
ESSAYS ON SIMULATION-BASED ESTIMATION

Jean-Jacques Forneron

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018



c© 2018
Jean-Jacques Forneron

All rights reserved



ABSTRACT

ESSAYS ON SIMULATION-BASED ESTIMATION

Jean-Jacques Forneron

Complex nonlinear dynamic models with an intractable likelihood or moments are

increasingly common in economics. A popular approach to estimating these models is

to match informative sample moments with simulated moments from a fully parameter-

ized model using SMM or Indirect Inference. This dissertation consists of three chapters

exploring different aspects of such simulation-based estimation methods. The following

chapters are presented in the order in which they were written during my thesis.

Chapter 1, written with Serena Ng, provides an overview of existing frequentist and

Bayesian simulation-based estimators. These estimators are seemingly computationally

similar in the sense that they all make use of simulations from the model in order to

do the estimation. To better understand the relationship between these estimators, this

chapters introduces a Reverse Sampler which expresses the Bayesian posterior moments

as a weighted average of frequentist estimates. As such, it highlights a deeper connection

between the two class of estimators beyond the simulation aspect. This Reverse Sampler

also allows us to compare the higher-order bias properties of these estimators. We find

that while all estimators have an automatic bias correction property (as highlighted in

Gouriéroux & Monfort, 1996) the Bayesian estimator introduces two additional biases.

The first is due to computing a posterior mean rather than the mode. The second is due

to the prior, which penalizes the estimates in a particular direction.

Chapter 2, also written with Serena Ng, proves that the Reverse Sampler described

above targets the desired Approximate Bayesian Computation (ABC) posterior distribu-

tion. The idea relies on a change of variable argument: the frequentist optimization step

implies a non-linear transformation. As a result, the unweighted draws follow a distribu-

tion that depends on the likelihood that comes from the simulations, and a Jacobian term

that arises from the non-linear transformation. Hence, solving the frequentist estimation

problem multiple times, with different numerical seeds, leads to an optimization-based

importance sampler where the weights depend on the prior and the volume of the Jaco-

bian of the non-linear transformation. In models where optimization is relatively fast, this

Reverse Sampler is shown to compare favourably to existing ABC-MCMC or ABC-SMC

sampling methods.



Chapter 3, relaxes the parametric assumptions on the distribution of the shocks in

simulation-based estimation. It extends the existing SMM literature, where even though

the choice of moments is flexible and potentially nonparametric, the model itself is as-

sumed to be fully parametric. The large sample theory in this chapter allows for both

time-series and short-panels which are the two most common data types found in empir-

ical applications. Using a flexible sieve density reduces the sensitivity of estimates and

counterfactuals to an ad hoc choice of distribution such as the Gaussian density. Com-

pared to existing work on sieve estimation, the Sieve-SMM estimator involves dynami-

cally generated data which implies non-standard bias and dependence properties. First,

the dynamics imply an accumulation of the bias resulting in a larger nonparametric ap-

proximation error than in static models. To ensure that it does not accumulate too much,

a set decay conditions on the data generating process are given and the resulting bias is

derived. Second, by construction, the dependence properties of the simulated data vary

with the parameter values so that standard empirical process results, which rely on a

coupling argument, do not apply in this setting. This non-standard dependent empiri-

cal process is handled through an inequality built by adapting results from the existing

literature. The results hold for bounded empirical processes under a geometric ergod-

icity condition. This is illustrated in the paper with Monte-Carlo simulations and two

empirical applications.
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1.1 Introduction

As knowledge accumulates, scientists and social scientists incorporate more and more

features into their models to have a better representation of the data. The increased model

complexity comes at a cost; the conventional approach of estimating a model by writing

down its likelihood function is often not possible. Different disciplines have developed

different ways of handling models with an intractable likelihood. An approach popular

amongst evolutionary biologists, geneticists, ecologists, psychologists and statisticians is

Approximate Bayesian Computation (ABC). This work is largely unknown to economists

who mostly estimate complex models using frequentist methods that we generically re-

fer to as the method of Simulated Minimum Distance (SMD), and which include such

estimators as Simulated Method of Moments, Indirect Inference, or Efficient Methods of

Moments.1

The ABC and SMD share the same goal of estimating parameters θ using auxiliary

statistics ψ̂ that are informative about the data. An SMD estimator minimizes the L2

distance between ψ̂ and an average of the auxiliary statistics simulated under θ, and this

distance can be made as close to zero as machine precision permits. An ABC estimator

evaluates the distance between ψ̂ and the auxiliary statistics simulated for each θ drawn

from a proposal distribution. The posterior mean is then a weighted average of the draws

that satisfy a distance threshold of δ > 0. There are many ABC algorithms, each differing

according to the choice of the distance metric, the weights, and sampling scheme. But the

algorithms can only approximate the desired posterior distribution because δ cannot be

zero, or even too close to zero, in practice.

While both SMD and ABC use simulations to match ψ(θ) to ψ̂ (hence likelihood-free),

the relation between them is not well understood beyond the fact that they are asymp-

totically equivalent under some high level conditions. To make progress, we focus on

the MCMC-ABC algorithm due to Marjoram et al. (2003). The algorithm applies uni-

form weights to those θ satisfying ‖ψ̂− ψ(θ)‖ ≤ δ and zero otherwise. Our main insight

is that this δ can be made very close to zero if we combine optimization with Bayesian

computations. In particular, the desired ABC posterior distribution can be targeted using

a ‘Reverse Sampler’ (or RS for short) that applies importance weights to a sequence of

SMD solutions. Hence, seen from the perspective of the RS, the ideal MCMC-ABC es-

timate with δ = 0 is a weighted average of SMD modes. This offers a useful contrast

1 Indirect Inference is due to Gouriéroux et al. (1993), the Simulated Method of moments is due to Duffie
& Singleton (1993), and the Efficient Method of Moments is due to Gallant & Tauchen (1996).
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with the SMD estimate, which is the mode of the average deviations between the model

and the data. We then use stochastic expansions to study sources of variations in the two

estimators in the case of exact identification. The differences are illustrated using simple

analytical examples as well as simulations of the dynamic panel model.

Optimization of models with a non-smooth objective function is challenging, even

when the model is not complex. The Quasi-Bayes (LT) approach due to Chernozhukov

& Hong (2003) use Bayesian computations to approximate the mode of a likelihood-free

objective function. Its validity rests on the Laplace (asymptotic normal) approximation

of the posterior distribution with the goal of valid asymptotic frequentist inference. The

simulation analog of the LT (which we call SLT) further uses simulations to approximate

the intractable relation between the model and the data. We show that both the LT and

SLT can also be represented as a weighted average of modes with appropriately defined

importance weights.

A central theme of our analysis is that the mean computed from many likelihood-

free posterior distributions can be seen as a weighted average of solutions to frequentist

objective functions. Optimization permits us to turn the focus from computational to an-

alytical aspects of the posterior mean, and to provide a bridge between the seemingly

related approaches. Although our optimization-based samplers are not intended to com-

pete with the many ABC algorithms that are available, they can be useful in situations

when numerical optimization of the auxiliary model is fast. This aspect is studied in

our companion paper Forneron & Ng (2016) in which implementation of the RS in the

overidentified case is also considered. The RS is independently proposed in Meeds &

Welling (2015) with emphasis on efficient and parallel implementations. Our focus on the

analytical properties complements their analysis.

The paper proceeds as follows. After laying out the preliminaries in Section 2, Section

3 presents the general idea behind ABC and introduces an optimization view of the ideal

MCMC-ABC. Section 4 considers Quasi-Bayes estimators and interprets them from an

optimization perspective. Section 5 uses stochastic expansions to study the properties

of the estimators. Section 6 uses analytical examples and simulations to illustrate their

differences. Throughout, we focus the discussion on features that distinguish the SMD

from ABC which are lesser known to economists.2

2 The class of SMD estimators considered are well known in the macro and finance literature and with
apologies, many references are omitted. We also do not consider discrete choice models; though the idea is
conceptually similar, the implementation requires different analytical tools. Smith (2008) provides a concise
overview of these methods. The finite sample properties of the estimators are studied in Michaelides & Ng

3



1.2 Preliminaries

As a matter of notation, we use L(·) to denote the likelihood, p(·) to denote posterior

densities, q(·) for proposal densities, and π(·) to denote prior densities. A ‘hat’ denotes

estimators that correspond to the mode and a ‘bar’ is used for estimators that correspond

to the posterior mean. We use (s, S) and (b, B) to denote the (specific, total number of)

draws in frequentist and Bayesian type analyses respectively. A superscript s denotes a

specific draw and a subscript S denotes the average over S draws. For a function f (θ),

we use fθ(θ0) to denote ∂
∂θ f (θ) evaluated at θ0, fθθj(θ0) to denote ∂

∂θj
fθ(θ) evaluated at θ0

and fθ,θj,θk(θ0) to denote ∂2

∂θjθk
fθ(θ) evaluated at θ0.

Throughout, we assume that the data y = (y1, . . . , yT)
′ are strictly stationary and can

be represented by a parametric model with probability measure Pθ where θ ∈ Θ ⊂ RK.

The true value of θ is denoted by θ0. Unless otherwise stated, we write E[·] for expec-

tations taken under Pθ0 instead of EPθ0
[·]. If the likelihood L(θ) = L(θ|y) is tractable,

maximizing the log-likelihood `(θ) = log L(θ) with respect to θ gives

θ̂ML = argmaxθ`(θ).

Bayesian estimation combines the likelihood with a prior π(θ) to yield the posterior

density

p(θ|y) = L(θ) · π(θ)∫
Θ L(θ)π(θ)dθ

. (1.1)

For any prior π(θ), it is known that θ̂ML solves argmaxθ`(θ) = limλ→∞

∫
Θ θ exp(λ`(θ))π(θ)dθ∫
Θ exp(λ`(θ))π(θ)dθ

.

That is, the maximum likelihood estimator is a limit of the Bayes estimator using λ → ∞

replications of the data y.3 The parameter λ is the cooling temperature in simulated

annealing, a stochastic optimizer due to Kirkpatrick et al. (1983) for handling problems

with multiple modes.

In the case of conjugate problems, the posterior distribution has a parametric form

which makes it easy to compute the posterior mean and other quantities of interest.

For non-conjugate problems, the method of Monte-Carlo Markov Chain (MCMC) allows

sampling from a Markov Chain whose ergodic distribution is the target posterior distri-

bution p(θ|y), and without the need to compute the normalizing constant. We use the

Metropolis-Hastings (MH) algorithm in subsequent discussion. In classical Bayesian es-

(2000). Readers are referred to the original paper concerning the assumptions used.
3See Robert & Casella (2004, Corollary 5.11), Jacquier et al. (2007).
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timation with proposal density q(·), the acceptance ratio is

ρBC(θ
b, θb+1) = min

(L(θb+1)π(θb+1)q(θb|θb+1)

L(θb)π(θb)q(θb+1|θb)
, 1
)

.

When the posterior mode θ̂BC = argmaxθ p(θ|y) is difficult to obtain, the posterior mean

θBC =
1
B

B

∑
b=1

θb ≈
∫

Θ
θp(θ|y)dθ

is often the reported estimate, where θb are draws from the Markov Chain upon conver-

gence. Under quadratic loss, the posterior mean minimizes the posterior risk Q(a) =∫
Θ |θ − a|2p(θ|y)dθ.

Minimum Distance Estimators

The method of generalized method of moments (GMM) is a likelihood-free frequentist

estimator developed in Hansen (1982); Hansen & Singleton (1982). For example, it allows

for the estimation of K parameters in a dynamic model without explicitly solving the full

model. It is based on a vector of L ≥ K moment conditions gt(θ) whose expected value

is zero at θ = θ0, i.e. E[gt(θ0)] = 0. Let g(θ) = 1
T ∑T

t=1 gt(θ) be the sample analog of

E[gt(θ)]. The estimator is

θ̂GMM = argminθ J(θ), J(θ) =
T
2
· g(θ)′Wg(θ) (1.2)

where W is a L × L positive-definite weighting matrix. Most estimators can be put in

the GMM framework with suitable choice of gt. For example, when gt is the score of the

likelihood, the maximum likelihood estimator is obtained.

Let ψ̂ ≡ ψ̂(y(θ0)) be L auxiliary statistics with the property that
√

T(ψ̂− ψ(θ0))
d−→N (0, Σ).

It is assumed that the mapping ψ(θ) = limT→∞ E[ψ̂(θ)] is continuously differentiable in

θ and locally injective at θ0. Gouriéroux et al. (1993) refer to ψ(θ) as the binding func-

tion while Jiang & Turnbull (2004) use the term bridge function. The minimum distance

estimator is a GMM estimator which specifies

g(θ) = ψ̂− ψ(θ),

with efficient weighting matrix W = Σ̂−1. Classical MD estimation assumes that the

binding function ψ(θ) has a closed form expression so that in the exactly identified case,

one can solve for θ by inverting g(θ).
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SMD Estimators

Simulation estimation is useful when the asymptotic binding function ψ(θ0) is not an-

alytically tractable but can be easily evaluated on simulated data. The first use of this

approach in economics appears to be due to Smith (1993). The simulated analog of MD,

which we will call SMD, minimizes the weighted difference between the auxiliary statis-

tics evaluated at the observed and simulated data:

θ̂SMD = argminθ JS(θ) = argminθg′S(θ)WgS(θ).

where

gS(θ) = ψ̂− 1
S

S

∑
s=1

ψ̂s(ys(θ)),

ys(θ) ≡ ys(εs, θ) are data simulated under θ with errors εs drawn from an assumed distri-

bution Fε, and ψ̂s(θ) ≡ ψ̂s(ys(εs, θ)) are the auxiliary statistics computed using ys(θ). Of

course, gS(θ) is also the average over S deviations between ψ̂ and ψ̂s(ys(θ)). To simplify

notation, we will write ys and ψ̂s(θ) when the context is clear. As in MD estimation, the

auxiliary statistics ψ(θ) should ‘smoothly embed’ the properties of the data in the termi-

nology of Gallant & Tauchen (1996). But SMD estimators replace the asymptotic binding

function ψ(θ0) = limT→∞ E[ψ̂(θ0)] by a finite sample analog using Monte-Carlo simu-

lations. While the SMD is motivated with the estimation of complex models in mind,

Gouriéroux et al. (1999) show that simulation estimation has an automatic bias reduction

effect when ψ̂ is consistent for θ, which is comparable to bootstrap-based bias correction

methods. Hence in the econometrics literature, SMD estimators are used even when the

likelihood is tractable, as in Gouriéroux et al. (2010).

The steps for implementing the SMD are as follows:

0 For s = 1, . . . , S, draw εs = (εs
1, . . . , εs

T)
′ from Fε. These are innovations to the struc-

tural model that will be held fixed during iterations.

1 Given θ, repeat for s = 1, . . . S:

a Use (εs, θ) and the model to simulate data ys = (ys
1, . . . , ys

T)
′.

b Compute the auxiliary statistics ψ̂s(θ) using simulated data ys.

2 Compute: gS(θ) = ψ̂(y)− 1
S ∑S

s=1 ψ̂s(θ). Minimize JS(θ) = gS(θ)
′WgS(θ).

The SMD estimator is the θ that makes JS(θ) smaller than the tolerance specified for the

numerical optimizer. In the exactly identified case, the tolerance can be made as small

as machine precision permits. When ψ̂ is a vector of unconditional moments, the SMM

6



estimator of Duffie & Singleton (1993) is obtained. When ψ̂ are parameters of an auxil-

iary model, we have the ‘indirect inference’ estimator of Gouriéroux et al. (1993). These

are Wald-test based SMD estimators in the terminology of Smith (2008). When ψ̂ is the

score function associated with the likelihood of the auxiliary model, we have the EMM

estimator of Gallant & Tauchen (1996), which can also be thought of as an LM-test based

SMD. If ψ̂ is the likelihood of the auxiliary model, JS(θ) can be interpreted as a likeli-

hood ratio and we have a LR-test based SMD. Gouriéroux & Monfort (1996) provide a

framework that unifies these three approaches to SMD estimation. Nonparametric esti-

mation of the auxiliary statistics was considered in Gallant & Tauchen (1996), Fermanian

& Salanié (2004), Carrasco et al. (2007a), among others. Nickl & Pötscher (2011) show that

an SMD based on non-parametrically estimated auxiliary statistics can have asymptotic

variance equal to the Cramer-Rao bound if the tuning parameters are optimally chosen.4.

The Wald, LM, and LR based SMD estimators minimize a weighted L2 distance be-

tween the data and the model as summarized by auxiliary statistics. Creel & Kristensen

(2013) consider a class of estimators that minimize the Kullback-Leibler distance between

the model and the data.5 Within this class, their MIL estimator maximizes an ‘indirect

likelihood’, defined as the likelihood of the auxiliary statistics. Their BIL estimator uses

Bayesian computations to approximate the mode of the indirect likelihood. In practice,

the indirect likelihood is unknown. Estimating it by kernel smoothing of the simulated

statistics, the SBIL estimator combines Bayesian computations with non-parametric es-

timation. Gao & Hong (2014) show that using local linear regressions instead of kernel

estimation can reduce the variance and the bias. Using non-parametric estimation in ABC

has previously been considered in Beaumont et al. (2009). Creel et al. (2016) show that not

only can such an ABC implementation bypass MCMC altogether, it can provide asymp-

totically valid frequentist inference. Bounds for the number of simulations that achieve

the parametric rate of convergence and asymptotic normality are derived.

1.3 Approximate Bayesian Computation

The ABC literature often credits Donald Rubin to be the first to consider the possibility of

estimating the posterior distribution when the likelihood is intractable. Diggle & Gratton

(1984) propose to approximate the likelihood by simulating the model at each point on

4Similar ideas in statistics include Mitrovic et al. (2016), Park et al. (2016), and Bernton et al. (2017).
5 In the sequel, we take the more conventional L2 definition of SMD as given above.
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a parameter grid and appear to be the first implementation of simulation estimation for

models with intractable likelihoods. Subsequent developments adapted the idea to con-

duct posterior inference, giving the prior an explicit role. The first formal ABC algorithm

was implemented by Tavare et al. (1997) and Pritchard et al. (1996) to study population

genetics. Their Accept/Reject algorithm is as follows: (i) draw θb from the prior distri-

bution π(θ), (ii) simulate data using the model under θb (iii) accept θb if the auxiliary

statistics computed using the simulated data are close to ψ̂. As in the SMD literature, the

auxiliary statistics can be parameters of a regression or unconditional sample moments.

Heggland & Frigessi (2004), Drovandi et al. (2011, 2015) use simulated auxiliary statistics.

Since simulating from a non-informative prior distribution is inefficient, subsequent

work suggests to replace the rejection sampler by one that takes into account the features

of the posterior distribution. The likelihood of the full dataset L(y|θ) is intractable, as is

the likelihood of the finite dimensional statistic L(ψ̂|θ). However, the latter can be con-

sistently estimated using simulations. The general idea is to set as a target the intractable

posterior density

p∗ABC(θ|ψ̂) ∝ π(θ)L(ψ̂|θ)

and approximate it using Monte-Carlo methods. Some algorithms are motivated from the

perspective of non-parametric density estimation, while others aim to improve properties

of the Markov chain.6 The main idea is, however, using data augmentation to consider

the joint density pABC(θ, x|ψ̂) ∝ L(ψ̂|x, θ)L(x|θ)π(θ), putting more weight on the draws

with x close to ψ̂. When x = ψ̂, L(ψ̂|ψ̂, θ) is a constant, pABC(θ, ψ̂|ψ̂) ∝ L(ψ̂|θ)π(θ), and

the target posterior is recovered. If ψ̂ are sufficient statistics, one recovers the posterior

distribution associated with the intractable likelihood L(θ|y), not just an approximation.

To better understand the ABC idea and its implementation, we will write yb instead

of yb(εb, θb) and ψ̂b instead of ψ̂b(yb(εb, θb)) to simplify notation. Let Kδ(ψ̂
b, ψ̂|θ) ≥ 0

be a kernel function that weighs deviations between ψ̂ and ψ̂b over a window of width

δ. Suppose we keep only the draws that satisfy ψ̂b = ψ̂ and hence δ = 0. Note that

K0(ψ̂
b, ψ̂|θ) = 1 if ψ̂ = ψ̂b for any choice of the kernel function. Once the likelihood of

interest

L(ψ̂|θ) =
∫

L(x|θ)K0(x, ψ̂|θ)dx

is available, moments and quantiles can be computed. In particular, for any measurable

6 Recent surveys on ABC can be found in Marin et al. (2012), Blum et al. (2013) among others. See
Drovandi et al. (2015, 2011) for differences amongst ABC estimators.
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function ϕ whose expectation exists, we have:

E
[

ϕ(θ)|ψ̂ = ψ̂b
]
=

∫
Θ ϕ(θb)π(θ)L(ψ̂|θb)dθb∫

Θ π(θb)L(ψ̂|θb)dθb
=

∫
Θ

∫
ϕ(θb)π(θb)L(x|θb)K0(x, ψ̂|θb)dxdθb∫

Θ

∫
π(θb)L(x|θb)K0(x, ψ̂|θb)dxdθb

.

Since ψ̂b|θb ∼ L(·|θb), the expectation can be approximated by averaging over draws

from L(·|θ̂b). More generally, draws can be taken from an importance density q(·). In

particular,

Ê
[

ϕ(θ)|ψ̂ = ψ̂b
]
=

∑B
b=1 ϕ(θb)K0(ψ̂

b, ψ̂|θb)π(θb)
q(θb)

∑B
b=1 K0(ψ̂b, ψ̂|θb)π(θb)

q(θb)

.

The importance weights are then

wb
0 ∝ K0(ψ̂

b, ψ̂|θb)
π(θb)

q(θb)
.

By a law of large numbers, Ê
[
ϕ(θ)|ψ̂

]
→ E

[
ϕ(θ)|ψ̂

]
as B→ ∞.

There is, however, a caveat. When ψ̂ has continuous support, ψ̂b = ψ̂ is an event of

measure zero. Replacing K0 with Kδ where δ is close to zero yields the approximation:

E
[

ϕ(θ)|ψ̂ = ψ̂b
]
≈

∫
Θ

∫
ϕ(θb)π(θb)L(x|θb)Kδ(x, ψ̂|θb)dxdθb∫

Θ

∫
π(θb)L(x|θb)Kδ(x, ψ̂|θb)dxdθb

.

Since Kδ(·) is a kernel function, consistency of the non-parametric estimator for the con-

ditional expectation of ϕ(θ) follows from, for example, Pagan & Ullah (1999). This is

the approach considered in Beaumont et al. (2009), Creel & Kristensen (2013) and Gao &

Hong (2014). The case of a rectangular kernel Kδ(ψ̂, ψ̂b) = I‖ψ̂−ψ̂b‖≤δ corresponds to the

ABC algorithm proposed in Marjoram et al. (2003). This is the first ABC algorithm that

exploits MCMC sampling. Hence we refer to it as MCMC-ABC. Our analysis to follow is

based on this algorithm. Accordingly, we now explore it in more detail.

Algorithm MCMC-ABC Let q(·) be the proposal distribution. For b = 1, . . . , B with θ0

given,

1 Generate θb+1 ∼ q(θb+1|θb).

2 Draw εb+1 from Fε and simulate data yb+1. Compute ψ̂b+1.

3 Accept θb+1 with probability ρABC(θ
b, θb+1) and set it equal to θb with probability

1− ρABC(θ
b, θb+1) where

ρABC(θ
b, θb+1) = min

(
I‖ψ̂−ψ̂b+1‖≤δ

π(θb+1)q(θb|θb+1)

π(θb)q(θb+1|θb)
, 1
)

. (1.3)
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As with all ABC algorithms, the success of the MCMC-ABC lies in augmenting the pos-

terior with simulated data ψ̂b, i.e. p∗ABC(θ
b, ψ̂b|ψ̂) ∝ L(ψ̂|θb, ψ̂b)L(ψ̂b|θb)π(θb). The joint

posterior distribution that the MCMC-ABC would like to target is

p0
ABC

(
θb, ψ̂b|ψ̂

)
∝ π(θb)L(ψ̂b|θb)I‖ψ̂b−ψ̂‖=0

since integrating out εb would yield p∗ABC(θ|ψ̂). But it would not be possible to generate

draws such that ‖ψ̂b − ψ̂‖ equals zero exactly. Hence as a compromise, the MCMC-ABC

algorithm allows δ > 0 and targets

pδ
ABC

(
θb, ψ̂b|ψ̂

)
∝ π(θb)L(ψ̂b|θb)I‖ψ̂b−ψ̂‖≤δ.

The adequacy of pδ
ABC as an approximation of p0

ABC is a function of the tuning parameter

δ.

To understand why this algorithm works, we follow the argument in Sisson & Fan

(2011). If the initial draw θ1 satisfies ‖ψ̂ − ψ̂1‖ ≤ δ, then all subsequent b > 1 draws

are such that I‖ψ̂b−ψ̂‖≤δ = 1 by construction. Furthermore, since we draw θb+1 and then

independently simulate data ψ̂b+1, the proposal distribution becomes q(θb+1, ψ̂b+1|θb) =

q(θb+1|θb)L(ψ̂b+1|θb+1). The two observations together imply that

I‖ψ̂−ψ̂b+1‖≤δ

π(θb+1)q(θb|θb+1)

π(θb)q(θb+1|θb)
=
I‖ψ̂−ψ̂b+1‖≤δ

I‖ψ̂−ψ̂b‖≤δ

π(θb+1)q(θb|θb+1)

π(θb)q(θb+1|θb)

L(ψ̂b+1|θb+1)

L(ψ̂b|θb)

L(ψ̂b|θb)

L(ψ̂b+1|θb+1)

=
I‖ψ̂−ψ̂b+1‖≤δ

I‖ψ̂−ψ̂b‖≤δ

π(θb+1)L(ψ̂b+1|θb+1)

π(θb)L(ψ̂b|θb)

q(θb|θb+1)L(ψ̂b|θb)

q(θb+1|θb)L(ψ̂b+1|θb+1)

=
pδ

ABC
(
θb+1, ψ̂b+1|ψ̂

)
pδ

ABC

(
θb, ψ̂b|ψ̂

) q(θb, ψ̂b|θb+1)

q(θb+1, ψ̂b+1|θb)
.

The last equality shows that the acceptance ratio is in fact the ratio of two ABC posteriors

times the ratio of the proposal distribution. Hence the MCMC-ABC effectively targets the

joint posterior distribution pδ
ABC.

The Reverse Sampler

Thus far, we have seen that the SMD estimator is the θ that makes ‖ψ̂− 1
S ∑S

s=1 ψ̂s(θ)‖ no

larger than the tolerance of the numerical optimizer. We have also seen that the feasible

MCMC-ABC accepts draws θb satisfying ‖ψ̂ − ψ̂b(θb)‖ ≤ δ with δ > 0. To view the

MCMC-ABC from a different perspective, suppose that setting δ = 0 was possible. Then

each accepted draw θb would satisfy:

ψ̂b(θb) = ψ̂.
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For fixed εb and assuming that the mapping ψ̂b : θ → ψ̂b(θ) is continuously differentiable

and one-to-one, the above statement is equivalent to:

θb = argminθ

(
ψ̂b(θ)− ψ̂

)′ (
ψ̂b(θ)− ψ̂

)
.

Hence each accepted θb is the solution to a SMD problem with S = 1. Next, suppose

that instead of drawing θb from a proposal distribution, we draw εb and solve for θb as

above. Since the mapping ψ̂b is invertible by assumption, a change of variable yields the

relation between the distribution of ψ̂b and θb. In particular, the joint density, say h(θb, εb),

is related to the joint density L(ψ̂b(θb), εb) via the determinant of the Jacobian |ψ̂b
θ(θ

b)| as

follows:

h(θb, εb|ψ̂) = |ψ̂b
θ(θ

b)|L(ψ̂b(θb), εb|ψ̂).

Multiplying the quantity on the right-hand-side by wb(θb) = π(θb)|ψ̂b
θ(θ

b)|−1 yields

π(θb)L(ψ̂, εb|θb) since ψ̂b(θb) = ψ̂ and the mapping from θb to ψb(θb) is one-to-one. This

suggests that if we solve the SMD problem B times each with S = 1, re-weighting each

of the B solutions by wb(θb) would give the target the joint posterior p∗ABC(θ|ψ̂) after

integrating out εb.

Algorithm RS

1 For b = 1, . . . , B and a given θ,

i Draw εb from Fε and simulate data yb using θ. Compute ψ̂b(θ) from yb.

ii Let θb = argminθ Jb
1(θ), Jb

1(θ) = (ψ̂− ψ̂b(θ))′W(ψ̂− ψ̂b(θ)).

iii Compute the Jacobian ψ̂b
θ(θ

b) and its determinant |ψ̂b
θ(θ

b)|.
Let wb(θb) = π(θb)|ψ̂b

θ(θ
b)|−1.

2 Compute the posterior mean θRS = ∑B
b=1 wb(θb)θb where wb(θb) = wb(θb)

∑B
c=1 wc(θc)

.

The RS has the optimization aspect of SMD as well as the sampling aspect of the MCMC-

ABC. We call the RS the reverse sampler for two reasons. First, typical Bayesian esti-

mation starts with an evaluation of the prior probabilities. The RS terminates with the

evaluation of the prior. Furthermore, we use the SMD estimates to reverse engineer the

posterior distribution.

Consistency of each RS solution (i.e. θb) is built on the fact that the SMD is consistent

even with S = 1. The RS estimate is thus an average of a sequence of SMD modes. In

contrast, the SMD is the mode of an objective function defined from a weighted average

of the simulated auxiliary statistics. Optimization effectively allows δ to be as close to
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zero as machine precision permits. This puts the joint posterior distribution as close to

the infeasible target as possible, but has the consequence of shifting the distribution from

(yb, ψ̂b) to (yb, θb). Hence a change of variable is required. The importance weight de-

pends on the Jacobian matrix, making the RS an optimization based importance sampler.

Lemma 1. Suppose that ψ : θ → ψ̂b(θ) is one-to-one and ψb
θ(θ) has full column rank. The poste-

rior distribution produced by the reverse sampler converges to the infeasible posterior distribution

p∗ABC(θ|ψ̂) as B→ ∞.

The proof is given in Forneron & Ng (2016). By convergence, we mean that for any

measurable function ϕ(θ) such that the expectation exists, a law of large numbers implies

that ∑B
b=1 wb(θb)ϕ(θb)

a.s.−→Ep∗(θ|ψ̂)(ϕ(θ)). In general, wb(θb) 6= 1
B . The RS draws and

moments can be interpreted as if they were taken from p∗ABC, the posterior distribution

had the likelihood p(ψ̂|θ) been available.

That the draws of the MCMC-ABC at δ = 0 can be seen from an optimization per-

spective allows us to subsequently use the RS as a conceptual framework to understand

the differences between the ideal MCMC-ABC and SMD. It should be noted that the RS is

not the same as the MCMC-ABC or any ABC estimator implemented with δ > 0 as they

necessarily have an acceptance rate strictly less than one. Indeed, a challenge of many

ABC implementations is the low acceptance rate. The RS draws are always accepted and

can be useful in situations when numerical optimization of the auxiliary model is easy.

Properties of the RS are further analyzed in Forneron & Ng (2016). Meeds & Welling

(2015) independently propose an ABC sampling algorithm similar to the RS. Their focus

is on ways to implement it efficiently using embarrassingly parallel methods.

1.4 Quasi-Bayes Estimators

The GMM objective function J(θ) defined in (1.2) is not a proper density. Noting that

exp(−J(θ)) is the kernel of the Gaussian density, Jiang & Turnbull (2004) define an indirect

likelihood as

LIND(θ|ψ̂) ≡
1√
2π
|Σ̂|−1 exp(−J(θ))

where Σ̂ is a consistent estimate of Σ. Note that LIND(θ) is distinct from the indirect like-

lihood defined in Creel & Kristensen (2013), but analogous to the ‘synthetic likelihood’

defined in Wood (2010). Associated with the indirect likelihood is the indirect score, indi-

rect Hessian, and a generalized information matrix equality, just like a conventional likeli-
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hood. Though the indirect likelihood is not a proper density, its maximizer has properties

analogous to the maximum likelihood estimator provided by E[gt(θ0)] = 0.

In Chernozhukov & Hong (2003), the authors observe that extremum estimators can

be difficult to compute if the objective function is highly non-convex, especially when

the dimension of the parameter space is large. These difficulties can be alleviated by

using Bayesian computational tools, but this is not possible when the objective function

is not a likelihood. Chernozhukov & Hong (2003) take an exponential of −J(θ), as in

Jiang & Turnbull (2004), but then combine exp(−J(θ)) with a prior density π(θ) to pro-

duce a quasi-posterior density. Chernozhukov and Hong initially termed their estima-

tor ‘Quasi-Bayes’ because exp(−J(θ)) is not a standard likelihood. They settled on the

term ‘Laplace-type estimator’ (LT), so-called because Laplace suggested to approximate

a smooth probability density with a well defined peak by a normal density, see Tierney

& Kadane (1986). If π(θ) is strictly positive and continuous over a compact parameter

space Θ, the ‘quasi-posterior’ LT distribution

pLT(θ|y) =
exp(−J(θ))π(θ)∫

Θ exp(−J(θ)π(θ))dθ
∝ exp(−J(θ))π(θ) (1.4)

is proper. The LT posterior mean is thus well-defined even when the prior may not be

proper. Wood (2010) considers similar idea, but replaces J(θ) with LIND(θ). As discussed

in Chernozhukov & Hong (2003), one can think of the LT under a flat prior as using

simulated annealing to maximize exp(−J(θ)) and setting the cooling parameter τ to 1.

Frequentist inference is asymptotically valid because as the sample size increases, the

prior is dominated by the pseudo likelihood which, by the Laplace approximation, is

asymptotically normal.7

In practice, the LT posterior distribution is targeted using MCMC methods. Upon

replacing the likelihood L(θ) by exp(−J(θ)), the MH acceptance probability is

ρLT(θ
b, ϑ) = min

( exp(−J(ϑ))π(ϑ)q(θb|ϑ)
exp(−J(θb))π(θb)q(ϑ|θb)

, 1
)

.

The quasi-posterior mean is θLT = 1
B ∑B

b=1 θb where each θb is a draw from pLT(θ|y). Cher-

nozhukov and Hong suggest to exploit the fact that the quasi-posterior mean is much

easier to compute than the mode and that, under regularity conditions, the two are first-

order equivalent. In practice, the weighting matrix can be based on some preliminary

7 For loss function d(·), the LT estimator is θ̂LT(ϑ) = argminθ

∫
Θ d(θ− ϑ)pLT(θ|y)dθ. If d(·) is quadratic,

the posterior mean minimizes quasi-posterior risk.
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estimate of θ, or estimated simultaneously with θ. In exactly identified models, it is well

known that the MD estimates do not depend on the choice of W. This continues to be

the case for the LT posterior mode θ̂LT. However, the posterior mean and variance are

affected by the choice of the weighting matrix even in the just-identified case.8

The LT estimator is built on the validity of the asymptotic normal approximation in

the second-order expansion of the objective function. Nekipelov & Kormilitsina (2015)

show that in small samples, this approximation can be poor so that the LT posterior mean

may differ significantly from the extremum estimate that it is meant to approximate. To

see the problem in a different light, we again take an optimization view. Specifically, the

asymptotic distribution
√

T(ψ̂(θ0)− ψ(θ0))
d−→N (0, Σ(θ0)) ≡ A∞(θ0) suggests to use

ψ̂b(θ) ≈ ψ(θ) +
Ab

∞(θ0)√
T

where Ab
∞(θ0) ∼ N (0, Σ̂(θ)). Given a draw of Ab

∞, there will exist a θb such that (ψ̂b(θ)−
ψ̂)′W(ψ̂b(θ) − ψ̂) is minimized. In the exactly identified case, this discrepancy can be

driven to zero up to machine precision. Hence we can define

θb = argminθ‖ψ̂
b(θ)− ψ̂‖.

Arguments analogous to the RS suggest the following will produce draws of θ from

pLT(θ|y).

1 For b = 1, . . .B:

i Draw Ab
∞(θ0) and define ψ̂b(θ) = ψ(θ) + Ab

∞(θ)√
T

.

ii Solve for θb such that ψ̂b(θb) = ψ̂ (up to machine precision).

iii Compute wb(θb) = |ψ̂b
θ(θ

b)|−1π(θb).

2 Compute θLT = ∑ wb(θb)θb, where wb = wb(θb)

∑B
c=1 wc(θc)

.

Seen from an optimization perspective, the LT is a weighted average of MD modes with

the determinant of the Jacobian matrix as importance weight, similar to the RS. It differs

from the RS in that the Jacobian here is computed from the asymptotic binding function

ψ(θ), and the draws are based on the asymptotic normality of ψ̂. As such, simulation of

the structural model is not required.

8Kormiltsina & Nekipelov (2014) suggests to scale the objective function to improve coverage of the
confidence intervals.
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The SLT

When ψ(θ) is not analytically tractable, a natural modification is to approximate it by

simulations as in the SMD. This is the approach taken in Lise et al. (2015). We refer to this

estimator as the Simulated Laplace-type estimator, or SLT. The steps are as follows:

0 Draw structural innovations εs = (εs
1, . . . , εs

T)
′ from Fε. These are held fixed across

iterations.

1 For b = 1, . . . , B, draw ϑ from q(ϑ|θb).

i. For s = 1, . . . S: use (ϑ, εs) and the model to simulate data ys = (ys
1, . . . , ys

T)
′.

Compute ψ̂s(ϑ) using ys.

ii. Form JS(ϑ) = gS(ϑ)
′WgS(ϑ), where gS(ϑ) = ψ̂(y)− 1

S ∑S
s=1 ψ̂s(ϑ).

iii. Set θb+1 = ϑ with probability ρSLT(θ
b, ϑ), else reset ϑ to θb with probability

1− ρSLT where the acceptance probability is:

ρSLT(θ
b, ϑ) = min

( exp(−JS(ϑ))π(ϑ)q(θb|ϑ)
exp(−JS(θb))π(θb)q(ϑ|θb)

, 1
)

.

2 Compute θ
b
SLT = 1

B ∑B
b=1 θb.

The SLT algorithm has two loops, one using S simulations for each b to approximate the

asymptotic binding function, and one using B draws to approximate the ‘quasi-posterior’

SLT distribution

pSLT(θ|y, ε1, . . . , εS) =
exp(−JS(θ))π(θ)∫

Θ exp(−JS(θ))π(θ)dθ
∝ exp(−JS(θ))π(θ) (1.5)

The above SLT algorithm has features of SMD, ABC, and LT, it also requires simu-

lations of the full model. As a referee pointed out, though the SLT resembles the ABC

algorithm when used with a Gaussian kernel, exp(−JS(θ)) is not a proper density, and

pSLT(θ|y, ε1, . . . , εS) is not a conventional likelihood-based posterior distribution. While

the SLT targets the pseudo likelihood, ABC algorithms target the proper but intractable

likelihood. Furthermore, the asymptotic distribution of ψ̂ is known from a frequentist

perspective. In ABC estimation, lack of knowledge of the likelihood of ψ̂ motivates the

Bayesian computation.

The optimization implementation of SLT presents a clear contrast with the ABC.

1 Given εs = (εs
1, . . . , εs

T)
′ for s = 1, . . . S, repeat for b = 1, . . . B:

i Draw ψ̂b(θ) = 1
S ∑S

s=1 ψ̂s(θ) + Ab
∞(θ)√

T
.
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ii Solve for θb such that ψ̂b(θb) = ψ̂ (up to machine precision).

iii Compute wb(θb) = |ψ̂b
θ(θ

b)|−1π(θb).

2. Compute θSLT = ∑ wb(θb)θb, where wb = wb(θb)

∑B
c=1 wc(θc)

.

While the SLT is a weighted average of SMD modes, the draws of ψ̂b(θ) are taken from

the (frequentist) asymptotic distribution of ψ̂ instead of solving the model at each b. Gao

& Hong (2014) use a similar idea to make draws of what we refer to as g(θ) in their

extension of the BIL estimator of Creel & Kristensen (2013) to non-separable models.

The SMD, RS, ABC, and SLT all require specification and simulation of the full model.

At a practical level, the innovations ε1, . . . , εs used in SMD and SLT are only drawn from

Fε once and held fixed across iterations. Equivalently, the seed of the random number

generator is fixed so that the only difference in successive iterations is due to change in the

parameters to be estimated. In contrast, ABC draws new innovations from Fε each time

a θb+1 is proposed. We need to simulate B sets of innovations of length T, not counting

those used in draws that are rejected, and B is generally much bigger than S. The SLT

takes B draws from an asymptotic distribution of ψ̂. Hence even though some aspects of

the algorithms considered seem similar, there are subtle differences.

1.5 Properties of the Estimators

This section studies the finite sample properties of the various estimators. Our goal is to

compare the SMD with the RS, and by implication, the infeasible MCMC-ABC. Note that

our RS is different from the original kernel based ABC methods. To do so in a tractable

way, we only consider the expansion up to order 1
T . As a point of reference, we first

note that under assumptions in Rilstone et al. (1996); Bao & Ullah (2007), θ̂ML admits a

second-order expansion

θ̂ML = θ0 +
AML(θ0)√

T
+

CML(θ0)

T
+ op(

1
T
).

where AML(θ0) is a mean-zero asymptotically normal random vector and CML(θ0) de-

pends on the curvature of the likelihood. These terms are defined as

AML(θ0) = E[`θθ(θ0)]
−1ZS(θ0) (1.6a)

CML(θ0) = E[−`θθ(θ0)]
−1
[

ZH(θ0)ZS(θ0)−
1
2

K

∑
j=1

(−`θθθj(θ0))ZS(θ0)ZS,j(θ0)

]
(1.6b)
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where the normalized score 1√
T
`θ(θ0) and centered Hessian 1√

T
(`θθ(θ0)−E[`θθ(θ0)]) con-

verge in distribution to the normal vectors ZS and ZH respectively. The order 1
T bias is

large when Fisher information is low.

Classical Bayesian estimators are likelihood based. Hence the posterior mode θ̂BC

exhibits a bias similar to that of θ̂ML. However, the prior π(θ) can be thought of as a con-

straint, or penalty since the posterior mode maximizes log p(θ|y) = log L(θ|y)+ log π(θ).

Furthermore, Kass et al. (1990) show that the posterior mean deviates from the posterior

mode by a term that depends on the second derivatives of the log-likelihood. Accord-

ingly, there are three sources of bias in the posterior mean θBC: a likelihood component, a

prior component, and a component from approximating the mode by the mean. Hence

θ̂BC = θ0 +
AML(θ0)√

T
+

1
T

[
CBC(θ0) +

πθ(θ0)

π(θ0)
CP

BC(θ0) + CM
BC(θ0)

]
+ op(

1
T
).

Note that the prior component is under the control of the researcher.

In what follows, we will show that posterior means based on auxiliary statistics ψ̂

generically have the above representation, but the composition of the terms differ.

Properties of θ̂SMD

Minimum distance estimators depend on auxiliary statistics ψ̂. Its properties have been

analyzed in Newey & Smith (2004, Section 4.2) within an empirical-likelihood frame-

work. To facilitate subsequent analysis, we follow Gouriéroux & Monfort (1996, Ch.4.4)

and directly expand ψ̂ around ψ(θ0), under the assumption that it admits a second-order

expansion. In particular, since ψ̂ is
√

T consistent for ψ(θ0), ψ̂ has expansion

ψ̂ = ψ(θ0) +
A(θ0)√

T
+
C(θ0)

T
+ op(

1
T
). (1.7)

It is then straightforward to show that the minimum distance estimator θ̂MD has expan-

sion

AMD(θ0) =
[
ψθ(θ0)

]−1
A(θ0) (1.8a)

CMD(θ0) =
[
ψθ(θ0)

]−1
[
C(θ0)−

1
2

K

∑
j=1

ψθ,θj(θ0)AMD(θ0)AMD,j(θ0)

]
. (1.8b)

The bias in θ̂MD depends on the curvature of the binding function and the bias in the

auxiliary statistic ψ̂, C(θ0). Then following Gouriéroux et al. (1999), we can analyze the
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SMD as follows. In view of (1.7), we have, for each s:

ψ̂s(θ) = ψ(θ) +
As(θ)√

T
+
Cs(θ)

T
+ op(

1
T
).

The estimator θ̂SMD satisfies ψ̂ = 1
S ∑S

s=1 ψ̂s(θ̂SMD) and has expansion θ̂SMD = θ0 +
ASMD(θ0)√

T
+ CSMD(θ0)

T + op(
1
T ). Plugging it in the second-order expansions gives:

ψ(θ0) +
A(θ0)√

T
+
C(θ0)

T
+ op(

1
T
) =

1
S

S

∑
s=1

[
ψ(θ̂SMD) +

As(θ̂SMD)√
T

+
Cs(θ̂SMD)

T
+ op(

1
T
)

]
.

Expanding ψ(θ̂SMD) and As(θ̂SMD) around θ0 and equating terms in the expansion of

θ̂SMD,

ASMD(θ0) =

[
ψθ(θ0)

]−1(
A(θ0)−

1
S

S

∑
s=1

A
s(θ0)

)
(1.9a)

CSMD(θ0) =

[
ψθ(θ0)

]−1(
C(θ0)−

1
S

S

∑
s=1

C
s(θ0)−

1
S

S

∑
s=1

A
s
θ(θ0)ASMD(θ0)

)
(1.9b)

−1
2

[
ψθ(θ0)

]−1 K

∑
j=1

ψθ,θj(θ0)ASMD(θ0)ASMD,j(θ0).

The first-order term can be written as ASMD = AMD + 1
B [ψθ(θ0)]

−1 ∑B
b=1 Ab(θ0), the last

term has variance of order 1/B which accounts for simulation noise. Note also that

E
(

1
S ∑S

s=1C
s(θ0)

)
= E[C(θ0)]. Hence, unlike the MD, E[CSMD(θ0)] does not depend on

the bias C(θ0) in the auxiliary statistic. In the special case when ψ̂ is a consistent estimator

of θ0, ψθ(θ0) is the identity map and the term involving ψθθj(θ0) drops out. Consequently,

the SMD has no bias of order 1
T when S → ∞ and ψ(θ) = θ. In general, the bias of θ̂SMD

depends on the curvature of the binding function as

E[CSMD(θ0)]
S→∞→ −1

2

[
ψθ(θ0)

]−1 K

∑
j=1

ψθ,θj(θ0)E

[
AMD(θ0)AMD,j(θ0)

]
. (1.10)

This is an improvement over θ̂MD because as seen from (1.8b),

E[CMD(θ0)] =

[
ψθ(θ0)

]−1

C(θ0)−
1
2

[
ψθ(θ0)

]−1 K

∑
j=1

ψθ,θj(θ0)E

[
AMD(θ0)AMD,j(θ0)

]
.

(1.11)

The bias in θ̂MD has an additional term in C(θ0).
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Properties of θRS

The convergence properties of the ABC algorithms have been well analyzed but the theo-

retical properties of the estimates are less understood. Dean et al. (2011) establish consis-

tency of the ABC in the case of hidden Markov models. The analysis considers a scheme

so that maximum likelihood estimation based on the ABC algorithm is equivalent to exact

inference under the perturbed hidden Markov scheme. The authors find that the asymp-

totic bias depends on the ABC tolerance δ. ABC has also been applied to filter unobserved

latent variables in intractable non-linear non-gaussian state-space models. Calvet & Czel-

lar (2015) provide an upper bound for the mean-squared error of their ABC filter and

study how the choice of the bandwidth affects properties of the filter. Under high level

conditions and adopting the empirical likelihood framework of Newey & Smith (2004),

Creel & Kristensen (2013) show that the infeasible BIL is second-order equivalent to the

MIL after bias adjustments, while MIL is in turn first-order equivalent to the continu-

ously updated GMM. The feasible SBIL (which is also an ABC estimator) has additional

errors compared to the BIL due to simulation noise and kernel smoothing, but these er-

rors vanish as S → ∞ for an appropriately chosen bandwidth. Gao & Hong (2014) show

that local-regressions have better variance properties compared to kernel estimations of

the indirect likelihood. Creel et al. (2016) show that the number of simulations can af-

fect the parametric convergence rate and asymptotic normality of the estimator, which is

important for frequentist inference.

ABC algorithms are traditionally implemented using kernel smoothing, the first im-

plementation being Beaumont et al. (2009). The bias due to kernel smoothing is rigorously

studied in Creel et al. (2016) under the assumption that the draws are taken directly from

the prior. Our RS is an importance sampler that does not use kernel smoothing. Instead

it uses optimization to set δ equal to zero. This offers different insight as we look at the

bias in the ideal case where δ is exactly zero.

As shown above, θRS is the weighted average of a sequence of SMD modes. Analy-

sis of the weights wb(θb) requires an expansion of ψ̂b
θ(θ

b) around ψθ(θ0). From such an

analysis, shown in the Appendix, we find that

θRS =
B

∑
b=1

wb(θb)θb = θ0 +
ARS(θ0)√

T
+

CRS(θ0)

T
+ op(

1
T
)
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where

ARS(θ0) =
1
B

B

∑
b=1

Ab
RS(θ0) =

[
ψθ(θ0)

]−1(
A(θ0)−

1
B

B

∑
b=1

A
b(θ0)

)
(1.12a)

CRS(θ0) =
1
B

B

∑
b=1

Cb
RS(θ0)

+
πθ(θ0)

π(θ0)

[
1
B

B

∑
b=1

(Ab
RS(θ0)− ARS(θ0))Ab

RS(θ0)

]
+ CM

RS(θ0). (1.12b)

Proposition 1. Let ψ̂(θ) be the auxiliary statistic that admits the expansion as in (1.7) and

suppose that the prior π(θ) is positive and continuously differentiable around θ0 when dim(ψ̂) =

dim(θ). Then E[ARS(θ0)] = 0 but E[CRS(θ0)] 6= 0 for an arbitrary choice of prior.

The SMD and RS are first order equivalent, but θRS has an order 1
T bias. The bias,

given by CRS(θ0), has three components. The CM
RS(θ0) term (defined in Appendix A) can

be traced directly to the weights, or to the interaction of the weights with the prior, and is
a function of ARS(θ0). Some but not all the terms vanish as B→ ∞. The second term will
be zero if a uniform prior is chosen since πθ = 0. A similar result is obtained in Creel &
Kristensen (2013). The first term is

1
B ∑B

b=1 Cb
RS(θ0) =[

ψθ(θ0)

]−1
1
B ∑B

b=1

(
C(θ0)−Cb(θ0)− 1

2 ∑K
j=1 ψθθj(θ0)Ab

RS(θ0)Ab
RS,j(θ0)−Ab

θ(θ0)Ab
RS(θ0)

)
.

The term C(θ0) − 1
B ∑B

b=1C
b(θ0) is exactly the same as in CSMD(θ0). The middle term

involves ψθθj(θ0) and is zero if ψ(θ) = θ. But because the summation is over θb instead of

ψ̂s,
1
B

B

∑
b=1

A
b
θ(θ0)Ab

RS(θ0)
B→∞→ E[Ab

θ(θ0)Ab
RS(θ0)] 6= 0.

As a consequence E[CRS(θ0)] 6= 0 even when ψ(θ) = θ. In contrast, E[CSMD(θ0)] = 0

when ψ(θ) = θ as seen from (1.10). The reason is that the comparable term in CSMD(θ0)

is (
1
S

S

∑
s=1

A
s
θ(θ0)

)
ASMD(θ0)

S→∞→ E[As
θ(θ0)]ASMD(θ0) = 0.

The difference boils down to the fact that the SMD is the mode of the average over sim-

ulated auxiliary statistics, while the RS is a weighted average over the modes. As will be

seen below, this difference is also present in the LT and SLT and comes from averaging

over θb. The result is based on fixing δ at zero and holds for any B. Proposition 1 implies
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that the ideal MCMC-ABC with δ = 0 also has a non-negligible second-order bias. Note

that Proposition 1 is stated for the exactly identified case. When dim(ψ̂) > dim(θ), the

analysis is more complicated. Essentially, when the model is overidentified, weighting is

needed since all moments cannot be made equal to zero simultaneously in general. This

introduces additional biases. A result analogous to Proposition 1 is given in Forneron &

Ng (2016) for the overidentified case.

In theory, the order 1
T bias can be removed if π(θ) can be found to put the right hand

side of CRS(θ0) defined in (1.12b) to zero. Then θRS will be second-order equivalent to

SMD when ψ(θ) = θ and may have a smaller bias than SMD when ψ(θ) 6= θ since SMD

has a non-removable second-order bias in that case. That the choice of prior will have

bias implications for likelihood-free estimation echoes the findings in the parametric like-

lihood setting. Arellano & Bonhomme (2009) show in the context of non-linear panel data

models that the first-order bias in Bayesian estimators can be eliminated with a particular

prior on the individual effects. Bester & Hansen (2006) also show that in the estimation

of parametric likelihood models, the order 1
T bias in the posterior mode and mean can be

removed using objective Bayesian priors. They suggest to replace the population quanti-

ties in a differential equation with sample estimates. Finding the bias-reducing prior for

the RS involves solving the differential equation:

0 = E[Cb
RS(θ0)] +

πθ(θ0)

π(θ0)
E[(Ab

RS(θ0)− ARS(θ0))Ab
RS(θ0)] + E[CM

RS(θ0, π(θ0))]

which has the additional dependence on π in CM
RS(θ0, π(θ0)) that is not present in Bester

& Hansen (2006). A closed-form solution is available only for simple examples as we

will see Section 6.1 below. For realistic problems, how to find and implement the bias-

reducing prior is not a trivial problem. A natural starting point is the plug-in procedure

of Bester & Hansen (2006) but little is known about its finite sample properties even in

the likelihood setting for which it was developed.

This section has studied the RS, which is the best that the MCMC-ABC can achieve

in terms of δ. This enables us to make a comparison with the SMD holding the same L2

distance between ψ̂ and ψ(θ) at zero by machine precision. However, the MCMC-ABC

algorithm with δ > 0 will not produce draws with the same distribution as the RS. To see

the problem, suppose that the RS draws are obtained by stopping the optimizer before

‖ψ̂ − ψ(θb)‖ reaches the tolerance guided by machine precision. This is analogous to

equating ψ(θb) to the pseudo estimate ψ̂ + δ. Inverting the binding function will yield an

estimate of θ that depends on the random δ in an intractable way. The RS estimate will
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thus have an additional bias from δ 6= 0. By implication, the MCMC-ABC with δ > 0 will

be second-order equivalent to the SMD only after a bias adjustment even when ψ(θ) = θ.

The Properties of LT and SLT

The mode of exp(−J(θ))π(θ) will inherit the properties of a MD estimator. However, the

quasi-posterior mean has two additional sources of bias, one arising from the prior, and

another one from approximating the mode by the mean. The optimization view of θLT

facilitates an understanding of these effects. As shown in Appendix B, each draw θb
LT has

expansion terms

Ab
LT(θ0) =

[
ψθ(θ0)

]−1 (
A(θ0)−Ab

∞(θ0)
)

Cb
LT(θ0) =

[
ψθ(θ0)

]−1
(
C(θ0)−

1
2

K

∑
j=1

ψθ,θj(θ0)Ab
LT(θ0)Ab

LT,j(θ0)−Ab
∞,θ(θ0)Ab

LT(θ0)

)
.

Even though the LT has the same objective function as MD, simulation noise enters both

Ab
LT(θ0) and Cb

LT(θ0). Compared to the extremum estimate θ̂MD, we see that ALT =
1
B ∑B

b=1 Ab
LT(θ0) 6= AMD(θ0) and CLT(θ0) 6= CMD(θ0). Although CLT(θ0) has the same

terms as CRS(θ0), they are different because the LT uses the asymptotic binding function,

and hence Ab
LT(θ0) 6= Ab

RS(θ0).

A similar stochastic expansion of each θb
SLT gives:

Ab
SLT(θ0) =

[
ψθ(θ0)

]−1
(
A(θ0)−

1
S

S

∑
s=1

A
s(θ0)−Ab

∞(θ0)

)

Cb
SLT(θ0) =

[
ψθ(θ0)

]−1
(
C(θ0)−

1
S

S

∑
s=1

C
s(θ0)−

1
2

K

∑
j=1

ψθ,θj(θ0)Ab
SLT Ab

SLT,j

)

−
[
ψθ(θ0)

]−1
(

1
S

S

∑
s=1

(
A

s
θ(θ0) +A

b
∞,θ(θ0)

)
Ab

SLT(θ0)

)

Following the same argument as in the RS, an optimally chosen prior can reduce bias,

at least in theory, but finding this prior will not be a trivial task. Overall, the SLT has

features of the RS (bias does not depend on C(θ0) and the LT (dependence on Ab
∞) but

is different from both. Because the SLT uses simulations to approximate the binding

function ψ(θ), E[C(θ0)− 1
S ∑S

s=1 Cs(θ0)] = 0. The improvement over the LT is analogous

to the improvement of SMD over MD. However, the Ab
SLT(θ0) is affected by estimation

of the binding function (the term with superscript s) and of the quasi-posterior density
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(the terms with superscript b). This results in simulation noise with variance of order 1/S

plus another of order 1/B. Note also that the SLT bias has an additional term

1
B

B

∑
b=1

(
1
S

S

∑
s=1

(
A

s
θ(θ0) +A

b
∞,θ(θ0)

)
Ab

SLT(θ0)

)
S→∞→ 1

B

B

∑
b=1

A
b
∞,θ(θ0)Ab

LT(θ0).

The main difference with the RS is that Ab is replaced with Ab
∞. For S = ∞ this term

matches that of the LT.

Overview

We started this section by noting that the Bayesian posterior mean has two components

in its bias, one arising from the prior which acts like a penalty on the objective function,

and another due to approximating the mean with the mode. We are now in a position to

use the results in the foregoing subsections to show that for d=(MD, SMD, RS, LT) and

SLT and D = (RS,LT,SLT) these estimators can be represented as

θ̂d = θ0 +
Ad(θ0)√

T
+

Cd(θ0)

T
+
1d∈D

T

[
πθ(θ0)

π(θ0)
CP

d (θ0) + CM
d (θ0)

]
+ op(

1
T
) (1.13)

where with Ab
d(θ0) = [ψθ(θ0)]

−1
(
A(θ0)−Ab

d(θ0)
)

,

Ad(θ0) = [ψθ(θ0)]
−1
(
A(θ0)−

1
B

B

∑
b=1

A
b
d(θ0)

)
Cd(θ0) = [ψθ(θ0)]

−1
(
C(θ0)−Cd(θ0)−

1
2

K

∑
j=1

ψθ,θj(θ0)Ab
d(θ0)Ab

d,j(θ0)−Ab
d,θ Ab

d(θ0)
)

CP
d (θ0) =

1
B

B

∑
b=1

(
Ab

d(θ0)− Ad(θ0)
)

Ab
d(θ0),

The term CP
d (θ0) is a bias directly due to the prior. The term CM

d (θ0), defined in the

Appendix, depends on Ad(θ0), the curvature of the binding function, and their interaction

with the prior. Hence at a general level, the estimators can be distinguished by whether

or not Bayesian computation tools are used, as the indicator function is null only for

the two frequentist estimators (MD and SMD). More fundamentally, the estimators differ

because of Ad(θ0) and Cd(θ0), which in turn depend on Ab
d(θ0) and Cd(θ0). We compactly

summarize the differences as follows:
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d Ab
d(θ0) Cd(θ0) var(Ad(θ0)) E[C(θ0)−Cd(θ0)]

MD 0 0 0 E[C(θ0)]

LT Ab
∞(θ0) 0 1

B var[Ab
∞(θ0)] E[C(θ0)]

RS Ab(θ0)
1
B ∑B

b=1C
b(θ0)

1
B var[Ab(θ0)] 0

SMD 1
S ∑S

s=1A
s(θ0)

1
S ∑S

s=1C
s(θ0)

1
S var[As(θ0)] 0

SLT ASMD(θ0) +Ab
LT(θ0)

1
S ∑S

s=1C
s(θ0) var[ASMD(θ0)] + var[ALT(θ0)] 0

The MD is the only estimator that is optimization based and does not involve simu-

lations. Hence it does not depend on b or s and has no simulation noise. The SMD does

not depend on b because the optimization problem is solved only once. The LT simulates

from the asymptotic binding function. Hence its errors are associated with parameters of

the asymptotic distribution.

