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ABSTRACT

Essays in Cluster Sampling and Causal
Inference

Susanna Maria Mäkelä

This thesis consists of three papers in applied statistics, specifically in cluster

sampling, causal inference, and measurement error. The first paper studies the prob-

lem of estimating the finite population mean from a two-stage sample with unequal

selection probabilies in a Bayesian framework. Cluster sampling is common in survey

practice, and the corresponding inference has been predominantly design-based. We

develop a Bayesian framework for cluster sampling and account for the design effect

in the outcome modeling. In a two-stage cluster sampling design, clusters are first

selected with probability proportional to cluster size, and units are then randomly

sampled within selected clusters. Methodological challenges arise when the sizes of

nonsampled cluster are unknown. We propose both nonparametric and parametric

Bayesian approaches for predicting the cluster size, and we implement inference for

the unknown cluster sizes simultaneously with inference for survey outcome. We im-

plement this method in Stan and use simulation studies to compare the performance

of an integrated Bayesian approach to classical methods on their frequentist proper-

ties. We then apply our propsed method to the Fragile Families and Child Wellbeing

study as an illustration of complex survey inference.

The second paper focuses on the problem of weak instrumental variables, moti-

vated by estimating the causal effect of incarceration on recidivism. An instrument

is weak when it is only weakly predictive of the treatment of interest. Given the well-

known pitfalls of weak instrumental variables, we propose a method for strengthening



a weak instrument. We use a matching strategy that pairs observations to be close

on observed covariates but far on the instrument. This strategy strengthens the in-

strument, but with the tradeoff of reduced sample size. To help guide the applied

researcher in selecting a match, we propose simulating the power of a sensitivity anal-

ysis and design sensitivity and using graphical methods to examine the results. We

also demonstrate the use of recently developed methods for identifying effect modifi-

cation, which is an interaction between a pretreatment covariate and the treatment.

Larger and less variable treatment effects are less sensitive to unobserved bias, so iden-

tifying when effect modification is present and which covariates may be the source is

important. We undertake our study in the context of studying the causal effect of

incarceration on recividism via a natural experiment in the state of Pennsylvania, a

motivating example that illustrates each component of our analysis.

The third paper considers the issue of measurement error in the context of sur-

vey sampling and hierarchical models. Researchers are often interested in studying

the relationship between community-levels variables and individual outcomes. This

approach often requires estimating the neighborhood-level variable of interest from

the sampled households, which induces measurement error in the neighborhood-level

covariate since not all households are sampled. Other times, neighborhood-level vari-

ables are not observed directly, and only a noisy proxy is available. In both cases,

the observed variables may contain measurement error. Measurement error is known

to attenuate the coefficient of the mismeasured variable, but it can also affect other

coefficients in the model, and ignoring measurement error can lead to misleading in-

ference. We propose a Bayesian hierarchical model that integrates an explicit model

for the measurement error process along with a model for the outcome of interest

for both sampling-induced measurement error and classical measurement error. Ad-

vances in Bayesian computation, specifically the development of the Stan probabilistic

programming language, make the implementation of such models easy and straight-

forward.
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1.1 Introduction

We develop a Bayesian paradigm for survey inference under cluster sampling, partic-

ularly in the absence of design information for nonsampled clusters. Cluster sampling

increases cost efficiency when partial clusters are included in the probability sampling

framework. Bayesian inference in this context is essentially outcome prediction for

nonsampled units in sampled clusters and for all units in nonsampled clusters. It is

important to account for design information in the model, but it is often unknown or

inaccessible for nonsampled clusters. We introduce estimation strategies for design

information and connect multilevel regression models to sampling design as a unified

Bayesian framework for survey inference.

We consider two-stage cluster sampling, which involves first sampling primary

sampling units (PSUs) and then sampling secondary sampling units (SSUs) within

selected PSUs. This sampling design requires a complete listing of PSUs and a com-

plete listing of units only within selected PSUs and is thus widely used when gen-

erating a sample frame of every unit in the population is infeasible or impractical.

For example, in designing a nationally representative household survey, generating a

complete listing of every household in the country requires essentially as much effort

as a complete census of all households. Instead, the sampling proceeds in stages,

first sampling PSUs such as counties, cities, or census tracts. The PSUs are sampled

with probability proportional to a measure of size, which is commonly the number

of secondary units in the PSU but can be a more general measure of size, such as

annual revenue or agricultural yield. SSUs are then randomly selected within selected

PSUs, often with a fixed number or proportion. This design assumes invariance and

independence of the second-stage sampling design (Särndal et al., 1992). Invariance

means that the sampling of SSUs is independent of which PSUs are sampled, and

independence means sampling of SSUs in a given PSU is independent of sampling

in other PSUs. In contrast, a two-phase design is one in which one or both of these

assumptions do not hold.
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Our motivating application survey, the Fragile Families (FF) study, was collected

via a multi-stage sampling design, where cluster sampling was as a key step. The

Fragile Families and Child Wellbeing Study (Reichmann et al., 2001) aims to exam-

ine the conditions and capabilities of new unwed parents and the wellbeing of their

children. To obtain a nationally representative sample of non-marital births in large

U.S. cities, the study sequentially sampled cities, hospitals, and births. The sampling

of cities used a stratified random sample of all U.S. cities with 200,000 or more people,

where the stratification was based on policy environments and labor market condi-

tions in the different cities. Inside each stratum, cities were selected with probability

proportional to the city population size. In the selected cities, all hospitals in the

small cities were included, while a random sample of hospitals or the hospital with

the largest number of non-marital births was selected in large cities. Lastly, a pre-

determined number of births were selected inside each hospital. Classical weighting

adjustment for the complex study design results in highly variable weights (Carlson,

2008), which lead to unstable inferences.

Our goal is to develop hierarchical models that account for design effects to yield

robust survey inference. Bayesian hierarchical models are well-equipped to handle the

multi-stage design and stabilize estimation via smoothing. As an intermediate step,

two-stage cluster sampling is crucial in the FF study to select cities and hospitals.

However, cluster sampling presents unique methodology challenges in the Bayesian

context, as little information is available on the nonsampled clusters. In this work, we

use the FF study as an illustration and focus on Bayesian cluster sampling inference

to build a unified survey inference framework. The unified framework can be extended

under a complex sampling design, as discussed in Section 1.5.

We illustrate finite population inference with the estimation of a population mean

in a two-stage cluster sample. Specifically, we consider a population of J clusters, with

each cluster j containing Nj units and a total population size of N =
∑J

j=1Nj. Let

Ij denote the inclusion indicator for cluster j and Ii|j denote the inclusion indicator
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for unit i in cluster j, i = 1, . . . , Nj[i], where j[i] denotes the cluster to which unit i

belongs. Clusters are sampled with probability proportional to the measure of size

Mj, which is known to the analyst only for the sampled clusters. Our goal is to

estimate the finite population mean of the survey variable y, which, for a continuous

variable is defined as

y =
J∑
j=1

Nj

N
yj, (1.1)

where yj represents the mean (proportion) of y in cluster j. For a binary outcome,

we seek to estimate the population proportion, given by

y =
J∑
j=1

y(j)
N
, (1.2)

where y(j) is the population total in cluster j.

Classically, inference in survey sampling has been design-based. The design-based

approach treats the survey outcome y as fixed, with randomness arising solely from

the randomization distribution of the inclusion indicator I. Design-based estimators

have the advantage of being design-consistent, where design-consistency means that

the estimator will converge to the true value as the population and sample sizes

increase under the given sampling design. However, they are often unstable with

large standard errors. For estimating the finite population mean of an outcome yi,

the classical design-based estimator for a single-stage sample s of size n is the Hájek

estimator (Särndal et al., 1992) θ̂H =
∑n

i=1 yi/πi∑n
i=1 1/πi

, where πi is the inclusion probability

of unit i. In the two-stage sample s, when Js out of J clusters are selected with nj

sampled SSUs, the estimator becomes

θ̂H =

∑Js
j=1

(∑nj

i=1 yi/πi|j
)
/πj∑Js

j=1Nj/πj
, (1.3)

where πj is the selection probability of cluster j, and πi|j is the selection probability

of unit i in cluster j given that cluster j was sampled (Särndal et al., 1992).

One major challenge with design-based estimators is variance estimation. Expres-

sions for the variance of design-based estimators generally require knowledge of not
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only the inclusion probability πi for a given unit i, but also the joint inclusion probabil-

ity πii′ for any two units i and i′. This information is often unknown in practice, as in

the case of unknown measures of size for nonsampled clusters under the PPS setting.

Joint inclusion probabilities can be challenging to compute even for straightforward

sampling designs, and variance estimators for design-based estimators are often based

on simplifications and approximations. In addition, the inverse-probability weighting

often leads to highly variable estimators.

Bayesian inference, in contrast, directly models both the inclusion indicators I

and the survey outcomes y. The Bayesian approach to survey inference has many

advantages over the design-based approach, including the ability to handle complex

design features like clustering, better inference for small-sample problems, incorpo-

ration of prior information, and large-sample efficiency (Little, 2004). In addition,

if we are able to include the design variables in our model, the selection mechanism

becomes ignorable and we can model the outcomes y alone, instead of jointly model-

ing y and the inclusion vector I (Rubin, 1983; Gelman et al., 2013). The importance

of including design variables in the model has also been emphasized for missing data

imputation (Schafer, 1997; Reiter et al., 2006).

Unfortunately, in many (arguably most) practical situations, the set of design

variables is not known for the entire population and is instead known only for sampled

clusters or units. In the case of PPS sampling, in which the design variables consist of

the cluster measures of size {Mj}Jj=1, we as the survey analyst may only have access

to Mj (or, equivalently, the probability of selection πj) for the sampled clusters. This

missing data is a problem in the Bayesian setting because we cannot predict the values

of y for the nonsampled clusters without it. We need to model the values of Mj for

nonsampled clusters before we can make inferences about y conditional on the design

information.

Recent Bayesian approaches to this problem (Zangeneh et al., 2011a; Zangeneh

and Little, 2015) consider the case of a single-stage PPS sample. In addition, they
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separate estimation of the missing measure sizes and inference for the finite population

quantities into two steps. In contrast, we propose an approach that integrates these

steps into one model for a two-stage cluster sample. Our model allows for both

cluster- and unit-level information to be used in certain cases. For the remainder of

this paper, we assume the measure of size is equal to the cluster size Nj and use Nj

in place of Mj.

The rest of this paper proceeds as follows. Section 1.2 first gives an overview

of current approaches to estimating finite population totals under PPS and then

describes our approach and its advantages. In Section 1.3, we describe a simulation

study to investigate the performance of our method and other proposed methods. We

apply our method to data from the Fragile Families study in Section 1.4 and discuss

the results and extensions in Section 1.5.

1.2 Methods

In two-stage cluster sampling, a fixed number Js of clusters are sampled with PPS,

so that the probability of cluster j being included in the sample is proportional to

Nj: Pr(Ij = 1 | Nj) ∝ Nj. We only observe Nj’s for the clusters in the sample, that

is, the empirical distribution of (Nj|Ij = 1). Our proposed procedure simultaneously

models the population cluster sizes and the outcome. Let xi denote the auxiliary

variables that are predictive for the outcome.

The observed data are (yobs, xobs, Nobs, x1:J , N, J, Js), where x1:J is the cluster-

level mean of the covariate x for all clusters j = 1, . . . , J , and N , J , and Js are

the total population size, total number of clusters, and number of sampled clusters,

respectively. The subscript obs denotes the observed portions of the variables: yobs =

{yi | i = 1, . . . , nj[i], j = 1, . . . , Js}, xobs = {xi | i = 1, . . . , nj[i], j = 1, . . . , Js},

Nobs = {Nj | j = 1, . . . , Js}, where for convenience we number the sampled clusters

j = 1, . . . , Js and the nonsampled clusters as j = Js + 1, . . . , J .
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The goal is to estimate the finite population mean y, defined for a continuous

outcome as

y =
J∑
j=1

Nj

N
yj =

1

N

(
Js∑
j=1

njyobs,j + (Nj − nj)yexc,j
Nj

+
J∑

j=Js+1

Nexc,jyexc,j

)
,

where yobs,j is the mean of the sampled units in sampled cluster j, yexc,j is the mean

of the nonsampled units in cluster j, and Nexc,j is the size of nonsampled cluster j.

For a binary outcome, the population proportion is

y =
J∑
j=1

y(j)
N

=
1

N

(
Js∑
j=1

(
yobs,(j) + yexc,(j)

)
+

J∑
j=Js+1

yexc,(j)

)
,

where y(j) is the total of all units in cluster j, yobs,(j) is the total of sampled units in

sampled cluster j and yexc,(j) is the total of the binary outcome in nonsampled units

in cluster j.

We assume the continuous survey outcome y is related to the covariate x and

cluster sizes Nj in the following way:

yi ∼ N(β0j[i] + β1j[i]xi, σ
2
y) (1.4)

β0j ∼ N(α0 + γ0 logc(Nj), σ
2
β0

) (1.5)

β1j ∼ N(α1 + γ1 logc(Nj), σ
2
β1

) (1.6)

Nj ∼ p(Nj | φ), (1.7)

where φ are the parameters governing the distribution of the cluster sizes Nj. The

model assumes the regression coefficients are cluster-varying and depend on the cluster

sizes. We use random-effects model to borrow information across clusters. While

fixed-effects model with cluster membership indicators can also be used to quantify

the cluster effect, fixed cluster effects models may increase the variance, as shown

by Reiter et al. (2006) and Andridge (2011) in the context of missing data imputation.

In addition, predictions cannot be made for nonsampled clusters using fixed-effects

models.
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Our model for a binary outcome is identical, except that we modify (1.4) to be

Pr(yi = 1) = logit−1(β0j[i]) (1.8)

and omit (1.6). We do not include a unit-level covariate in the binary case because

the nonlinear nature of the inverse logit makes it challenging to make use of data at

the unit level. Specifically, predicting yexc,j requires knowing xi for all nonsampled

units in cluster j, and if we knew this, clearly we would also know Nj for nonsampled

clusters j as well.

We use the centered logarithms of the cluster sizes logc(Nj) as predictors; we

work on the log scale to better accommodate large cluster sizes and center for inter-

pretation convenience. The sampling is assumed to be ignorable after including the

design variables in the outcome model. We assign an estimation model p(Nj | φ)

to the cluster sizes, which we observe only for the sampled clusters. We develop

both nonparametric and parametric modeling strategies to predict the cluster sizes

of nonsampled clusters.

We use ψ to denote the regression parameters ψ = (α0, γ0, σ0, α1, γ1, σ1, σy), ψ

to denote the parameters of the cluster size distribution, and θ for all parameters of

interest: θ = (ψ, φ). The likelihood for the observed data is

p(yobs | xobs, Nobs, θ) ∝ p(yobs | xobs, Nobs, ψ)p(Nobs | φ),

and the posterior distribution is

p(θ | yobs, xobs, Nobs) ∝ p(yobs | xobs, Nobs, ψ)p(Nobs | φ)p(ψ)p(φ),

where we assume that ψ and φ are independent, allowing us to write p(θ) = p(ψ)p(φ).

Because of the independence and invariance assumptions in the two-stage cluster

sampling, the distribution of the outcome y, given the design variables, is the same

in the sample and the population; that is, the observed data likelihood is the same

as the complete data likelihood,

p(yobs | xobs, Nobs, ψ) = p(y | x,N, I = 1, ψ) = p(y | x,N, ψ),
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where p(y | x,N, ψ) is specified by (1.4)–(1.6) for continuous y and by (1.5), (1.6),

and (1.8) for binary y.

The challenge lies in estimating the distribution of the Nj’s when the sampling is

informative. Under PPS sampling, the probability of sampling a cluster of size Nj

is Pr(Ij = 1|Nj) ∝ Nj, with the population distribution p(Nj) of Nj as specified in

(1.7). The probability of observing a cluster of size Nj in the PPS sample is then

p(Nj | Ij = 1) ∝ Pr(Ij = 1 | Nj)p(Nj)

∝ Njp(Nj). (1.9)

We consider both nonparametric and parametric modeling strategies for the popu-

lation distribution p(Nj). First, we introduce the Bayesian bootstrap algorithm as

a nonparametric approach to predicting the unobserved Nj’s. Second, we investi-

gate two parametric distributional assumptions for p(Nj), the negative binomial and

lognormal distributions. Here our goal is to directly model the distribution of the

cluster sizes accounting for the fact that the observed distribution is biased from the

complete population distribution. Following Patil and Rao (1978), we refer to these

parametric choices as size-biased distributions.

Bayesian bootstrap

For a nonparametric model of the sampled cluster sizes, we take the Bayesian boot-

strap algorithm in Little and Zheng (2007) that was modified by Zangeneh and Little

(2015) for one-stage PPS sampling and apply it two-stage PPS sampling. Without

making parametric assumptions about p(Nj), this approach connects p(Nj | Ij = 0)

with p(Nj | Ij = 1) through the empirical distributions under PPS sampling. Assume

the Nj’s observed for the sampled clusters have B unique values N∗1 , . . . , N
∗
B, and let

k1, . . . , kB be the corresponding counts of these unique sizes, such that
∑

b kb = Js.

Let ψb denote the probability of observing a cluster of size N∗b in the sample: ψb =

Pr(Nj = N∗b | Ij = 1). We can then model the counts k = (k1, . . . , kB) as multinomi-
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ally distributed with parameters ψ = (ψ1, . . . , ψB). The observed likelihood is

Lobs(ψ)

= Pr

(
k1 =

Js∑
j=1

I(Nj = N∗1 ), . . . , kB =
Js∑
j=1

I(Nj = N∗B) | Ij = 1, j = 1, . . . , Js

)

∝
B∏
b=1

ψkbb ,

where I(·) is an indicator function, I(·) = 1 if the inside expression is true and

0 otherwise. The ψ’s are given a noninformative Haldane prior: p(ψ1, . . . , ψB) =

Dirichlet(0, . . . , 0). The posterior distribution of ψ is then

p(ψ1, . . . , ψB|k1, . . . , kB) = Dirichlet(k1, . . . , kB).

Assume the unique values of Nj’s cover all possible values in the population. We

let k?b denote the number of nonsampled clusters with size N∗b , for b = 1, . . . , B and

let ψ?b denote the probability of an unobserved cluster having size N∗b : ψ?b = Pr(Nj =

N∗b | Ij = 0). Then the counts of the B unique sizes among the nonsampled clusters,

(k?1, . . . , k
?
B), follow a multinomial distribution with total J − Js and probabilities

(ψ?1, . . . , ψ
?
B):

p(k?1, . . . , k
?
B | J − Js, ψ?1, . . . , ψ?B) ∝

B∏
b=1

ψ?k
?
b

Using Bayes’ rule, we can write ψ?b as

ψ?b = Pr(Nj = N∗b | Ij = 0)

∝ Pr(Nj = N∗b | Ij = 1)
Pr(Ij = 0|Nj = N∗b )

Pr(Ij = 1|Nj = N∗b )

= ψb
1− πb
πb

, (1.10)

where πb = Pr(Ij = 1|Nj = N∗b ) = JsN
∗
b /N is the conditional cluster selection

probability known in the PPS sample, Js is the number of sampled clusters, and N is

the population size. This approach adjusts the probability of resampling an observed
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size N∗b by the odds of a cluster of that size not being sampled, so that smaller sizes

are upweighted relative to larger ones.

Given the posterior draws of ψ?b ’s and k?b ’s, we create k∗b replicates of the size

N∗b , yielding a sample of the nonsampled cluster sizes from their posterior predictive

distribution. The Bayesian bootstrap for cluster sampling is similar to the “two-stage

Polya posterior” approach proposed by Meeden (1999), which simulates draws that

form an entire population of clusters and then an entire population of elements within

each cluster. Zhou et al. (2016) incorporated weights in Bayesian bootstrap for mul-

tiple imputation in two-stage cluster samples. Si et al. (2015) uses a similar approach

to estimating the poststrafication cell sizes constructed by the survey weights.

The Bayesian bootstrap avoids parametric assumption on the population distri-

bution p(Nj) and use the empirical distribution in the observed clusters. However,

this approach restricts the draws for the nonsampled cluster sizes to come from the

set of observed cluster sizes, where small clusters may be omitted under PPS sam-

pling. This implicitly introduces a noninformative prior distribution on Nj’s. While

the Bayesian bootstrap is a robust algorithm for predicting the unknown Nj’s, we

can achieve efficiency gains with a parametric distribution on p(Nj), especially in

combination with prior information.

Size-biased distributions

Inducing parametric sized-biased distributions follows the superpopulation concept in

the model-based survey inference literature. Sized-biased distributions were consid-

ered by Patil and Rao (1978) for population size estimation. In practice, we may have

some knowledge about the cluster sizes, such as the distribution in a similar popula-

tion. We can incorporate this additional information through the prior distribution

specification. We consider both a discrete and a continuous distribution as candidates

for modeling the size distributions. Using (1.9), we can derive the observed likelihood

based on the considered population distribution.
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For the discrete case, we assume the population cluster sizes Nj follow a negative

binomial distribution: Nj ∼ NegBin(k, p), with k > 0 and p ∈ (0, 1). By normalizing

the distribution in (1.9) and completing the algebra shown as below, we see that the

sizes in the PPS sample can be written as Nj = 1 +Wj, where Wj ∼ NegBin(k+ 1, p)

(Patil and Rao, 1978).

