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ABSTRACT 
 

Multi-sensor physical activity measurement in early childhood 
 

Aston Kyle McCullough 
 
 

 
The purpose of this dissertation was to develop, validate, and implement multi-sensor approaches 

for measuring physical activity and social/contextual covariates in 2-5 year-old children via 

wearable-, wireless communication-, and infrared-depth camera-based technologies. In Chapter 

2, a three-phased study design was used to validate a method for estimating metered distances 

between wearable devices using accelerometer-derived Bluetooth signals. Results showed that 

distances, up to 20 meters, can be predicted between a single Bluetooth beacon and receiver 

using a Random Forest algorithm. When multiple Bluetooth beacons and receivers were used 

within the same environment, a moving average filter was required to recover observations lost 

due to noise. Overall, simulation and validation data suggest that accelerometer-derived 

Bluetooth signals can be used in studies of physical activity co-participation to 1) estimate 

metered distances between devices using a single beacon-receiver paradigm, as well as to 2) 

estimate the proportion of time that devices are proximal when using multiple beacons and 

receivers. Chapter 3 characterized the relationship between objectively measured physical 

activity and dyadic spatial proximities in 2 year-olds and their parents. Data revealed that the 

overall proportions of time that children and their parents spent in total physical activity were 

positively associated, and time series data revealed that this relationship remained consistent 

when analyzed hour-to-hour. Time spent engaged in sedentary behavior was also positively 

associated between children and parents; however, there was no association between child and 

parent moderate-vigorous physical activity volumes. Dyadic proximity results showed that girls 



spent more time in joint physical activity with their mothers than boys. Furthermore, children 

who engaged in >60 minutes of daily moderate-vigorous physical activity spent an additional 30 

minutes in joint total physical activity with their mothers each day, on average, when compared 

to children who engaged in <60 minutes of daily moderate-vigorous physical activity. Finally, 

boys and girls who engaged in >60 minutes of daily moderate-vigorous physical activity 

participated in joint physical activity with their mothers across wider relative distances, on 

average, than did boys who engaged in physical activity at closer relative distances to their 

mothers.  In Chapter 4, an original computer vision algorithm was applied to infrared-depth 

camera data for the purpose of converting three-dimensional videos into triaxial physical activity 

signals in young children. Physical activity data were collected in 2-5 year-old children during 

20-minute semi-structured, indoor child-parent dyadic play sessions. Play session video data 

were converted into triaxial physical activity signals using a multi-phased computer vision 

algorithm for each child. Computer vision-derived triaxial physical activity cut points for 2-5 

year-olds were calibrated against a direct observation reference system using a machine learning 

algorithm. Results revealed that triaxial activity signals, as measured by a dual-sensor camera, 

can be used to estimate both physical activity intensities and volumes in young children without 

the use of wearable technology. Collectively, these studies show that multi-sensor approaches to 

physical activity measurement are a valid means by which to measure physical activity and 

social/contextual covariates in young children using either wearable sensors or computer vision. 
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CHAPTER I 
 
Introduction 
 

Physical activity (PA) is defined as musculoskeletal contractions that cause increased 

energy expenditure (Casperson, Powell & Christenson 1985), and early childhood (ages 2-5 

years) has been identified as an important age period for the development of physical activity 

behaviors (Kohl & Hobbs, 1998). Studies widely show that higher daily PA volumes in young 

children are positively associated with beneficial health outcomes (Andersen, 2006; Remmers et 

al., 2013). Moreover, PA behaviors developed during childhood appear to carry-forward 

throughout adolescence and into adulthood (Telama, 2009). Taken together, these studies suggest 

that daily physical activity behaviors in early childhood play a significant role in both short- and 

long-term health and behavioral outcomes (Timmons et al., 2012; Janz et al., 2010).  

Current physical activity guidelines provide precise recommendations for the volume of 

physical activity minutes young children need each day in order to receive its health-enhancing 

benefits (AHA, 2016; IOM, 2011). Unfortunately, parental proxy reports on their children’s daily 

physical activity appear to have limited validity (Oilver et al., 2007; Saker, 2015), which 

precludes their use when accurate PA estimates are required. Given the evidence of a dose-

response relationship between daily minutes of activity and myriad health outcomes in young 

children (Ekelund et al., 2012), the need for comprehensive and accurate estimates of time spent 

in physical activity in early childhood is evident.  