The MD and LT have a bias due to asymptotic approximation of the binding function.

In such cases, Cabrera & Fernholz (1999) suggest to adjust an initial estimate θ̃ such that if

the new estimate θ̂ were the true value of θ, the mean of the original estimator equals the

observed value θ̃. Their target estimator is the θ such that EPθ
[θ̂] = θ̃. While the bootstrap

directly estimates the bias, a target estimator corrects for the bias implicitly. Cabrera & Hu

(2001) show that the bootstrap estimator corresponds to the first step of a target estimator.

The latter improves upon the bootstrap estimator by providing more iterations.

An auxiliary statistic based target estimator is the θ that solves EPθ
[ψ̂(y(θ))] = ψ̂(y(θ0)).

It replaces the asymptotic binding function limT→∞ E[ψ̂(y(θ0))] by EPθ
[ψ̂(y(θ))] and ap-

proximates the expectation under Pθ by stochastic expansions. The SMD and SLT can

be seen as target estimators that approximate the expectation by simulations. Thus, they

improve upon the MD estimator even when the binding function is tractable and is espe-

cially appealing when it is not. However, the improvement in the SLT is partially offset

by having to approximate the mode by the mean.

1.6 Two Examples

The preceding section can be summarized as follows. A posterior mean computed through

auxiliary statistics generically has a component due to the prior, and a component due to

the approximation of the mode by the mean. The binding function is better approxi-
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mated by simulations than asymptotic analysis. It is possible for simulation estimation to

perform better than ψ̂MD even if ψ(θ) were analytically and computationally tractable.

In this section, we first illustrate the above findings using a simple analytical example.

We then evaluate the properties of the estimators using the dynamic panel model with

fixed effects.

An Analytical Example

We consider the simple DGP yi ∼ N(m, σ2). The parameters of the model are θ = (m, σ2)′.

We focus on σ2 since the estimators have more interesting properties.

The MLE of θ is

m̂ =
1
T

T

∑
t=1

yt, σ̂2 =
1
T

T

∑
t=1

(yt − y)2.

While the posterior distribution is dominated by the likelihood in large samples, the

effect of the prior is not negligible in small samples. We therefore begin with a analysis

of the effect of the prior on the posterior mean and mode in Bayesian analysis. Details of

the calculations are provided in Appendix D.1.

We consider the prior π(m, σ2) = (σ2)−αIσ2>0, α > 0 so that the log posterior distri-

bution is

log p(θ|y) = log p(θ|m̂, σ̂2) ∝
−T
2

[
log(2πσ2)− α log σ2 − 1

2σ2

T

∑
t=1

(yt −m)2
]
Iσ2>0.

The posterior mode and mean of σ2 are σ2
mode = Tσ̂2

T+2α and σ2
mean = Tσ̂2

T+2α−5 . respectively.

Using the fact that E[σ̂2] = (T−1)
T σ2, we can evaluate σ2

mode, σ2
mean and their expected values

for different α. Two features are of note. For a given prior (here indexed by α), the mean

Table 1.1: Mean θBC vs. Mode θ̂BC

α θBC θ̂BC E[θBC] E[θ̂BC]

0 σ̂2 T
T−5 σ̂2 σ2 T−1

T−5 σ2 T−1
T

1 σ̂2 T
T−3 σ̂2 T

T+2 σ2 T−1
T−3 σ2 T−1

T+2

2 σ̂2 T
T−1 σ̂2 T

T+4 σ2 σ2 T−1
T+4

3 σ̂2 T
T+1 σ̂2 T

T+6 σ2 T−1
T+1 σ2 T−1

T+6

does not coincide with the mode. Second, the statistic (be it mean or mode) varies with
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α. The Jeffrey’s prior corresponds to α = 1, but the bias-reducing prior is α = 2. In the

Appendix, we show that the bias reducing prior for this model is πR(θ) ∝ 1
σ4 .

Next, we consider estimators based on auxiliary statistics:

ψ̂(y)′ =
(

m̂ σ̂2

)
.

As these are sufficient statistics, we can also consider (exact) likelihood-based Bayesian

inference. For SMD estimation, we let (m̂S, σ̂2
S) = ( 1

S ∑S
s=1 m̂s, 1

S ∑S
s=1 σ̂2,s). The LT quasi-

likelihood using the variance of preliminary estimates of m and σ2 as weights is:

exp(−J(m, σ2)) = exp
(
− T

2

[
(m̂−m)2

σ̂2 +
(σ̂2 − σ2)2

2σ̂4

])
.

The LT posterior distribution is p(m, σ2|m̂, σ̂2) ∝ π(m, σ2) exp(−J(m, σ2)). Integrating

out m gives p(σ2|m̂, σ̂2). We consider a flat prior πU(θ) ∝ Iσ2≥0 and the bias-reducing

prior πR(θ) ∝ 1/σ4Iσ2≥0. The RS is the same as the SMD under a bias-reducing prior.

Thus,

σ̂2
SMD =

σ̂2

1
ST ∑S

s=1 ∑T
t=1(e

s
t − es)2

σ̂2,R
RS =

σ̂2

1
BT ∑B

b=1 ∑T
t=1(e

b
t − eb)2

σ̂2,U
RS =

B

∑
b=1

σ̂2

[∑T
t=1(e

b
t−eb)2/T]2

∑B
b′=1

1
∑T

t=1(e
b′
t −eb′ )2/T

.

For completeness, the parametric Bootstrap bias corrected estimator σ̂2
Bootstrap = 2σ̂2 −

EBootstrap(σ̂
2) is also considered:

σ̂2
Bootstrap = 2σ̂2 − σ̂2 T − 1

T
= σ̂2(1 +

1
T
).

EBootstrap(σ̂
2) computes the expected value of the estimator replacing the true value σ2

with σ̂2, the plug-in estimate. In this example the bias can be computed analytically since

E(σ̂2(1 + 1
T )) = σ2(1− 1

T )(1 + 1
T ) = σ2(1− 1

T2 ). While the bootstrap does not involve

inverting the binding function, this computational simplicity comes at the cost of adding

a higher order bias term (in 1/T2).

A main finding of this paper is that the reverse sampler can replicate draws from

p∗ABC(θ0), which in turn equals the Bayesian posterior distribution if ψ̂ are sufficient

statistics. The weight for each SMD estimate is the prior times the Jacobian. To illus-

trate the importance of the Jacobian transformation, the top panel of Figure 2.2 plots
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Figure 1.1: ABC vs. RS Posterior Density

the Bayesian/ABC posterior distribution and the one obtained from the reverse sampler.

They are indistinguishable. The bottom panel shows an incorrectly constructed reverse

sampler that does not apply the Jacobian transformation. Notably, the two distributions

are not the same.

The properties of the estimators are summarized in Table 1.2. It should be reminded

that increasing S improves the approximation of the binding function in SMD estimation

while increasing B improves the approximation to the target distribution in Bayesian type

estimation. For fixed T, only the Bayesian estimator with the bias reducing prior is unbi-

ased. The SMD and RS (with bias reducing prior) have the same bias and mean-squared

error in agreement with the analysis in the previous section. These two estimators have

smaller errors than the RS estimator with a uniform prior. The SLT posterior mean differs

from that of the SMD by κSLT that is not mean-zero. This term, which is a function of

the Mills-ratio, arises as a consequence of the fact that the σ2 in SLT are drawn from the

normal distribution and then truncated to ensure positivity.
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Table 1.2: Properties of the Estimators

Estimator Prior E[θ̂] Bias Variance

θ̂ML - σ2 T−1
T −σ2

T 2σ4 T−1
T2

θBC 1 σ2 T−1
T−5

2σ2

T−5 2σ4 T−1
(T−5)2

θ
R
BC 1/σ4 σ2 0 2σ4 1

T−1

θ
U
RS 1 σ2 T−1

T−5
2σ2

T−5 2σ4 T−1
(T−5)2

θ
R
RS

1
σ4 σ2 B(T−1)

B(T−1)−2
2σ2

B(T−1)−2 2σ4 κ1
T−1

θ̂SMD - σ2 S(T−1)
S(T−1)−2

2σ2

S(T−1)−2 2σ4 κ1
T−1

θ
U
LT 1 σ2 T−1

T (1 + κLT) σ2 T−1
T κLT − σ2

T 2σ4 T−1
T2 (1 + κLT)

2

θ̂U
SLT 1 σ2 S(T−1)

S(T−1)−2 + κSLT
σ2

S(T−1)−2+σ2 T−1
T E[κSLT] 2σ4 κLT

T−1 + ∆SLT

θ̂Bootstrap - σ2(1− 1
T2 )

−σ2

T2 2σ4 T−1
T2 (1 + 1

T )
2

Notes to Table 2: Let M(x) = φ(x)
1−Φ(x) be the Mills ratio.

i κ1(S, T) = (S(T−1))2(T−1+S(T−1)−2)
(S(T−1)−2)2(S(T−1)−4) > 1, κ1 tends to one as B, S tend to infinity.

ii κLT = c−1
LT M(−cLT), c2

LT = T
2 , κLT → 0 as T → ∞.

iii κSLT = κLT · S · T · Invχ2
S(T−1), ∆,SLT = 2σ4var(κSLT) + 4σ4 T−1

T2 cov(κSLT , S · TInvχ2
S(T−1))).

The Dynamic Panel Model with Fixed Effects

The dynamic panel model yit = αi + ρyit−1 + σeit is known to be severely biased when

T is small because the unobserved heterogeneity αi is imprecisely estimated. Various

approaches have been suggested to improve the precision of the least squares dummy

variable (LSDV) estimator β̂.9 An interesting approach, due to Gouriéroux et al. (2010),

is to exploit the bias reduction properties of the indirect inference estimator. Using the

dynamic panel model as auxiliary equation, i.e. ψ(θ) = θ, the authors reported estimates

of β that are sharply more accurate than the LSDV, even when an exogenous regressor

and a linear trend is added to the model. Their simulation experiments hold σ2 fixed.

We reconsider their exercise but also estimate σ2. Following their setting, we take αi
iid∼

N (0, 1), i
iid∼ N (0, 1) and yi,0|αi

iid∼ N
(
αi/(1− ρ), (1− ρ2)−1).

9See Hsiao (2003) for a detailed account of this incidental parameter problem.
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With θ = (ρ, β, σ2)′, we simulate data from the model:

yit = αi + ρyit−1 + βxit + σεit.

Let A = IT − 1T1′T/T A = A⊗ IT, y = A vec(y), y−1
= A vec(y−1), x = A vec(x), where

y−1 are the lagged y. For this model, Bayesian inference is possible since the likelihood in

de-meaned data is

L(y, x|θ) = 1√
2π|σ2Ω|N

exp

(
− 1

2σ2

N

∑
i=2

(y
i
− ρy

i,−1
− βxi)

′Ω−1(y
i
− ρy

i,−1
− βxi)

)

where Ω = IT−1 − 1T−11′T−1/T. We use the following moment conditions for MD esti-

mation:

g(ρ, β, σ2) =


y−1

(y− ρy−1
− βx)

x(y− ρy−1
− βx)

(y− ρy−1
− βx)2 − σ2(1− 1/T)

 .

with g(ρ̂, β̂, σ̂2) = 0. The simulated quantity gS(θ) for SMD and gb(θ) for ABC are de-

fined analogously. The MD estimator in this case is also the LSDV. The auxiliary estimates

for the ABC, RS, SLT and SMD are the LSDV estimates. Recall that while the weighting

matrix W is irrelevant to finding the mode in exactly identified models, W affects com-

putation of the posterior mean. We use W = ( 1
NT ∑i,t g′itgit − g′g)−1 for LT, MCMC-ABC,

and SMD. The prior is π(θ) = Iσ2≥0,ρ∈[−1,1],β∈R. Since the demeaned data are used in

LSDV estimation, the estimates are invariant to the specification of the fixed effects. Ac-

cordingly, we set them to zero both in the assumed DGP and the auxiliary model. The

innovations εs used to simulate the auxiliary model and to construct ψ̂s are drawn from

the standard normal distribution once and held fixed.

Table 1.3 reports results from 5,000 replications for T = 6 time periods and N = 100

cross-section units, as in Gouriéroux et al. (2010). Both ρ̂ and σ̂2 are significantly biased.

The LT is the same as the MD except that it is computed using Bayesian tools. Hence its

properties are similar to the MD. The simulation estimators have much improved prop-

erties. The properties of θRS are similar to those of the SMD. Figure 1.2 illustrates for

one simulated dataset how the posteriors for RS /SLT are shifted towards the true value

compared to the one based on the direct likelihood.

29



Figure 1.2: Frequentist, Bayesian, and Approximate Bayesian Inference for ρ

pBC(ρ|ψ̂) is the likelihood based Bayesian posterior distribution,
pSLT(ρ|ψ̂) is the Simulated Laplace type quasi-posterior distribution.
pRS(ρ|ψ̂) is the approximate posterior distribution based on the RS .

The frequentist distribution of θ̂SMD is estimated by N (θ̂SMD, v̂ar(θ̂SMD)).

The MCMC-ABC results in Table 1.3 are for δ = 0.10 which has an acceptance rate of

0.58. These estimates are clearly more precise than MLE but more biased than SMD or

RS. The dependence of MCMC-ABC on δ is investigated in further detail in Forneron &

Ng (2016). In brief, when we set δ = 0.25, we achieve an acceptance ratio of 0.72 but the

estimates are severely biased, as shown in Figure 1.3. Bias similar to SMD and RS can be

obtained if we set δ to 0.025. But the corresponding acceptance rate is 0.28, meaning that

the MCMC-ABC needs at least three times more draws than the RS for a comparable level

of bias. The choice of δ is more important for the properties of MCMC-ABC than the RS

which associates δ with the tolerance of optimization.
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Table 1.3: Dynamic Panel ρ = 0.6, β = 1, σ2 = 2

Mean over 1000 replications

MLE LT SLT SMD MCMC
ABC RS Boot

Mean 0.419 0.419 0.593 0.598 0.544 0.599 0.419

ρ̂ : SD 0.037 0.037 0.038 0.035 0.036 0.035 0.074

Bias -0.181 -0.181 -0.007 -0.002 -0.056 -0.001 -0.181

Mean 0.940 0.940 0.997 1.000 0.974 1.000 0.940

β̂ : SD 0.070 0.071 0.073 0.073 0.075 0.073 0.139

Bias -0.060 -0.060 -0.003 0.000 -0.026 0.000 -0.060

Mean 1.869 1.878 1.973 1.989 1.921 2.099 1.869

σ̂2 : SD 0.133 0.146 0.144 0.144 0.149 0.152 0.267

Bias -0.131 -0.122 -0.027 -0.011 -0.079 0.099 -0.131

S – – 500 500 1 1 –

B – 500 500 – 500 500 500

Note: MLE=MD. The MCMC-ABC uses δABC = 0.10.

Figure 1.3: MCMC-ABC vs. RS Posterior Density
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1.7 Conclusion

Different disciplines have developed different estimators to overcome the limitations

posed by an intractable likelihood. These estimators share many similarities: they rely

on auxiliary statistics and use simulations to approximate quantities that have no closed

form expression. We suggest an optimization framework that helps understand the esti-

mators from the perspective of classical minimum distance estimation. All estimators are

first-order equivalent as S → ∞ and T → ∞ for any choice of π(θ). Nonetheless, up to

order 1/T, the estimators are distinguished by biases due to the prior and approximation

of the mode by the mean, the very two features that distinguish Bayesian and frequentist

estimation.

We have only considered regular problems when θ0 is in the interior of Θ and the

objective function is differentiable. When these conditions fail, the posterior is no longer

asymptotically normal around the MLE with variance equal to the inverse of the Fisher

Information Matrix. Understanding the properties of these estimators under non-standard

conditions is the subject for future research.
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A Likelihood-Free Reverse Sample of the
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2.1 Introduction

Maximum likelihood estimation rests on the ability of a researcher to express the joint

density of the data, or the likelihood, as a function of K unknown parameters θ. Infer-

ence can be conducted using classical distributional theory once the mode of the likeli-

hood function is determined by numerical optimization. Bayesian estimation combines

the likelihood with a prior to form the posterior distribution from which the mean and

other quantities of interest can be computed. Though the posterior distribution may not

always be tractable, it can be approximated by Monte Carlo methods provided that the

likelihood is available. When the likelihood is intractable but there exists L ≥ K auxiliary

statistics ψ̂ with model analog ψ(θ) that is analytically tractable, one can still estimate θ

by minimizing the difference between ψ̂ and ψ(θ).

Increasingly, parametric models are so complex that neither the likelihood nor ψ(θ)

is tractable. But if the model is easy to simulate, the mapping ψ(θ) can be approximated

by simulations. Estimators that exploit this idea can broadly be classified into two types.

One is simulated minimum distance estimator (SMD), a frequentist approach that is quite

widely used in economic analysis. The other is the method of Approximate Bayesian

Computation that is popular in other disciplines. This method, ABC for short, approx-

imates the posterior distribution using auxiliary statistics ψ̂ instead of the full dataset

y. It takes draws of θ from a prior distribution and keeps the draws that, when used to

simulate the model, produces auxiliary statistics that are close to the sample estimates ψ̂.

Both the ABC and SMD can be regarded as likelihood free estimators in the sense that the

likelihood that corresponds to the structural model of interest is not directly evaluated.

While both the SMD and ABC exploit auxiliary statistics to perform likelihood free

estimation, there are important differences between them. The SMD solves for the θ that

makes ψ̂ close to the average of ψ(θ) over many simulated paths of the data. In contrast,

the ABC evaluates ψ(θ) for each draw from the prior and accepts the draw only if ψ(θ)

is close to ψ̂. The ABC estimate is the average over the accepted draws, which is the

posterior mean. In Forneron & Ng (2018), we focused on the case of exact identification

and used a reverse sampler (RS) to better understand the difference between the two ap-

proaches. The RS approximates the posterior distribution by solving a sequence of SMD

problems, each using only one simulated path of data. Using stochastic expansions as in

Rilstone et al. (1996) and Bao & Ullah (2007), we reported that in the special case when

ψ(θ) = θ (i.e the auxiliary model is the assumed model), the SMD has an unambiguous

bias advantage over the ABC. But in more general settings, the ABC can, by clever choice
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of prior, eliminate biases that are inherent in the SMD.

In this paper, we extend the analysis to over-identified models and provide a deeper

understanding of the reverse sampler. The RS is shown to be an optimization-based im-

portance sampler that transforms the density from draws ofψ to draws of θ so that when

multiplied by the prior and properly weighted, the draws follow the desired posterior

distribution. Section 2 considers the exactly identified case and shows that the importance

ratio is the determinant of the Jacobian matrix. Section 3 considers the over-identified case

when the dimension ofψ(θ) exceeds that of θ. Because of the need to transform densities

of different dimensions, the determinant of the Jacobian matrix is replaced by its volume.

Using analytically tractable models, we show that the RS exactly reproduces the desired

posterior distribution.

The RS was initially developed as a framework to better understand the different ap-

proaches to likelihood free estimation. While not intended to compete with existing im-

plementations of ABC, the use of optimization in RS turns out to have a property that is

of independent interest. Creating a long sequence of ABC draws such that the simulated

statistic ψ̂b and the data ψ̂ deviate by no more than δ can take infinite time if δ is set to

exactly zero as theory suggests. This has generated interests within the ABC community

to control for δ. The RS by-passes this problem because SMD estimation makes ψ̂b as

close to ψ̂b as machine precision permits. We elaborate on this feature in Section 4. Of

course, the RS is useful only when the SMD objective function is well behaved and easy

to optimize, which may not always be the case. But allowing optimization to play a role

in ABC can be useful, as independent work by Meeds & Welling (2015) also found.

Preliminaries

In what follows, we use a ‘hat’ to denote estimators that correspond to the mode (or

extremum estimators) and a ‘bar’ for estimators that correspond to the posterior mean.

We use (s, S) and (b, B) to denote the (specific, total number of) draws in frequentist

and Bayesian type analyses respectively. A superscript s denotes a specific draw and a

subscript S denotes the average over S draws. These parameters S and B have different

roles. The SMD uses S simulations to approximate the mapping ψ(θ), while the ABC

uses B simulations to approximate the posterior distribution of the infeasible likelihood.

We assume that the data y = (y1, . . . , yT)
′ have finite fourth moments and can be

represented by a parametric model with probability measure Pθ where θ ∈ Θ ⊂ RK, θ0

is the true value. The likelihood L(θ|y) is intractable. Estimation of θ is based on L ≥ K
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auxiliary statistics ψ̂(y(θ0)) which we simply denote by ψ̂ when the context is clear. The

model implies statistics ψ(θ). The classical minimum distance estimator is

θ̂CMD = argminθ J(ψ̂,ψ(θ)) = g(θ)′Wg(θ), g(θ) = ψ̂ −ψ(θ).

Assumption A :

i There exists a unique interior point θ0 ∈ Θ (compact) that minimizes the population

objective function (ψ(θ0) − ψ(θ))′W(ψ(θ0) − ψ(θ)). The mapping θ → ψ(θ) =

limT→∞ E[ψ̂(θ)] is continuously differentiable and injective. The L × K Jacobian

matrix ψθ(θ) = ∂ψ(θ)
∂θ has full column rank, and the rank is constant in the neigh-

borhood of θ0.

ii There is an estimator ψ̂ such that
√

T(ψ̂ −ψ(θ0))
d−→N (0, Σ).

iii W is a L× L positive definite matrix and Wψθ(θ0) has rank K.

Assumption A ensures global identification and consistent estimation of θ, see Newey

& McFadden (1994). In Gouriéroux et al. (1993), the mapping ψ : θ → ψ(θ) is referred to

as the binding function while in Jiang & Turnbull (2004), ψ(θ) is referred to as a bridge

function. When ψ(θ) is analytically intractable, the simulated minimum distance estima-

tor (SMD) is

θ̂SMD = argminθ JS(ψ̂, ψ̂S(θ)) = argminθgS(θ)
′WgS(θ). (2.1)

where S ≥ 1 is the number of simulations,

gS(θ) = ψ̂ − 1
S

S

∑
s=1
ψ̂s(ys(θ)).

Notably, the term E[ψ̂(θ)] in CMD estimation is approximated by 1
S ∑S

s=1 ψ̂
s(ys(θ)). The

SMD was first used in Smith (1993). Different SMD estimators can be obtained by suitable

choice of the moments g(θ), including the indirect inference estimator of Gouriéroux et al.

(1993), the simulated method of moments of Duffie & Singleton (1993), and the efficient

method of moments of Gallant & Tauchen (1996).

The first ABC algorithm was implemented by Tavare et al. (1997) and Pritchard et al.

(1996) to study population genetics. They draw θb from the prior distribution π(θ), simu-

late the model under θb to obtain data yb, and accept θb if the vector of auxiliary statistics

ψ(θb) deviates from ψ̂ by no more than a tuning parameter δ. If ψ̂ are sufficient statistics

and δ = 0, the procedure produces samples from the true posterior distribution if B→ ∞.
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The Accept-Reject ABC: For b = 1, . . . , B

i Draw ϑ from π(θ) and εb from an assumed distribution Fε
ii Generate yb(εb,ϑ) and ψ̂b = ψ(yb).

iii Accept θb = ϑ if Jb
1 =

(
ψ̂b − ψ̂

)′
W
(
ψ̂b − ψ̂

)
≤ δ.

The accept-reject method (hereafter, AR-ABC) simply keeps those draws from the prior

distribution π(θ) that produce auxiliary statistics which are close to the observed ψ̂. As it

is not easy to choose δ a priori, it is common in AR-ABC to fix a desired quantile q, repeat

the steps [B/q] times. Setting δ to the q-th quantile of the sequence of Jb
1 that will produce

exactly B draws is analogous to the idea of keeping k−nearest neighbors considered in

Gao & Hong (2014).

Since simulating from a non-informative prior distribution is inefficient, the accept-

reject sampler can be replaced by one that targets at features of the posterior distribution.

There are many ways to target the posterior distribution. We consider the MCMC imple-

mentation of ABC proposed in Marjoram et al. (2003) (hereafter, MCMC-ABC).

The MCMC-ABC: For b = 1, . . . , B with θ0 given and proposal density q(·|θb),

i Generate ϑ ∼ q(ϑ|θb)

ii Draw errors εb+1 from Fε and simulate data yb+1(εb+1,ϑ). Compute ψ̂b+1 = ψ(yb+1).

iii Set θb+1 toϑwith probability ρABC(θ
b,ϑ) and to θb+1 with probability 1− ρABC(θ

b,ϑ)

where

ρABC(θ
b,ϑ) = min

(
I‖ψ̂,ψ̂b+1‖≤δ

π(ϑ)q(θb|ϑ)
π(θb)q(ϑ|θb)

, 1
)

(2.2)

The AR and MCMC both produce an approximation to the posterior distribution of θ. It is

common to use the posterior mean of the draws θ = 1
B ∑B

b=1 θ
b as the ABC estimate. The

MCMC-ABC uses a proposal distribution to account for features of the data so that it is

less likely to have proposed values with low posterior probability. The tuning parameter

δ affects the bias of the estimates. Too small a δ may require making many draws which

can be computationally costly.

The ABC samples from the joint distribution of (θb,ψb(εb,θb)) and then integrates

out εb. The posterior distribution is thus

p(θb|ψ̂) ∝
∫

p(θb, ψ̂b(θb, εb)|ψ̂)I‖ψ̂−ψb)‖<δdεb.
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The indicator function (also the rectangular kernel) equals one if ‖ψ̂ −ψb‖ does not ex-

ceed δ. The ABC draws are dependent due to the Markov nature of the MCMC-ABC

sampler.

Both the SMD and ABC assume that simulations provide an accurate approximation

of ψ(θ) and that auxiliary statistics are chosen to permit identification of θ. Creel &

Kristensen (2015) suggests a cross-validation method for selecting the auxiliary statistics.

For the same choice of ψ̂, the SMD finds the θ that makes the average of the simulated

auxiliary statistics close to ψ̂. The ABC takes the average of θb, drawn from the prior,

with the property that each ψb is close to ψ̂. In an attempt to understand this difference,

Forneron & Ng (2018), takes as starting point that each θb in the above ABC algorithm

can be reformulated as an SMD problem with S = 1. We consider an algorithm that

solves the SMD problem many times to obtain a distribution for θb, each time using one

simulated path. The sampler terminates with an evaluation of the prior probability, in

contrast to the ABC which starts with a draw from the prior distribution. Hence we call

our algorithm a reverse sampler (hereafter, RS). The RS produces a sequence of θb that

are independent optimizers and do not have a Markov structure.

In the next two sections, we explore additional features of the RS. As an overview, the

distribution of draws that emerge from SMD estimation with S = 1 may not be from the

desired posterior distribution. Hence the draws are re-weighted to target the posterior.

In the exactly identified case, ψ̂b can be made exactly equal to ψ̂ by choosing the SMD es-

timate as θb. Thus the RS is simply an optimization based importance sampler using the

determinant of Jacobian matrix as importance ratio. In the over-identified case, the vol-

ume of the (rectangular) Jacobian matrix is used in place of the determinant. Additional

weighting is given to those θ̂b that yields ψ̂b sufficiently close to ψ̂.

2.2 The Reverse Sampler: Case K = L

The algorithm for the case of exact identification is as follows. For b = 1, . . . , B

i Generate εb from Fε.

ii Find θb = argminθ Jb
1(ψ̂

b(θ, εb), ψ̂) and let ψ̂b = ψ̂b(θb, εb).

iii Set w(θb, εb) = π(θb)|ψ̂b
θ(θ

b, εb)|−1.

iv Re-weigh the θb by w(θb)

∑B
b=1 w(θb)

.
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Like the ABC, the draws θb provides an estimate of the posterior distribution of θ from

which an estimate of the posterior mean:

θRS =
B

∑
b=1

w(θb)

∑B
b=1 w(θb)

θb

can be used as an estimate of θ. Each θb is a function of the data ψ̂ and the draws εb that

minimizes Jb
1(ψ(θ, εb), ψ̂). The K first-order conditions are given by

F (θb, εb, ψ̂) =
∂g1(θ

b, εb, ψ̂)
∂θ

′

Wg1(θ
b, εb, ψ̂) = 0 (2.3)

where ∂g1(θ
b,εb,ψ̂)
∂θ is the L × K matrix of derivatives with respect to θ evaluated at the

arguments. It is assumed that, for all b, this derivative matrix has full column rank K.

For SMD estimation, ∂g1(θ
b,εb,ψ̂)
∂θ = ψ̂b

θ(θ
b, εb, ψ̂). This Jacobian matrix plays an important

role in the RS.

The importance density denoted h(θb, εb|ψ̂) is obtained by drawing εb from the as-

sumed distribution Fε and finding θb such that J(ψ̂b(θ, εb), ψ̂) is smaller than a pre-

specified tolerance. When K = L, this tolerance can be made arbitrarily small so that up to

numerical precision, ψ̂b(θb, εb) = ψ̂. This density h(θb, εb|ψ̂) is related to pψ̂b,εb(ψ̂b(θb, εb)) ≡
p(ψ̂b, εb) by a change of variable:

h(θb, εb|ψ̂) = p(ψ̂b, εb|ψ̂) · |ψ̂b
θ(θ

b, εb)|.

Now p(θb, ψ̂b|ψ̂) ∝ p(ψ̂|θb, ψ̂b)p(ψ̂b, εb|θb)π(θb) and p(ψ̂|θb, ψ̂b) is constant since

ψ̂b = ψ̂. Hence

p(θb|ψ̂) ∝
∫

π(θb)p(ψ̂b, εb|ψ̂)I‖ψ̂−ψ̂b‖=0dεb

=
∫

π(θb)|ψ̂b
θ(θ

b, εb, ψ̂)|−1h(θb, εb|ψ̂)I‖ψ̂−ψ̂b‖=0dεb

=
∫

w(θb, εb)h(θb, εb|ψ̂)dεb

where the weights are, assuming invertibility of the determinant:

w(θb, εb) = π(θb)|ψ̂b
θ(θ

b, εb, ψ̂)|−1. (2.4)

Note that in general, w(θb)

∑B
b=1 w(θb)

6= 1
B .

In the above, we have used the fact that I‖ψ̂−ψ̂b‖=0 is 1 with probability one when

K = L. The Jacobian of the transformation appears in the weights because the draws θb
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are related to the likelihood via a change of variable. Hence a crucial aspect of the RS is

that it re-weighs the draws of θb from h(θb, ε). Put differently, the unweighted draws will

not, in general, follow the target posterior distribution.

Consider a weighted sample (θb, w(θb, ε)) with w(θb, εb) defined in (2.4). The follow-

ing proposition shows that as B → ∞, RS produces the posterior distribution associated

with the infeasible likelihood, which is also the ABC posterior distribution with δ = 0.

Proposition 2. Suppose that ψ̂b : θ → ψ̂b(θ, εb) is one-to-one and the determinant | ∂ψ
b(θ,εb,ψ̂)

∂θ | =
|ψ̂b
θ(θ, εb, ψ̂)| is bounded away from zero around θb. For any measurable function ϕ(θ) such that

Ep(θ|ψ̂) (ϕ (θ)) =
∫

ϕ (θ) p(θ|ψ̂)dθ exists, then

∑B
b w(θb, εb)ϕ(θb)

∑B
b w(θb, εb)

a.s.−→ Ep(θ|ψ̂) (ϕ (θ)) .

Convergence to the target distribution follows from a strong law of large numbers.

Fixing the event ψ̂b = ψ̂ is crucial to this convergence result. To see why, consider first

the numerator:

1
B ∑

b
w(θb, εb)ϕ(θb)

a.s.−→
∫∫

ϕ (θ)w (θ, ε) p(ψ̂b, εb|θ)|ψ̂θ(θ, ε, ψ̂)|dεbdθ

=
∫∫

ϕ (θ)
∣∣∣ψ̂b
θ(θ, ε, ψ̂)

∣∣∣−1
π(θ)p(ψ̂b, εb|θ)

∣∣∣ψ̂b
θ(θ, ε, ψ̂)

∣∣∣ dεbdθ

=
∫∫

ϕ (θ)π(θ)p(ψ̂b, ε|θ)dεdθ

=
∫∫

ϕ (θ)π(θ)p(ψ̂, ε|θ)dεdθ

=
∫

ϕ (θ)π(θ)L(ψ̂|θ)dθ.

Furthermore, the denominator converges to the integrating constant since 1
B ∑b w(θb, ε) a.s.−→∫

π(θ)L(ψ̂|θ)dθ. Proposition 2 implies that the weighted average of θb converges to the

posterior mean. Furthermore, the posterior quantiles produced by the reverse sampler

tends to those of the infeasible posterior distribution p(θ|ψ̂) as B → ∞. As discussed

in Forneron & Ng (2018), the ABC can be presented as an importance sampler. Hence

the accept-reject algorithm in Tavare et al. (1997) and Pritchard et al. (1996), as well as

the Sequential Monte-Carlo approach to ABC in Sisson et al. (2007); Toni et al. (2009) and

Beaumont et al. (2009) are all important samplers. The RS differs in that it is optimization

based. It is also developed independently in Meeds & Welling (2015).

We now use examples to illustrate how the RS works in the exactly identified case.

40



Example 1: Suppose we have one observation y ∼ N (θ, 1) or y = θ + ε, ε ∼ N (0, 1).

The prior for θ is θ ∼ N (0, 1). By drawing, θb, εb ∼ N (0, 1), we obtain yb = θb + εb ∼
N (0, 2). The ABC keeps θb|yb = y. Since (θb, yb) are jointly normal with covariance of

1, we deduce that θb|yb = y ∼ N (y/2, 1/2). The exact posterior distribution for θ is

N (y/2, 1/2).

The RS draws εb ∼ N (0, 1) and computes θb = y− εb which isN (y, 1) conditional on

y. The Jacobian of the transformation is 1. Re-weighting according to the prior, we have:

pRS(θ|y) ∝ φ(θ)φ(θ − y) ∝ exp
(
−1

2

(
θ2 + (θ − y)2)) ∝ exp

(
−1

2

(
2θ2 − 2θy

))
∝ exp

(
−2

2
(θ − y/2)2

)
.

This is the exact posterior distribution as derived above.

Example 2 Suppose y = Q(u, θ), ε ∼ U[0,1] and Q is a quantile function that is invertible

and differentiable in both arguments.1 For a single draw, y is a sufficient statistic. The

likelihood-based posterior is:

p(θ|y) ∝ π(θ) f (y|θ).

The RS simulates yb(θ) = Q(εb|θ) and sets Q(εb|θb) = y. Or, in terms of the CDF:

εb = F(y|θb)

Consider a small perturbation to y holding ub fixed:

0 = dy
dF(y|θb)

dy
+ dθb dF(y|θb)

dθb = dyF′y(y|θb) + dθbF′
θb(y|θb).

In the above, f ≡ F′y(·) is the density of y given θ. The Jacobian is:∣∣∣∣dθb

dy

∣∣∣∣ = ∣∣∣∣ F′y(y|θb)

F′
θb(y|θb)

∣∣∣∣ = ∣∣∣∣ f (y|θb)

F′
θb(y|θb)

∣∣∣∣.
To find the distribution of θb conditional on y, assume F(y, .) is increasing in θ:

P
(

θb ≤ t|y
)
= P

(
F(y|θb) ≤ F(y|t)|y

)
= P

(
εb ≤ F(y|t)|y

)
= F(y|t).

1We thank Neil Shephard for suggesting the example.

41



By construction, f (θ|y) = F′θ(y|θ).2 Putting things together,3

pRS(θ|y) ∝ π(θ)|F′θ(y|θ)|
∣∣∣∣ f (y|θ)
F′θ(y|θ)

∣∣∣∣ = π(θ) f (y|θ) ∝ p(θ|y).

Example 3: Normal Mean and Variance We now consider an example in which the

estimators can be derived analytically, and given in Forneron & Ng (2018). We assume

yt = εt ∼ N(m, σ2). The parameters of the model are θ = (m, σ2)′. We consider the

auxiliary statistics: ψ̂(y)′ =
(

y σ̂2

)
. The parameters are exactly identified.

The MLE of θ is

m̂ =
1
T

T

∑
t=1

yt, σ̂2 =
1
T

T

∑
t=1

(yt − y)2.

We consider the prior π(m, σ2) = (σ2)−αIσ2>0, α > 0 so that the log posterior distribution

is

log p(θ|m̂, σ̂2) ∝
−T
2

log(2π)σ2 − α log σ2 − 1
2σ2

T

∑
t=1

(yt −m)2.

Since ψ̂(y) are sufficient statistics, the RS coincides with the likelihood-based Bayesian

estimator, denoted B below. This is also the infeasible ABC estimator. We focus discussion

on estimators for σ2 which have more interesting properties. Under a uniform prior, we

obtain

σ2
B = σ̂2 T

T − 5

σ̂2
SMD =

σ̂2

1
ST ∑S

s=1 ∑T
t=1(ε

s
t − εs)2

σ̂2
RS =

B

∑
b=1

σ̂2

[∑T
t=1(ε

b
t−εb)2/T]2

∑B
k=1

1
∑T

t=1(ε
k
t−εk)2/T

In this example, the RS is also the ABC estimator with δ = 0. It is straightforward to show

that the bias reducing prior is α = 1 and coincides with the SMD. Table 2.1 shows that the

estimators are asymptotically equivalent but can differ for fixed T.

To highlight the role of the Jacobian matrix in the RS, the top panel of Figure 2.2 plots

the exact posterior distribution and the one obtained from the reverse sampler. They are

2 If F(y, ·) is decreasing in θ, we have P(θb ≤ t|y) = 1− F(y, t).
3An alternative derivation is to note that t = P (u ≤ t|y) = P

(
u = F(y, θb) ≤ t|y

)
=

P
(

θb ≤ F−1(y, t) = t′|y
)

. Hence f (θb|y) = dt
dt′ =

1
(F−1)′θ(y,t) = F′2(y, t) as above.
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Table 2.1: Properties of the Estimators

Estimator Prior E[θ̂] Bias Variance MSE

θ̂ML - σ2 T−1
T −σ2

T 2σ4 T−1
T2 2σ4 2T−1

2T2

θB 1 σ2 T−1
T−5

2σ2

T−5 2σ4 T−1
(T−5)2 2σ4 T+1

(T−5)2

θRS 1 σ2 T−1
T−5

2σ2

T−5 2σ4 T−1
(T−5)2 2σ4 T+1

(T−5)2

θ̂SMD - σ2 S(T−1)
S(T−1)−2

2σ2

S(T−1)−2 2σ4κ1
1

T−1 2σ4 κ1
T−1 +

4σ4

(S(T−1)−2))2

where κ1(S, T) = (S(T−1))2(T−1+S(T−1)−2)
(S(T−1)−2)2(S(T−1)−4) > 1, κ1 tends to one as S tend to infinity.

indistinguishable. The bottom panel shows an incorrectly constructed reverse sampler

that does not apply the Jacobian transformation. Notably, the two distributions are not

the same. Re-weighting by the Jacobian matrix is crucial to targeting the desired posterior

distribution.

Figure 2.1 presents the likelihood based posterior distribution, along with the like-

lihood free ones produced by ABC and the RS-JI (just identified) for one draw of the

data. The ABC results are based on the accept-reject algorithm. The numerical results

corroborate with the analytical ones: all the posterior distributions are very similar. The

RS-JI posterior distribution is very close to the exact posterior distribution. Figure 2.1

also presents results for the over-identified case (denoted RS-OI) using two additional

auxiliary statistics: ψ̂ = (y, σ̂2
y , µ̂3/σ̂2

y , µ̂4/σ̂4
y ) where µk = E(yk). The weight matrix is

diag(1, 1, 1/2, 1/2). The posterior distribution is very close to RS-JI obtained for exact

identification. We now explain how the posterior distribution for the over-identified case

is obtained.

2.3 The RS: Case L ≥ K:

The idea behind the RS is the same when we go from the case of exact to overidentifica-

tion. The precise implementation is as follows. Let Kδ(ψ̂, ψ̂b) be a kernel function and δ

be a tolerance level such that K0(ψ̂,ψb) = I‖ψ̂−ψ̂b‖=0.

For b = 1, . . . , B

i Generate εb from Fε.

ii Find θb = argminθ Jb
1(ψ̂

b, ψ̂) where ψ̂b = ψ̂(θ, εb);
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iii Set w(θb, εb) = π(θb)vol
(
ψ̂b
θ(θ

b, εb, ψ̂)
)−1

Kδ(Jb
1(ψ̂

b, ψ̂)) where: vol(ψ̂b
θ) =

√∣∣∣ψ̂b′
θ ψ̂

b
θ

∣∣∣.
iv Re-weigh θb by w(θb)

∑B
b=1 w(θb)

.

We now proceed to explain the two changes:- the use of volume in place of determinant

in the importance ratio, and the need for L− K dimensional kernel smoothing.

The usual change of variable formula evaluates the absolute value of the determinant

of the Jacobian matrix when the matrix is square. The determinant then gives the infinites-

imal dilatation of the volume element in passing from one set of variables to another. The

main issue in the case of overidentification is that the determinant of a rectangular Jaco-

bian matrix is not well defined. However, as shown in Ben-Israel (1999), the determinant

can be replaced by the volume when transforming from sets of a higher dimension to

a lower one.4 For a L × K matrix A, its volume, denoted vol(A), is the product of the

(non-zero) singular values of A:

vol(A) =


√
|A′A| L ≥ K, rank(A) = K√
|AA′| L ≤ K, rank(A) = L.

Furthermore, if A = BC, vol(A) = vol(B)vol(C).

To verify that our target distribution is unaffected by whether we calculate the volume

or the determinant of the Jacobian matrix when K = L, observe that

ψ̂b
θ(θ

b(ψ̂), εb) =
∂ψ̂b(θb, εb, ψ̂)

∂ψ̂

∂ψ̂

∂θb . (2.5)

The K first order conditions defined by (2.3) become:

F (θb, εb, ψ̂) = ψ̂b
θ(θ

b, εb, ψ̂)′W
(
ψ̂ − ψ̂b(θb, εb)

)
= 0. (2.6)

Since L = K, W can be set to an identity matrix IK. Furthermore, ψ(θb, ε) = ψ̂ since

Jb
1(θ

b) = 0 under exact identification. As ∂θ
∂ψ̂

is a square matrix when K = L, we can

directly use the fact that Fθ(θb, εb, ψ̂)dθ + Fψ(θb, εb, ψ̂)dψ̂ = 0 to obtain the required

determinant:

|ψ̂b
θ(θ

b, εb, ψ̂)|−1 = IK · |
∂θ

∂ψ̂
| = | − Fθ(θb, εb, ψ̂)−1Fψ̂(θ

b, εb, ψ̂)|. (2.7)

4From Ben-Israel (2001),
∫

V f (v)dv =
∫

U f (φ(u))vol
(

φu(u)
)

du for a real valued function f integrable

on V. See also http://www.encyclopediaofmath.org/index.php/Jacobian.
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Now to use the volume result, put A = IK, B = ∂θ
∂ψ̂

and C = ∂ψ̂
∂θ . But A is just a K-

dimensional identity matrix. Hence vol(IK) = vol
(

∂θ
∂ψ̂

)
vol
(

∂ψ̂

∂θ̂

)
which evaluates to

vol
(

∂ψ̂

∂θ

)−1

= vol
(

∂θ

∂ψ̂

)
, or

∣∣∣∣∂ψ̂∂θ
∣∣∣∣−1

=

∣∣∣∣ ∂θ

∂ψ̂

∣∣∣∣
which is precisely |ψ̂b

θ(θ, ε)|−1 as given in (2.7)5. Hence in the exactly identified case,

there is no difference whether one evaluates the determinant or the volume of the Jaco-

bian matrix.

Next, we turn to the role of the kernel function Kδ(ψ̂, ψ̂b). The joint density h(θb, εb)

is related to pψ̂b,εb(ψ̂(θb, εb)) = p(ψ̂b, εb) through a change a variable now expressed in

terms of volume:

h(θ, εb|ψ̂) = p(ψ̂b, εb|ψ̂) · vol
(
ψ̂b
θ(θ

b, εb, ψ̂)
)

When L ≥ K, the objective function ‖ψ̂− ψ̂b‖W = Jb
1 ≥ 0 measures the extent to which ψ̂

deviates from ψ̂b when the objective function at its minimum. Consider the thought

experiment that Jb
1 = 0 with probability 1, such as enabled by a particular draw of

εb. Then the arguments above for K = L would have applied. We would still have

p(θb|ψ̂) =
∫

π(θb)p(ψ̂b, εb|ψ̂)I‖ψ̂−ψ̂b‖=0dεb =
∫

w(θb, εb)h(θb, εb|ψ̂)dεb, except that the

weights are now defined in terms of volume. Proposition 1 would then extend to the case

with L ≥ K.

But in general Jb
1 6= 0 almost surely. Nonetheless, we can use only those draws that

yield Jb
1(θ

b) that are sufficiently close to zero. The more draws we make, the tighter this

criterion can be. Suppose there is a symmetric kernel Kδ(·) satisfying conditions in Pagan

& Ullah (1999, p.96) for consistent estimation of conditional moments non-parametrically.

Analogous to Proposition 2, the volume vol
(
ψ̂b
θ(θ

b, εb, ψ̂)
)

is assumed to be bounded

away from zero. Then as the number of draws B → ∞, the bandwidth δ(B) → 0 and

Bδ(B)→ ∞ with

wδ(B)(θ
b, ε̂b) = π(θb)vol

(
ψ̂b
θ(θ

b, εb, ψ̂)
)−1

Kδ(B)(ψ̂, ψ̂b), (2.8)

5Using the implicit function theorem to compute the gradient gives the same
result. Since ψ̂b = ψ̂ we have: Fθ = −ψ̂b

θ(θ
b, εb, ψ̂)′Wψ̂b

θ(θ
b, εb, ψ̂) +

∑j ψ̂
b
θ,θj

(θb, εb)W
(
ψ̂ − ψ̂b(θb, εb, ψ̂)

)
= −ψ̂b

θ(θ
b, εb, ψ̂)′Wψ̂b

θ(θ
b, εb, ψ̂). Then vol(F−1

θ Fψ̂) =

vol(F−1
θ )vol(F

ψ̂
) = vol(ψ̂b

θ(θ
b, εb, ψ̂))−1|W|−1vol(ψ̂b

θ(θ
b, εb, ψ̂))−1vol(ψ̂b

θ(θ
b, εb, ψ̂))−1|W| =

vol(ψ̂b
θ(θ

b, εb, ψ̂))−1. Hence the weights are the same when we only consider the draws where Jb
1 = 0

which are the draws we are interested in.
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a result analogous to Proposition 1 can be obtained:

1
B ∑

b
wδ(B)(θ

b, εb)ϕ(θb)
p−→
∫∫

ϕ(θ)w0(θ, ε)vol
(
ψ̂b
θ(θ, εb; ψ̂)

)
p(ψ̂, εb|θ)dθdεb

=
∫∫

ϕ(θ)π(θ)1‖ψ̂−ψ̂b‖=0vol
(
ψ̂b
θ(θ, εb; ψ̂)

)−1

p(ψ̂b, εb|θ)vol
(
ψ̂b
θ(θ, εb; ψ̂)

)
dθdεb

=
∫∫

ϕ(θ)π(θ)1‖ψ̂−ψ̂b‖=0p(ψ̂, εb|θ)dθdεb

=
∫

ϕ(θ)π(θ)L(ψ̂|θ)dθ.

Similarly, the integrating constant is consistent as 1
B ∑b wδ(B)(θ

b, εb)
p−→
∫

π(θ)L(ψ̂|θ)dθ.

Hence, the RS sampler still recovers the posterior distribution with the infeasible likeli-

hood. Note that the kernel function was introduced for developing a result analogous

to Proposition 1, but no kernel smoothing is required in practical implementation. What

is needed for the RS in the over-identified case is B draws with sufficiently small J1(θ
b).

Hence, we can borrow the idea used in the AR-ABC. Specifically, we fix a quantile q, re-

peat [B/q] times until the desired number of draws is obtained. Discarding some draws

seems necessary in many ABC implementations.

In summary, there are two changes in implementation of the RS in the over-identified

case: the volume and the kernel function. Kernel smoothing has no role in the RS when

K = L. It is interesting to note that while the ABC and RS both rely on the kernel Kδ

to keep draws close to ψ̂b in the over-identified case, the non-parametric rate at which

the sum converges to the integral are different. The RS uses the first order conditions

ψ̂b
θ(θ

b, εb)′W
(
ψ̂b(θb, εb)− ψ̂

)
= 0 to indicate which K combinations of ψ̂b(θb, εb)− ψ̂

are set to zero, rendering the dimension of the smoothing problem L − K. To see this,

note first that each draw θb from the RS is consistent for θ0 and asymptotically normal as

shown in Forneron & Ng (2018). In consequence, the first order condition (FOC) can be

re-written as:
(

dψ(θ)
dθ

∣∣
θ=θ0

+ Op(
1√
T
)
)′

W
(
ψ̂b(θb, εb)− ψ̂

)
= 0, or

dψ(θ)
dθ

∣∣′
θ=θ0

W
(
ψ̂b(θb, εb)− ψ̂

)
= op(

1√
T
).

Since dψ(θ)
dθ

∣∣′
θ=θ0

W is full rank, there exists a subspace of dimension K such that ψ̂b(θb, εb)−
ψ̂ is zero asymptotically. Hence the kernel smoothing problem is effectively L − K di-

mensional. The ABC does not use the FOC. Even in the exactly identified case, the kernel

smoothing is a L = K dimensional problem. In general, the convergence rate of the ABC

is L ≥ K, the dimension of ψ̂.
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The following two examples illustrate the properties of the ABC and RS posterior

distributions. The first example uses sufficient statistics and the second example does

not. Both the ABC and RS achieve the desired number of draws by setting the quantile,

as discussed in Section 2.

Example 4: Exponential Distribution Let y1, . . . , yT ∼ E(θ), T = 5, θ0 = 1/2. Now

ψ̂ = y is a sufficient statistic for y1, . . . , yT. For a flat prior π(θ) ∝ 1θ≥0 we have:

p(θ|y) ∝ p(θ|y1, . . . , yT) = θT exp(−θTy) ∼ Γ(T + 1, Ty)

In the just identified case, we let ub
t ∼ U[0,1] and yb

t = − log(1− ub
t )/θb. This gives:

ψ̂b =
1
T

T

∑
t=1

yb
t = −

1
T

T

∑
t=1

log(1− ub
t )

θb .

Since yb = y, the Jacobian matrix is:

ψ̂b(θ
b) =

dψ̂b(θ)

dθ

∣∣∣∣
θb
=

1
T

T

∑
t=1

log(1− ub
t )

[θb]2
= − y

θb .

Hence for a given T, the weights are: w(θb, ub) ∝ Iθb≥0
θb

yb = θb

y . We verified that the

numerical results agree with this analytical result.

In the over identified case, we consider two moments:

ψ̂b =

 yb

σ̂b,2
y

 =

 1
T ∑T

t=1 yb
t

1
T ∑T

t=1(y
b
t )

2 − ( 1
T ∑T

t=1 yb
t )

2

 .

Since dyb
t

dθ =
log(1−ub

t )

(θb)2 = − yb
t

θb . If δ = 0, the Jacobian matrix is

ψ̂b
θ = −


1
T ∑T

t=1
yb

t
θ

2
θb

1
T ∑T

t=1(y
b
t )

2 − 2
θb

[
1
T ∑T

t=1 yb
t

]2

 = −

 y
θb

2(σ̂y)2

θb

 .

The volume to be computed is vol(ψ̂b
θ) =

√
|ψ̂b′

θ ψ̂
b
θ |, as stated in the algorithm. Even

if W = I, the volume is the determinant of ψ̂b
θ in the exactly identified case, plus a term

relating to the variance of yb. We computed ψ̂b
θ for draws with Jb

1 ≈ 0 using numerical dif-

ferentiation6 and verified that the values are very close to the ones computed analytically

for this example.

6In practice, since the mapping θ → ψ̂b(θ) is not known analytically, the derivatives are approximated

using finite differences: ∂θjψ̂
b(θ) ' ψ̂b(θ+ejε)−ψ̂b(θ−ejε)

2ε for ε ' 0.
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Figure 2.3 depicts a particular draw of the ABC posterior distribution (which coincides

with the likelihood-based posterior since the statistics are sufficient), along with two gen-

erated by the RS sampler. The first one uses the sample mean as auxiliary statistic and

hence is exactly identified. The second uses two auxiliary statistics: the sample mean and

the sample variance. For the AR-ABC, we draw from the prior ten million times and keep

the ten thousand nearest draws. This corresponds to a value of δ = 0.0135. For the RS, we

draw one million times7 and keep the ten thousand nearest draws which corresponds to a

δ = 0.0001. As for the weight matrix W, if we put W11 > 0 and zero elsewhere, we will re-

cover the exactly identified distribution. Here, we intentionally put a positive weight on

the variance (which is not a sufficient statistic) to check the effect on the posterior mean.

With W11 = 1/5 and W22 = 4/5, the RS posterior means are 0.7452 and 0.7456 for the just

and overidentifed cases. The corresponding values are are 0.7456 and .7474 for the exact

posterior and the ABC-AR. They are very similar.

Example 5: ARMA(1,1): For t = 1, . . . , T = 200 and θ0 = (α0, θ0, σ0) = (0.5, 0.5, 1.0), the

data are generated as

yt = αyt−1 + εt + θεt−1, εt ∼ N (0, σ2).

Least squares estimation of the auxiliary model

yt = φ1yt−1 + φ2yt−2 + φ3yt−3 + φ4yt−4 + ut

yields L = 5 > K = 3 auxiliary parameters

ψ̂ = (φ̂1, φ̂2, φ̂3, φ̂4, σ̂2
u).

We let π(α, θ, σ) = Iα,θ∈[−1,1],σ≥0 and W = I5 which is inefficient. In this example, ψ̂ are

not sufficient statistics since yt has an infinite order autoregressive representation.

We draw σ from a uniform distribution on [0, 3] since U[0,∞] is not a proper density.

The weights of the RS are obtained by numerical differentiation. The likelihood based

posterior is computed by MCMC using the Kalman Filter with initial condition ε0 = 0. As

mentioned above, the desired number of draws is obtained by setting the quantile instead

of setting the tolerance δ. For the RS, we keep the 1/10=10% closest draws corresponding

7This means that we solve the optimization problem one million times. Given that the optimization
problem is one dimensional, the one dimensional R optimization routine optimize is used. It performs a
combination of the golden section with parabolic interpolations. The optimum is found, up to a given
tolerance level (the default is 10−4), over the interval [0, 10].
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to a δ = 0.0007. The Sequential Monte-Carlo implementation of ABC (SMC-ABC) is more

efficient at targeting the posterior than the ABC-AR. Hence we also compare the RS with

SMC-ABC as implemented in the Easy-ABC package of Lenormand et al. (2013).8 The

requirement for 10,000 posterior draws are as follows:

AR-ABC SMC-ABC RS Likelihood

Computation Time (hours) 63 25 5 0.1

Effective number of draws 100,000,000 36,805,000 10,153,108

δ 0.0132 0.0283 0.0007

The difference, both in terms of computation time and number of model simulations, is

notable. As shown in figure 2.4 the quality of the approximation is also different, es-

pecially for α and σ. The difference can be traced to δ. The δ used for the SMC-ABC

is effectively much larger than for the RS. A better approximation requires a smaller δ

which implies longer computational time. Alternatively stated, the acceptance rate at a

low value of δ is very low. The caveat is that the speed gain is possible only if the op-

timization problem can be solved in a few iterations and reasonably fast. In practice,

there will be a trade-off between the number of draws and the number of iterations in the

optimization step as we further explore below.

2.4 Acceptance Rate

The RS was initially developed in Forneron & Ng (2018) as a framework to help under-

stand frequentist (SMD) and the Bayesian (ABC) way of likelihood-free estimation. But

it turns out that the RS has one computation advantage that is worth highlighting. The

issue pertains to the low acceptance rate of the ABC.

As noted above, the ABC exactly recovers the posterior distribution associated with

the infeasible likelihood if ψ̂ are sufficient statistics and δ = 0 as noted in Blum (2010). Of

course, δ = 0 is an event of measure zero, and the ABC has an approximation bias that

depends on δ. In theory, a small δ is desired. The ABC needs a large number of draws to

accurately approximate the posterior and can be computationally costly.

8We implemented the SMC-ABC in two ways. First, we use the procedure inVo et al. (2015) using code
generously provided by Christopher Drovandi. We also use the Easy-ABC package in R of Lenormand
et al. (2013). We thank an anonymous referee for this suggestion.
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To illustrate this point, consider estimating the mean m in Example 3 with σ2 = 1 as-

sumed to be known, and π(m) ∝ 1. All computations are based on the software package

R. From a previous draw mb, a random walk step gives m? = mb + ε, ε ∼ N (0, 1). For

small δ, we can assume m?|m̂ ∼ N (m̂, 1/T). From a simulated sample of T observations,

we get an estimated mean m̂? ∼ N (m?, 1/T). As is typical of MCMC chains, these draws

are serially correlated. To see that the algorithm can be stuck for a long time if m∗ is far

from m̂, observe that the event m̂? ∈ [m̂− δ, m̂ + δ] occurs with probability

P(m̂? ∈ [m̂− δ, m̂+ δ]) = Φ
(√

T(m̂ + δ−m?)
)
−Φ

(√
T(m̂− δ−m?)

)
≈ 2
√

Tδφ
(√

T(m̂−m?)
)

.

The acceptance probability
∫

m∗ P(m̂? ∈ [m̂− δ, m̂ + δ])dm∗ is thus approximately linear

in δ. To keep the number of accepted draws constant, we need to increase the number of

draws as we decrease δ.

This result that the acceptance rate is linear in δ also applies in the general case. As-

sume that ψ̂?(θ?) ∼ N (ψ(θ?), Σ/T). We keep the draw if ‖ψ̂ − ψ̂?(θ?)‖ ≤ δ. The

probability of this event can be bounded above by ∑K
j=1 P

(
|ψ̂j − ψ̂?

j (θ
?)| ≤ δ

)
i.e.:

K

∑
j=1

Φ

(√
T

σj

(
ψ̂j + δ−ψj(θ

?)
))
−Φ

(√
T

σj

(
ψ̂j − δ−ψj(θ

?)
))
≈ 2
√

Tδ
K

∑
j=1

φ

σj

(√
T

σj

(
ψ̂j −ψj(θ

?)
))

.