Let Nj denote the size variables in the population, Nj ∼ NegBin(k, p), with k > 0,

p ∈ (0, 1). For m = 0, 1, 2, . . ., the probability of observing Nj = m in the PPS sample

is therefore

Pr(Nj = m | Ij = 1) =
Pr(Ij = 1 | Nj = m)Pr(Nj = m)

Pr(Ij = 1)

=
m
(
m+k−1
m

)
pk(1− p)m∑∞

m=0m
(
m+k−1
m

)
pk(1− p)m

=
m
(
m+k−1
m

)
pk(1− p)m

E[Nj]

=
m
(
m+k−1
m

)
pk(1− p)m

(1− p)k/p

=
((m− 1) + (k + 1)− 1)!

(m− 1)! k!
pk+1(1− p)m−1

=

(
(m− 1) + (k + 1)− 1

m− 1

)
pk+1(1− p)m−1

= Pr(W = m− 1),

where W ∼ NegBin(k + 1, p).

For the continuous case, we use the lognormal distribution. If the population

distribution is Nj ∼ LogNormal(µ, τ 2), then (Nj | Ij = 1) ∼ LogNormal(µ + τ 2, τ 2)

(Patil and Rao, 1978). To see this, let p(Nj) denote the pdf of the size variables Nj

in the population and let w > 0 denote a particular realization of Nj. Then the pdf
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of Nj in the PPS sample is

p(Nj | Ij = 1) =
Pr(Ij = 1 | Nj)p(Nj)

Pr(Ij = 1)

=
(1/
√

2πτ 2) exp
(
− (lnw−µ)2

2τ2

)
∫∞
0

(1/
√

2πτ 2) exp
(
− (lnw−µ)2

2τ2

)
dw

=
exp

(
− (lnw−µ)2

2τ2

)
∫∞
0

exp
(
− (lnw−µ)2

2τ2

)
dw

. (1.11)

We can now simplify the denominator:∫ ∞
0

exp

(
−(lnw − µ)2

2τ 2

)
dw

= exp

(
µ+

τ 2

2

)∫ ∞
0

exp

(
−(lnw − (µ+ τ 2))2

2τ 2

)
1

w
dw

= exp

(
µ+

τ 2

2

)∫ ∞
−∞

exp

(
−(z − (µ+ τ 2))2

2τ 2

)
dz (substitute z = lnw)

=
√

2πτ 2 exp

(
µ+

τ 2

2

)
(1.12)

Now, substitute (1.12) for the denominator in (1.11):

p(Nj | Ij = 1) =
1√

2πσ2
exp

(
−(lnw − µ)2

2τ 2
− (µ+

τ 2

2
)

)
=

1

w
√

2πτ 2
exp

(
−(lnw − (µ+ τ 2))2

2τ 2

)
.

Thus, the distribution of sampled sizes in the PPS sample is (Nj|Ij = 1) ∼ LogNormal(µ+

τ 2, τ 2) (Patil and Rao, 1978).

Regardless of the parametric model we choose, in order to generate predictions

of the nonsampled cluster sizes, we need to draw from p(Nj | Ij = 0). Zangeneh

et al. (2011b) give the following derivation for p(Nj | Ij = 0) in the context of a

PPS sample. Again denoting a realized value of Nj by w, let p(w | ψ) denote the

marginal density of the cluster sizes Nj indexed by parameters ψ and let p(w, ι | ψ)
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denote the joint density of cluster sizes Nj and the sampling indicator Ij. Clearly

p(w, 0 | ψ) + p(w, 1 | ψ) = p(w | ψ).

Under PPS sampling, p(w, 1 | ψ) = cwp(w | ψ) for some constant c. The un-

conditional probability of selection is Pr(Ij = 1) = Js/J , where Js is the number of

sampled clusters and J is the total number of clusters in the population, so

Js
J

=

∫
p(w, 1 | ψ)dν(w) = c

∫
wp(w | ψ)dν(w) = c E[Nj].

Then c = Js/(JE[Nj]) and

p(w, 1 | ψ) =
Js

JE[Nj]
wp(w | ψ).

Since p(w, 0 | ψ) + p(w, 1 | ψ) = p(w | ψ), we can write

p(w, 0 | ψ) = p(w | ψ)− p(w, 1 | ψ) =

(
1− Kw

JE[Nj]

)
p(w | ψ). (1.13)

As shown previously, the conditional density p(w | 1, ψ) is

p(w | 1, ψ) =
p(w, 1 | ψ)

Pr(Ij = 1 | ψ)
=
wp(w | ψ)

Js/J
. (1.14)

Combining (1.13) and (1.14), we get

p(w | 0, ψ) =
p(w, 0 | ψ)

1− Pr(Ij = 1 | ψ)
=
JE[Nj]− Jsw

JE[Nj]

1

1− Js/J
p(w | ψ). (1.15)

If we follow Zangeneh et al. (2011b) and make the assumption that E[Nj] is equal

to the finite population mean cluster size N/J , where N =
∑J

j=1Nj, then (1.15)

simplifies to

p(w | 0, ψ) =
N − Jsw

N

1

1− Js/J
p(w | ψ). (1.16)

Given the posterior distribution of p(w | ψ), we use rejection sampling to get posterior

samples from p(w | 0, ψ).
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Bayesian Estimation

For the models specified in (1.4)-(1.6), we use the following weakly informative prior

distributions as recommended by Gelman (2006),

α0, γ0, α1, γ1
ind∼ N(0, 10)

σβ0 , σβ1 , σy
ind∼ Cauchy+(0, 2.5).

Here Cauchy+(0, 2.5) denotes a Cauchy distribution with location 0 and scale 2.5

restricted to positive values.

For the parameters governing the distribution of Nj, here (k, p) or (µ, τ), we can

use noninformative priors when the number of clusters sampled is large. However,

when only a few clusters are sampled, we need stronger priors to counteract the spar-

sity of the data. This is particularly true when using a model for the cluster sizes

that includes implicit assumptions about the data, such as the negative binomial. As

an overdispersed extension of the Poisson distribution, the negative binomial assumes

that the data come from a distribution whose mean is larger than the variance. How-

ever, in a sample of only, say, five clusters, it may well be that the sample mean is

less than the sample variance, making it difficult for Stan the negative binomial dis-

tribution to the data without strong prior information. We therefore reparameterize

the negative binomial as a Gamma mixture of Poissons and place a prior on the co-

efficient of variation (CV), the standard deviation divided by the mean. In this case,

the CV works out to the the reciprocal of the square root of the scale parameter of

the Gamma distribution (?). With a small number of clusters, we expect the CV to

be close to one and therefore use an exponential prior with rate 1. For the lognormal

distribution, we place a Cauchy+(0, 2.5) prior on the scale parameter τ .

In nonsampled clusters j, the posterior predictive distribution for ymis,j is

(ymis,j | ·) ∼ N
(
β0j + β1jxj, σ

2
y/Nj

)
,

where we assume xj is known. Specifically, we draw new values of β0j, β1j, σy, and Nj

from their posterior distributions and then draw ymis,j from the above distribution.



CHAPTER 1. BAYESIAN INFERENCE UNDER CLUSTER SAMPLING 16

In sampled clusters, the posterior predictive distribution for the nonsampled units is

yexc,j ∼ N
(
β0j + β1jxj, σ

2
y/(Nj − nj)

)
.

When Nj is large compared to nj, as is the case in many large-scale surveys and

specifically in the Fragile Families survey, yexc,j is close to the cluster mean yj and

is well approximated by β0j + β1jxj, which we calculate using the posterior means of

β0j and β1j.

The posterior computation is implemented in Stan (Stan Development Team,

2016b), which conducts full Bayesian inference and generates the posterior samples.

The models for the outcome and the cluster sizes are integrated into the posterior

computation, which allows for uncertainty in both the outcome and cluster size models

to be propagated throughout the parameter estimates, in contrast to other approaches

(e.g., Little and Zheng, 2007; Zangeneh and Little, 2015).

To understand the importance of explicitly controlling for all design variables in

this context, we also fit a model similar to (1.4)–(1.7) but with γ0 and γ1 set to 0.

Such a model accounts for the hierarchical cluster nature of the data by allowing β0

and β1 to vary by cluster, but does not account for the sampling design since the

cluster sizes Nj are excluded from the model:

yi ∼ N(β0j[i] + β1j[i]xi, σ
2
y) (continuous)

Pr(yi = 1) = logit−1(β0j[i]) (binary)

β0j ∼ N(α0, σ
2
β0

) (1.17)

β1j ∼ N(α1, σ
2
β1

)

1.3 Simulation study

Design

We perform a simulation study to compare the performance of our integrated model

and classical design-based estimators. We generate a fixed population from which
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we take repeated two-stage cluster samples under PPS and use each of the methods

to estimate y. In this way, we compare the approaches on the statistical validity

of the finite population inference. We generate a population consisting of J = 100

clusters, with cluster sizes Nj drawn from either a Poisson distribution with rate 500

or a multinomial distribution over scaled Gamma-distributed sizes. Specifically, we

draw J = 100 candidate cluster sizes Nj as Nj = 100Wj, where Wj ∼ Gamma(10, 1).

We then take a multinomial draw from these 100 unique sizes, with the J-vector of

probabilities drawn from a Dirichlet distribution with concentration parameter 10,

which disperses probability mass roughly equally across the J = 100 components. In

both cases, to avoid clusters that would be selected with probability 1, we resample

the J cluster sizes until none are so large as to be selected with certainty.

For the continuous outcome variable, we draw a value yi for each unit in the

population from the following model:

yi ∼ N(β0j[i] + β1j[i]xi, σ
2
y)

β0j ∼ N(α0 + γ0 logc(Nj), σ
2
β0

)

β1j ∼ N(α1 + γ1 logc(Nj), σ
2
β1

) (1.18)

α0, α1, γ0, γ1 ∼ N(0, 1)

σβ0 ∼ N+(0, 0.5)

σβ1 ∼ N+(0, 0.5)

σy ∼ N+(0, 0.75),

where N+(µ, σ) denotes the positive part of the normal distribution with mean µ and

standard deviation σ. The model for binary y is identical, except that the first line

of (3.1) is replaced with yi ∼ Bern(logit−1(β0j[i])) (and we omit β1j). We generate

xi by sampling from the discrete uniform distribution between 20 and 45 (as might

be for a survey of reproductive-age women, for example) and center it by subtracting

the mean.

To understand how the performance of various models is affected by dependence
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between the outcome y and the cluster size Nj, we generate two populations us-

ing the above model. In the first, we draw γ0 and γ1 from normal distributions as

shown above, and in the second we set γ0 = 0 = γ1. In this latter case, there is no

population-level dependence between the outcome y and the cluster size Nj. Com-

paring the results between these two population structures allows us to evaluate the

importance of including design variables and cluster sizes in each of the candidate

models. Specifically, comparing the results from fitting the model in (1.17) to a pop-

ulation where γ0 6= 0 6= γ1 to one where γ0 = 0 = γ1 will show what happens when

we incorrectly omit the cluster sizes from the model. Similarly, comparing the re-

sults from fitting the model in (1.4)-(1.5) and assuming all population cluster sizes

are known will show what happens when we include cluster sizes in the model, even

when the outcome is independent of the sizes.

We assume that xi is known for all sampled units, and that xj is known for all

clusters. If x is a demographic covariate, in practice it’s often the case that we know

demographic characteristics of clusters even if we don’t know the cluster size. We also

assume that the total population size N =
∑J

j=1Nj and Nj’s in the sampled clusters

are known, but Nj’s for the nonsampled clusters are not known.

We sample Js < J clusters using random systematic PPS sampling with proba-

bility proportional to the cluster size Nj and nj units in each selected cluster j via

SRS. We consider values of Js ∈ {10, 50} and nj ∈ {0.1Nj, 0.5Nj, 10, 50}. Note that

when nj ∈ {10, 50}, the sample is self-weighting, meaning each unit has an equal

probability of selection. To see this, recall that the probability of sampling cluster

j is πj ∝ Nj. Since within-cluster sampling is done with SRS, the probability of

sampling unit i in cluster j given that cluster j is selected is πi|j = nj/Nj = n/Nj

since nj is the same for all clusters. The marginal probability of sampling unit i is

therefore πi = πjπi|j ∝ Nj · (n/Nj) = n, which is constant across units and clusters.

For each combination of Js and nj, we draw L = 100 two-stage samples from the

finite population. For each two-stage sample, we then estimate the finite population
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mean using the methods described below. We emphasize that we draw L samples from

one fixed finite population instead of one sample from each of L finite populations,

because our goal is to evaluate the performance of each method in terms of finite

population inference.

We use the following methods to estimate the finite population mean y.

• negbin: The negative binomial size-biased distribution as described in Section

1.2;

• lognormal: The lognormal size-biased distribution as described in Section 1.2;

• bb: The Bayesian bootstrap as described in Section 1.2;

• hajek: The Hájek estimator in (1.3);

• greg: The generalized regression estimator (Deville and Särndal, 1992), which

leverages a unit-level covariate to improve prediction. We only use this estima-

tor for continuous y. To estimate the variances of the Hájek and generalized

regression estimators, we use the formulas given in Chapter 8 of Särndal et al.

(1992);1

• cluster inds: The model in (1.17), which accounts for the hierarchical nature

of the data via random cluster effects but does not use the cluster sizes as a

cluster-level predictor in modeling β0j and β1j, and therefore does not fully

account for the sampling design. We expect this model to perform well in the

cases where γ0 = γ1 in the data generation model and when the sample is

self-weighting;

1In some cases, the sample size is so large as to make calculating the design-based variance under

a non-self-weighting design difficult. This is due to the ∆̌k` term in equations 8.6.3 and 8.9.27 in

Särndal et al. (1992), which requires generating an n×n matrix, where n =
∑Js

j=1 nj . When Js = 50

and nj = 0.5Nj , n can easily be 20000 or larger, making the matrix prohibitively large to compute.

In these cases, we estimate the variance by randomly selecting 100 units via SRS in each sampled

cluster and using those units to compute the required matrix.
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• knowsizes: The model in (1.4)—(1.6), where we additionally assume the cluster

sizes are known for the entire population. This is a best-case scenario and will

serve as a benchmark for the other Bayesian methods;

There are three main comparisons that we make in evaluating the results of the

simulation study. First, we measure the performance of our proposed integrated

Bayesian approach against that of the classical design-based estimators; we do this by

comparing the performance of negbin, lognormal, and bb to that of hajek and greg.

Second, among the Bayesian methods, we want to understand when the parametric

models negbin and lognormal outperform the nonparametric Bayesian bootstrap bb.

Third, we compare the performances of both cluster inds and knowsizes when

γ0 6= 0 6= γ1 to when γ0 = 0 = γ1 in order to understand the importance of explicitly

including cluster sizes as cluster-level predictors in (1.5) and (1.6). In this case, we

assume that cluster sizes are known for all clusters in the population and focus on the

effects of incorrectly excluding or including the cluster sizes as cluster-level predictors

in the model.

We carefully monitor the sampling diagnostics for each simulation. Stan is unique

in providing detailed warnings and diagnostics to inform the user when posterior

inferences may be unreliable due to difficulties in sampling from the posterior. Di-

vergent transitions indicate that the sampler is unable to explore a portion of the

parameter space, which can lead to significant bias in the resulting posterior distri-

bution and ultimately unreliable inferences (Stan Development Team, 2016c). Stan

reports the number of divergent transitions for each chain, and even one divergent

transition indicates that the results may be suspect (Stan Development Team, 2016a).

If divergent transitions occur, we follow the recommendation of Stan developers and

iteratively increase the target acceptance rate adapt delta (Stan Development Team,

2016a). If divergent transitions occur even with adapt delta = 0.99999, we switch to

the noncentral parameterization and follow the same procedure for increasing adapt

delta as necessary. The noncentral parameterization is a mathematically equivalent
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formulation for the model that can avoid posterior geometries that are difficult for

HMC to explore; see Betancourt and Girolami (2013) and Stan Development Team

(2016c). If divergent transitions remain, we discard the simulation.

We also monitor the estimated potential scale reduction factor R̂ for each param-

eter. This diagnostic assesses the mixing of the chains; at convergence, R̂ = 1. If

R̂ ≥ 1.1 for any parameter, we increase the number of iterations by 1000 until all

values of R̂ are less than 1.1, up to 4000 iterations. If values of R̂ ≥ 1.1 remain with

4000 iterations, we discard the simulation. The results presented here are based on

a minimum of 85 simulations for each combination of number of clusters sampled,

number of units sampled, and whether γ0 = 0 = γ1 or not.

Results

The results of the simulation study are in Figures 1.1 to 1.4, with each figure displaying

a different combination of outcome type (continuous or binary) and population cluster

size model (Poisson or multinomial). In each figure, there are six panels displaying

the six metrics with which we evaluate the methods: relative bias, relative root mean

squared error (RRMSE), coverage of 50% and 95% uncertainty intervals, and the

average relative widths of the 50% and 95% uncertainty intervals. The first four of

these describe the performance of the point estimator, while the coverage rates and

relative widths of the uncertainty intervals help evaluate the efficiency of each method;

ideally, a method will have high (or close to nominal) coverage rates and narrow

average uncertainty intervals. The relative bias is calculated as 1
L

∑L
`=1

y−ŷ`
y
, where y

is the true population mean, ŷ` is the estimated value from the `-th simulation, and L

is the number of simulations. (We aim for L = 100, but this is not achieved in every

instance as explained above. However, L ≥ 85 in all cases.) RRMSE is calculated as√
1
L

∑L
`=1

(
y−ŷ`
y

)2
. For the Bayesian methods negbin, lognormal, bb, cluster inds

and knowsizes, the 50% (95%) intervals are calculated from the 25th and 75th (2.5th

and 97.5th) percentiles of the posterior predictive distribution for y. For the classical
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design-based methods hajek and greg, we rely on asymptotic normal theory and the

variance estimators given in Results 8.6.1 and 8.9.2 of Särndal et al. (1992). The

relative widths of the uncertainty intervals are calculated by dividing the width of

the uncertainty interval by the true y and averaging across the L simulations.

In each panel, the top row of plots is for the case where Corr(y,Nj) 6= 0 (i.e.

γ0 6= 0 6= γ1), labeled “Dependent”, and the bottom row is for Corr(y,Nj) = 0 (i.e.

γ0 = 0 = γ1), labeled “Independent”. The columns are for different within-cluster

sampling schemes. The left two columns represent fixed-percentage schemes, where

nj = ρNj for ρ = 0.1 and ρ = 0.5, j = 1, . . . , Js. The right two columns represent the

self-weighting samples, with nj = 10 and nj = 50, j = 1, . . . , Js. The colors of the

circles represent different first-stage sample sizes Js, Js ∈ {10, 50}.

As described earlier, there are three main comparisons we make in evaluating the

results: Bayesian vs. design-based methods, parametric vs. nonparametric models,

and including vs. excluding the cluster sizes as cluster-level predictors. We now

describe the results for these three comparisons for each combination of outcome

type (continuous and binary), population cluster size model (Poisson and multinomial

distributions), and whether .

For continuous y, the Bayesian models outperform the design-based estimators,

both for the Poisson and the multinomially distributed population cluster sizes in

Figures 1.1 and 1.2, respectively. The Hajek estimator has surprisingly high bias,

particularly when the sample is self-weighting (right two columns in each panel),

but including auxiliary information via the GREG estimator helps reduce it. The

classical estimators yield unstable results, evident in their high RRMSE, particularly

when yi and Nj are independent (bottom row of plots in each panel) in Figure 1.1 and

when they are dependent (top row) in Figure 1.2. In Figure 1.2, the RRMSEs and

uncertainty interval lengths are much larger for the design-based estimators compared

to the Bayesian methods when yi and Nj are dependent (top row), but when they

are independent this difference largely disappears. Overall, the Bayesian methods are
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clearly preferable to the design-based estimators: they are lower in bias and RRMSE,

and yield short uncertainty intervals whose coverage rates are very close to or above

the nominal level.

Estimating the finite population proportion for binary y is somewhat simpler

because Pr(yi = 1) is constant within cluster in (1.8). In this case, there is generally

little difference between the best Bayesian method and the Hajek estimator when

the number of sampled clusters is large, Js = 50; this holds for both the Poisson-

distributed cluster sizes in Figure 1.3 and the multinomially distributed cluster sizes

in 1.4. When the number of sampled clusters is small, the Hajek estimator generally

outperforms the Bayesian methods in terms of bias and has comparable RRMSE.

However, the coverage rates for the Hajek estimator are often below the nominal

level, particularly when the sample is not self-weighting (left two plots in each panel).

The parametric models negbin and lognormal perform comparably to the non-

parametric bb for continuous y. While both are about equally unbiased in Figures

1.1 and 1.2, particularly when the number of sampled clusters Js is large, coverage

is generally highest for lognormal. RRMSE and uncertainty interval lengths are the

same for the parametric and nonparametric models. For binary y, there is again

little difference between the parametric and nonparametric models when Js is large.

For small Js, bb has high bias when the sample is self-weighting in Figure 1.1 and

when yi and Nj are dependent (top row in each panel) in Figure 1.2. In coverage

rates and especially in RRMSE and uncertainty interval lengths, the parametric and

nonparametric models again perform equally well.

Interestingly, incorrectly omitting cluster sizes as cluster-level predictors – that is,

using cluster inds instead of knowsizes – has little impact when y is continuous in

either Figure 1.1 or 1.2. The bias, RMSE, and coverage rates are for the two methods

are very similar for both Poisson- and multinomially distributed cluster sizes. The

differences between cluster inds and knowsizes are quite minor for binary y as

well; cluster inds does not perform appreciably worse than knowsizes in either
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Figure 1.3 or 1.4.