As such, public health efforts have been organized to objectively monitor childhood 

physical activity behaviors on a large scale (Troiano et al., 2008; Tudor-Locke et al., 2011). 

Among the many options for monitoring PA behavior in children (Rowlands & Eston, 2007), 

researchers have increasingly turned to the use of wearable technologies for the purpose of 
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improving the validity, accuracy, and robustness in PA measurement in the young (Oliver, 

Schofield & Kolt, 2007). Of the available methods for objectively measuring PA (Hills, 

Mokhtar, & Byrne 2014), accelerometry is a feasible and popular method for quantifying daily 

activity volumes and activity patterns in young children (Rowlands et al., 2007; Van 

Cauwenberghe, Gubbels, De Bourdeaudhuij & Cardon 2011). Accelerometry research has shown 

that the use of such devices is a valid and reliable means by which to estimate time spent in 

physical activity in young children (Cliff, Reilly & Okely, 2009). Moreover, since young 

children tend to engage in short-burst physical activity patterns (Rowland, 2005), the time 

stamping feature available in accelerometers permits the analysis of activity patterns and 

temporal trends (Rowlands, 2007). For example, a study of 3-5 year-old low-income young 

children used accelerometer data and a functional data analysis approach to show associations 

between physical activity volumes and a diagnosis of asthma at different periods throughout a 

given day (Goldsmith, Liu, Jaconbson & Rundle, 2016), and another study showed that young 

children tend to engage in an array of qualitatively distinct episodes of short-burst activity 

patterns throughout the day (Ruiz, Tracy, Sommer, & Barkin, 2012). However, even as 

accelerometer data can provide high-resolution temporal information for pattern analyses, the use 

of a single triaxial accelerometer for measurement can provide only limited information about 

additional factors that are essential to PA behavioral patterns (Butte, Ekelund & Westerterp, 

2012; Loveday, A., Sherar, Sanders, Sanderson & Esliger, 2015; Sylvia, Bernstein, Hubbard, 

Keating & Anderson, 2014). 

More specifically, the development of PA behaviors in young children is known to be 

simultaneously associated with physiological, environmental, and sociocultural factors (Kohl et 

al., 1998). Several studies have shown the feasibility of employing multiple sensors to derive 
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simultaneous objective estimates of PA and associated factors in order to develop more 

comprehensive and accurate models of PA behavior (Ellis, Godbole, Kerr & Lanckriet, 2015; 

Gao, Bourke & Nelson, 2014). Such integrative approaches to measurement afford researchers 

an opportunity to objectively assess PA using multifactorial methodological paradigms. In older 

children and adolescents (5-18 years), multi-sensor PA measurement approaches have been 

employed to objectively measure PA behavior in tandem with environmental covariates via 

Global Position System data, physiological correlates via indirect calorimetry, and sociocultural 

factors via simultaneous objective PA measurement in child-parent dyads (Duncan, Wilson, 

Tallis, Eyre, 2016; Fuemmeler, Andersson & Mâsse, 2011; Oreskovic et al., 2012;).  

In young children, however, little is known about the application of multiple sensors to 

comprehensively characterize PA behavior. For example, only a small number of studies have 

investigated PA behaviors in parents and their young children using objective measures (Yao & 

Rhodes, 2015; Uitdewilligen, Müller-Riemenscheider, Lim, Brage & van Sluijs, 2017). A recent 

study used wearable sensors to simultaneously measure PA behaviors and spatial proximities in 

young children and their parents (Dlugonski, DuBose & Rider, 2017); however, the methods 

used in the study to objectively measure dyadic spatial proximities were not validated. Few 

studies have simultaneously measured PA using wearable sensors and indirect calorimetry in 

preschoolers when calibrating accelerometers to estimate energy expenditure (Butte et al., 2014; 

Pfeiffer, McIver, Dowda, Almeida & Pate, 2006; Roscoe, James & Dunan, 2017). With regard to 

the use of multi-sensor systems (e.g., infrared-depth sensing cameras) for remote PA 

measurement, only one study has applied such a method to simultaneously assess PA in children 

(Maile et al., 2015). However, the three-dimensional camera system was not calibrated against a 

criterion measure of PA. In the absence of system calibration, the interpretations that can be 
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made from the 3D signals, with respect to PA measurement, are limited. Taken together, it 

appears that while multi-sensor systems have been used to uncover important association 

between physical activity and its correlates in older children, further methodological studies on 

approaches that can optimize the integrated use of multiple wearable or remote sensors in young 

children are needed to advance the science of PA measurement in this population (Corder, 2008). 