The acceptance probability is still at best linear in δ. In general we need to increase the

number of draws at least as much as δ declines to keep the number of accepted draws

fixed.

Table 2.2: Acceptance Probability as a function of δ

δ 10 1 0.1 0.01 0.001

P(‖ψ̂ − ψ̂b‖W ≤ δ) 0.72171 0.16876 0.00182 0.00002 <0.00001

Table 2.2 shows the acceptance rate for Example 3 for θ0 = (m0, σ2
0 ) = (0, 2), T =

20, and weighting matrix W = diag(σ̂2, 2σ̂4)/T, π(m, σ2) ∝ Iσ2≥0. The results confirm

that for small values of δ, the acceptance rate is approximately linear in δ. Even though

in theory, the targeted ABC posterior should be closer to the true posterior when δ is

small, this may not be true in practice because of the poor properties of the MCMC chain.

At least for this example, the MCMC chain with moderate value of δ provides a better

approximation to the true posterior density.

To overcome the low acceptance rate issue, Beaumont et al. (2009) suggests to use

local regression techniques to approximate δ = 0 without setting it equal to zero. The
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convergence rate is then non-parametric. Gao & Hong (2014) analyzes the estimator of

Creel & Kristensen (2013) and finds that to compensate for the large variance associated

with the kernel smoothing, the number of simulations need to be larger than TK/2 to

achieve
√

T convergence, where K is the number of regressors. Other methods that aim

to increase the acceptance rate include the ABC-SMC algorithm of Sisson et al. (2007);

Sisson & Fan (2011), as well as the adaptive weighting variant due to Bonassi & West

(2015), referred to below as SMC-AW. These methods build a sequence of proposals to

more efficiently target the posterior. The acceptance rate still declines rapidly with δ,

however.

The RS circumvents this problem because each θb is accepted by virtue of being the so-

lution of an optimization problem, and hence ψ̂− ψ̂b(θb) is the smallest possible. In fact,

in the exactly identified case, δ = Jb
1 = 0. Furthermore, the sequence of optimizers are

independent, and the sampler cannot be stuck. We use two more examples to highlight

this feature.

Example 6: Mixture Distribution Consider the example in Sisson et al. (2007), also con-

sidered in Bonassi & West (2015). Let π(θ) ∝ 1θ∈[−10,10] and

x|θ ∼ 1/2N (θ, 1) + 1/2N (θ, 1/100)

Suppose we observe one draw x = 0. Then the true posterior is θ|x ∼ 1/2N (0, 1) +

1/2N (0, 1/100) truncated to [−10, 10]. As in Sisson et al. (2007) and Bonassi & West

(2015), we choose three tolerance levels: (2, 0.5, 0.025) for AR-ABC. Figure 2.5 shows that

the ABC posterior distributions computed using accept-reject sampling with δ = 0.025

are similar to the ones using SMC with and without adaptive weighting. The RS posterior

distribution is close to both ABC-SMC and ABC-SMC-AW, and all similar to Figure 3

reported in Bonassi & West (2015). However, they are quite different from the AR-ABC

with δ = 2 and 0.5 are 2, showing that the choice of δ is important in ABC.

While the SMC, RS, and ABC-AR sampling schemes can produce similar posterior

distributions, Table 2.3 shows that their computational time differ dramatically. The two

SMC algorithms need to sample from a multinomial distribution which are evidently

more time consuming. When δ = 0.25, the AR-ABC posterior distribution is close to the

ones produced by the SMC samplers and the RS, but the computational cost is still high.

The AR-ABC is computationally efficient when δ is large, but as seen from Figure 2.5, the

posterior distribution is quite poorly approximated. The RS takes 0.0017 seconds to solve,

which is amazingly fast because for this example, the solution is available analytically.
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No optimization is involved, and there is no need to evaluate the Jacobian because the

model is linear. Of course, in cases when the SMD problem is numerically challenging,

numerical optimization can be time consuming as well. Our results nonetheless suggest

a role for optimization in Bayesian computation; they need not be mutually exclusive.

Combining the ideas is an interesting topic for future research.

Table 2.3: Computation Time (in seconds)

RS ABC-AR ABC-SMC

δ=2 δ=.5 δ=.025 Sisson et-al Bonassi-West

.0017 0.4973 1.6353 33.8136 190.1510 199.1510

Example 7: Precautionary Savings The foregoing examples are simple and are serve

illustrative purposes. We now consider an example that indeed has an infeasible like-

lihood. In Deaton (1991), agents maximize expected utility E0
(
∑∞

t=0 βtu(ct)
)

subject to

the constraint that assets at+1 = (1 + r)(at + yt − ct) are bounded below by zero, where

r is interest rate, y is income and c consumption. The desire for precautionary saving

interacts with borrowing constraints to generate a policy function that is not everywhere

concave, but is a piecewise linear when cash-on-hand is below an endogenous threshold.

The policy function can only be solved numerically at assumed parameter values. SMD

estimation thus consists of solving the model and simulating S auxiliary statistics at each

guess θ. Michaelides & Ng (2000) evaluate the finite sample properties of several SMD

estimators using a model with similar features. Since the likelihood for this model is not

available analytically, Bayesian estimation of this model has not been implemented. Here,

we use the RS to approximate the posterior distribution.

We generate T = 400 observations assuming that U(c) = c1−γ−1
1−γ , yt ∼ iid N (µ, σ2)

with r = 0.05, β = 10/11, µ = 100, σ = 10, γ = 2 as true values. We estimate θ = (γ, µ, σ)

and assume (β, r) are known. We use 10 auxiliary statistics:

ψ̂ =

(
y Γ̂yy(0) Γ̂aa(0) Γ̂cc(0) Γ̂cc(1) Γ̂aa(1) Γ̂cc(2) Γ̂aa(2) Γ̂cy(0) Γ̂ay(0)

)′
where Γ̂ab(j) = 1

T ∑T
t=1(at − a)(bt−j − b). We generate B = 13, 423 draws and keep the

3, 356 (25%) nearest draws to ψ̂. After weighting using the volume of the Jacobian matrix

we have an effective sample size of 1, 421 draws.9 We use an identity weighting matrix

9The effective sample size is computed as 1/ ∑B
b=1 w2

b where the weights satisfy ∑B
b=1 wb = 1.
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so JRS(θ) = g(θ)′g(θ). The Jacobian is computed using finite differences for the RS. As

benchmark, we also compute an SMD with S = 100, JS = gS(θ)
′gS(θ). In this exercise,

the SMD only needs to solve for the policy function once at each step of the optimization.

Hence the binding function can be approximated using simulated data at a low cost. For

this example, the programs are coded in PYTHON. The Nelder-Mead method is used for

optimization.

Table 2.4: Deaton Model: RS, SMD with W = I

Posterior Mean/Estimate Posterior SD/SE

γ µ σ γ µ σ

RS 1.86 99.92 10.48 0.19 0.84 0.37

SMD 1.76 99.38 10.31 0.12 0.60 0.34

Figure 2.6 shows the posterior distribution of the RS (blue) along with the SMD distri-

bution (purple) as approximated by N (θ̂SMD, V̂SMD/T) according to asymptotic theory.

Table 2.4 shows that the two sets of point estimates are similar. As explained in Forneron

& Ng (2018), the SMD uses simulations to approximate the binding function while the

RS (and by implication the ABC) uses simulations to approximate the infeasible posterior

distribution. In this example, the difference in bias is quite small. We should note that

the RS took well over a day to solve while the SMD took less than three hours to com-

pute. Whether we use our own code for the ABC-MCMC or from available packages, the

acceptance rate is too low for the exercise to be feasible.

2.5 Conclusion

This paper studies properties of the reverse sampler considered in Forneron & Ng (2018)

for likelihood-free estimation. The sampler produce draws from the infeasible posterior

distribution by solving a sequence of frequentist SMD problems. We showed that the

reverse sampler uses the Jacobian matrix as importance ratio. In the over-identified case,

the importance ratio can be computed using the volume of the Jacobian matrix. The

reverse sampler does not suffer from the problem of low acceptance rate that makes the

ABC computationally demanding.
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Figure 2.1: Normally Distributed data
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Figure 2.2: The Importance Weights in RS
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Figure 2.3: Exponential Distribution
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Figure 2.4: ARMA Model
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Figure 2.5: Mixture Distribution

0.0

0.5

1.0

1.5

2.0

−2 0 2
value

Po
st

er
io

r d
en

si
ty

RS Accept Reject − tol =  2 Accept Reject − tol =  0.5 Accept Reject − tol =  0.025 SMC SMC_AW

Figure 2.6: Deaton Model: RS and SMD
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Chapter 3

A Sieve-SMM Estimator for Dynamic

Models
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3.1 Introduction

Complex nonlinear dynamic models with an intractable likelihood or moments are in-

creasingly common in economics. A popular approach to estimating these models is to

match informative sample moments with simulated moments from a fully parameterized

model using SMM. However, economic models are rarely fully parametric since theory

usually provides little guidance on the distribution of the shocks. The Gaussian distri-

bution is often used in applications but in practice, different choices of distribution may

have different economic implications; this is illustrated below. Yet to address this issue,

results on semiparametric simulation-based estimation are few.

This paper proposes a Sieve Simulated Method of Moments (Sieve-SMM) estimator

for both the structural parameters and the distribution of the shocks and explains how to

implement it. The dynamic models considered here have the form:

yt = gobs(yt−1, xt,θ, f , ut) (3.1)

ut = glatent(ut−1,θ, f , et), et ∼ f (3.2)

The observed outcome variable is yt, xt are exogenous regressors and ut is an unob-

served latent process. The unknown parameters include θ, a finite dimensional vector,

and the distribution f of the shocks et. The functions gobs, glatent are known, or can be

computed numerically, up to θ and f . The Sieve-SMM estimator extends the existing

Sieve-GMM literature to more general dynamics with latent variables and the literature

on sieve simulation-based estimation of some static models.

The estimator in this paper has two main building blocks: the first one is a sample mo-

ment function, such as the empirical characteristic function (CF) or the empirical CDF;

infinite dimensional moments are needed to identify the infinite dimensional parame-

ters. As in the finite dimensional case, the estimator simply matches the sample moment

function with the simulated moment function. To handle this continuum of moment con-

ditions, this paper adopts the objective function of Carrasco & Florens (2000); Carrasco

et al. (2007a) in a semi-nonparametric setting.

The second building block is to nonparametrically approximate the distribution of the

shocks using the method of sieves, as numerical optimization over an infinite dimen-

sion space is generally not feasible. Typical sieve bases include polynomials and splines

which approximate smooth regression functions. Mixtures are particularly attractive to

approximate densities for three reasons: they are computationally cheap to simulate from,

they are known to have good approximation properties for smooth densities, and draws
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from the mixture sieve are shown to satisfy the L2-smoothness regularity conditions of

the moments required for the asymptotic results. Restrictions on the number of mixture

components, the tails and the smoothness of the true density ensure that the bias is small

relative to the variance so that valid inferences can be made in large samples. To handle

potentially fat tails, this paper introduces a Gaussian and tails mixture. The tail densities

in the mixture are constructed to be easy to simulate from and also satisfy L2-smoothness

properties. The algorithm below summarizes the steps required to compute the estimator.

ALGORITHM: Computing the Sieve-SMM Estimator

Set a sieve dimension k(n) ≥ 1 and a number of lags L ≥ 1.
Compute ψ̂n, the Characteristic Function (CF) of (yt, . . . , yt−L, xt, . . . , xt−L).
for s = 1, . . . , S do

Simulate the shocks es
t from fω,µ,σ: a k(n) component Gaussian and tails mixture

distribution with parameters (ω, µ, σ).
Simulate artificial samples (ys

1, . . . , ys
n) at (θ, fω,µ,σ) using es

t .
Compute ψ̂s

n(θ, fω,µ,σ), the CF of the simulated data (ys
t , . . . , ys

t−L, xt, . . . , xt−L).

Compute the average simulated Characteristic Function ψ̂S
n(θ, fω,µ,σ) =

1
S ∑S

s=1 ψ̂
s
n(θ, fω,µ,σ).

Compute the objective function Q̂S
n(θ, fω,µ,σ) =

∫ ∣∣∣ψ̂n(τ)− ψ̂S
n(θ, fω,µ,σ)

∣∣∣2 π(τ)dτ.

Find the parameters (θ̂n, ω̂n, µ̂n, σ̂n) that minimize Q̂S
n.

To illustrate the class of models considered and the usefulness of the mixture sieve for

economic analysis, consider the first empirical application in section 3.6 where the growth

rate of consumption ∆ct = log(Ct/Ct−1) is assumed to follow the following process:

∆ct = µc + ρc∆ct−1 + σtet,1, et,1 ∼ f (3.3)

σ2
t = µσ + ρσσ2

t−1 + κσet,2, et,2 ∼ χ2
1. (3.4)

Compared to the general model (3.1)-(3.2), the ∆ct corresponds to the outcome yt, the

latent variable ut is (σ2
t , et,1) and the parameters are θ = (µc, ρc, µσ, ρσ, κσ). This very

simple model, with a flexible distribution f for the shocks et,1, can explain the low level of

the risk-free rate with a simple power utility and recent monthly data. In comparison, the

Long-Run Risks models relies on more complex dynamics and recursive utilities (Bansal

& Yaron, 2004) and the Rare Disasters literature involves hard to quantify very large, low

frequency shocks (Rietz, 1988; Barro, 2006b). Empirically, the Sieve-SMM estimates of

distribution of f in the model (3.3)-(3.4) implies both a 25% larger higher welfare cost

of business cycle fluctuations and an annualized risk-free rate that is up to 4 percentage
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points lower than predicted by Gaussian shocks. Also, in this example the risk-free rate

is tractable, up to a quadrature over σt+1, when using Gaussian mixtures:

rmixt
t = − log(δ) + γµc + γρc∆ct − log

(
k

∑
j=1

ωjEt

[
e−γσt+1µj+

γ2
2 σ2

t+1[σ
2
j −1]

])
.

In comparison, for a general distribution the risk-free rate depends on all moments but

does not necessarily have closed form. The mixture thus combines flexible econometric

estimation with convenient economic modelling.1

As in the usual sieve literature, this paper provides a consistency result and derives

the rate of convergence of the structural and infinite dimensional parameters, as well

as asymptotic normality results for finite dimensional functionals of these parameters.

While the results apply to both static and dynamic models alike, two important differ-

ences arise in dynamic models compared to the existing literature on sieve estimation:

proving uniform convergence of the objective function and controlling the dynamic ac-

cumulation of the nonparametric approximation bias.

The first challenge is to establish the rate of convergence of the objective function for

dynamic models. To allow for the general dynamics (3.1)-(3.2) with latent variables, this

paper adapts results from Andrews & Pollard (1994) and Ben Hariz (2005) to construct

an inequality for uniformly bounded empirical processes which may be of independent

interest. It allows the simulated data to be non-stationary when the initial (y0, u0) is not

taken from the ergodic distribution. It requires a geometric ergodicity condition as in

Duffie & Singleton (1993). The boundedness condition is satisfied by the CF and the CDF

for instance. Also, the inequality implies a larger variance than typically found in the

literature.2

The second challenge is that in the model (3.1)-(3.2) the nonparametric bias accumu-

lates dynamically. At each time period the bias appears because draws are taken from a

mixture approximation instead of the true f0, this bias is also transmitted from one pe-

riod to the next since (ys
t , us

t) depends on (ys
t−1, us

t−1). To ensure that this bias does not

accumulate too much, a decay condition is imposed on the DGP. For the consumption

process (3.3)-(3.4), this condition holds if both |ρc| and |ρσ| are strictly less than 1. The

1Gaussian mixtures are also convenient in more complicated settings where the model needs to be
solved numerically. For instance, all the moments of a Gaussian mixture are tractable and quadrature is
easy so that it can be applied to both the perturbation method and the projection method (see e.g. Judd,
1996, for a review of these methods) instead of the more commonly applied Gaussian distribution.

2See Chen (2007, 2011) for a summary of existing results with iid and dependent data.
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resulting bias is generally larger than in static models and usual sieve estimation prob-

lems. Together, the increased variance and bias imply a slower rate of convergence for

the Sieve-SMM estimates. Hence, in order to achieve the rate of convergence required for

asymptotic normality, the Sieve-SMM requires additional smoothness of the true density

f0.

Monte-Carlo simulations illustrate the properties of the estimator and the effect of

dynamics on the bias and the variance of the estimator. Two empirical applications high-

light the importance of estimating the distribution of the shocks. The first is the example

discussed above, and the second estimates a different stochastic volatility model on a

long daily series of exchange rate data. The Sieve-SMM estimator suggests significant

asymmetry and fat tails in the shocks, even after controlling for the time-varying volatil-

ity. As a result, commonly used parametric estimates for the persistence are significantly

downward biased which has implications for forecasting; this effect is confirmed by the

Monte-Carlo simulations.

Related Literature

The Sieve-SMM estimator presented in this paper combines two literatures: sieves and

the Simulated Method of Moments (SMM). This section reviews the existing methods

and results in each literature to introduce the new challenges arising from the combined

Sieve-SMM setting.

A key aspect to simulation-based estimation is the choice of moments ψ̂n. The Simu-

lated Method of Moments (SMM) estimator of McFadden (1989) relies on unconditional

moments, the Indirect Inference (IND) estimator of Gouriéroux et al. (1993) uses auxliary

parameters from a simpler, tractable model and the Efficient Method of Moments (EMM)

of Gallant & Tauchen (1996) uses the score of the auxiliary model. Simulation-based es-

timation has been applied to a wide array of economic settings: early empirical appli-

cations of these methods include the estimation of discrete choice models (Pakes, 1986;

Rust, 1987), DSGE models (Smith, 1993) and models with occasionally binding constraints

(Deaton & Laroque, 1992). More recent empirical applications include the estimation of

earning dynamics (Altonji et al., 2013), of labor supply (Blundell et al., 2016) and the

distribution of firm sizes (Gourio & Roys, 2014). Simulation-based estimation can also

applied to models that are not fully specified as in Berry et al. (1995), these models are

not considered in the Sieve-SMM estimation.

To achieve parametric efficiency a number of papers consider using nonparametric
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moments but they assumed the distribution f is known.3 To avoid dealing with the

nonparametric rate of convergence of the moments Carrasco et al. (2007a) use the con-

tinuum of moments implied by the CF. This paper uses a similar approach in a semi-

nonparametric setting. Bernton et al. (2017) use the Wasserstein, or Kantorovich distance,

between the empirical and simulated distributions. This distance relies on unbounded

moments and is thus excluded from the analysis in this paper.

General asymptotic results are given by Pakes & Pollard (1989) for SMM with iid data

and Lee & Ingram (1991); Duffie & Singleton (1993) for time-series. Gouriéroux & Monfort

(1996) provide an overview of existing results for a large number of simulation-based

estimation methods.

While most of the literature discussed so far deals with fully parametric SMM models,

there are a few papers concerned with sieve simulation-based estimation. Bierens & Song

(2012) provide a consistency result for Sieve-SMM estimation of a static first-price auction

model.4 Newey (2001) uses a sieve simulated IV estimator for a measurement error model

and proves consistency as both n and S go to infinity. These papers only consider specific

static models and only provide limited asymptotic results. Furthermore, they consider

sampling methods for the simulations that are very computationally costly (see section

3.2 for a discussion). Additionally, an incomplete working paper by Blasques (2011) uses

the high-level conditions in Chen (2007) for a ”Semi-NonParametric Indirect Inference”

estimator. These conditions are very difficult to verify in practice and additional results

are needed to handle the dynamics.5

An alternative to using sieves in SMM estimation involves using more general para-

metric families to model the first 3 or 4 moments flexibly. Ruge-Murcia (2012, 2017)

considers the skew Normal and the Generalized Extreme Value distributions to model

the first 3 moments of productivity and inflation shocks. Gospodinov & Ng (2015);

Gospodinov et al. (2017) use the Generalized Lambda famility to flexibly model the first

4 moments of the shocks in a non-invertible moving avergage and a measurement error

3See e.g. Gallant & Tauchen (1996); Fermanian & Salanié (2004); Kristensen & Shin (2012); Gach &
Pötscher (2010); Nickl & Pötscher (2011).

4In order to do inference on f , they propose to invert a simulated version of Bierens (1990)’s ICM test
statistic. A recent working paper by Bierens & Song (2017) introduces covariates in the same auction model
and gives an asymptotic normality result for the coefficients θ̂n on the covariates.

5Also, to avoid using sieves and SMM in moment conditions models that are tractable up to a latent
variable, Schennach (2014) proposes an Entropic Latent Variable Integration via Simulation (ELVIS) method
to build estimating equations that only involve the observed variables. Dridi & Renault (2000) propose a
Semi-Parametric Indirect Inference based on a partial encompassing principle.
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model. However, in applications where the moments depend on the full distribution of

the shocks, which is the case if the data yt is non-separable in the shocks et, then the esti-

mates θ̂n will be sensitive to the choice of parametric family. Also, quantities of interest

such as welfare estimates and asset prices that depend on the full distribution will also

be sensitive to the choice of parametric family.

Another related literature is the sieve estimation of models defined by moment con-

ditions. These models can be estimated using either Sieve-GMM, Sieve Empirical Like-

lihood or Sieve Minimum Distance (see Chen, 2007, for a review). Applications include

nonparametric estimation of mean instrumental variables regressions6, of quantile instru-

mental variables regressions,7 and the semi-nonparametric estimation of asset pricing

models,8 for instance. Existing results cover the consistency and the rate of convergence

of the estimator as well as asymptotic normality of functional of the parameters for both

iid and dependent data. Recent general asymptotic results include Chen & Pouzo (2012,

2015) for iid data and Chen & Liao (2015) for dependent data.

In the empirical Sieve-GMM literature, an application closely related to the dynam-

ics encountered in this paper appears in Chen et al. (2013). The authors show how to

estimate an Euler equation with recursive preferences when the value function is ap-

proximated using sieves. Recursive preferences require a filtering step to recover the

latent variable. This implies that the moments depend on the whole history of the data

(yt, . . . , y1). However, general results based on coupling results (see e.g. Doukhan et al.,

1995; Chen & Shen, 1998) do not apply to this class of moments. The authors use a Boot-

strap for inference without formal asymptotic results.

Notation

The following notation and assumptions will be used throughout the paper: the param-

eter of interest is β = (θ, f ) ∈ Θ × F = B. The finite dimensional parameter space Θ

is compact and the infinite dimensional set of densities F is possibly non-compact. The

sets of mixtures satisfy Bk ⊆ Bk+1 ⊆ B, k is the data dependent dimension of the sieve

set Bk. The dimension k increases with the sample size: k(n) → ∞ as n → ∞. Using the

notation of Chen (2007), Πk(n) f is the mixture approximation of the density f . The vector

6See e.g. Hall & Horowitz (2005); Carrasco et al. (2007b); Blundell et al. (2007); Darolles et al. (2011);
Horowitz (2011).

7See e.g. Chernozhukov & Hansen (2005); Chernozhukov et al. (2007); Horowitz & Lee (2007).
8See e.g. Hansen & Richard (1987); Chen & Ludvigson (2009); Chen et al. (2013); Christensen (2017).
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of shocks e has dimension de ≥ 1 and density f . The total variation distance between

two densities is ‖ f1− f2‖TV = 1/2
∫
| f1(e)− f2(e)|de and the supremum (or sup) norm is

‖ f1− f2‖∞ = supe∈Rde | f1(e)− f2(e)|. For simplification, the following convention will be

used ‖β1 − β2‖TV = ‖θ1 − θ2‖+ ‖ f1 − f2‖TV and ‖β1 − β2‖∞ = ‖θ1 − θ2‖+ ‖ f1 − f2‖∞,

where ‖θ‖ and ‖e‖ correspond the Euclidian norm of θ and e respectively. ‖β1‖m is a

norm on the mixture components: β1‖m = ‖θ‖ + ‖(ω, µ, σ)‖ where ‖ · ‖ is the Euclid-

ian norm and (ω, µ, σ) are the mixture parameters. For a functional φ, its pathwise, or

Gâteau, derivative at β1 in the direction β2 is dφ(β1)
dβ [β2] =

dφ(β1+εβ2)
dε

∣∣∣
ε=0

, it will be as-

sumed to be continuous in β1 and linear in β2. For two sequences an and bn, the relation

an � bn implies that there exists 0 < c1 ≤ c2 < ∞ such that c1an ≤ bn ≤ c2an for all n ≥ 1.

Structure of the Paper

The paper is organized as follows: Section 3.2 introduces the Sieve-SMM estimator, ex-

plains how to implement it in practice and provides important properties of the mixture

sieve. Section 3.3 gives the main asymptotic results: under regularity conditions, the esti-

mator is consistent. Its rate of convergence is derived, and under further conditions, finite

dimensional functionals of the estimates are asymptotically normal. Section 3.4 provides

two extensions, one to include auxiliary variables in the CF and another to allow for dy-

namic panels with small T. Section 3.5 provides Monte-Carlo simulations to illustrate

the theoretical results. Section 3.6 gives empirical examples for the estimator. Section

3.7 concludes. Appendix 3.7 gives some information about the CF and details on how to

compute the estimator in practice. Appendix 3.7 provides the proofs to the main results.

Appendix 3.7 provides results for more general moment functions and sieve bases and

Appendix 3.7 which provides the proofs for these results.

3.2 The Sieve-SMM Estimator

This section introduces the notation used in the remainder of the paper. It describes the

class of DGPs considered in the paper and describes the DGP of the leading example in

more details. It discusses the choice of mixture sieve, moments and objective function

as well as some important properties of the mixture sieve. The running example used

throughout the analysis is based on the empirical applications of section 3.6.
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Example 1 (Stochastic Volatility Models). In both empirical applications, yt follows an AR(1)

process with log-normal stochastic volatility

yt = µy + ρyyt−1 + σtet,1.

The first empirical application estimates a linear volatility process:

σ2
t = µσ + ρσσ2

t−1 + κσet,2

where et,2 ∼ χ2
1. The second empirical application estimates a log-normal stochastic volatility

process:

log(σt) = µσ + ρσ log(σt−1) + κσet,2.

where et,2
iid∼ N (0, 1). In both applications et,1

iid∼ f with the restrictions E(et,1) = 0 and

E(e2
t,1) = 1. The first application approximates f with a mixture of Gaussian distributions, the

second adds two tail components to model potential fat tails.

Stochastic volatility (SV) models in Example 1 are intractable because of the latent

volatility. With log-normal volatility, the model becomes tractable after taking the trans-

formation log([yt− µy− ρyyt−1]
2) (see e.g. Kim et al., 1998) and the problem can be cast as

a deconvolution problem (Comte, 2004). However, the transformation removes all the in-

formation about asymmetries in f , which turn out to empirically significant (see section

3.6). In the parametric case, alternatives to using the transformation involve Bayesian

simulation-based estimators such as the Particle Filter and Gibbs sampling or EMM for

frequentist estimation.

Sieve Basis - Gaussian and Tails Mixture

The following definition introduces the Gaussian and tails mixture sieve that will be used

in the paper. It combines a simple Gaussian mixture with two tails densities which model

asymmetric fat tails parametrically. Drawing from this mixture is computationally sim-

ple: draw uniforms and gaussian random variables, switch between the Gaussians and

the tails depending on the uniform and the mixture weights ω. The tail draws are a

simple function of uniform random variables.

Definition 1 (Gaussian and Tails Mixture). A random variable e follows a k component Gaus-

sian and Tails mixture if its density has the form:

fω,µ,σ(e) =
k

∑
j=1

ωj

σj
φ(

e− µj

σj
) +

ωk+1

σk+1
1e≤µk+1 fL

(
e− µk+1

σk+1

)
+

ωk+2

σk+2
1e≥µk+2 fR

(
e− µk+2

σk+2

)
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where φ is the standard Gaussian density and its left and right tail components are

fL(e, ξL) = (2 + ξL)
|e|1+ξL

[1 + |e|2+ξL ]2
for e ≤ 0, fR(e, ξR) = (2 + ξR)

e1+ξR

[1 + e2+ξR ]2
for e ≥ 0

with fL(e, ξL) = 0 for e ≥ 0 and fR(e, ξL) = 0 for e ≤ 0. To simulate from the Gaussian and tails

mixture, draw Z1, . . . , Zk
iid∼ N (0, 1), ν, νL, νR

iid∼ U[0,1] and compute Zk+1 = −
(

1
νL
− 1
) 1

2+ξL

and Zk+2 =
(

1
νR
− 1
) 1

2+ξR . Then, for ω0 = 0:

e =
k+2

∑
j=1

1
ν∈[∑j−1

l=0 ωl ,∑
j
l=0 ωl ]

(
µj + σjZj

)
follows the Gaussian and tails mixture fω,µ,σ.

For application where fat tails are deemed unlikely, as in the first empirical applica-

tion, the weights ωk+1, ωk+2 can be set to zero to use a Gaussian mixture. If ωk+1
σk+1
6= 0 and

ωk+2
σk+2
6= 0 then the left and right tails satisfy:

fL(e)
e→−∞∼ |e|−3−ξL , fR(e)

e→+∞∼ e−3−ξR .

If ξL, ξR ≥ 0 then draws from the tail components have finite expectation, they also have

finite variance if ξL, ξR ≥ 1. More generally, for the j-th moment to be finite, j ≥ 1,

ξL, ξR ≥ j is necessary. Gallant & Nychka (1987) also add a parametric component to

model fat tails by using a mixture of a Hermite polynomial with a Student density. How-

ever, neither the Hermite polynomial nor the Student t-distribution have closed-form

quantiles, which is not practical for simulation. Here, the densities fL, fR are constructed

to be easy to simulated from.

The indicator function 1
νs

t∈[∑
j−1
l=0 ωl , ∑

j
l=0 ωl ]

introduces discontinuities in the parameter

ω. Standard derivative-free optimization routines such as the Nelder-Mead algorithm

(Nelder & Mead, 1965) as implemented in the NLopt library of Johnson (2014) can handle

this estimation problem as illustrated in section 3.5.9

In the finite mixture literature, mixture components are known to be difficult to iden-

tify because of possible label switching and the likelihood is globally unbounded.10 Using

the characteristic function rather than the likelihood resolves the unbounded likelihood

9The NLopt library is available for C++, Fortran, Julia, Matlab, Python and R among others.
10See e.g. McLachlan & Peel (2000) for a review of estimation, identification and applications of finite

mixtures. See also Chen et al. (2014b) for some recent results.
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problem as discussed in Yu (1998). More importantly, the object of interest in this paper is

the mixture density fω,µ,σ itself rather than the mixture components. As a result, permu-

tations of the mixture components are not a concern, since they do not affect the resulting

mixture density fω,µ,σ.

Moments - Empirical Characteristic Function and Objective Function

As in the parametric case, the moments need to be informative enough to identify the

parameters. In Sieve-SMM estimation, the parameter β = (θ, f ) is infinite dimensional

so that no finite dimensional vector of moments could possibly identify β. As a result,

this paper relies on moment functions which are themselves infinite dimensional.

The leading choice of moment function in this paper is the empirical characteristic

function for the joint vector of lagged observations (yt, xt) = (yt, . . . , yt−L, xt, . . . , xt−L):

ψ̂n(τ) =
1
n

n

∑
t=1

eiτ′(yt,xt), ∀τ ∈ Rdτ

where i is the imaginary number such that i2 = −1.11 The CF is one-to-one with the

joint distribution of (yt, xt), so that the model is identified by ψ̂n(·) if and only if the dis-

tribution of (yt, xt) identifies the true β0. Using lagged variables allows to identify the

dynamics in the data. Knight & Yu (2002) show how the characteristic function can iden-

tify parametric dynamic models. Some useful properties of the CF are given in Appendix

3.7.

Besides the CF, another choice of bounded moment function is the CDF. While the

CF is a smooth transformation of the data, the empirical CDF has discontinuities at each

point of support of the data (yt, xt) which could make numerical optimization more chal-

lenging. Also, the CF around τ = 0 summarizes the information about the tails of the

distribution (see Ushakov, 1999, page 30). This information is thus easier to extract from

the CF than the CDF. The main results of this paper can be extended to any bounded

moment function satisfying a Lipschitz condition.12

Since the moments are infinite dimensional, this paper adopts the objective function

of Carrasco & Florens (2000); Carrasco et al. (2007a) to handle the continuum of moment

11The moments can also be expressed in terms of sines and cosines since eiτ′(yt ,xt) = cos(τ′(yt, xt)) +
isin(τ′(yt, xt)).

12Appendix 3.7 allows for more general non-Lipschitz moment functions and other sieve bases. How-
ever, the conditions required for these results are more difficult to check.
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conditions:13

Q̂S
n(β) =

∫ ∣∣∣ψ̂n(τ)− ψ̂S
n(τ, β)

∣∣∣2 π(τ)dτ. (3.5)

The objective function is a weighted average of the square norm between the empirical

ψ̂n and the simulated ψ̂S
n moment functions. As discussed in Carrasco & Florens (2000)

and Carrasco et al. (2007a), using the continuum of moments avoids the problem of con-

structing an increasing vector of moments. The weighting density π is chosen to be the

multivariate normal density for the main results. Other choices for π are possible as long

as it has full support and is such that
∫ √

π(τ)dτ < ∞. As an example, the exponen-

tial distribution satisfies these two conditions, while the Cauchy distribution does not

satisfy the second. In practice, choosing π to be the Gaussian density with same mean

and variance as (yt, xt) gave satisfying results in sections 3.5 and 3.6.14 In the appendix,

the results allow for a bounded linear operator B which plays the role of the weight ma-

trix W in SMM and GMM as in Carrasco & Florens (2000). Carrasco & Florens (2000);

Carrasco et al. (2007a) provide theoretical results for choosing and approximating the op-

timal operator B in the parametric setting. Similar work is left to future research in this

semi-nonparametric setting.

Given the sieve basis, the moments and the objective function, the estimator β̂n =

(θ̂n, f̂n) is defined as an approximate minimizer of Q̂S
n:

Q̂S
n(β̂n) ≤ diagβ∈Bk(n)

Q̂S
n(β) + Op(ηn) (3.6)

where ηn ≥ 0 and ηn = o(1) corresponds to numerical optimization and integration

errors. Indeed, since the integral in (3.5) needs to be evaluated numerically, some form

of numerical integration is required. Quadrature and sparse quadrature were found to

give satisfying results when dim(τ) is not too large (less than 4). For larger dimensions,

quasi-Monte-Carlo integration using either the Halton or Sobol sequence gave satisfying

results.15 All Monte-Carlo simulations and empirical results in this paper are based on

quasi-Monte-Carlo integration. Additional details on the computation of the objective

function are given in Appendix 3.7.

13Carrasco & Florens (2000) provide a general theory for GMM estimation with a continuum of moment
conditions. They show how to efficiently weight the continuum of moments and propose a Tikhonov
(ridge) regularization approach to invert the singular variance-covariance operator. Earlier results, without
optimal weighting, include Koul (1986) for minimum distance estimation with a continuum of moments.

14Monte-Carlo experiments not reported in this paper showed similar results when using the exponen-
tial density for π instead of the Gaussian density.

15See e.g. Heiss & Winschel (2008); Holtz (2011) for an introduction to sparse quadrature in economics
and finance, and Owen (2003) for quasi-Monte-Carlo sampling.
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Approximation and L2-Smoothness Properties of the Mixture Sieve

This subsection provides more details on the approximation and Lp-smoothness proper-

ties of the mixture sieve. It also provides the necessary restrictions on the true density f0

to be estimated. Gaussian mixtures can approximate any smooth univariate density but

the rate of this approximation depends on both the smoothness and the tails of the density

(see e.g. Kruijer et al., 2010). The tail densities parametrically model asymmetric fat tails

in the density. This is useful in the second empirical example since a thin tail assumption

may not hold for exchange rate data. The following lemma extends the approximation

results of Kruijer et al. (2010) to a multivariate density with independent components and

potentially fat tails.

Lemma 2 (Approximation Properties of the Gaussian and Tails Mixture). Suppose that the

shocks e = (et,1, . . . , et,de) are independent with density f = f1 × · · · × fde . Suppose that each

marginal f j can be decomposed into a smooth density f j,S and the two tails fL, fR of Definition 1:

f j = (1−ωj,1 −ωj,2) f j,S + ωj,1 fL + ωj,2 fR.

Let each f j,S satisfy the assumptions of Kruijer et al. (2010):

i. Smoothness: f j,S is r-times continuously differentiable with bounded r-th derivative.

ii. Tails: f j,S has exponential tails, i.e. there exists e, M f , a, b > 0 such that:

f j,S(e) ≤ M f e−a|e|b , ∀|e| ≥ e.

iii. Monotonicity in the Tails: f j,S is strictly positive and there exists e < e such that f j,S is

weakly decreasing on (−∞, e] and weakly increasing on [e, ∞).

and ‖ f j‖∞ ≤ f for all j. Then there exists a Gaussian and tails mixture Πk f = Πk f1 × · · · ×
Πk fde satisfying the restrictions of Kruijer et al. (2010):

iv. Bandwidth: σj ≥ σk = O(
log[k]2/b

k ).

v. Location Parameter Bounds: µj ∈ [−µk, µk] with µk = O
(
log[k]1/b)

such that as k→ ∞:

‖ f −Πk f ‖F = O

(
log[k]2r/b

kr

)

where ‖ · ‖F = ‖ · ‖TV or ‖ · ‖∞.
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The space of true densities satisfying the assumptions will be denoted as F and Fk is

the corresponding space of Gaussian and tails mixtures Πk f .

Note that additional restrictions on f may be required for identification, such as mean

zero, unit variance or symmetry. The assumption that the shocks are independent is not

too strong for structural models where this, or a parametric factor structure is typically

assumed. Note that under this assumption, there is no curse of dimensionality because

the components f j can be approximated separately. Also, the restriction ‖ f j‖∞ ≤ f is only

required for the approximation in supremum norm ‖ · ‖∞.

An important difficulty which arises in simulating from a nonparametric density is

that draws are a very nonlinear transformation of the nonparametric density f . As a

result, standard regularity conditions such as Hölder and Lp-smoothness are difficult to

verify and may only hold under restrictive conditions. The following discusses these

regularity conditions for the methods used in the previous literature and provides a Lp-

smoothness result the mixture sieve (Lemma 3 below).

Bierens & Song (2012) use Inversion Sampling: they compute the CDF Fk from the

nonparametric density and draw F−1
k (νs

t ), νs
t

iid∼ U[0,1]. Computing the CDF and its inverse

to simulate is very computationally demanding. Also, while the CDF is linear in the

density, its inverse is a highly non-linear transformation of the density. Hence, Hölder

and Lp-smoothness results for the draws are much more challenging to prove without

further restrictions.

Newey (2001) uses Importance Sampling for which Hölder conditions are easily ver-

ified but requires S → ∞ for consistency alone. Furthermore, the choice of importance

distribution is very important for the finite sample properties (the effective sample size)

of the simulated moments. In practice, the importance distribution should give suffi-

cient weight to regions for which the nonparametric density has more weight. Since the

nonparametric density is unknown ex-ante, this is hard to achieve in practice.

Gallant & Tauchen (1993) use Accept/Reject (outside of an estimation setting): how-

ever, it is not practical for simulation-based estimation. Indeed, the required number

of draws to generate an accepted draw depends on both the instrumental density and

the target density fω,µ,σ. The latter varies with the parameters during the optimization.

This also makes the Lp-smoothnes properties challenging to establish. In comparison, the

following lemma shows that the required L2-smoothness condition is satisfied by draws

from a mixture sieve.
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Lemma 3 (L2-Smoothness of Simulated Mixture Sieves). Suppose that

es
t =

k(n)

∑
j=1

1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

(
µj + σjZs

t,j

)
, ẽs

t =
k(n)

∑
j=1

1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

(
µ̃j + σ̃jZs

t,j

)
with |µj| and |µ̃j| ≤ µk(n), |σj| and |σ̃j| ≤ σ. If E(|Zs

t,j|2) ≤ C2
Z < ∞ then there exists a finite

constant C which only depends on CZ such that:[
E

(
sup‖ fω,µ,σ− fω̃,µ̃,σ̃‖m≤δ

∣∣∣es
t − ẽs

t

∣∣∣2)]1/2

≤ C
(

1 + µk(n) + σ + k(n)
)

δ1/2.

Lemma 3 is key in proving the L2-smoothness conditions of the moments ψ̂s
n required

to establish the convergence rate of the objective function and stochastic equicontinu-

ity results. Here, the Lp-smoothness constant depends on both the bound µk(n) and the

number of mixture components k(n).16 Kruijer et al. (2010) showed that both the total

variation and supremum norms are bounded above by the pseudo-norm ‖ · ‖m on the

mixture parameters (ω, µ, σ) up to a factor which depends on the bandwidth σk(n). As a

result, the pseudo-norm ‖ · ‖m controls the distance between densities and the simulated

draws as well. Furthermore, draws from the tail components are shown in the appendix

to be L2-smooth in their tail parameters ξL, ξR. Hence, draws from the Gaussian and tails

mixture are L2-smooth in both (ω, µ, σ) and ξ.

3.3 Asymptotic Properties of the Estimator

This section provides conditions under which the Sieve-SMM estimator in (3.6) is consis-

tent. Its rate of convergence is derived and an asymptotic normality result for functionals

of β̂n is given.

Consistency

Consistency results are given under low-level conditions on the DGP using the Gaussian

and tails mixture sieve with the CF.17 First, the population objective Qn is:

Qn(β) =
∫ ∣∣∣E(ψ̂n(τ)− ψ̂S

n(τ, β)
) ∣∣∣2π(τ)dτ. (3.7)

16See e.g. Andrews (1994); Chen et al. (2003) for examples of Lp-smooth functions.
17Consistency results allowing for non-mixture sieves and other moments are given in Appendix 3.7.
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The objective depends on n because (ys
t , xt) are not covariance stationary: the moments

can depend on t. Under geometric ergodicity, it has a well-defined limit:18

Qn(β)
n→∞→ Q(β) =

∫ ∣∣∣ lim
n→∞

E
(
ψ̂n(τ)− ψ̂S

n(τ, β)
) ∣∣∣2π(τ)dτ.

In the definition of the objective Qn and its limit Q, the expectation is taken over both the

data (yt, xt) and the simulated samples (ys
t , xt). The following assumption, provide a set

of sufficient conditions on the true density f0, the sieve space and a first set of conditions

on the model (identification and time-series properties) to prove consistency.

Assumption 1 (Sieve, Identification, Dependence). Suppose the following conditions hold:

i. (Sieve Space) the true density f0 and the mixture sieve space Fk(n) satisfy the assumptions

of Lemma 2 with k(n)4 log[k(n)]4/n → 0 as k(n) and n → ∞. Θ is compact and 1 ≤
ξL, ξR ≤ ξ < ∞.

ii. (Identification) limn→∞ E
(
ψ̂n(τ)− ψ̂s

n(τ, β)
)
= 0, π a.s. ⇔ ‖β− β0‖B = 0 where π

is the Gaussian density. For any n, k ≥ 1 and for all ε > 0, diagβ∈Bk, ‖β−β0‖B≥εQn(β) is

strictly positive and weakly decreasing in both n and k.

iii. (Dependence) (yt, xt) is strictly stationary and α-mixing with exponential decay, the simu-

lated (ys
t(β), xt) are geometrically ergodic, uniformly in β ∈ B.

Condition i. is stronger than the usual condition k(n)/n → 0 in the sieve literature

(see e.g Chen, 2007). The additional log[k(n)] term is due to the mixture being a non-

linear sieve basis and the fourth power is due to the dependence. Indeed, the inequal-

ity in Lemma .0.4 implies that the variance is of order k(n)2 log[k(n)]2/
√

n instead of√
k(n) log[k(n)]/n for iid data.

Condition ii. is the usual identification condition. It is assumed that the informa-

tion from the joint distribution of (yt, xt) = (yt, . . . , yt−L, xt, . . . , xt−L) uniquely identifies

β = (θ, f ). Proving general global identification results is quite challenging in this setting

and is left to future research. Local identification in the sense of Chen et al. (2014a) is also

challenging to prove here because the dynamics imply that the distribution of (ys
t , xt, us

t)

is a convolution of f with the distribution of (ys
t−1, xt, us

t−1). Since the stationary distribu-

tions of (ys
t , xt, us

t) and (ys
t−1, xt, us

t−1) are the same, the resulting distribution is the fixed

point of its convolution with f . This makes derivatives with respect to f difficult to com-

pute in many dynamic models. Note that the identification assumption does not exclude

18Since the CF is bounded, the dominated convergence theorem can be used to prove the existence of
the limit.
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ill-posedness.19 The space F is assumed to include the necessary restrictions (if any) for

identification such as mean zero and unit variance. Global identification results for the

stochastic volatility model in Example 1 are given in Appendix 3.7.

Condition iii. is common in SMM estimation with dependent data (see e.g. Duffie &

Singleton, 1993). In this setting, it implies two important features: the simulated (ys
t , xt)

are α-mixing (Liebscher, 2005), and the initial condition bias is negligible: Qn(β0) =

O(1/n2).20

Assumption 2 (Data Generating Process). ys
t is simulated according to the dynamic model

(3.1)-(3.2) where gobs and glatent satisfy the following Hölder conditions for some γ ∈ (0, 1]:

y(i). ‖gobs(y1, x, β, u)− gobs(y2, x, β, u)‖ ≤ C1(x, u)‖y1 − y2‖ with E
(
C1(xt, us

t)
2|ys

t−1
)
≤

C1 < 1.

y(ii). ‖gobs(y, x, β1, u)− gobs(y, x, β2, u)‖ ≤ C2(y, x, u)‖β1− β2‖γ
B with E

(
C(ys

t , xt, us
t)

2) ≤
C2 < ∞.

y(iii). ‖gobs(y, x, β, u1) − gobs(y, x, β, u2)‖ ≤ C3(y, x)‖u1 − u2‖γ with E
(
C3(ys

t , xt)2|us
t
)
≤

C3 < ∞.

u(i). ‖glatent(u1, β, e)− glatent(u2, β, e)‖ ≤ C4(e)‖u1 − u2‖ with E
(
C4(es

t)
2) ≤ C4 < 1.

u(ii). ‖glatent(u, β1, e) − glatent(u, β2, e)‖ ≤ C5(u, e)‖β1 − β2‖γ
B with E

(
C5(us

t−1, es
t)

2) ≤
C5 < ∞.

u(iii). ‖glatent(u, β, e1)− glatent(u, β, e2)‖ ≤ C6(u)‖e1 − e2‖ with E
(
C6(us

t−1)
2) ≤ C6 < ∞.

for any (β1, β2) ∈ B, (y1, y2) ∈ Rdim(y), (u1, u2) ∈ Rdim(u) and (e1, e2) ∈ Rdim(e). The norm

‖ · ‖B is either the total variation or supremum norm.

Conditions y(ii), u(ii) correspond to the usual Hölder conditions in GMM and M-

estimation but placed on the DGP itself rather than the moments. Since the cosine and

sine functions are Lipschitz, it implies that the moments are Hölder continuous as well.21

The decay conditions y(i), u(i) together with condition y(iii) ensure that the differences

due to ‖β1 − β2‖B do not accumulate too much with the dynamics. As a result, keeping

the shocks fixed, the Hölder condition applies to (ys
t , us

t) as a whole. It also implies that

19See e.g. Carrasco et al. (2007b) and Horowitz (2014) for a review of ill-posedness in economics.
20See Proposition .0.4 in the supplemental material for the second result.
21For any choice of moments that preserve identification and are Lipschitz, the main results will hold

assuming ‖τ‖∞
√

π(τ) and
∫ √

π(τ)dτ are bounded. For both the Gaussian and the exponential density,
these quantities turn out to be bounded. In general Lispchitz transformations preserve Lp-smoothness
properties (see e.g. Andrews, 1994; van der Vaart & Wellner, 1996), here additional conditions on π are
required to handle the continuum of moments with unbounded support.
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the nonparametric approximation bias ‖β0 −Πk(n)β0‖B does not accumulate too much.

These conditions are similar to the L2-Unit Circle condition which Duffie & Singleton

(1993) suggest as an stronger alternative to geometric ergodicity in a uniform LLN and

a CLT. The decay conditions play a more important role here since they are needed to

control the nonparametric bias of the estimator.

Condition u(iii) ensures that the DGP preserves the L2-smoothness properties derived

for mixture draws in Lemma 3. This condition does not appear in the usual sieve lit-

erature which does not simulate from a nonparametric density. In the SMM literature,

a Lipschitz or Hölder condition is usually given on the moments directly. Note that a

condition analogous to u(iii) would also be required for parametric SMM estimation of a

parametric distribution.

Assumption 2 does not impose that the DGP be smooth. This allows for kinks in gobs

or glatent as in the sample selection model or the models of Deaton (1991) and Deaton

& Laroque (1992). Assumption 2′ in Appendix 3.7 extends Assumption 2 to allow for

possible discontinuities in gobs, glatent. The following shows how to verify the conditions

of Assumption 2 in Example 1 with χ2
1 volatility shocks.22

Example 1 (Continued) (Stochastic Volatility). If |ρy| < 1 then assumption y(i) is satisfied.

Also:

|µy,1 + ρy,1yt−1 − µy,2 − ρy,2yt−1| ≤ (|µy,1 − µy,2|+ |ρy,1 − ρy,2|)(1 + |yt−1|)

and thus condition y(ii) is satisfied assuming E(y2
t−1) is bounded. Since f has mean zero and unit

variance, E(y2
t−1) is bounded if |µσ| ≤ µσ < ∞, |ρσ| ≤ ρσ < 1 and κσ ≤ κσ < ∞ for some

µσ, ρσ, κσ. For condition y(iii), take ut = (σ2
t , et,1) and ũt = (σ̃2

t , ẽt,1):

|σtet,1 − σ̃tet,1| ≤ |et,1|
√
|σ2

t − σ̃2
t |, |σtet,1 − σt ẽt,1| ≤ σt|et,1 − ẽt,1|.

The first inequality is due to the Hölder continuity of the square-root function.23 σt and ẽt,1 are

independent, E(σ2
t ) is bounded above under the previous parameter bounds and E(e2

t,1) = 1

and so condition y(iii) holds term by term. If the volatility σ2
t is bounded below by a strictly

positive constant for all paramater values then the Hölder continuity y(iii) can be strengthened to

a Lipschitz continuity result. Given that σ2
t follows an AR(1) process, assumptions u(i), u(ii) and

u(iii) are satisfied.

22Some additional examples are given in Appendix 3.7. They are not tied to the use of mixtures, and as
a result, impose stronger restrictions on the density f such as bounded support.

23For any two x, y ≥ 0, |
√

x−√y| ≤
√
|x2 − y2|.
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The Hölder coefficient in conditions y(ii), y(iii) and u(ii) is assumed to be the same

to simplify notation. If they were denoted γ1, γ2 and γ3, in order of appearance, then

the rate of convergence would depend on min(γ1, γ2γ3) instead of γ2. This could lead

to sharper rates of convergence in section 3.3 and weaker condition for the stochastic

equicontinuity result in section 3.3. As shown above, in Example 1 the Hölder coefficients

are γ1 = γ3 = 1, γ2 = 1/2 when σt does not have a strictly positive lower bound.

Lemma 4 (Assumption 2/2′ implies L2-Smoothness of the Moments). Under either As-

sumption 2 or 2′, if the assumptions of Lemma 3 hold and π is the Gaussian density, then there

exists C > 0 such that for all δ > 0, uniformly in t ≥ 1, (β1, β2) ∈ Bk(n) and τ ∈ Rdτ :

E

(
sup‖β1−β2‖m≤δ

∣∣∣eiτ′(ys
t(β1),xt) − eiτ′(ys

t(β2),xt)
∣∣∣2√π(τ)

)
≤ C max

 δγ2

σ
2γ2

k(n)

, [k(n) + µk(n) + σ]γδγ2/2


where ‖β‖m = ‖θ‖+ ‖(ω, µ, σ)‖ is the pseudo-norm on θ and the mixture parameters (ω, µ, σ)

from Lemma 3. Also, since π is the Gaussian density the integral
∫ √

π(τ)dτ is finite.

Lemma 4 gives the first implication of Assumption 2. It shows that the moments ψ̂s
t

are L2-smooth, uniformly in t ≥ 1. The L2-smoothness factor depends on the bounds

of the sieve components. In the SMM and sieve literatures, the Lp-smoothness constant

depends on neither k nor n by assumption. Here, drawing from the mixture distribution

implies that the constant will increase with the sample size n. The rate at which it in-

creases is implied by the assumptions of Lemma 2.24 Furthermore, because the index τ

has unbounded support, the L2-smoothness result involves the weights via
√

π. Without

π, the L2-smoothness result may not hold uniformly in τ ∈ Rdτ .

Lemma 5 (Nonparametric Approximation Bias). Suppose Assumptions 1 and 2 (or 2′) hold.

Furthermore suppose that E
(
‖ys

t‖2) and E
(
‖us

t‖2) are bounded for β = β0 and β = Πk(n)β0

for all k(n) ≥ 1, t ≥ 1 then:

Qn(Πk(n)β0) = O

(
max

[
log[k(n)]4r/b+2

k(n)2r ,
log[k(n)]4γ2r/b

k(n)2γ2r
,

1
n2

])
= O

(
log[k(n)]4r/b+2

k(n)2γ2r

)

where Πk(n)β0 is the mixture sieve approximation of β0, γ the Hölder coefficient in Assumption

2, b and r are the exponential tail index and the smoothness of the density fS in Lemma 2.

24 Under the assumption of Lemma 2: σ
−2γ2

k(n) = O
(

k(n)2γ2
/ log[(n)]4γ2/b

)
and [k(n) + µk(n) + σ]γ =

O (k(n)γ). As a result, the maximum term is bounded above by max
(

k(n)2γ2
, k(n)γ

)
δγ2/2 (up to a con-

stant).
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Lemma 5 gives the second implication of Assumption 2; it computes the value of the

objective function Qn at Πk(n)β0, which is directly related to the bias of the estimator

β̂n. Two terms are particularly important for the rate of convergence: the smoothness of

the true density r and the roughness of the DGP as measured by the Hölder coefficient

γ ∈ (0, 1]. If r and γ are larger then the bias will be smaller. The rate in this lemma is

different from the usual rate found in the sieve literature. Chen & Pouzo (2012) assume

for instance that Qn(Πk(n)β0) � ‖β0 −Πk(n)β0‖2
B. In comparison, the rate derived here

is:

Qn(Πk(n)β0) � max
(
‖β0 −Πk(n)β0‖2

B log
(
‖β0 −Πk(n)β0‖B

)2
, ‖β0 −Πk(n)β0‖2γ2

B , 1/n2
)

with ‖β0 − Πk(n)β0‖B = O(log[k(n)]2r/b/k(n)r) as given in Lemma 2. The 1/n2 term

corresponds to the bias due to the nonstationarity, its order is implied by the geometric er-

godicity condition and the boundedness of the moments. The log-bias term log
(
‖β0 −Πk(n)β0‖B

)
is due to the dynamics: ys

t depends on the full history (es
t , . . . , es

1) which are iid Πk(n) f0, so

that the bias accumulates. The decay conditions y(i), y(iii), u(i) ensure that the resulting

bias accumulation only inflates bias by a log term. The term ‖β0 −Πk(n)β0‖2γ2

B is due to

the Hölder smoothness of the DGP. If the DGP is Lipschitz, i.e. γ = 1, and the model is

static then the rate becomes Qn(Πk(n)β0) � ‖β0 −Πk(n)β0‖2
B, which is the rate assumed

in Chen & Pouzo (2012).

Theorem 1 (Consistency). Suppose Assumptions 1 and 2 (or 2′) hold. Suppose that β→ Qn(β)

is continuous on (Bk(n), ‖ · ‖B) and the numerical optimization and integration errors are such

that ηn = o(1/n). If for all ε > 0 the following holds:

max

(
log[k(n)]4r/b+2

k(n)2γ2r
,

k(n)4 log[k(n)]4

n
,

1
n2

)
= o

(
diagβ∈Bk(n),‖β−β0‖B≥εQn(β)

)
(3.8)

where r is the assumed smoothness of the smooth component fS and b its exponential tail index.

Then the Sieve-SMM estimator is consistent:

‖β̂n − β0‖B = op(1).

Theorem 1 is a consequence of the general consistency lemma in Chen & Pouzo (2012)

reproduced as Lemma .0.1 in the appendix. They provide high level conditions which

Assumption 2 together with Lemmas 4 and 5 verify for simulation-based estimation of

static and dynamic models. Condition (3.8) in Theorem 1 allows for ill-posedness but
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requires the minimum to be well separated on the sieve space relative to the bias and the

variance.

The variance term k(n)4 log[k(n)]4/n is derived using the inequality in Lemma .0.4

which is adapted from existing results of Andrews & Pollard (1994); Ben Hariz (2005).

It is based on the moment inequalities for α-mixing sequences of Rio (2000) rather than

coupling results (see e.g. Doukhan et al., 1995; Chen & Shen, 1998; Dedecker & Louhichi,

2002). This implies that the moments can be nonstationary, because of the initial con-

dition, and depend on arbitrarily many lags as in Example 1 where ys
t is a function of

es
t , . . . , e1

t . It also allows for filtering procedures as in the first extension of the main re-

sults. The two main drawbacks of this inequality is that it requires uniformly bounded

moments and implies a larger variance than, for instance, in the iid case. The bounded-

ness restricts the class of moments used in Sieve-SMM and the larger variance implies a

slower rate of convergence.

Rate of Convergence

Once the consistency of the estimator is established, the next step is to derive its rate

of convergence. It is particularly important to derive rates that are as sharp as possible

since a rate of a least n−1/4 under the weak norm of Ai & Chen (2003) is required for the

asymptotic normality results. This weak norm is introduced below for the continuum of

complex valued moments. It is related to the objective function Qn, and as such allows

to derive the rate of convergence of β̂n.25 Ultimately, the norm of interest in the strong

norm ‖ · ‖B which is generally not equivalent to the weak norm since the space is infinite

dimensional. The two are related by the local measure of ill-posedness of Blundell et al.

(2007) which allows to derive the rate of convergence in the strong norm, that is in either

the total variation or the supremum norm.

Assumption 3 (Weak Norm and Local Properties). Let Bosn = Bk(n) ∩ {‖β− β0‖B ≤ ε}
for ε > 0 small and for (β1, β2) ∈ Bosn:

‖β1 − β2‖weak =

∫ ∣∣∣dE
(
ψ̂S

n(τ, β0)
)

dβ
[β1 − β2]

∣∣∣2π(τ)dτ

1/2

(3.9)

25For a discussion see Ai & Chen (2003) and Chen (2007).
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is the weak norm of β1 − β2. Suppose that there exists Cw > 0 such that for all β ∈ Bosn:

Cw‖β− β0‖2
weak ≤

∫ ∣∣∣E(ψ̂S
n(τ, β0)− ψ̂S

n(τ, β)
) ∣∣∣2π(τ)dτ. (3.10)

Assumption 3 adapts the weak norm of Ai & Chen (2003) to an objective with a con-

tinuum of complex-valued moments. Note that
∫
|E
(
ψ̂S

n(τ, β0)− ψ̂S
n(τ, β)

)
|2π(τ)dτ =

Qn(β0) + Op(1/n2) under geometric ergodicity. As a result, Assumption 3 implies that

the weak norm is Lipschitz continuous with respect to
√

Qn. Additional assumptions

on the norm and the objective are usually required such as: Qn(β) � ‖β− β0‖2
weak and

Qn(β) ≤ CB‖β− β0‖B (see e.g. Chen & Pouzo, 2015, Assumption 3.4). Instead of these

assumptions, the results in this paper rely on Lemma 5 to derive the bias of the estimator.