1.4 Application

To evaluate the performance of our method in a more realistic context, we use a

modified version of the Fragile Families study design in conjunction with a simulated

outcome to estimate the finite population mean/proportion. The Fragile Families

study design (Reichmann et al., 2001) categorized the 77 U.S. cities with 1994 pop-

ulations of 200,000 or greater into nine strata based on their policy environments

and labor markets. Eight of the strata were for cities with extreme values in at least

one of the three policy dimensions under consideration (labor markets, child support

enforcement, and welfare generosity), and the ninth stratum was for cities that had

no extreme values. One city was selected via PPS in each of the eight extreme strata,

with a target sample size of 325 births in each city. In the last stratum, eight cities

were selected via PPS, with a target sample size of 100 births in each. (There was

an intermediate stage of selecting hospitals, which we ignore for our purposes; see

Reichmann et al. (2001) for exact details of the Fragile Families study design.)

We generate a population of cities with sizes equal to the observed 1994 popu-

lations of the 77 cities in the Fragile Families sampling frame. For the purposes of

this simulation, we use the city populations (divided by 100 for computational con-

venience) as both the measure of size Mj and the number of units in the cluster, Nj,

though the ultimate unit of sampling in the study was births. We exclude the three

cities that would be selected with probability one for a total of J = 74 cities. For

each unit in the population, we create an outcome y according to our model in (3.1).

While the original Fragile Families sampling design involved nine strata, we combine

them into a single stratum. As in the actual study design, we sample 16 cities via

PPS. In each sampled city, we sample either 100 or 325 births, depending on whether

the city is a large- or small-sample city, as designated in Reichmann et al. (2001).
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Figure 1.1: Results for continuous y with cluster sizes Nj drawn from a Poisson

distribution.
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Figure 1.2: Results for continuous y with cluster sizes Nj drawn from a multinomial

distribution.
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Figure 1.3: Results for binary y with cluster sizes Nj drawn from a Poisson distribu-

tion.
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Figure 1.4: Results for binary y with cluster sizes Nj drawn from a multinomial

distribution.
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Figure 1.5: Results for continuous y with cluster sizes Nj taken from the Fragile

Families study design.
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Figure 1.6: Results for binary y with cluster sizes Nj taken from the Fragile Families

study design.
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Figures 1.5 and 1.6 show the results for estimating the finite population mean and

proportion, respectively. As before, they display relative bias, RRMSE, and coverage

rates and relative widths of 50% and 95% uncertainty intervals. The circles are for

the case when yi and Nj are dependent and the crosses are for when yi and Nj are

independent.

For continuous y in Figure 1.5, the performance of several of the methods varies

greatly depending on whether yi and Nj are dependent or independent. When they

are dependent, negbin performs poorly on every metric. The other Bayesian and

classical methods are comparable in terms of bias, but the RRMSE of the Bayesian

methods is much smaller. The coverage rates are close to the nominal levels, though

lognormal and hajek have slightly low rates for 50% intervals. The Bayesian methods

are more efficient, however, because they yield much shorter uncertainty intervals than

the design-based methods. When yi and Nj are independent, the Bayesian methods

are clearly preferable to the design-based ones. Bias and RRMSE are lower for all

three Bayesian methods than for hajek and greg, and while the coverage rates of the

Bayesian methods are slightly below the nominal level, they again yield much shorter

uncertainty intervals.

While the performance of negbin is very poor when yi and Nj are dependent, it

is the best of the Bayesian methods when they are independent with the lowest bias

and RRMSE, highest coverage, and uncertainty intervals that are barely longer than

those of lognormal and bb. On the other hand, when yi and Nj are dependent, the

nonparametric bb is the best Bayesian method.

Similarly, the effect of incorrectly omitting cluster sizes from the model with

cluster inds compared to knowsizes depends on whether yi and Nj are indepen-

dent. When they are, there is no difference between the two, except for the low 50%

interval coverage rate of cluster inds. When yi and Nj are dependent, omitting the

cluster sizes leads to clearly poorer performance: cluster inds has higher bias and

RRMSE and longer uncertainty intervals than knowsizes.
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For binary y in Figure 1.6, the Bayesian methods again outperform the design-

based hajek. The bias of hajek is particularly high when yi and Nj are dependent,

and its coverage rates are consistently below the nominal levels (though, it should be

noted, the undercoverage is quite small for all methods in Figure 1.6). The difference

between the Bayesian methods and hajek is smaller when yi and Nj are independent.

Among the Baysian methods, lognormal has consistently the best performance across

the six metrics. For independent yi and Nj, negbin has the lower bias and shortest

uncertainty intervals, though its 95% uncertainty intervals have slightly lower than

nominal coverage rates. Omitting cluster sizes from the model when yi and Nj are

dependent does not have drastically negative effects, but including the cluster sizes

via knowsizes when yi and Nj are independent leads to higher bias, RRMSE, poorer

coverage, and longer uncertainty intervals.

1.5 Discussion

We propose an integrated Bayesian model for estimating the finite population mean

from a two-stage PPS sample. Our method combines predicting measures of size for

nonsampled clusters with inference for the population mean into a single approach

that propagates uncertainty from both steps. We propose both parametric and non-

parametric models for cluster sizes. The parametric models directly account for the

unequal selection probabilities by using the closed-form size-biased version of the un-

derlying population distribution, while the nonparametric Bayesian bootstrap draws

from the observed cluster sizes with probabilities that are weighted by the odds of

that cluster not being selected.

While design-based approaches are common in survey inference, estimating the

variance of design-based estimators is often challenging. Current approaches include

various jackknife methods (Wolter, 2007; Zheng and Little, 2005; Chen et al., 2010),

the Brewer method in the R survey package (Lumley, 2004), and the analytical
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expressions for variances of design-based estimators under two-stage PPS sampling

derived in Särndal et al. (1992) and used in our simulation study. In contrast, our

integrated approach yields the full posterior distribution for the finite population

mean, from which uncertainty intervals, variances, and any other quantities of interest

can easily be computed.

In our simulation study, the Bayesian methods outperform the design-based es-

timators, particularly for continuous y and when the number of sampled clusters is

small. The design-based estimators often have very high RRMSE and low rates of

coverage for uncertainty intervals. They also have high bias for continuous y when yi

and Nj are independent, which is surprising given that one of the main advantages

of design-based estimators is their design-consistency and approximate unbiasedness

(Särndal et al., 1992). For binary y, the Bayesian methods were less clearly supe-

rior to classical methods in estimating the finite population proportion. However,

when the cluster sizes are highly skewed, as in the Fragile Families case, the Bayesian

methods were decidedly better, particularly in terms of bias and coverage.

The performance of the parametric methods negbin and lognormal is largely

comparable to that of the nonparameteric Bayesian bootstrap bb. One important

factor in favor of the parametric methods is that they are simpler to implement in

Stan, which makes them more accessible to researchers whose expertise is in areas

outside of statistics or programming. Because the results for Bayesian vs. design-based

and parametric vs. nonparametric methods are much more similar when Js = 50

than when Js = 10 in many of the scenarios our simulation study considered, we

recommend using the parametric methods, at least as an initial step.

For continuous y when Js = 10, RRMSE and uncertainty interval lengths are

much larger in Figure 1.2, across all methods, when yi and Nj are independent than

when they are dependent. In the dependent case,

E[yi | xj, Nj] = (α0 + α1xj) + (γ0 + γ1xj) log(Nj), (1.19)
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and in the independent case where γ0 = 0 = γ1, (1.19) simplifies to

E[yi | xj, Nj] = α0 + α1xj. (1.20)

In populations with clustered data, larger clusters naturally contribute more to-

ward the population mean; this fact is part of the rationale for using PPS sampling in

the first place. When yi and Nj are dependent as in (1.19), larger clusters dominate

the finite population mean not just in the sense of contributing more units, but also

in the sense of having larger values of yi in the first place. In addition, we can see in

Figure 1.7 that the spread of population cluster sizes is much larger for multinomi-

ally distributed cluster sizes than for Poisson-distributed cluster sizes; in the latter,

the variance by definition equals the mean, whereas in the former, the cluster sizes

are selected from 100 unique sizes drawn from a scaled Gamma(10, 1) distribution

whose variance is much larger than their mean. Repeated PPS sampling from the

multinomial population is therefore more likely to sample the largest clusters more

often than repeated PPS sampling from the Poisson cluster sizes. This combination

of PPS sampling and the dependence of yi on Nj may explain why, in Figure 1.2,

bias, RRMSE, and uncertainty interval length are smaller for the case where yi and

Nj are dependent than when they are independent.

We do not see this pattern for the Fragile Families simulation; the magnitudes

of RRMSE and uncertainty interval length are much smaller in Figure 1.5 than in

Figures 1.1 and 1.2. However, here the specific structure of the Fragile Families

population is important. The population sizes for the Fragile Families clusters are

even more skewed than for the multinomial case (see Figure 1.7a), leading to more

skewed cluster selection probabilities. However, we sample a larger fraction of the

Fragile Families cities (16 out of 74, about 22%) than in the case where Js = 10 for

the multinomial cases (10 out of 100), and under repeated sampling from the fixed

population, we end up sampling more of the smaller clusters in the Fragile Families

scenario than for the multinomial ones. Thus, for the Fragile Families case, we are

highly likely to sample the largest clusters that contribute most to the mean in terms
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of number of units and, when yi and Nj are dependent, in the magnitude of yi, and

we are also more likely than in the multinomial case to sample the smallest clusters

under repeated sampling, both of which contribute to better estimates of the finite

population mean.

In contrast to the continuous case in Figure 1.2, when y is binary, RRMSE and

uncertainty interval lengths are larger in both Figures 1.3 and 1.4 when yi and Nj

are dependent. When yi and Nj are dependent,

Pr(yi = 1) = logit−1 (α0 + γ0 log(Nj) + ηj) , (1.21)

where ηj ∼ N(0, σ2
β0

). It may be that the nonlinear relationship between Nj and

Pr(yi = 1) amplifies any error in predicting the cluster sizes in addition to error in

the estimated regression coefficients, making the estimates of the finite population

proportion much more variable than when yi and Nj are independent and γ0 = 0. On

the other hand, this nonlinearity may also account in part for why the magnitudes of

bias, RRMSE, and uncertainty interval lengths are so much larger for continuous y

than binary y. Even if our predictions for the smallest Njs are poor, the decreasing

slope of the inverse logit as a function of log(Nj) means that errors in small values of

Nj lead to smaller errors in Pr(yi = 1) than for large Nj; for continuous y, we have

no such cushion.

In addition to comparing the performance of Bayesian vs. design-based and para-

metric vs. nonparametric methods, our simulation also explored the importance of

explicitly including or excluding design information in the model when we know the

design variables for the entire population. Specifically, we considered the importance

of including cluster sizes Nj as predictors for the cluster-level parameters β0j and β1j

when the population is generated such that there is no relationship between β0j and

β1j and Nj (and hence none between y and Nj) but the sampling is PPS in both

cases.

Conventional model-based wisdom says to include all relevant design variables in

the model, but the results of our simulation study suggest that allowing β0j and β1j to
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Figure 1.7: Density plot of population cluster sizes drawn from a Poisson distribution

with rate 500 (Pois), a Gamma/multinomial distribution (Multi) as detailed in Section

1.3, and the Fragile Families study design (FF). The x-axis is on the original scale in

the left panel and the log10 scale in the right panel.

vary by cluster without explicitly including the cluster sizes (cluster inds) does not

lead to drastically worse results than when the sizes are included in the model, even

when yi and Nj are dependent, though following conventional wisdom and including

the cluster sizes anyway (knowsizes) does not hurt. This result naturally leads to the

question of why, if including cluster sizes in the model makes no difference in terms of

predicting the finite population mean, we would wish to bother with predicting cluster

sizes for nonsampled clusters. It may be that for the simple models we consider here,

excluding cluster sizes from the model is fine, but for more complicated models this

may not be the case. In addition, the models we use are correctly specified, and it

may be that under severe model misspecification, excluding cluster sizes can lead to

worse estimates of the population mean.

An interesting exception to this result is in Figure 1.6, where including the cluster

sizes via knowsizes when yi and Nj are independent leads to higher bias, RRMSE,

undercoverage, and uncertainty interval length. Understanding the population cluster

size distributions and outcome models that lead to this situation is an important area

of future research.
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There are a number of interesting directions in which the current research could

be extended. First, our simulation has not considered the case where the measure of

size Mj is not the same as the number of units in cluster j, Nj. The natural next

step would be to extend the Fragile Families simulation to include the case where the

measure of size Mj is the city population, but the cluster size Nj itself is the total

number of births in the city. In doing so, we must make some additional assumptions

about what we as the analyst do and don’t know. So far, we have assumed that

we know Mj only for the sampled clusters, but we would have to make assumptions

about our knowledge of Nj as well. If we assume we only know Nj for the sampled

clusters, we would need a way of predicting both Mj and Nj for the entire population.

One simple idea is to assume that Nj is a linear function of Mj and use regression to

predict Nj given Mj, perhaps the on the log scale to avoid predicting negative cluster

sizes and difficulties with cluster sizes ranging over several orders of magnitude. In

the the Fragile Families study, the correlation between the log of city population Mj

and log of total births Nj is 0.78, so this seems like a promising strategy. Additional

information on the determinants of Nj, such as historical fertility rates in the Fragile

Families context, would further improve predictions of Nj from Mj.

Another direction would be to consider a stratified PPS design as in the original

Fragile Families study design. This extension introduces a new challenge in that we

would need to adjust for the strata in our model. In doing so, however, we change the

interpretation of the other coefficients to be conditional on stratum membership; in

this way, the coefficients estimated from the model would not strictly be comparable

to those used to generate the data in this simulation. For the parametric cluster size

models, we would need to partially pool the size parameters (µ, φ in the negative bi-

nomial model, µ, σ in the lognormal) across strata, adding another layer of complexity

to the model.

Finally, we did not consider the case of estimating a finite population proportion

for binary y with a unit-level predictor x. This is a challenging problem because
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Pr(yi = 1) is a nonlinear function of xi, so even if the cluster-level means xj are

assumed known for all clusters, we cannot directly use them to estimate the cluster-

level proportion yj as we could for the continuous case where we assume y is normally

distributed. Extending the current work to handle this scenario would greatly increase

its practical utility.
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Chapter 2

Weak Instrumental Variables in

the Context of Recidivism
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2.1 Background

The United States has the highest incarceration rate in the world, with 2.3 million

people held in correctional facilities in 2017, over 1.4 million of whom are in state or

federal prisons (Wagner and Walsh, 2016; Wagner and Rabuy, 2017). Incarceration

is thought to affect recidivism through three main mechanisms: 1) incapacitation,

meaning offenders are unable to offend because they are locked up; 2) general de-

terrence, or the threat of incarceration that causes would-be offenders to reconsider

their actions so as to avoid incarceration; and 3) specific deterrence, by which the

experience of incarceration itself is such that it discourages future criminal behavior.

However, existing literature does not give a clear answer to the question of whether

incarceration increases or decreases subsequent recidivism.

The gold standard for studying causality is with a randomized experiment, but

since random assignment of incarceration is ethically and legally impossible, research

on recidivism must use observational data. However, in some jurisdictions, offenders

are randomly assigned to judges, and several studies have taken advantage of this

natural experiment to study the causal effect of incarceration on recidivism. Green

and Winik (2010) use data on felony drug offenders in the District of Columbia and

find no effect of incarceration or probation on subsequent rearrest dates. Loeffler

(2013) also finds no detectable effect of imprisonment on either recidivism or la-

bor market participation among felony offenders in Chicago. Similarly, Nagin and

Snodgrass (2013) conclude that there is little evidence of incarceration impacting re-

arrest rates in five counties in Pennsylvania. Using data from Harris County, Texas,

Mueller-Smith (2015) finds increases in the frequency and severity of recidivism due

to incarceration, as well as additional negative effects on both labor market outcomes

and dependence on public assistance. Aizer and Doyle (2015) conclude that juvenile

incarceration leads to higher adult incarceration rates among juvenile offenders in

Chicago.

With the exception of Nagin and Snodgrass (2013), all of these studies use two-
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stage least squares (2SLS) as their main estimation strategy. However, 2SLS is known

to produce unreliable estimates when the instrumental variable is weak, meaning its

correlation with the treatment is low. This study uses alternative methods that are

robust to many of the weaknesses of 2SLS. We also directly address the issue of weak

instrumental variables and demonstrate a method for strengthening an instrument.

Two recent studies (Nieuwbeerta et al., 2009; Snodgrass et al., 2011) make use

of another useful statistical technique, namely matching. Offenders are paired using

demographics and other characteristics to construct treatment and control groups

that are as similar as possible on observed covariates. Matching creates treatment

and control groups that are balanced and have overlap in the distribution of observed

covariates, and we can investigate the extent to which our conclusions are sensitive

to – that is, can be explained away by – the unobserved confounders (Rosenbaum,

2002b).

We combine several techniques that have often been used separately in the crim-

inology literature. First, we use a natural experiment to study the causal impact of

incarceration on recidivism, namely the random assignment of criminal cases to judges

in the state of Pennsylvania, and use the harshness of the judge as an instrumental

variable. Second, we use matching to generate pairs of offenders that are identical

or similar on important demographic and background variables in an effort to create

comparable treatment and control groups. Together, these two methods seek to ap-

proximate a paired randomized encouragement design, in which one member of a pair

is randomly encouraged to receive treatment and the other is not. Third, we avoid

the use of two-stage least squares (2SLS) because of its known pitfalls in the presence

of a weak instrumental variable.

Further, we directly evaluate the strength of our instrument and demonstrate a

new method for improving a weak instrumental variable. We quantify the tradeoff

between sample size and instrument strength induced by this method by simulating

power and design sensitivity. Finally, in addition to estimating the causal effect of
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incarceration on recidivism, we illustrate the use of new methods to determine the

extent to which the intention-to-treat (ITT) effect of judge harshness on recidivism

is modified by observed covariates.

2.2 Data

2.2.1 Sample

We obtained data on all offenses reported to the Pennsylvania Commission on Sen-

tencing (PCS) between 1998 and 2000. The PCS receives information on all felony

and misdemeanor offenses committed in Pennsylvania that are sentenced in Common

Pleas Court in a given calendar year and reported to the Commission, with some im-

portant exceptions. The first is Philadelphia Municipal Court sentences and offenses

sentenced by district magistrates, both of which generally concern driving under the

influence (DUI) and other misdemeanor offenses. In addition, Murder 1 and Murder

2 offenses are not required to be reported; these offenses require mandatory life or

death sentences. Unfortunately, the PCS does not have an auditing system for deter-

mining the extent of non-reporting, so there is no way to know how many cases are

missing or whether there is systematic bias in which cases are excluded (Pennsylvania

Commission on Sentencing, 1998 2000). Altogether, the missing cases are likely to be

the most minor and most serious cases, for which incarceration is rarely and almost

always the sentence.

The data record a unique identification code for each offender, along with their

date of birth, sex, race, age at offense, age at sentencing, date of offense, date of

sentencing, number of prior adjudications and convictions for various felony and mis-

demeanor offenses, the offense code and label, amount and type of drugs involved (if

applicable) and the type and length of sentence imposed. They also include the of-

fender’s prior record score (PRS), a measure of the extent and severity of an offender’s

previous criminal history, as well as an offense gravity score (OGS) for each charge in
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a given judicial proceeding. The PRS and OGS are particularly important covariates

because they are used as the basis for determining sentence types and durations in

the Pennsylvania Sentencing Guidelines sentencing matrix, which gives the standard,

aggravated, and mitigated ranges for each PRS and OGS combination. If the offense

involved possession of a deadly weapon, youths in drug trafficking, or drug traffick-

ing within 1000 feet of a school, enhanced sentencing ranges apply (Pennsylvania

Commission on Sentencing, 1998 2000).

We did extensive cleaning and checking of the data. For example, some offenders

appear multiple times in the data under the same identification number with different

dates of birth, sexes, and/or races. We corrected this by using the value that appears

the most often. We also filtered out offenders using the criteria shown in Figure 2.1.

In particular, we removed offenders with missing values for the sentencing judge or

county, as well as important covariates like sex, race, date of birth, prior record score,

and offense gravity score. We also dropped offenders whose year of birth is before

1918 or after 1997, as this would lead them to be implausibly old or young during the

period of observation, as well as offenders whose age at date of sentencing or offense

is less than or equal to ten years or greater than or equal to 100 years (these extreme

ages can occur because of the date of birth or the date of sentencing). Finally, we

kept only the offenders we could locate the the rap sheet data, described in Section

2.2.3 below, and those for whose sentencing judge we could define a binary harshness

value as described in Section 2.2.4; it is at these steps that we lose the most offenders,

as seen in Figure 2.1. Our final analysis sample consists of 53 318 unique offenders,

51% of the initial 104 532 offenders.

2.2.2 Treatment: Imprisonment

Since some offenders have multiple cases reported to the PCS between 1998 and 2000,

we retained the earliest recorded case for each offender. For each case, we determined

whether the offender was sentenced to (state) prison, (county) jail, time served, or
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Figure 2.1: Flowchart of inclusion criteria for PCS and rap sheet data.