As technological advancements extend the utility of multi-sensor activity monitoring (Liu 

Gao, Staudenmayer & Freedson, 2011), measurement researchers must remain at the edge of 

developing valid and reliable means by which to accurately estimate PA behavior, energy 

expenditure, and related parameters of interest (Corder, 2008). This clearly points toward the 

need for innovative multi-sensor studies and respective analytic models that can synthesize 

objectively monitored signals toward their meaningful use in characterizing early childhood PA 

behavior, in addition to its developmental determinants and correlates. 

 
Significance 
 

Objective measurement of PA behaviors has become ubiquitous in pediatric PA 

measurement in recent years (Chen, Janz, Zhu & Brychta, 2012). Studies investigating the 

quality and quantity of PA in pediatric populations have determined that these two PA behavioral 

attributes in particular are distinctly associated with specific health outcomes in childhood 

(Andersen et al., 2006; Ekelund et al., 2012). Furthermore, a host of factors, such as parental PA 

behaviors, are known to influence early childhood PA behaviors (Yao et al., 2015). To that end, 

the use of multi-sensor systems in early child PA measurement can provide deeper insights into 

children’s PA behavior, its influences, and its associations with health outcomes during an 

essential developmental stage. Moreover, the use of time synchronized multi-sensor systems in 

early childhood PA assessments afford researchers the ability to simultaneously measure 
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physical activity behavior and auxiliary signals, such that time-specific activity patterns can be 

modeled with respect to PA correlates in order to extend what is known about PA development . 

By employing an integrative, multi-sensor approach to early childhood PA measurement, 

the findings from the studies conducted herewith may significantly impact what is known within 

the field of early childhood physical activity measurement in several ways. Collectively, they 

will: 

1) propose a validated algorithm for objectively measuring interpersonal spatial proximities 

between young children and their parents during physical activity  

2) characterize hour-to-hour physical activity behaviors and spatial proximity patterns 

between 2 year-old children and their parents via multiple wearable sensors  

3) propose triaxial cut points for remotely monitored physical activity behaviors in young 

children 

Overview 
 

The three studies that comprise this dissertation series exclusively focus on 1) a social 

correlate of PA behavior that can be objectively measured, 2) child-parent dyadic physical 

activity behaviors and interpersonal spatial proximity patterns, and 3) the development of cut 

points for a 3D remote physical activity monitoring paradigm to assess PA intensities and 

volumes. Study one is a three-phased methodological study that proposes a method for 

objectively measuring interspatial proximities between individuals alongside physical activity 

data. The second study is a cross-sectional study, that applies the methods of study one, and 

objectively measures hour-to-hour physical activity behaviors and interspatial proximities in 

young children and their parents over one week in order to better understand interactive physical 

activity behavioral patterns in child-parent dyads. The third study is a methodological study that 
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establishes triaxial physical activity cut points for an infrared-depth sensing camera in young 

children (2-5 year-olds) in order to assess physical activity intensities and volumes without the 

use of wearable technology. 

 
Therefore, this dissertation series aims to: 
 

1) validate the use of accelerometer-derived Bluetooth signals as an objective measure of 

interpersonal spatial proximity during physical activity 

2) describe overall child-parent PA behaviors among families with young children 

3) describe interactive hour-to-hour child-parent PA behavior patterns and PA inter-

relationships between dyadic counterparts 

4) explore the influence of spatial proximity on interactive child-parent free-living PA over 

several days 

5) calibrate triaxial physical activity cut points for a 3D camera in 2-5 year-olds  

 
Dissertation Structure 
 
 The series of discrete, yet interrelated, studies that follow have been organized into the 

following format: 

 Chapters II, III, and IV are three separate studies that have employed integrative, multi-

sensor systems to measure physical activity behavior and proximity in young children. For each 

of these chapters, an abstract, introduction, methods, results, discussion, conclusions, references, 

and related tables and figures are presented. Appendix A includes the literature review for the 

dissertation. Appendices B and C are supportive, discrete studies that are associated with the 

primary dissertation studies. Appendix D includes information on KinetiWave, an original 

computer software platform for signal analyses in physical activity research. Appendix E 
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includes all definitions and abbreviations referenced across the primary dissertation studies. 