The resulting bias is larger than in the usual sieve literature.

Theorem 2 (Rate of Convergence). Suppose that the assumptions for Theorem 1 hold and As-

sumption 3 also holds.The convergence rate in weak norm is:

‖β̂n − β0‖weak = Op

(
max

(
log[k(n)]r/b+1

k(n)γ2r
,

k(n)2 log[k(n)]2√
n

))
. (3.11)

The convergence rate in either the total variation or supremum norm ‖ · ‖B is:

‖β̂n − β0‖B = Op

(
log[k(n)]r/b

k(n)r + τB,n max

(
log[k(n)]r/b+1

k(n)γ2r
,

k(n)2 log[k(n)]2√
n

))
where τB,n is the local measure of ill-posedness of Blundell et al. (2007):

τB,n = supβ∈Bosn, ‖β−Πk(n)β0‖weak 6=0
‖β−Πk(n)β0‖B
‖β−Πk(n)β0‖weak

.

As usual in the (semi)-nonparametric estimation literature, the rate of convergence

involves a bias/variance trade-off. As discussed before, the bias is larger than usual be-

cause of the dynamics and involves the Hölder smoothness γ of the DGP.

The variance term is of order k(n)2 log[k(n)]2/
√

n instead of
√

k(n)/
√

n in the iid case

or strictly stationary case with fixed number of lags in the moments. This is because the

inequality in Lemma .0.4 is more conservative than the inequalities found in Theorem

2.14.2 of van der Vaart & Wellner (1996) for iid observations or the inequalities based on

a coupling argument in Doukhan et al. (1995); Chen & Shen (1998) for strictly stationary

dependent data. However, in this simulation-based setting the dependence properties

of ys
t varies on θ over the parameter space Θ so that a coupling approach may not ap-

ply unless it only depends on finitely many lags of et and xt. Determining whether this

inequality can be sharpened in subject to future research.
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The increased bias and variance imply a slower rate of convergence than usual. The

optimal rate of convergence equates the bias and variance terms in equation (3.11). This

is achieved (up to a log term) by picking k(n) = O(n
1

2(2+γ2r) ). To illustrate, for a Lipschitz

DGP γ = 1 and f0 twice continuously differentiable r = 2 and k(n) � n1/8, the rate of

convergence becomes:

‖β̂n − β0‖weak = Op(n−1/4 log(n)max(2/b+1,2)).

In comparison, if (ys
t , xt) were iid, keeping γ = 1 and r = 2, the variance term would be√

k(n) log[k(n)]/n and the optimal k(n) � n1/5. The rate of convergence becomes:

‖β̂n − β0‖weak = Op

(
n−2/5 log(n)max(2/b+1,2)

)
.

To achieve a rate faster than n−1/4, as required for asymptotic normality, the smooth-

ness of the true density f0 must satisfy r ≥ 3/γ2 where γ is the Hölder coefficient in

Assumption 2. In the Lipschitz case, γ = 1, at 3 derivatives are needed compared to 12

derivatives when γ = 1/2. In comparison, in the iid case 2 and 8 derivatives are needed

for γ = 1 and γ = 1/2 respectively.

The following corollary shows that the number of simulated samples S can signifi-

cantly reduce the sieve variance. This changes the bias-variance trade-off and improves

the rate of convergence in the weak norm.

Corollary 1 (Number of Simulated Samples S and the Rate of Convergence). If a long

sample (ys
1, . . . , ys

nS) can be simulated then the variance term becomes:

min
(

k(n)2 log[n]2√
n× S

,
1√
n

)
.

As a result, for S(n) � k(n)4 log[k(n)]4 the rate of convergence in weak norm is:

‖β̂n − β0‖weak = Op

(
max

(
log[k(n)]r/b+1

k(n)γ2r
,

1√
n

))
.

And the rate of convergence in either the total variation or the supremum norm is:

‖β̂n − β0‖B = Op

(
log[k(n)]r/b

k(n)r + τB,n max

(
log[k(n)]r/b+1

k(n)γ2r
,

1√
n

))

where τB,n is the local measure of ill-posedness in Theorem 2.
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The assumption that a long sample can be simulated is called the ECA assumption in

Kristensen & Salanié (2017); it is more commonly found in dynamic models than cross-

sectional or panel data models. In the parametric SMM and Indirect Inference literature,

S has an effect on the asymptotic variance whereas in the Sieve-SMM setting, Corollary 1

shows that increasing S with the sample size n can also improve the rate of convergence

in the weak norm. Assuming undersmoothing so that the rate in weak norm is of order

1/
√

n, the rate of convergence in the stronger norm ‖ · ‖B becomes Op(k(n)−r + τB,n/
√

n),

up to a log term. This is faster than the rates of convergence found in the literature.

In practice, the number of simulated sample S(n) required to achieve the rate in Corol-

lary 1 can be very large. For n = 1, 000, γ = 1 and r = 2, the optimal k(n) ' 5 and

S(n) = k(n)4 ' 625. The total number of simulated ys
t required is n× S(n) = 625, 000.

For iid data, the required number of simulations is n × S(n) = 5, 000. As a result, im-

proving the rate of convergence of the estimator can be computationally costly since it

involves increasing both the number of samples to simulate and the number of parame-

ters to be estimate.

Remark 1 (An Illustration of the Local Measure of Ill-Posedness). The sieve measure of ill-

posedness is generally difficult to compute. To illustrate a source of ill-posedness and its order of

magnitude, consider the following basic static model:

ys
t = es

t
iid∼ f .

The only parameter to be estimated is the density f which can also be approximated with kernel

density estimates. For this model the characteristic function is linear in f and as a consequence

the weak norm for f1 − f2 is the weighted difference of the CFs ψ f1 ,ψ f1 for f1, f2:

‖ f1 − f2‖weak =

[∫
|ψ f1(τ)−ψ f2(τ)|

2π(τ)dτ

]1/2

.

The weak norm is bounded above by 2 for any two densities f1, f2. However, the total variation

and supremum distances are not bounded above: as a result the ratio between the weak norm and

these stronger norms is unbounded. To illustrate, simplify the problem further and assume there

is only one mixture component:

f1,k(n)(e) = σ−1
k(n)φ

(
e

σk(n)

)
, f2,k(n)(e) = σ−1

k(n)φ

(
e− µk(n)

σk(n)

)
.

As the bandwidth σk(n) → 0, the two densities approach Dirac masses. Unless µk(n) → 0,

the total variation and supremum distances between the two densities go to infinity while the
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distance in weak norm is bounded. The distance between f1 and f2 in weak, total-variation and

supremum norm are given in Appendix 3.7. For a well chosen sequence µk(n), the total variation

and supremum distances are bounded above and below while the weak norm goes to zero. The ratio

provides the local measures of ill-posedness:

τTV,n = O
(

k(n)
log[k(n)]2/b

)
, τ∞,n = O

(
k(n)2

log[k(n)]4/b

)
.

Hence, this simple example suggests that Characteristic Function based Sieve-SMM estimation

problems are at best mildly ill-posed.

Asymptotic Normality

This section derives asymptotic normality results for plug-in estimates φ(β̂n) where φ are

smooth functionals of the parameters. As in Chen & Pouzo (2015), the main result finds

a normalizing sequence rn → ∞ such that:

rn ×
(

φ
(

β̂n

)
− φ (β0)

)
d→ N (0, 1)

where rn =
√

n/σ∗n , for some sequence of standard errors (σ∗n)n≥1 which can go to infinity.

If σ∗n → ∞, the plug-in estimates will converge at a slower than
√

n-rate. In addition,

sufficient conditions for θ̂n to be root-n asymptotically normal, that is limn→∞ σ∗n < ∞,

are given in Appendix 3.7 for the stochastic volatility model of Example 1.

To establish asymptotic normality results, stochastic equicontinuity results are re-

quired. However, the L2-smoothness result only holds in the space of mixtures Bk(n)

with the pseudo-norm ‖ · ‖m on the mixture parameters. This introduces two difficulties

in deriving the results: a rate of convergence for the norm on the mixture components is

required, and since β0 6∈ Bk(n) in general, the rate and the stochastic equicontinuity re-

sults need to be derived around a sequence of mixtures that are close enough to β0 so that

they extend to β0. The following lemma provides the rate of convergence in the mixture

norm.

Lemma 6 (Convergence Rate in Mixture Pseudo-Norm). Let δn = (k(n) log[k(n)])2/
√

n

and Mn = log log(n + 1). Suppose the following undersmoothing assumptions hold:

i. (Rate of Convergence) ‖β̂n − β0‖weak = Op(δn)

ii. (Negligible Bias) ‖Πk(n)β0 − β0‖weak = o(δn).

Furthermore, suppose that the population CF is smooth in β and satisfies:
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iii. (Approximation Rate 1) Uniformly over β ∈ {β ∈ Bosn, ‖β− β0‖weak ≤ Mnδn}:

∫ ∣∣∣dE(ψ̂S
n(τ, β0))

dβ
[β− β0]−

dE(ψ̂S
n(τ, Πk(n)β0))

dβ
[β− β0]

∣∣∣2π(τ)dτ = O(δ2
n).

iv. (Approximation Rate 2) The approximating mixture Πk(n)β0 satisfies:

∫ ∣∣∣dE(ψ̂S
n(τ, Πk(n)β0))

dβ
[Πk(n)β0 − β0]

∣∣∣2π(τ)dτ = O(δ2
n).

Let λn be the smallest eigenvalue of the matrix

∫ dE(ψ̂S
n(τ, Πk(n)β0))

d(θ, ω, µ, σ)

′
dE(ψ̂S

n(τ, Πk(n)β0))

d(θ, ω, µ, σ)
π(τ)dτ.

Suppose that λn > 0 and δnλ−1/2
n = o(1) then the convergence rate in the mixture pseudo-norm

is:

‖β̂n −Πk(n)β0‖m = Op

(
δnλ−1/2

n

)
where ‖β‖m = ‖(θ, ω, µ, σ)‖ is the pseudo-norm on θ and the mixture parameters (ω, µ, σ).

The rate of convergence in mixture norm ‖ · ‖m corresponds to the rate of conver-

gence in the weak norm ‖ · ‖m times a measure of ill-posedness λ−1/2
n . Relations be-

tween the mixture norm and the strong norm ‖ · ‖B imply that the local measure of ill-

posedness in Theorem 2 can be computed using λ−1/2
n . Indeed, results in van der Vaart

& Ghosal (2001); Kruijer et al. (2010) imply that ‖β−Πk(n)β0‖TV ≤ σ−1
k(n)‖β−Πk(n)β0‖m

and ‖β−Πk(n)β0‖∞ ≤ σ−2
k(n)‖β−Πk(n)β0‖m. These inequalities imply upper-bounds for

ill-posedness in total variation and supremum norms:

τTV,n ≤ λ−1/2
n σ−1

k(n) and τ∞,n ≤ λ−1/2
n σ−2

k(n).

The quantity λ−1/2
n can be approximated numerically using sample estimates and σk(n) is

the bandwidth in Lemma 2. As a result, even though the local measure of ill-posedness

from Theorem 2 is generally not tractable, an upper bound can be computed using Lemma

6. Chen & Christensen (2017) shows how to achieve the optimal rate of convergence using

plug-in estimates of the measure of ill-posedness in nonparametric instrumental variable

regression, a similar approach should be applicable here using these bounds. This is left

to future research.
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Lemma 7 (Stochastic Equicontinuity Results). Let δmn = δnλ−1/2
n . Suppose that the assump-

tions of Lemma 6 hold and (Mnδmn)
γ2
2 max(log[k(n)]2, | log[Mnδmn]|2)k(n)2 = o(1), then a

first stochastic equicontinuity result holds:

sup‖β−Πk(n)β0‖m≤Mnδmn

∫ ∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ

= op(1/n).

Also, suppose that β→
∫

E

∣∣∣ψ̂s
t (τ, β0)− ψ̂s

t (τ, β)
∣∣∣2π(τ)dτ is continuous with respect to ‖ · ‖B

at β = β0, uniformly in t ≥ 1, then a second stochastic equicontinuity result holds:

sup‖β−Πk(n)β0‖m≤Mnδmn

∫ ∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)dτ = op(1/n).

Lemma 7 uses the rate of convergence in mixture norm to establish stochastic equicon-

tinuity results. With these results, the moments ψ̂s
n(τ, β)− ψ̂s

n(τ, β0) can be substituted

with a smoothed version under the integral of the objective function.

Remark 2 (Required Rate of Convergence). To achieve the rate of convergence required in

Lemma 7, k(n) must grow at a power of the sample size n, hence: log(n) � log[k(n)] �
| log(δmn)|. As a result, the condition on the rate of convergence in mixture norm

(Mnδmn)
γ2
2 max(log[k(n)]2, | log[Mnδmn]|2)k(n)2 = o(1)

in Lemma 7 can be simplified to:

Mnδn = o

( √
λn

[k(n) log(n)]4/γ2

)
.

The following definition adapts the tools used in the sieve literature to establish asymp-

totic normality of smooth functionals (see e.g. Wong & Severini, 1991; Ai & Chen, 2003;

Chen & Pouzo, 2015; Chen & Liao, 2015) to a continuum of complex valued moments.

Definition 2 (Sieve Representer, Sieve Score, Sieve Variance). Let β0,n be such that ‖β0,n −
β0‖weak = diagβ∈Bosn

‖β − β0‖weak, let Vk(n) be the closed span of Bosn − {β0,n}. The inner

product 〈·, ·〉 of (v1, v2) ∈ Vk(n) is defined as:

〈v1, v2〉 =
1
2

∫ [
ψβ(τ, v1)ψβ(τ, v2) +ψβ(τ, v1)ψβ(τ, v2)

]
π(τ)dτ.

i. The Sieve Representer is the unique vector v∗n ∈ Vk(n) such that ∀v ∈ Vk(n): 〈v∗n, v〉 =
dφ(β0)

dβ [v].
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ii. The Sieve Score S∗n is:

S∗n =
1
2

∫ [
ψβ(τ, v∗n)[ψ̂S

n(τ, β0)− ψ̂n(τ)] +ψβ(τ, v∗n)[ψ̂
S
n(τ, β0)− ψ̂n(τ)]

]
π(τ)dτ

=
∫

Real
(
ψβ(τ, v∗n)[ψ̂S

n(τ, β0)− ψ̂n(τ)]
)

π(τ)dτ.

iii. The Sieve Long Run Variance σ∗n is:

σ∗2n = nE
(

S∗2n

)
= nE

([∫
Real

(
ψβ(τ, v∗n)[ψ̂S

n(τ, β0)− ψ̂n(τ)]
)

π(τ)dτ

]2
)

.

iv. The Scale Sieve Representer u∗n is: u∗n = v∗n/σ∗n .

Assumption 4 (Equivalence Condition). There exists a > 0 such that for all n ≥ 1: a‖v∗n‖weak ≤
σ∗n . Furthermore, suppose that σ∗n does not increase too fast: σ∗n = o(

√
n).

In Sieve-MD literature, Assumption 4 is implied by an eigenvalue condition on the

conditional variance of the moments.26 Because the moments are bounded and the data is

geometrically ergodic, the long-run variance of the moments is bounded above uniformly

in τ.27 However, since τ has unbounded support, the eigenvalues of the variance may

not have a strictly positive lower bound. Assumption 4 plays the role of the lower bound

on the eigenvalues.28

Assumption 5 (Convergence Rate, Smoothness, Bias). Bosn is a convex neighborhood of β0

where

i. (Rate of Convergence) Mnδn = o(n−1/4) and Mnδn = o
(√

λn/ (k(n) log(n))4/γ2)
.

ii. (Smoothness) A linear expansion of φ is locally uniformly valid:

sup‖β−β0‖≤Mnδn

√
n

σ∗n

∣∣∣φ(β)− φ(β0)−
dφ(β0)

dβ
[β− β0]

∣∣∣ = o(1).

A linear expansion of the moments is locally uniformly valid:

sup‖β−β0‖weak≤Mnδn

(∫ ∣∣∣E(ψ̂S
n(τ, β))−E(ψ̂S

n(τ, β0))−
dE(ψ̂S

n(τ, β0))

dβ
[β− β0]

∣∣∣2π(τ)dτ

)1/2

= O
(
(Mnδn)

2
)

.

26See e.g. assumption 3.1(iv) in Chen & Pouzo (2015).
27This is shown in Appendix 3.7.
28A discussion of this assumption is given in Appendix 3.7
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The second derivative is bounded:

sup‖β−β0‖weak≤Mnδn

(∫ ∣∣∣d2E(ψ̂S
n(τ, β0))

dβdβ
[u∗n, u∗n]

∣∣∣2π(τ)dτ

)1/2

= O(1).

iii. (Bias) The approximation bias is negligible:
√

n
σ∗n

dφ(β0)

dβ
[β0,n − β0] = o(1).

Note that if Bosn is a convex neighborhood of β0 then θ0 is in the interior of Θ. As-

sumption 5 is standard in the literature. The first rate condition ensure the nonparametric

component converges fast enough so that the central limit theorem dominates the asymp-

totic distribution (Newey, 1994; Chen et al., 2003), the second rate condition is required in

Lemma 7. The smoothness and bias conditions can also be found in Ai & Chen (2003) and

Chen & Pouzo (2015). The bias condition implies undersmoothing so that the variance

term dominates asymptotically.

Theorem 3 (Asymptotic Normality). Suppose the assumptions of Theorems 1, 2 and lemmas

6, 7 hold as well as Assumptions 4 and 5, then as n goes to infinity:

rn ×
(

φ(β̂n)− φ(β0)
)

d→ N (0, 1)

where rn =
√

n
σ∗n
→ ∞.

Theorem 3 shows that under the previous assumptions, inferences on φ(β0) can be

conducted using the confidence interval [φ(β̂n) ± 1.96 × σ∗n /
√

n]. The standard errors

σ∗n > 0 adjust automatically so that rn =
√

n/σ∗n gives the correct rate of convergence. If

limn→∞ σ∗n < ∞, then φ(β̂n) is
√

n−convergent. A result for θ̂n is given in Proposition .0.1

in the Appendix for a smaller class of models that include the stochastic volatility model

in Example 1.

As in Chen & Pouzo (2015) and Chen & Liao (2015), the sieve variance has a closed-

form expression analogous to the parametric Delta-method formula. The notation is

taken from Chen & Pouzo (2015), with sieve parameters (ω̂n, µ̂n, σ̂n) the sieve variance

can be estimated using:

σ̂2∗
n =

dφ(θ̂n, ω̂n, µ̂n, σ̂n)

d(θ, ω, µ, σ)

′

D̂nf̂nD̂n
dφ(θ̂n, ω̂n, µ̂n, σ̂n)

d(θ, ω, µ, σ)
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where

D̂n =

(
Real

(∫
dψ̂S

n(τ, θ̂n, ω̂n, µ̂n, σ̂n)

d(θ, ω, µ, σ)′
dψ̂S

n(τ, θ̂n, ω̂n, µ̂n, σ̂n)

d(θ, ω, µ, σ)
π(τ)dτ

))−1

f̂n =

∫
Ĝn(τ1)

′Σ̂n(τ1, τ2)Ĝn(τ2)π(τ1)π(τ2)dτ1dτ2.

Ĝn stacks the real and imaginary components of the gradient:

Ĝn(τ) =

 Real
(

dψ̂S
n(τ,θ̂n,ω̂n,µ̂n,σ̂n)

d(θ,ω,µ,σ)

)
Im
(

dψ̂S
n(τ,θ̂n,ω̂n,µ̂n,σ̂n)

d(θ,ω,µ,σ)

)
 .

Let ZS
n(τ, β) = ψ̂n(τ)− ψ̂S

n(τ, β) The covariance operator Σ̂n approximates the popula-

tion long-run covariance operator Σn:

Σn(τ1, τ2) = nE

 Real
(
ZS

n(τ1, β0)
)

Real
(
ZS

n(τ2, β0)
)

Real
(
ZS

n(τ1, β0)
)

Im
(
ZS

n(τ2, β0)
)

Im
(
ZS

n(τ1, β0)
)

Im
(
ZS

n(τ2, β0)
)

Im
(
ZS

n(τ1, β0)
)

Real
(
ZS

n(τ2, β0)
)
 .

Carrasco et al. (2007a) gives results for the Newey-West estimator of Σn. In practice,

applying the block Bootstrap to the quantity

Real

(
dψ̂S

n(τ, θ̂n, ω̂n, µ̂n, σ̂n)

d(θ, ω, µ, σ)

(
ψ̂n(τ)− ψ̂n(τ, β̂n)

))

is more convenient than computing the large matrices Ĝn, Σ̂n. β̂n is held fixed across

Bootstrap iterations so that the model is only estimated once. The Gaussian and uniform

draws Zs
j,t and νs

t are re-drawn at each Bootstrap iteration.

3.4 Extensions

This section considers two extensions to the main results: the first covers auxiliary vari-

ables in the CF and the seconds allows for panel datasets with small T.

Using Auxiliary Variables

The first extension involves adding transformations of the data, such as using simple

functions of yt or a filtered volatility from an auxiliary GARCH model, to the CF ψ̂n. This
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approach can be useful in cases where (yt, ut) is Markovian but yt alone is not, in which

case functions of the full history (yt, . . . , y1) provide additional information about the

unobserved ut. It is used to estimate stochastic volatility models in sections 3.5 and 3.6.

Other potential applications include filtering latent variables from an auxiliary linearized

DSGE model to estimate a more complex, intractable non-linear DSGE model.

The auxiliary model consists of an auxiliary variable zaux
t (the filtered GARCH volatil-

ity) and auxiliary parameters η̂aux
n (the estimated GARCH parameters). The estimates

η̂aux
n are computed from the full sample (y1, . . . , yn, x1, . . . , xn) and the auxiliary variables

zaux
t , zs,aux

t are computed using the full and simulated samples:29

zaux
t = gt,aux(yt, . . . , y1, xt, . . . , x1, η̂aux

n ), zs,aux
t = gt,aux(ys

t , . . . , ys
1, xt, . . . , x1, η̂aux

n ).

The moment function ψ̂n is now the joint CF of the lagged data (yt, xt) and the auxiliary

zaux
t :

ψ̂n(τ, η̂aux
n ) =

n

∑
t=1

eiτ′(yt,xt,zaux
t ), ψ̂s

n(τ, η̂aux
n , β) =

n

∑
t=1

eiτ′(ys
t ,xt,z

s,aux
t ).

The following assumption provides sufficient conditions on the estimates η̂aux
n and the fil-

tering process gt,aux for the asymptotic properties in section 3.3 to also hold with auxiliary

variables.

Assumption 6 (Auxiliary Variables). The estimates η̂aux
n are such that:

i. Compactness: with probability 1 η̂aux
n ∈ E finite dimensional, convex and compact.

ii. Convergence: there exists a ηaux ∈ E such that:

√
n (η̂aux

n − ηaux)
d→ N (0, Vaux).

iii. Lipschitz Continuity: for any two ηaux
1 , ηaux

2 and for both ys
t and yt:

‖gt,aux(yt, . . . , y1, xt, . . . , x1, ηaux
1 )− zt,aux(yt, . . . , y1, xt, . . . , x1, ηaux

2 )‖

≤ Caux(yt, . . . , y1, xt, . . . , x1)× ‖ηaux
1 − ηaux

2 ‖

with E(Caux(yt, . . . , y1, xt, . . . , x1)
2) ≤ Caux

< ∞ and E(Caux(ys
t , . . . , ys

1, xt, . . . , x1)
2) ≤

Caux
< ∞. The average of the Lipschitz constants Caux

n = 1
n ∑n

t=1 Caux(yt, . . . , y1, xt, . . . , x1)

is uniformly stochastically bounded, it is Op(1), for both the data and the simulated data.

29Note that using the same estimates η̂aux
n for filtering the data and the simulated samples avoids the

complication of proving uniform convergence of the auxiliary parameters over the sieve space.
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iv. Dependence: for all ηaux ∈ E, (yt, xt, zaux
t ) is uniformly geometric ergodic.

v. Moments: for all ηaux ∈ E, β = β0 and β = Πk(n)β0, the moments E(‖zaux
t ‖2) and

E(‖zs,aux
t ‖2) exist and are bounded.

vi. Summability: for any (yt, . . . , y1), (ỹt, . . . , ỹ1), any ηaux ∈ E and for all t ≥ 1:

‖gt,aux(yt, . . . , y1, xt, . . . , x1, ηaux)− zt,aux(ỹt, . . . , ỹ1, xt, . . . , x1, ηaux)‖ ≤
t

∑
j=1

ρj‖yj− ỹj‖

with ρj ≥ 0 for all j ≥ 1 and ∑∞
j=1 ρj < ∞.

vii. Central Limit Theorem for the Sieve Score:

√
nReal

(∫
ψβ(τ, u∗n, ηaux)

(
ψ̂n(τ, η̂aux

n )− ψ̂s
n(τ, η̂aux

n , β0)
)

π(τ)dτ

)
d→ N (0, 1)

The summability condition iv. is key in preserving the Hölder continuity and bias

accumulation results of section 3.3 when using auxiliary variables in the CF. For auxiliary

variables generated using the Kalman Filter or a GARCH model, this corresponds to a

stability condition in the Kalman Filter or the GARCH volatility equations.

Conditions ii. and iii. ensure that η̂aux
n is well behaved and does not affect the rate of

convergence. Condition iv implies that the inequality for the supremum of the empirical

process still applies. Condition vii. assumes a CLT applies to the leading term in the

expansion of φ(β̂n) − φ(β0). It could be shown by assuming an expansion of the form

η̂aux
n = 1

n ∑n
t=1 ηaux(yt, xt) + op(1/

√
n) and expanding ψ̂n, ψ̂s

n around the probability limit

ηaux. The following illustrates the Lipschitz and summability conditions for the SV with

GARCH filtered volatility.

Example 1 (Continued) (Stochastic Volatility and GARCH(1,1) Filtered Volatility). For

simplicity, assume there are only volatility dynamics:

yt = σtet,1

For simplicity, consider the absolute value GARCH(1,1) auxiliary model:30

yt = σaux
t et,1, σaux

t = ηaux
1 + ηaux

2 |yt|+ ηaux
3 σaux

t−1.

30The process is also known as the AVGARCH or TS-GARCH (see e.g. Bollerslev, 2010) and is a special
case of the family GARCH model (see e.g. Hentschel, 1995). The method of proof is slightly more involved
for a standard GARCH model, requiring for instance a lower bound on the volatility σaux

t together with
finite and bounded fourth moments for yt, ys

t to prove the Lipschitz condition.
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The focus here is on the Lipschitz and summability conditions in the GARCH auxiliary model.

First, to prove the Lipschitz condition, consider a sequence (yt) and two sets of parameters ηaux, η̃aux,

by recursion:

|σaux
t − σ̃aux

t | = |ηaux
1 − η̃aux

1 + (ηaux
2 − η̃aux

2 )|yt|+ (ηaux
3 − η̃aux

3 )σaux
t−1 + η̃aux

3 (σaux
t−1 − σ̃aux

t−1)|

≤ ‖ηaux − η̃aux‖ × (
1 + σaux

0
1− ηaux

3
+ [1 + ηaux

2 ][|yt|+ · · ·+ (ηaux
3 )t−1|y1|])

ηaux are upper-bounds on the parameters. If E(|yt|2)) and E(|ys
t |2)) are finite and bounded and

0 ≤ ηaux
3 < 1 then the Lispchitz condition holds with:

Caux ≤ 1 + ηaux
2

1− ηaux
3

(
1 + σaux

0 + My
)

where E(|yt|2) and E(|ys
t |2) ≤ My, for all t ≥ 1 and β ∈ B. Next, the proof for the summability

is very similar, consider two time-series yt, ỹt and a set of auxiliary parameters ηaux:

|σaux
t − σ̃aux

t | ≤ η2|yt − ỹt|+ ηaux
3 |σ

aux
t−1 − σ̃aux

t−1|.

By a recursive argument, the inequality above becomes:

|σaux
t − σ̃aux

t | ≤

η2|yt − ỹt|+ ηaux
3 η2|yt−1 − ỹt−1|+ · · ·+ (ηaux

3 )t−1η2|y1 − ỹ1|+ (ηaux
3 )t−1|σaux

0 − σ̃aux
0 |.

Suppose that σaux
0 only depends on ηaux or is fixed, for instance equal to 0. Then the summability

condition holds, if the upper-bound ηaux
3 < 1, with:

ρj = ηaux
2 (ηaux

3 )j,
∞

∑
j=0

ρj =
ηaux

2
1− ηaux

3
< ∞.

The Lipschitz and summability conditions thus hold for the auxiliary GARCH model.

The following corollary shows that the results of section 3.3 also hold when addition

auxiliary variables to the CF.

Corollary 2 (Asymptotic Properties using Auxiliary Variables). Suppose the assumptions

for Theorems 1, 2 and 3 hold as well as Assumption 6, then the results of Theorems 1, 2 and 3 hold

with auxiliary variables. The rate of convergence is unchanged.

The proof of Corollary 2 is very similar to the proofs of the main results. Rather than

repeating the full proofs, Appendix 3.7 shows where the differences with and without the

auxiliary variables are and explains why the main results are unchanged.

To compute standard errors, a block Bootstrap is applied to compute the variance term

for the difference ψ̂n(·, η̂aux
n ) − ψ̂S

n(·, β0, η̂aux
n ) in the sandwich formula for the standard

errors. The unknown β0 is replaced by β̂n in practice.
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Using Short Panels

The main theorems 1, 2 and 3 allow for either iid data or time-series. However, SMM

estimation is also common in panel data settings where the time dimension T is small

relative to the cross-sectional dimension n. The following provides a simple application

of these results.

Example 2 (Dynamic Tobit Model). yt follows a dynamic Tobit model:

yj,t = (x′j,tθ1 + uj,t)1x′j,tθ1+uj,t≥0

uj,t = ρuj,t−1 + ej,t

where |ρ| < 1, ej,t
iid∼ f , E(ej,t) = 0. The parameters to be estimated are θ = (θ1, ρ) and f .

An overview of the dynamic Tobit model is given in Arellano & Honoré (2001). Ap-

plications of the dynamic Tobit model include labor participation studies such as Li &

Zheng (2008); Chang (2011). Li & Zheng (2008) find that estimates of ρ can be biased

downwards under misspecification. This estimate matters for evaluating the probability

of (re)-entering the labor market in the next period for instance.

Quantities of interest in the dynamic Tobit model includes the probability or re-entering

the labor market P(yt+1 > 0|xt+1, . . . , xt, yt = 0, yt−1, . . . , y1) which depends on both the

parameters θ and the distribution f . Marginal effects such as ∂xt+1P(yt+1 > 0|xt+1, . . . , xt, yt =

0, yt−1, . . . , y1) also depend on the true distribution f . As a result these quantities are sen-

sitive to a particular choice of distribution f , this motivates a semi-nonparametric estima-

tion approach for this model.

Other applications of simulation-based estimation in panel data settings include Gour-

inchas & Parker (2010) and Guvenen & Smith (2014) who consider the problem of con-

sumption choices with income uncertainty. For the simulation-based estimates, shocks

to the income process are typically assumed to be Gaussian. Guvenen et al. (2015) use a

very large and confidential panel data set from the U.S. Social Security Administration

covering 1978 to 2013 to find that individual income shocks are display large negative

skewness and excess kurtosis: the data strongly rejects Gaussian shocks.31 They find that

non-Gaussian income shocks help explain transitions between low and higher earnings

31Also, Geweke & Keane (2000) estimate the distribution of individual income shocks using Bayesian
estimates of a finite Gaussian mixture. They also find evidence of non-Gaussianity in the shocks. Arel-
lano et al. (2017) use non-linear panel data methods to study the relation between incomes shocks and
consumption. They provide evidence of persitence in earnings and conditional skewness.
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states. Hence, a Sieve-SMM approach should also be of interest in the estimation of pre-

cautionary savings behavior under income uncertainty.

Because of the fixed T dimension, the initial condition (y0, u0) cannot be systemati-

cally handled using a large time dimension and geometric ergodicity argument as in the

time-series case. Some additional restrictions on the DGP are given in the assumption

below.

Assumption 7 (Data Generating Process for Panel Data). The data (yj,t, xj,t) with j =

1, . . . , n, t = 1, . . . , T is generated by a DGP with only one source of dynamics either:

yj,t = gobs(xj,t, β, uj,t)

uj,t = glatent(uj,t−1, β, ej,t)
(3.12)

or

yj,t = gobs(yj,t−1, xj,t, β, ej,t) (3.13)

where ej,t
iid∼ f in both models. The observations are iid over the cross-sectional dimension j.

In situations where the DGPs in Assumption 7 are too restrictive, an alternative ap-

proach would be to estimate the distribution of uj,1 conditional on (yj,1, xj,1). The method-

ology of Norets (2010) would apply to this particular estimation problem, the dimension

of (yj,1, xj,1) should not be too large to avoid a curse of dimensionality. This is left to

future research.

For the DGP in equation (3.12), geometric ergodicity applies to us
j,t when simulating a

longer history us
j,−m, . . . , us

j,0, . . . , us
j,1, . . . , us

j,T and letting the history increase with n, the

cross-sectional dimension: m/n→ c > 0 as n→ ∞. For the DGP in equation (3.13), fixing

ys
j,1 = yj,1 ensures that (ys

j,1, . . . , ys
j,T, xj,1, . . . , xj,T) and (yj,1, . . . , yj,T, xj,1, . . . , xj,T) have the

same distribution when β = β0 (the DGP is assumed to be correctly specified).

The moments ψ̂n, ψ̂s
n are the empirical CF of (yt, xt) and (ys

t , xt) respectively where

yt = (yt, . . . , yt−L) for 1 ≤ L ≤ T − 1; yt, xt, ys
t are defined similarly. The identification

Assumption 1 is assumed to hold for the choice of L.

The following lemma derives the initial condition bias for dynamic panel models with

fixed T.

Lemma 8 (Impact of the Initial Condition). Suppose that Assumption 7 holds. If the DGP is

given by (3.12) and (ys
j,t, us

j,t) with a long history for the latent variable (uj,T, . . . , uj,0, . . . , uj,−m)
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where m/n→ c > 0 as n→ ∞. Suppose that us
j,t is geometrically ergodic in t and the integrals∫ ∫

f (ys
j,t, xj,t|us

j,t)
2 f (us

j,t)dys
j,tdxs

j,tdus
j,t,

∫ ∫
f (ys

j,t, xj,t|us
j,t)

2 f ∗(us
j,t)dys

j,tdxs
j,tdus

j,t

are finite and bounded when β = β0. Then, there exists a constant ρu ∈ (0, 1) such that:

Qn(β0) =
∫ ∣∣∣E(ψ̂n(τ)− ψ̂S

n(τ, β0)
) ∣∣∣2π(τ)dτ = O (ρm

u ) .

The effect of the initial condition is exponentially decreasing in m for DGP (3.12). If the DGP is

given by (3.13) and the data is simulated with ys
j,1 = yj,1 fixed then there is no initial condition

effect:

Qn(β0) =
∫ ∣∣∣E(ψ̂n(τ)− ψ̂S

n(τ, β0)
) ∣∣∣2π(τ)dτ = 0

Simulating a long history us
j,T, . . . , us

j,−m implies that the impact of the initial condition

us
j,m = u−m on the full simulated sample ys

j,1, . . . , ys
j,T delines exponentially fast in m. If m

does not grow faster than n, that is m/n→ c > 0, than the dynamic bias accumulation is

the same as in the time-series setting. In terms of bias, these m simulations play a similar

role as the burn-in draws in MCMC estimation.

Corollary 3 (Asymptotic Properties for Short Panels). Suppose that Assumption 7 and Lemma

8 hold. For the DGP (3.12) in Assumption 7, assume that m is such that log[n]/m → 0 as

n → ∞. Suppose the assumptions for Theorems 1, 2 and 3 hold, then the resuls of Theorems 1, 2

and 3 hold. The rate of convergence in weak norm is the same as for iid data:

‖β̂n − β0‖weak = Op

(
max

(
log[k(n)]r/b+1

k(n)γ2r
,

√
k(n) log[k(n)]

n

))
.

The rate of convergence in total variance and supremum distance are:

‖β̂n − β0‖B = Op

(
log[k(n)]r/b

k(n)r + τB,n max

(
log[k(n)]r/b+1

k(n)γ2r
,

√
k(n) log[k(n)]

n

))
.

Remark 3. For the DGP (3.13), the simulated history is finite and fixed so that the approximation

bias is not inflated by the dynamics:

‖β̂n − β0‖weak = Op

(
max

(
log[k(n)]r/b

k(n)γ2r
,

√
k(n) log[k(n)]

n

))
.

As a result, the rate of convergence is the same as for static models.
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The assumption that log[n]/m→ 0 can be weakened to m→ ∞ and limn→∞ log[n]/m <

− log[ρu]. Heuristically, the requirement is m � log[n], for instance when n = 1, 000 this

implies m � 7: a short burn-in sample for uj,t is sufficient to reduce the impact of the

initial condition. The following verifies some of the conditions in Assumption 2 for the

Dynamic Tobit model.

Example 2 (Continued) (Dynamic Tobit). Since the function x → x1x≥0 is Lipschitz the

conditions y(i),y(ii) and y(iii) are satisfied as long as ‖θ1‖ is bounded, E(‖xt‖2
2) is finite and

E(u2
t ) is finite and bounded. The last variance is bounded if |ρ| ≤ ρ < 1 and E(e2

t ) is bounded

above. The last condition is a restriction on the density f . Since |ρ| ≤ ρ < 1, condition u(i) is

automatically satisfied. Together, E(u2
t ) bounded and linearity in ρ imply u(ii). Finally, linearity

in et implies u(iii).

3.5 Monte-Carlo Illustrations

This section illustrates the finite sample properties of the Sieve-SMM estimator. First,

two very simple examples illustrate the estimator in the static and dynamic case against

tractable estimators. Then, Monte-Carlo simulations are conducted for the stochastic

volatility model Example 1 and Dynamic Tobit Example 2 for panel data.

For all Monte-Carlo simulations, the initial value for the mixture is a Gaussian density

in the optimization routine. In most examples the Nelder & Mead (1965) algorithm in

the NLopt package of Johnson (2014) was sufficient for optimization. In more difficult

problems, such as the SV model with tail mixture components, the DIRECT global search

algorithm of Jones et al. (1993) was applied to initialize the Nelder-Mead algorithm. The

Monte-Carlo simulations were conducted using R32 for all examples except for the AR(1)

for which Matlab was used.

The Generalized Extreme Value (GEV) distribution is used in all Monte-Carlo exam-

ples. For the chosen parametrization, it displays negative skewness (−0.9) and excess

kurtosis (3.9). It was also chosen because the approximation bias is larger for both ker-

nel and mixture sieve estimates, and is thus more visible than alternative designs with

smoother densities not reported here. This is useful when illustrating the increased bias

due to the dynamics.

32Some routines such as the computation of the CF and the simulation of mixtures were written in C++
and imported into R using Rcpp - see e.g. Eddelbuettel & Fran (2011a,b) for an introduction to Rcpp - and
RcppArmadillo (Eddelbuettel & Sanderson, 2016) for linear algebra routines.
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The Student t-distribution is also considered in the stochastic volatility design to illus-

trate the Sieve-SMM estimates with tail components. The density is smooth compared to

the GEV. As a result, the bias is smaller and less visible.

Basic Examples

The following basic tractable examples are used as benchmarks to understand the basic

properties of the Sieve-SMM estimator in terms of bias and dynamic bias accumulation

as well as the impact of dependence on the variance. As a benchmark, the estimates are

compared to feasible kernel density and OLS estimates.

A Static Model

To illustrate Remark 1, the first example uses the static DGP: yt = et
iid∼ f , the only pa-

rameter to be estimated is f and kernel density estimation is feasible. The true distribu-

tion f is the Generalized Extreme Value (GEV) distribution. It is a 3 parameter distribu-

tion which allows for asymmetry and displays excess kurtosis.33 In a recent application,

Ruge-Murcia (2017) uses the GEV distribution to model the third moment in inflation

and productivity shocks in a small asset pricing model. The Sieve-SMM estimates f̂n are

compared to the feasible kernel density estimates f̂n,kde.

33The GEV distribution was first introduced by McFadden (1978) to unify the Gumbel, Fréchet and
Weibull families.

94



Figure 3.1: Static Model: Sieve-SMM vs. Kernel Density Estimates

Note: dotted line: true density, solid line: average estimate, bands: 95% pointwise interquantile
range. Top panel n = 200 observation, bottom panel: n = 1, 000 obervations. Left and middle:
Sieve-SMM with k = 2, 3 Gaussian mixture components respectively and S = 1. Right: kernel
density estimates.

Figure 3.1 plots the density estimates for k = 2, 3 with sample sizes n = 200 and 1, 000.

The comparison between k = 2 and k = 3 illustrates the bias-variance trade-off: the bias is

smaller for k = 3 but the variance of the estimates is larger compared to k = 2. Theorem

2 implies that when the sample size n increases, the number of mixture components k

should increase as well to balance bias and variance. Here k = 2 appears to balance the

bias and variance for n = 200 while k ≥ 3 would be required for n = 1, 000.

Autoregressive Dynamics

The second basic example considers an AR(1) model with an unknown distribution for

the shocks:

yt = ρyt−1 + et, et
iid∼ (0, 1).

The shocks are drawn from a GEV density as in the previous example. The empirical CFs

are computed using one lagged observation:

ψ̂n(τ) =
1
n

n

∑
t=1

eiτ′(yt,yt−1), ψ̂s
n(τ) =

1
n

n

∑
t=1

eiτ′(ys
t ,ys

t−1).
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Knight & Yu (2002) note that additional lags do not improve the asymptotic properties of

the estimator since yt is Markovian of order 1.

This example illustrates Corollary 1 so the Monte-Carlo considers several choices of

S = 1, 5, 25. Increasing S from 1 to 5 makes a notable difference on the variance of f̂n.

Further increasing S has a much smaller effect on the variance of the estimates. Table 3.1

compares the Sieve-SMM with OLS estimates for ρ = 0.95 for n = 200 and n = 1, 000,

S = 1, 5, 25. In all cases, k = 2 mixture components are used.

Table 3.1: Autoregressive Dynamics: Sieve-SMM vs. OLS Estimates

Parameter: ρ
Sieve-SMM

OLS True
S = 1 S = 5 S = 25

n = 200
Mean Estimate 0.942 0.934 0.933 0.927 0.95

√
n× Std. Deviation (0.54) (0.45) (0.44) (0.46) -

n = 1, 000
Mean Estimate 0.949 0.947 0.947 0.946 0.95

√
n× Std. Deviation (0.47) (0.38) (0.37) (0.34) -

Figure 3.2: Autoregressive Dynamics: Sieve-SMM vs. Kernel Density Estimates

Note: dotted line: true density, solid line: average estimate, bands: 95% pointwise interquantile
range. Top panel: n = 200, bottom panel: n = 1, 000. Left and middle: Sieve-SMM with S = 1, 5
repsectively and k = 2. Right: infeasible kernel density estimates.
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Figure 3.2 compares the Sieve-SMM estimates with kernel density assuming the shocks

et are observed - this is an infeasible estimator. The top panel shows results for n = 200

and the bottom panel illustrates the larger sample size n = 1, 000.

There are several features to note. First, as discussed in section 3.3, the bias is more

pronounced under AR(1) dynamics than in the static case. The variance is larger with

AR(1) dynamics compared to the static model. Second, as shown in Corollary 1 the num-

ber of simulated samples S shifts the bias/variance trade-off so that k(n) can be larger.

Example 1: Stochastic Volatility

The stochastic volatility model of Example 1, illustrates the properties of the Sieve-SMM

estimator for an intractable, non-linear state-space model. As a simplification, there are

no mean dynamics:

yt = σtet,1, log(σt) = µσ + ρσ log(σt−1) + κσet,2

where et,2
iid∼ N (0, 1) and et,1

iid∼ f with mean zero and unit variance. Using an extension

of the main results, a GARCH(1,1) auxiliary model is introduced:

yaux
t = σaux

t eaux
t , (σaux

t )2 = µaux + αaux
1 [eaux

t−1]
2 + αaux

2 (σaux
t−1)

2.

Using the data yt, the parameters η̂aux
n = (µaux

n , αaux
1,n , αaux

2,n ) are estimated. The same η̂aux
n is

used to compute both filtered volatilities σ̂aux
t , σ̂s,aux

t . The empirical CFs uses both y and

σ̂aux:34

ψ̂n(τ) =
1
n

n

∑
t=1

eτ′(yt,yt−1,σ̂aux
t ,log(σ̂aux

t−1)), ψ̂s
n(τ, β) =

1
n

n

∑
t=1

eτ′(ys
t ,ys

t−1,σ̂s,aux
t ,log(σ̂s,aux

t−1 )).

The use of a GARCH model as an auxiliary model was suggested for indirect inference by

Gouriéroux et al. (1993). Andersen et al. (1999) compare the EMM using ARCH, GARCH

with the QML and GMM estimator using Monte-Carlo simulations. They find that EMM

with GARCH(1,1) auxiliary model is more precise than GMM and QMLE in finite sam-

ples.

The parametrization is taken from Andersen et al. (1999): µσ = −0.736, ρσ = 0.90,

κσ = 0.363. Since Bayesian estimation is popular for SV models, the estimates are com-

pared to a Gibbs sampling procedure, which assumes Gaussian shocks, using the R pack-

age stochvol of Kastner (2016). For Sieve-SMM estimation, the auxiliary GARCH filtered

volatility estimates are computed using the R package rugarch of Ghalanos (2017).

34The simulation results are similar whether σ̂aux or log(σ̂aux) is used in the CF.
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The Monte-Carlo consists of 1, 000 replications using n = 1, 000 and S = 2. The

distributions considered are the GEV and the Student t-distribution with 5 degrees of

freedom. For the GEV density, k = 4 Gaussian mixture components are used and for the

Student density, 4 Gaussian and 2 tail components are used.

Table 3.2: Stochastic Volatility: Sieve-SMM vs. Parametric Bayesian Estimates

Parameter True
GEV Student

Sieve-SMM Bayesian Sieve-SMM Bayesian

µσ

1−ρσ

Mean Estimate -7.36 -7.28 -7.37 -7.29 -7.63

Std. Deviation - (0.16) (0.13) (0.15) (0.13)

ρσ
Mean Estimate 0.90 0.90 0.88 0.92 0.71

Std. Deviation - (0.03) (0.04) (0.08) (0.10)

κσ
Mean Estimate 0.36 0.40 0.40 0.29 0.74

Std. Deviation - (0.05) (0.06) (0.06) (0.12)

The standard deviations are comparable to the EMM with GARCH(1,1) generator

found in Andersen et al. (1999). Results based only on the CF of yt = (yt, . . . , yt−2) (not

reported here) were more comparable to the GMM estimates reported in Andersen et al.

(1999) - both for SMM and Sieve-SMM. Applying some transformations such as log(y2
t )

provided somewhat better results but information about potential asymmetries in f is

lost. This motivated the first extension of the main result in section 3.4 to allow for aux-

iliary variables. Also not reported here, the bias and standard deviations of parametric

estimates with f0 are comparable to the GEV results.

Table 3.2 shows that the parametric Bayesian estimates and the SMM estimator are

well behaved when the true density is Gaussian. For the GEV distribution, both the Sieve-

SMM and the misspecified parametric Bayesian estimates are well behaved. However,

under heavier tails, the Student t-distribution implies a significant amount of bias for

the misspecified Bayesian estimates. The Sieve-SMM estimates are only slightly biased

compared with the Bayesian estimates.

Figure 3.3 compares the density estimates with the infeasible kernel density estimates

based on et,1 directly. The top panel shows the results for the GEV density and the bottom

panel for the Student t-distribution. The Sieve-SMM is less precise than the infeasible
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Figure 3.3: Stochastic Volatility: Sieve-SMM vs. Kernel Density Estimates

Note: dotted line: true density, solid line: average estimate, bands: 95% pointwise interquantile
range. Top panel: estimates of a GEV density, bottom panel: estimates of a Student t-distribution
with 5 degrees of freedom.

estimator, as one would expect. As a comparison, the density is less precisely estimated

than in the AR(1) case in figure 3.2. The two figures also illustrate bias reduction: the bias

is larger for the AR(1) example which only uses k = 2 mixture components whereas the

SV example uses k = 4.

The Monte-Carlo simulations for the stochastic volatility model highlight the lack of

robustness of the parametric Bayesian estimates to the tail behavior of the shocks. This

is particularly important for the second empirical application where Sieve-SMM and

Bayesian estimates differ a lot and there is evidence of fat tails and asymmetry in the

shocks.

Example 2: Dynamic Tobit Model

The dynamic Tobit model in Example 2 illustrates the properties of the estimator in a

non-linear dynamic panel data setting:

yj,t = (θ1 + x′j,tθ2 + uj,t)1θ1+x′j,tθ2+uj,t≥0

uj,t = ρuj,t−1 + ej,t
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with j = 1, . . . , n and t = 1, . . . , T. The Monte-Carlo simulations consider a sample with

n = 200, T = 5 for a total of 1, 000 observations. The burn-in sample for the latent

variable uj,t, described in section 3.4, is m = 10 which is about twice the log of n. The

regressors xt follow an AR(1) with Gaussian shocks. The AR process is calibrated so that

x has mean 2, autocorrelation 0.3 and variance 2. The other parameters are chosen to be:

(ρ,θ1,θ2) = (0.8,−1.25, 1) and f is the GEV distribution as in the other examples. As a

result, about 40% of the sample is censored. The numbers of simulated samples are S = 1

and S = 5. The moments used in the simulations are:

ψ̂n(τ) =
1

nT

T

∑
t=2

n

∑
j=1

eiτ′(yt,yt−1,xt,xt−1), ψ̂s
n(τ) =

1
nT

T

∑
t=2

n

∑
j=1

eiτ′(ys
t ,ys

t−1,xt,xt−1).

Table 3.3: Dynamic Tobit: SMM vs. Sieve-SMM Estimates

Parameter
S = 1 S = 5

SMM Sieve-SMM SMM Sieve-SMM True

ρ
Mean 0.796 0.801 0.796 0.796 0.80

Std. Deviation (0.042) (0.039) (0.031) (0.031) -

θ1
Mean -1.259 -1.230 -1.250 -1.233 -1.25

Std. Deviation (0.234) (0.200) (0.178) (0.169) -

θ2
Mean 1.002 1.002 1.000 0.997 1.00

Std. Deviation (0.059) (0.052) (0.045) (0.043) -

Table 3.3 compares the parametric SMM and the Sieve-SMM estimates. The numbers

are comparable except for θ1 which has a small bias for the Sieve-SMM estimates. Ad-

ditional results for misspecified SMM estimates with simulated samples use Gaussian

shocks instead of the true GEV distribution also show bias for θ1, the average estimate is

higher than −1.1. The other estimates were found to have negligible bias.35

Figure 3.4 shows the Sieve-SMM estimates of the distribution of the shocks and the

infeasible kernel density estimates of the unobserved et. Because of the censoring in the

sample, note that the effective sample size for the Sieve-SMM estimates is smaller than

35Li & Zheng (2008) consider an alternative design where ρ displays more significant bias.
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Figure 3.4: Dynamic Tobit: Sieve-SMM vs. Kernel Density Estimates

Note: dotted line: true density, solid line: average estimate, bands: 95% pointwise interquantile
range.

for the kernel density estimates in this model. The left and middle plots show the sieve

estimates when S = 1, 5; the right plot corresponds to the kernel density estimates.

Figure 3.5 illustrates the differences between SMM and Sieve-SMM for a counterfac-

tual that involves the full density f . It shows the estimates of the probability of re-entering

the market P(yj,5 > 0|yj,4 = 0, x5 = · · · = x1 = x) using the true value (θ0, f0), the SMM

estimates θ̂SMM
n with Gaussian shocks and the Sieve-SMM estimates (θ̂n, f̂n). The true

distribution is the GEV density which differs from the Gaussian density in the tails which

implies a larger difference in the counterfactual when x is large, as shown in figure 3.5.

For this particular counterfactual, the Sieve-SMM estimates are much closer to the true

value for larger values of x.

Figure 3.5: Dynamic Tobit: SMM vs. Sieve-SMM Estimates of the Counterfactual

Note: Estimated counterfactual: P(yj,5 > 0|yj,4 = 0, x5 = · · · = x1 = x) - solid line: true
probability, dashed line: Sieve-SMM estimate, dotted line: SMM estimate with Gaussian shocks,
1 Monte-Carlo estimate for SMM, Sieve-SMM, probabilities computed using 106 Simulated Sam-
ples.

The Monte-Carlo simulations show the good finite sample behavior of the Sieve-SMM

estimator with a non-smooth DGP. Indeed, the indicator function implies that the DGP
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is Lipschitz but not continuously differentiable. It also illustrates the extension to short

panels in section 3.4.

3.6 Empirical Applications

This section considers two empirical examples of the Sieve-SMM estimator. The first ex-

ample illustrates the importance of non-Gaussian shocks for welfare analysis and asset

pricing using US monthly output data. The shocks are found to display both asymmetry

and tails after controlling for time-varying volatility. As a result, the Sieve-SMM esti-

mates imply welfare costs that are 25% greater than with the Gaussian SMM estimates.

Furthermore, the effect of uncertainty on risk-free is nearly 3 times as large for the Sieve-

SMM estimates compared to the Gaussian SMM estimates. The second one uses daily

GBP/USD exchange rate data and highlights the bias and sensitivity implications of fat

tails on parametric SV volatility estimates.

Welfare and Asset Pricing Implications of Non-Gaussian Shocks

The first example considers a simplified form of the DGP for output in the Long-Run

Risks (LRR) model of Bansal & Yaron (2004). The data consists of monthly growth rate of

US industrial production (IP), as a proxy for monthly consumption, from January 1960 to

March 2017 for a total of 690 observations, from the FRED36 database and downloaded

via the R package Quandl.37 IP is modeled using a stochastic volatility model with AR(1)

mean dynamics:

∆ct = µc + ρc∆ct−1 + ztet,1

σ2
t = µσ + ρσσ2

t−1 + κσ[et,2 − 1]

where et,2
iid∼ χ2

1 and et,1
iid∼ f to be estimated assuming mean zero and unit variance. The

stochastic volatility literature has mainly focused on the distribution of the shocks to the

mean et,1 rather than the volatility38 hence the volatility shocks are modelled parametri-

cally in this application. Using the chi-squared distribution ensures that the volatility is

36https://fred.stlouisfed.org/.
37https://www.quandl.com/tools/r

38See Fridman & Harris (1998); Mahieu & Schotman (1998); Liesenfeld & Jung (2000); Jacquier et al.
(2004); Comte (2004); Jensen & Maheu (2010); Chiu et al. (2017) for instance.
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non-negative. This DGP is a simplification of the one considered in Bansal & Yaron (2004).

They assume that consumption is the sum of an AR(1) process and iid shocks with a com-

mon SV component. The DGP above only estimates the AR(1) component for simplicity

given that the focus is of this example is on the shocks and the volatility rather than the

mean dynamics. The volatility shocks are also assumed to be χ2
1 rather than Gaussian to

ensure non-negativity.

Empirical Estimates

The model is estimated using a Gaussian mixture and is compared with parametric SMM

estimates. S = 10 simulated samples are used to perform the estimation. As in the

Monte-Carlo an auxiliary GARCH(1,1) model is used. The empirical CF uses 2 lagged

observations:

ψ̂n(τ) =
1
n

n

∑
t=1

eiτ′(∆ct,∆ct−1,∆ct−2,log(σ̂aux
t ),log(σ̂aux

t−1))

ψ̂s
n(τ) =

1
n

n

∑
t=1

eiτ′(∆cs
t ,∆cs

t−1,∆cs
t−2,log(σ̂s,aux

t ),log(σ̂s,aux
t−1 )).

Table 3.4 shows the point estimates and the 95% confidence intervals for the parametric

SMM, assuming Gaussian shocks, and the Sieve-SMM estimates using k = 3 mixture

components. For reference, the OLS point estimate for ρc is 0.34 and the 95% confidence

interval using HAC standard errors is [0.23, 0.46] which is very similar to the SMM and

Sieve-SMM estimates.39

Table 3.4: Industrial Production: Parametric and Sieve-SMM Estimates

ρc µσ ρσ κσ

SMM
Estimate 0.33 0.39 0.65 0.15

95% CI [0.22, 0.43] [0.34, 0.45] [0.22, 0.86] [0.08, 0.26]

Sieve-SMM
Estimate 0.32 0.43 0.75 0.13

95% CI [0.20, 0.42] [0.34, 0.55] [0.35, 0.92] [0.06, 0.29]

Figure 3.6 compares the densities estimated using the parametric SMM and Sieve-

SMM. The log-density reveals a larger left tail for the sieve estimates and potential asym-

39HAC standard errors are computed using the R package sandwich (Zeileis, 2004).
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metry: conditional on the volatility regime, large negative shocks are more likely than the

Gaussian SV estimates suggest. For instance, the log-difference at e = −4 is about 5 so

that the ratio of densities is nearly 150 and the log-difference for e = −5 is roughly 10 so

the density ratio is more than 20, 000.

Figure 3.6: Industrial Production: Sieve-SMM Density Estimate vs. Normal Density

Note: dotted line: Sieve-SMM density estimate, solid line: standard Normal density.

Table 3.5 shows that sieve estimated shocks have significant skewness and large kur-

tosis. It also shows the first four moments of the data compared to those implied by the

estimates. Both sets of estimates match the first two moments similarly. The Sieve-SMM

estimates provide a better fit for the skewness and kurtosis.

Table 3.5: Industrial Production: Moments of ∆ct, ∆cs
t and es

t

Mean Std Dev Skewness Kurtosis

Data yt 0.21 0.75 -0.92 7.56

SMM ys
t 0.25 0.66 0.06 4.39

Sieve-SMM ys
t 0.24 0.67 -0.35 6.65

SMM es
t 0.00 1.00 0.00 3.00

Sieve-SMM es
t 0.00 1.00 -0.75 7.74

Altogether, these results suggest significant non-Gaussian features in the shocks with

both negative skewness and excess kurtosis. The welfare implications and the impact on

the risk-free rate are now discussed.
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Welfare Implications

The first implication considered here is the welfare effect of the fluctuations implied by

each set of estimates. The approach considered here is based on the simple calculation

approach of Lucas (1991, 2003).40 The main advantage of this approach is that it does not

require a full economic model: only a statistical model for output and a utility function

are needed. To set the framework, a brief overview of his setting is now given. Lucas

(1991) considers a setting where consumption is iid log-normal with constant growth rate

Ct = eµt+σet where et
iid∼ N (0, 1) and has a certainty equivalent C?

t = eµt+σ2/2.

For a given level of risk-aversion γ ≥ 0 and time preference e−a ∈ (0, 1), he defines the

welfare cost of business cycle fluctuations as the proportion λ by which the Cts increase

to achieve the same lifetime utility as under C?
t . This implies the following equation:

(1 + λ)1−γ ∑
t≥0

e−atE0

(
C1−γ

t − 1
1− γ

)
= ∑

t≥0
e−at C?1−γ

t − 1
1− γ

.