CHAPTER 2. WEAK INSTRUMENTAL VARIABLES IN THE CONTEXT OF
RECIDIVISM 45

none of the above. Jail sentences are for periods of two years or less. We define

incarceration as a sentence of either prison or jail. When an offender is sentenced

to time served, the time they spent in jail before and during their trial is counted

towards their total confinement. However, the time spent in jail before and during

the trial is, strictly speaking, pre-treatment; by definition, the offender experiences

it before sentencing, so whether an offender spends time in jail before or during the

trial cannot be affected by the harshness of the judge. For this reason, we treat a

sentence of “time served” as equivalent to a non-carceral sentence. Investigating the

effect of serving time in prison separately from that of jail, as well as accounting for

time spent in confinement for offenders sentenced to time served, is beyond the scope

of the current study but an important area of future research.

2.2.3 Outcome: Recidivism

We obtained rap sheet data from the Pennsylvania State Police, from which we can

measure the number of arrests in the state of Pennsylvania for each offender from the

date of sentencing until November 1, 2013. We define recidivism as the number of

arrests in the three years after sentencing. We considered using only felony arrests

in defining the outcome, but this information is missing for a substantial portion

of the data: 83% of offenders with arrests in the rap sheet data have at least one

offense whose felony status cannot be determined. In addition, felony status cannot

be determined for 1/3 of the offender-arrest date observations. Counts of felony

arrests are thus unreliable.

We merged the PCS offense data with the rap sheet data by matching offenders

using their unique identification number. We dropped offenders for whom we could

not find any dates in the rap sheet – either an offense, arrest, or disposition date –

that fall between the PCS offense and sentencing dates. If we could not locate the

PCS offense in the rap sheet in this manner, we were not confident that the rap sheet

data contained all of the arrests for the individual. We also ensured that the sex and
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year and month of birth match between the PCS and rap sheet data. We did not

use race as a criterion for matching offenders between the two datasets, because the

race categories are different between the PCS offense and arrest record data. The

offense data record race as American Indian, Asian, Black, Hispanic, White, and

Other, while the arrest record data use Asian, Black, Indian, White, and Other. Of

the 99 952 individuals for whom we have rap sheet data, 96 768 appear in the PCS

data, and we were able to find matches in the PCS data for 83 340 (86%) of them.

2.2.4 Instrument: Judge Harshness

In the state of Pennsylvania, Common Pleas judges are elected at the county level,

and it is at the county level that offenders are randomly assigned to a judge. Our

instrument is the harshness of a judge, which we calculate as the proportion of the

cases the judge sentenced to either prison or jail. Specifically, we use data from the

PCS for 1997 to calculate, for those judges that saw at least 30 cases in that year, the

the proportion of their cases that they sentenced to prison or jail. We then classify a

judge as “lenient” if this proportion is below their county’s median judge harshness

and “harsh” if it is above. In the context of a randomized encouragement design,

we refer to an offender assigned to a harsh judge as one who was “encouraged” to

receive the treatment (incarceration) and an offender assigned to a lenient judge as

one who was “discouraged” from receiving the treatment. However, we also make

use of the continuous version of judge harshness (the proportion of 1997 cases they

sentenced to prison or jail), and we refer to this measure as the instrument. Thus,

“encouragement” and “instrument” refer respectively to the binary and continuous

measures of judge harshness. Where the distinction is not clear from context, we

specify which one we are referring to.

We considered using only part of the 1997 data to calculate judge harshness and

combining the other half with the 1998-2000 data. However, we decided to use all of

the 1997 data for several reasons. First, estimates of harshness will be more accurate



CHAPTER 2. WEAK INSTRUMENTAL VARIABLES IN THE CONTEXT OF
RECIDIVISM 47

with a larger sample size of cases per judge. Second, we cannot track offenders between

the 1997 and the 1998-2000 PCS data. Although nearly 20% of offenders appear

multiple times in the 1998-2000 data, we only keep the earliest judicial proceeding

under which they appear. Because an individual in the 1997 data may reappear in

the 1998-2000 data, using part of the 1997 data in the analysis could lead to using

the same individual twice, but we would have no way of knowing this. Third, if there

are any seasonal trends in judge harshness, for example as a function of seasonality

in the types and/or severity of crimes, using an entire year gives the most accurate

picture of harshness.

There is one side issue that merits discussion here. Most judges see cases in a

single county, but in some cases, a judge will see cases in more than one county,

generally in rural counties. Of the 347 judges for whom we have 1997 caseload data,

313 saw cases in one county, 26 in two counties, 6 in three counties, and two in

four counties. Regardless of the number of counties in which a judge saw cases, we

calculate harshness at the judge level, not the judge-county level, for two reasons.

First, in many cases, a judge who saw cases in, say, two counties would see the vast

majority of her cases in one county and only a handful of cases in the other. If we

were to calculate harshness at the judge-county level, we would have fewer judge-

county observations that had the minimum 30 cases, and we would therefore lose

from our analysis all offenders in 1998-2000 assigned to those judges. Secondly, while

randomization of cases to judges happens at the county level, a judge’s harshness,

as measured by the proportion of cases she sentences to prison or jail, is a judge-

level characteristic. Because the same laws apply across counties and judges who see

cases in multiple counties tend to operate in rural counties that have largely the same

demographics and crime profiles, there is no reason to believe that a judge would

be differentially harsh in one county over the other. However, the binary measure

of harshness is a relative measure, and so we classify judges as “lenient” or “harsh”

based on the other judges in that county. Thus, it is possible that a judge who saw
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cases in county A and county B and sentenced, say, 65% of her total caseload to prison

or jail is considered harsh in county A and lenient in county B. This in fact happens

for ten of the 347 judges. While it may seem strange that a judge can be considered

harsh in one county and lenient in another, there is no logical inconsistency. What

matters is whether, at a county level, an offender is more likely to be incarcerated if

assigned to one judge over another; by definition, this means that (binary) harshness

is relative and depends on the distribution of the (continuous) harshness levels of the

judges in that county.

2.3 Instrumental Variables and Judge Harshness

2.3.1 IV Assumptions

Angrist et al. (1996) described the five assumptions needed for an instrumental vari-

able to yield valid causal inferences. We describe these five assumptions in the context

of incarceration and recidivism.

Assumption 1: Stable Unit Treatment Value Assumption (SUTVA) (Ru-

bin, 1974, 1980, 1990)

SUTVA states that 1) there is only one version of the treatment (“no multiple versions

of treatment”) and 2) the potential outcomes for one unit are unaffected by the

treatment assignments of other units. In our context, the first part of SUTVA requires

that an offender’s potential outcome in terms of recidivism be the same regardless of

whether they are sentenced to prison or to jail, or which particular state prison or

county jail they are confined to. If we define treatment as the experience of any post-

sentencing incarceration, then the distinction between prison and jail becomes less

important. However, investigating the specific effects of being sentenced to prison

and to jail, as well as the effect of time spent in jail before trial, is an important

avenue of further research. If the main mechanisms by which incarceration affects
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reoffending rates operate in the same way regardless of facility, then the “no multiple

versions of treatment” assumption is plausible as well.

The second part of SUTVA requires that there is no interference between offenders,

in the sense that a) whether an offender is incarcerated is not affected by the judge

assignment of any other offender; and b) the recidivism of an offender is not affected

by the incarceration status of any other offender. It seems unlikely that whether

an offender is incarcerated could depend on which judges offenders in other counties

are assigned to, so a) is a reasonable assumption in this application. Connections

between offenders in the form of friendship, kinship, or criminal association could

potentially violate part b). For example, if an offender not sentenced to prison or

jail who would otherwise have committed new crimes has a sibling or close friend

who is incarcerated, he/she may choose not to reoffend upon observing the effects

of incarceration on someone important to them. Alternatively, it is conceivable that

an offender not sentenced to prison or jail who would otherwise not have committed

new crimes may in fact reoffend if someone with whom they were involved in criminal

activity was also not incarcerated. We cannot test this part of SUTVA since we do

not know the social or familial connections between offenders, and we proceed on the

assumption that it holds.

Assumption 2: Exclusion Restriction

The exclusion restriction is an untestable assumption stating that the instrument

affects the outcome only through its effect on the treatment. For the exclusion re-

striction to hold, the causal effect of judge assignment on subsequent recidivism must

come only through the causal effect of judge assignment on the sentence received.

The exclusion restriction would not hold if, for example, lenient judges were more

likely to successfully convince the offenders they saw to utilize job-training resources

that then helped offenders maintain employment and avoid reoffending. However, as

Loeffler (2013) points out, the large caseload faced by most judges – an average of
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nearly 150 cases per judge per year in our data – suggests that there may not be much

time to do more than the minimum necessary to move cases through the system.

Assumption 3: Nonzero Effect of Encouragement on Treatment Uptake.

In order for the instrument to be at all useful, its causal effect on treatment uptake

must be strictly nonzero on average. This is a quantity we can estimate from our

data: 38% of offenders assigned to a harsh judge were incarcerated, compared to 34%

of those assigned to a lenient judge, for a difference of four percentage points, or over

ten percent.

Assumption 4: Monotonicity (Imbens and Angrist, 1994).

In the context of a randomized encouragement design, this assumption places re-

strictions on the way subjects can respond to encouragement. The monotonicity

assumption cannot be tested, and we must carefully consider whether there are plau-

sible scenarios in which it might not hold. In the context of binary encouragement

and treatment, this assumption classifies subjects into always-takers, never-takers,

and compliers, and assumes that defiers do not exist. Always-takers (never-takers)

are those who would (not) receive treatment regardless of encouragement. Compliers

are those who comply with their assigned encouragement: if encouraged, they re-

ceive treatment and if not encouraged, they do not receive treatment. Defiers do the

opposite of their assigned encouragement: if encouraged, they do not receive treat-

ment and if not encouraged, they receive treatment. In our context, always-takers

(never-takers) are those who would (not) be incarcerated regardless of judge harsh-

ness. Compliers are those who would only be incarcerated if assigned to a harsh

judge, and defiers are those who would only be incarcerated if assigned to a lenient

judge. One way of satisfying the monotonicity assumption is to assume that there are

no defiers. That is, we assume there are no offenders who would be incarcerated if

assigned to a lenient judge and not be incarcerated if assigned to a harsh judge. This
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assumption is reasonable in the context of incarceration because all judges follow the

same laws and a harsher judge should be strictly more likely to sentence an offender

to incarceration than a lenient one.

Assumption 5: As-If Random Assignment.

This assumption states that the assignment of the instrument is as-if random. In the

recidivism context, this assumption rests on the assignment of offenders to judges to

be truly random, and not affected by subsequent interventions by their attorneys or

other factors. We explore the validity the instrument graphically in Section 2.3.2.

2.3.2 Checking Instrument Validity

Our use of judge harshness as an instrumental variable makes several assumptions that

are testable, though not provable, with the data at hand. One basic assumption is that

there is, in fact, variation in judge harshness within counties in the first place. Figure

2.2 plots judge harshness in 1997 by county. The size of each point is proportional

to the number of cases the judge saw, and the color represents whether the judge is

classified as lenient (green), harsh (orange), or whether their harshness is undefined

(black) because it is exactly the county median. The counties are sorted in descending

order of the number of judges in that county. We show only those judges who saw

at least 30 cases in 1997 and those counties with at least two such judges. There is

considerable variation in judge harshness, with most judges sentencing between 25%

and 75% of their caseloads to prison or jail.

As stated by the Pennsylvania Commission on Sentencing, cases are randomly

assigned to judges within a county. If this is so, there should be no relationship

between the types of cases and offenders a judge sees and how harsh they are. It is

important to check for this lack of a relationship in both the data from 1997, which we

use to calculate the instrument itself, and in the data from 1998-2000, the data we use

for analysis. In the former case, we want to ensure that what we are measuring is the
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Figure 2.2: Distribution of judge harshness by county as measured in 1997. The

size of each circle is proportional to the number of cases seen by that judge in 1997;

only judges who saw at least 30 cases and counties with at least two such judges

are included. The color of the points represents whether the judge is classified as

lenient (green), harsh (orange), or whether the judge’s harshness is exactly the county

median, in which case their harshness is undefined (hollow black circle). The counties

are sorted by the number of judges in that county.
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actual harshness of the judge, not the composition of their caseload. In the latter, we

want to check the plausibility of Assumption 5 in Section 2.3.1 above, which requires

the assignment of the instrument to be as-if random. We investigate the relationship

between offense severity and judge harshness in Figures 2.3 and 2.4; corresponding

figures for other offender characteristics are in Appendix . In Figures 2.3 and 2.4,

the x−axis is the (continuous) harshness of the judge in each county and the y-axis

is the proportion of each judge’s caseload that had a deadly weapon enhancement

(DWE), were felonies, and were misdemeanors. The size of each circle is proportional

to the number of cases the judge saw in that time period (1997 or 1998-2000); only

judges who saw at least 30 cases in a county in each time period and counties with

at least two such judges are shown. If cases are indeed randomly assigned, we should

not see any strong relationship between harshness and these characteristics and all of

the lines would be approximately horizontal. Overall, there is very little relationship

between harshness and the various offender and case characteristics.

In addition, we further evaluate the assumption of as-if random assignment by

using the binary instrument that classifies a judge as either “harsh” or “lenient”. We

evaluate the balance of observed covariates between offenders assigned to harsh and

lenient judges by plotting the standardized differences in means for observed covari-

ates in Figure 2.5. The standardized difference in means is the difference in means

divided by the standard deviation; this puts the covariates on the same scale so that

the differences are more easily compared across covariates. The covariates in Fig-

ure 2.5 are categorical, and we calculate the standardized difference in proportions

for each category. Differences greater than 0 indicate that the proportion of encour-

aged offenders in a category is larger than the proportion of unencouraged offenders.

For example, the proportion of offenders assigned to a harsh judge who are white is

about 4% of a standard deviation larger than the proportion of offenders assigned to

a lenient judge who are white. The size of each circle represents the proportion of

offenders who fall into each category. For example, the circle for men is larger than
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Figure 2.3: Proportion of each judge’s 1997 cases that had a deadly weapon enhance-

ment (DWE; green), were felonies (orange), and were misdemeanors (blue), plotted

against the harshness of the judge. If cases are, in fact, randomly assigned to judges,

we should not see any strong relationship between harshness and the proportion of

cases corresponding to each of the crime types. Only counties with at least two judges

who saw at least 30 cases in 1997 are shown.
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Figure 2.4: Proportion of each judge’s 1997 cases that had a deadly weapon enhance-

ment (DWE; green), were felonies (orange), and were misdemeanors (blue), plotted

against the harshness of the judge. If cases are, in fact, randomly assigned to judges,

we should not see any strong relationship between harshness and the proportion of

cases corresponding to each of the crime types. Only counties with at least two judges

who saw at least 30 cases in 1998-2000 are shown.
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the circle for women because most of the offenders are male. Ideally, standardized

differences in means should be below 0.10 (Rosenbaum, 2010), and in this case all of

the standardized differences in means are below this threshold.

We also plot the distribution of age at date of offense for offenders assigned to harsh

and lenient judges in Figure 2.6. The distributions are quite similar, and together

Figures 2.5 and 2.6 indicate that even before matching, there is good balance in

observed covariates and reason to believe that Assumption 5, as-if random assignment

of encouragement, holds in this case. Still, there are some important variables, like

certain OGS categories, for which we may wish to have better balance.

2.3.3 Problems with Weak IVs

A weak instrumental variable is one that does not have a strong relationship with the

treatment. In the context of a randomized encouragement trial, a weak instrument

is an encouragement that does little to increase uptake of treatment compared to

no encouragement. When an instrument is weak, it may not contain much useful

information about the causal effect of the treatment on the outcome. One commonly

used procedure, two-stage least squares (2SLS), is vulnerable to several serious pitfalls

in the presence of a weak instrumental variable. First, the standard errors on the

estimate of the causal effect of interest are likely to be large, indicating imprecise

measurement of the causal effect of interest; this is essentially a drastic reduction in

the effective sample size of the data (Baiocchi et al., 2014). Second, even a small

violation of the exclusion restriction can lead to inconsistent estimates when the

instrument is weak (Bound et al., 1995). Third, even if the instrument is valid, a

2SLS estimate based on a weak IV can be substantially biased towards the OLS

estimate in finite samples (Bound et al., 1995). Fourth, confidence intervals based

on 2SLS results using a weak IV have incorrect coverage rates and are too narrow

(Imbens and Rosenbaum, 2005).

These problems can be remedied by using different methods. Imbens and Rosen-
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Figure 2.5: Standardized difference in means of observed covariates. The size of

each circle represents the proportion of offenders who fall into each category of the

covariate.



CHAPTER 2. WEAK INSTRUMENTAL VARIABLES IN THE CONTEXT OF
RECIDIVISM 58

0.00

0.02

0.04

0.06

20 40 60 80
Age

D
en

si
ty

Judge type Harsh Lenient

Figure 2.6: Density of age at date of offense for offenders assigned to harsh and lenient

judges.

baum (2005) show that permutation-based inferences maintain correct coverage with

weak instruments and yield appropriately large confidence intervals that “reflect the

limited information in the data”. Unfortunately, even with a perfectly valid instru-

ment, the power to detect an effect when it truly exists is often quite low if the

instrument is weak (Small and Rosenbaum, 2008). With a large enough sample size,

the power does increase (and goes to 1 asymptotically), but ample data do not nec-

essarily exist for every situation.

There is a more serious problem, however, that persists even with an infinitely

large sample size. Small and Rosenbaum (2008) show that weak instruments are

highly sensitive to small unmeasured biases, even when the true effect size is large.

A researcher would have to be either highly confident that her IV is perfectly valid

– that is, it satisfies Assumptions 1-5 in Section 2.3.1 above – or be studying huge

effects in order to achieve estimates that are not sensitive to unobserved bias. This

is perhaps the most serious problem with weak instrumental variables: when the

instrument is weak, regardless of how much data we collect, we will not be able to
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obtain robust estimates of causal effects that, unbeknownst to the researcher, are in

truth substantial. The rarity of truly enormous causal effects in much of the social

sciences, combined with the untestability of most of the fundamental assumptions

underlying IV estimation, weak instruments pose serious problems.

2.4 The Paired Randomized Encouragement De-

sign

2.4.1 Notation

In a paired randomized encouragement design (Holland, 1986; Rosenbaum, 1996,

2002a), 2I subjects are grouped into I pairs, i = 1, . . . , I, of two subjects, j =

1, 2. The pairs are matched exactly for observed covariates xij so that xi1 = xi2 for

every i, but there may be unobserved covariates uij that are not exactly matched,

so ui1 6= ui2 for some i. In each pair, one subject is randomly assigned to receive

the encouragement, Zij = 1 and the other to receive the control, Zij = 0, such

that in each pair, Zi1 + Zi2 = 1. Here the encouragement Zij is whether offender

ij was assigned to a lenient (Zij = 0) or harsh (Zij = 1) judge; we denote by

Wij the continuous harshness measure, Wij ∈ [0, 1]. In a randomized experiment,

each set of possible treatment assignments that satisfy Zi1 + Zi2 = 1 are equally

likely. Specifically, let Z = (Z11, . . . , ZI2)
T be the vector of length 2I containing the

treatment assignment for each unit and Z be the set of all 2I possible values of Z. We

say that z ∈ Z if z = (z11, . . . , zI2)
T , zij ∈ {0, 1} for each ij and zi1 +zi2 = 1 for all i.

We denote conditioning on the event Z ∈ Z as conditioning on Z. In a randomized

experiment, Pr(Z = 1 | Z) = 1/2I for all Z ∈ Z, but in an observational study, the

assignment of Zij is not randomized, so the subjects that receive encouragement can

be systematically different from the ones that do not.

Under the potential outcomes framework, each unit has two values for the response
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and the dosage of treatment received. We observe response rT ij and dose dT ij for an

encouraged subject (Zij = 1) and rCij and dCij for a non-encouraged subject (Zij = 0).

In our context the “dose” – whether the offender is incarcerated – is binary, but in

general it can be a continuous quantity. (Note that the T and C in the subscripts

refer to the value of the encouragement Zij, not “treatment” and “control” in terms

of the dosage received.) Of course, the fundamental problem of causal inference is

that we only observe one of (rT ij, dT ij) or (rCij, dCij) depending on whether Zij = 1

or Zij = 0, so we cannot directly estimate the causal effect of encouragement on dose

received, ηij = dT ij − dCij, or on the response, δij = rT ij − rCij. Instead, we observe

response Rij = ZijrT ij + (1 − Zij)rCij and dose Dij = ZijdT ij + (1 − Zij)dCij. We

write F = {(rT ij, rCij, dT ij, dCij,xij, uij), i = 1, . . . , I, j = 1, 2}.

2.4.2 Randomization Inference

One measure of the causal effect of encouragement is the effect ratio λ, defined as the

ratio of two average treatment effects: that of the encouragement on the response to

that of the encouragement on the dose received (assuming the latter is nonzero):

λ =

∑I
i=1

∑2
j=1(rT ij − rCij)∑I

i=1

∑2
j=1(dT ij − dCij)

. (2.1)

In other words, λ = δ/η, where δ = (1/2I)
∑

i,j δij and η = (1/2I)
∑

i,j ηij (Ertefaie

et al.). If the exclusion restriction (Assumption 2 in Section 2.3.1) holds, then λ

can be interpreted as the causal effect of incarceration on recidivism, among those

offenders who are compliers – that is, those offenders who would be incarcerated if

assigned to a harsh judge but not if assigned to a lenient judge. In this case, λ

is the familiar instrumental variables estimand, variously called the Local Average

Treatment Effect (LATE) (Angrist et al., 1996) or the Complier Average Causal

Effect (CACE). However, as described by Baiocchi et al. (2010), we can interpret and

make inferences about λ even if the exclusion restriction does not hold.