Appendix F includes all data forms and questionnaires used within the primary dissertation 

studies. Related Institutional Review Board documents from Teachers College, Columbia 

University, and where applicable Columbia University Medical Center, are included for all 

primary dissertation studies and are provided in Appendix G.  
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Analysis of accelerometer-derived interpersonal spatial proximities: A calibration, 
simulation, and validation study 
 
 
Abstract 

Purpose: To estimate distances from accelerometer-derived Bluetooth signals as a measure of 

interpersonal spatial proximity. Methods: Accelerometer-derived proximity data were collected 

indoors and outdoors over a 10m range to calibrate simulation models. Proximity data were 

simulated over 20m (indoor) and 50m (outdoor) ranges. Competing statistical and machine 

learning models were used to predict simulated distances; the Root-Mean-Square-Error (RMSE) 

was calculated. Simulation estimates were validated under conditions wherein a single beacon-

receiver (SBR) and multiple beacons-receivers (MBR) collected proximity data indoors and 

outdoors within a <10m range. Results: Simulation data showed that a Random Forest (RF) 

model performed optimally. The validated RF RMSE was <2.7 for SBR, and >90% of predicted 

distances were accurately classified as <10m. For MBR, >67% of predicted distances were 

accurately classified as <10m. Conclusions: Simulation and validation data suggest that 

distances can be estimated from accelerometer-derived proximity data within a 20m range using 

a SBR. 
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Introduction 

Physical activity (PA) behaviors appear to be interdependent among children and their 

parents (Yao & Rhodes, 2015; Barkin et al., 2017). Few studies of child and parent co-

participation in PA have used objective measures to determine the periods of time during which 

child and parent were proximally engaged in PA, and the use of objective measures has been 

shown to mitigate biases otherwise encountered when using self-report proxy measures 

(Uijtdewilligen et al., 2017). In order to model child and parent co-participation in PA with good 

internal validity, accurate measures of the periods of time during which dyadic counterparts are 

engaged in simultaneous and proximal PA are required. The use of accelerometers combined 

with an additional sensor that can measure the distance between dyadic counterparts allows for 

the analysis of activity intensities patterns in tandem with dyadic spatial proximity patterns 

(Uijtdewilligen et al., 2017), and affords researchers the potential to comprehensively and 

accurately characterize interpersonal proximities and child-parent physical activity. However, 

further research is needed on the validity and applications of such objective methodological 

approaches in the measurement of child and parent PA co-participation. 

The available validated objective measures of spatial proximity between family members 

and activity levels have largely been limited to using two separate monitors (i.e., accelerometers 

and Global Positioning System devices), which may be cumbersome for use in certain 

populations (Uijtdewilligen et al., 2017), such as in very young children. Newer accelerometer 

models afford researchers the capability of simultaneously collecting inter-device spatial 

proximity data via Bluetooth signals while measuring PA, which can be used to measure child-

parent co-participation in PA (Dlugonski, DuBose, & Rider, 2017). Though the radio wave-

based technology embedded within newer accelerometers has been widely used to measure inter-
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device spatial proximities across various devices (Botta & Simek, 2013; Oliveira, Hongbin, 

Almeida, & Abrudan, 2014; Seidel & Rappaport, 1992), there have been no studies that have 

systematically validated the use of accelerometry combined with Bluetooth-based sensors to 

estimate interpersonal spatial proximities as metered distances during PA measurement.  

Given that an accurate measure of interpersonal distance is a requisite factor in 

determining simultaneous and proximal child and parent PA engagement (Uijtdewilligen et al., 

2017), further research on objective measures of interpersonal spatial proximities will support 

future studies of familial co-participation in PA. Moreover, the use of accelerometers alone to 

measure activity intensity and proximities between dyadic counterparts, in contrast to the use of 

multiple devices, may dually afford researchers a convenient and integrated system for analyzing 

child-parent PA co-participation. The purpose of this study, therefore, was to validate a method 

for estimating interpersonal distances between dyadic counterparts using accelerometer-derived 

Bluetooth proximity signals. To achieve this aim, a three-phased calibration, simulation, and 

validation study was conducted in order to derive an accurate and robust model for estimating 

metered distances between accelerometers using Bluetooth data. 