The estimates for the cost of business cycle fluctuations depends only on γ and σ in the

Gaussian case: log(1 + λ) = γ σ2

2 . Lucas estimates this cost to be very small in the US.

Combining the SMM and Sieve-SMM with Monte-Carlo simulations41, the welfare

cost of business cycle fluctuations is now computed under Gaussian and mixture SV dy-

namics. Table 3.6 compares the two welfare costs for different levels of risk aversion with

the baseline iid Gaussian case of Lucas.42 For the full range of risk aversion considered

here the welfare cost is estimated to be above 1% of monthly consumption. As a com-

parison Lucas (1991) estimates the welfare cost to be very small, a fraction of a percent,

while Krusell et al. (2009) estimates it to be around 1%.43 Both SV models imply much

larger costs for business cycle fluctuations compared to the iid results: for γ = 4 and an

annual income of $55,000 the estimated welfare cost is $990, $800 and $7 for Sieve-SMM,

SMM and Gaussian iid estimates respectively. The Sieve-SMM estimates imply a welfare

40A number of alternative methods to estimate the welfare effect of business cycle fluctuations exist
in the literature using, to cite only a few, models with heterogeneous agents (Krusell & Smith, Jr., 1999;
Krusell et al., 2009), asset pricing models (Alvarez & Jermann, 2004; Barro, 2006a) and RBC models (Cho
et al., 2015).

41Expectations are taken over 1,000 Monte-Carlo samples for an horizon of 5,000 months or about 420
years.

42The iid case is calibrated to match the mean and standard deviation of monthly IP growth. The
monthly time preference parameter is chosen to match a quarterly rate of 0.99.

43Additional calculations and results under an AR(1) process and using linearized DSGE models are
also given in Reis (2009).
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Table 3.6: Welfare Cost of Business Cycle Fluctuations λ (%)

Risk Aversion γ 2 4 6 10

Gaussian iid 0.01 0.01 0.02 0.03

SMM 1.32 1.46 1.53 1.65

Sieve-SMM 1.54 1.80 1.93 2.12

cost that is nearly $200, or 25%, higher than the parametric SMM welfare estimates. This

difference is quite large highlighting the non-negligible role of asymmetry in welfare.

Implications for the risk-free rate

The second implication considers the effect of uncertainty on the risk-free rate. As dis-

cussed in the introduction, the Euler equation implies that the risk-free rate rt satisfies:

e−rt = e−aEt

(
(Ct+1/Ct)

−γ
)

where e−a and γ are the time preference and risk aversion

parameters. To explain the low-level of the risk-free rate observed in the data (Weil, 1989)

a number of resolutions have been proposed including the long-run risks model of Bansal

& Yaron (2004), which involves stochastic volatility and a recursive utility, and the rare

disasters literature which involves very low frequency, high impact shocks and a power

utility (Rietz, 1988; Barro, 2006b). This empirical application considers a simple power

utility together with the higher frequency of shocks (monthly) over a recent period (since

1960) to achieve a similar result.

Given the AR(1) mean dynamics and volatility process postulated for IP growth, the

risk-free rate can be written as:

rt = a+ γµc + γρc∆ct︸ ︷︷ ︸
Predictable Component

− log
(∫

e−γet+1,1
√

µσ+ρσσ2
t +κσ[et+1,2−1] f (et+1,1) fχ2

1
(et+1,2)det+1,1det+1,2

)
︸ ︷︷ ︸

Effect of uncertainty

where fχ2
1

is the density of a χ2
1 distribution.

Other than time preference a, there are two components in the risk-free rate: a pre-

dictable component γµc + γρc∆ct and another factor which only depends on the distribu-

tion of the shocks, it is the effect of uncertainty. In the second term, the integral over et+1,1

is the moment generating function of et+1,1 evaluated at −γ
√

µσ + ρσσ2
t + κσ[et+1,2 − 1]
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and has closed-form when the distribution is either a Gaussian or a Gaussian mixture:∫
e−γet+1,1

√
µσ+ρσσ2

t +κσ[et+1,2−1] f (et+1,1) fχ2
1
(et+1,2)det+1,1det+1,2

=
k

∑
j=1

ωj

∫
e−γµj

√
µσ+ρσσ2

t +κσ[et+1,2−1]+ γ2
2 σ2

j (µσ+ρσσ2
t +κσ[et+1,2−1]) fχ2

1
(et+1,2)det+1,2.

The integral over et+1,2 is computed using Gaussian quadrature. Using this formula, table

3.7 computes the effect of uncertainty on the risk-free rate over a range of values for risk

aversion γ for a Gaussian AR(1) model as well as the parametric SMM and Sieve-SMM

SV estimates. The effect of uncertainty is estimated to be nearly 3 times as large under the

Sieve-SMM estimates compared to the Gaussian SMM estimates. Given that the risk free-

Table 3.7: Effect of uncertainty on the risk-free rate (% annualized)

Risk aversion γ 2 4 6 10

Gaussian AR(1) -0.12 -0.24 -0.35 -0.59

SMM -0.09 -0.37 -0.84 -2.34

Sieve-SMM -0.25 -1.02 -2.32 -6.59

rate is predicted to be much lower with the Sieve-SMM estimates, the results suggest that

the non-Gaussian features in the shocks matter for precautionary savings. Altogether, the

results suggest that the choice of distribution f matters in computing both welfare effects

and the risk-free rate.

GBP/USD Exchange Rate Data

The second example highlights the effect of fat tails and outliers on SV estimates for

GBP/USD exchange rate data. The results highlight the presence of heavy tails even after

controlling for time-varying volatility. Similar findings were also documented with para-

metric methods (see e.g. Fridman & Harris, 1998; Liesenfeld & Jung, 2000). This paper

also finds significant asymmetry in the distribution of the shocks. Furthermore, com-

paring the estimates with common Bayesian estimates shows that parametric estimates

severely underestimate the persistence of the volatility. Mahieu & Schotman (1998) also

consider a mixture approximation for the distribution of the shocks in a SV model, us-

ing quasi-MLE for weekly exchange rate data. However, they do not provide asymptotic
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theory for their estimator and quasi-MLE does not estimate asymmetries in the density

which turns out to be significant in this setting.

The data consists of a long series of daily exchange rate data between the British

Pound and the US Dollar (GBP/USD) downloaded using the R package Quandl. The

data begins in January 2000 and ends in December 2016 for a total of 5, 447 observa-

tions. The exchange rate is modeled using a log-normal stochastic volatility model with

no mean dynamics:

yt = µy + σtet,1, log(σt) = ρσ log(σt−1) + κσet,2

where et,2
iid∼ N (0, 1) and et,1

iid∼ f to be estimated assuming mean zero and unrestricted

variance. This allows to model extreme events associated with volatility clustering, when

σt is large, as well as more isolated extreme events, represented by the tails of f . For this

empirical application, µσ is set to 0 and f is only constrained to have unit variance. This

illustrates the type of flexibility allowed when using mixtures for estimation. The data yt

consists of the daily log-growth rate of the GBP/USD exchange rate:

yt = 100× log
(

GBP/USDt

GBP/USDt−1

)
.

Sieve-SMM estimates are compared to a common Gibbs sampling Bayesian estimate us-

ing the R package stochvol (Kastner, 2016). Two sets of Sieve-SMM estimates are com-

puted: the first uses a Gaussian mixture with k = 5 components and the second a Gaus-

sian and tails mixture with k = 5 components: 3 Gaussians and 2 tails. The two Sieve-

SMM estimators have the same number of parameters to be estimated.

Table 3.8 shows the posterior mean and 95% credible interval for the Bayesian esti-

mates as well as the point estimates and te 95% confidence interval for two Sieve-SMM

estimators. The Bayesian estimate for the persistence of volatility ρz is much smaller than

the SMM and Sieve-SMM estimates: it is outside their 95% confidence intervals. This re-

flects the bias issues discussed in the Monte-Carlo when f has large tails. As a robustness

check, the estimates for the Sieve-SMM are similar when removing observations after the

United Kingdom European Union membership referendum, that is between June 23rd

and December 31st 2016: (ρ̂n, σ̂z) = (0.96, 0.23) for the Gaussian mixture and (0.97, 0.20)

for the Gaussian and tails mixture. The Bayesian estimates are also of the same order

of magniture (0.26, 1.27). The density estimates f̂n are also very similar when removing

these observations.

Figure 3.7 compares the density f̂n of et,1 for the Bayesian and Sieve-SMM estimates.

The log-density log[ f̂n] is also computed as it higlights the differences in the tails. The
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Table 3.8: Exchange Rate: Bayesian and Sieve-SMM Estimates

ρz σz

Bayesian
Estimate 0.24 1.31

95% CI [0.16, 0.34] [1.21, 1.41]

Sieve-SMM
Estimate 0.96 0.22

95% CI [0.59, 0.99] [0.06, 0.83]

Sieve-SMM Tails
Estimate 0.97 0.19

95% CI [0.62, 0.99] [0.05, 0.79]

Note: CI is the credible interval for the Bayesian and the confidence interval for the frequentist
estimates.

Figure 3.7: Exchange Rate: Density and log-Density Estimates

Note: solid line: Gaussian density, dotted line: Gaussian mixture, dashed: Gaussian and tails
mixture.

Bayesian assumes Gaussian shocks, so the log-density is quadratic, the density declines

faster in the tails compared to the other two estimates. For the mixture with tail compo-

nents, the density decays much slower than for both the Bayesian and Gaussian mixture

estimates.

Table 3.9 compares the first four moments in the data to those implied by the esti-

mates.44 The Bayesian estimates fit the fourth moment of the full dataset best. Note that

for time series data, estimates of kurtosis can be very unprecise (Bai & Ng, 2005). Hence

a robustness check can be important: when removing the observation corresponding to

44The moments for the Bayesian and Sieve-SMM estimates are computed using numerical simulations.
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United Kingdom European Union membership referendum on June 23rd 2016 which is

the largest variation in the sample,45 the kurtosis drops to about 10. Furthermore, when

removing all observations between June 23rd and December 31st 2016, the kurtosis de-

clines further to about 9. As discussed above, the point estimates remain similar when

removing these observations. The Sieve-SMM estimates match the fourth moment of the

restricted sample more closely but the Gaussian mixture fits the third moment poorly.

The Gaussian and tails mixture fits all four moments of the restricted sample best. It also

has the lowest value for the sample objective function. The Gaussian and tails mixture is

thus the preferred specifications for this dataset.

Table 3.9: Exchange Rate: Moments of yt, ys
t and es

t

Mean Std Dev Skewness Kurtosis

Data yt 0.00 0.49 -1.15 21.05

Data∗ yt 0.00 0.47 -0.32 8.92

Bayesian ys
t 0.00 0.52 0.00 18.47

Sieve-SMM ys
t 0.00 0.85 0.10 5.88

Sieve-SMM tails ys
t 0.00 0.45 -0.28 7.74

Bayesian es
t 0.00 1.00 0.00 3.00

Sieve-SMM es
t 0.00 1.00 -0.06 3.68

Sieve-SMM tails es
t 0.00 1.00 -0.17 4.83

Note: Data corresponds to the full sample: January 1st 2000-December 31st 2016. Data∗ is
a restricted sample: January 1st 2000-June 22nd 2016. Sieve-SMM: Gaussian mixture, Sieve-
SMM tails: mixture with tail components.

In terms of forecasting, there are three main implications. First, the Bayesian estimates

severely underestimate the persistence of the volatility: as a result, forecasts would un-

derestimate the persistence of a high volatility episode. Second, f̂n displays a significant

amount of tails: a non-negligible amount of large shocks are isolated rather than asso-

ciated with high volatility regimes. Third, there is evidence of asymmetry in f̂n: large

depreciations in the GBP relative to the USD are historically more likely than large appre-

ciations.

45It is associated with a depreciation of the the GBP of more than 8 log percentage points. This is much
larger than typical daily fluctuations.
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3.7 Conclusion

Simulation-based estimation is a powerful approach to estimate intractable models. This

paper extends the existing parametric literature to a semi-nonparametric setting using

a Sieve-SMM estimator. General asymptotic results are given using the mixture sieve

for the distribution of the shocks and the empirical characteristic function as a moment

function. On the theoretical side, this paper provides new and more general results for

static models and allows for a new class of dynamics in the Sieve-GMM literature. Monte-

Carlo simulations illustrate the range of applications of the method and its finite sample

properties. Extensions to a larger class of moments and short panels are given.

Two empirical applications highlight the importance of the density in the shocks in

practice. The first one shows asymmetry and tail behavior in output shocks. Welfare

estimates suggest that the cost of business cycle fluctuations are larger under these non-

Gaussian shocks. The risk-free rate is also significantly lower, reflecting the greater down-

side risks in the estimated distribution and the additional precautionary savings it im-

plies.

The second empirical example highlights the effect of misspecification on volatility es-

timates. Sieve-SMM estimation applied to daily GBP/USD exchange rate data reveals sig-

nificant tail behavior and asymmetry, even after controlling for the time-varying volatil-

ity. The parametric Bayesian estimates are not robust to misspecification and large rare

events.

Going forward, a number of extensions to this paper’s results should be of interest.

On the theoretical side, extending the inequality in this paper to unbounded moments

would allow for more general Sieve-GMM settings as in Chen et al. (2013). The results

could also be extended to a generalization of Indirect Inference with both infinite dimen-

sional moments and parameters. The mixture sieve can be extended to accommodate

heteroskedasticiy as in Norets (2010) or multivariate densities without the independence

assumption as in De Jonge & Van Zanten (2010). On the empirical side, the results in

this paper suggest that the distribution of the shocks is important in estimating welfare

effects in DSGE models or risk-premia in asset pricing models. Also, using the results

in this paper, the Sieve-SMM can be applied to estimate cross-sectional heterogeneity in

short panels where fixed effects cannot be differenced out.
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Dridi, R. & Renault, E. (2000). Semi-parametric indirect inference. Technical report, Suntory
and Toyota International Centres for Economics and Related Disciplines, LSE.

Drovandi, C. C., Pettitt, A. N., & Faddy, M. J. (2011). Approximate Bayesian computation
using indirect inference. Journal of the Royal Statistical Society: Series C (Applied Statistics),
60(3), 317–337.

Drovandi, C. C., Pettitt, A. N., & Lee, A. (2015). Bayesian Indirect Inference Using a
Parametric Auxiliary Model. Statistical Science, 30(1), 72–95.

Duffie, D. & Singleton, K. J. (1993). Simulated Moments Estimation of Markov Models of
Asset Prices. Econometrica, 61(4), 929.

Eddelbuettel, D. & Fran, R. (2011a). Rcpp : Seamless R and C ++ Integration. Journal Of
Statistical Software, 40(8), 1–18.

Eddelbuettel, D. & Fran, R. (2011b). Rcpp : Seamless R and C ++ Integration, volume 40.
New York: Springer.

116



Eddelbuettel, D. & Sanderson, C. (2016). RcppArmadillo : Accelerating R with High-
Performance C ++ Linear Algebra. Computational Statistics and Data Analysis, 71(2014),
1–16.

Fenton, V. M. & Gallant, A. R. (1996). Convergence Rates of SNP Density Estimators.
Econometrica, 64(3), 719.
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Appendix to Chapter 1

The termsA(θ) andC(θ) in θ̂MD are derived for the just identified case as follows. Recall
that ψ̂ has a second-order expansion:

ψ̂ = ψ(θ0) +
A(θ0)√

T
+
C(θ0)

T
+ op(

1
T
). (.0.1)

Now θ̂ = θ0 +
A(θ0)√

T
+ C(θ0)

T + op(
1
T ). Thus expanding ψ(θ̂) around θ̂ = θ0:

ψ(θ̂) = ψ

(
θ0 +

A(θ0)√
T

+
C(θ0)

T
+ op(

1
T
)

)
= ψ(θ0) +ψθ(θ0)

(
A(θ0)√

T
+

C(θ0)

T
+ op(

1
T
)

)
+

1
2T

K

∑
j=1
ψθ,θj(θ0)A(θ0)Aj(θ0) + op(

1
T
).

Equating with ψ(θ0) +
A(θ0)√

T
+ C(θ0)

T + op(
1
T ) and solving for A, C we get:

A(θ0) =
[
ψθ(θ0)

]−1
A(θ0)

C(θ0) =
[
ψθ(θ0)

]−1
(
C(θ0)−

1
2

K

∑
j=1
ψθ,θj(θ0)A(θ0)Aj(θ0)

)
.

For estimator specific Ab
d and ab

d, define ab
d = trace([ψθ(θ0)]

−1[∑K
j=1ψθ,θj(θ0)Ab

d,j(θ0) +

Ab
d,θ(θ0)]),

CM
d (θ0) = 2

πθ(θ0)

π(θ0)
Ad(θ0)ad(θ0)θ0 − ad(θ0)

2θ0 −
[

πθ(θ0)πθ(θ0)′

π(θ0)2

]
Ad(θ0)

′Ad(θ0)θ0

− 1
B

B

∑
b=1

(ab
d(θ0)− ad(θ0))Ab

d(θ0). (.0.2)

Where ad = 1
B ∑B

b=1 ab
d, Ad is defined analogously. Note that a(θ0) → 0 as B → ∞ if

ψ(θ) = θ and the first two terms drop out.

Proof of Proposition 1, RS

To prove Proposition 1, we need an expansion for ψ̂b(θb) and the weights using

θb = θ0 +
Ab(θ0)√

T
+ Cb(θ0)

T + op(
1
T ). (.0.1)
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i. Expansion of ψ̂b(θ0) and ψ̂θb(θ0)
:

ψ̂b(θb) = ψ(θb) +
Ab(θb)√

T
+
Cb(θb)

T
+ op(

1
T
)
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Ab(θ0)√

T
+

Cb(θ0)

T
+ op(

1
T
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T ))√
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T
+ op(
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T
).

Since ψ̂b(θb) equals ψ̂ for all b,

Ab(θ0) =
[
ψθ(θ0)

]−1 (
A(θ0)−Ab(θ0)

)
(.0.2)
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[
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2
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it follows that

ψ̂b
θ(θ
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θ
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To obtain the determinant of ψ̂b
θ(θ

b), let ab(θ0) = trace(Ab(θ0)), ab
2(θ0) = trace(Ab(θ0)

2),
cb(θ0) = trace(Cb(θ0)), where
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Now for any matrix X with all eigenvalues smaller than 1 we have: log(IK + X) = X −
1
2 X2 + o(X). Furthermore, for any matrix M the determinant |M| = exp(trace(log M))).

Together, these imply that for arbitrary X1, X2:

∣∣∣I + X1√
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+ op(
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Hence the required determinant is∣∣∣ψ̂b
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ii. Expansion of wb(θb) = |ψ̂θ(θb)|−1π(θb):
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)

)
.

Now A(θ0) = 1
B ∑B

b=1 Ab(θ0). Similarly define C(θ0) = 1
B Cb(θ0). Also, denote the term

in 1/T by:

eb(θ0) = −ab
2(θ0)− cb(θ0)−

πθ(θ0)

π(θ0)
ab(θ0)Ab(θ0)+

πθ(θ0)

π(θ0)
Cb(θ0)+

1
2

Ab(θ0)πθ,θ′(θ0)Ab′(θ0).
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The normalized weight for draw b is:

wb(θb) =

∣∣∣ψ̂b
θ(θ

b)
∣∣∣−1

π(θb)

∑B
c=1

∣∣∣ψ̂c
θ(θ

c)
∣∣∣−1

π(θc)

=
1
B

( 1− ab(θ0)√
T

+
πθ(θ0)

π(θ0)
Ab(θ0)√

T
+ eb(θ0)

T + op(
1
T )

1 + 1
B ∑B

c=1−
ac(θ0)√

T
+ πθ(θ0)

π(θ0)
Ac(θ0)√

T
+ ec(θ0)

T + op(
1
T )

)

=
1
B

(1− ab(θ0)√
T

+
πθ(θ0)

π(θ0)
Ab(θ0)√

T
+ eb(θ0)

T + op(
1
T )

1− a(θ0)√
T

+
πθ(θ0)

π(θ0)
A(θ0)√

T
+ e(θ0)

T + op(
1
T )

)

=
1
B

(
1− ab(θ0)√

T
+

πθ(θ0)

π(θ0)

Ab(θ0)√
T

+
eb(θ0)

T
+ op(

1
T
)
)
×
(

1 +
a(θ0)√

T
− πθ(θ0)

π(θ0)

A(θ0)√
T
− e(θ0)

T
+ op(

1
T
)
)

=
1
B

(
1− ab(θ0)− a(θ0)√

T
+

πθ(θ0)

π(θ0)

Ab(θ0)− A(θ0)√
T

+
eb(θ0)− e(θ0)

T
− ab(θ0)a(θ0)

T
− πθ(θ0)

π(θ0)

Ab(θ0)a(θ0)

T

− πθ(θ0)

π(θ0)

A(θ0)ab(θ0)

T
−
[

πa(θ0)πθ(θ0)
′

π(θ0)2

]
Ab(θ0)

′A(θ0)

T
+ op(

1
T
)
)

.

The posterior mean is θRS = ∑B
b=1 wb(θb)θb. Using θb defined in (.0.1), A and C defined

in (.0.2) and (.0.3):

θRS = θ0 +
1
B

B

∑
b=1

Ab(θ0)√
T

+
1
B

B

∑
b=1

Cb(θ0)

T
+

πθ(θ0)

π(θ0)

1
B

B

∑
b=1

(Ab(θ0)− A(θ0))Ab(θ0)

T
+ CM(θ0) + op(

1
T
).

Proof of Results for LT

From

θb = θ0 +
Ab(θ0)√

T
+

Cb(θ0)

T
+ op(

1
T
),

we have, given that ψ̂b is drawn from the asymptotic distribution of ψ̂

ψ̂b(θb) = ψ(θb) +
Ab

∞(θb)√
T

= ψ

(
θ0 +

Ab(θ0)√
T

+
Cb(θ0)

T
+ op(

1
T
)

)
+
Ab

∞(θ0 +
Ab(θ0)√

T
+ Cb(θ0)

T + op(
1
T ))√

T

= ψ(θ0) +
Ab

∞(θ0)√
T

+
ψθ(θ0)Ab(θ0)√

T

Ab
∞,θ(θ0)Ab(θ0)

T
+

1
2

K

∑
j=1

ψθ,θj
(θ0)Ab(θ0)Ab

j (θ0)

T
+ op(

1
T
)

which is equal to ψ̂ for all b. Hence

Ab(θ0) =
[
ψθ(θ0)

]−1 (
A(θ0)−Ab

∞(θ0)
)

(.0.1)

Cb(θ0) =
[
ψθ(θ0)

]−1
(
C(θ0)−

1
2

K

∑
j=1
ψθ,θj

(θ0)Ab(θ0)Ab
j (θ0)−Ab

∞,θ(θ0)Ab(θ0)

)
. (.0.2)
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Note that the bias term Cnormalsize depends on the bias term C. For the weights, we
need to consider

ψ̂b
θ(θ

b) = ψθ

(
θ0 +

Ab(θ0)√
T

+
Cb(θ0)

T
+ op(

1
T
)

)
+
Ab

∞,θ

(
θ0 +

Ab(θ0)√
T

+ Cb(θ0)
T + op(

1
T )
)

√
T

= ψθ(θ0) +
K

∑
j=1

ψθ,θj
(θ0)Ab

j (θ0)
√

T
+
Ab

∞,θ(θ0)√
T

+
k

∑
j=1

ψθ,θj
(θ0)Cb

j (θ0)

T
+

K

∑
j=1

Ab
∞,θ,θj

Ab
j (θ0)

T

+
1
2

K

∑
j,k=1

ψθ,θj ,θk
(θ0)Ab

j (θ0)Ab
k(θ0)

T
+ op(

1
T
).

Let

Ab(θ0) =
[
ψθ(θ0)

]−1
(
A

b
∞,θ(θ0) +

K

∑
j=1
ψθ,θj

(θ0)Ab
j (θ0)

)

Cb(θ0) =
[
ψθ(θ0)

]−1
(

K

∑
j=1
ψθ,θj

(θ0)Cb
j (θ0) +

K

∑
j=1
A

b
∞,θ,θj

(θ0)Ab
j (θ0) +

1
2

K

∑
j=1

K

∑
k=1

ψθ,θj ,θk
(θ0)Ab

j (θ0)Ab
k(θ0)

)
ab(θ0) = trace(Ab(θ0)), ab

2(θ0) = trace(Ab(θ0)
2), cb(θ0) = trace(Cb(θ0)).

The determinant is∣∣∣ψ̂b
θ(θ0)

∣∣∣−1
=
∣∣∣ψθ(θ0)

∣∣∣−1∣∣∣I + Ab(θ0)√
T

+
Cb(θ0)

T
+ op(

1
T
)
∣∣∣−1

=
∣∣∣ψθ(θ0)

∣∣∣−1
(

1 +
ab(θ0)√

T
+

ab
2(θ0)

T
+

cb(θ0)

T
+ op(

1
T
)

)−1

=
∣∣∣ψθ(θ0)

∣∣∣−1
(

1− ab(θ0)√
T
− ab

2(θ0)

T
− cb(θ0)

T
+ op(

1
T
)

)
.

The prior is

π(θb) = π

(
θ0 +

Ab(θ0)√
T

+
Cb(θ0)

T
+ op(

1
T
)

)

= π(θ0) + πθ(θ0)
Ab(θ0)√

T
+ πθ(θ0)

Cb(θ0)

T
+

1
2

Ab(θ0)πθ,θ′Ab′(θ0)

T
+ op(

1
T
).

Let: eb(θ0) = −cb(θ0)− ab
2(θ0) +

πθ(θ0)
π(θ0)

Cb(θ0) + Ab(θ0)
πθ,θ′

π (θ0)Ab′(θ0). After some sim-

plification, the product is∣∣∣ψ̂b
θ(θ0)

∣∣∣−1
π(θb) =

∣∣∣ψθ(θ0)
∣∣∣−1

π(θ0)
(

1− ab(θ0)√
T

+
πθ(θ0)

π(θ0)

Ab(θ0)√
T

+
eb(θ0)

T
+ op(

1
T
)
)

.
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Hence, the normalized weight for draw b is

wb(θb) =

∣∣∣ψ̂b
θ(θ0)

∣∣∣−1
π(θb)

∑B
c=1

∣∣∣ψ̂c
θ(θ0)

∣∣∣−1
π(θc)

=
1
B

1− ab(θ0)√
T

+ πθ(θ0)
π(θ0)

Ab(θ0)√
T

+ eb(θ0)
T + op(

1
T )

1− a(θ0)√
T

+ πθ(θ0)
π(θ0)

A(θ0)√
T

+ e(θ0)
T + op(

1
T )

=
1
B

(
1− ab(θ0)√

T
+

πθ(θ0)

π(θ0)

Ab(θ0)√
T

+
eb(θ0)

T
+ op(

1
T
)

)(
1 +

a(θ0)√
T
− πθ(θ0)

π(θ0)

A(θ0)√
T
− e(θ0)

T
+ op(

1
T
)

)

=
1
B

(
1− ab(θ0)− a(θ0)√

T
+

πθ(θ0)

π(θ0)

Ab(θ0)− A(θ0)√
T

+
eb(θ0)− e(θ0)

T
− ab(θ0)a(θ0)

T
−

π a(θ0)
π(θ0)

Ab(θ0)
πθ(θ0)
π(θ0)

A(θ0)

T

+
πθ(θ0)

π(θ0)

ab(θ0)A(θ0)

T
+

πθ(θ0)

π(θ0)

a(θ0)Ab(θ0)

T
+ op(

1
T
)
)

.

Hence the posterior mean is θLT = ∑B
b=1 wb(θb)θb and θb =

(
θ0 +

Ab(θ0)√
T

+ Cb(θ0)
T + op(

1
T )
)

.
After simplification, we have

θLT = θ0 +
A(θ0)√

T
+

C(θ0)

T
− 1

B

B

∑
b=1

(ab(θ0)− a(θ0))Ab(θ0)

T
−

[πθ(θ0)
π(θ0)

A(θ0)]
2θ0

T

+
1
B

πθ(θ0)

π(θ0)

B

∑
b=1

(Ab(θ0)− A(θ0))Ab(θ0)

T

− a(θ0)
2θ0

T
+ 2

πθ(θ0)

π(θ0)

a(θ0)A(θ0)θ0

T
+ op(

1
T
)

= θ0 +
A(θ0)√

T
+

C(θ0)

T
+

πθ(θ0)

π(θ0)

1
B

B

∑
b=1

(Ab(θ0)− A(θ0))Ab(θ0)

T
+ CM(θ0) + op(

1
T
),

where all terms are based on Ab(θ0) defined in (.0.1) and Cb(θ0) in (.0.2).

Results for SLT:

From

ψ̂b(θ) =
1
S

S

∑
s=1
ψ̂s(θ) +

Ab
∞(θ)√

T

ψ̂s(θ) = ψ(θ) +
As(θ)√

T
+
Cs(θ)

T
+ op(

1
T
)

θb = θ0 +
Ab(θ0)√

T
+

Cb(θ0)

T
+ op(

1
T
),
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we have

ψ̂s(θb) =
1
S

S

∑
s=1
ψ̂s
(
θ0 +

Ab(θ0)√
T

+
Cb(θ0)

T
+ op(

1
T
)

)
+
Ab

∞(θ0 +
Ab(θ0)√

T
+ Cb(θ0)

T + op(
1
T ))√

T

= ψ(θ0) +
1
S

S

∑
s=1

As(θ0)√
T

+
Ab

∞(θ0)√
T

+ψθ(θ0)
Ab(θ0)√

T
+

1
S

S

∑
s=1

As
θ(θ0)Ab(θ0)

T
+
Ab

∞,θ(θ0)Ab(θ0)

T

+
1
S

S

∑
s=1

Cs(θ0)

T
+

1
2

K

∑
j=1
ψθ,θj

(θ0)
Ab(θ0)Ab

j (θ0)

T
+ψθ(θ0)

Cb(θ0)

T
+ op(

1
T
).

Thus,

Ab(θ0) =
[
ψθ(θ0)

]−1
(
A(θ0)−

1
S

S

∑
s=1
A

s(θ0)−Ab
∞(θ0)

)
(.0.1)

Cb(θ0) =
[
ψθ(θ0)

]−1
(
C(θ0)−

1
S

S

∑
s=1
C

s(θ0)−
1
2

K

∑
j=1
ψθ,θj(θ0)Ab(θ0)Ab

j (θ0)

)

−
[
ψθ(θ0)

]−1
[

1
S

S

∑
s=1
Aθs(θ0)+Ab

∞,θ(θ0)

]
Ab(θ0). (.0.2)

Note that we have Ab
∞ ∼ N while As d→ N . To compute the weight for draw b, consider

ψ̂b(θb) = ψθ

(
θ0 +

Ab(θ0)√
T

+
Cb(θ0)

T
+ op(

1
T
)

)
+

1
S

S

∑
s=1

As
(
θ0 +

Ab(θ0)√
T

+ Cb(θ0)
T + op(

1
T )

)
√

T

+

Ab
∞

(
θ0 +

Ab(θ0)√
T

+ Cb(θ0)
T + op(

1
T )

)
√

T
+

1
S

S

∑
s=1

Cs
(
θ0 +

Ab(θ0)√
T

+ Cb(θ0)
T + op(

1
T )

)
T

+ op(
1
T
)

= ψθ(θ0) +
K

∑
j=1
ψθ,θj

(θ0)
Ab

j (θ0)
√

T
+

1
S

S

∑
s=1

As
θ(θ0)√

T
+
Ab

∞,θ(θ0)√
T

+
1
S

S

∑
s=1

Cs(θ0)

T
+

K

∑
j=1
ψθ,θj

(θ0)
Cb

j (θ0)

T

+
1
S

S

∑
s=1

K

∑
j=1

As
θ,θj

(θ0)Ab
j (θ0)

T
+

K

∑
j=1

Ab
∞,θ,θj

(θ0)Ab
j (θ0)

T
+

1
2

K

∑
j=1

K

∑
k=1

ψθ,θj ,θk
(θ0)

Ab
k(θ0)Ab

j (θ0)

T
+ op(

1
T
).

Let:

Ab(θ0) =
[
ψθ(θ0)

]−1
(

1
S

S

∑
s=1
A

s
θ(θ0) +A

b
∞,θ(θ0) +

K

∑
j=1
ψθ,θj

Ab
j (θ0)

)

Cb(θ0) =
[
ψθ(θ0)

]−1
(

1
S

S

∑
s=1
C

s(θ0) +
K

∑
j=1

[
ψθ,θj

(θ0)Cb
j (θ0) +

1
S

S

∑
s=1
A

s
θ,θj

(θ0)Ab
j (θ0) +A

b
∞,θ,θj

(θ0)Ab
j (θ0)

])

+
[
ψθ(θ0)

]−1
(

1
2

K

∑
j,k=1

ψθ,θj ,θk
(θ0)Ab

k(θ0)Ab
j (θ0)

)
ab(θ0) = trace(Ab(θ0)), ab

2(θ0) = trace(Ab(θ0)
2), cb(θ0) = trace(Cb(θ0)).

The determinant is∣∣∣ψ̂b(θb)
∣∣∣−1

=
∣∣∣ψθ(θ0)

∣∣∣−1
(

1− ab(θ0)√
T
− ab

2(θ0)

T
− cb(θ0)

T
+ op(

1
T
)

)
.
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Hence∣∣∣ψ̂b(θb)
∣∣∣−1

π(θb) =
∣∣∣ψθ(θ0)

∣∣∣−1
π(θ0)

(
1− ab(θ0)√

T
−

ab
2(θ0)

T
− cb(θ0)

T
+ op(

1
T
)

)

×
(

1 +
πθ(θ0)

π(θ0)

Ab(θ0)√
T

+
πθ(θ0)

π(θ0)

Cb(θ0)

T
+

1
2

K

∑
j=1

πθ,θj
(θ0)

π(θ0)

Ab(θ0)Ab
j (θ0)

T
+ op(

1
T
)

)

=
∣∣∣ψθ(θ0)

∣∣∣−1
π(θ0)

(
1− ab(θ0)√

T
+

πθ(θ0)

π(θ0)

Ab(θ0)√
T

+
eb(θ0)

T
+ op(

1
T
)

)

where eb(θ0) = −ab(θ0)
πθ(θ0)
π(θ0)

Ab(θ0)− ab
2(θ0)− cb(θ0)+

πa(θ0)
π(θ0)

Cb(θ0)+
1
2 ∑K

j=1
πθ,θj (θ0)

π(θ0)
Ab(θ0)Ab

j (θ0).
The normalized weights are

wb(θb) =

∣∣∣ψ̂b(θb)
∣∣∣−1

π(θb)

∑B
c=1

∣∣∣ψ̂c(θc)
∣∣∣−1

π(θc)

=
1
B

(
1− ab(θ0)√

T
+

πθ(θ0)

π(θ0)

Ab(θ0)√
T

+
eb(θ0)

T
+ op(

1
T
)

)(
1 +

a(θ0)√
T
− πθ(θ0)

π(θ0)

A(θ0)√
T
− e(θ0)

T
+ op(

1
T
)

)
.

The posterior mean θSLT = ∑B
b=1 wb(θb)θb with θb = θ0 +

Ab(θ0)√
T

+ Cb(θ0)
T + op(

1
T ). After

some simplification,

θSLT = θ0 +
A(θ0)√

T
+

C(θ0)

T
+

πθ(θ0)

π(θ0)

1
B

B

∑
B=1

(Ab(θ0)− A(θ0))Ab(θ0)

T
− 1

B

B

∑
b=1

(ab(θ0)− a(θ0))Ab(θ0)

T

+2
πθ(θ0)

π(θ0)

a(θ0)A(θ0)θ0

T
− a2(θ0)θ0

T
− [

πθ(θ0)

π(θ0)
A(θ0)]

2 θ0

T
+ op(

1
T
)

= θ0 +
A(θ0)√

T
+

C(θ0)

T
+

πθ(θ0)

π(θ0)

1
B

B

∑
B=1

(Ab(θ0)− A(θ0))Ab(θ0)

T
+ CM(θ0) + op(

1
T
)

where terms in A and C are defined from (.0.1) and (.0.2).
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Results For The Example in Section 6.1

The data generating process is yt = m0 + σ0et, et ∼ iid N (0, 1). As a matter of nota-

tion, a hat is used to denote the mode, a bar denotes the mean, superscript s denotes

a specific draw and a subscript S to denote average over S draws. For example, eS =
1

ST ∑S
s=1 ∑T

t=1 es
t =

1
S ∑S

s=1 es.

MLE: Define e = 1
T ∑T

t=1 et. Then the mean estimator is m̂ = m0 + σ0e ∼ N(0, σ2
0 /T).

For the variance estimator, ê = y − m̂ = σ0(e − e) = σ0Me, M = IT − 1(1′1)−11′ is an

idempotent matrix with T − 1 degrees of freedom. Hence σ̂2
ML = ê′ ê/T ∼ σ2

0 χ2
T−1.

BC: Expressed in terms of sufficient statistics (m̂, σ̂2), the joint density of y is

p(y; m, σ2) = (
1

2πσ2 )
T/2 exp

(
− ∑T

t=1(m− m̂)2

2σ2 × −Tσ̂2

2σ2

)
.

The flat prior is π(m, σ2) ∝ 1. The marginal posterior distribution for σ2 is p(σ2|y) =∫ ∞
−∞ p(y|m, σ2)dm. Using the result that

∫ ∞
−∞ exp(− T

2σ2 (m− m̂)2)dm =
√

2πσ2, we have

p(σ2|y) ∝ (2πσ2)−(T−1)/2 exp(−Tσ̂2/2σ2) ∼ invΓ
(

T − 3
2

,
Tσ̂2

2

)
.

The mean of an invΓ(α, β) is β
α−1 . Hence the BC posterior is σ2

BC = E(σ2|y) = σ̂2 T
T−5 .

SMD: The estimator equates the auxiliary statistics computed from the sample with

the average of the statistics over simulations. Given σ, the mean estimator m̂S solves

m̂ = m̂S + σ 1
S ∑S

s=1 es. Since we use sufficient statistics, m̂ is the ML estimator. Thus,

m̂S ∼ N (m, σ2
0

T + σ2

ST ). Since ys
t − ys

t = σ(es
t − es), the variance estimator σ̂2

S is the σ2 that

solves σ̂2 = σ2( 1
ST ∑S

s=1 ∑T
t=1(e

s
t − es)2) Hence

σ̂2
S =

σ̂2

1
ST ∑s ∑t(ês

t − es)2
= σ2 χ2

T−1/T
χ2

S(T−1)/(ST)
= σ2FT−1,S(T−1).

The mean of a Fd1,d2 random variable is d2
d2−2 . Hence E(σ̂2

SMD) = σ2 (T−1)
S(T−1)−2 .

LT: The LT is defined as

pLT(σ
2|σ̂2) ∝ 1σ2≥0 exp

(
−T

2

(
σ̂2 − σ2)2

2σ̂4

)
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which implies

σ2|σ̂2 ∼LT N
(

σ̂2,
2σ̂4

T

)
truncated to [0,+∞[.

For X ∼ N (µ, σ2) we have E(X|X > a) = µ +
φ(

a−µ
σ )

1−Φ(
a−µ

σ )
σ (Mills-Ratio). Hence:

ELT(σ
2|σ̂2) = σ̂2 +

φ( 0−σ̂2
√

2/Tσ̂2 )

1−Φ( 0−σ̂2√
2/Tσ̂2 )

√
2/Tσ̂2 = σ̂2

(
1 +

√
2
T

φ(−
√

T/2)
1−Φ(−

√
T/2)

)
.

Let κLT =
√

2
T

φ(−
√

T/2)
1−Φ(−

√
T/2)

. We have ELT(σ
2|σ̂2) = σ̂2 (1 + κLT) . The expectation of the

estimator is

E
(

ELT(σ
2|σ̂2)

)
= σ2 T − 1

T
(1 + κLT)

from which we deduce the bias of the estimator

E
(

ELT(σ
2|σ̂2)

)
− σ2 = σ2

(
T − 1

T
κLT −

1
T

)
.

The variance of the estimator is 2σ4 T−1
T2 (1 + κLT)

2 and the Mean-Squared Error (MSE)

σ4

(
2

T − 1
T2 (1 + κLT)

2 +

(
T − 1

T
κLT −

1
T

)2
)

which is the squared bias of MLE plus terms that involve the Mills-Ratio (due to the

truncation).

SLT: The SLT is defined as

pSLT(σ
2|σ̂2) ∝ 1σ2≥0 exp

−T
2

(
σ̂2 − σ2 χ2

S(T−1)
ST

)2

2σ̂4

 = 1σ2≥0 exp

−T[
χ2

S(T−1)
ST ]2

2

(
σ̂2/

χ2
S(T−1)
ST − σ2

)2

2σ̂4


where

σ̂2
S = σ2 1

S

2

∑
s=1

1
T

T

∑
t=1

(es
t − es)2 = σ2

χ2
S(T−1)

ST
.

This yields the slightly more complicated formula

σ2|σ̂2, (es)s=1,...,S ∼ N
(

σ̂2/
χ2

S(T−1)

ST
,

2σ̂4

T
[

ST
χ2

S(T−1)

]2
)
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and the posterior mean becomes

ESLT(σ
2|σ̂2) = σ̂2 ST

χ2
S(T−1)

+

φ

− σ̂2ST/χ2
S(T−1)√

2σ̂4
T ( ST

χ2
S(T−1)

)2



1−Φ

− σ̂2ST/χ2
S(T−1)√

2σ̂4
T ( ST

χ2
S(T−1)

)2


√

2/T
ST

χ2
S(T−1)

σ̂2

= σ̂2 ST
χ2

S(T−1)

+
φ
(
−
√

T/2
)

1−Φ
(
−
√

T/2
)√2/T

ST
χ2

S(T−1)

σ̂2.

Let κSLT = φ(−
√

T/2)
1−Φ(−

√
T/2)

√
2/T ST

χ2
S(T−1)

= κLT
ST

χ2
S(T−1)

(random). We can compute

E
(

ESLT(σ
2|σ̂2)

)
= σ2 S(T − 1)

S(T − 1)− 2
+ σ2 T − 1

T
E(κSLT)

and the bias

E
(

ESLT(σ
2|σ̂2)

)
− σ2 = σ2 2

S(T − 1)− 2
+ σ2 T − 1

T
E(κSLT)

which is the bias of SMD and the Mills-Ratio term that comes from taking the mean of the

truncated normal rather than the mode. The variance is similar to the LT and the SMD

2σ4κ1
1

T − 1
+ 2σ4V(κSLT) + 4σ4 T − 1

T2 Cov(κSLT,
S

χ2
S(T−1)

).

The extra term is due to κSLT being random. We could simplify further noting that κSLT =

κLT
ST

χ2
S(T−1)

, E(κSLT) = κLT
ST

S(T−1)−2 , V(κSLT) = κ2
LT

S2T2

(S(T−1)−2)2(S(T−1)−4) and Cov(κSLT, S
χ2

S(T−1)
) =

κLTS2TV(1/χ2
S(T−1)) = κLT

S2T
(S(T−1)−2)2(S(T−1)−4) .

The MSE is

σ4
[

2
S(T − 1)− 2

+
T − 1

T
E(κSLT)

]2

+ 2σ4κ1
1

T − 1
+ 2σ4V(κSLT) + 4σ4 T − 1

T2 Cov(κSLT,
S

χ2
S(T−1)

)

= 2σ4
[

2
[S(T − 1)− 2]2

+ κ1
1

T − 1

]
︸ ︷︷ ︸

MSE of SMD

+
(T − 1)2

T2 E(κ2
SLT +

4σ4

S(T − 1)− 2
T − 1

T
E(κSLT)

+2σ4V(κSLT) + 4σ4 T − 1
T2 Cov(κSLT,

S
χ2

S(T−1)

).
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RS: The auxiliary statistic for each draw of simulated data is matched to the sample

auxiliary statistic. Thus, m̂ = mb + σbeb. Thus conditional on m̂ and σ2,b, mb = m̂− σbeb ∼
N (0, σ2,b/T). For the variance, σ̂2,b = σ2,b ∑t(eb

t − eb)2/T. Hence

σ2,b =
σ̂2

∑t(eb
t − eb)2/T

= σ2 ∑t(et − e)2/T

∑t(eb
t − eb)2/T

∼ invΓ
(

T − 1
2

,
Tσ̂2

2

)

Note that pBC(σ
2|σ̂2) ∼ invΓ

(
T−3

2 , Tσ̂2

2

)
under a flat prior, the Jacobian adjusts to the

posterior to match the true posterior. To compute the posterior mean, we need to compute

the Jacobian of the transformation: |ψ
θ|−1= ∂σ2,s

∂σ̂2

46. Since σ2,b = Tσ̂2

∑t(eb
t−eb)2 , |ψθ|−1= T

∑t(e
b
t−eb)2

.

Under the prior p(σ2,s) ∝ 1, the posterior mean without the Jacobian transformation

is

σ2 = σ2 1
B

B

∑
b=1

∑t(et − e)2/T

∑t(eb
t − eb)2/T

B→∞−→ σ̂2 T
T − 3

The posterior mean after adjusting for the Jacobian transformation is

σ2
RS =

∑B
b=1 σ2,b · T

∑t(eb
t−eb)2

∑B
b=1 1/σ2,b

= σ̂2
∑b(

T
∑t(eb

t−eb)2 )
2

∑b=1 ∑t(eb
t − eb)2/T

= Tσ̂2
1
B ∑b(zb)2

1
B ∑b zb

where 1/zb = ∑t(eb
t − eb)2. As B → ∞, 1

B ∑b(zb)2 p−→E[(zb)2] and 1
S ∑b zb p−→E[zb]. Now

zb ∼ invχ2
T−1 with mean 1

T−3 and variance 2
(T−3)2(T−5) giving E[(zb)2] = 1

(T−3)(T−5) .

Hence as B→ ∞, σ2
RS,R = σ̂2 T

T−5 = σ2
BC.

Derivation of the Bias Reducing Prior The bias of the MLE estimator has E(σ̂) = σ2 −
1
T σ2 and variance V(σ̂2) = 2σ4( 1

T −
1

T2 ). Since the auxiliary parameters coincide with
the parameters of interest, ∇θψ(θ) and ∇θθ′ψ(θ) = 0. For Z ∼ N (0, 1), A(v; σ2) =√

2σ2(1− 1
T )Z, Thus ∂σ2 A(v; σ2) =

√
2(1− 1

T )Z, as =
√

2σ2(1− 1
T )(Z − Zs). The terms

in the asymptotic expansion are therefore

∂σ2 A(vs; σ2)as = 2σ2(1− 1
T
)2Zs(Z− Zs)⇒ E(∂σ2 A(vs; σ2)as) = −σ22(1− 1

T
)2

V(as) = 4σ4(1− 1
T
)2

cov(as, as′) = 2(1− 1
T
)2σ4

(1− 1
S
)V(as) +

S− 1
S

cov(as, as′) = σ4(1− 1
T
)2
(

4(1− 1
S
) + 2

S− 1
S

)
=

σ2S
3(S− 1)

46This holds because σ̂2,b(σ2,b) = σ̂2 so that |dσ̂2,b/dσ2,b|−1 = |dσ2,b/dσ̂2|.
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Noting that |∂σ̂2σ2,b| ∝ σ2,b, it is analytically simpler in this example to solve for the

weights directly, i.e. w(σ2) = π(σ2)|∂σ̂2σ2,b| rather than the bias reducing prior π itself.

Thus the bias reducing prior satisfies

∂σ2w(σ2) =
−2σ2(1− 1

T )
2

σ4(1− 1
T )

2
(

4(1− 1
S ) + 2S−1

S

) = − 1
σ2

2
4(1− 1

S ) + 2S−1
S

.

Taking the integral on both sides we get:

log(w(σ2)) ∝ − log(σ2)⇒ w(σ2) ∝
1
σ2 ⇒ π(σ2) ∝

1
σ4

which is the Jeffreys prior if there is no re-weighting and the square of the Jeffreys prior

when we use the Jacobian to re-weight. Since the estimator for the mean was unbiased,

π(m) ∝ 1 is the prior for m.

The posterior mean under the Bias Reducing Prior π(σ2,s) = 1/σ4,s is the same as the

posterior without weights but using the Jeffreys prior π(σ2,s) = 1/σ2,s:

σ2
RS =

∑S
s=1 σ2,s(1/σ2,s)

∑S
s=1 1/σ2,s

=
S

∑S
s=1 1/σ2,s

= σ2 ∑T
t=1(et − e)2/T

∑S
s=1 ∑T

t=1(e
s
t − es)2/(ST)

≡ σ̂2
SMD.
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Further Results for Dynamic Panel Model with Fixed

Effects

Table .0.1: Dynamic Panel ρ = 0.9, β = 1, σ2 = 2

Mean over 1000 replications

MLE LT SLT SMD ABC RS Bootstrap

Mean 0.751 0.751 0.895 0.898 0.889 0.899 0.751

ρ̂ : SD 0.030 0.030 0.026 0.025 0.025 0.025 0.059

Bias -0.149 -0.149 -0.005 -0.002 -0.011 -0.001 -0.149

Mean 0.934 0.934 0.998 1.000 0.996 1.000 0.935

β̂ : SD 0.070 0.071 0.074 0.073 0.073 0.073 0.139

Bias -0.066 -0.066 -0.002 0.000 -0.004 0.000 -0.065

Mean 1.857 1.865 1.972 1.989 2.054 2.097 1.858

σ̂2 : SD 0.135 0.141 0.145 0.145 0.151 0.153 0.269

Bias -0.143 -0.135 -0.028 -0.011 0.054 0.097 -0.142

S – – 500 500 1 1 500

B – 500 500 – 500 500 –

See note to Table 3.
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Appendix to Chapter 3

Background Material

The Characteristic Function and Some of its Properties

The joint characteristic function (CF) of (yt, xt) is defined as

ψ : τ → E
(

eiτ′(yt,xt)
)
= E

(
cos(τ′(yt, xt)) + isin(τ′(yt, xt))

)
.

An important result for the CF is that the mapping between distribution and CF is bijec-

tive: two CFs are equal if, and only if they come from the same distribution f1 = f2 ⇔
ψ f1 = ψ f2 . The characteristic function has several other attractive features:

i. Existence: The CF is well defined for any probability distribution: it can be com-

puted even if no moment of (yt, xt) exist.

ii. Boundedness: The CF is bounded |ψ(τ)| ≤ 1 for any distribution. As a result, the

objective function Q̂S
n is always well defined assuming the density π is integrable.

iii. Continuity in f : The CF is continuous in the distribution fn → f0 impliesψ fn → ψ f0 .

iv. Continuity in τ: The CF is continuous in τ.

The continuity properties are very useful when the data yt does not have a continuous

density, e.g. discrete, but the density of the shocks f is continuous as in Example 2. For

instance, the data generated by:

yt = 1x′tθ+et≥0

is discrete but its conditional characteristic function is continuous in both f and θ:

E
(

eiτyyt |xt

)
= 1− F(x′tθ) + F(x′tθ)e

iτy ,

where F is the CDF of et ∼ f . As a result, the joint CF is also continuous:

E
(

eiτ(yt,xt)
)
= E

(
eiτxxt [1− F(x′tθ) + F(x′tθ)e

iτy ]
)

.

The empirical CDF however is not continuous. As a result, a population objective Q

based on the CF is continuous but the one based on a CDF is not.
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Computing the Sample Objective Function Q̂S
n

This section discusses the numerical implementation of the Sieve-SMM estimator. First,

several transformations are used to normalize the weights ω and impose restrictions such

as mean zero ∑j ωjµj = 0 and unit variance ∑j ωj(µ
2
j + σ2

j ) = 1 without requiring con-

strained optimization. For the weights, take k− 1 unconstrained parameters ω̃ and apply

the transformation:

ω1 =
1

1 + ∑k−1
`=1 eω̃`

, ωj =
eω̃j−1

1 + ∑k−1
`=1 eω̃`

for j = 2, . . . , k.

The resulting ω1, . . . , ωk are positive and sum to one. To impose a mean zero restriction

take µ2, . . . , µk unconstrained and compute:

µ1 = −
∑k

j=2 ωjµj

ω1

The mixture has mean zero by construction. In practice, it is assumed that σj ≥ σk. Take

unconstrained σ̃1, . . . , σ̃k and compute:

σj = σk + eσ̃j .

The resulting σj are greater or equal than the lower bound σk ≥ 0. To impose unit vari-

ance, restrict σ̃1 = 0 and then divide µ, σ by
√

∑j ωj(µ
2
j + σ2

j ): standardized this way, the

mixture has unit variance.

Once the parameters ω, µ, σ are appropriately transformed and normalized, the mix-

ture draws es
t can be simulated, and then ys

t itself is simulated. Numerical integration is

used to approximate the sample objective function Q̂S
n. For an integration grid τ1, . . . , τm

with weights π1, . . . , πm compute the vectors:

ψ̂n = (ψ̂n(τ1), . . . , ψ̂n(τm))
′, ψ̂S

n = (ψ̂S
n(τ1), . . . , ψ̂S

n(τm))
′

and the objective:

Q̂S
n(β) = (ψ̂n − ψ̂S

n)
′diag(π1, . . . , πm)(ψ̂n − ψ̂S

n).

In practice, the objective function is computed the same as for a parametric SMM estima-

tor. If a linear operator B is used to weight the moments, then the finite matrix approxima-

tion Bm is computed on τ1, . . . , τm and the objective becomes (ψ̂n− ψ̂S
n)
′B′diag(π1, . . . , πm)(ψ̂n−

ψ̂S
n)
′; a detailed overview on computing the objective function with a linear operator B,

using quadrature, is given in the appendix of Carrasco & Kotchoni (2016).
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Local Measure of Ill-Posedness

The following provides the derivations for Remark 1. Recall that the simple model con-

sists of:

f1,k(n)(e) = σ−1
k(n)φ(

e
σk(n)

), f2,k(n)(e) = σ−1
k(n)φ(

e− µk(n)

σk(n)
).

The only difference between the two densities is the location parameter µk(n) in f2,k(n).

The total variance, weak and supremum distances between f1,k(n) and f1,k(n) are given

below:

i. Distance in the Weak Norm

The distance between f1 and f2 in the weak norm is:

‖ f1 − f2‖2
weak = 2

∫
e−σ2

k(n)τ
2
sin(τµk(n))

2π(τ)dτ.

When µk(n) → 0, sin(τµk(n))
2 → 0 as well. By the dominated convergence theorem

this implies that ‖ f1,k(n) − f2,k(n)‖weak → 0 as µk(n) → 0 regardless of the sequence

σk(n) > 0. The rate at which the distance in weak norm goes to zero when µk(n) → 0

can be approximated using the power series for the sine function ‖ f1 − f2‖weak =

|µk(n)|
√

2
∫

e−σ2
k(n)τ

2
τ2π(τ)dτ + o(|µk(n)|). For µk(n) → 0, the distance in weak norm

declines linearly in µk(n). For a specific choice of sequence (µk(n)) the total variation

and supremum distances can be shown to be bounded below. As a result, the ratio

with the distance in weak norm is proportional to |µk(n)|−1 → +∞.

ii. Total Variation Distance

The total variation distance between f1,k(n) and f2,k(n) is bounded below and above

by47:

1− e
−

µ2
k(n)

8σk(n) ≤ ‖ f1 − f2‖TV ≤
√

2

1− e
−

µ2
k(n)

8σk(n)

1/2

.

For any ε > 0, one can pick µk(n) = ±σk(n)
√
−8 log(1− ε2) so that ‖ f1,k(n) −

f2,k(n)‖TV ∈ [ε2/2, ε]. However, for the same choice of µk(n), the paragraph above

47The bounds make use of the relationship between the Hellinger distance H( f1, f2): H( f1, f2)
2 ≤ ‖ f1 −

f2‖TV ≤
√

2H( f1, f2). The Hellinger distance between two univariate Gaussian densities is available in

closed-form: H( f , g)2 = 1−
√

2σf σg

σ2
f +σ2

g
e
− 1

4
(µ f −µg)2

(σ2
f +σ2

g ) .
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implies that ‖ f1,k(n) − f2,k(n)‖weak → 0 as σk(n) → 0. The ratio goes to infinity when

σk(n) → 0:

‖ f1,k(n) − f2,k(n)‖TV

‖ f1,k(n) − f2,k(n)‖weak
≥ σ−1

k(n)
1√

2ε
√
−8 log(1− ε2)

iii. Distance in the Supremum Norm

Using the intermediate value theorem the supremum distance can be computed as:

‖ f1,k(n) − f2,k(n)‖∞ = supe∈R

1
σk(n)

∣∣∣∣∣φ
(

e
σk(n)

)
− φ

(
e− µk(n)

σk(n)

)∣∣∣∣∣
= supẽ∈R

|µk(n)|
σ2

k(n)

∣∣∣∣∣φ′
(

ẽ
σk(n)

)∣∣∣∣∣ = |µk(n)|
σ2

k(n)
‖φ′‖∞

For any ε > 0, pick µk = ±εσ2
k(n)/‖φ

′‖∞ then the distance is supremum norm is

fixed, ‖ f1,k(n)− f2,k(n)‖∞ = ε, for any strictly positive sequence σk(n) → 0. However,

the distance in weak norm goes to zero, again the ratio goes to infinity when σk(n) →
0:

‖ f1,k(n) − f2,k(n)‖∞

‖ f1,k(n) − f2,k(n)‖weak
≥ σ−2

k(n)ε‖φ
′‖∞

The degree of ill-posedness depends on the bandwidth σk(n) in both cases. In order to

achieve the approximation rate in Lemma 2, the bandwidth σk(n) must be O(log[k(n)]2/b/k(n)).

As a result the local measures of ill-posedness for the total variation and supremum dis-

tances are:

τTV,n = O
(

k(n)
log[k(n)]2/b

)
, τ∞,n = O

(
k(n)2

log[k(n)]4/b

)
.

Identification in the Stochastic Volatility Model

This section provides an identification result for the SV model in the first empirical appli-

cation:

yt = µy + ρyyt−1 + σtet,1, et,1
iid∼ f

σ2
t = µσ + ρσσ2

t−1 + κσet,2

with the restriction et,1 ∼ (0, 1), |ρy|, |ρσ| < 1 and et,2 follows a known distribution

standardized to have mean zero and unit variance.48 Suppose the CF ψ̂n includes yt

48This assumption makes the derivations easier in terms of notation.
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and two lagged observations (yt−1, yt−2) and that the moment generating functions of

(yt, yt−1, yt−2) and et,1 are analytic so that all the moments are finite and characterise the

density. Suppose that for two sets of parameters β1, β2 we have: Q(β1) = Q(β2) = 0.

This implies that π almost surely:

E(ψ̂s
n(τ, β1)) = E(ψ̂s

n(τ, β2)), ∀τ ∈ R3. (.0.1)

Using the notation τ = (τ1, τ2, τ3) this implies that for any integers `1, `2, `3 ≥ 0:

i`1+`2+`3Eβ1(y
`1
t y`2

t−1y`3
t−2) =

d`1+`2+`3E(ψ̂s
n(τ, β1))

dτ`1
1 dτ`2

2 dτ`3
3

∣∣∣
τ=0

=
d`1+`2+`3E(ψ̂s

n(τ, β2))

dτ`1
1 dτ`2

2 dτ`3
3

∣∣∣
τ=0

= i`1+`2+`3Eβ2(y
`1
t y`2

t−1y`3
t−2)

In particular for `1 = 1, `2 = 0, `3 = 0, it implies µy,1 = µy,2 so that the mean is identified.