We now describe randomization inference for a special case of λ that occurs when
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treatment effects are constant and proportional to the dose received. We will use this

inference framework for power simulations in Section 2.5.2 to select a match. Our

presentation of randomization inference and sensitivity analysis in the rest of Section

2.4 closely follows the discussion in Small and Rosenbaum (2008).

When the treatment effect is constant and proportional to the dose received, we

write

rTij − rCij
= β(dT ij − dCij). (2.2)

In this case, the exclusion restriction holds and the effect ratio is simply λ = β

(Ertefaie et al.), and

Rij − βDij = rTij − βdT ij = rcij − βdCij ≡ aij. (2.3)

Note that while Rij and Dij are observed, Rij −βDij is an unobserved quantity since

it depends on the unknown parameter β. However, since aij is the same regardless

of whether Zij = 1 or = 0, it is a function of F and is fixed in that it does not vary

with Z. In a randomized encouragement experiment, we can make inferences about

β in (2.2) by testing H0 : β = β0 using the observed quantity Rij − β0Dij. We can

write this quantity as

Rij − β0Dij = Zij(rT ij − β0dT ij) + (1− Zij)(rCij − β0dCij)

= Zij [(rT ij − βdT ij)− (β − β0dT ij)] + (1− Zij) [(rCij − βdCij)− (β − β0dCij)]

= aij + (β − β0) [ZijdT ij + (1− Zij)dCij] .

Note that if H0 : β = β0 is true, the second term in the last line is zero and Rij −

β0Dij = aij is fixed with respect to Z and depends only on F . If H0 does not hold,

then Rij − β0Dij will vary with Zij.

We define V β0
i as the encouraged-minus-unencouraged pair difference in the ob-
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served quantity Rij − β0Dij:

V β0
i = Zi1 [(Ri1 − β0Di1)− (Ri2 − β0Di2)] + (1− Zi1) [(Ri2 − β0Di2)− (Ri1 − β0Di1)]

= (β − β0) [Zi1(dTi1 − dCi2
) + (1− Zi1)(dTi2 − dCi1

)] + (2Zi1 − 1)(ai1 − ai2)

= (β − β0)Si + εi, (2.4)

where

Si = Zi1(dTi1 − dCi2
) + (1− Zi1)(dTi2 − dCi1

) and

εi = (2Zi1 − 1)(ai1 − ai2).
(2.5)

If we have a randomized experiment and H0 : β = β0 is true, then the first term in

(2.4) is 0 and V β0
i is ±(ai1 − ai2), each with probability 1/2, for each pair i. In this

case, since aij is fixed with respect to Z, |V β0
i | is also fixed and V β0

i is symmetrically

distributed around 0. If H0 does not hold, then V β0
i is the sum of a quantity that

is symmetric about 0, εi, plus (β − β0)Si. If β > β0, as would happen if β0 = 0 but

there is in fact a positive treatment effect β > 0, and if the exclusion restriction holds

and there is at least one complier (i.e. at least one ij such that (dT ij, dCij) = (1, 0)),

then (β − β0)Si has positive expectation.

One way to test H0 : β = β0 is with Wilcoxon’s signed-rank statistic, call it T β0 ,

which we calculate using the ranks of V β0
i . If H0 holds and we have a randomized

encouragement experiment, then the distribution of T β0 is (approximately) normal

with E[T β0 ] = I(I + 1)/2 and Var(T β0) = I(I + 1)(2I + 1)/6 for large I.

2.4.3 Sensitivity Analysis

In the previous section, we assumed that we were in the scenario of a randomized

encouragement experiment, where Zij is randomly assigned so that Pr(Zij = 1 |

Z,F) = 1/2 for all ij. In the context of an observational study, however, we have no

guarantee that the encouragement is, in fact, randomly assigned. It is then natural

to ask, how large would the departure from random assignment have to be in order

to explain away any evidence of a treatment effect that we may find? In other words,
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how sensitive are our results to unobserved bias? One approach to sensitivity analysis,

described in detail in Rosenbaum (2002b, sec. 4), begins by assuming that we have

pairs matched exactly for observed covariates xi so that xi1 = xi2 for all pairs i, but it

may be that unobserved covariates uij are not exactly matched, so ui1 6= ui2 for some i.

Denote by πij the probability of ij receiving encouragement, πij = Pr(Zij = 1 | Z,F),

which we assume are independent. We then assume that, because of the unobserved

covariate uij, the odds of a matched pair i may not be exactly equal, but rather differ

by a factor of at most Γ ≥ 1:

1

Γ
≤ πij(1− πik)
πik(1− πij)

≤ Γ, ∀i, j, k. (2.6)

Rosenbaum (2002b, sec. 4) shows that (2.6) is equivalent to assuming a logit model

of treatment assignment:

Pr(Z = z | Z,F) =
exp(γzTu)∑

b∈Z exp(γbTu)
, (2.7)

where γ = log(Γ) and u = (u1,1, . . . , uI,2) ∈ [0, 1]2I . Clearly, when Γ = 1 so that

γ = 0, Pr(Z = z | Z,F) = (|Z|)−1 = (2I)−1 and we are in the scenario of a

randomized experiment. When we fix Γ > 1, the encouragement probabilities πij

are unknown but have known bounds. We can therefore use these known bounds to

bound test statistics and thus relevant inferential quantities like p-values.

In the case of Wilcoxon’s signed-rank statistic, consider two random variables T

and T (see Rosenbaum (2002b, sec. 4.3) for a detailed derivation and discussion).

Let T =
∑I

i=1Ai be the sum of I random variables Ai that take on the value 0 with

probability Γ/(1 + Γ) and i with probability 1/(1 + Γ), and let T =
∑I

i=1Bi be the

sum of I random variables Bi that take on the value 0 with probability 1/(1+Γ) and i

with probability Γ/(1+Γ). Then when H0 : β = β0 holds and for all π = (π11, . . . , πI2)

that satisfy (2.6),

Pr(T ≥ t | Z,F) ≤ Pr(T β0 ≥ t | Z,F) ≤ Pr(T ≥ t | Z,F). (2.8)

From these bounds we can bound both p-values and confidence intervals; when Γ =

1, the three probabilities above are equal, which gives the standard randomization
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distribution of Wilcoxon’s signed-rank statistic under H0. Given a fixed Γ, define

t̃α as the value such that Pr(T ≥ t̃α) = α, where we omit conditioning on Z and

F for brevity. Then Pr(T β0 ≥ t̃α) ≤ Pr(T ≥ t̃α) = α, so we have an upper bound

on the p-value Pr(T β0 ≥ t̃α). If T β0 ≥ t̃α, then we can reject H0 at the α level.

We are generally concerned with the upper bound on the p-value since our goal is

to understand for which values of Γ the quantity Pr(T β0 ≥ t̃α) is greater than our

chosen significance level α.

To actually calculate the bounds in (2.8), we can appeal to a large-sample approx-

imation and the central limit theorem. In the limit that I → ∞, the distribution of

T is approximately normal, with expectation and variance given by

E[T ] =
Γ

1 + Γ

I(I + 1)

2
and Var(T ) =

Γ

(1 + Γ)2
I(I + 1)(2I + 1)

6
. (2.9)

We then compare the standardized deviate (T β0 − E[T ])/

√
Var(T ) to the standard

normal distribution to approximate the upper bound in (2.8).

2.4.4 Power of a Sensitivity Analysis and Design Sensitivity

When analyzing observational studies, we can never be certain that our conclusions

are unaffected by unobserved bias, and a sensitivity analysis will tell us how large

such a bias would have to be in order for our results to be altered. While the data

cannot tell us for certain that we are free of unobserved bias, ideally the methods

we use would be robust enough to detect a true treatment effect in the absence of

unobserved bias and yield a sensitivity analysis stating that it is not sensitive to small

biases. Specifically, if H0 : β = β0 were far from true – that is, if β − β0 were large

– and if Γ were not too large, then we would like to be able to reject H0. We reject

H0 when the upper bound on the p-value Pr(T β0 ≥ t̃α | Z,F) is larger than our

chosen significance level α, which happens when T β0 ≥ t̃α. The probability that we

will be able to correctly reject H0 in the presence of a treatment effect and a perfect

instrument is the power of a sensitivity analysis. More precisely, the power of an
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α-level sensitivity analysis for a fixed Γ > 1 is the probability that Pr(T ≥ t | Z,F),

the upper bound in (2.8), is less than or equal to α, calculated in the scenario of a

perfect instrument and a nonzero treatment effect. The power of a sensitivity analysis

is analogous to the power of a statistical test; instead of asking about the power of

correctly rejecting H0, the power of a sensitivity analysis asks about the probability

of correctly identifying a treatment effect that is robust to small biases (Rosenbaum,

2010).

As the number of pairs I →∞, the power of the sensitivity analysis approaches 1

for Γ < Γ̃ and 0 for Γ > Γ̃; the value Γ̃ at which this switch in power occurs is called

the design sensitivity, so the design sensitivity is the magnitude of bias to which our

study will be sensitive, even in the limit of I →∞ (Rosenbaum, 2004, 2005). Design

sensitivity is useful for comparing specific study designs and methods of analysis in

terms of how resistant they are to unmeasured biases; all other things being equal, we

would prefer a design and a method that yields higher design sensitivity (Rosenbaum,

2010; Ertefaie et al.).

2.5 Near/Far Matching to Strengthen a Weak In-

strument

In order to address the problems with weak instrumental variables, we implement

a matching method called near/far matching developed by Baiocchi et al. (2010)

and extended by Zubizarreta et al. (2013). The goal is to create matched pairs who

are as similar as possible on observed covariates and as dissimilar as possible on the

instrument. In our context, we would like pairs of offenders with similar demographics

and case characteristics whose judges have very different harshness values. We first

review notation and inference for paired randomized encouragement designs, then

describe the matching algorithm that yields different matched samples that trade

off between sample size and instrument strength, and finally discuss our method for
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selecting one of the matches based on simulating the power and design sensitivity for

each matched set.

Our goal in near/far matching is to form pairs that are identical or very similar

on observed covariates xij, so that ideally xi1 = xi2, and far on judge harshness so

that Wi1 −Wi2 is large. This approach strengthens the instrument because it yields

pairs in which one unit is strongly encouraged to receive treatment and the other

is not. At the same time, the units are comparable on observed covariates. We

implement near/far matching via the integer programming algorithm developed by

Zubizarreta et al. (2013) in the R package designmatch. This approach allows us

to specify the minimum pair separation in harshness κ that we require for each pair:

Wi1−Wi2 ≥ κ. We can also require that the average difference in harshness across the

entire matched dataset also meets a certain threshold: (1/I)
∑I

i=1(Wi1 −Wi2) ≥ ω.

In addition, the analyst can specify additional balance requirements such as mean

balance, fine balance, or strength-k matching.

2.5.1 Matching Strategy

After data cleaning, the PCS data contain N = 53 318 subjects who committed of-

fenses that were reported to the Sentencing Commission between 1998 and 2000. Of

these, 21 739 subjects were assigned to harsh judges and 31 579 to lenient judges.

Because the randomization to judges is at the county level, we must match sub-

jects within counties. Without using any other covariates, the maximum number of

matched pairs we could possibly achieve is Imax =
∑

cty min(nt,cty, nc,cty) = 18 874,

where nt,cty (nc,cty) denotes the number of offenders assigned to a harsh (lenient) judge

in county cty.

We form pairs that are matched exactly on binary indicators for sex (male/female),

race (white/non-white) and whether the offender was charged with a felony. We also

match exactly for three age groups (under 23, 24-34, 35+), three prior record score

(PRS) groups (0, 1-2, 3+), and three offense gravity score (OGS) groups (1-2, 3,
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4+). For each variable, we chose the groups such that they had roughly the same

number of observations in each. We use PRS and OGS because they comprise the

Basic Sentencing Matrix, which is contained in the Pennsylvania State Guidelines

and gives recommendations on the length and location of confinement. Age and PRS

in particular are well-known as important determinants of recidivism (???).

To strengthen the instrument, we consider various combinations of the mini-

mum pair separation κ and the average separation ω. Specifically, we use κ ∈

{0, 0.02, 0.04, 0.06, 0.08, 0.10} and ω ranging from 0 to 0.3 in units of 0.05 and from

0.3 to 0.5 in units of 0.025. Of course, some of these combinations are illogical, so we

exclude them. For example, if we set the average separation ω to 0.05, then clearly

the minimum pair separation κ must be κ ≤ 0.05.

We display the results of the matches in Figures 2.7 to 2.9. Figure 2.7 plots

the average separation ω on the x-axis and the number of matched pairs on the

y-axis. Each circle is a different matched set, and the color and size of the circle

is proportional to the difference in incarceration rates between the encouraged and

unencouraged offenders, which is both an estimate of the proportion of compliers in

the data and a measure of instrument strength. Each panel is for a different value of

the minimum pair separation κ. We see that the effect of increasing ω has a consistent

pattern across different values of κ. The number of matched pairs drops steeply and

instrument strength rises quickly as average separation ω increases from 0 to 0.2, with

both quantities changing more slowly as ω goes from 0.2 to 0.4, and we see a small

but notable drop in the number of matched pairs going from ω = 0.425 to ω = 0.450.

Figure 2.8 plots the same numbers in a slightly different way. We now have

the number of matched pairs I on the x-axis and the difference in incarceration

rates on the y-axis. Each point is still a matched set, with the color of the points

now representing the average separation ω; the panels are still for different values of

the minimum pair separation κ. This figure shows the tradeoff between instrument

strength and sample size more explicitly. We see that the instrument strength drops



CHAPTER 2. WEAK INSTRUMENTAL VARIABLES IN THE CONTEXT OF
RECIDIVISM 68

off quickly as the sample size increases, and for each minimum pair separation there

is a point at which instrument strength is at a peak; increasing or decreasing the

sample size from this point yields a strictly weaker instrument.

Figure 2.9 shows the absolute standardized difference in means before and after

matching for each match, here indexed by the minimum pair separation κ (columns)

and the average separation ω (rows). Because we exactly match for sex, race, felony,

age group, PRS group, and OGS group, we show here the differences in means for

the year of sentencing and the continuous versions of age, PRS, and OGS. We see

that in some cases, exact matching can worsen the mean balance quite drastically on

the continuous versions of important covariates. This is particularly true for OGS,

which has fourteen levels that we categorize into three groups: 1-2, 3, and 4+. While

the match is exact on these four categories, the fact that the last category covers

OGS scores from 4 to 14 makes the standardized difference in means on OGS poor.

However, because high values of OGS are relatively rare in the data – less than 10%

of offenders have OGS scores of 8 or higher – this grouping makes the most sense in

terms of category size. Because the OGS is used in the Basic Sentencing Matrix, it is

an important covariate in the context of recidivism. For this reason, we narrow our

focus to the matches resulting from minimum pair separations κ ∈ {0.06, 0.08, 0.1}

and average separations ω between 0.1 and 0.45.

2.5.2 Power of a Sensitivity Analysis and Selecting a Match

Given these matches with such stark differences in sample size and instrument strengths,

how should a researcher choose which one to use in her analyses? If we have a stronger

instrument with a smaller sample size, perhaps our results would be more sensitive

to unobserved biases. On the other hand, maybe a larger sample size with a weaker

instrument gives us more power to detect a treatment effect when it actually exists.

How can we understand this tradeoff between sample size and instrument strength?

Our approach is to select a match by calculating for each match the power of a
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Figure 2.7: Summary of matching results for different combinations of κ (minimum

pair separation) and ω (average separation). Each circle represents a matched dataset

resulting from one of these combinations. The x-axis is the required average sepa-

ration in the match and the y-axis is the number of matched pairs. Each panel is

a different value of the minimum pair separation. The color and size of each circle

represent the instrument strength, measured as the difference in incarceration rates

between encouraged and unencouraged offenders.



CHAPTER 2. WEAK INSTRUMENTAL VARIABLES IN THE CONTEXT OF
RECIDIVISM 70

●

●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●
●

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

0.06 0.08 0.1

0 0.02 0.04

0 5000 10000 0 5000 10000 0 5000 10000

0.1

0.2

0.3

0.1

0.2

0.3

Number of pairs

D
iff

er
en

ce
 in

 in
ca

rc
er

at
io

n 
ra

te
s

0.0 0.1 0.2 0.3 0.4 0.5
Average separation

Minimum pair separation

Figure 2.8: Summary of matching results for different combinations of κ (minimum

pair separation) and ω (average separation). Each circle represents a matched dataset

resulting from one of these combinations. The x-axis is the number of matched

pairs and the y-axis is the the instrument strength, measured as the difference in

incarceration rates between encouraged and unencouraged offenders. Each panel is a

different value of the minimum pair separation. The color each circle represents the

required average separation in the match.
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Figure 2.9: Absolute standardized difference in means before (blue) and after (red)

matching. Each row is for a different average separation ω and each column for a

different minimum pair separation κ.
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sensitivity analysis for specific values of Γ. Specifically, we use simulation to calculate

the expected power of the Wilcoxon signed-rank statistic as described in general

in Rosenbaum (2010) and for the specific case of an observational study with an

instrumental variable in Small and Rosenbaum (2008). This procedure uses both the

number of matched pairs I and the estimated proportion of compliers (instrument

strength) ρC to calculate the expected power.

The formula for an approximation of the expected power of Wilcoxon’s signed-

rank statistic is given in Rosenbaum (2010, sec. 14) and involves four quantities:

the number of pairs I, p = Pr(V β0
i > 0), p′1 = Pr(V β0

i + V β0
j > 0), and p′2 =

Pr(V β0
i +V β0

j > 0 and V β0
i +V β0

k > 0) for i < j < k. We follow Small and Rosenbaum

(2008) and estimate these probabilities by simulating one million independent triples

(V β0
i , V β0

j , V β0
k ). For each triple, we calculate three 0/1 indicators corresponding to

the events in p, p′1, p
′
2 to get three binary vectors, each of length one million. We

estimate p, p′1, p
′
2 as the mean of the corresponding binary vector.

To simulate V β0
i , we require three components as given in (2.4): the noncentrality

parameter β − β0, which measures the magnitude of the departure from H0 : β = β0,

the encouraged-minus-unencouraged difference in treatment status Si, and the error

term εi. We consider three values for β − β0: β − β0 ∈ {0.25, 0.5, 1}. For εi, we

consider three distributions, the Normal, Cauchy, and Logistic, all centered at 0 with

unit variance (for the Cauchy, we set the scale to one; for the Logistic, we set the

scale to
√

3/π so that the variance is one). In this way, (β − β0)/σ is comparable

across the three distributions.

Simulating Si requires several steps, the first of which is a model for compliance

status. We again follow Small and Rosenbaum (2008) and assume that compliance

status is multinomially distributed with probabilities ρA, ρC , and ρN for always-takes,

compliers, and never-takers, respectively; the monotonicity assumption in Section

2.3.1 means there are no defiers. Note that since treatment is binary, Si takes on

one three values, Si ∈ {−1, 0, 1}, and depends on the compliance statuses of the
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encouraged and unencouraged members of pair i. Assuming that both compliance

status and encouragement are randomly assigned, we can calculate the probabilities of

Si taking on each of the three values. For example, Si = −1 only when the encouraged

member of a pair is a never-taker and the unencouraged member is an always-taker,

which occurs with probability Pr(Si = −1) = ρNρA. When the encouraged subject

is either a complier or an always-taker and the unencouraged subject is either a

complier or a never-taker, we have Si = 1, so Pr(Si = 1) = ρ2C +ρAρC +ρCρN +ρAρN .

Similarly, Pr(Si = 0) = ρ2A + ρ2N + ρCρA + ρNρC , and indeed Pr(Si = −1) + Pr(Si =

0)+Pr(Si = 1) = 1. We use the estimated proportion of compliers in the matched data

as ρC : ρC = I−1
∑I

i=1 Ui, where Ui = (Zi1−Zi2)(Di1−Di2) is the encouraged-minus-

unencouraged pair difference in treatment outcomes. We assume that the proportions

of always- and never-takers are equal, so ρA = ρN = (1−ρC)/2 and ρA+ρC +ρN = 1.

We also calculate the design sensitivity Γ̃, which for the Wilcoxon signed rank

statistic is calculated as Γ̃ = p′1/(1 − p′1); see Rosenbaum (2010, sec. 14) for proof.

Ertefaie et al. point out that since design sensitivity is an asymptotic quantity, it

cannot help us weigh sample size I and bias Γ. However, the proportion of compliers

does enter into the calculation for Γ̃ through Si in V β0
i , so here the design sensitivity

is a function of the instrument strength.

Our approach has several advantages compared to two recent approaches to this

problem. Ertefaie et al. propose a method that involves splitting the sample in

half. The first half is used to determine where the instrument is strong and is then

discarded. In the second half, the portion of the data where the instrument was de-

termined to be weak is discarded, and the analysis proceeds with the remainder of the

second half. In the context of their application, instrument strength is the frequency

of delivery at hospitals with high-level neonatal intensive care units (NICUs) by zip

code. They use half of the sample in a zip code to classify the zip code as high,

medium, or low frequency, and then use the other half for analysis. This approach

has the advantage of not using the data twice, but the disadvantage of losing over half
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the sample size. The loss in sample size is justified by their simulations, which use

the Bahadur efficiency of a test or sensitivity analysis as the metric for quantifying

the sample size-instrument strength tradeoff and show that a “moderate increase in

instrument strength is worth more than an enormous increase in sample size”, espe-

cially for the case of an imperfect instrument that may have small unmeasured biases.

