]i£ ¥ )  K

is a linear function on [Y] +  T*F\ zero on VF*  and has norm < ||I — P|| ||n:|| < ¿_1|A| 
so, by (a) and Lemma 7,14 below we can extend it to a u/-continuous 0  G E u with 
||0 || < r 2|A| < 1. Let 0  =  3e(z)  where z  G E  and set a x -  z. Then a G B ^. By 
construction j#(a) =  0 on Z. So \Z(a) \ =  {0}. Also X  C T'F* and 0  =  j e ( x )  on X  so 
|X (a)| <  1. We see that a € U  and that y  — Tx  =  Ta G TU  and (**) is proved.

In the above proof we needed the following.

Lem m a 7,14. Let E € B%. For a subspace S of E* the following are equivalent
(a) For each f  G E*\S and £ >  0 there exists a non-zero wf-continuous 0  € E ,f that is

0 on S and such that |0 ( /) | > (1 +  £)~1d is t( /,5 ) ||0 ||.
(0) If G is a subspace, S  C G C E \  dimG /S  <  oo and if ip G G', tp — 0 on S, and 

£ >  0 then (p has a wf-continuous extension 0  G E u with ||0 || < (1 +  e)|MI*
(7 ) If 0 < t < 1, if D is a finite-dimensional subspace of E l that is t-orthogonal to

S  then there exists a wf-continuous projection P  : E* —► D with KerP  D S  and
#p|| <  r dimD.

Proof,  (a) (7 ). By induction with respect to n := dimD. The case n =  1 follows 
directly from (a). For the induction step, let Dj C D 2 be subspaces dimZ>i =  rc, 
dim D 2 =  n + 1 and let D 2 be ¿-orthogonal to S, There is a iu-continuous projection 
P  : E* —► D\ with P S  =  0 and ||P|| < t ~n. Then there is a non-zero g G D 2 with 
Pg =  0. There is a it/-continuous projection Q : E' —► K g  for which ||Q|| < t ” 1. Then 
P  +  Q(I  — P) is readily seen to be a tu'-continuous projection onto D\  H- K g  =  D 2 and 
its norm is < ¿“ n_1 =  ¿-dirn ° 2.
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(7 ) =* iff)- Let G  a subspace, S  c  G C E \  n dim G / S  < oo and let <p e  G \
ip — 0 on S, £ > 0. Choose t € (0, 1) such that t~~n < 1 +  e. Now £  has a ¿-orthogonal 
complement D  in G, let P  : E' —* D  be a projection of norm < t - n . Then 0  := tpo(I -P)  
extends *pt is it/-continuous and has norm < ||y?|| || ƒ — P\\ < ||<p||t~n <
(P) (a) is easy.

Proposition 7.15. (Proof of 5b,6,7,5/b,6'17'of 7.1) Let E ,F  € BK, letT  e Hom(E,F).
Then
(i) T  is a norm homeomorphism into, T E  has the W H E P  V  is surjective.

(ii) T  is an isometry, T E  has the A H  B P  <=$> T 1 is a quotient map.
(iii) T  is an isometry, T E  has the H B P  <=>■ T f is a strict quotient map,
(i)' T d is a w(-homeomorphism into, T dB F> has the W H B P  <==* T  is surjective.

(ii)' T d is an isometrical w l-homeomorphism into, T dBp* has the A H B P  T  is a 
quotient map.

(iii)' T d is an isometrical w*-homeomorphism into, T dBp* has the H B P  T  is a 
strict quotient map.

P roof,  (i). Let T  be a norm homeomorphism, let T E  have the W H B P . Then 
by Proposition 6.9 cr(F,Ff) | T E  =  <r(TE} (TE)'). Now T  is a homeomorphism of 
(E } a ( E % £?')) onto (TE) a (T E t (TE)J)) and we see that T  is a homeomorphism of 
(E,cr(E, E'))  into (Fi a( F1F /)), By Proposition 7.5, T* is surjective. If, conversely, 
T ; is surjective then T  is a w~homeomorphism into by Proposition 7.5. Then T  is a 
norm homeomorphism into (Corollary 7.10) and any ip G (TE)f is a(Ft F')-continuous 
so can be extended to a tp £ F* by the strong polarity of the weak topology. We see 
that T E  has the W H B P .
(ii) and (iii). This is Proposition 6.1.
(i); Let y  € F; we prove the existence of an x £ E  with Tx  =  y . We may assume 
y 6 B f . Then j p(y) \Bpt  is «/-continuous, since T d is a w f-homeomorphism into there 
exists a continuous tp : T B f> —* K  making the diagram

B pf — ► TBpf  + B ei

j F ( y ) \  S v

K

commute. By assumption there is a continuous module homeomorphism ip : B e* K  
such that tp =  ^  o i. This i> is the restriction of some Jb (x ) where x € E.  Then 
( jB(x) o i o T' ) ( f )  =  j F(y)(f)  for all ƒ € F* i.e. f (Tx)  =  f ( y)  for all ƒ e F \  Hence, 
Tx  =s y. By using the same proof but now using the properties AHBP and HBP we 
arrive at an x 6 E  for which Tx  =  y  and ||jT̂  (a?) [| is close to resp. equal to ||ip(y)||-
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This proves the implications “=>” of (i)', (ii); and (in)'. 
We leave the proofs of the converses to the reader.
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