Then, taking `1 = 2, `2 = 0, `3 = 0 implies that Eβ1(σ
2
t )/(1− ρ2

y,1) = Eβ2(σ
2
t )/(1− ρ2

y,2).

For `1 = `2 = 1, `3 = 0 it implies ρy,1Eβ1(σ
2
t )/(1− ρ2

y,1) = ρy,2Eβ2(σ
2
t )/(1− ρ2

y,2) which,

given the result above implies ρy,1 = ρy,2 and then Eβ1(σ
2
t ) = Eβ2(σ

2
t ). The latter implies

µσ,1/(1− ρσ,1) = µσ,2/(1− ρσ,2). Taking `1 = 2, `2 = 2, `3 = 0 and `1 = 2, `2 = 0, `3 = 0

implies two additional moment conditions (after de-meaning):49 ρσ,1κ2
σ,1/(1 − ρ2

σ,1) =

ρσ,2κ2
σ,2/(1− ρ2

σ,2) and ρ2
σ,1κ2

σ,1/(1− ρ2
σ,1) = ρ2

σ,2κ2
σ,2/(1− ρ2

σ,2). If ρσ,1, ρσ,2 6= 0 this imples

ρσ,1 = ρσ,2 and κσ,1, κσ,2 and also µσ,1 = µσ2 .

Overall if ρσ 6= 0, then condition (.0.1) implies θ1 = θ2, the parametric component is

identified. Since θ is identified, all the moments of σt are known. After recentering, this

implies that for all `1 ≥ 3 if E
θ(σ

`1
t ) 6=0

:

E f1(e
`1
t,1) = E f1(e

`1
t,2). (.0.2)

If σt is non-negative, which is implied by e.g. et,2 ∼ χ2
1 and parameter constraints, then all

moments are stictly positive so that (.0.2) holds. Since the moment generating function is

analytic and the first two moments are fixed, (.0.2) implies f1 = f2. Altogether, if ρσ 6= 0

and σt > 0 then the joint CF of (yt, yt−1, yt−2) identifies β.

Additional Results on Asymptotic Normality

The following provides two additional results on the root-n asymptotic normality of θ̂n.

A positive result is given in Proposition .0.1 and a negative result is given in Remark .0.1.

49Since µy, ρy are identified, it is possible to compute E([yt − µy − ρyyt−1]
2[yt−1 − µy − ρyyt−2]

2) =

E(σ2
t σ2

t−1) from the information given by the CF.
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The results apply to DGPs of the form:50

yt = gobs(yt−1,θ, ut)

ut = glatent(ut−1,θ, et)

where gobs, glatent are smooth in θ. In this class of models, the data depends on f only

through et. Examples 1 and 2 satisfy this restriction but dynamic programming models

typically don’t. The smoothness restriction holds in Example 1 but not Example 2.

Proposition .0.1 (Sufficient Conditions for Asymptotic Normality of θ̂n). If Eθ0, f (ys
t) and

Vθ0, f (ys
t) do not depend on f then θ̂n is root-n asymptotically normal if:

Eθ0, f0

(
dys

t
dθ′

[
( 1 ys′

t
)⊗ Idy

])
has rank greater or equal than dθ when t→ ∞.

Proposition .0.1 provides some sufficient conditions for models where the mean and

the variance of ys
t do not vary with f , this holds for Example 1 but not Example 2. This

condition requires that ys
t varies sufficiently with θ on average to affect the draws. The

proof of the proposition is given at the end of this subsection.

Example 1 (Continued) (Stochastic Volatility). Recall the DGP for th stochastic volatility

model:

yt =
t

∑
j=0

ρ
j
yσt−jet−j,1 σ2

t =
t

∑
j=0

ρ
j
σ(µσ + κσet−j,2).

It is assumed that the initial condition is y0 = σ0 = 0 in the following. To reduce the number

of derivatives to compute, suppose µσ, κσ are known and et−j,2 is normalized so that it has mean

zero and unit variance. During the estimation et,1 is also restricted to have mean zero, unit

variance which implies that the mean of ys
t and its variance do not depent on f . First, compute the

derivatives of ys
t with respect to ρy, ρσ:

dys
t

dρy
=

∞

∑
j=1

jρj−1
y σt−jet−j,1

dys
t

dρσ
= 0.5

∞

∑
j=0

ρ
j
y

dσ2
t−j

dρσ
et−j,1/σt−j where

dσ2
t−j

dρσ
=

t−j

∑
`=1

`ρ`−1
σ (µσ + κσe`,2).

50The regressors xt are omitted here to simplify notation in the proposition and the proof, results with
xt can be derived in a similar way as in this section.
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Both derivatives have mean zero, the derivatives of the lags are zero as well. Hence, E
(

dys
t

dθ′ y
s
t

)
must have rank greater than 2 for Proposition .0.1 to apply. Now, compute a first set of expecta-

tions:

E(
dys

t
dρy

ys
t) =

t

∑
j=1

jρ2j−1
y E(σ2

t−j)

E(
dys

t
dρy

ys
t−1) =

t−1

∑
j=0

(j + 1)ρ2j
y E(σ2

t−j−1)

E(
dys

t
dρy

ys
t−2) =

t−2

∑
j=0

(j + 2)ρ2j+1
y E(σ2

t−j−2)

E(
dys

t−1
dρy

ys
t) =

t−1

∑
j=1

jρ2j
y E(σt−j−1)

E(
dys

t−2
dρy

ys
t) =

t−2

∑
j=1

jρ2j+1
y E(σt−j−2).

The remaining expectation for ρy can be deduced from the expectations above. Since E(
dys

t
dρy

ys
t−1) >

0, these expectations are not all equal to zero as long as E(σ2
t ) > 0. If ρσ was known then the rank

condition would hold. For the second set of expectations:

E(
dys

t
dρσ

ys
t) =

t

∑
j=0

ρ
j
yE(

dσ2
t−j

dρσ
) =

t

∑
j=0

ρ
j
y

t−j

∑
`=1

`ρ2`−1
σ µσ

E(
dys

t
dρσ

ys
t−1) =

t

∑
j=1

ρ
j+1
y E(

dσ2
t−j

dρσ
) =

t

∑
j=1

ρ
j+1
y

t−j

∑
`=1

`ρ2`−1
σ µσ

E(
dys

t
dρσ

ys
t−2) =

t

∑
j=2

ρ
j+2
y E(

dσ2
t−j

dρσ
) =

t

∑
j=1

ρ
j+1
y

t−j

∑
`=1

`ρ2`−1
σ µσ.

The remaining derivatives can be computed similarly. The calculations above imply that the matrix

is full rank only if ρσ 6= 0 and µσ 6= 0 since all the expectations above are zero when either ρσ = 0

or µσ = 0.

Remark .0.1 (θ̂n is generally not an adaptive estimator of θ0). For the estimator θ̂n to be

adaptive51 an orthogonality condition is required, namely:

d2Q(β0)

dθd f
[ f − f0] = 0, for all f ∈ Fosn.

51If the estimator is adaptive then θ̂n is root-n asymptotically normal and its asymptotic variance does
not depend on f̂n, i.e. it has the same asymptotic variance as the CF based parametric SMM estimator with
f0 known.
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For the CF, this amounts to:

lim
n→∞

∫
Real

(
dE(ψ̂s

n(τ, β0))

dθ
dE(ψ̂s

n(τ, β0))

d f
[ f − f0]π(τ)dτ

)
= 0.

Given the restrictions on the DGP and using the notation in the proof of Proposition .0.1, it

implies:

lim
t→∞

∫
Real

(
iτ′

dgt(θ0, e1)

dθ
eiτ′[gt(θ0,e1)−gt(θ0,e2)] f0(e1)∆ f (e2)π(τ)dτde1de2

)
= 0.

After some simplification, the orthogonality condition can be re-written as:

lim
t→∞

∫
τ′

dgt(θ0, e1)

dθ
sin
(
τ′[gt(θ0, e1)− gt(θ, e2)]

)
f0(e1)∆ f (e2)π(τ)dτde1de2 = 0.

This function is even in τ so that it does not average out over τ in general when π is chosen to be

the Gaussian or the exponential density with mean-zero. Hence, the orthogonality condition holds

if the integral of dgt(θ0,e1)
dθ sin (τ′[gt(θ0, e1)− gt(θ, e2)]) f0(e1)∆ f (e2) over e1 and e2 is zero. This

is the case if gt(θ0, e1) is separable in e1 and f0, f are symmetric densities which is quite restrictive.

Proof of Proposition .0.1. Chen & Pouzo (2015), pages 1031-1033 and their Remark A.1, im-

plies that θ̂n is root-n asymptotically normal if:

lim
n→∞

diagv∈V,vθ 6=0
1

‖v
θ‖21

∫ ∣∣∣ dE(ψ̂s
n(τ,β0))
dθ vθ+

dE(ψ̂s
n(τ,β0))
d f [v f ]

∣∣∣2π(τ)dτ>0.

By definition of V the vector v = (vθ,v f )
has the form vθ∈Rdθ and v f = ∑∞

j=0 aj[ f j − f0] for

a sequence (a1, a2, . . . ) in R and ( f1, f2, . . . ) such that (θj, f j) ∈ Bosn for some θj. To prove

the result, we can proceed by contradiction suppose that for some non-zero vθ and a v f :

∫ ∣∣∣dE(ψ̂s
n(τ, β0))

dθ
vθ +

dE(ψ̂s
n(τ, β0))

d f
[v f ]

∣∣∣2π(τ)dτ = 0. (.0.3)

This implies that dE(ψ̂s
n(τ,β0))
dθ vθ +

dE(ψ̂s
n(τ,β0))
d f [v f ] = 0 for all τ (π almost surely). This

implies that the following holds:

dE(ψ̂s
n(0, β0))

dθ
vθ +

dE(ψ̂s
n(0, β0))

d f
[v f ] = 0 (.0.4)

d2E(ψ̂s
n(τ, β0))

dθdτ

∣∣∣
τ=0

vθ +
d2E(ψ̂s

n(τ, β0))

d f dτ
[v f ]

∣∣∣
τ=0

= 0 (.0.5)

d3E(ψ̂s
n(τ, β0))

dθdτdτ`

∣∣∣
τ=0

vθ +
d3E(ψ̂s

n(τ, β0))

d f dτdτ`

∣∣∣
τ=0

[v f ] = 0 (.0.6)
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for all ` = 1, . . . , dy. To simplify notation the following will be used: f (e) = f (e1)× · · · ×
f (et) and ∆ f j(e) = [ fk(e1) − f0(e1)] f0(e2) × · · · × f0(et) + f0(e1)[ f j(e2) − f0(e2)] f0(e3) ×
· · · × f0(et) + · · ·+ f0(e1) . . . f0(et−1)[ f j(et)− f0(et)] and ys

t = gt(θ, es
t , . . . , es

1) (the depen-

dence on x is removed for simplicity). The first order derivatives can be written as:

dE(ψ̂s
t (τ, β0))

dθ
=
∫

iτ′
dgt(θ0, e)

dθ
eiτ′gt(θ0,e) f0(e)de

dE(ψ̂s
t (τ, β0))

d f
[v f ] =

∞

∑
j=0

aj

∫
eiτ′gt(θ0,e)∆ f j(e)de

For τ = 0 this yields dE(ψ̂s
t (0,β0))
dθ = 0 and dE(ψ̂s

t (0,β0))
d f [v f ] = 0, so equality (.0.4) holds

automatically. Taking derivatives and setting τ = 0 again implies:

d2E(ψ̂s
t (τ, β0))

dθdτ

∣∣∣
τ=0

= i
∫ dgt(θ0, e)

dθ′
f0(e)de

d2E(ψ̂s
t (τ, β0))

d f dτ
[v f ]

∣∣∣
τ=0

= i
∞

∑
j=0

aj

∫
gt(θ0, e)∆ f j(e)de

If E(ys
t) does not depend on f then

∫
gt(θ0, e)∆ f j(e)de = 0 for all j and d2E(ψ̂s

t (τ,β0))
d f dτ [v f ]

∣∣∣
τ=0

=

0 holds automatically. This implies that condition (.0.5) becomes:

E

(
dys

t
dθ

)
vθ=0 (.0.7)

If E
(

dys
t

dθ

)
has rank greater or equal than dθ then condition (.0.7) holds only if vθ 6=0; this

is a contradiction. If the rank is less than dθ, then taking derivatives with respect to

τ again yields d3E(ψ̂s
n(0,β0))

d f dτdτ′

∣∣∣
τ=0

[v f ] = −∑∞
j=0 aj

∫
gt(θ, e)gt(θ, e)′∆ f j(e)de = 0 assuming

E(ys
ty

s′
t ) does not depend on f . Computing the other derivatives imply that condition

(.0.6) becomes −vθ′
∫ dg(θ0)

dθ′ g(θ0, e) f0(e)de i.e.:

vθ′E
(

dys
t

dθ′
ys

t,`

)
= 0 for all ` = 1, . . . , dy. (.0.8)

Then, stacking conditions (.0.7)-(.0.8) together implies:

vθ′E
(

dys
t

dθ′

[
( 1 ys′

t
)⊗ Idy

])
= 0. (.0.9)

If the matrix has rank greater or equal to dθ then it implies vθ=0 which is a contradiction.

Hence (.0.3) holds only if vθ=0 which proves the result.
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Proofs for the Main Results

The proofs for the main results allow for a bounded linear operator B, as in Carrasco &

Florens (2000), to weight the moments. In the appendices, the operator is assumed to be

fixed:

Q̂S
n(β) =

∫ ∣∣∣Bψ̂n(τ)− Bψ̂S
n(τ, β)

∣∣∣2π(τ)dτ.

Since B is bounded linear there exists a MB > 0 such that for any two CFs:∫ ∣∣∣Bψ̂n(τ)− Bψ̂S
n(τ, β)

∣∣∣2π(τ)dτ ≤ M2
B

∫ ∣∣∣ψ̂n(τ)− ψ̂S
n(τ, β)

∣∣∣2π(τ)dτ.

As a result, the rate of convergence for the objective function with the weighting B is the

same as the rate of convergence without.52

Properties of the Mixture Sieve

Lemma .0.1 (Kruijer et al. (2010)). Suppose that f is a continuous univariate density satisfying:

i. Smoothness: f is r-times continuously differentiable with bounded r-th derivative.

ii. Tails: f has exponential tails, i.e. there exists e, M f1 , a, b > 0 such that:

f1(e) ≤ M f1e−a|e|b , ∀|e| ≥ e.

iii. Monotonicity in the Tails: f is strictly positive and there exists e < e such that fS is weakly

decreasing on (−∞, e] and weakly increasing on [e, ∞).

Let Fk be the sieve space consisting of Gaussian mixtures with the following restrictions:

iv. Bandwidth: σj ≥ σk = O(
log[k(n)]2/b

k ).

v. Location Parameter Bounds: µj ∈ [−µk, µk].

vi. Growth Rate of Bounds: µk = O
(
log[k]1/b).

Then there exists Πk f ∈ Fk, a mixture sieve approximation of f , such that as k→ ∞:

‖ f −Πk f ‖F = O

(
log[k(n)]2r/b

k(n)r

)

where ‖ · ‖F = ‖ · ‖TV or ‖ · ‖∞.

52For results on estimating the optimal B see Carrasco & Florens (2000); Carrasco et al. (2007a). Using
their method would lead to MB̂ → ∞ as n → ∞ resulting in a slower rate of convergence for β̂n. Further
investigation of this effect and the resulting rate of convergence are left to future research.
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Proof of Lemma 3. :

The difference between es
t and ẽs

t can be split into two terms:

k(n)

∑
j=1

(
1

νs
t∈[∑

j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

)(
µj + σjZs

t,j

)
(.0.1)

k(n)

∑
j=1

1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

(
µj − µ̃j + [σj − σ̃j]Zs

t,j

)
. (.0.2)

To bound the term (.0.1) in expectation, combine the fact that |µj| ≤ µk(n), |σj| ≤ σ and νs
t

and Zs
t,j are independent so that:

[
E

(
sup‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣ k(n)

∑
j=1

(
1

νs
t∈[∑

j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

)(
µj + σjZs

t,j

) ∣∣∣2)]1/2

≤
k(n)

∑
j=1

[
E

(
sup‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∣∣∣2)]1/2 (
µk(n) + σE

(
|Zs

t,j|2
)1/2

)
.

The last term is bounded above by µ + σCZ. Next, note that

1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∈ {−1, 0, 1}

so that:

E

(
sup‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∣∣∣2)
= E

(
sup‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∣∣∣) .

Also, for any j: |∑j
l=0 ω̃l − ∑

j
l=0 ωl| ≤ ∑

j
l=0 |ω̃l − ∑

j
l=0 ωl| ≤

(
∑

j
l=0 |ω̃l −ωl|2

)1/2
≤

‖ω̃−ω‖2 ≤ δ. Following a similar approach to Chen et al. (2003):[
E

(
sup‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∣∣∣)]1/2

≤
[

E

(
sup‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣1
νs

t∈[(∑
j−1
l=0 ω̃l)−δ,(∑

j
l=0 ω̃l)+δ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∣∣∣)]1/2

=

[(
[(

j

∑
l=0

ω̃l) + δ]− [(
j−1

∑
l=0

ω̃l)− δ]− [(
j

∑
l=0

ω̃l)− (
j−1

∑
l=0

ω̃l)]

)]1/2

=
√

2δ.

Overall the term (.0.1) is bounded above by
√

2(1 + CZ)
(

µk(n) + σ + k(n)
)√

δ. The term
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(.0.2) can be bounded above by using the simple fact that 0 ≤ 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

≤ 1 and:

[
E

(
sup‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣ k(n)

∑
j=1

1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

(
µj − µ̃j + [σj − σ̃j]Zs

t,j

) ∣∣∣2)]1/2

≤
k(n)

∑
j=1

[
E

(
sup‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣(µj − µ̃j) + [σj − σ̃j]Zs
t,j

∣∣∣2)]1/2

≤
k(n)

∑
j=1

sup‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

(
|µj − µ̃j|+ |σj − σ̃j|CZ

)
≤ (1 + CZ)sup‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

(
k(n)

∑
j=1
|µj − µ̃j|2 + |σj − σ̃j|2

)1/2

≤ (1 + CZ)δ.

Without loss of generality assume that δ ≤ 1 so that:[
E

(
sup‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣es
t − ẽs

t

∣∣∣2)]1/2

≤ 2
√

2(1 + CZ)
(

1 + µk(n) + σ + k(n)
)

δ1/2.

which concludes the proof.

Lemma .0.2 (Properties of the Tails Distributions). Let ξ ≥ ξ1, ξ2 ≥ ξ > 0. Let νs
t,1 and νs

t,2

be uniform U[0,1] draws and:

es
t,1 = −

(
1

νs
t,1
− 1

) 1
2+ξ1

, es
t,2 =

(
1

1− νs
t,2
− 1

) 1
2+ξ2

.

The densities of es
t,1, es

t,2 satisfy fes
t,1
(e) ∼ e−3−ξ1 as e → −∞, fes

t,2
(e) ∼ e−3−ξ2 as e → +∞.

There exists a finite C bounding the second moments E
(
|es

t,1|2
)
≤ C < ∞ and E

(
|es

t,2|2
)
≤

C < ∞. Furthermore, the draws ys
t,1 and ys

t,2 are L2-smooth in ξ1 and ξ2 respectively:[
E
(

sup|ξ1−ξ̃1|≤δ
|es

t,1(ξ1)− es
t,1(ξ̃1)|2

)]1/2
≤ Cδ[

E
(

sup|ξ2−ξ̃2|≤δ
|es

t,2(ξ2)− es
t,2(ξ̃2)|2

)]1/2
≤ Cδ

Where the constant C only depends on ξ and ξ.

Proof of Lemma .0.2. :

To reduce notation, the t and s subscripts will be dropped in the following. The proof is

similar for both e1 and e2 so the proof is only given for e1.

First, the densities of e1 and e2 are derived, the first two results follow. Noting that the

draws are defined using quantile functions, inverting the formula yields: ν1 = 1
1−e

2+ξ1
1

.
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This is a proper CDF on (−∞, 0] since e1 → 1
1−e

2+ξ1
1

is increasing and has limits 0 at −∞

and 1 at 0. Its derivative is the density function: (2 + ξ1)
e

1+ξ1
1

(1−e
2+ξ1
1 )2

which is continuous on

(−∞, 0] and has an asymptote at −∞: (2 + ξ1)
e

1+ξ1
1

(1−e
2+ξ1
1 )2

× e3+ξ1
1 → (2 + ξ1) as e1 → −∞.

Since ξ1 ∈ [ξ, ξ] with 0 < ξ then E|e1|2 ≤ C < ∞ for some finite C > 0. Similar results

hold for e2 which has density (2 + ξ2)
e1+ξ2

2

(1+e2+ξ2
2 )2

on [0,+∞).

Second, ξ1 → e1(ξ1) is shown to be L2-smooth. Let |ξ1− ξ̃1| ≤ δ, using the mean value

theorem, for each ν1 there exists an intermediate value ξ̌1 ∈ [ξ1, ξ̃1] such that:(
1
ν1
− 1
) 1

2+ξ1 −
(

1
ν1
− 1
) 1

2+ξ̃1
=

1
2 + ξ̌1

log(
1
ν1
− 1)

(
1
ν1
− 1
) 1

2+ξ̌1
(ξ1 − ξ̃1).

The first part is bounded above by 1/(2 + ξ), the second part is bounded above by:

log(
1
ν1

+ 1)
(

1
ν1

+ 1
) 1

2+ξ

and the last term is bounded above, in absolute value, by δ.

Finally, in order to conclude the proof, the following integral needs to be finite:

∫ 1

0
log(

1
ν1

+ 1)
(

1
ν1

+ 1
) 2

2+ξ

dν1.

By a change of variables, it can be re-written as:∫ ∞

2
log(ν)ν

2
2+ξ−2

dν.

Since 2
2+ξ − 2 < −1, the integral is finite and thus:

[
E
(

sup|ξ1−ξ̃1|≤δ
|es

t,1(ξ1)− es
t,1(ξ̃1)|2

)]1/2
≤ δ

2 + ξ

√∫ ∞

2
log(ν)ν

2
2+ξ−2

dν.

Proof of Lemma 2. The proof proceeds by recursion. Denote πk(n) f j ∈ BBk(n) the mixture

approximation of f j from Lemma .0.1. For de = 1, Lemma .0.1 implies

‖ f1 −Πk(n) f1‖TV = O(
log[k(n)]r/b

k(n)r ), ‖ f1 −Πk(n) f1‖∞ = O(
log[k(n)]r/b

k(n)r ).
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Suppose the result holds for f1 × · · · × fde . Let f = f1 × · · · × fde × fde+1; let:

dt+1 = f1 × · · · × fde × fde+1 −Πk(n) f1 × · · · ×Πk(n) fde ×Πk(n) fde+1

dt = f1 × · · · × fde −Πk(n) f1 × · · · ×Πk(n) fde .

The difference can be re-written as a recursion:

dt+1 = dt fde+1 + Πk(n) f1 × · · · ×Πk(n) fde

(
fde+1 −Πk(n) fde+1

)
.

Since
∫

fde+1 =
∫

Πk(n) f1 × · · · ×Πk(n) fde = 1, the total variation distance is:

‖dt+1‖TV ≤ ‖dt‖TV + ‖ fde+1 −Πk(n) fde+1‖TV = O

(
log[k(n)]r/b

k(n)r

)
.

And the supremum distance is:

‖dt+1‖∞ ≤ ‖dt‖∞‖ fde+1‖∞ + ‖Πk(n) f1 × · · · ×Πk(n) fde‖∞‖ fde+1 −Πk(n) fde+1‖∞

≤ ‖dt‖∞

(
‖ fde+1‖∞ + ‖ f1 × · · · × fde‖∞‖ fde+1 −Πk(n) fde+1‖∞

)
= O

(
log[k(n)]r/b

k(n)r

)
.

Definition .0.1 (Pseudo-Norm ‖ · ‖m on Bk(n)). Let β1, β2 ∈ Bk(n) where βl = (θl, fl), l =

1, 2 with f j = f1,j × . . . fde,j, each fl,j as in definition 1. The pseudo-norm ‖ · ‖m is the `2 norm

on (θ, ω, µ, σ, ξ), the associated distance is:

‖β1 − β2‖m = ‖(θ1, ω1, µ1, σ1, ξ1)− (θ2, ω2, µ2, σ2, ξ2)‖2

using the vector notation ω1 = (ω1,1, . . . , ω1,k(n)+2, . . . , ωde,1, . . . , ωde,k(n)+2) for θ, ω, µ, σ, ξ.

Remark .0.1. Using lemma 6 in Kruijer et al. (2010), for any two mixtures f1, f2 in Bk(n):

‖ f1 − f2‖∞ ≤ C∞
‖ f1 − f2‖m

σ2
k(n)

, ‖ f1 − f2‖TV ≤ CTV
‖ f1 − f2‖m

σk(n)

for some constants C∞, CTV > 0. The result extends to de > 1, for instance when de = 2:

f 1
1 f 2

1 − f 1
2 f 2

2 = f 1
1 ( f 2

1 − f 2
2 ) + ( f 2

1 − f 1
2 ) f 2

2

In total variation distance the difference becomes:

‖ f 1
1 f 2

1 − f 1
2 f 2

2 ‖TV ≤ = ‖ f 2
1 − f 2

2 ‖TV + ‖ f 2
1 − f 1

2 ‖TV

≤ CTV
‖ f 2

1 − f 2
2 ‖m + ‖ f 2

1 − f 1
2 ‖m

σk(n)
≤ CTV,2

‖ f1 − f2‖m

σk(n)
.

A recursive argument yields the result for arbitrary de > 1. In supremum distance a similar result

holds assuming ‖ f j
1‖∞, ‖ f j

2‖∞, with j = 1, 2, are bounded above by a constant.
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Consistency

Assumption 2′ (Data Generating Process - L2-Smoothness). ys
t is simulated according to the

dynamic model (3.1)-(3.2) where gobs and glatent satisfy the following L2-smoothness conditions

for some γ ∈ (0, 1] and any δ ∈ (0, 1):

y(i)′. For some 0 ≤ C1 < 1:[
E
(

sup‖β1−β2‖B≤δ‖gobs(ys
t(β1), xt, β1, us

t(β1))− gobs(ys
t(β2), xt, β1, us

t(β1))‖2
∣∣∣ys

t(β1), ys
t(β2)

)]1/2

≤ C1‖ys
t(β1)− ys

t(β2)‖

y(ii)′. For some 0 ≤ C2 < ∞:[
E
(

sup‖β1−β2‖B≤δ‖gobs(ys
t(β1), xt, β1, us

t(β1))− gobs(ys
t(β1), xt, β2, us

t(β1))‖2
)]1/2

≤ C2δγ

y(iii)′. For some 0 ≤ C3 < ∞:[
E
(

sup‖β1−β2‖B≤δ‖gobs(ys
t(β1), xt, β1, us

t(β1))− gobs(ys
t(β1), xt, β1, us

t(β2))‖2
∣∣∣us

t(β1), us
t(β2)

)]1/2

≤ C3‖us
t(β1)− us

t(β2)‖γ

u(i)′. For some 0 ≤ C4 < 1[
E
(

sup‖β1−β2‖B≤δ‖glatent(us
t−1(β1), β, es

t(β1))− glatent(us
t−1(β2), β, es

t(β1))‖2
)]1/2

≤ C4‖us
t−1(β1)− us

t−1(β2)‖

u(ii)′. For some 0 ≤ C5 < ∞:

E
(

sup‖β1−β2‖B≤δ‖glatent(us
t−1(β1), β1, es

t(β1))− glatent(us
t−1(β1), β2, es

t(β1))‖2
)
≤ C5δγ

u(iii)′. For some 0 ≤ C5 < ∞:

E
(

sup‖β1−β2‖B≤δ‖glatent(us
t−1(β1), β1, es

t(β1))− glatent(us
t−1(β1), β1, es

t(β2))‖2
∣∣∣es

t(β1), es
t(β2)

)
≤ C6‖e1 − e2‖

for ‖β1 − β2‖B = ‖θ1 − θ2‖+ ‖ f1 − f2‖∞ or ‖θ1 − θ2‖+ ‖ f1 − f2‖TV .

Proof of Lemma 4: First note that the cosine and sine functions are uniformly Lispchitz on

the real line with Lipschitz coefficient 1. This implies for any two (y1, y2, x) and any

τ ∈ Rdτ :

|cos(τ′(y1, x))− cos(τ′(y2, x))| ≤ |τ′(y1 − y2, 0)| ≤ ‖τ‖∞‖y1 − y2‖

|sin(τ′(y1, x))− sin(τ′(y2, x))| ≤ |τ′(y1 − y2, 0)| ≤ ‖τ‖∞‖y1 − y2‖.
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As a result, the moment function is also Lipschitz in y, x:

|eiτ′(y1,x) − eiτ′(y2,x)|π(τ)
1
4 ≤ 2‖τ‖∞π(τ)

1
4‖y1 − y2‖.

Since π is chosen to be the Gaussian density, it satisfies supτ‖τ‖∞φ(τ)
1
4 ≤ Cπ < ∞ and

φ(τ)
1
2 ∝ φ(τ/

√
2) which has finite integral.

The Lispschitz properties of the moments combined with the conditions properties

of π imply that the L2-smoothness of the moments is implied by the L2-smoothness

of the simulated data itself. As a result, the remainder of the proof establishes the L2-

smoothness of ys
t .

First note that since yt = (yt, . . . , yt−L):

‖yt(β1)− yt(β2)‖ ≤
L

∑
j=1
‖yt−j(β1)− yt−j(β2)‖.

To bound the term in y above, it suffices to bound the expression for each term yt with
arbitrary t ≥ 1. Assumptions 2, 2′ imply that, for some γ ∈ (0, 1]:[

E
(

sup‖β1−β2‖m
‖yt(β1)− yt(β2)‖2

)]1/2
≤ C1

[
E
(

sup‖β1−β2‖m
‖yt−1(β1)− yt−1(β2)‖2

)]1/2
+ C2

δγ

σ
2γ
k(n)

+ C3

[
E
(

sup‖β1−β2‖m
‖ut(β1)− ut(β2)‖2

)]γ/2
.

The term δγ

σ
2γ
k(n)

comes from the fact that ‖β1 − β2‖∞ ≤ ‖β1−β2‖m
σ2

k(n)
and ‖β1 − β2‖TV ≤

‖β1−β2‖m
σk(n)

on Bk(n). Without loss of generality, suppose that σk(n) ≤ 1.53 Applying this

inequality recursively, and using the fact that ys
0, us

0 are the same regardless of β, yields:[
E
(

sup‖β1−β2‖m
‖yt(β1)− yt(β2)‖2

)]1/2

≤ C2

1− C1

δγ

σ
2γ
k(n)

+ C3

t−1

∑
l=0

Cl
1

[
E
(

sup‖β1−β2‖m
‖ut−l(β1)− ut−l(β2)‖2

)]γ/2
.

Using Lemmas 3 and .0.2 and the same approach as above:[
E
(

sup‖β1−β2‖m
‖ut(β1)− ut(β2)‖2

)]1/2

≤ C4

[
E
(

sup‖β1−β2‖m
‖ut−1(β1)− ut−1(β2)‖2

)]1/2
+ C5

δγ

σ
2γ
k(n)

+ C6C
(

k(n) + µk(n) + σ
)

δγ/2.

53Recall that by assumption σk(n) = O( log[k(n)]2/b

k(n) ) goes to zero.
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Again, applying this inequality recursively yields:[
E
(

sup‖β1−β2‖m
‖ut(β1)− ut(β2)‖2

)]1/2

≤ C5

1− C4

δγ

σ
2γ
k(n)

+
C6

1− C4
C
(

k(n) + µk(n) + σ
)

δγ/2.

Putting everything together:[
E
(

sup‖β1−β2‖m
‖yt(β1)− yt(β2)‖2

)]1/2

≤ C2

1− C1

δγ

σ
2γ
k(n)

+
C3

1− C1

 C5

1− C4

δγ

σ
2γ
k(n)

+
C6

1− C4
C
(

k(n) + µk(n) + σ
)

δγ/2

γ

.

Without loss of generality, suppose that δ ≤ 1. Then, for some positive constant C:

[
E
(

sup‖β1−β2‖m
‖yt(β1)− yt(β2)‖2

)]1/2
≤ C max

 δγ2

σ
2γ2

k(n)

, [k(n) + µk(n) + σ]γδγ2/2

 .

Lemma .0.3 (Covering Numbers). Under the L2-smoothness of the DGP (as in Lemma 4), the

bracketing number satisfies for x ∈ (0, 1) and some C:

N[ ](x, Ψk(n)(τ), ‖ · ‖L2)

≤ (3[k(n) + 2] + dθ)

2 max(µk(n), σ)C2/γ2

(
k(n) + µk(n) + σ

)2/γ
+ σ4

k(n)

x2/γ2 + 1


3[k(n)+2]+dθ .

For τ ∈ Rdτ , let Ψk(n)(τ) be the set of functions Ψk(n)(τ) =
{

β→ eiτ′(yt(β),xt)π(τ)1/2, β ∈ Bk(n)

}
.

The bracketing entropy of each set Ψk(n)(τ) satisfies for some C̃:

log
(

N[ ](x, Ψk(n)(τ), ‖ · ‖L2

)
≤ C̃k(n) log[k(n)])| log δ|.

Using the above, for some C̃2 < ∞:∫ 1

0
log2

(
N[ ](x, Ψk(n), ‖ · ‖L2

)
dx ≤ C̃2k(n)2 log[k(n)]2.

Proof of Lemma .0.3: SinceBk(n) is contained in a ball of radius max(µk(n), σ, ‖θ‖∞) in R3[k(n)+2]+dθ

under ‖ · ‖m, the covering number for Bk(n) can be computed under the ‖ · ‖m norm us-

ing a result from Kolmogorov & Tikhomirov (1959).54 As a result, the covering number

54See also Fenton & Gallant (1996) for an application of this result for the sieve estimation of a density
and Coppejans (2001) for a CDF.
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N(x,Bk(n), ‖ · ‖m) satisfies:

N(x,Bk(n), ‖ · ‖m) ≤ 2 (3[k(n) + 2] + dθ)

(
2 max(µk(n), σ)

x
+ 1

)3[k(n)+2]+dθ .

The rest follows from Lemma 4 and Appendix 3.7.

Proof of Theorem 1: If the assumptions of Corollary .0.1 hold then the result of Theorem 1

holds as well. The following relates the previous lemmas and assumptions to the required

assumption for the corollary.

Assumption 1 implies Assumptions .0.1 and .0.2. Furthermore, by Lemmas 4 and

.0.3, Assumptions 1 with 2 (or 2′) imply Assumption .0.4 with
√

Cn/n = O(
k(n)2 log2[k(n)]√

n )

using the norm ‖ · ‖m. The order of Qn(Πk(n)β0) is given in Lemma 5. This implies that

all the assumptions for Corollary .0.1 so that the estimator is consistent if
√

Cn/n = o(1)

which concludes the proof.

Rate of Convergence

Proof of Lemma 5: First, using the assumption that B is a bounded linear operator:

Qn(Πk(n)β0) ≤ M2
B

∫ ∣∣∣E(ψ̂n(τ)− ψ̂S
n(τ, Πk(n)β0)

) ∣∣∣2π(τ)dτ

≤ 3M2
B

(∫ ∣∣∣E(ψ̂n(τ)− ψ̂S
n(τ, β0)

) ∣∣∣2π(τ)dτ +
∫ ∣∣∣E(ψS

n(τ, β0)− ψ̂S
n(τ, Πk(n)β0)

) ∣∣∣2π(τ)dτ

)
Each term can be bounded above individually. Re-write the first term in terms of distri-

bution: ∣∣∣E(ψ̂n(τ)− ψ̂S
n(τ, β0)

) ∣∣∣ = ∣∣∣ 1
n

n

∑
t=1

∫
eiτ′(yt,xt)[ f ∗t (yt, xt)− ft(yt, xt)]dytdxt

∣∣∣
where ft is the distribution of (yt(β0), xt) and ft the stationary distribution of (yt(β0), xt).

Using the geometric ergodicity assumption, for all τ:∣∣∣ 1
n

n

∑
t=1

∫
eiτ′(yt,xt)[ f ∗t (yt, xt)− ft(yt, xt)]dytdxt

∣∣∣ ≤ 1
n

n

∑
t=1

∫ ∣∣∣ f ∗t (yt, xt)− ft(yt, xt)
∣∣∣dytdxt

=
2
n

n

∑
t=1
‖ f ∗t − ft‖TV ≤

2Cρ

n

n

∑
t=1

ρt ≤
2Cρ

(1− ρ)n

for some ρ ∈ (0, 1) and Cρ > 0. This yields a first bound:

∫ ∣∣∣E(ψ̂n(τ)− ψ̂S
n(τ, β0)

) ∣∣∣2π(τ)dτ ≤
4C2

ρ

(1− ρ)2
1
n2 = O

(
1
n2

)
.
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The mixture norm ‖ · ‖m is not needed here to bound the second term since it involves

population CFs. Some changes to the proof of Lemma 4 allows to find bounds in terms

of ‖ · ‖B and ‖ · ‖TV for which Lemma 2 gives the approximation rates.

To bound the second term, re-write the simulated data as:

ys
t = gobs,t(xt, . . . , x1, β, es

t , . . . , es
1), us

t = glatent,t(β, es
t , . . . , es

1)

with β = (θ, f ) and es
t ∼ f . Under Assumption 2 or 2′, using the same sequence of shocks

(es
t):

E
(∥∥∥gobs,t(xt, . . . , x1, β0, es

t , . . . , es
1)− gobs,t(xt, . . . , x1, Πk(n)β0, es

t , . . . , es
1)
∥∥∥) ≤ C‖Πk(n) f0 − f0‖γ

B.

This is similar to the proof of Lemma 4, first re-write the difference as:

E
(∥∥∥gobs(gobs,t−1(xt−1, . . . , x1, β0, es

t−1, . . . , es
1), xt, β0, glatent(glatent,t−1(β0, es

t−1, . . . , es
1), β0, es

t))

− gobs(gobs,t−1(xt−1, . . . , x1, Πk(n)β0, es
t−1, . . . , es

1), xt, Πk(n)β0, glatent(glatent,t−1(Πk(n)β0, es
t−1, . . . , es

1), Πk(n)β0, es
t

∥∥∥).

Using Assumptions 2-2′, there is a recursive relationship:

E
(∥∥∥gobs(gobs,t−1(xt−1, . . . , x1, β0, es

t−1, . . . , es
1), xt, β0, glatent(glatent,t−1(β0, es

t−1, . . . , es
1), β0, es

t))

− gobs(gobs,t−1(xt−1, . . . , x1, Πk(n)β0, es
t−1, . . . , es

1), xt, Πk(n)β0, glatent(glatent,t−1(Πk(n)β0, es
t−1, . . . , es

1), Πk(n)β0, es
t

∥∥∥)
≤
[
E
(∥∥∥gobs(gobs,t−1(xt−1, . . . , x1, β0, es

t−1, . . . , es
1), xt, β0, glatent(glatent,t−1(β0, es

t−1, . . . , es
1), β0, es

t))

− gobs(gobs,t−1(xt−1, . . . , x1, Πk(n)β0, es
t−1, . . . , es

1), xt, Πk(n)β0, glatent(glatent,t−1(Πk(n)β0, es
t−1, . . . , es

1), Πk(n)β0, es
t

∥∥∥2)]1/2

≤ C1

[
E
(∥∥∥gobs,t−1(xt−1, . . . , x1, β0, es

t−1, . . . , es
1)− gobs,t−1(xt−1, . . . , x1, Πk(n)β0, es

t−1, . . . , es
1)
∥∥∥2)]1/2

+ C2‖β0 −Πk(n)β0‖γ
B + C3

[
E
(∥∥∥glatent,t(β0, es

t , . . . , es
1)− glatent,t(Πk(n)β0, es

t , . . . , es
1)
∥∥∥2)]γ/2

.

The last term also has a recursive structure:[
E
(∥∥∥glatent,t(β0, es

t , . . . , es
1)− glatent,t(Πk(n)β0, es

t , . . . , es
1)
∥∥∥2)]1/2

≤ C4

[
E
(∥∥∥glatent,t−1(β0, es

t−1, . . . , es
1)− glatent,t−1(Πk(n)β0, es

t−1, . . . , es
1)
∥∥∥2)]1/2

+ C5‖β0 −Πk(n)β0‖γ
B .

Together these inequalities imply:

E
(∥∥∥gobs(gobs,t−1(xt−1, . . . , x1, β0, es

t−1, . . . , es
1), xt, β0, glatent(glatent,t−1(β0, es

t−1, . . . , es
1), β0, es

t))

− gobs(gobs,t−1(xt−1, . . . , x1, Πk(n)β0, es
t−1, . . . , es

1), xt, Πk(n)β0, glatent(glatent,t−1(Πk(n)β0, es
t−1, . . . , es

1), Πk(n)β0, es
t

∥∥∥)
≤ 1

1− C1

(
C2‖β0 −Πk(n)β0‖γ

B + C3
Cγ

5

(1− C4)γ
‖β0 −Πk(n)β0‖γ2

B

)
.
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Recall that ‖τ‖∞
√

π(τ) is bounded above and π(τ)1/4 is integrable so that:∫ ∣∣∣E(eiτ′(yt(β0,xt,...,x1)) − eiτ′(yt(Πk(n)β0,xt,...,x1))
) ∣∣∣2π(τ)dτ

≤ 1
1− C1

(
C2‖β0 −Πk(n)β0‖γ

B + C3
Cγ

5

(1− C4)γ
‖β0 −Πk(n)β0‖γ2

B

)
supτ[‖τ‖∞

√
π(τ)]

∫
π(τ)1/4dτ.

To conclude the proof, the difference due to es
t needs to be bounded. In order to do so,

it suffice to bound the following integral:∫
eiτ′(yt(y0,u0,xt,...,x1,β0,es

t ,...,es
1),xt)

(
f0(es

t)× · · · × f0(es
1)−Πk(n) f0(es

t)× · · · ×Πk(n) f0(es
1)
)

fx(xt)des
t . . . des

1dxt.

A direct bound on this integral yields a term of order of t‖ f0 − Πk(n) f0‖TV which in-

creases too fast with t to generate useful rates. Rather than using a direct bound, consider

Assumptions 2-2′. The time-series ys
t can be approximated by another time-series term

which only depends on a fixed and finite (es
t , . . . , es

t−m) for a given integer m ≥ 1. Mak-

ing m grow with n at an appropriate rate allows to balance the bias m‖ f0 −Πk(n) f0‖TV

(computed from a direct bound) and the approximation due to m < t.

The m-approximation rate of yt is now derived. Let β = (θ, f ) ∈ B, es
t , . . . , es

1 ∼ f and

ỹs
t such that ỹs

t−m = 0, ũs
t−m = 0 and then ỹs

j = gobs(ỹs
j−1, xj, β, ũs

j), ũs
j = glatent(ũs

j−1, β, es
j )

for t − m + 1 ≤ j ≤ t. Each observation t is approximated by its own time-series. For

observation t−m, by construction:

E
(∥∥∥ys

t−m − ỹs
t−m

∥∥∥) = E
(∥∥∥ys

t−m

∥∥∥) ≤ [E

(∥∥∥ys
t−m

∥∥∥2
)]1/2

E
(∥∥∥us

t−m − ũs
t−m

∥∥∥) = E
(∥∥∥us

t−m

∥∥∥) ≤ [E

(∥∥∥us
t−m

∥∥∥2
)]1/2

Then, for any t ≥ t̃ ≥ t−m:

E
(∥∥∥us

t̃ − ũs
t̃

∥∥∥) ≤ C4

[
E

(∥∥∥us
t̃−1 − ũs

t̃−1

∥∥∥2
)]1/2

E
(∥∥∥ys

t̃ − ỹs
t̃

∥∥∥) ≤ C3Cγ
4

[
E

(∥∥∥us
t̃−1 − ũs

t̃−1

∥∥∥2
)]γ/2

+ C1

[
E

(∥∥∥ys
t̃−1 − ỹs

t̃−1

∥∥∥2
)]1/2

.

The previous two results and a recursion arguments leads to the following inequality:

E
(∥∥∥us

t − ũs
t

∥∥∥) ≤ Cm
4

[
E

(∥∥∥us
t−m

∥∥∥2
)]1/2

(.0.3)

E
(∥∥∥ys

t − ỹs
t

∥∥∥) ≤ C3Cγm
4

[
E

(∥∥∥us
t−m

∥∥∥2
)]γ/2

+ Cm
1

[
E

(∥∥∥ys
t−m

∥∥∥2
)]1/2

. (.0.4)
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For β = β0, Πk(n)β0 since the expectations are finite and bounded by assumption, E
(∥∥∥ys

t − ỹs
t

∥∥∥) ≤
C max(C1, C4)

γm with 0 ≤ max(C1, C4) < 1 and some C > 0. For the first observations
t ≤ m the data is unchanged, ys

t = ỹs
t , so that the bound still holds. The integral can be

split and bounded:∣∣∣ ∫ eiτ′(yt(y0,u0,xt,...,x1,β0,es
t ,...,es

1),xt)
(

f0(es
t)× · · · × f0(es

1)−Πk(n) f0(es
t)× · · · ×Πk(n) f0(es

1)
)

fx(xt)des
t . . . des

1dxt

∣∣∣
≤
∣∣∣E([ψ̂S

n(τ, β0)− ψ̂S
n(τ, Πk(n)β0)]− [ψ̃S

n(τ, β0)− ψ̃S
n(τ, Πk(n)β0)]

) ∣∣∣
+
∫ ∣∣∣ ( f0(es

t)× · · · × f0(es
t−m+1)−Πk(n) f0(es

t)× · · · ×Πk(n) f0(es
t−m+1)

)
fx(xt)des

t . . . des
t−m+1dxt

∣∣∣
≤ 4C max(C1, C4)

γm + 2m‖Πk(n) f0 − f0‖TV .

The last inequality is due to the cosine, and sine function being uniformly Lipschitz con-

tinuous and equations (.0.3)-(.0.4). Recall that ‖Πk(n) f0 − f0‖TV = O(
log[k(n)]2r/b

k(n)r ). To

balance the two terms, choose:

m = − r
γ log max(C1, C4)

log[k(n)] > 0

so that max(C1, C4)
γm = k(n)−r and

C max(C1, C4)
γm + 2m‖Πk(n) f0 − f0‖TV = O

(
log[k(n)]2r/b+1

k(n)r

)
.

Combining all the bounds above yields:

Qn(Πk(n)β0) = O

(
max

[
log[k(n)]4r/b+2

k(n)2r ,
log[k(n)]4γ2r/b

k(n)2γ2r
,

1
n2

])

where ‖ · ‖B = ‖ · ‖∞ or ‖ · ‖TV so that ‖β0−Πk(n)β0‖γ2

B = O(
log[k(n)]4γ2r/b

k(n)2γ2r
). The term due

to the non-stationarity is of order 1/n2 = o
(

max
[

log[k(n)]4r/b+2

k(n)2r , log[k(n)]4γ2r/b

k(n)2γ2r

])
so it can

be ignored. This concludes the proof.

Proof of Theorem 2: The theorem is a corollary of Theorem .0.2 with a mixture sieve. Lemma

5 gives an explicit derivation of
√

Qn(Πk(n)β0) in this setting.

Asymptotic Normality

Remark .0.2. Note that for each τ the matrix B
dE(ψ̂S

n(τ,Πk(n)β0))

d(θ,ω,µ,σ)

′
B

dE(ψ̂S
n(τ,Πk(n)β0))

d(θ,ω,µ,σ) is singular -

the requirement is that the average, over τ, of this matrix is invertible. Lemma 6 states that β̂n

and the approximation Πk(n)β0 have a representation that are at a distance δnλ−1/2
n of each other

in ‖ · ‖m norm.
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Proof of Lemma 6: Using the simple inequality 1/2|a|2 ≤ |a− b|2 + |b|2 for any a, b ∈ R:

0 ≤ 1/2
∫ ∣∣∣BdE(ψ̂S

n(τ, Πk(n)β0))

dβ
[β̂n −Πk(n)β0]

∣∣∣2π(τ)dτ

≤
∫ ∣∣∣BdE(ψ̂S

n(τ, β0))

dβ
[β̂n − β0]

∣∣∣2π(τ)dτ

+
∫ ∣∣∣BdE(ψ̂S

n(τ, β0))

dβ
[β̂n − β0]− B

dE(ψ̂S
n(τ, Πk(n)β0))

dβ
[β̂n −Πk(n)β0]

∣∣∣2π(τ)dτ

≤
∫ ∣∣∣BdE(ψ̂S

n(τ, β0))

dβ
[β̂n − β0]

∣∣∣2π(τ)dτ +
∫ ∣∣∣BdE(ψ̂S

n(τ, Πk(n)β0))

dβ
[Πk(n)β0 − β0]

∣∣∣2π(τ)dτ

+
∫ ∣∣∣BdE(ψ̂S

n(τ, β0))

dβ
[β̂n − β0]− B

dE(ψ̂S
n(τ, β0))

dβ
[β̂n −Πk(n)β0]

∣∣∣2π(τ)dτ.

By assumption the term on the left is Op(δ2
n), by assumption ii. the middle term is Op(δ2

n)

and assumption i. implies that the term on the right is also Op(δ2
n). It follows that:∫ ∣∣∣BdE(ψ̂S

n(τ, Πk(n)β0))

dβ
[β̂n −Πk(n)β0]

∣∣∣2π(τ)dτ = Op(δ
2
n). (.0.5)

Now note that both β̂n and Πk(n)β0 belong to the finite dimensional space Bk(n) parame-
terized by (θ, ω, µ, σ). To save space, β̂n will be represented by ϕ̂n = (θ̂n, ω̂n, µ̂n, σ̂n) and
Πk(n)β0 by ϕk(n) = (θk(n), ωk(n), µk(n), σk(n)). Using this notation, equation (.0.5) becomes:∫ ∣∣∣B dE(ψ̂S

n(τ, Πk(n)β0))

dβ
[β̂n −Πk(n)β0]

∣∣∣2π(τ)dτ =
∫ ∣∣∣B dE(ψ̂S

n(τ, Πk(n)β0))

d(θ, ω, µ, σ)
[ϕ̂n − ϕk(n)]

∣∣∣2π(τ)dτ

= trace

[ϕ̂n − ϕk(n)]
′
∫

B
dE(ψ̂S

n(τ, Πk(n)β0))

d(θ, ω, µ, σ)

′

B
dE(ψ̂S

n(τ, Πk(n)β0))

d(θ, ω, µ, σ)
π(τ)dτ[ϕ̂n − ϕk(n)]


≥ λn‖ϕ̂n − ϕk(n)‖2 = λn‖β̂n −Πk(n)β0‖2

m.

It follows that 0 ≤ λn‖β̂n−Πk(n)β0‖2
m ≤ Op(δ2

n) so that the rate of convergence in mixture

norm is:

‖β̂n −Πk(n)β0‖m = Op

(
δnλ−1/2

n

)
.

Lemma .0.4 (Stochastic Equicontinuity). Let Mn = log log(n + 1) and δmn = δn/
√

λn.
Suppose that the assumptions of Lemma 6 and Assumption .0.4 hold then for any η > 0, uniformly
over β ∈ Bk(n):[

E

(
sup‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)

2
2+η

)]1/2

≤ C
(Mnδmn)

γ2
2

√
n

∫ 1

0

(
x−ϑ/2

√
log N([xMnδmn]

2
γ2 ,Bk(n), ‖ · ‖m) + log2 N([xMnδmn]

2
γ2 ,Bk(n), ‖ · ‖m)

)
dx
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For the mixture sieve the integral is a O(k(n) log[k(n)] + k(n)| log(Mnδmn)|) so that:[
E

(∫
sup‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ

)]1/2

= O
(
(Mnδmn)

γ2
2 max(log[k(n)]2, | log[Mnδmn]|2)

k(n)2
√

n

)

Now suppose that (Mnδmn)
γ2
2 max(log[k(n)]2, | log[Mnδmn]|2)k(n)2 = o(1). The first stochas-

tic equicontinuity result is:[
E

(∫
sup‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ

)]1/2

= o(1/
√

n).

Also, suppose that β →
∫

E

∣∣∣ψ̂s
t (τ, β0)− ψ̂s

t (τ, β)
∣∣∣2π(τ)dτ is continuous at β = β0 under the

norm ‖ · ‖B, uniformly in t ≥ 1. Then, the second stochastic equicontinuity result is:[
E

(∫
sup‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)dτ

)]1/2

= o(1/
√

n).

Proof of Lemma .0.4. This proof relies on the results in Lemma 4 together with Lemma .0.5.
First, Lemma 4 implies that, after simplifying the bounds, for some C > 0:[

E

(
sup‖β1−β2‖m≤δ,‖β j−Πk(n)β0‖m≤Mnδm,n,j=1,2

∣∣∣ψ̂s
t (τ, β1)− ψ̂s

t (τ, β2)
∣∣∣2)]1/2 √

π(τ)

(Mnδm,n)γ2/2

≤ Ck(n)2γ2
(

δ

Mnδm,n

)γ2/2

.

Next, apply the inequality of Lemma .0.4 to generate the bound:[
E

(
sup‖β−Πk(n)β0‖m≤Mnδm,n

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2)]1/2√

π(τ)

≤ C
(Mnδm,n)γ2/2

√
n

∫ 1

0

x−ϑ/2

√√√√log N(

[
xMnδmn

k(n)2γ2

] 2
γ2

,Bk(n), ‖ · ‖m) + log2 N(

[
xMnδmn

k(n)2γ2

] 2
γ2

,Bk(n), ‖ · ‖m)

 dx

for some C > 0,ϑ ∈ (0, 1). Since
∫ √

π(τ)dτ < ∞, the term on the left-hand side ca be
squared and multiplied by

√
π(τ). Then, taking the integral:[

E

(∫
sup‖β−Πk(n)β0‖m≤Mnδm,n

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ

)]1/2

≤ Cπ
(Mnδm,n)γ2/2

√
n

∫ 1

0

x−ϑ/2

√√√√log N(

[
xMnδmn

k(n)2γ2

] 2
γ2

,Bk(n), ‖ · ‖m) + log2 N(

[
xMnδmn

k(n)2γ2

] 2
γ2

,Bk(n), ‖ · ‖m)

 dx

160



where Cπ = C
∫ √

π(τ)dτ. The integral on the right-hand side is a

O(k(n)2 max(log[k(n)]2, log[Mnδm,n]
2)).

To prove the final statement, notation will be shortened using ∆ψ̂s
t (τ, β) = ψ̂s

t (τ, β0)−
ψ̂s

t (τ, β). Note that, by applying Davydov (1968)’s inequality:

nE

∣∣∣∆ψ̂S
n(τ, Πk(n)β0)−E[∆ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2

≤ 1
n

n

∑
t=1

E

∣∣∣∆ψ̂s
t (τ, Πk(n)β0)−E[∆ψ̂s

t (τ, Πk(n)β0)]
∣∣∣2

+
24
n

n

∑
m=1

(n−m)α(m)1/3 max
1≤t≤n

(
E

∣∣∣∆ψ̂s
t (τ, Πk(n)β0)−E[∆ψ̂s

t (τ, Πk(n)β0)]
∣∣∣6)2/3

≤
(

1 + 24 ∑
m≥1

α(m)1/3

)
max

1≤t≤n

(
E

∣∣∣∆ψ̂s
t (τ, Πk(n)β0)−E[∆ψ̂s

t (τ, Πk(n)β0)]
∣∣∣6)2/3

≤ 48/3

(
1 + 24 ∑

m≥1
α(m)1/3

)
max

1≤t≤n

(
E

∣∣∣∆ψ̂s
t (τ, Πk(n)β0)−E[∆ψ̂s

t (τ, Πk(n)β0)]
∣∣∣2)2/3

.

The last inequality is due to |∆ψ̂s
t (τ, β)| ≤ 2. By the continuity assumption the last term

is a o(1) when ‖β0 −Πk(n)‖B → 0. As a result:

∫
E

∣∣∣∆ψ̂S
n(τ, Πk(n)β0)−E[∆ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ = o(1/n).

To conclude the proof, apply a triangular inequality and the results above:[
E

(∫
sup‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)dτ

)]1/2

≤
[

E

(∫
sup‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ

)]1/2

+

(∫
E

∣∣∣∆ψ̂S
n(τ, Πk(n)β0)−E[∆ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ

)1/2

= o(1/
√

n).

Remark .0.3. Note that δn =
k(n)2 log[k(n)]2√

n = o(1) by assumption so that log[δn]2 = O(log(n)2).

Furthermore, it is assumed that δn = o
(√

λn
)

and δm,n = o(1), so that max(log[k(n)]2, log[Mnδm,n]2))

is dominated by a O(log(n)). The condition k(n)2 max(log[k(n)]2, log[Mnδm,n]2) can thus be

re-written as:

(Mnδmn)
γ2
2 [k(n) log(n)]2 = o(1)
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which is equivalent to:

δn = o

 √
λn

Mn[k(n) log(n)]
4

γ2 )

 .

Furthermore, since δn =
k(n)2 log[k(n)]2√

n , this condition can be re-written in terms of k(n):

k(n) = o


 √

λn

Mn log(n)
4

γ2

 1
2+4/γ2

n
1

2(2+4/γ2)

 .

Proof of Theorem 3: Theorem 3 mostly follows from Theorem .0.3 with two differences: the

rate of convergence and the stochastic equicontinuity results in mixture norm. Lemmas 6

and .0.4 provide these results for the mixture sieve. Hence, given these results, Theorem

3 is a corollary of Theorem .0.3.

Extension 1: Using Auxiliary Variables

Proof of Corollary 2: Since the proof of Corollary 2 is very similar to the main proofs, only

the differences in the steps are highlighted.

i. Consistency: The objective function with auxiliary variables is:

Qn(β) =
∫ ∣∣∣E(ψ̂n(τ, η̂aux

n )− ψ̂s
n(τ, η̂aux

n , β
) ∣∣∣2π(τ)dτ.

To derive its rate of convergence consider:∫ ∣∣∣ψ̂n(τ, η̂aux
n )−E

(
ψ̂n(τ, η̂aux

n )
) ∣∣∣2π(τ)dτ ≤ 9

∫ ∣∣∣ψ̂n(τ, ηaux)−E
(
ψ̂n(τ, ηaux)

) ∣∣∣2π(τ)dτ

+ 9
∫ ∣∣∣ψ̂n(τ, η̂aux

n )− ψ̂n(τ, ηaux)
∣∣∣2π(τ)dτ

+ 9
∫ ∣∣∣E(ψ̂n(τ, η̂aux

n )− ψ̂n(τ, ηaux)
) ∣∣∣2π(τ)dτ.

The first term is Op(1/n). By the Lipschitz condition, the second term satisfies:∫ ∣∣∣ψ̂n(τ, η̂aux
n )− ψ̂n(τ, ηaux)

∣∣∣2π(τ)dτ ≤ ‖η̂aux
n − ηaux‖2|Caux

n |2
∫
‖τ‖∞π(τ)dτ

= Op(1/n)Op(1).