However, our strategy of using separate datasets for calculating the instrument and

for the analysis sidesteps the issue of using the same data twice without requiring

data to be discarded.

Keele and Morgan (2016) combine near-far matching (Baiocchi et al., 2010) with

weak instrument tests from the econometrics literature to identify a sample size-

instrument strength combination whose performance on these tests indicates that the

instrument has been adequately strengthened. They use the F -statistic and the R2

from a regression of the treatment on the instrument to select a sample size-instrument

strength combination. In their application, they note that the match that produces

the highest standardized difference in means for the instrument (excess rainfall), the

one that many researchers might reasonably select, actually fails the weak instrument

test. The advantage of our approach is that, given a willingness to make assumptions

about the distribution of εi, we can directly quantify the sensitivity of each match to

unobserved bias, an important consideration in any study of causal effects.

2.5.3 Simulation Results

For each match, we calculate the power of a one-sided level-0.025 sensitivity analysis

for several values of Γ ≥ 1 via simulation. Figure 2.10 displays the power plotted as a

function of the estimated proportion of compliers (difference in incarceration rates).

Each circle represents a match, with the colors distinguishing different departures

from the null hypothesis, β − β0. The size of the circle is proportional to the number

of pairs in the match. The columns are for different values of Γ and the rows for

the three models for εi. For clarity, we show the matches resulting from requiring a
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minimum pair separation κ = 0.08.

When the instrument is perfect, Γ = 1, the probability of detecting a large de-

parture from H0 : β = β0 is high, even for matches where the instrument is weakest,

and drops off steadily as the departure from H0 gets smaller. Power decreases as Γ

increases, quickly when the errors are Cauchy and when the departure from the null

is small, more slowly for Normal and Logistic errors and larger departures from the

null. However, power increases sharply when Γ > 1 as the estimated proportion of

compliers increases. The power is not quite monotonic with the proportion of com-

pliers because two matches with very similar instrument strengths may have very

different sample sizes; for example, in Figure ??, one match has 1 138 pairs with an

incarceration rate difference of 0.275, while another has double the number of pairs,

2 279, but only a slightly smaller incarceration difference of 0.231. In such cases, the

power will be larger for the larger match. Similarly, the sample size for the match

with the highest compliance rate is 26% smaller than that for the match with the

second-highest rate (667 vs 875), which is why the power is smaller. Figure 2.11 is

analogous to Figure 2.10, except that the x-axis shows sample size and the size of each

circle is proportional to the estimated proportion of compliers. Power peaks when

the compliance rate is large and drops off as sample size increases and the compliance

rate decreases.

In Figures 2.12 to 2.14, we plot power as a function of Γ for each of the three

error models. Each line represents a single match, with the color of the line denoting

the minimum pair separation κ and the linetype denoting the different degrees of

departure from H0 : β = β0. Each panel is for a separate value of the average

separation ω. Each match, indexed by its values of κ and ω, thus appears three times

in this figure, once for each of the three values of β−β0. While Figures 2.10 and 2.11

show power under specific assumptions about the error distribution and the degree of

bias Γ, Figures 2.12 to 2.14 follow the power for a single match over many values of

Γ. In this way, we can see how quickly the power drops for each match as Γ increases,
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under fixed assumptions about the error distribution and the size of β− β0. Power is

higher under the lighter-tailed Normal and Logistic distributions and quite low for the

heavy-tailed Cauchy. Across Figures 2.12 to 2.14, the matches formed by requiring

the average separation to be at least ω = 0.4 consistently the highest power.

We also calculate design sensitivity Γ̃, which is a function of the proportion of

compliers in the data. In Figure 2.15, we plot the proportion of compliers against the

design sensitivity, with each column representing a different minimum pair separation

κ and each row for a different error model. Each point is a match, with the size of the

point proportional to the number of pairs in that match and the color denoting the

size of the departure from H0. Design sensitivity Γ̃ increases monotonically with the

proportion of compliers, so Figure2.15 suggests choosing the match with the largest

design sensitivity. This plot is analogous to Table 6 in Small and Rosenbaum (2008),

showing design sensitivity under various instrument strength, error distribution, and

null departure assumptions. However, producing this figure directly for the matches

one is attempting to choose from can help a researcher understand the relationship

between Γ̃ and instrument strength in her particular data. Another way of looking at

this is in Figure 2.16, where we have switched the roles of the number of matched pairs

I and the estimated proportion of compliers. As an asymptotic quantity, Γ̃ is not a

function of I, but because each match can be identified by its number of matched

pairs or its estimated proportion of compliers, Figure 2.16 is just a way of projecting

the matches along a different dimension. Here we see that the design sensitivity peaks

for matches with just under 1000 pairs.

Having seen in Figures 2.12 to 2.14 that power is consistently highest among the

matches with average separation ω = 0.4, we plot design sensitivity for each of the

three values of β − β0 and three error models in Figure 2.17. The value of Γ̃ is

consistently highest for the match with minimum pair separation κ = 0.08.
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Figure 2.10: Power of a one-sided level-0.025 sensitivity analysis plotted against dif-

ference in incarceration rates (instrument strength). Each point represents a matched

set resulting from setting the minimum pair separation to 0.08 and varying the aver-

age separation. The size of the circle is proportional to the number of pairs in that

match. The columns are for different value of Γ and the rows are the three error

models. The colors represent different degrees of departure from H0 : β = β0. The

dashed horizontal line shows power = 0.8.
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Figure 2.11: Power of a one-sided level-0.025 sensitivity analysis plotted against dif-

ference in incarceration rates (instrument strength). Each point represents a matched

set resulting from setting the minimum pair separation to 0.08 and varying the aver-

age separation. The size of the circle is proportional to the difference in incarceration

rates (instrument strength) in that match. The columns are for different value of Γ

and the rows are the three error models. The colors represent different degrees of

departure from H0 : β = β0. The dashed horizontal line shows power = 0.8.
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Figure 2.12: Power of a one-sided level-0.025 sensitivity analysis plotted against Γ

for the Normal error model. Each line represents a matched set, with the color

representing the estimated proportion of compliers. The rows are for different values

of the minimum pair separation and the columns are for the degrees of departure

from H0 : β = β0. The dashed horizontal line denotes where power = 0.8.
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Figure 2.13: Power of a one-sided level-0.025 sensitivity analysis plotted against Γ

for the Logistic error model. Each line represents a matched set, with the color

representing the estimated proportion of compliers. The rows are for different values

of the minimum pair separation and the columns are for the degrees of departure

from H0 : β = β0. The dashed horizontal line denotes where power = 0.8.
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Figure 2.14: Power of a one-sided level-0.025 sensitivity analysis plotted against Γ

for the Cauchy error model. Each line represents a matched set, with the color

representing the estimated proportion of compliers. The rows are for different values

of the minimum pair separation and the columns are for the degrees of departure

from H0 : β = β0. The dashed horizontal line denotes where power = 0.8.
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Figure 2.15: Design sensitivity Γ̃ plotted against instrument strength, measured as

the difference in incarceration rates. Each circle represents a different match, with

the size of the circle proportional to the number of pairs in the match.
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Figure 2.16: Design sensitivity Γ̃ plotted against the number of matched pairs. Each

circle represents a different match, with the size of the circle proportional to the

estimated proportion of compliers, which is the difference in incarceration rates in

the match.
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Figure 2.17: Design sensitivity Γ̃ plotted against three values of minimum pair separa-

tion for matches with average separation ω = 0.4. The color of each point represents

the departure from H0 : β − β0, while the shape represents the error model.
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2.5.4 The Selected Match

Using the simulated power and design sensitivity, along with considerations for bal-

ance of important covariates, we select the match formed by requiring the minimum

pair separation to be κ = 0.08 and the average separation to be ω = 0.4. This match

has I = 875 pairs and an estimated proportion of compliers η̂ = 0.32. The unmatched

data have a total of N = 53 318 subjects, from whom we could construct at most

18 874 matched pairs if we were to match only within county. In the unmatched data

with N = 53 318 offenders, the estimated proportion of compliers is 0.04. Though

we have reduced our sample size by a factor of 53 318/(2 ∗ 875) = 30, the instrument

is now 0.32/0.04 = 8 times stronger. Our simulations of the power of a sensitivity

analysis and design sensitivity indicate that the improvements in instrument strength

are worth this tradeoff. In addition, Ertefaie et al. show via simulation that, with a

perfect instrument, a 5-fold loss in instrument strength requires a 25-fold increase in

sample size to maintain the same power, and the required increase in sample size is

even larger for an imperfect instrument.

Figure 2.18 shows the absolute standardized differences in means before (blue)

and after (red) matching. While matching has made the balance on year (1998-2000)

slightly worse, the difference is not above the conventional threshold of 0.1. Since

our data only cover three years during which sentencing guidelines did not change,

this slight imbalance is not concerning. The balance in both PRS and OGS is has

improved after matching, and while age is slightly less balanced, the difference in

means is still quite low at 0.025; see Figure 2.19. Because we have exactly matched for

county, sex, race, and felony charges, those variables are perfectly balanced between

the encouraged and unencouraged groups.

The matched dataset consists of five counties: Bucks, Dauphin, Lehigh, Mercer,

and Philadelphia. This is in contrast to the 54 counties in the unmatched data and 67

counties in Pennsylvania as a whole. These counties include some of the largest cities

in Pennsylvania (Philadelphia, Allentown), and Dauphin county includes the state
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Figure 2.18: Absolute standardized differences in means for the selected match before

(blue) and after (red) matching. Vertical grey lines are drawn at 0.01 and 0.1 to denote

more and less conservative thresholds for balance.

capital of Harrisburg. The range of population sizes these five counties is quite large:

Philadelphia is the largest county in the state, with a population of over 1.5 million

in 2010, while Bucks county has 625,000 residents, Lehigh has 350,000, Dauphin has

268,000, and Mercer has 117,000. Despite the small number of counties in the match,

they represent the geographic variation in Pennsylvania with a large urban county

like Philadelphia, a small rural county like Mercer County, and counties with dense

suburbs like Bucks County.

The matched data do not greatly differ from the unmatched data in terms of

observed covariates. Table 2.1 shows the compositions of the matched and unmatched

data in terms of the proportions of offenders who are male, white, and had felony

charges, as well as the mean OGS, PRS, and age at date of offense. The matched data

have slightly more males and fewer white offenders than the unmatched data, which

is not surprising given that the population of Philadelphia County is 45% white while
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Figure 2.19: Density plot of age at date of offense for the selected match before (blue)

and after (red) matching.
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Covariate Matched data Unmatched data

Male 0.88 0.82

White 0.44 0.56

Felony charges 0.42 0.41

OGS 4.18 3.95

PRS 1.41 1.28

Age 29.02 29.65

Table 2.1: Compositions of the selected match and the unmatched data in terms of

observed covariates. Values for the first three rows are the proportion of offenders

falling into the given category, while the last three rows are means.

the other counties range from 72% to 93% white. The proportion of offenders facing

felony charges is nearly equal. The OGS and PRS values are also slightly higher

for the matched data, while age at date of offense is about six months older in the

unmatched data. In removing observations from the data, we change the estimand

and the population we are studying, but to the extent that this more restricted dataset

better represents the population of compliers, we will obtain improved estimates of

the causal effect of interest.

2.6 Effect Modification of the ITT

2.6.1 Methods for Discovering Effect Modification

Effect modification is an interaction between a treatment and a pretreatment covariate

that affects the magnitude or stability of the treatment effect. If a treatment effect is

smaller or more variable in some groups than in others, it is likely to be more sensitive

to unobserved covariates. On the other hand, a large treatment effect is more difficult

to explain away as the product of bias in treatment assignment. (Rosenbaum, 2004,
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2005, 2010). Examining effect modification can uncover groups in the data in which

estimates of treatments effects are less easily explained away by bias due to unobserved

covariates.

We investigate effect modification for the intention-to-treat (ITT) effect, a rel-

evant intermediate quantity for our analysis. The ITT is the causal effect of the

encouragement on the outcome of interest. In our case, this is the effect of being

assigned to a harsh judge on recidivism, and we denote it by δ = (2I)−1
∑

i.j δij,

where δij = rT ij − rCij. The ITT ignores compliance, comparing recidivism in those

assigned to a harsh judge with those assigned to a lenient one. Of course, we are

most interested in the causal effect of the treatment, incarceration, but the ITT is

simpler to handle because it focuses on the randomized encouragement assignment.

Our investigation of effect modification of the ITT uses recently developed methods

that allow for data-based discovery of covariates that may interact with the treat-

ment. While subject-matter knowledge can often help guide the search for covariates

that are likely to be effect modifiers, a data-driven method for discovering subgroups

of the data or subpoplations that exhibit evidence of effect modification is appealing;

not only can such a procedure save time, it also lessens researcher degrees of freedom.

These methods are both exploratory, in that they use the data to discover which

subgroups of the data show evidence of effect modification, and confirmatory, in that

the familywise error rates arising from testing multiple hypotheses with correlated

test statistics and the resulting sensitivity analyses are controlled at a prespecified

level.

We use three recently developed methods that strongly control the familywise

error rate of sensitivity analyses. All use pair-matched data that are exactly matched

for a set of covariates xij so that xi1 = xi2 in all pairs i. The first method, proposed

by Hsu et al. (2013), creates a classification and regression tree (CART) (Breiman et

al., 1984) to predict the ranks of |Yi|, the absolute value of the observed encouraged-

minus-unencouraged pair difference in outcomes, Yi = (Zi1−Zi2)(Ri1−Ri2), using the
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covariates xi. The leaves of the regression tree define G ≥ 1 groups G = {s1, . . . , sG},

where each sg is a subset of the pair indices i = 1, . . . : L, sg ⊆ {1, . . . , I}. It is these

G groups in which we test for the presence of effect modification.

Using |Yi| instead of Yi is crucial here. Consider testing Fisher’s sharp null hy-

pothesis H0 of no effect, in which case rT ij = rCij for all ij. Then |Yi| = |ri1 − ri2| =

|rCi1 − rCi2| is a function of F , so the tree is fixed regardless of the distribution of

encouragement assignments Z, and a test statistic calculated using the observed val-

ues of Zij and Yi for i ∈ sg can be bounded under H0 as in (2.8) (Hsu et al., 2013,

2015). As summarized by Hsu et al. (2015), Hsu et al. (2013) calculate p-values for

the bounds in (2.8) for each of the G subgroups and combine them using the trun-

cated product of Zaykin et al. (2002) for an overall test of Fisher’s sharp null H0.

In this way, they pool evidence from the subgroups to test the null hypothesis of no

effect in any of the G subgroups.

Of course, if H0 is rejected, the next natural question is for which subgroups sg

the null hypothesis H0sg of no effect can be rejected. The problem here is that since

the subgroups were generated from a regression tree constructed from the specific

data at hand, so were the subgroup null hypotheses we wish to test. In other words,

“[w]hat does it mean to speak about the probability of falsely rejecting [H0sg ] if most

datasets would not lead us to test [H0sg ]?” (Lee et al., 2017a). Hsu et al. (2015)

extends the work of Hsu et al. (2013) by proving that 1) if Fisher’s strong null of no

effect holds within subgroup g (i.e. H0sg is true), then the randomization distribution

of treatment (encouragement) assignments within sg has its usual null distribution,

conditional on the groups G and (F ,Z); and 2) the familywise error rate arising from

testing null hypotheses within subgroups can be controlled at a prespecified level α

if the test used would control the familywise error rate with groups that were fixed

a priori instead of data-driven (Lee et al., 2017a). Hsu et al. (2015) show that the

control of the familywise error rate also applies in the case of a sensitivity analysis with

bias of at most Γ ≥ 1. They achieve this strong control by using the closed testing
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procedure of Marcus et al. (1976). This procedure considers testing a hypothesis HK,

where K ⊆ {1, . . . , G}, which states that there is no effect in any of the pairs in any

of the subgroups
⋃
g∈K sg. As described in Hsu et al. (2015), closed testing rejects HK

at level α if and only if it rejects at level α the null hypotheses HL for all L, where

the set L is the set of all subsets of {1, . . . , G} that contain K: K ⊆ L ⊆ {1, . . . , G}.

The third method is the submax method and was proposed by Lee et al. (2017b).

Its advantage is that its power and design sensitivity can be calculated via analytical

formulas, while the above two CART-based methods require simulation. While it

does not require matched pairs, we outline the method assuming that we have I pairs

matched exactly for categorical covariates xi. Consider the G groups formed by the

interactions of the covariate categories; with two categorical covariates with three

levels each, there are G = 32 = 9 subgroups, and with L binary covariates, there are

2L subgroups. In either case, the interaction subgroups quickly get sparse in terms of

data as the number of covariates gets larger. Suppose we have L binary covariates.

The submax method considers each of the 2L subgroups formed by splitting the

population in two for each covariate separately. It does one overall test and 2L

subgroup tests for a total of 2L + 1 tests, which are highly correlated because the

same data are used in many of the tests. For example, in our data we have binary

covariates for sex, race, and whether the offense was a felony or not. Instead of

G = 23 = 8 subgroup tests, we do 2L + 1 = 7 tests. The tests for no effect among

men and women are independent because separate portions of the data are used

for each test. On the other hand, the two test statistics for women and men are

correlated with the test statistics for race (white/not white) and felony (felony/not

felony) because those statistics use the same people. Lee et al. (2017b) point out that

the correction for multiple testing in this context turns out to be small because of the

high correlation among the test statistics. In addition to testing Fisher’s sharp null

hypothesis of no effect for any individual, Lee et al. (2017b) further describe how to

use closed testing to test subgroup-specific null hypotheses of no effect while strongly
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controlling the familywise error rate at α.

For all of these methods, we use a test statistic that is a form of Maritz (1979)’s

version of a Huber M-statistic as studied by Rosenbaum (2013). Specifically, we use

I∑
i=1

sign(Yi)ψ(|Yi|/s), (2.10)

where sign(y) = 1 if y > 0, sign(y) = −1 if y < 0, and sign(y) = 0 if y = 0; s is the

median of |Yi|; and ψ(u) is given by

ψ(u) = (4/3)sign(u)max(0,min(h, |u|)− ι), (2.11)

where h = 2 and ι = 1/2. This is an m-statistic that is similar to a trimmed mean

and levels off at h = 2 times the median; see Rosenbaum (2013) for further discussion.

2.6.2 Results

We apply the above methods to the match discussed in Section 2.5.4, for estimating

the causal effect of encouragement, in the form of being assigned to a harsh judge, on

the number of arrests in the three years after sentencing. Our Figure 2.20 displays

a density plot of the encouraged-minus-unencouraged number of arrests in the three

years after sentencing. The density is highly peaked at zero, with long tails to the

right and left. However, maybe we can discover subgroups in the data for which we

can reject the null hypothesis that the ITT is zero.

Figure 2.21 shows the regression tree from the CART-based methods using the

default complexity parameter of 0.05. Each node displays the mean value of |Yi|

at that node, with the percentage of observations at that node shown below. The

regression tree for the number of arrests identifies a prior record score of 0 as the most

imortant variable to split on. For offenders with a prior record score greater than zero,

the tree then splits on whether the offender is under age 23 or not. Offenders who

have no prior record are split by sex.
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Figure 2.20: Density plot of the encouraged-minus-unencouraged difference in the

number of arrests three years after sentencing.

prs_short = prs.0

male = no age_dof_gp = under_23

438
100%

379
55%

287
10%

400
45%

509
45%

390
12%

553
33%

yes no

Figure 2.21: Regression tree for number of arrests in the three years after sentencing.

Each leaf shows the predicted rank of |Yi| and the percentage of observations in that

leaf.
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Group 1 Group 2 Group 3 Group 4 Pooled

PRS = 0 Yes Yes No No

Male No Yes Both Both

Under 23 Both Both Yes No

Number of pairs 87 108 391 289 875

Arrests (mean), encouraged 1.69 5.18 2.71 6.73 4.24

Arrests (mean), unencouraged 1.75 4.98 2.93 6.82 4.35

Difference -0.06 0.19 -0.21 -0.09 -0.11

Table 2.2: Number of arrests in three years after sentencing for each group defined

by the leaves of the tree in Figure 2.21.

We display summary statistics for the groups identified by the regression tree in

Table 2.2. The first three rows are for the variables that define the leaves of the tree.

For example, the first group (leftmost leaf in Figure 2.21) is for women with PRS =

0, regardless of age since that variable was not used to define the first group. The

fourth row shows the number of pairs in each group, followed by the mean number of

arrests in the three years after sentencing and the encouraged-minus-unencouraged

difference. The differences are small, less than one arrest in magnitude, and vary from

slightly positive to slightly negative. We display the distributions of the differences

in the number of arrests by group in Figure 2.22. For all groups, the differences are

centered around zero and quite variable, particularly for the

For all three methods of discovering effect modification described above, we were

not able to reject the null hypothesis of no effect, even under the assumption of a

perfect instrument, Γ = 1. This is true for the global null hypothesis of no effect in

any subgroup, as well as the subgroup-specific null hypotheses. Tables 2.3 to 2.6 are

modeled after Table 1 in Hsu et al. (2015). Each table displays the upper bounds

on one-sided p-values for the test of no effect for different values of Γ. In Table 2.3,

the column labeled “Overall” calculates the p-value for the entire matched sample
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Figure 2.22: Density plot of the encouraged-minus-unencouraged difference in the

number of arrests three years after sentencing for each leaf identified in the regression

tree. The leaf numbers correspond to the leaves in Figure 2.21 from left to right.
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Γ Overall Truncated

1 0.70 1

1.1 0.70 1

1.2 0.69 1

Table 2.3: Sensitivity analysis results for the ITT. For each value of Γ, the table shows

the upper bound on a one-sided p-value. In the column “Overall”, we calculate the p-

value for the entire matched sample; here were are not looking for effect modification.