Caux
n is an average of the Lipschitz constants in the assumptions. The third term can

be bounded using the Lipschitz assumption and the Cauchy-Schwarz inequality:∫ ∣∣∣ψ̂n(τ, η̂aux
n )− ψ̂n(τ, ηaux)

∣∣∣2π(τ)dτ ≤ E‖η̂aux
n − ηaux‖2E|Caux

n |2
∫
‖τ‖∞π(τ)dτ

= Op(1/n2)Op(1).
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Altogether, these inequalities imply:∫ ∣∣∣ψ̂n(τ, η̂aux
n )−E

(
ψ̂n(τ, η̂aux

n )
) ∣∣∣2π(τ)dτ = Op(1/n2).

The L2-smoothness result still holds given the summability condition:[
E
(

sup‖β1−β2‖B≤δ,η∈E‖gaux(ys
t(β1), . . . , ys

1(β1), xt, . . . , x1; η)− gaux(ys
t(β2), . . . , ys

1(β2), xt, . . . , x1; η)‖2
)]1/2

≤
t

∑
j=1

ρj

[
E
(

sup‖β1−β2‖B≤δ,η∈E‖y
s
j (β1)− ys

j (β2)‖2
)]1/2

≤
(

∞

∑
j=1

ρj

)
supt≥1

[
E
(

sup‖β1−β2‖B≤δ,η∈E‖y
s
t(β1)− ys

t(β2)‖2
)]1/2

≤ C

(
∞

∑
j=1

ρj

)
max

 δγ2

σ
2γ2

k(n)

, [k(n) + µk(n) + σ]γδγ2/2


The last inequality is a consequence of Lemma 4.∫ ∣∣∣ψ̂s

n(τ, η̂aux
n )−E

(
ψ̂s

n(τ, η̂aux
n )

) ∣∣∣2π(τ)dτ ≤ 9
∫ ∣∣∣ψ̂s

n(τ, ηaux)−E
(
ψ̂s

n(τ, ηaux)
) ∣∣∣2π(τ)dτ

+ 9
∫ ∣∣∣ψ̂s

n(τ, η̂aux
n )− ψ̂s

n(τ, ηaux)
∣∣∣2π(τ)dτ

+ 9
∫ ∣∣∣E(ψ̂s

n(τ, η̂aux
n )− ψ̂s

n(τ, ηaux)
) ∣∣∣2π(τ)dτ.

The first term is a Op(δ2
n) given the L2-smoothness above and the main results. The

last two terms are Op(1/n2) as in the calculations above.

Together, these results imply that the rate of convergence for the objective function

is Op(δ2
n) as before. As a result, given that the other assumptions hold, the estimator

is consistent.

ii. Rate of Convergence: The variance term is still Op(δ) as discussed above. The only

term remaining to discuss if the bias accumulation term.

Recall that the first part of the bias term involves changing f in gobs, glatent while

keeping the shocks es
t unchanged. Using the same method of proof as for the L2-

smoothness it can be shown that the first bias term is only inflated by ∑∞
j=1 ρj < ∞:

a finite factor.

The second part involves changing the shocks keeping gobs, glatent unaffected. An

alternative simulated sequence ỹs
t where part of the history is changed ỹs

t−j = ũs
t−j =

0 for j ≥ m. For a well chosen sequence m, the difference between ys
t and ỹs

t declines

exponentially in m. Here z̃s
t only depends on a finite number of shocks since ỹs

t−m =
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· · · = ỹs
1 = 0. The difference between zs

t and z̃s
t becomes:

E (‖zs
t − z̃s

t‖) ≤
t

∑
j=1

ρjE
(
‖ys

j − ỹs
j‖
)
≤
(

∞

∑
j=1

ρj

)
C max(C1, C4)

γm

where the last inequality comes from Lemma 5. To apply this lemma, the bounded

moment condition v. is required.

Overall, the bias term is unchanged. As a result, the rate of convergence is the same

as in the main proofs.
iii. Asymptotic Normality: The L2-smoothness result was shown above to be unchanged.

As a result, stochastic equicontinuity can be proved the same way as before. The
Lipschitz condition also implies stochastic equicontinuity in ηaux using the same
approach as for the rate of convergence of the objective. The asymptotic expansion
can be proved the same way as in the main results where ψ̂n(τ) and ψ̂s

n(τ, β0) are
replaced with ψ̂n(τ, η̂aux

n ) and ψ̂s
n(τ, η̂aux

n , β0). Eventually, the expansion implies:
√

n
σ∗n

(
φ(β̂n)− φ(β0)

)
=
√

nReal
(∫

ψβ(τ, u∗n, ηaux)
(
ψ̂n(τ, η̂aux

n )− ψ̂s
n(τ, η̂aux

n , β0)
)

π(τ)dτ

)
+ op(1)

where the term on the right is asymptotically normal by assumption.

Extension 2: Using Short Panels

Proof of Lemma 8. The second part of the lemma is implied by using ys
j,1 = yj,1 for all j.

For the first part of Lemma 8, using the notation for the proof of Proposition .0.4:
f is the distribution for the simulated ys

j,t and us
j,t and f ∗ is the stationary distribution.

Note that f (ys
j,t, xj,t|us

j,t) = f ∗(ys
j,t, xj,t|us

j,t) for β = β0 and ‖ fu − f ∗u‖TV ≤ Cuρm
u for some

Cu > 0 and ρu ∈ (0, 1).

√
Qn(β0) ≤ MB

(∫ ∣∣∣E(ψ̂n(τ)− ψ̂s
n(τ, β0)

) ∣∣∣2π(τ)dτ

)1/2

= MB

(∫ ∣∣∣ 1
n

n

∑
j=1

∫
eiτ′(ys

j,t,xj,t)
(

f (ys
j,t, xj,t)− f ∗(ys

j,t, xj,t)
)

dys
j,tdxj,t

∣∣∣2π(τ)dτ

)1/2

= MB

(∫ ∣∣∣ 1
n

n

∑
j=1

∫
eiτ′(ys

j,t,xj,t) f ∗(ys
j,t, xj,t|us

j,t)
(

f (us
j,t)− f ∗(us

j,t)
)

dys
j,tdxj,tdus

j,t

∣∣∣2π(τ)dτ

)1/2

≤ MB

∫
f ∗(ys

j,t, xj,t|us
j,t)
∣∣∣ f (us

j,t)− f ∗(us
j,t)
∣∣∣ dys

j,tdxj,tdus
j,t.
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Applying the Cauchy-Schwarz inequality implies:∫
f ∗(ys

j,t, xj,t|us
j,t)
∣∣∣ f (us

j,t)− f ∗(us
j,t)
∣∣∣ dys

j,tdxj,tdus
j,t

≤
(∫

f ∗(ys
j,t, xj,t|us

j,t)
2
∣∣∣ f (us

j,t)− f ∗(us
j,t)
∣∣∣ dys

j,tdxj,tdus
j,t

)1/2 (∫ ∣∣∣ f (us
j,t)− f ∗(us

j,t)
∣∣∣ dus

j,t

)1/2

.

By assumption the first term is finite and bounded while the second term is a O(ρm/2
u ).

Taking squares on both sides on the inequality concludes the proof.

Proof of Corollary 3: As discussed in section 3.4 asymptotic are conducted over the cross-

sectional dimension n for the moments:

ψ̂j(τ) =
1
T

T

∑
t=1

eiτ′(yj,t,xj,t), ψ̂s
j (τ) =

1
T

T

∑
t=1

eiτ′(ys
j,t,xj,t)

which are iid under the stated assumptions. The bias can accumulate dynamically for

DGP (3.12), as in the time-series case, but it accumulates with m instead of sample size.

Assumption 2 or 2′ ensure that the bias does not accumulate too much when m → ∞.

Lemma 8 shows how the assumed DGPs handle the initial condition problem in the panel

setting. Note that:

nρm
u = elog[n]+m log[ρu] = em(log[n]/m+log[ρu]) → 0

as m, n → ∞ if limm,n→∞ log[n]/m < − log[ρu] > 0. Given, this result and the dynamic

bias accumulation the results for the iid case apply with an inflation bias term for DGP

(3.12).

Additional Asymptotic Results

This appendix provides general results for Sieve-SMM estimates for other sieve bases

and bounded moment functions. It adapts existing results from the sieve literature to

a continuum of bounded complex-valued moments and extends them to a more general

class of dynamic models. The following definition gives the two measures of dependence

used in the results.

Definition .0.1 (α-Mixing and Uniform α-Mixing). For the sample observations (yt)t≥1, the
α-mixing coefficients are defined as:

α(m) = 2supt≥1supy1,y2∈Rdy

∣∣∣P (yt ≥ y1, yt+m ≥ y2)−P (yt ≥ y1)P (yt+m ≥ y2)
∣∣∣.
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(yt)t≥1 is α-mixing if α(m)→ 0 when m→ ∞.
For the simulated samples (y(β)s

t)t≥1 indexed by β ∈ B the uniform α-mixing coefficients are
defined as:

α∗(m) = 2supt≥1,β∈Bsupy1,y2∈Rdy

∣∣∣P (ys
t(β) ≥ y1, ys

t+m(β) ≥ y2)−P (ys
t(β) ≥ y1)P (y(β)s

t+m ≥ y2)
∣∣∣.

(ys
t(β))t≥1 is uniformly α-mixing if α∗(m)→ 0 when m→ ∞.

Consistency

Recall that the Sieve-SMM estimator β̂n satisfies:

Q̂S
n(β̂n) ≤ diagβ∈Bk(n)

Q̂S
n(β) + Op(ηn)

where ηn = o(1). The sample objective function is:

Q̂S
n(β) =

∫ ∣∣∣Bψ̂n(τ)− Bψ̂S
n(τ, β)

∣∣∣2π(τ)dτ

As in the main results, there is a sequence of population objective functions:

Qn(β) =
∫ ∣∣∣E(Bψ̂n(τ)− Bψ̂S

n(τ, β)
)∣∣∣2 π(τ)dτ.

Qn may depend on n when ys
t is non-stationary. The following three assumptions are

adapted from the sufficient high-level conditions in Chen (2007, 2011) and Chen & Pouzo

(2012) to a continuum of of moments (Carrasco & Florens, 2000; Carrasco et al., 2007a).

Assumption .0.1 (Sieves). {Bk, k ≥ 1} is a sequence of non-empty compact subsets of B such

that Bk ⊆ Bk+1 ⊆ B, ∀k ≥ 1. There exists an approximating sequence Πkβ0 ∈ Bk such that

‖Πk(n)β0 − β0‖B = o(1) as k(n)→ ∞.

Assumption .0.2 (Identification). i) limn→∞ E
(
ψ̂S

n(τ, β)− ψ̂n(τ)
)

= 0 π a.s. ⇔ ‖β −
β0‖B = 0. The null space of B is the singleton {0}. ii) Qn(Πk(n)β0) = o(1) as n → ∞. iii)

There exists a function g such that for all ε > 0: g(k(n), n, ε) = diagβ∈Bk(n), ‖β−β0‖B≥εQn(β), g

is decreasing in the first and last argument and g(k(n), n, ε) > 0 for all k(n), n, ε > 0.

Assumption .0.3 (Convergence Rate over Sieves). There exists two constants C1, C2 > 0 such

that, uniformly over h ∈ Bk(n): Q̂S
n(β) ≤ C1Qn(β) + Op(δ2

n), Qn(β) ≤ C2Q̂n(β) + Op(δ2
n)

and δ2
n = o(1).
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Theorem .0.1 (Consistency). Suppose Assumptions .0.1-.0.3 hold. Furthermore, suppose that

h → Qn(β) is continuous on
(
Bk(n), ‖ · ‖B

)
. If k(n) n→∞−→ ∞ and for all ε > 0 the following

holds:

max
(

ηn, Qn(Πk(n)β0), δ2
n

)
= o (g (k(n), ε)) .

Then the estimator β̂n is consistent: ‖β̂n − β0‖B = op(1).

Theorem .0.1 is a direct consequence of the general consistency lemma in Chen &

Pouzo (2012) reproduced as Lemma .0.1 in the next appendix. Assumption .0.1 is stan-

dard and satisfied by the mixture sieve, the Hermite polynomial basis of Gallant & Ny-

chka (1987) or the cosine basis as in Bierens & Song (2012). See e.g. Chen (2007) for further

examples of sieve bases and their approximation properties. The choice of moments ψ̂n

and the restrictions on the parameter space B are assumed to ensure identification in As-

sumption .0.2. Verifying Assumption .0.3 is more challenging in this setting because of the

dynamics and the continuum of moments. Furthermore, the rate for Qn(Πk(n)β0) needs

to be derived. The following proposition derives the rate for iid data under an additional

restriction.55

Proposition .0.1. If ys
t is iid and depends on f only through es

t , i.e. ys
t = gobs(xt,θ, es

t) with

es
t ∼ f , then for Qn based on the CF:

Qn(Πk(n)β0) ≤ 2M2
B‖Πk(n) f0 − f0‖2

TV

where TV is the total variation norm: ‖Πk(n) f0 − f0‖TV =
∫
|Πk(n) f0(ε)− f0(ε)|dε.

Remark .0.1. Proposition .0.1 can be restated in terms of Hellinger distance by the inequality

‖Πk(n) f0 − f0‖TV ≤ 2dH(Πk(n) f0, f0). Pinsker’s inequality gives a similar relationship for the

Kullback-Leibler divergence: ‖Πk(n) f0 − f0‖TV ≤
√

2KL(Πk(n) f0| f0).

Assumption .0.4 (Smoothness, Dependence, Complexity). Suppose that:

i. (Smoothness) For P ≥ 2, β → ψs
t (τ, β) is Lp-smooth. That is, there exists C > 0, η > 0

and γ ∈ (0, 1] such that for all τ ∈ Rd and all δ > 0:

supt≥1

[
E

(
supβ1,β2∈B, ‖β1−β2‖B≤δ

∣∣∣[ψs
t (τ, β1)−ψs

t (τ, β2)]π(τ)1/(2+η)
∣∣∣P)]1/P

≤ Cδγ

and
∫

π(τ)1−2/(2+η)dτ < ∞.

55A more general rate for Qn(Πk(n)β0) will be given in Proposition .0.3.
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ii. (Dependence) (ys
t , xt) and (yt, xt) are either iid or uniformly α−mixing with α∗(m) ≤

C exp(−am) for all m ≥ 1 with C, a > 0.

iii. (Complexity) The moment function is uniformly bounded: |ψ̂s
t (τ, β)| ≤ M for all τ, β and

some M > 0. One of the following holds:

a. if (yt, xt) is iid, the integral

√
Cn :=

∫ 1

0

√
1 + log N

(
x1/γ,Bk(n), ‖ · ‖B

)
dx

is such that Cn/n→ 0.

b. if (ys
t , xt) is dependent, the integral

√
Cn :=

∫ 1

0

(
x−ϑ/2

√
log N

(
x1/γ,Bk(n), ‖ · ‖B

)
+ log2 N

(
x1/γ,Bk(n), ‖ · ‖B

) )
dx

is such that Cn/n→ 0.

Where the covering number N(x,Bk(n), ‖ · ‖B) is the minimal number of balls of radius x

in ‖ · ‖B norm needed to cover the space Bk(n).

Assumption .0.4 provides conditions on the moments ψ̂s
n, the weights π, the depen-

dence and the sieve space to ensure Assumption .0.3 holds. Condition i. assumes that the

moments are Lp-smooth. Note that the condition involves π, the moments themselves

need not be uniformly Lp-smooth. An additional requirement is given for π to handle

the continuum of moments. Giving the condition on the moments rather than the DGP

itself as in the main results in more common (Duffie & Singleton, 1993, see e.g.) in the

literature. The two are actually related, as shown in the following remark.

Remark .0.2 (Lp-Smoothness of the Moments and the DGP). For the empirical CF, smooth-

ness of the moment function directly relates to smoothness of the data generating process: i.e.

Lp-smoothness of β → ys
t(β) implies Assumption .0.4 i. It is a direct implication of the sine and

cosine functions being uniformly Lipschitz on the real line:∣∣∣ψs
t (τ, β1)−ψs

t (τ, β2)
∣∣∣π(τ)1/(2+η) ≤ 2‖τ′(ys

t(β1), xt)− τ′(ys
t(β2), xt)‖π(τ)1/(2+η)

≤ 2supτ∈Rdτ

(
‖τ‖∞π(τ)1/(2+η)

)
× ‖ys

t(β1)− ys
t(β2)‖.

This is the basis for the main results presented in section 3.3.

Examples of DGPs and moments satisfying condition i. are given in Appendix 3.7.
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Assumption .0.4, condition ii. is satisfied under the geometric ergodicity condition of

Duffie & Singleton (1993) as shown in Liebscher (2005)’s propositions 2 and 4. Note that

Liebscher’s result holds whether (yt, xt) is stationary or not.

Assumption .0.4, condition iii. hold for linear sieves with k(n)/n → 0 in the iid

case and k(n)4/n → 0 in the dependent case. For non-linear sieves such as mixtures

and neural networks the condition becomes k(n) log[k(n)]/n → 0 in the iid case and

(k(n) log[k(n)])4/n→ 0 in the dependent case. The following Proposition .0.2 relates the

low-level conditions in Assumption .0.4 to Assumption .0.3.

Proposition .0.2. Suppose that Assumption .0.4 holds, then Assumption .0.3 holds with δ2
n =

Cn/n.

Given this proposition, Corollary .0.1 is a direct consequence of Theorem .0.1.

Corollary .0.1. Suppose Assumptions .0.1-.0.2 and .0.4 hold. Furthermore, suppose that β →
Qn(β) is continuous on

(
Bk(n), ‖ · ‖B

)
. If k(n) n→∞−→ ∞ and for all ε > 0 the following holds:

max
(

ηn, Qn(Πk(n)β0), δ2
n

)
= o (g (k(n), ε))

then the estimator β̂n is consistent:

‖β̂n − β0‖B = op(1).

Proposition .0.3. Suppose that the Lp-smoothness in Assumption .0.4 i. is satisfied, then there

exists K > 0 which only depends on C and η, defined in Assumption .0.4 i., MB and π such that:

Qn(Πk(n)β0) ≤ K
(
‖Πk(n)β0 − β0‖2γ

B + Qn(β0)
)

.

The rate in Proposition .0.3 is different from the main results because the Lp-smoothness

assumption is given on the moments rather than the DGP itself. Also, in Assumption .0.3

the Lp-smoothness constant does not increase with k(n) so that the decay condition is not

required to derive the rate.

For iid and stationary (ys
t)t≥1, Qn(β0) = 0 should generally hold so the rate at which

Qn(Πk(n)β0) goes to zero only depends on the smoothness γ and the approximation rate

of β0. When the Lp-smoothness coefficient is γ = 1, the rate is similar to Proposition .0.1

while for γ ∈ (0, 1) the rate is slower. In the non-stationary case Qn(β0) will depend on

the rate at which fys
t ,xt convergences to the stationary distribution.
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Rate of Convergence

This section establishes the rate of convergence of the estimator in the weak norm of

Ai & Chen (2003) and the strong norm ‖ · ‖B. As in Chen & Pouzo (2012), assuming

consistency holds, the parameter space can be restricted to a local neighborhood Bos =

{β ∈ B, ‖β− β0‖B ≤ ε} with ε > 0 small such that P
(

β̂n 6∈ Bε
)

< ε. Similarly, let

Bosn = Bos ∩ Bk(n).

Assumption .0.5 (Differentiability). Suppose that for all β1, β2 ∈ Bos, the pathwise derivative:

lim
ε∈(0,1),ε→0

∫ ∣∣∣BE
(
ψ̂S

n(τ, (1− ε)β1 + εβ2)− ψ̂S
n(τ, β1)

)
ε

∣∣∣2π(τ)dτ =
∫ ∣∣∣B dE

(
ψ̂S

n(τ, β1)
)

dβ
[β2]

∣∣∣2π(τ)dτ

exists and is finite.

Following Ai & Chen (2003), the weak norm measure uses the norm of the pathwise derivative

of the moments at β0:

‖β1 − β2‖weak =

(∫ ∣∣∣BdE[ψs
n(τ, β)

dβ

∣∣∣
β=β0

[β1 − β2]
∣∣∣2π(τ)dτ

)1/2

.

Suppose that there exists a C > 0 such that for all β ∈ Bos and all n ≥ 1:

‖β− β0‖2
weak ≤ CQn(β).

Assumption .0.5 implies that ‖ · ‖weak is Lipschitz continuous with respect to the pop-

ulation criterion Qn as in Chen & Pouzo (2012)’s assumption 4.1. Under Assumption

.0.5, the rate of convergence is easier to derive in ‖ · ‖weak than in the stronger norm

‖ · ‖B. However, a sufficiently fast rate of convergence in the stronger norm will be re-

quired for the stochastic equicontinuity results, since the strong norm ‖ · ‖B appears in

Lp-smoothness Assumption .0.4. The two convergence rates are related by the local mea-

sure of ill-posedness of Blundell et al. (2007).

Definition .0.2 (Local Measure of Ill-Posedness of Blundell et al. (2007)). The local measure

of ill-posedness τn is:

τn = supβ∈Bosn :‖β−Πk(n)β0‖6=0
‖β−Πk(n)β0‖B
‖β−Πk(n)β0‖

.

The following theorem adapts the results of Chen & Pouzo (2012) to the continuum of

moments with simulated data.
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Theorem .0.2 (Rate of Convergence). Suppose that Assumptions .0.1, .0.2, .0.4 and .0.5 are

satisfied and suppose that ηn = o(δ2
n). Let β0, Πk(n)β0 ∈ Bos, then we have the rate of conver-

gence in weak and strong norm:

‖β̂n − β0‖weak = Op

(
max

(
δn, ‖Πk(n)β0 − β0‖γ

B,
√

Qn(β0)

))
and

‖β̂n − β0‖B = Op

(
‖Πk(n)β0 − β0‖B + τn max

(
δn, ‖Πk(n)β0 − β0‖γ

B,
√

Qn(β0)

))
.

The rate δn is derived in Proposition .0.2: for linear sieves with iid data δn =
√

k(n)/n

and δn = k(n)2/
√

n in the dependent case. The rate ‖Πk(n)β0 − β0‖γ
B depends on the

approximation rate ‖β0−Πk(n)β0‖B and the Lp−smoothness of the objective function. In

the iid and stationary case, Qn(β0) = 0 is not a concern for the rate of convergence.

Proposition .0.4. Suppose that (ys
t , xt)t≥1 is geometrically ergodic for β = β0 and the moments

are bounded |ψ̂s
t (τ, β0)| ≤ M for all τ then Qn(β0) = O(1/n2).

Proposition .0.4 shows that Qn(β0) is negligible under the geometric ergodicity con-

dition of Duffie & Singleton (1993): since δn is typically larger than a O(1/
√

n) term,

Qn(β0) = o(δ2
n).

Corollary .0.2. Suppose that the assumptions of Theorem .0.2 and the (ys
t , xt) are iid, stationary

or geometrically ergodic then the rate of convergence is:

‖β̂n − β0‖B = Op

(
‖Πk(n)β0 − β0‖B + τn max

(
δn, ‖Πk(n)β0 − β0‖γ

B

))
.

The rate of convergence can be further improved for static models with iid data under

the assumptions of Proposition .0.1, as shown in the corollary below.

Corollary .0.3. Suppose that the assumptions of Theorem .0.2 and Proposition .0.1 are satisfied

then:

‖β̂n − β0‖B = Op

(
‖Πk(n)β0 − β0‖B + τn max

(
δn, ‖Πk(n) f0 − f0‖TV

))
.

Asymptotic Normality

As in Chen & Pouzo (2015), this section gives asymptotic normality results for functionals

φ of the estimates β̂n. In order to conduct inferences, standard errors σ∗n are derived such

that:
√

n
σ∗n

(
φ(β̂n)− φ(β0)

)
d→ N (0, 1) . (.0.1)
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As in the main results, to reduce notation the following will be used:

ψβ(τ, v) =
dE(ψ̂S

n(τ, β0))

dβ
[v]

ZS
t (τ) = ψ̂t(τ)−

1
S

S

∑
s=1
ψ̂s

t (τ, β0)

ZS
n(τ) = ψ̂n(τ)− ψ̂S

n(τ, β0)

where v is a vector in V or Vn defined as in the main results. The sieve representer v∗n is

also defined as in the main results.

Definition .0.3 (Sieve Score, Sieve Variance, Scaled Sieve Representer). The Sieve Score S∗n
is defined as:

S∗n =
1
2

∫ [
Bψβ(τ, v∗n)BZS

n(τ) + Bψβ(τ, v∗n)BZS
n(τ)

]
π(τ)dτ.

The sieve variance is σ∗2n = nE
(
|S∗n|2

)
. The scaled sieve representer is u∗n = v∗n

σ∗n
.

As in the main results, the equivalence condition below is required.

Assumption .0.6 (Equivalence Condition). There exists a > 0 such that ∀n ≥ 1:

a‖v∗n‖weak ≤ σ∗n .

Furthermore assume that σ∗n = o(
√

n).

An discussion of this condition is given in Appendix 3.7. The last part imposes that

k(n) does not increase too fast with n to control the variance of the sieve score.

Remark .0.3 (On the equivalence condition). Since ψ̂t is bounded, the data is α-mixing and

the simulations are geometrically ergodic there also exists a a > 0 such that σ∗n ≤ a‖v∗n‖weak.

Hence under Assumption .0.6 the following holds σ∗n � ‖v∗n‖weak. To prove this statement, note

that the Cauchy-Schwarz inequality implies:

σ∗n ≤
√

2n

[
E

([∫ ∣∣∣Bψβ(τ, v∗n)
∣∣∣× ∣∣∣Bψ̂S

n(τ, β0)− Bψ̂n(β0)
∣∣∣π(τ)dτ

]2
)]1/2

≤
√

2
[∫ ∣∣∣Bψβ(τ, v∗n)

∣∣∣2π(τ)dτ

]1/2 [
E

([∫
n
∣∣∣Bψ̂S

n(τ, β0)− Bψ̂n(β0)
∣∣∣2π(τ)dτ

])]1/2
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The first term in the product is ‖v∗n‖weak. The second term is bounded by noting that for all

τ ∈ Rdτ :

nE

∣∣∣Bψ̂S
n(τ, β0)−E

(
Bψ̂S

n(τ, β0)
) ∣∣∣2 ≤ 1 + 24 ∑

m≥1
α(m)1/p < ∞.

for any p > 1 by Lemma .0.2, picking p = 1/2 implies:

E

(∫
n
∣∣∣Bψ̂S

n(τ, β0)− Bψ̂n(β0)
∣∣∣2π(τ)dτ

)
≤
(

1 + 24 ∑
m≥1

√
α(m)

)

which yields a =
√

4 + 96 ∑m≥1
√

α(m).

Assumption .0.7 (Undersmoothing, Convergence Rate). Let δsn = ‖β̂n − β0‖B the conver-

gence rate in strong norm.

i. Undersmoothing: ‖β̂n − β0‖weak = Op(δn) and δsn = ‖Πk(n)β− β0‖B + τnδn.

ii. Sufficient Rate: δn = o(n−1/4).

iii. The convergence rate in weak norm δn and in strong norm δsn are such that:

(Mnδsn)
γ
√

Csn = o(1) (.0.2)
√

nM1+γ
n δ

γ
n
√

Csn max
(

Mnδn,
1√
n

)
= o(1) (.0.3)

where√
Csn =

∫ 1

0

(
x−ϑ/2

√
log N([xMnδsn]1/γ,Bk(n), ‖ · ‖B) + log2 N([xMnδsn]

1/γ,Bk(n), ‖ · ‖B)
)

dx

and Mn = log log(n + 1) for all all n ≥ 1.

Assumptions .0.7 i., ii. are common in the (semi)-nonparametric literature. Assump-

tion .0.7 iii. ensures that a stochastic equicontinuity holds. It is needed several time

throughout the proofs (see Lemma .0.6), in most cases the less demanding condition

(.0.2) is sufficient. Condition (.0.3) is similar to Chen & Pouzo (2015)’s assumption A.5

(iii), it ensures that when ψ̂S
n(τ, β)− ψ̂S

n(τ, β0) is substituted under the integral with its

smoothed version, the difference is negligible for
√

n-asymptotics.

Assumption .0.8 (Local Linear Expansion of φ). φ is continuously differentiable and dφ(β0)
dβ [·]

is a non-zero linear functional such that as n→ ∞:

i. A linear expansion is locally uniformly valid

sup‖β−β0‖weak≤Mnδn

√
n

σ∗n

∣∣∣φ(β)− φ(β0)−
dφ(β0)

dβ
[β− β0]

∣∣∣→ 0.
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ii. The approximation bias is negligible
√

n
σ∗n

dφ(β0)

dβ
[β0,n − β0]→ 0.

Remark .0.4 (Sufficient Conditions for Assumption .0.8 i.). If φ is twice continuously dif-

ferentiable then for some v ∈ V and h ∈ [−1, 1], β = β0 + hMnδnv. Using a Mean Value

Expansion:∣∣∣φ(β0 + hMnδnv)− φ(β0)−
dφ(β0)

dβ
[hMnδnv]

∣∣∣ = ∣∣∣1
2

d2φ(β0 + h̃Mnδnv)
dβdβ

[hMnδnv, hMnδnv]
∣∣∣

= h2(Mnδn)
2
∣∣∣1
2

d2φ(β0 + h̃Mnδnv)
dβdβ

[v, v]
∣∣∣.

Hence Assumption .0.8 i. holds under the following two conditions:

i. The second derivative is locally uniformly bounded:

sup‖v‖weak=1,h∈(−1,1)

∣∣∣1
2

d2φ(β0 + hMnδnv)
dβdβ

[v, v]
∣∣∣ = O(1).

ii. The rate of convergence satisfies:
√

n
σ∗n

(Mnδn)
2 = o(1).

This condition holds if δn = o(M−1
n n−1/4) which is slightly stronger than Assumption .0.7

ii.

Remark .0.5 (Sufficient Conditions for Assumption .0.8 ii.). By definition of β0,n, Assump-

tions .0.4, .0.5 and under geometric ergodicity:

‖β0,n − β0‖weak ≤ ‖Πk(n)β0 − β0‖weak

≤ C
√

Qn(Πk(n)β0)

≤ C̃‖Πk(n)β0 − β0‖γ
B.

The approximation rate is typically ‖Πk(n)β0 − β0‖γ
B = O(k(n)−r) where r is the smoothness of

the density f0 to be estimated. Rewriting β0,n = β0 + hnk(n)−rvn with ‖vn‖weak = 1, |hn| ≤ h

bounded, the expression can be bounded using:
√

n
σ∗n

∣∣∣dφ(β0)

dβ
[β0,n − β0]

∣∣∣ ≤ h
√

n
σ∗n

k(n)−r
∣∣∣dφ(β0)

dβ
[vn]

∣∣∣.
Hence Assumption .0.8 ii. is satisfied under the following two conditions:
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i. The first derivative is uniformly bounded on the unit circle:

sup‖v‖weak=1

∣∣∣1
2

dφ(β0)

dβ
[v]
∣∣∣ < ∞.

ii. The approximation rate satisfies:
√

n
σ∗n

k(n)−γr = o(1).

With the undersmoothing assumption the k(n) must satisfy k(n)−γr = o(δn) = o(n−1/4).

aA sufficient condition on the bias/variance relation is k(n)−γr = o(δ2
nσ∗n).

The last condition is strong and can be weakened if for instance δ2
n � 1/

√
n, replacing δ2

n with

1/
√

n. Sharper bounds on the bias can also be found in the iid case (see Corollary .0.3) or under

assumptions on the DGP itself as in the main results (see Lemma 5).

Assumption .0.9 (Local Behaviour of E(ψ̂(τ, β))). The mapping β → E(ψ̂S
n(τ, β) is twice

continuously differentiable for all τ and satisfies:

i. A linear expansion is locally uniformly valid(
sup‖β−β0‖weak≤Mnδn

∫ ∣∣∣E(ψ̂S
n(τ, β))−E(ψ̂S

n(τ, β0))−
dE(ψ̂S

n(τ, β0))

dβ
[β− β0]

∣∣∣2π(τ)dτ

)1/2

= O
(
(Mnδn)

2
)

ii. The second derivative in direction u∗n is locally uniformly bounded

sup‖β−β0‖weak≤Mnδn

∫ ∣∣∣d2E(ψ̂S
n(τ, β))

dβdβ
[u∗n, u∗n]

∣∣∣2π(τ)dτ = O(1)

Remark .0.6 (Sufficient Conditions for Assumption .0.9). Assumption .0.9 i. holds if E(ψ̂S
n(τ, ·))

is twice continuously differentiable around β0 with locally uniformly bounded second derivative

since for some ‖v‖weak = 1 and h ∈ [−1, 1]: β = β0 + hMnδnv. A Mean Value Expansion

yields: (∫ ∣∣∣E(ψ̂S
n(τ, β))−E(ψ̂S

n(τ, β0))−
dE(ψ̂S

n(τ, β0))

dβ
[β− β0]

∣∣∣2π(τ)dτ

)1/2

= h2M2
nδ2

n

(∫ ∣∣∣d2E(ψ̂S
n(τ, β0 + h̃Mnδnv))

dβdβ
[v, v]

∣∣∣2π(τ)dτ

)1/2
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Since h̃ ∈ (−1, 1), the expression above is O
(
(Mnδn)

2
)

if:

sup‖v‖weak=1, h∈(−1,1)

(∫ ∣∣∣d2E(ψ̂S
n(τ, β0 + h̃Mnδnv))

dβdβ
[v, v]

∣∣∣2π(τ)dτ

)1/2

= O(1).

Hence Assumptions .0.9 i. and ii. could be nested under the following condition:

sup‖v‖weak=1,‖β−β0‖weak≤Mnδn

(∫ ∣∣∣d2E(ψ̂S
n(τ, β))

dβdβ
[v, v]

∣∣∣2π(τ)dτ

)1/2

= O(1).

The following theorem establishes the asymptotic normality of φ(β̂n)− φ(β0) under

the assumptions given above. Note that when σ∗n → ∞ the estimates converge at a slower

than
√

n-rate.

Theorem .0.3 (Asymptotic Normality). Suppose Assumptions .0.6-.0.9 hold then:
√

n
σ∗n

(
φ(β̂n)− φ(β0)

)
=

√
n

σ∗n

(
φ(β̂n)− φ(β0)

)
S∗n + op(1).

Furthermore, if the data (yt, xt) is stationary α-mixing, the simulated data is geometrically er-

godic, the moments are bounded |ψ̂s
t (τ, β)| ≤ 1 and B is bounded linear then S∗n/σ∗n satisfies a

Central Limit Theorem so that:
√

n
σ∗n

(
φ(β̂n)− φ(β0)

)
d→ N (0, 1).

Examples of Lp-smooth models

The following provides examples of DGP and moment combinations which satisfy As-

sumption .0.4 condition i.

1. iid data without covariates: ys
t = us

t , us
t ∼ F. The moment function is the empirical

CDF:

ψ̂n(τ) =
1
n

n

∑
t=1

1yt≤τ.

Using the supremum distance, ‖β1 − β2‖B = supy|F(y) − F̃(y)|, the following

holds: [
E

(
sup‖F1−F2‖∞≤δ

∣∣∣1ys
t(F1)≤τ − 1ys

t(F2)≤τ

∣∣∣2)]1/2

≤ 2δ1/2.

Assumption .0.4, condition i. is satisfied with π equal to the normal density function

for any η > 0.
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2. Single Index Model: ys
t = 1x′tθ+us

t≤0, us
t ∼ F. The moment function is the empirical

CF:

ψ̂n(τ) =
1
n

n

∑
t=1

exp
(
iτ′ (yt, xt)

)
.

The metric is the supremum distance between CDFs ‖β1 − β2‖B = supy|F1(y) −
F2(y)| and B = {β = (θ, F), ‖F′‖∞ ≤ C1 < ∞, ‖θ‖ ≤ C2 < ∞}, a space with CDFs

having continuous and bounded densities. Also, suppose that E‖xt‖ < ∞, then:[
E

(
sup‖β1−β2‖∞≤δ

∣∣∣1ys
t(β1)≤τ − 1ys

t(β2)≤τ

∣∣∣2)]1/2

≤ 2
√

1 + C1E‖xt‖δ1/2‖τ‖∞.

Condition i. is satisfied with π equal to the normal density function for any η > 0.

3. MA(1) model: ys
t = us

t + θus
t−1, us

t ∼ F. The moment function is the empirical CF:

ψ̂n(τ) =
1
n

n

∑
t=1

exp
(
iτ′ (yt, yt−1)

)
.

The metric is the supremum distance between quantile functions:

‖F−1
1 − F2

−1‖B = sup0≤ν≤1|F
−1
1 (ν) − F2

−1(ν)|. The parameter space B = {β =

(θ, F), ‖F−1‖∞ ≤ C1 < ∞, |θ| ≤ C2 < ∞} is the space of distributions with bounded

quantile functions. The following holds:[
E
(

sup‖β1−β2‖∞≤δ

∣∣exp
(
iτ′
(
ys

t(β1), ys
t−1(β1)

))
− exp

(
iτ′
(
ys

t(β2), ys
t−1(β2)

))∣∣2)]1/2

≤ 2(1 + C1 + C2)δ‖τ‖∞.

Condition i. is satisfied with π equal to the normal density function for any η > 0.

4. AR(1) model: ys
t = θys

t−1 + us
t , us

t ∼ F. The moment function is the empirical CF:

ψ̂n(τ) =
1
n

n

∑
t=1

exp
(
iτ′ (yt, yt−1)

)
.

The metric is the supremum distance between quantile functions:

‖F−1 − F̃−1‖B = sup0≤ν≤1|F
−1(ν)− F̃−1(ν)|.

The parameter space B = {β = (θ, F), ‖F−1‖∞ ≤ C1 < ∞, |θ| ≤ C2 < 1} is the

space f distributions with bounded quantile functions. The following holds:[
E
(

sup‖β1−β2‖∞≤δ

∣∣exp
(
iτ′
(
ys

t(β1), ys
t−1(β1)

))
− exp

(
iτ′
(
ys

t(β2), ys
t−1(β2)

))∣∣2)]1/2

≤ 2
1− C2

(
1 +

C1

1− C2

)
δ‖τ‖∞.

Condition i. is satisfied with π equal to the normal density function for any η > 0.
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5. Non-linear autoregressive model: ys
t = gobs(ys

t−1,θ) + us
t , us

t ∼ F. The moment

function is the empirical CF:

ψ̂n(τ) =
1
n

n

∑
t=1

exp
(
iτ′ (yt, yt−1)

)
.

The metric is the supremum distance between quantile functions:

‖F−1 − F̃−1‖B = sup0≤ν≤1|F
−1(ν)− F̃−1(ν)|.

The parameter space B = {β = (θ, F), ‖F−1‖∞ ≤ C1 < ∞, |θ| ≤ C2 < ∞} is the

space f distributions with bounded quantile functions. Furthermore, suppose that

|gobs(y,θ)− gobs(ỹ,θ)| ≤ C3|y− ỹ| < |y− ỹ| for all θ and |gobs(y,θ)− gobs(y, θ̃)| ≤
C4|θ− θ̃|, then:[

E
(

sup‖β1−β2‖∞≤δ

∣∣exp
(
iτ′
(
ys

t(β1), ys
t−1(β1)

))
− exp

(
iτ′
(
ys

t(β2), ys
t−1(β2)

))∣∣2)]1/2

≤ 2
1 + C4

1− C3
δ‖τ‖∞.

Condition i. is satisfied with π equal to the normal density function for any η > 0.

The derivations for these examples are given below.

1. iid data without covariates: ys
t = us

t , us
t ∼ F. The moment function is the empirical

CDF:

ψ̂n(τ) =
1
n

n

∑
t=1

1yt≤τ.

The metric is the supremum distance between CDFs: ‖F1 − F2‖B = supy|F1(y) −
F2(y)|.
If supy‖F1(y)− F2(y)‖B ≤ δ then F1(y)− δ ≤ F2(y) ≤ F1(y) + δ. Hence for τ ∈ R:

|1ys
t≤τ − 1ỹs

t≤τ|2 ≤ 2|1ys
t≤τ − 1ỹs

t≤τ|

= 2|1νs
t≤F(τ) − 1νs

t≤F̃(τ)|

≤ 2
(
1νs

t≤F1(τ)+δ − 1νs
t≤F1(τ)−δ

)
Taking expectations with respect to νs

t ∼ U[0,1], for all τ ∈ R:

E

(
supsupy|F1(y)−F2(y)|≤δ|1ys

t≤τ − 1ỹs
t≤τ|2

)
≤ 4δ.
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2. Single Index Model: ys
t = 1x′tθ+us

t≤0, us
t ∼ F. The moment function is the empirical

CF:

ψ̂n(τ) =
1
n

n

∑
t=1

exp
(
iτ′ (yt, xt)

)
.

The metric is the supremum distance between CDFs: ‖β1 − β2‖B = supy|F1(y) −
F2(y)| and the parameter space is B = {β = (θ, F), ‖F′‖∞ ≤ C1 < ∞, ‖θ‖ ≤ C2 <

∞}, a space with CDFs with continuous and bounded densities. Also assume that

E‖xt‖ < ∞.

Proceeding similarly to example i.:

|1ys
t(β1)≤τ − 1ys

t(β2)≤τ|2 ≤ 2|1ys
t(β1)≤τ − 1ys

t(β2)≤τ|

= 2|1νs
t≤F1(τ−x′tθ1)

− 1νs
t≤F2(τ−x′tθ2)

|

≤ 2|1νs
t≤F1(τ−x′tθ1)

− 1νs
t≤F2(τ−x′tθ1)

|

+ 2|1νs
t≤F2(τ−x′tθ1)

− 1νs
t≤F2(τ−x′tθ2)

|

≤ 2
(
1νs

t≤F1(τ−x′tθ1)+δ − 1νs
t≤F2(τ−x′tθ1)−δ

)
+ 2|1νs

t≤F2(τ−x′tθ)
− 1νs

t≤F2(τ−x′tθ2)
|

Without loss of generality, assume that xt ≥ 0 so that:

|1ys
t(β1)≤τ − 1ys

t(β2)≤τ|2 ≤ 2|1ys
t(β1)≤τ − 1ys

t(β2)≤τ|

≤ 2
(
1νs

t≤F1(τ−x′tθ1)+δ − 1νs
t≤F2(τ−x′tθ1)−δ

)
+ 2|1νs

t≤F2(τ−x′t[θ1−δ]) − 1νs
t≤F2(τ−x′t[θ1+δ])|.

Taking expectations with respect to νs
t ∼ U[0,1], for all τ ∈ R:

E
(

supβ=(θ,F), ‖β1−β2‖≤δ|1ys
t(β1)≤τ − 1ys

t(β2)≤τ|2
∣∣∣xt

)
≤ 2

(
[F1(τ − x′tθ1) + δ]− [F1(τ − x′tθ1)− δ]

)
+ 2

(
F2(τ − x′t[θ1 − δ])− F2(τ − x′t[θ1 + δ])

)
≤ 4δ + 4C1‖xt‖δ.

And then, taking expectations with respect to xt:

E
(

supβ=(θ,F), ‖β1−β2‖≤δ|1ys
t(β1)≤τ − 1ys

t(β2)≤τ|2
)
≤ 4 (1 + C1E‖xt‖) δ.

3. MA(1) model: ys
t = us

t + θus
t−1, us

t ∼ F. The moment function is the empirical CF:

ψ̂n(τ) =
1
n

n

∑
t=1

exp
(
iτ′ (yt, yt−1)

)
.
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The metric is the supremum distance on quantiles: ‖F−1− F̃−1‖B = sup0≤ν≤1|F−1(ν)−
F̃−1(ν)|. The parameter space is B = {β = (θ, F), ‖F−1‖∞ ≤ C1 < ∞, |θ| ≤ C2 <

∞}, a space with bounded quantile functions.

As discussed in section 3.7, because the sine and cosine functions are Lipschitz con-

tinuous, the following holds for all τ = (τ1, τ2) ∈ R2:∣∣∣ exp
(
iτ′
(
ys

t(β1), ys
t−1(β1)

))
− exp

(
iτ′
(
ys

t(β2), ys
t−1(β2)

)) ∣∣∣
≤ ‖τ‖∞

(
|ys

t(β1)− ys
t(β2)|+ |ys

t−1(β1)− ys
t−1(β2)|

)
.

Consider the case of |ys
t(β1)− ys

t(β2)|:

|ys
t(β1)− ys

t(β2)| = |[F−1
1 (νs

t ) + θ1F−1
1 (νs

t−1)]− [F−1
2 (νs

t ) + θ2F−1
2 (νs

t−1)]|

≤ |[F−1
1 (νs

t )− F−1
2 (νs

t )|+ |θ1||F−1
1 (νs

t−1)− F−1
2 (νs

t−1)|+ |θ1 − θ2||F−1
2 (νs

t−1)|

≤ (1 + C2 + C1)δ.

The same bound applies for |ys
t−1(β1)− ys

t−1(β2)|. Together with the previous in-

equalities it implies:∣∣∣ exp
(
iτ′
(
ys

t(β1), ys
t−1(β1)

))
− exp

(
iτ′
(
ys

t(β2), ys
t−1(β2)

)) ∣∣∣2
≤ [2(1 + C2 + C1)δ‖τ‖∞]2.

4. AR(1) model: ys
t = θys

t−1 + us
t , us

t ∼ F. The moment function is the empirical CF:

ψ̂n(τ) =
1
n

n

∑
t=1

exp
(
iτ′ (yt, yt−1)

)
.

The metric is the supremum distance on quantile functions:

‖F−1
1 − F2

−1‖B = sup0≤ν≤1|F
−1
1 (ν)− F2

−1(ν)|.

The parameter space is B = {β = (θ, F), ‖F−1‖∞ ≤ C1 < ∞, |θ| ≤ C2 < 1}, a space

with bounded quantile functions.

Similarly to the MA(1), only |ys
t(β)− ys

t(β̃)| needs to be bounded:

|ys
t(β1)− ys

t(β2)| = |[θ1ys
t−1(β1) + F−1

1 (νs
t )]− [θ2ys

t−1(β2) + F−1
2 (νs

t )]|

≤ |F−1
1 (νs

t )− F−1
2 (νs

t )|+ |θ1||ys
t−1(β1)− ys

t−1(β2)|+ |θ1 − θ2||ys
t−1(β2)|

≤ δ

(
1 +

C1

1− C2

)
+ |C2||ys

t−1(β1)− ys
t−1(β2)|.
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The last inequality comes from the fact that |θ1| ≤ C2 < 1 and |F−1
1 | ≤ C2 combined

with the fact that ys
t(β) = ∑t−1

k=0 θ
kF−1(νs

t ) + θ
ty0. The initial condition y0 is fixed, so

by iterating the previous inequality:

|ys
t(β1)− ys

t(β2)| ≤ δ

(
1 +

C1

1− C2

)
1

1− C2
.

Applying this inequality and the Lipschitz continuity of the sine and cosine func-

tions: ∣∣∣ exp
(
iτ′
(
ys

t(β1), ys
t−1(β1)

))
− exp

(
iτ′
(
ys

t(β2), ys
t−1(β2)

)) ∣∣∣2
≤ [2

(
1 +

C1

1− C2

)
1

1− C2
δ‖τ‖∞]2.

5. Non-linear autoregressive model: ys
t = gobs(ys

t−1,θ) + us
t , us

t ∼ F. The moment

function is the empirical CF:

ψ̂n(τ) =
1
n

n

∑
t=1

exp
(
iτ′ (yt, yt−1)

)
.

The metric is the supremum distance on quantile functions:

‖F−1
1 − F2

−1‖B = sup0≤ν≤1|F
−1
1 (ν)− F2

−1(ν)|.

The parameter space is B = {β = (θ, F), ‖F−1‖∞ ≤ C1 < ∞, |θ| ≤ C2 < ∞}, a space

with bounded quantile functions. Furthermore, assume |gobs(y,θ) − gobs(ỹ,θ)| ≤
C3|y− ỹ| < |y− ỹ| for all θ and |gobs(y,θ)− gobs(y, θ̃)| ≤ C4|θ− θ̃|.
The proof is similar to the AR(1) example, first ys

t needs to be bounded:

|ys
t(β1)− ys

t(β2)| = |[gobs(ys
t−1(β1),θ) + F−1

1 (νs
t )]− [gobs(ys

t−1(β2),θ2) + F−1
2 (νs

t )]|

≤ |F−1
1 (νs

t )− F−1
2 (νs

t )|+ |gobs(ys
t−1(β1),θ1)− gobs(ys

t−1(β2),θ1)|

+ |gobs(ys
t−1(β1),θ2)− gobs(ys

t−1(β2),θ2)|

≤ (1 + C4)δ + C3|ys
t−1(h)− ys

t−1(β2)|.

Iterating this inequality up to t = 0 where the initial condition is fixed implies:

|ys
t(β1)− ys

t(β2)| ≤
1 + C4

1− C3
δ.

Similarly to the MA(1) and AR(1) models:∣∣∣ exp
(
iτ′
(
ys

t(β1), ys
t−1(β1)

))
− exp

(
iτ′
(
ys

t(β2), ys
t−1(β2)

)) ∣∣∣2
≤
(

2
1 + C4

1− C3
δ‖τ‖∞

)2

.
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Interpretation of the Equivalence Conditions

To prove the existence of an a > 0 in Assumption .0.6, Chen & Pouzo (2015) use an eigen-

value condition on the variance of the moments. Since they have a bounded support the

smallest eigenvalue can be bounded below. Here, the variance operator is infinite dimen-

sional (see Carrasco & Florens, 2000, for a discussion) so that the eigenvalues may not be

bounded below. However, an interpretation in terms of the eigenvalues and eigenvectors

of the variance opertator is still possible. First, note that σ∗n , ‖v∗n‖weak can be written as:

‖v∗n‖2
weak =

∫ [
Real

(
Bψβ(τ, v∗n)

)2
+ Im

(
Bψβ(τ, v∗n)

)2
]

π(τ)dτ

σ∗2n = E

[∫
Real

(
Bψβ(τ, v∗n)

)
Real

(
BZS

n(τ)
)
+ Im

(
Bψβ(τ, v∗n)

)
Im
(

BZS
n(τ)

)
π(τ)dτ

]2

The sieve variance can be expanded into three terms:

σ∗2n =
∫

Real
(

Bψβ(τ1, v∗n)
)

Real
(

Bψβ(τ2, v∗n)
)

E
[

Real
(

BZS
n(τ1)

)
Real

(
BZS

n(τ2)
)]

π(τ1)π(τ2)dτ1dτ2

+
∫

Im
(

Bψβ(τ1, v∗n)
)

Im
(

Bψβ(τ2, v∗n)
)

E
[

Im
(

BZS
n(τ1)

)
Im
(

BZS
n(τ2)

)]
π(τ1)π(τ2)dτ1dτ2

+ 2
∫

Real
(

Bψβ(τ1, v∗n)
)

Im
(

Bψβ(τ2, v∗n)
)

E
[

Real
(

BZS
n(τ1)

)
Im
(

BZS
n(τ2)

)]
π(τ1)π(τ2)dτ1dτ2.

This expansion can be re-written more compactly in matrix form:

σ∗2n =
∫  Real

(
Bψβ(τ1, v∗n)

)
Im
(

Bψβ(τ1, v∗n)
)

′

Σn(τ1, τ2)

 Real
(

Bψβ(τ2, v∗n)
)

Im
(

Bψβ(τ2, v∗n)
)
π(τ1)π(τ2)dτ1dτ2

where

Σn(τ1, τ2) = nE

 Real
(

BZS
n(τ1)

)
Real

(
BZS

n(τ2)
)

Real
(

BZS
n(τ1)

)
Im
(

BZS
n(τ2)

)
Im
(

BZS
n(τ2)

)
Im
(

BZS
n(τ1)

)
Im
(

BZS
n(τ1)

)
Im
(

BZS
n(τ2)

)
 .

Before comparing this expression with ‖v∗n‖weak further simplifications are possible. Let

Kn be the operator satisfying:

KnBψβ(τ, v∗n) =
∫

Σn(τ, τ2)

 Real
(

Bψβ(τ2, v∗n)
)

Im
(

Bψβ(τ2, v∗n)
)
π(τ2)dτ2

Then the sieve variance can be expressed in terms of the operator Kn:

σ∗2n =
∫

Bψβ(τ, v∗n)Kn

 Real
(

Bψβ(τ, v∗n)
)

Im
(

Bψβ(τ, v∗n)
)
π(τ)dτ
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The term ‖v∗n‖weak can also be re-written in a similar notation:

‖v∗n‖2
weak =

∫  Real
(

Bψβ(τ, v∗n)
)

Im
(

Bψβ(τ, v∗n)
)

′ Real

(
Bψβ(τ, v∗n)

)
Im
(

Bψβ(τ, v∗n)
)
π(τ)dτ

Now note that these integrals are associated with an inner product in the Hilbert space(
L2(π), 〈·, ·〉L2(π)

)
with for all complex valued ϕ1, ϕ2 ∈ L2(π):

〈ϕ1, ϕ2〉L2(π) =
∫  Real(ϕ1(τ))

Im(ϕ1(τ))


′ Real(ϕ1(τ))

Im(ϕ1(τ))

π(τ)dτ.

As a result, Assumption .0.6 can be re-written in terms of the covariance operator Kn:

a〈ψβ(·, v∗n),ψβ(·, v∗n)〉L2(π) ≤ 〈ψβ(·, v∗n), Knψβ(·, v∗n)〉L2(π).

Since σ∗n > 0 by construction, Kn has positive eigenvalues. Let (ϕ1,n, ϕ2,n, . . . ) be the

eigenvector associated with Kn and (λ1,n, λ2,n, . . . ) the associated eigenvalues (in decreas-

ing modulus). Then Bψβ(·, v∗n) = ∑j≥1 aj,n ϕj,n and

〈ψβ(·, v∗n), Knψβ(·, v∗n)〉L2(π) = ∑
j≥1

a2
j,nλj,n

〈ψβ(·, v∗n),ψβ(·, v∗n)〉L2(π) = ∑
j≥1

a2
j,n.

To go further, there are two cases:

i. ‖v∗n‖weak → ∞ (slower than
√

n convergence rate): assume that there exists a pair

(aj,n, λj,n) such that λj,n ≥ λj > 0 and aj,n → ∞ at the same rate as ‖v∗n‖weak:
aj,n

‖v∗n‖weak
≥ aj > 0. In this case:

〈ψβ(·, v∗n), Knψβ(·, v∗n)〉L2(π) ≥ a2
j,nλj ≥

a2
j,nλj

〈ψβ(·, v∗n),ψβ(·, v∗n)〉L2(π)
〈ψβ(·, v∗n),ψβ(·, v∗n)〉L2(π)

≥ aj〈ψβ(·, v∗n),ψβ(·, v∗n)〉L2(π).

Take for instance a = aj > 0.

ii. ‖v∗n‖weak 6→ ∞ (
√

n convergence rate): it suffice that there exist a pair (aj,n, λj,n) such

that λj,n ≥ λj > 0 and aj,n ≥ aj > 0. In this case:

〈ψβ(·, v∗n), Knψβ(·, v∗n)〉L2(π) ≥ a2
j λj ≥

a2
j λj

〈ψβ(·, v∗n),ψβ(·, v∗n)〉L2(π)
〈ψβ(·, v∗n),ψβ(·, v∗n)〉L2(π).
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Let a = diagn≥1
a2

j λj

〈ψβ(·,v∗n),ψβ(·,v∗n)〉L2(π)
> 0 by assumption.

To satisfy the equivalence condition, the moments ψβ must project on the covariance

operator in directions where the variance increases at least as fast as the weak norm.

Proofs for the Additional Asymptotic Results

Consistency

The following lemma, taken from Chen & Pouzo (2012) (the notation is adapted for this

paper’s setting), gives sufficient conditions for consistency.

Lemma .0.1. Let β̂n be such that Q̂n(β̂n) ≤ diagβ∈Bk(n)
+ Op∗(ηn), where (ηn)n≥1 is a positive

real-valued sequence such that ηn = o(1). Let Qn : B → [0,+∞) be a sequence of non-random

measurable functions and let the following conditions hold:

a. i) 0 ≤ Qn(β0) = o(1); ii) there is a positive function g0(n, k, ε) such that:

diagh∈Bk : ‖β−β0‖B>εQn(β) ≥ g0(n, k, ε) > 0 for each n, k ≥ 1

and lim diagn→∞g0(n, k(n), ε) ≥ 0 for all ε > 0.

b. i) B is an infinite dimensional, possibly non-compact subset of a Banach space (B, ‖‖B);
ii) Bk ⊆ Bk+1 ⊆ B for all k ≥ 1, and there is a sequence {Πk(n)β0 ∈ Bk(n)} such that

Qn(Πk(n)β0) = o(1).

c. Q̂n(β) is jointly measurable in the data (yt, xt)t≥1 and the parameter h ∈ Bk(n).

d. i) Q̂n(Πk(n)β0) ≤ K0Qn(Πk(n)β0) + Op∗(c0,n) for some c0,n = o(1) and a finite constant

K0 > 0; ii) Q̂n(β) ≥ KQn(β)−Op∗(cn) uniformly over h ∈ Bk(n) for some cn = o(1)

and a finite constant K > 0; iii) max(c0,n, cn, Qn(Πk(n)β0), ηn) = o(g0(n, k(n), ε)) for

all ε > 0.

Then for all ε > 0:

P∗
(
‖β̂n − β0‖B > ε

)
→ 0 as n→ ∞.

Remark .0.1. Condition a. is an identification conditions. Condition b. requires the sieve ap-

proximation to be valid for the objective function. Condition d. gives an asymptotic equivalence

between Q̂n and Qn up to a Op∗(max(cn, c0,n)) term; if one is close to zero, the other must be

as well. It also requires that the sieve approximation rate, the rate at which Qn and Q̂n become

equivalent and the approximation error goes to zero faster than the ill-posedness of the problem as

measured by g0.
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Proof of Proposition .0.1. :

In the iid case, if ys
t depends on f only via the shocks es

t , i.e. ys
t = gobs(xt,θ, es

t), then

E(ψ̂s
t (τ, β)) =

∫
E (exp(iτ′(gobs(xt,θ, ε), xt)) f (ε)dε) for each τ. First note that Πk(n)β0 =

(θ0, Πk(n) f0) and:∣∣∣E[ψ̂s
t (τ, Πk(n)β0)− ψ̂t(τ)]

∣∣∣ = ∣∣∣E[ψ̂s
t (τ, Πk(n)β0)− ψ̂s

t (τ, β0)]
∣∣∣

=
∣∣∣ ∫ E

(
exp(iτ′(gobs(xt,θ0, u), xt))

)
[Πk(n) f0(u)− f0(u)]du

∣∣∣
≤
∫
|Πk(n) f0(u)− f0(u)|du = ‖Πk(n) f0 − f0‖TV .

Taking squares on both sides and integrating:∫ ∣∣∣E[(ψ̂s
t (τ, Πk(n)β0)− ψ̂t(τ))]

∣∣∣2π(τ)dτ ≤ ‖Πk(n) f0 − f0‖2
TV .

To conclude the proof, use the assumption that B is bounded linear so that:

Qn(Πk(n)β0) ≤ M2
B

∫ ∣∣∣E[(ψ̂s
t (τ, Πk(n)β0)− ψ̂t(τ))]

∣∣∣2π(τ)dτ ≤ M2
B‖Πk(n) f0 − f0‖2

TV .