In the column “Truncated”, we calculate the p-values within each subgroup and pool

them with the truncated product method from Zaykin et al. (2002).

using the Huber-Maritz test statistic in (2.10) as if we were not looking for effect

modification. The column labeled “Truncated” calculates the p-value in each of the

four groups defined by the leaves of the regression tree and combines them using the

truncated product method of Zaykin et al. (2002); this column corresponds to the first

method of discovering effect modification described in Section 2.6.1. The p-values are

all well above 0.05, so we cannot reject the null hypothesis of no effect in the sample

as a whole.

Tables 2.4 to 2.6 show the same p-value upper bounds, this time calculated sepa-

rately for each comination of the four groups. Table 2.4 is for the groups taken two

at a time, Table 2.5 is for the groups taken three at a time, and Table 2.6 is each

group separately. The p-values are again large enough in each case that we cannot

reject the null hypothesis of no effect. These tables correspond to the second method

described in Section 2.6.1, and Propositions 1 and 2 of Hsu et al. (2015) ensure that

the familywise error rate is controlled at level α = 0.05, even though the groups we

use here were not defined a priori and were instead discovered empirically from the

data.

We also find no evidence of effect modification using the submax method, the third

method described in Section 2.6.1. Here we test the null hypothesis of no effect in
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Two groups

Γ 1,2 1,3 1,4 2,3 2,4 3,4

1 1 1 1 1 1 1

1.1 1 1 1 1 1 1

1.2 1 1 1 1 1 1

Table 2.4: Sensitivity analysis results for the ITT using the closed testing method of

Hsu et al. (2015) for each combination of two groups. For each value of Γ, the table

shows the upper bound on a one-sided p-value. Groups: 1 = women with PRS = 0;

2 = men with PRS = 0; 3 = offenders under 23 with PRS > 0; 4 = offenders over 23

with PRS > 0.

Three groups

Γ 1,2,3 1,2,4 1,3,4 2,3,4

1 1 1 1 1

1.1 1 1 1 1

1.2 1 1 1 1

Table 2.5: Sensitivity analysis results for the ITT using the closed testing method of

Hsu et al. (2015) for each combination of three groups. For each value of Γ, the table

shows the upper bound on a one-sided p-value. Groups: 1 = women with PRS = 0;

2 = men with PRS = 0; 3 = offenders under 23 with PRS > 0; 4 = offenders over 23

with PRS > 0.
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Individual groups

Γ 1 2 3 4

1 0.68 0.34 0.83 0.60

1.1 0.67 0.35 0.82 0.59

1.2 0.66 0.35 0.81 0.59

Table 2.6: Sensitivity analysis results for the ITT using the closed testing method of

Hsu et al. (2015) for each group separately. For each value of Γ, the table shows the

upper bound on a one-sided p-value. Groups: 1 = women with PRS = 0; 2 = men

with PRS = 0; 3 = offenders under 23 with PRS > 0; 4 = offenders over 23 with PRS

> 0.

each of the eight populations defined by treating the four groups as binary variables.

For example, group 1 is women with PRS = 0, so we test for no effect in women with

PRS = 0 and in everyone else, namely all men and women with PRS > 0. Similarly,

Group 2 is men with PRS = 0, so we test for no effect in men with PRS = 0 and in all

women and men with PRS > 0. Because the data for each offender is used in exactly

four of the eight test statistics, the test statistics are highly correlated. We apply the

correction developed in Lee et al. (2017b) to the upper bound on the p-value, which

yields a p-value for testing the global null hypothesis of no effect, and we also use

closed testing to test the null hypothesis in each of the eight subpopulations. For

Γ = 1, the p-value for the global null hypothesis of no effect is 0.70. For testing the

null within each of the eight subpopulations, the critical value for Γ = 1 is dα = 2.37

for α = 0.05, but the maximum deviate among the eight subpopulations is 0.46, so

we cannot reject the null in any of the eight.
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2.7 Estimating the Effect Ratio

Having looked for evidence of effect modification in the ITT, we now turn to estimat-

ing the effect ratio λ as defined i (2.1) in Section 2.4.2. We use the testing procedure

developed in Baiocchi et al. (2010) to obtain point estimates and confidence intervals

for the effect of incarceration on recidivism in terms of number of arrests in the three

years after sentencing. The test statistic for testing H0 : λ = λ0 is T (λ0)/S(λ0),

where

T (λ0) =
1

I

I∑
i=1

(
2∑
j=1

Zij(Rij − λ0Dij)−
2∑
j=1

(1− Zij)(Rij − λ0Dij)

)
=

1

I

I∑
i=1

Vi(λ0)

and

S2(λ0) =
1

I(I − 1)

I∑
i=1

(Vi(λ0)− T (λ0))
2 .

Specifically, we test H0 : λ = λ0 by comparing T (λ0)/S
2(λ0) to the standard normal

distribution. We obtain 95% confidence intervals and point estimates for λ by solving

for T (λ0)/S(λ0) = ±1.96 and T (λ0)/S(λ0) = 0, respectively (Baiocchi et al., 2010).

Using this method, the point estimate of λ is −0.37, with a 95% confidence in-

terval of [−1.75, 0.96]. Thus, while the point estimate is negative and suggests that

incarceration reduces the number of arrests in a three-year window after sentencing,

our data are consistent with both positive and negative point estimates. As Baioc-

chi et al. (2010) describe, we can interpret λ as the ratio of two average treatment

effects, that of the encouragement on the outcome to that of the encouragement on

the treatment. A point estimate of −0.37 suggests that for every 100 offenders “en-

couraged” to be incarcerated by a harsh judge, there are 37 fewer arrests in the three

years following sentencing. If the exclusion restriction and monotonicity assumptions

hold, then we can interpret λ as the change in the number of arrests caused by being

sentenced to either prison or jail.
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2.8 Discussion

Instrumental variables are a popular method for causal inference, particularly in the

context of natural experiments. The pitfalls of weak instruments are well known,

but their potential utility in studying important causal effects that can only be in-

vestigated via observational studies means they are a staple of the social scientist’s

toolbox. This work furthers the utility of instrumental variables in observational

studies in several ways. First, we demonstrate the use of recent advances in match-

ing methods to increase instrument strength by enforcing restrictions on both the

minimum within-pair difference κ and average across-pair difference ω in the value

of the continuous instrument, here judge harshness. These methods allow for many

forms of balance constraints, and while we only employ exact matching in this study,

other balance requirements like mean balance and fine balance are straightforward

to implement. By varying both κ and ω, we obtain multiple matched datasets with

varying degrees of instrument strength, as measured by the estimated proportion of

compliers: the difference in incarceration rates between encouraged and unencouraged

offenders. Because nothing in the matching procedure uses the outcome, we are free

to select the best match without fear of introducing bias into our outcome analysis.

Given the resulting set of matches, a researcher then has to choose one to use in

her analysis. Balance on observed covariates is an important and standard criterion,

but choosing between matches that have equally good balance but differ in terms of

sample size and instrument strength is more difficult. To aid in this choice, we propose

using simulation to examine the power of a sensitivity analysis for each match under

different assumptions about the degree of unobserved bias, the error model and the

effect size. Graphically exploring the relationship between power, sample size, and

instrument strength is a useful way to weigh the tradeoff between the latter two

factors in terms of the first. We also propose calculating the design sensitivity. As

an asymptotic quantity, the design sensitivity does not help us with choosing the

sample size, and as a monotonically increasing function of instrument strength (at
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least in the current application), maximizing design sensitivity will always lead us

to choose the match with the largest estimated instrument strength. However, the

design sensitivity is another factor we can weigh along with balance on observed

covariates and the power of a sensitivity analysis in choosing a match.

In strengthening the instrument, some of the matches resulted in worsened co-

variate balance compared to before matching. This is in part due to our matching

strategy, which matches exactly for six categorical covariates: binary indicators for

sex (male/female), race (white/not white), whether the offense was a felony, three age

groups, three PRS groups, and three OGS groups. We used exact matching without

enforcing other forms of balance like mean balance or fine balance because the meth-

ods we use to detect effect modification in the ITT require candidate covariates to be

exactly matched. With a focus strictly on the effect ratio, we can employ a matching

strategy that employs additional forms of balancing in hopes of better estimating that

quantity.

The match we selected has a significantly smaller sample size than the unmatched

data (2× 875 = 1750 offenders vs 53 318 offenders), but a much stronger instrument

(difference in incarceration rates of 0.32 vs 0.04). The counties in the match are

representative of the geographic and demographic diversity in Pennsylvania, including

the large urban county of Philadelphia, the medium-sized suburban Bucks county, and

the small rural Mercer county. In addition, the composition of the matched data in

terms of observed covariates is close to that of the unmatched data. This match is

ideal in terms of its balance on observed covariates and the power that it achieves in

our simulations.

In addition to demonstrating methods for strengthening the instrument and choos-

ing a match, we also demonstrate the application of three recently developed methods

for effect modification. These methods are innovative in that they allow for the dis-

covery of effect modification in subgroups discovered empirically in the data, instead

of subgroups that are defined a priori, while maintaining strong control of the fam-
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ilywise error rate. In addition, the submax method has the attractive property of

having analytical expressions for its large-sample power, negating the need to study

power via simulation.

We found no evidence of effect modification in the ITT, and indeed could not

reject the null that the ITT is zero despite having chosen a match with a strong

instrument. It is possible that the causal effect of being assigned to a harsh judge is

indistinguishable from zero, or that it works in one direction for some offenders and

the opposite for others. It may also be the case that there is some important covariate

that we have not observed that is biasing the results toward zero. The estimate of

the effect ratio yielded a negative point estimate with a 95% confidence interval

that includes zero. As such, we cannot conclusively determine whether incarceration

reduces reoffending in the first three years after arrest; assuming that all of the

instrumental variable assumptions hold, our data are consistent with both increases

and decreases in reoffending caused by incarceration.

One potential criticism of our approach is that it is subject to researcher degrees

of freedom and the idea of the “Garden of Forking Paths” (?), which raises concerns

about multiple comparisons even with just one analysis and asks whether the exact

same data cleaning and analysis decisions would have been made with a different

dataset. To the extent that our data cleaning process removes noise and bias that

would otherwise adversely affect our analyses, it helps us achieve better estimates.

At the same time, it is true that many of our data cleaning choices were motivated

by the data at hand, and we may conceivably have made different choices with a

different dataset.

As with any observational study, our ability to make causal claims about the

effects of interest depend on how well the underlying assumptions are met. We have

described these assumptions in detail and explained why we believe our data meet

them and the ways in which they could be violated. As is often the case particularly

with observational data, we cannot conclusively prove that the assumptions are met,
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but our extensive graphical checks of the data support our claims that they are.

This work can be extended in several interesting and useful ways. First, while

the number of arrests in the three years after sentencing is a common measure of

recidivism, it would also be useful to investigate the time until the first rearrest

after sentencing, or the probability of being rearrested within a certain time frame.

Incarceration could conceivably have different effects on each of these outcomes, as

well as different effects over different time periods. Analyzing different outcomes with

the methods used here, possibly with extensions to control for multiple comparisons,

would give a more nuanced picture of the effect of incarceration on recidivism.

Second, we can treat incarceration as multi-valued treatment prison, jail, and

time served considered to be separate treatment options. This approach would help

differentiate between the effects of being confined to state prison, which is generally

for sentences longer than two years, and to county jail, which is for shorter sentences.

In addition, because many offenders are jailed during their trial due to inability

to make bail, they do experience incarceration even if not sentenced to additional

prison or jail. Because many offenders, especially those who cannot make bail, are

imprisoned for the duration of their trial, understanding the causal effects of time

served is important.

Third, we have data on the duration of prison sentences for those offenders sen-

tenced to state prison. Because we consider the treatment to be a sentence of either

prison or jail and do not have information on the exact duration of jail sentences,

we did not incorporate the duration of the prison sentence into this analysis. How-

ever, investigating the causal effects of the duration of a prison sentence is another

important avenue of future research.
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Chapter 3

Measurement Error in Hierarchical

Models
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3.1 Introduction

Many public health and social science research questions involve investigating the

relationships between individual outcomes and variables at the neighborhood, com-

munity, and environmental levels (Diez-Roux, 2000; Kawachi and Berkman, 2003;

Pickett and Pearl, 2001). Accurate measurement of neighborhood-level variables is

critical for valid inference about these relationships (Diez-Roux, 2008), but often these

variables are not measured or observed directly. Instead, they must be estimated from

individual-level responses collected in sample surveys or measured via proxies from

other sources. When neighborhood-level sample sizes (or the neighborhoods them-

selves) are small, or when the proxies do not accurately capture the construct or

concept of interest, measurement error becomes a concern.

For example, the Demographic and Health Surveys (DHS) are household surveys

conducted in lower-income countries and constitute an integral source of information

key maternal and child health indicators. These surveys are conducted in multiple

stages, with villages or census blocks of 100-200 households serving as primary sam-

pling units (PSUs), from which roughly 30 households are sampled (Rutstein and

Rojas, 2006). Some PSU-level covariates, like the proportion of households with an

improved water source, can be estimated from variables measured for every sampled

household, but other coviariates like the rate of school attendance among children

aged 6-15 or the proportion of children with diarrhea in the last two weeks can only

be measured for the subset of households with individuals in the relevant demographic

groups. In this case, the reliability of PSU-level means may be lower than is desirable.

In other cases, neighborhood-level variables may not be directly measurable or

observable, forcing researchers to rely on proxies that may be highly noisy or imper-

fectly capture the feature of interest. Diez-Roux et al. (2001) study the relationship

between neighborhood of residence and incidence of coronary heart disease. The

neighborhood-level covariate of interest is its socioeconomic environment. However,

because this covariate is not directly observable, the authors generate a proxy using a
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summary score consisting of a set of socioeconomic indicators. The reliability of the

subsequent scientific conclusions then depend, in large part, on how well this proxy

corresponds to the true underlying socioeconomic position. Mujahid et al. (2007) con-

struct measures of neighborhood socioeconomic position aggregating individual-level

survey responses to the neighborhood level and assess their psychometric (within-

person) and ecometric (within-neighborhood) properties. While their results indicate

that their constructed measures have good psychometric and ecometric properties,

they note that some neighborhoods had small sample sizes and “future research is

needed to examine the consequences of using simple means or empirical Bayes esti-

mates as predictors of health outcomes.”

As noted by Muff and Keller (2015), measurement error has a long history in statis-

tics, dating back to Pearson (1902) and Wald (1940), and ignoring measurement error

can lead to biased estimates and misleading confidence intervals (Fuller, 2009). Not

only can measurement error attenuate the estimated coefficient of the mismeasured

variable, it can also affect the coefficients of other variables in the model, and the

degree and direction of the impact of the mismeasured variable on other coefficients

depends, among other things, on the correlation between the mismeasured variable

and the other variables in the model (Carroll et al., 1985; Gustafson, 2003). In a hi-

erarchical model, where we may have measurement error at one level and coefficients

of particular interest at another, this interplay can be particularly important.

In this chapter, we consider measurement error in the context of hierarchical mod-

els. Specifically, we investigate the consequences of ignoring measurement error in a

group-level covariate, where the error is due either to sampling or to classical measure-

ment error, and demonstrate that ignoring this error leads to biased and inefficient

estimates. We present a single Bayesian framework for explicitly incorporating both

types of measurement error into the outcome model and conduct a simulation study

to demonstrate that accounting for measurement error in this way leads to greatly

improved inference. We implement our methods in Stan (Stan Development Team,
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2016b), a probabilistic programming language that allows for fully Bayesian inference

via MCMC sampling using Hamiltonian Monte Carlo (HMC) (Stan Development

Team, 2016b). Other Bayesian approaches have used Gibbs sampling (Richardson

and Gilks, 1993; Bernardinelli et al., 1997) and integrated nested Laplace approxi-

mations (INLA) (Muff et al., 2015), but they lack the flexibility and intuitive model

specification framework that makes incorporating the measurement error process into

outcome modeling simple and straightforward.

3.2 Methods

3.2.1 Sampling-induced measurement error

In the context of survey sampling, measurement error occurs when, for example, we

estimate group- or area-level variables using sample averages of unit-level variables.

Consider a population consisting of J primary sampling units (PSUs), such as villages

or census enumeration blocks. Each of the j = 1, . . . , J PSUs consists of Nj units (e.g.

individuals or households), with a total population size of N =
∑J

j=1Nj. Suppose we

have a sample from this population taken under a two-stage sampling design, with

Js PSUs sampled in the first stage and nj units within each selected PSU sampled in

the second stage. The total sample size is then n =
∑Js

j=1 nj out of a total population

size of N =
∑J

j=1Nj. Let Sj denote the set of all individuals i in PSU j and let sj

denote the set of sampled individuals i in PSU j, so that |Sj| = Nj and |sj| = nj.

Suppose the survey collects information on a binary unit-level covariate zi and a

unit-level outcome yi. We wish to understand the relationship between yi and the

unit-level covariate zi and a PSU-level characteristic θj ∈ [0, 1], where zi ∼ Bern(θj[i]).

Here θj acts as a latent prevalence of (or propensity for) zi = 1, with a realized PSU-

level prevalence of p∗j = 1/Nj

∑
i∈Sj

zi.
1 Since we do not have data on all units in PSU

j, we cannot calculate p∗j . The sample proportion pj = 1/nj
∑

i∈sj zi is the maximum

1In many public health and social science applications, the more relevant PSU-level characteristic
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likelihood estimator for θj, and from the Central Limit Theorem, we know that its

standard error approaches
√
pj(1− pj)/nj, which has a maximum of 0.5/

√
nj. For

nj = 30, a typical within-PSU sample size in many large-scale household surveys like

the Demographic and Health Surveys (DHS), 0.5/
√
nj = 0.09.

However, in many cases, the within-PSU sample size may be much smaller, par-

ticularly if the PSU-level characteristic of interest is measured for only a subset of the

sampled units. For example, in a survey where PSUs are villages and units are house-

holds, if the PSU-level variable of interest is measured for a specific demographic (e.g.

children under five or women of childbearing age), the sample size will be smaller if

not every household has respondents in that demographic. In these cases, pj may be

a poor estimator for θj.

3.2.2 Classical measurement error

Suppose we have information on an outcome yi and covariate zi for individuals i who

are nested in neighborhoods j. Suppose we wish to relate yi and zi to a neighborhood-

level variable uj such as socioeconomic environment or social cohesion. The true

variable uj is unobserved, perhaps because it is inherently unobservable or because

existing instruments are imperfect, and in its place we have the noisy proxy wj. In

many applications, it is reasonable to assume that we have repeated measurements

of w for each u, so that

wkj = uj + εkj, k = 1, . . . ,mj, j = 1, . . . , J,

where εjk denotes the error term and mj the number of repeated measurements for

unit j. However, here we consider the case of mj = 1, so there is only one measure-

ment of the proxy wj for each true uj. We assume that the measurement errors are

independent and follow a normal distribution with mean zero and constant variance

may be the realized prevalence p∗j . However, it differs negligibly from θj for large enough Nj , so we

ignore this distinction and focus on θj .
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σ2
ε : εj ∼ N(0, σε). This assumption then implies that the measurement error is non-

differential, meaning that εj gives no additional information about the outcome y,

conditional on the noisy proxy w and other relevant (accurately-measured) covariates

(Carroll et al., 2006).

3.2.3 Measurement error in a Bayesian framework

In epidemiology, measurement error models are often broken down into three sub-

models (Richardson and Gilks, 1993). The first is a disease model that describes the

relationship between the outcome y and the true risk factor r, and possibly other

accurately measured covariates x. Next is a measurement model that relates the

true risk factor r to the mismeasured surrogate s, and last is the exposure model

that describes the distribution of the true risk factor r in the population. For the

sampling-induced measurement error described in Section 3.2.1, suppose the disease,

measurement, and exposure models are

disease model: yi ∼ N(β0j[i] + β1zi, σ
2
y)

β0j ∼ N(α0 + γ0θj, σ
2
β0

)

zi ∼ Bern(θj[i])

measurement model:
∑
i∈sj

zi ∼ Bin(nj, θj)

exposure model: logit(θj) ∼ N(µ, τ 2)

For classical measurement error as described in Section 3.2.2, the three models

would be

disease model: yi ∼ N(β0j[i] + β1zi, σ
2
y)

β0j ∼ N(α0 + γ0uj, σ
2
β0

)

measurement model: wj ∼ N(uj, σε)

exposure model: uj ∼ N(0, σu).
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We fit the models in Stan, a probabilistic programming language that allows for

fully Bayesian inference. The straightforward way of specifying statistical models in

Stan means that the disease, measurement, and exposure models can be coded almost

exactly as written above. We include weakly informative priors on the regression,

variance, and measurement error parameters, but we can easily incorporate additional

information on the measurement error process into the prior.

3.3 Simulation study

We conduct a simulation study to illustrate the effects of measurement error in a

group-level covariate in a hierarchical model with both unit- and group-level predic-

tors and investigate the performance of our proposed methods in comparison to a

naive model that ignores measurement error. The first simulation scenario considers

the case of measurement error in a cluster-level covariate induced by sampling as

described in Section 3.2.1, while the second considers classical measurement error as

in Section 3.2.2.

We implement our proposed models in Stan, which generates posterior samples in

a fully Bayesian framework. We carefully monitor the detailed warnings and diagnos-

tics that Stan provides to detect when posterior inferences may be unreliable due to

difficulties in sampling. Divergent transitions indicate that the sampler is unable to

explore a portion of the parameter space, which can lead to significant bias in the re-

sulting posterior distribution and ultimately unreliable inferences (Stan Development

Team, 2016c). Stan reports the number of divergent transitions for each run, and

even one divergent transition indicates that the results may be suspect. If divergent

transitions occur, we follow the recommendation of Stan developers and iteratively

increase the target acceptance rate adapt delta (Stan Development Team, 2016a).

We also monitor the estimated potential scale reduction factor R̂, a diagnostic that

assesses the mixing of the chains; at convergence, R̂ = 1. If R̂ ≥ 1.1 for any pa-
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rameter, we increase the number of iterations by 1000 until all values of R̂ are less

than 1.1, up to 7000 iterations. If values of R̂ ≥ 1.1 remain with 7000 iterations, we

discard the simulation. The results presented here are based on a minimum of 75

simulations for each scenario.

3.3.1 Measurement error from sampling

This simulation considers a simple linear model with a group-level varying intercept:

yi ∼ N(β0j[i] + β1zi, σ
2
y)

β0j ∼ N(α0 + γ0θj, σ
2
β0j

)

zi ∼ Bern(θj[i])

logit(θj) ∼ N(0, 1).

(3.1)

We use this data-generating model to create a fixed population as follows. We create

J = 3850 PSUs consisting of Nj units each, where Nj is sampled uniformly from

the integers 100 to 300, j = 1, . . . , J . We draw the latent cluster-level variable θj

as logit(θj) ∼ N(0, 1) and set the true regression parameters to α0 = 0.2, γ0 = 2,

σβ0 = 0.2, β1 = 0.75 and σy = 0.05; we also create a binary outcome yi as Pr(yi =

1) = logit−1(β0j[i]+β1zi). We then repeatedly take samples from this fixed population

using a two-stage sampling scheme. In the first stage, we sample Js < J clusters via

simple random sampling (SRS), and then sample nj units from each selected cluster,

with Js ∈ {5, 15, 50} and nj ∈ {10, 30, 60}.

We fit two models to each sample: the true model given in (3.1) and a naive model

that uses the observed proportion pj as the PSU-level predictor:

yi ∼ N(β0j[i] + β1zi, σ
2
y)

β0j ∼ N(α0 + γ0pj, σ
2
β0j

),
(3.2)

We also consider the case of binary y. Here the naive and full models are analogous

to (3.1) and (3.2), and the outcome model is given by

Pr(yi = 1) = logit−1(β0j[i] + β1zi).
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In all cases, we use weakly informative prior distributions for the regression parame-

ters Gelman (2006):

α0, γ0, β1
ind∼ N(0, 102)

σβ0 , σβ1 , σy
ind∼ Cauchy+(0, 2.5),

where Cauchy+(0, 2.5) denotes a Cauchy distribution with location 0 and scale 2.5

restricted to positive values.

3.3.2 Classical measurement error

This scenario considers classical measurement error in a group-level predictor. The

true group-level predictor is uj, generated as uj ∼ N(0, 1), but we only observe the

noisy proxy wj, where wj ∼ N(uj, σε) and ε = 0.5. We generate a population of

J = 200 clusters of size Nj, where Nj is generated as Nj ∼ NegBin(µ, φ) + 5 with

the mean parameter µ = 30 and the dispersion parameter φ = 8 (we add 5 to avoid

Nj = 0). The clusters therefore have an average size of 35 with a standard deviation

of
√

(µ+ µ2/φ) = 11.9. The data-generating model is similar to that in (3.1):

yi ∼ N(β0j[i] + β1zi, σ
2
y)

β0j ∼ N(α0 + γ0uj, σ
2
β0j

)

wj ∼ N(uj, σε).

(3.3)

The true parameter values are: α0 = −1.5, γ0 = 0.8, σβ0 = 0.1, β1 = 0.5, and

σy = 0.5. The naive model uses the observed proxy wj in place of uj as the group-

level predictor:

yi ∼ N(β0j[i] + β1zi, σ
2
y)

β0j ∼ N(α0 + γ0wj, σ
2
β0j

),
(3.4)

We also consider a binary outcome y, with Pr(yi = 1) = logit−1(β0j[i]+β1zi) as before.

The priors are uninformative as described above.

In contrast to the previous simulation scenario, in which we subsample from a

fixed population, in this scenario we generate a new population for each simulation
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and fit the model to that entire population. We do not include the additional step

of sampling from the population because our goal is to evaluate how well the full

model adjusts for measurement error in wj, and including sampling would simply add

unnecessary noise.

We also expand the models in (3.3) and (3.4) to include varying slopes in addition

to varying intercepts. The data-generating model is then given by

yi ∼ N(β0j[i] + β1j[i]zi, σ
2
y)β0j

β1j

 ∼ N

α0 + γ0uj

α1 + γ1uj

 ,Σ

 (3.5)

wj ∼ N(uj, σε),

where the covariance matrix Σ is

Σ =

 σ2
β0

ρσβ0σβ1

ρσβ0σβ1 σ2
β1


and ρ denotes the correlation between β0j and β1j. Here the true parameter values

are α0 = −1.5, γ0 = 0.8, α1 = −0.7, γ1 = −0.5, σβ0 = 0.1, σβ1 = 0.2, ρ = 0.4,

σy = 0.5. The naive model is analogous to (3.4):

yi ∼ N(β0j[i] + β1j[i]zi, σ
2
y)β0j

β1j

 ∼ N

α0 + γ0wj

α1 + γ1wj

 ,Σ

 (3.6)

3.4 Results

3.4.1 Measurement error from sampling

Figures 3.1 and 3.2 show simulation results for the group-level parameters α0, γ0, and

σβ0 for continuous and binary y, respectively. We focus on the group-level parameters
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because the individual-level parameters β1 and σy are very accurately estimated under

both models, so we do not discuss them further here.

In both figures, the six panels display relative bias, relative root mean squared

error (RRMSE), coverage of 50% and 95% uncertainty intervals, and the average rel-

ative widths of the 50% and 95% uncertainty intervals. The relative bias is calculated

as 1
L

∑L
`=1

θ̂`−θ
θ
, where θ is the true parameter value, θ̂` is the estimated value from

the `-th simulation, and L is the number of simulations (L ≥ 75). Ppositive values

of relative bias thus indicate that the coefficient estimates are inflated compared to

the truth, while negative values of relative bias indicate attenuation in the coefficient

estimates. RRMSE is calculated as

√
1
L

∑L
`=1

(
θ̂`−θ
θ

)2
. We calculate the 50% (95%)

intervals from the 25th and 75th (2.5th and 97.5th) percentiles of the posterior predic-

tive distribution for each parameter. The relative widths of the uncertainty intervals

are calculated by dividing the width of the uncertainty interval by the true parameter

value and averaging across the L simulations. In each plot, y-axis denotes the num-

ber of clusters sampled (Js ∈ {5, 15, 50}), the color represents the two models (full or

naive), and the symbols represent the number of units sampled (nj ∈ {10, 30, 60}).

For continuous y, the full model (red) outperforms the naive one (blue) in terms

of relative bias in every sampling scenario as seen in the top left panel of Figure 3.1.

Even with Js = 50 clusters and 30 units sampled per cluster, the level of relative bias

remains high under the naive model: it inflates the true value of the intercept term

α0 by nearly 50% and attenuates γ0 by nearly 10%. Going from Js = 5 to Js = 50

clusters does little to reduce bias under the naive model, except in estimating the

group-level variance σβ0 . In contrast, the bias in α0 and γ0 under the full model with

only 10 units sampled per cluster is comparable to that under the naive model with

60 units per cluster. In general, the naive model inflates the estimates of α0 and

attenuates those of γ0, while the full model does the opposite but at much smaller

magnitudes.

For binary y, we again see that the naive model results in inflation of α0 and
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attenuation in γ0 (top left panel of Figure 3.2). The relative bias in α0 is smaller

under the full model than under the naive model in all sampling scenarios, but for

γ0, the full model overcorrects the attenuation and results in higher relative bias than

the naive model until Js = 50 clusters are sampled.

The differences in RRMSE are less dramatic than in relative bias. For Js = 5

clusters, the RRMSE is often slightly higher for the full model than the naive model

under both continuous and binary y. However, with Js = 50 clusters, the RRMSEs

for the two models are identical under binary y. For continuous y, the full model is

particularly advantageous in the case of a large sample of clusters (Js = 50) and a

small within-cluster sample size (nj = 10), with RRMSEs under the full model nearly

half of those from the naive model.

In addition to reduced bias, another clear advantage of the full model comes in

uncertainty intervals (UIs) that achieve nominal coverage levels (middle row of plots

in Figures 3.1 and 3.2). Even with only Js = 5 sampled clusters, UIs from the full

model are at or above the nominal levels (the one exception is σβ0 under binary y

with 10 or 30 units per cluster). In contrast, the coverage rates of the UIs for the

naive model are often well below the nominal levels and even sometimes zero and

actually decrease as the number of sampled clusters increases.

The price of improved coverage is wider UIs under the full model than the naive

model, most dramatically so when the number of clusters sampled is small (bottom

row of plots in Figures 3.1 and 3.2). However, once we sample at least Js = 15

clusters, the difference in UI lengths between the naive and full models is generally

negligible.

3.4.2 Classical measurement error

Figure 3.3 shows the results for estimating the group-level coefficients α0, γ0, and σβ0

for the case of classical measurement error in a group-level predictor as described in

Section 3.2.2. Hollow circles denote binary y and crossed denote continuous y. To
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Figure 3.1: Simulation results for continuous y for the group-level parameters α0,

γ0, and σβ0 for the scenario described in Section 3.3.1. In each of the six panels, the

x-axis is the value of the metric being plotted and the y-axis is the number of sampled

clusters (Js ∈ {5, 15, 50}). The color of the symbol denotes the model (full vs naive),

and the shape of the symbol denotes the number of sampled units (10, 30, or 60).

improve readability, we divide the values of relative bias and RRMSE for σβ0 by 10.

While relative bias in α0 is very similar between the naive and full models, the naive
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Figure 3.2: Simulation results for binary y for the group-level parameters α0, γ0, and

σβ0 for the scenario described in Section 3.3.1. In each of the six panels, the x-axis is

the value of the metric being plotted and the y-axis is the number of sampled clusters

(Js ∈ {5, 15, 50}). The color of the symbol denotes the model (full vs naive), and the

shape of the symbol denotes the number of sampled units (10, 30, or 60).

model attenuates the value of γ0 by an average of 20%. In contrast, the relative bias

in γ0 under the full model is much smaller: 7% for binary y and 1% for continuous y.
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Similarly, the relative bias of σβ0 is twice as small under the full model as under the

naive model for binary y and five times smaller for continuous y.

The naive model also yields estimates that are much more variable. The RRMSEs

of γ0 is twice as large under the naive model compared to the full model for binary

y and four times larger for continuous y; the pattern for σβ0 is similar, while the

differences are negligible for α0.

As in the previous simulation scenario, the full model yields uncertainty intervals

whose coverage rates are much closer to nominal levels than those from the naive

model. However, the 50% UIs from the full model fall short of nominal coverage rates

particularly for binary y. The UI lengths for α0 and γ0 are nearly identical between

the full and naive models, but for σβ0 they are two to three times as long under the

full model.

The results for the case of varying slopes and intercepts are in Figures 3.4 and

3.5. Figure 3.4 shows results for the regression parameters α0, γ0, α1, and γ1, and

Figure 3.5 for the variance/covariance parameters σβ0 , σβ1 , and ρ.

In Figure 3.4, we see that ignoring measurement error in the naive model with

binary y leads to high bias: over 150% for α0 and nearly 90% for the other regression

parameters. For continuous y, both the naive and full models yield nearly unbiased

estimates of α0 and α1, but for γ0 and γ1, the estimates from the naive model are

attenuated by about 20%. We see a similar pattern in RRMSE, where the differences

between the naive and continuous model are large for binary y and much smaller for

continuous y.

The high bias of the naive model estimates with binary y lead to UIs that do not

cover the true value; for continuous y, the UIs for α0 and α1 are close to the nominal

levels, but those for γ0 and γ1 fail to contain the true value. In contrast, the coverage

rates of the UIs from the full model are close to or exceed the nominal levels. The

lengths of the UIs between the full and naive models are very similar for continuous

y. For binary y, the UIs from the full model are much longer than those from the
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Figure 3.3: Results for binary y (hollow circles) and continuous y (crosses) with

classical measurement error and a group-varying intercept only as described in Section

3.3.2. Red points denote the full model and blue points the naive model. Note that

to improve readability, we divide the values of relative bias and RRMSE for σβ0 by

10.
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naive model.

The full model leads to better estimates of the variance parameters as well, as

seen in Figure 3.5. The relative bias in σβ0 and σβ1 is much lower under the full

model, particularly for continuous y. Both the full and naive models underestimate

the correlation parameter ρ, but the bias under the naive model is twice as large for

binary y and over six times larger for continuous y. The full model also leads to

reduced RRMSEs in most cases.

In Figures 3.3, 3.4, and 3.5, the coverage rates of the UIs from the naive model are

essentially zero, while those from the full model are near or above the nominal levels.

Figure 3.6 helps illustrate why this is the case. In each panel, we plot the distribution

of posterior means across the L simulations (L ≥ 75) from the full model (red) and

naive model (blue) for both binary y (solid line) and continuous y. The vertical lines

denote the true parameter values. We see that the posterior means from the naive

model tend to be highly peaked around a biased value, leading to the large relative

bias and RRMSE and low coverage rates and UI lengths in Figures 3.3 to 3.5. The

posterior means from the full model, on the other hand, have a much larger spread

but are generally centered around the true value. In this way, the inferences from the

full model more completely reflect the uncertainty in the parameter estimates, while

those from the naive model are falsely precise and highly biased.

3.5 Discussion

We propose a simple method to account for measurement error in a group-level co-

variate in the context of Bayesian hierarchical models by explicitly including the

measurement process in the outcome model. Our simulation results demonstrate the

well-known pitfalls of relying on naive models that do not account for measurement

error – point estimates that are far from their true values and uncertainty intervals

that are misleadingly short with poor coverage rates – and the improved inference
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Figure 3.4: Results for group-level regression parameters α0, γ0, α1, and γ1 under

binary y (hollow circles) and continuous y (crosses) with classical measurement error

and group-varying slopes and intercepts as described in Section 3.3.2. Red points

denote the full model and blue points the naive model.
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Figure 3.5: Results for group-level variance/covariance parameters σβ0 , σβ1 , and ρ

under binary y (hollow circles) and continuous y (crosses) with classical measurement

error and group-varying slopes and intercepts as described in Section 3.3.2. Red

points denote the full model and blue points the naive model.
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predictor with both group-varying slopes and intercepts as described in Section 3.3.2.
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that can be achieved by explicitly modeling the measurement error process.

Our simulations show that accounting for measurement error is critical, especially

when creating area-level covariates by averaging unit-level ones. They demonstrate

that our proposed method leads to reduced bias and yields uncertainty intervals with

appropriate coverage levels. This is particularly important when the research question

of interest centers on the relationship between group-level covariates and individual-

level outcomes.

In our simulations of classical measurement error, we assume that the error is

nondifferential and homoskedastic. Recent work (Muff et al., 2015) has demonstrated

the importance of heterogeneity in measurement error, particularly in the context of

estimating interaction parameters. Allowing for measurement error to differ between

zi = 1 and zi = 0 would be a straightforward extension of our proposed model. We

have also not considered spatial correlation in neighborhood-level variables or their

errors, which has been shown to be important particularly in epidemiology (Xia and

Carlin, 1998; Bernardinelli et al., 1997). Incorporating spatial correlation in the latent

neighborhood-level variable or the measurement error process is straightforward in

Stan (Morris, 2018).

Advances in statistical computation like the Stan probabilistic programming lan-

guage make it easy to seamlessly and explicitly incorporate measurement error into

fully Bayesian models. Previous Bayesian approaches like Gibbs sampling often face

difficulties in practice like poor mixing (Gryparis et al., 2009), while INLA requires

that the model for the (latent) true covariate be Gaussian (Muff et al., 2015). In

contrast, the Stan language is flexible and enables users to specify models in a highly

intuitive way without restrictions on the specific functional or distributional form of

the measurement model. It allows for fine tuning of the HMC sampler and provides

detailed warnings about and diagnostics for lack of convergence and mixing, ensuring

that the user is aware when inferences may not be reliable and enabling them to

modify sampling parameters as necessary. Stan is well-equipped to handle measure-
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ment error models more complex than those considered here, opening the door to

ever-improved inference in the presence of measurement error.
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A.1 Instrument Validity Figures

In Chapter 2, we describe the assumptions required for an instrumental variable to

yield valid causal inferences. One assumption is that the instrument assignment

must be as-if random. In the context of recidivism, this assumption implies that the

assignment of offenders to judges is random, and if this is so, there should be no

relationship between the harshness of a judge and the types of offenders they see. We

show graphical checks of this assumption in Figures 2.3 and 2.4 for offense severity in

both the data from 1997, which we use to calculate the instrument itself, and in the

offense data from 1998-2000. This Appendix includes figures for additional offender

characteristics. In each figure, the x-axis is the (continuous) harshness of the judge

in each county and the y-axis corresponds to the characteristic of interest, generally

a proportion, mean, or median. The size of each circle is proportional to the number

of cases the judge saw in that time period (1997 or 1998-2000); only judges who saw

at least 30 cases in a county in each time period and counties with at least two such

judges are shown. If cases are indeed randomly assigned, we would not see any strong

relationship between harshness and these characteristics and all of the lines would be

approximately horizontal. Overall, these figures indicate there is little relationship

between harshness and the various offender and case characteristics.
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Figure A.1: Proportion of each judge’s 1997 cases that fell into each of four major

offense categories: crime (green), drugs (orange), vehicle (blue), and other (yellow),

plotted against the harshness of the judge. If cases are, in fact, randomly assigned

to judges, we should not see any strong relationship between offense category and

harshness. Only counties with at least two judges who saw at least 30 cases in 1997

are shown.
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Figure A.2: Proportion of each judge’s 1997 cases by sex and race, plotted against the

harshness of the judge. If cases are, in fact, randomly assigned to judges, we should

not see any strong relationship between the demographic categories and harshness.

Only counties with at least two judges who saw at least 30 cases in 1997 are shown.
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Figure A.3: Mean and median prior record scores of offenders in the cases seen by

each judge in 1997, plotted against the harshness of the judge. If cases are, in fact,

randomly assigned to judges, we should not see any strong relationship between prior

record score and harshness. Only counties with at least two judges who saw at least

30 cases in 1997 are shown.
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Figure A.4: Mean and median offense gravity scores of offenders in the cases seen

by each judge in 1997, plotted against the harshness of the judge. If cases are, in

fact, randomly assigned to judges, we should not see any strong relationship between

offense gravity score and harshness. Only counties with at least two judges who saw

at least 30 cases in 1997 are shown.
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Figure A.5: Mean and median age at date of offense for offenders in the cases seen by

each judge in 1997, plotted against the harshness of the judge. If cases are, in fact,

randomly assigned to judges, we should not see any strong relationship between age

and harshness. Only counties with at least two judges who saw at least 30 cases in

1997 are shown.
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Figure A.6: Proportion of each judge’s 1997 cases that fell into each of four major

offense categories: crime (green), drugs (orange), vehicle (blue), and other (yellow),

plotted against the harshness of the judge. If cases are, in fact, randomly assigned

to judges, we should not see any strong relationship between offense category and

harshness. Only counties with at least two judges who saw at least 30 cases in 1998-

2000 are shown.
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Figure A.7: Proportion of each judge’s 1998-2000 cases by sex and race, plotted

against the harshness of the judge. If cases are, in fact, randomly assigned to judges,

we should not see any strong relationship between the demographic categories and

harshness. Only counties with at least two judges who saw at least 30 cases in 1998-

2000 are shown.
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Figure A.8: Mean and median prior record scores of offenders in the cases seen by

each judge in 1998-2000, plotted against the harshness of the judge. If cases are, in

fact, randomly assigned to judges, we should not see any strong relationship between

prior record score and harshness Only counties with at least two judges who saw at

least 30 cases in 1998-2000 are shown.
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Figure A.9: Mean and median offense gravity scores of offenders in the cases seen by

each judge in 1998-2000, plotted against the harshness of the judge. If cases are, in

fact, randomly assigned to judges, we should not see any strong relationship between

offense gravity score and harshness. Only counties with at least two judges who saw

at least 30 cases in 1998-2000 are shown.
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Figure A.10: Mean and median age at date of offense for offenders in the cases seen

by each judge in 1998-2000, plotted against the harshness of the judge. If cases are, in

fact, randomly assigned to judges, we should not see any strong relationship between

age and harshness. Only counties with at least two judges who saw at least 30 cases

in 1998-2000 are shown.