Proof of Proposition .0.2. :

To prove the proposition, proceed in four steps:

1. First, Assumption .0.4 implies:∫
|ψ̂n(τ)−E(ψ̂n(τ))|2π(τ)dτ = Op(1/n)

2. It also implies that, uniformly over β ∈ Bk(n):∫
|ψ̂S

n(τ, β)−E(ψ̂S
n(τ, β))|2π(τ)dτ = Op(Cn/n)

3. By the triangular inequality, the previous two results imply that, uniformly over

β ∈ Bk(n):∫ ∣∣∣[ψ̂S
n(τ, β)− ψ̂n(τ)]−E[ψ̂S

n(τ, β)− ψ̂n(τ)]
∣∣∣2π(τ)dτ = Op(max(1, Cn)/n).

And, because B is a bounded linear operator:∫ ∣∣∣[Bψ̂S
n(τ, β)− Bψ̂n(τ)]−E[Bψ̂S

n(τ, β)− Bψ̂n(τ)]
∣∣∣2π(τ)dτ

≤ M2
B

∫ ∣∣∣[ψ̂S
n(τ, β)− ψ̂n(τ)]−E[ψ̂S

n(τ, β)− ψ̂n(τ)]
∣∣∣2π(τ)dτ = Op(max(1, Cn)/n).
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4. Using the inequality |a − b|2 ≥ 1/2|a|2 + |b|2 and the previous result, uniformly
over β ∈ Bk(n):

1/2
∫
|Bψ̂S

n(τ, β)− Bψ̂n(τ)|2π(τ)dτ ≤
∫
|E(Bψ̂S

n(τ, β)− Bψ̂n(τ))|2π(τ)dτ + Op(max(1, Cn)/n)

and

1/2
∫
|E(Bψ̂S

n(τ, β)− Bψ̂n(τ))|2π(τ)dτ ≤
∫
|Bψ̂S

n(τ, β)− Bψ̂n(τ)|2π(τ)dτ + Op(max(1, Cn)/n).

The last step concludes the proof of the proposition with δ2
n = max(1, Cn)/n = o(1) if

Cn/n→ 0 as n→ ∞.

First, consider steps 1. and 2:

Step 1.: For M > 0, a convergence rate rn and Markov’s inequality:

P

(∫
|ψ̂n(τ)−E(ψ̂n(τ))|2π(τ)dτ ≥ Mrn

)
≤ 1

Mrn
E

(∫
|ψ̂n(τ)−E(ψ̂n(τ))|2π(τ)dτ

)
=

1
Mrn

∫
E
(
|ψ̂n(τ)−E(ψ̂n(τ))|2

)
π(τ)dτ

≤ 2
Mrn

1 + 24 ∑m≥0 α(m)1/p

n

∫
π(τ)dτ

≤
Cα,p

Mrnn
.

The last two inequalities come from Lemma .0.2. If the data is iid then the mixing coeffi-

cients α(m) = 0 for all m ≥ 1. Cα,p is a constant that only depends on the mixing rate α,

p and the bound on |ψ̂t(τ)−E(ψ̂t(τ))| ≤ 2. For rn = 1/n and M → ∞ the probability

goes to zero. As a result:
∫
|ψ̂n(τ)−E(ψ̂n(τ))|2π(τ)dτ = Op(1/n).

Step 2.: The proof is similar to the proof of lemma C.1 in Chen & Pouzo (2012). It also

begins similarly to Step 1, for M > 0, a convergence rate rn and Markov’s inequality:

P

(
supβ∈Bk(n)

∫
|ψ̂S

n(τ, β)−E(ψ̂S
n(τ, β))|2π(τ)dτ ≥ Mrn

)
≤ 1

Mrn
E

(
supβ∈Bk(n)

∫
|ψ̂S

n(τ, β)−E(ψ̂S
n(τ, β))|2π(τ)dτ

)
≤ 1

Mrn

∫
E
(

supβ∈Bk(n)
|ψ̂S

n(τ, β)−E(ψ̂S
n(τ))|2

)
π(τ)dτ

≤ 1
Mrn

∫
E
(

supβ∈Bk(n)
|ψ̂s

n(τ, β)−E(ψ̂s
n(τ))|2

)
π(τ)dτ
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Suppose that there is an upper bound Cn such that for all τ:

E
(

supβ∈Bk(n)
|[ψ̂s

n(τ, β)−E(ψ̂s
n(τ, β))]π(τ)1/(2+η)|2

)
≤ Cn/n

If the following also holds
∫

π(τ)1−2/(2+η)dτ = Cη < ∞ then:

1
Mrn

∫
E
(

suph∈Bk(n)
|ψ̂s

n(τ, β)−E(ψ̂s
n(τ, β))|2

)
π(τ)dτ ≤

CηCn

Mrnn
.

Take rn = Cn/n = o(1), then for M→ ∞ the probability goes to zero. As a result:

supβ∈Bk(n)

∫
|ψ̂S

n(τ, β)−E(ψ̂S
n(τ, β))|2π(τ)dτ = Op(Cn/n).

The bounds Cn are now computed, first in the iid case. By theorem 2.14.5 of van der

Vaart & Wellner (1996):

E

(
supβ∈Bk(n)

∣∣∣√n[ψ̂s
n(τ, β)−E(ψ̂s

n(τ, β))]π(τ)1/(2+η)
∣∣∣2)

≤
(

1 + E
(

supβ∈Bk(n)

∣∣∣√n[ψ̂s
n(τ, β)−E(ψ̂s

n(τ, β))]π(τ)1/(2+η)
∣∣∣))2

.

Also, by theorem 2.14.2 of van der Vaart & Wellner (1996) there exists a universal constant

K > 0 such that for each τ ∈ Rdτ :

E
(

supβ∈Bk(n)

∣∣∣√n[ψ̂s
n(τ, β)−E(ψ̂s

n(τ, β))]π(τ)1/(2+η)
∣∣∣) ≤ K

∫ 1

0

√
1 + log N[ ](x, Ψk(n), ‖ · ‖)dx

with Ψk(n) =
{
ψ : Bk(n) → C, β → ψS

t (τ, β)π(τ)1/(2+η)
}

, N[ ] is the covering number

with bracketing. Because of the Lp-smoothness, it is bounded above by:

N[ ](x, Ψk(n), ‖ · ‖) ≤ N[ ](
x1/γ

C1/γ
,Bk(n), ‖ · ‖) ≤ C′N[ ](x1/γ,Bk(n), ‖ · ‖).

Let
√

Cn =
√

1 + log N[ ](x1/γ,Bk(n), ‖ · ‖)dx, together with the previous inequality, it

implies:

E

(
supβ∈Bk(n)

∣∣∣√n[ψ̂s
n(τ, β)−E(ψ̂s

n(τ, β))]π(τ)1/(2+η)
∣∣∣2) ≤ (1 + K

√
Cn

)2
≤ 4(1+K2)Cn.

To conclude, divide by n on both sides to get the bound:

E

(
supβ∈Bk(n)

∣∣∣[ψ̂s
n(τ, β)−E(ψ̂s

n(τ, β))]π(τ)1/(2+η)
∣∣∣2) ≤ 4(1 + K2)Cn/n.

For the dependent case, Lemma .0.4 implies that if ψ̂s
t (τ, β) is α-mixing at an exponen-

tial rate, the moments are bounded and the sieve spaces are compact:

E

(
supβ∈Bk(n)

∣∣∣√n[ψ̂s
n(τ, β)−E(ψ̂s

n(τ, β))]π(τ)1/(2+η)
∣∣∣2) ≤ (1 + K

√
Cn

)2
≤ KCn
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with, for any ϑ ∈ (0, 1) such that the integral exists:

Cn =
∫ 1

0

(
xϑ/2−1

√
log N[ ](x1/γ,Bk(n), ‖ · ‖B) + log2 N[ ](x1/γ,Bk(n), ‖ · ‖B)

)
dx

Step 3.: follows from the triangular inequality and the assumption that B is a bounded

linear operator.

Step 4.: The following two inequalities can be derived from the inequality |a− b|2 ≥
1/2|a|2 + |b|2, which is symmetric in a and b:∣∣∣[Bψ̂S

n(τ, β)− Bψ̂n(τ)]−E[Bψ̂S
n(τ, β)− Bψ̂n(τ)]

∣∣∣2
≥ 1/2

∣∣∣Bψ̂S
n(τ, β)− Bψ̂n(τ)

∣∣∣2 + ∣∣∣E[Bψ̂S
n(τ, β)− Bψ̂n(τ)]

∣∣∣2
and ∣∣∣[Bψ̂S

n(τ, β)− Bψ̂n(τ)]−E[Bψ̂S
n(τ, β)− Bψ̂n(τ)]

∣∣∣2
≥
∣∣∣Bψ̂S

n(τ, β)− Bψ̂n(τ)
∣∣∣2 + 1/2

∣∣∣E[Bψ̂S
n(τ, β)− Bψ̂n(τ)]

∣∣∣2.

Taking integrals on both sides and given that
∫ ∣∣∣[Bψ̂S

n(τ, β)− Bψ̂n(τ)]−E[Bψ̂S
n(τ, β)−

Bψ̂n(τ)]
∣∣∣2π(τ)dτ is Op(Cn/n) uniformly in h ∈ Bk(n), the desired result follows:

1/2Q̂S
n(β) ≤ Qn(β) + Op(Cn/n)

1/2Qn(β) ≤ Q̂S
n(β) + Op(Cn/n).

With this, it follows that Assumption .0.3 is satisfied.

Lemma .0.2. Let (Yt)t≥1 mean zero, α-mixing with rate α(m) such that ∑m≥1 α(m)1/p < ∞ for

some p > 1, and |Yt| ≤ 1 for all t ≥ 1. Then we have:

E
(

n|Yn|2
)
≤ 1 + 24 ∑

m≥1
α(m)1/p

Proof of Lemma .0.2: The proof follows from Davydov (1968)’s inequality: let p, q, r ≥
0, 1/p + 1/q + 1/r = 1, for any random variables X, Y:

|cov(X, Y)| ≤ 12α(σ(X), σ(Y))1/pE(|X|q)1/qE(|Y|r)1/r
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where α(σ(X), σ(Y)) is the mixing coefficient between X and Y. As a result:

E
(

n|Yn|2
)
=

1
n

n

∑
t=1

E(|Xn|2) +
1
n ∑

t 6=t′
cov(Yt, Yt′)

≤ 1 + 2× 1
n ∑

t>t′
cov(Yt, Yt′)

≤ 1 + 24× 1
n ∑

t>t′
α(σ(Yt), σ(Yt′))

1/p(E|Yt|q)1/q(E|Yt′ |r)1/r

= 1 + 24
n

∑
m=1

n−m
n

α(m)1/p

≤ 1 + 24
∞

∑
m=1

α(m)1/p.

The following lemma gives a Rosenthal type inequality for possibly non-stationary

α-mixing random variables. As shown in van der Vaart & Wellner (1996) and Dedecker &

Louhichi (2002) these inequalities are very important to bound the expected value of the

supremum of an empirical process.

Lemma .0.3. Let (Xt)t>0 be a sequence of real-valued, centered random variables and (αm)m≥0

be the sequence of strong mixing coefficients. Suppose that Xt is uniformly bounded and there

exists A, C > 0 such that α(m) ≤ A exp(−Cm) then there exists K > 0 that depends only on

the mixing coefficients such that for any p ≥ 2:

E
(
|
√

nXn|p
)1/p ≤ K

√p

(∫ 1

0
min(α−1(u), n)

n

∑
t=1

Q2
t (u)
n

)1/2

+ n1/p−1/2p2‖supt>0Xt‖∞


where Qt is the quantile function of Xt, min(α−1(u), n) = ∑n

i=k 1u≤αk .

Proof of Lemma .0.3: Theorem 6.3 Rio (2000) implies the following inequality:

E

(
|

n

∑
t=1

Xt|p
)
≤ apsp

n + nbp

∫ 1

0
min(α−1(u), n)p−1Qp(u)du

where ap = p4p+1(p + 1)p/2 and bp = p
p−14p+1(p + 1)p−1, Q = supt>0Qt and s2

n =

∑n
t=1 ∑n

t′=1 |cov(Xt, Xt′)|.
Since Xt is uniformly bounded, using the results from appendix C of Rio (2000):∫ 1

0
min(α−1(u), n)p−1Qp(u)du ≤ 2

[
n−1

∑
k=0

(k + 1)p−1αk

]
‖supt>0Xt‖∞.
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Because the strong-mixing coefficients are exponentially decreasing, it implies:

n−1

∑
k=0

(k + 1)p−1αk ≤ A exp(C) ∑
k≥1

kp−1 exp(−Ck) ≤ A exp(C)(p− 1)p−1 1
(1− exp(−C))p−1

And corollary 1.1 of Rio (2000) yields:

s2
n ≤ 4

∫ 1

0
min(α−1(u), n)

n

∑
t=1

Q2
k(u)du.

Altogether:

E
(
|
√

nXn|p
)1/p ≤ K1(p + 1)1/2

(∫ 1

0
min(α−1(u), n)

n

∑
t=1

Q2
t (u)
n

)1/2

+ K2n1/p−1/2(p− 1)(p−1)/p(p + 1)(p−1)/p‖supt>0Xt‖∞

≤ K

√p

(∫ 1

0
min(α−1(u), n)

n

∑
t=1

Q2
t (u)
n

)1/2

+ n1/p−1/2p2‖supt>0Xt‖∞

 .

with K1 ≥ 21/p p1/p4(p+1)/p, K2 ≥ (p/[p − 1])1/p4(p+1)/p21/p A exp(C) 1
(1−exp(−C))(p−1)/p .

Note that since p ≥ 2, 21/p ≤
√

2, p1/p ≤ 1, 4(p+1)/p ≤ 16, etc. The constants K1, K2 do

not depend on p. K only depends on the constants A and C.

Lemma .0.4. Suppose that (Xt(β))t>0 is a real valued, mean zero random process for any β ∈
B. Suppose that it is α-mixing with exponential decay: α(m) ≤ A exp(−Cm) for A, C >

0 and bounded |Xt(β)| ≤ 1. Let X =
{

X : B → C, β → Xt(β)
}

and suppose that∫ 1
0 log2 N[ ](x,X , ‖ · ‖)dx < ∞ then:

∫ 1
0 xϑ/2−1

√
log N[ ](x,X , ‖ · ‖)+ log2 N[ ](x,X , ‖ · ‖) <

∞ for all ϑ ∈ (0, 1) and:

E
(

supβ∈B|
√

n[ψ̂S
t (β)−E(ψ̂S

t (β))]|2
)

≤ K
(∫ 1

0
xϑ/2−1

√
log N[ ](x,X , ‖ · ‖) + log2 N[ ](x,X , ‖ · ‖)dx

)
.

Proof of Lemma .0.4: The method of proof is adapted from the proof of theorem 3 of Ben

Hariz (2005); he only considers the stationary case, the non-stationary case is permitted

here. Let Zn(β) = 1√
n ∑n

t=1 Xt(β), by Lemma .0.3:

‖Zn(β)‖p = E (|Zn(β)|p)1/p ≤ K

(
√

p
1
n

n

∑
t=1
‖Xt(β)‖ϑ/2 + p2n−1/2+1/p‖supt>0Xt(β)‖∞

)
.
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The term 1
n ∑n

t=1 ‖Xt(β)‖ϑ comes from Hölder’s inequality, for any ϑ ∈ (0, 1):

∣∣∣∣∣
∫ 1

0
min(α−1(u), n)

n

∑
t=1

Q2
t (u)
n

∣∣∣∣∣
1/2

≤
(∫ 1

0
min(α−1(u), n)1/(1−ϑ)

) 1−ϑ
2
(∫ 1

0
| 1
n

n

∑
t=1

Qt(u)2|1/ϑ

)ϑ
2

≤
(

1
1−ϑ

n

∑
j=1

(1 + j)1/(1−ϑ)α(j)

) 1−ϑ
2 1

n

n

∑
t=1

(∫ 1

0
|Qt(u)|2/ϑdu

)ϑ
2

≤
(

1
1−ϑ

n

∑
j=1

(1 + j)1/(1−ϑ)α(j)

) 1−ϑ
2 1

n

n

∑
t=1
‖Qt‖ϑ/2

1 .

The last inequality follows from assuming |Qt| ≤ 1. To simplify notation, use 1
n ∑n

t=1 ‖Qt‖ϑ1
rather than 1

n ∑n
t=1 ‖Qt‖ϑ/2

1 . Also since α(j) has exponential decay, ∑∞
j=1(1+ j)1/(1−ϑ)α(j) <

∞ so the first term is a constant which only depends on (α(j))j and ϑ. To derive the in-

equality, construct bracketing pairs (βk
j , ∆k

j )1≤j≤N(k) need to be constructed with N(k) =

N[ ](2−k,X , ‖ · ‖2) the minimal number of brackets needed to cover X . By definition of

N(k) there exists brackets (∆k
t,j)j=1,...,N(k) such that:

1. E
(
|∆k

t,j|2
)1/2

≤ 2−k for all t, j, k.

2. For all β ∈ B and k ≥ 1, there exists an index j such that |Xt(β)− Xt(βk
j ) ≤ ∆k

t,j.

Remark .0.2. Because of the dynamics, the dependence of Xt can vary with β, which is not the

case in Ben Hariz (2005) or Andrews (1993). This remark, details the construction of the brackets

(∆k
t,j) in the current setting. Suppose that β → Xt(β) is Lp-smooth as in Assumption .0.4. Let

βk
1, . . . , βk

N(k) be such that Bkn ⊆ ∪
N(k)
j=1 B[δ/C]γ(βk

j ) then for j ≤ N(k) and some Q ≥ 2:

[
E

(
sup‖β−βk

j ‖B≤[δ/C]γ |Xt(β)− Xt(βk
j )|Q

)]1/Q
≤ δ.

Let ∆k
t,j = sup‖β−βk

j ‖B≤[δ/C]γ |Xt(β)−Xt(βk
j )| then

[
E
(

∆2k
t,j

)]1/2
≤
[
E
(

∆Qk
t,j

)]1/Q
by Hölder’s

inequality which is smaller than δ by construction.
[
E(|∆k

t,j|2)
]1/2
≤ δ = 2−k by construction.

However, there is no guarantee that (∆k
t,j)t≥1 as constructed above is α-mixing. Another

construction for the bracket which preserves the mixing property is now suggested. Let B ⊆ B
a non-empty compact set in B. Note that since the (βk

j ) cover B, they also cover B. Let ∆̃k
t,j be

such that | 1n ∑n
t=1 ∆̃k

t,j| = supβ∈B, ‖β−βk
j ‖≤[δ/C]γ |

1
n ∑n

t=1 Xt(β)− Xt(βk
j )|. Because B is compact,

the supremum is attained at some β̃k
j ∈ B. For all t = 1, . . . , n, take ∆̃k

t,j = Xt(β̃k
j )− Xt(βk

j ).

For each (j, k) the sequence (∆̃k
t,j)t≥0 is α-mixing by construction. Furthermore, by construction:
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|∆̃k
t,j| ≤ |∆k

t,j| and thus
[
E(|∆̃k

t,j|Q)
]1/Q

≤ 2−k. These brackets, built in B rather than B, preserve

the mixing properties. The rest of the proof applied to B implies:

E
(

supβ∈B|
√

n[ψ̂S
t (β)−E(ψ̂S

t (β))]|2
)

≤ K
(∫ 1

0
xϑ/2−1

√
log N[ ](x1/γ, B, ‖ · ‖) + log2 N[ ](x1/γ, B, ‖ · ‖)dx

)
≤ K

(∫ 1

0
xϑ/2−1

√
log N[ ](x1/γ,B, ‖ · ‖) + log2 N[ ](x1/γ,B, ‖ · ‖)dx

)
.

For an increasing sequence of compact sets Bk ⊆ Bk+1 ⊆ B dense in B, there is an increasing and

bounded sequence:

E
(

supβ∈Bk
|
√

n[ψ̂S
t (β)−E(ψ̂S

t (β))]|2
)

≤ E
(

supβ∈Bk+1
|
√

n[ψ̂S
t (β)−E(ψ̂S

t (β))]|2
)

≤ K
(∫ 1

0
xϑ/2−1

√
log N[ ](x1/γ,B, ‖ · ‖) + log2 N[ ](x1/γ,B, ‖ · ‖)dx

)
.

This sequence is thus convergent with limit less or equal than the upper-bound. Hence, it must be

that the supremum over B is also bounded. It can thus be assumed that (∆k
t,j)t≥1 are α-mixing.

Assume that, without loss of generality, |∆k
j | ≤ 1 for all j, k. Let (πk(β), ∆k(β)) be a

bracketing pair for β ∈ B. Let q0, k, q be positive integers such that q0 ≤ k ≤ q and let

Tk(β) = πk ◦ πk+1 ◦ · · · ◦ πq(β). Using the following identity:[
E
(

supβ∈B|Zn(β)|2
)]1/2

=

[
E

(
supβ∈B|Zn(β)− Zn(Tq(β)) +

q

∑
k=q0+1

[Zn(Tk(β))− Zn(Tk−1(β))] + Zn(Tq0(β))|2
)]1/2

and the triangular inequality, decompose the identity into three groups:[
E
(

supβ∈B|Zn(β)|2
)]1/2

≤
[
E
(

supβ∈B|Zn(β)− Zn(Tq(β))|2
)]1/2

+
q

∑
k=q0+1

[
E
(

suph∈B|Zn(Tk(β))− Zn(Tk−1(β))|2
)]1/2

+
[
E
(

supβ∈B|Zn(Tq0(β))|2
)]1/2

≤ Eq+1 +
q

∑
k=q0+1

Ek + Eq0 .
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The following inequality is due to Pisier (1983), for any X1, . . . , XN random variable:[
E

(
max

1≤t≤N
|Xt|p

)]1/p
≤ N1/p max

1≤t≤N
[E (|Xt|p)]1/p .

Now that {Tk(β), β ∈ B} has at most N(k) elements by construction. Some terms can be

simplified Ek = E
(

maxg∈Tk(B) |Zn(g)− Zn(Tk−1(g))|2
)1/2

for q0 + 1 ≤ k ≤ q. For p ≥ 2

using both Hölder’s and Pisier’s inequalities:

Ek ≤
[
E
(

supβ∈Tk(B)|Zn(β)− Zn(Tk−1(β))|p
)]1/p

≤ N(k)1/p max
g∈Tk(B)

[E (|Zn(g)− Zn(Tk−1(g))|p)]1/p .

By the definition of ∆k
j :

Ek ≤ N(k)1/p max
1≤j≤N(k)

[
E
(
|∆k

j (g)|p
)]1/p

.

This is also valid for Eq+1. Using Rio’s inequality for α-mixing dependent processes:

Ek ≤ KN(k)1/p
(
√

p max
g∈Tk(B)

‖∆k(g)‖ϑ/2
1 + p2n−1/2+1/p max

g∈Tk(B)
‖∆k(g)‖∞

)
≤ KN(k)1/p

(√
p2−ϑ/2k + p2n−1/2+1/p

)
≤ KN(k)1/p2−k

(√
p2k−ϑ/2k + p2[n−1/22k]1−2/p22k/p

)
.

For p > 2 and 2q/
√

n ≥ 1, the inequality becomes:

Ek ≤ KN(k)1/p2−k
(√

p2k−ϑ/2k + p2[n−1/22q]22k/p
)

.

Choosing p = k + log N(k) implies:

N(k)1/p ≤ exp(1)
√

p ≤
√

k +
√

log N(k)

p2 ≤ 4[k2 + log2 N(k)]

22k/p ≤ 4.

Applying these bounds to the previous inequality:

Ek ≤ 16K exp(1)2−k
(
[
√

k +
√

log N(k)]2k−ϑ/2k + [k2 + log(N(k))2]
2q
√

n

)
≤ 2q
√

n
16K exp(1)2−k

(
[
√

k +
√

log N(k)]2k−ϑ/2k + k2 + log(N(k))2
)

.
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Note that ∑k≥1(
√

k + k2)2−k ≤ 2 ∑k≥1 k22−k = 12. Hence:

q+1

∑
k=q0+1

Ek ≤
2q+1
√

n
16K exp(1)

(
12 +

∫ 1

0
[xϑ/2−1

√
log N[ ](x,X , ‖ · ‖) + log2 N[ ](x,X , ‖ · ‖)]dx

)
.

Pick q to be the small integer such that q ≥ log(n)/(2 log 2)− 1 so that 4
√

n ≥ 2q ≥
√

n/2

and 2q/
√

n ∈ [1/2, 4]. Only Eq0 remains to be bounded, using Rio’s inequality again:[
E
(

supβ∈B|Zn(Tq0(β))|2
)]1/2

≤ KN(q0)
1/p

(
√

p max
h∈Tq0 (B)

‖X1(β)‖ϑ+p2n−1/2+1/p‖X1(β)‖∞

)
.

For any ε > 0 pick p = max (2 + ε, q0 + log N(q0)) then:

N(q0)
1/p ≤ exp(1)

n−1/2+1/p ≤ n−1/2+1/(2+ε) ≤ 1.

Then conclude that:[
E
(

supβ∈B|Zn(Tq0(β))|2
)]1/2

≤ 4 exp(1)K
(
√

q0 +
√

log N(q0) + q2
0 + log N(q0)

2
)

≤ K′ log N(q0)
2

≤ K′
∫ 1

0
log2 N[ ](x,X , ‖ · ‖)dx

Hence, there exists a constant K > 0 which only depends on (α(m))m>0 such that:[
E
(

supβ∈B|Zn(β)|2
)]1/2

≤ K
∫ 1

0
[xϑ/2−1

√
log N[ ](x,X , ‖ · ‖) + log2 N[ ](x,X , ‖ · ‖)]dx.

Let
√

Cn = K
∫ 1

0 [x
ϑ/2−1

√
log N[ ](x,X , ‖ · ‖)+ log2 N[ ](x,X , ‖ · ‖)]dx, then E

(
supβ∈B|Zn(β)|2

)
≤

Cn for all n ≥ 1.

Rate of Convergence

Proof of Proposition .0.3. : By Hölder’s inequality and the Lp-smoothness assumption:∣∣∣E(ψ̂s
n(τ, Πk(n)β0)− ψ̂s

n(τ, β0)
) ∣∣∣2π(τ)1/(1+η/2) ≤ C2‖Πk(n)β0 − β0‖2γ

B .

Using the fact that |a + b|2 ≤ 3[|a|2 + |b|2]:

Qn(Πk(n)β0) ≤ 3
[

Qn(β0) +
∫
|BE

(
ψ̂S

n(τ, Πk(n)β0)− ψ̂S
n(τ, β0)

)
|2π(τ)dτ

]
≤ 3

[
Qn(β0) + M2

B

∫
|E
(
ψ̂S

n(τ, Πk(n)β0)− ψ̂S
n(τ, β0)

)
|2π(τ)dτ

]
≤ 3

[
Qn(β0) +

(
C2M2

B

∫
π

1− 2
2+η (τ)dτ

)
‖Πk(n)β0 − β0‖2γ

B

]
.
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The last inequality comes from taking integrals on both sides of the first inequality. The

integral on the right-hand side is finite by assumption. To conclude the proof, take K =

3[1 + C2M2
B
∫

π
1− 2

2+η (τ)dτ].

Proof of Theorem .0.2: Let ε > 0 and rn = max(δn,
√

ηn, ‖Πk(n)β0 − β0‖γ
B,
√

Qn(β0)). To

prove the result, it will be shown that there exists some M > 0 and N > 0 such that for

all n ≥ N:

P
(
‖β̂n − β0‖weak ≥ Mrn

)
< ε. (.0.1)

The approach to prove existence is similar to the proof of lemma B.1 in Chen & Pouzo

(2012). First, under the stated assumptions, the following inequalities hold:

1. Q̂S
n(β) ≤ 2Qn(β) + Op(δ2

n)

2. Qn(β) ≤ K
(
‖β− β0‖2γ + Qn(β0)

)
3. ‖β− β0‖2

weak ≤ CQn(β)

Applying them in the same order, equation (.0.1) can be bounded above:

P
(
‖β̂n − β0‖weak ≥ Mrn

)
≤ P

(
diagβ∈Bosn, ‖β−β0‖weak≥Mrn

Q̂s
n(β) ≤ diagβ∈Bosn

Q̂S
n(β) + Op(ηn)

)
≤ P

(
diagβ∈Bosn, ‖β−β0‖weak≥Mrn

Qn(β) ≤ diagβ∈Bosn
Qn(β) + Op(max(δs

n, ηn))
)

≤ P
(

diagβ∈Bosn, ‖β−β0‖weak≥Mrn
Qn(β) ≤ Qn(Πk(n)β0) + Op(max(δs

n, ηn))
)

≤ P
(

diagβ∈Bosn, ‖β−β0‖weak≥Mrn
Qn(β) ≤ Op(max(‖Πk(n)β0 − β0‖2γ

B , Qn(β0), δs
n, ηn))

)
≤ P

(
M2r2

n ≤ Op(max(‖Πk(n)β0 − β0‖2γ
B , Qn(β0), δs

n, ηn))
)

For rn defined above, this probability becomes:

P
(

M2 ≤ Op(1)
)
→ 0 as M→ ∞.

This concludes the first part of the proof. Finally:

‖β̂n − β0‖B

≤ ‖Πk(n)β0 − β0‖B + ‖β̂n −Πk(n)β0‖B
‖β̂n −Πk(n)β0‖weak

‖β̂n −Πk(n)β0‖weak

≤ ‖Πk(n)β0 − β0‖B + τn‖β̂n −Πk(n)β0‖weak

≤ ‖Πk(n)β0 − β0‖B + τn

(
‖β̂n − β0‖weak + ‖β0 −Πk(n)β0‖weak

)
≤ ‖Πk(n)β0 − β0‖B + τn

(
‖β̂n − β0‖weak + CQn(Πk(n)β0)

)
≤ ‖Πk(n)β0 − β0‖B + τn

(
Op

(
max(δn,

√
ηn, ‖Πk(n)β0 − β0‖γ

B ,
√

Qn(β0), ‖Πk(n)β0 − β0‖2γ, Qn(β0)

))
= ‖Πk(n)β0 − β0‖B + τn

(
Op

(
max(δn,

√
ηn, ‖Πk(n)β0 − β0‖γ

B ,
√

Qn(β0))

))
.
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This concludes the proof.

Proof of Proposition .0.4: Since (ys
t , xt) is geometrically ergodic, the joint density converges

to the stationary distribution at a geometric rate: ‖ ft(y, x) − f ∗t (y, x)‖TV ≤ Cρt, ρ < 1.

Because B is bounded linear and the moments ψ̂n, ψ̂s
n are bounded above by M, uniformly

in τ:

Qn(β0) ≤ M2
B

∫ ∣∣∣E(ψ̂S
n(τ, β0)

)
− lim

n→∞
E
(
ψ̂n(τ)

)∣∣∣2 π(τ)dτ

≤ M2M2
B

∫ ∣∣∣∣∣ 1n n

∑
t=1

∫
[ ft(y, x)− f ∗t (y, x)]dydx

∣∣∣∣∣
2

π(τ)dτ

≤ M2M2
B

(
1
n

n

∑
t=1

∫
| ft(y, x)− f ∗t (y, x)| dydx

)2

≤ CM2M2
B

(
1
n

n

∑
t=1

ρt

)2

≤
CM2M2

B
(1− ρ)2 ×

1
n2 = O(1/n2).

Asymptotic Normality

Lemma .0.5 (Stochastic Equicontinuity). Let Mn = log log(n + 1) as defined in Assumption
.0.7. Also, ‖β̂n − β0‖B = Op(δsn). Suppose Assumption .0.4 holds then for any ϑ ∈ (0, 1),
there exists a C > 0 such that:[

E

(
sup‖β−β0‖B≤Mnδsn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)

2
2+η

)]1/2

≤ C
(Mnδsn)γ

√
n

∫ 1

0

(
x−ϑ/2

√
log N([xMnδsn]1/γ,Bk(n), ‖ · ‖B) + log2 N([xMnδsn]

1/γ,Bk(n), ‖ · ‖B)
)

dx

:=
(Mnδsn)γ

√
n

√
Csn.

Now suppose that
√

Csn(Mnδsn)γ = o(1) as in Assumption .0.7. For linear sieves,
√

Csn is

proportional to:

(log[Mnδsn]k(n))
2 .

Hence, for linear sieves
√

Csn(Mnδsn)γ = o(1) is implied by (Mnδsn)γ log(Mnδsn)2 = o(1/k(n)2).

Together with the previous inequality, this assumption implies a stochastic equicontinuity result:(∫ ∣∣∣[ψ̂S
n(τ, β̂n)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β̂n)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)dτ

)1/2

= op(1/
√

n).
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Proof of Lemma .0.5: Let ∆ψ̂s
t (τ, β) = ψ̂s

t (τ, β)− ψ̂s
t (τ, β0). Under Assumption .0.4:[

E

(
sup‖β−β0‖B≤Mnδsn

∣∣∣∆ψ̂s
t (τ, β)

∣∣∣2π(τ)
2

2+η

)]1/2

≤ C(Mnδsn)
γ

and[
E

(
sup‖β1−β2‖B≤δ,β1,β2∈BMnδsn (β0)

∣∣∣∆ψ̂s
t (τ, β1)− ∆ψ̂s

t (τ, β2)
∣∣∣2 π(τ)

2
2+η

(Mnδsn)2γ

)]1/2

≤ C
(

δ

Mnδsn

)γ

.

Applying Lemma .0.4 to the empirical process ∆ψ̂s
t (τ, β) π(τ)

1
2+η

(Mnδsn)γ yields:

[
E

(
sup‖β−β0‖B≤Mnδsn

∣∣∣∆ψ̂S
n(τ, β)−E

(
∆ψ̂S

n(τ, β)
) ∣∣∣2 π(τ)

2
2+η

(Mnδsn)2γ

)]1/2

≤ C√
n

∫ 1

0

(
x−ϑ/2

√
log N([xMnδsn]1/γ,Bk(n), ‖ · ‖B) + log2 N([xMnδsn]

1/γ,Bk(n), ‖ · ‖B)
)

dx

for some constant C > 0 and any ϑ ∈ (0, 1) such that the integral is finite. For finite

dimensional linear sieves the integral is proportional to k(n)2 log(Mnδsn)2 and the bound

becomes, after multiplying by (Mnδsn)γ on both sides:[
E

(
sup‖β−β0‖B≤Mnδsn

∣∣∣∆ψ̂S
n(τ, β)−E

(
∆ψ̂S

n(τ, β)
) ∣∣∣2π(τ)

2
2+η

)]1/2

≤ C√
n
(Mnδsn)

γ[log(Mnδsn)k(n)]2.

Note that P
(
‖β̂n − β0‖B ≤ Mnδsn

)
→ 1 by construction of Mn and definition of δsn. The

following inequalities can be used:

P

(∫ ∣∣∣[ψ̂S
n(τ, β̂n)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β̂n)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)

2
2+η π(τ)1− 2

2+η dτ >
ε

n

)
≤ P

(
sup‖β−β0‖B≤Mnδsn

∫ ∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)

2
2+η π(τ)1− 2

2+η dτ >
ε

n

)
+ P (‖β− β0‖B > Mnδsn)

≤ n
ε

E

(∫ ∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)

2
2+η π(τ)1− 2

2+η dτ

)
+ P (‖β− β0‖B > Mnδsn)

=
∫ n
ε

E

(∣∣∣∆ψ̂S
n(τ, β)−E[∆ψ̂S

n(τ, β)]
∣∣∣2π(τ)

2
2+η

)
π(τ)1− 2

2+η dτ + P (‖β− β0‖B > Mnδsn)

≤ Csn(Mnδsn)
2γ
∫

π(τ)1− 2
2+η dτ + P (‖β− β0‖B > Mnδsn) = o(1).

197



These inequalitites hold regardless of ε > 0 given the assumptions above and the defini-

tion of Mnδsn. To conclude, the stochastic equicontinuity result holds:(∫ ∣∣∣[ψ̂S
n(τ, β̂n)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β̂n)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)

2
2+η π(τ)

1− 2
2+η dτ

)1/2

= op(1/
√

n).

Lemma .0.6. Suppose that ‖β̂n − β0‖weak = Op(δn). Under Assumptions .0.4, .0.6, .0.7 and

.0.9:

a)

∫
ψβ(τ, u∗n)

(
BE(ψ̂S

n(τ, β̂n)− ψ̂S
n(τ, β0))− B

dE(ψ̂S
n(τ, β0))

dβ
[β̂n − β0]

)
π(τ)dτ = o(1/

√
n).

b) ∫
ψβ(τ, u∗n)

(
BE(ψ̂S

n(τ, β̂n)− ψ̂S
n(τ, β0))− B[ψ̂S

n(τ, β̂n)− ψ̂S
n(τ, β0)]

)
π(τ)dτ = o(1/

√
n).

c) ∫ [
ψβ(τ, u∗n)

(
B[ψ̂n(τ)− ψ̂S

n(τ, β̂n)]
)
+ψβ(τ, u∗n)

(
B[ψ̂n(τ)− ψ̂S

n(τ, β̂n)]
)]

π(τ)dτ = o(1/
√

n).

Proof of Lemma .0.6:

a) Since B bounded linear, the Cauchy-Schwarz inequality implies:

∣∣∣ ∫ ψβ(τ, u∗n)

(
BE(ψ̂S

n(τ, β̂n)− ψ̂S
n(τ, β0))− B

dE(ψ̂S
n(τ, β0))

dβ
[β̂n − β0]

)
π(τ)dτ

∣∣∣
≤ MB

(∫
|ψβ(τ, u∗n)|2π(τ)dτ

)1/2
(∫ ∣∣∣E(ψ̂S

n(τ, β̂n)− ψ̂S
n(τ, β0))−

dE(ψ̂S
n(τ, β0))

dβ
[β̂n − β0]

∣∣∣2π(τ)dτ

)1/2

By definition of Mn and the inequality above:

P

(∣∣∣ ∫ ψβ(τ, u∗n)

(
BE(ψ̂S

n(τ, β̂n)− ψ̂S
n(τ, β0))− B

dE(ψ̂S
n(τ, β0))

dβ
[β̂n − β0]

)
π(τ)dτ

∣∣∣ > ε√
n

)

≤ P

[
MB

(∫
|ψβ(τ, u∗n)|2π(τ)dτ

)1/2

× sup‖β−β0‖weak≤Mnδn

(∫ ∣∣∣E(ψ̂S
n(τ, β)− ψ̂S

n(τ, β0))−
dE(ψ̂S

n(τ, β0))

dβ
[β− β0]

∣∣∣2π(τ)dτ

)1/2

>
ε√
n

]
+ P

(
‖β̂n − β0‖B > Mnδn

)
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The term P
(
‖β̂n − β0‖B > Mnδn

)
→ 0 regardless of ε. Furthermore, Assumption

.0.9 i. implies that

sup‖β−β0‖weak≤Mnδn

(∫ ∣∣∣E(ψ̂S
n(τ, β)− ψ̂S

n(τ, β0))−
dE(ψ̂S

n(τ, β0))

dβ
[β− β0]

∣∣∣2π(τ)dτ

)1/2

= O
(
(Mnδn)

2
)

.

Furthermore Assumption .0.7 iii., condition (.0.3) implies that (Mnδn)1+γ = o( 1√
nCsn

).

Since γ ∈ (0, 1] it implies (Mnδn)2 = o(1/
√

n) and thus:

P

(∣∣∣ ∫ ψβ(τ, u∗n)

(
BE(ψ̂S

n(τ, β̂n)− ψ̂S
n(τ, β0))− B

dE(ψ̂S
n(τ, β0))

dβ
[β̂n − β0]

)
π(τ)dτ

∣∣∣ > ε√
n

)
= o(1)

regardless of ε > 0. Finally:

∫
ψβ(τ, u∗n)

(
BE(ψ̂S

n(τ, β̂n)− ψ̂S
n(τ, β0))− B

dE(ψ̂S
n(τ, β0))

dβ
[β̂n − β0]

)
π(τ)dτ

= op(1/
√

n).

b) By the stochastic equicontinuity result of Lemma .0.5 and the Cauchy-Schwarz in-
equality:∣∣∣ ∫ ψβ(τ, u∗n)

(
BE(ψ̂S

n(τ, β̂n)− ψ̂S
n(τ, β0))− B[ψ̂S

n(τ, β̂n)− ψ̂S
n(τ, β0)]

)
π(τ)dτ

∣∣∣
≤
(∫
|ψβ(τ, u∗n)|2π(τ)dτ

)1/2 (∫ ∣∣∣BE(ψ̂S
n(τ, β̂n)− ψ̂S

n(τ, β0))− B[ψ̂S
n(τ, β̂n)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)dτ

)1/2

≤ MB

(∫
|ψβ(τ, u∗n)|2π(τ)dτ

)1/2 (∫ ∣∣∣E(ψ̂S
n(τ, β̂n)− ψ̂S

n(τ, β0))− [ψ̂S
n(τ, β̂n)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)dτ

)1/2

≤ MB

(∫
|ψβ(τ, u∗n)|2π(τ)dτ

)1/2 (∫
π(τ)1− 2

2+η dτ

)1/2

op(1/
√

n)

= op(1/
√

n).

c) Let εn = ± 1√
nMn

= o( 1√
n ). For h ∈ (0, 1) define β̂(h) = β̂n + hεnu∗n. Since β̂n =

β̂(0). Recall that β̂n is the approximate minimizer of Q̂s
n so that:

0 ≤ Q̂S
n(β̂n) ≤ diagβ∈Bk(n)

Q̂S
n(β) + Op(ηn).
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Hence the following holds:

0 ≤ 1
2

(
Q̂S

n(β̂(1))− Q̂S
n(β̂(0))

)
+ Op(ηn) (.0.2)

=
1
2

[ ∫
B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
)

B
(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)
π(τ)dτ (.0.3)

+
∫

B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
)

B
(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)
π(τ)dτ (.0.4)

+
∫ ∣∣∣B (ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

) ∣∣∣2π(τ)dτ
]
+ Op(ηn). (.0.5)

To prove Lemma .0.6 c), (.0.3)-(.0.4) are expanded and shown to be op(1/
√

n) and

(.0.5) is bounded, shown to be negligible under the assumptions.

The first step deals with (.0.5):(∫ ∣∣∣B (ψ̂S
n(τ, β̂(0))− ψ̂S

n(τ, β̂(1))
) ∣∣∣2π(τ)dτ

)1/2

≤ MB

(∫ ∣∣∣ψ̂S
n(τ, β̂(0))− ψ̂S

n(τ, β̂(1))
∣∣∣2π(τ)dτ

)1/2

≤
(∫ ∣∣∣[ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))]−E[ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))]

∣∣∣2π(τ)dτ

)1/2

+

(∫ ∣∣∣E[ψ̂S
n(τ, β̂(t))− ψ̂S

n(τ, β̂(1))]
∣∣∣2π(τ)dτ

)1/2

By the triangular inequality and the stochastic equicontinuity results from Lemma

.0.5:(∫ ∣∣∣[ψ̂S
n(τ, β̂(0))− ψ̂S

n(τ, β̂(1))]−E[ψ̂S
n(τ, β̂(0))− ψ̂S

n(τ, β̂(1))]
∣∣∣2π(τ)dτ

)1/2

= Op

(√
Csn(Mnδsn)γ

√
n

)
.

Also, note that β̂(1) = β̂(0) + εnu∗n, so that the Mean Value Theorem applies to last
term:(∫ ∣∣∣E[ψ̂S

n(τ, β̂(t))− ψ̂S
n(τ, β̂(1))]

∣∣∣2π(τ)dτ

)1/2

=

(∫ ∣∣∣dE[ψ̂S
n(τ, β̂(h̃))
dβ

[εnu∗n]
∣∣∣2π(τ)dτ

)1/2

for some intermediate value h̃ ∈ (0, 1). Also, by assumption:(∫ ∣∣∣dE[ψ̂S
n(τ, β̂(t̃))
dβ

[u∗n]
∣∣∣2π(τ)dτ

)1/2

= Op(1).
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Together these two elements imply:(∫ ∣∣∣E[ψ̂S
n(τ, β̂(t))− ψ̂S

n(τ, β̂(1))]
∣∣∣2π(τ)dτ

)1/2

= O(εn).

This yields the bound for (.0.5):∫ ∣∣∣B (ψ̂S
n(τ, β̂(0))− ψ̂S

n(τ, β̂(1))
) ∣∣∣2π(τ)dτ ≤ Op(ε

2
n) + Op(

(Mnδsn)2γCsn

n
).

The remaining terms, (.0.3)-(.0.4), are conjugates of each other. A bound for (.0.3) is
also valid for (.0.4). Expanding (.0.3) yields:∫

B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
)

B
(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)
π(τ)dτ (.0.3)

=
∫

B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
) [

B
(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)
− BE

(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)]
π(τ)dτ

(.0.6)

+
∫

B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
)

BE
(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)
π(τ)dτ. (.0.7)

Applying the Cauchy-Schwarz inequality to (.0.6) implies:∣∣∣ ∫ B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
) [

B
(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)
− BE

(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)]
π(τ)dτ

∣∣∣
(.0.6)

≤ MB

(∫ ∣∣∣Bψ̂n(τ)− Bψ̂S
n(τ, β̂(0))

∣∣∣2π(τ)dτ

)1/2

(.0.8)

×
(∫ ∣∣∣ (ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)
−E

(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

) ∣∣∣2π(τ)dτ

)1/2

(.0.9)

The term (.0.8) can be bounded above using the triangular inequality:(∫ ∣∣∣Bψ̂n(τ)− Bψ̂S
n(τ, β̂(0))

∣∣∣2π(τ)dτ

)1/2

≤ MB

(∫ ∣∣∣ψ̂n(τ)− ψ̂S
n(τ, β0)

∣∣∣2π(τ)dτ

)1/2

+

(∫ ∣∣∣Bψ̂S
n(τ, β0)− Bψ̂S

n(τ, β̂(0))
∣∣∣2π(τ)dτ

)1/2

.

An application of Lemma .0.2 and the geometric ergodicity of (ys
t , xt) yields:(∫ ∣∣∣ψ̂n(τ)− ψ̂S

n(τ, β0)
∣∣∣2π(τ)dτ

)1/2

= Op(1/
√

n).
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Expanding the term in ψ̂s
n yields:(∫ ∣∣∣Bψ̂S

n(τ, β0)− Bψ̂S
n(τ, β̂(0))

∣∣∣2π(τ)dτ

)1/2

≤
(∫ ∣∣∣BE[ψ̂S

n(τ, β0)− ψ̂S
n(τ, β̂(0))]

∣∣∣2π(τ)dτ

)1/2

+ MB

(∫ ∣∣∣[ψ̂S
n(τ, β0)− ψ̂S

n(τ, β̂(0))]−E[ψ̂S
n(τ, β0)− ψ̂S

n(τ, β̂(0))]
∣∣∣2π(τ)dτ

)1/2

≤
(∫ ∣∣∣BE[ψ̂S

n(τ, β0)− ψ̂S
n(τ, β̂(0))]

∣∣∣2π(τ)dτ

)1/2

+ Op(
(Mnδsn)γ

√
Csn√

n
)

≤ MB

(∫ ∣∣∣E[ψ̂S
n(τ, β0)− ψ̂S

n(τ, β̂(0))]− dE(ψ̂S
n(τ, β0))

dβ
[β0 − β̂(0)]

∣∣∣2π(τ)dτ

)1/2

+

(∫ ∣∣∣BdE(ψ̂S
n(τ, β0))

dβ
[β0 − β̂(0)]

∣∣∣2π(τ)dτ

)1/2

+ Op(
(Mnδsn)γ

√
Csn√

n
).

Note that:(∫ ∣∣∣E[ψ̂S
n(τ, β0)− ψ̂S

n(τ, β̂(0))]− dE(ψ̂S
n(τ, β0))

dβ
[β0 − β̂(0)]

∣∣∣2π(τ)dτ

)1/2

= Op(Mnδn)

by assumption and(∫ ∣∣∣BdE(ψ̂S
n(τ, β0))

dβ
[β0 − β̂(0)]

∣∣∣2π(τ)dτ

)1/2

= ‖β̂n − β0‖weak

by definition. Furthermore, the rate is ‖β̂n − β0‖weak = Op(δn) by assumption.

Overall, the following bound holds for (.0.7):(∫ ∣∣∣Bψ̂n(τ)− Bψ̂S
n(τ, β̂(0))

∣∣∣2π(τ)dτ

)1/2

≤ Op(
1√
n
) + Op(δn) + Op(

(Mnδn)γ
√

Csn√
n

).

Re-arranging (.0.9) to apply the stochastic equicontinuity result again yields:(∫ ∣∣∣ (ψ̂S
n(τ, β̂(0))− ψ̂S

n(τ, β̂(1))
)
−E

(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

) ∣∣∣2π(τ)dτ

)1/2

≤
(∫ ∣∣∣ (ψ̂S

n(τ, β0)− ψ̂S
n(τ, β̂(1))

)
−E

(
ψ̂S

n(τ, β0)− ψ̂S
n(τ, β̂(1))

) ∣∣∣2π(τ)dτ

)1/2

+

(∫ ∣∣∣ (ψ̂S
n(τ, β0)− ψ̂S

n(τ, β̂(0))
)
−E

(
ψ̂S

n(τ, β0)− ψ̂S
n(τ, β̂(0))

) ∣∣∣2π(τ)dτ

)1/2

= Op

(
(Mnδsn)γ

√
Csn√

n

)
.
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Using the bounds for (.0.7) and (.0.9) yields the bound for (.0.6):∣∣∣ ∫ B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
) [

B
(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)
− BE

(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)]
π(τ)dτ

∣∣∣
≤ Op

(
(Mnδsn)γ

√
Csn√

n

)
Op

(
max

(
Mnδn,

1√
n

,
(Mnδsn)γ

√
Csn√

n

))
.

To bound (.0.7), apply the Mean Value theorem up to the second order:∫
B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
)

BE
(
ψ̂S

n(τ, β̂(0))− ψ̂S
n(τ, β̂(1))

)
π(τ)dτ

=
∫

B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
) [
−B

dE(ψ̂S
n(τ, β̂(0)))

dβ
[εnu∗n] +

1
2

B
dE(ψ̂S

n(τ, β̂(h̃)))
dβ

[εnu∗n, εnu∗n]

]
π(τ)dτ

= −
∫

B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
)

B
dE(ψ̂S

n(τ, β0))

dβ
[εnu∗n]π(τ)dτ + Op(ε

2
n)

+
∫

B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
) [

B
dE(ψ̂S

n(τ, β̂(0)))
dβ

[εnu∗n]− B
dE(ψ̂S

n(τ, β0))

dβ
[εnu∗n]

]
π(τ)dτ.

Where the Op(ε2
n) term comes from the Cauchy-Schwarz inequality and the as-

sumptions:

∣∣∣ ∫ B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
) 1

2
B

d2E(ψ̂S
n(τ, β̂(t̃)))

dβdβ
[εnu∗n, εnu∗n]π(τ)dτ

∣∣∣
≤
(∫ ∣∣∣B (ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
) ∣∣∣2π(τ)dτ

)1/2 ε2
n

2

(∫ ∣∣∣B d2E(ψ̂S
n(τ, β̂(t̃)))

dβdβ
[u∗n, u∗n]

∣∣∣2π(τ)dτ

)1/2

.

It was shown above that:(∫ ∣∣∣B (ψ̂n(τ)− ψ̂S
n(τ, β̂(0))

) ∣∣∣2π(τ)dτ

)1/2

= Op

(
max

(
Mnδn,

1√
n

,
(Mnδsn)γ

√
Csn√

n

))
.

Also, by Assumption .0.9 ii.:(∫ ∣∣∣Bd2E(ψ̂S
n(τ, β̂(t̃)))

dβdβ
[u∗n, u∗n]

∣∣∣2π(τ)dτ

)1/2

= Op(1).

Finally, applying the Cauchy-Schwarz inequality to the last term of the expansion
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of (.0.7) yields:

∫
B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
) [

B
dE(ψ̂S

n(τ, β̂(0)))
dβ

[εnu∗n]− B
dE(ψ̂S

n(τ, β0))

dβ
[εnu∗n]

]
π(τ)dτ

≤
(∫ ∣∣∣Bψ̂n(τ)− ψ̂S

n(τ, β̂(0))
∣∣∣2π(τ)dτ

)1/2

× εn

(∫ ∣∣∣BdE(ψ̂S
n(τ, β̂(0)))

dβ
[u∗n]− B

dE(ψ̂S
n(τ, β0))

dβ
[u∗n]

∣∣∣2π(τ)dτ

)1/2

= Op

(
εn max

(
δn,

1√
n

,
(Mnδsn)γ

√
Csn√

n
)δn

))
.

Using inequality (.0.2) together with the bounds above and the expansions of (.0.3)

and (.0.4) yields:

0 ≤− εn

∫
B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
)

B
dE(ψ̂S

n(τ, β0))

dβ
[u∗n]π(τ)dτ

− εn

∫
B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂(0))
)

B
dE(ψ̂S

n(τ, β0))

dβ
[u∗n]π(τ)dτ

+ Op

(
ε2

n

)
+ Op

(
Mγ

snCsn√
n

max(δwn,
1√
n

,
Mγ

snCsn√
n

))

)
+ Op

(
εnδwn max(δwn,

1√
n

,
Mγ

snCsn√
n

)

)
+ Op

(
M2γ

sn C2
sn

n

)

Since εn = ± 1√
nMn

, dividing by εn both keeps and flips the inequality so that:

∫
B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂n)
)

B
dE(ψ̂S

n(τ, β0))

dβ
[u∗n]π(τ)dτ

+
∫

B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂n)
)

B
dE(ψ̂S

n(τ, β0))

dβ
[u∗n]π(τ)dτ

= Op(εn) + Op

(
(Mnδsn)γ

√
Csn

εn
√

n
max

(
Mnδn,

1√
n

,
(Mnδsn)γ

√
Csn√

n
)

))
+ Op

(
max

(
Mnδn,

1√
n

,
(Mnδsn)γ

√
Csn√

n

)
δn

)
+ Op

(
(Mnδsn)2γCsn

εnn

)
.

By construction, εn = op(1/
√

n) and the assumptions imply that

M1+γ
n δ

γ
sn
√

Csn max
(

Mnδn,
1√
n

,
(Mnδsn)γ

√
Csn√

n

)
= o(1/

√
n)

and
M2γ+1

n δ
2γ
sn Csn√

n
= o(1/

√
n).
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To conclude the proof, note that:

∫
B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂n)
)

B
dE(ψ̂S

n(τ, β0))

dβ
[u∗n]π(τ)dτ

+
∫

B
(
ψ̂n(τ)− ψ̂S

n(τ, β̂n)
)

B
dE(ψ̂S

n(τ, β0))

dβ
[u∗n]π(τ)dτ

=
∫
[ψβ(τ, u∗n)

(
B[ψ̂n(τ)− ψ̂S

n(τ, β̂n)]
)
+ψβ(τ, u∗n)

(
B[ψ̂n(τ)− ψ̂S

n(τ, β̂n)]
)
]

= op(1/
√

n).

Proof of Theorem .0.3: Using Assumption .0.8, the difference between φ at β̂n and at the
true value β0 can be linearized:
√

n
σ∗n

(
φ(β̂n)− φ(β0)

)
=

√
n

σ∗n

dφ(β0)

dβ
[β̂n − β0] + op(1)

=

√
n

σ∗n

dφ(β0)

dβ
[β̂n − β0,n] + op(1)

=
√

n〈u∗n, β̂n − β0,n〉+ op(1)

=
√

n〈u∗n, β̂n − β0〉+ op(1)

=

√
n

2

(∫ [
Bψβ(τ, u∗n)Bψβ(τ, β̂n − β0) + Bψβ(τ, u∗n)Bψβ(τ, β̂n − β0)

])
π(τ)dτ.

Using Lemma .0.5 a) and b), replace the term Bψβ(τ, β̂n − β0) under the integral with

Bψ̂S
n(τ, β̂n)− Bψ̂S

n(τ, β0) so that:
√

n
σ∗n

(
φ(β̂n)− φ(β0)

)
=

1
2

( ∫ [
Bψβ(τ, u∗n)[Bψ̂S

n(τ, β̂n)− Bψ̂S
n(τ, β0)]

+ Bψβ(τ, u∗n)[Bψ̂
S
n(τ, β̂n)− Bψ̂S

n(τ, β0)]
])

π(τ)dτ + op(1).

Now Lemma .0.5 c) implies that Bψ̂S
n(τ, β̂n) can be replaced with Bψ̂n(τ) up to a op(1/

√
n)

so that the above becomes:
√

n
σ∗n

(
φ(β̂n)− φ(β0)

)
=

√
n

2

( ∫ [
Bψβ(τ, u∗n)BZS

n(τ) + Bψβ(τ, u∗n)BZS
n(τ)

])
π(τ)dτ + op(1).

To conclude, apply a Central Limit Theorem to the scalar and real-valued random vari-

able variable:

1
2

∫
[Bψβ(τ, u∗n)BZS

t (τ) + Bψβ(τ, u∗n)BZS
t (τ)]π(τ)dτ.
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Because of u∗n and the geometric ergodicity of the simulated data, a CLT for non-stationary

mixing triangular arrays is required: results in Wooldridge & White (1988); de Jong (1997)

can be applied. For any δ > 0:

E

(∣∣∣ ∫ [ψβ(τ, u∗n)ZS
t (τ) +ψβ(τ, u∗n)ZS

t (τ)]π(τ)dτ
∣∣∣2+δ

)
≤ 22+δ

[
E

(∫ ∣∣∣ψβ(τ, u∗n)ZS
t (τ)

∣∣∣π(τ)dτ

)]2+δ

≤ 22+δ

(∫ ∣∣∣Bψβ(τ, u∗n)
∣∣∣2π(τ)dτ

) 2+δ
2
[

E

(∫ ∣∣∣BZS
t (τ)

∣∣∣2π(τ)dτ

)] 2+δ
2

.

By definition of u∗n and ‖ · ‖weak:(∫ ∣∣∣Bψβ(τ, u∗n)
∣∣∣2π(τ)dτ

)1/2

= ‖v∗n‖weak/σ∗n ∈ [1/a, 1/a].

Because B is bounded linear and |ZS
t (τ)| ≤ 2:[

E

(∫ ∣∣∣BZS
t (τ)

∣∣∣2π(τ)dτ

)] 2+δ
2

≤ [2MB]
2+δ.

Eventually, it implies:

E

(∣∣∣ ∫ [ψβ(τ, u∗n)ZS
t (τ) +ψβ(τ, u∗n)ZS

t (τ)]π(τ)dτ
∣∣∣2+δ

)
≤ [4MB]

2+δ

a
< ∞.

Given the mixing condition and the definition of σ∗n :
√

n
2

∫
[Bψβ(τ, u∗n)[BZS

t (τ)− BE(ZS
t (τ))]+ Bψβ(τ, u∗n)[BZS

t (τ)− BE(ZS
t (τ))]]π(τ)dτ

d→ N (0, 1).

By geometric ergodicity and because the characteristic function is bounded
√

n|E(ZS
t (τ))| ≤

Cρ/
√

n = o(1), hence:
√

n
2

∫
[Bψβ(τ, u∗n)BZS

t (τ) + Bψβ(τ, u∗n)BZS
t (τ)]π(τ)dτ

d→ N (0, 1).

This concludes the proof.
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