Calibration 

As a precursor to estimating interpersonal distances from accelerometer-derived 

Bluetooth proximity signals, proximity calibration data were first collected, processed, and 

analyzed, as described below: 

Methods 

Site. Proximity calibration data were collected in various indoor and outdoor environments 

on a university campus located within a major urban center. 



 15 

Sample & Procedure. ActiGraph wGT3X-BT accelerometers (ActiGraph Corp, 

Pensacola, FL) were used to sample “proximity tagging” data. The “proximity tagging” feature 

in the wGT3X-BT model uses Light Energy Bluetooth technology to detect relative received 

signal strength between ActiGraph accelerometers (ActiGraph, 2014). Two accelerometers were 

respectively initialized as a “receiver” and “beacon” using ActiLife software. Received Signal 

Strength Indicator (RSSI) signals were recorded on the receiver. Within each testing session, two 

accelerometers, respectively affixed to a stationary and mobile support, were placed within a 

given indoor or outdoor environment in and out of direct line of sight. Repeated, scheduled RSSI 

measurements were collected at 1m increments (from 1m to 10m) indoors and outdoors using a 

10 second epoch length, and the observed distances (i.e., ground truth) were recorded by two 

observers. RSSI data were downloaded from the receiver using ActiLife software. 

Measures. The log-distance path loss model has been used in prior research on radio signal 

propagations between wireless devices, while accounting for reductions in radio signal power 

density (i.e., path loss) due to a host of factors (e.g., signal reflection, diffraction, and absorption 

by environmental features) that can introduce noise into the system (Rappaport, 2002). As shown 

(1), the path loss at distance d is expressed as the sum of its expected value and normally distributed 

random error Xσ. The expected value of the path loss is modeled by a constant reference path loss 

(PL0), the path loss exponent (α), and the log-transformed ratio of the observed distance (d) to the 

reference signal distance (d0).  

!"($) = !"''''($) + )*	

																													!"''''($) = !", + 10/0123, 4
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7 + )*                          

 
 

(1) 
 

This study manipulated and simulated the following variables: received signal strength 

(RSSI), the path loss exponent (α), and distance (d). A propagation model was applied to data 
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(RSSI, d) collected during indoor and outdoor calibration in order to calculate α for each 

observation.  

Received Signal Strength Indicator. RSSI data were measured in decibels (dB) for the 

indoor and outdoor calibration phase. RSSI observations (2) were calculated as shown:  

                                        (2) 

 

Where i is an observation, RSSIi is the received signal strength, RSSI0 is the reference signal 

strength, αi is the path loss exponent, di is the observed distance, and  is normally distributed 

random error for the ith observation (Tateshi & Ikegami, 2008).  

In order to calibrate the model, calibration data were used to determine RSSI0 (Botta & 

Simek, 2013; Seidel & Rappaport, 1992). Results showed that RSSI0 = -55dB for wGT3X-BT 

accelerometers at a reference distance d0 = 1; therefore, a reference signal strength (RSSI0= -55dB) 

and reference distance (d0 = 1m) were used in all calculations. The path loss exponent during the 

reference distance calibration was α = 2—no obstructions were present, and devices were in direct 

line of sight in order to attain conditions wherein free-space path loss could be assumed (Botta et 

al., 2013; Madhavapeddy & Tse, 2005).  

Path Loss Exponent. The path loss exponent was calculated for all respective RSSIi and di 

observations from the indoor and outdoor calibration results (3): 

                                                     
 

(3) 
 

Distance. Distance was measured in meters, and observed values ranged from 1m to 10m 

during the indoor and outdoor calibration sessions.  

Statistical Analyses. 

 

RSSIi = RSSI0 -10 ´ a i ´ log10 di +e i

 

e i

 

a i =
RSSI0 - RSSIi
10 ´ log10(di)
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Descriptive statistics of data collected during the calibration phase were generated using 

MATLAB R2017a (The Mathworks Inc., Natick, MA) and are presented as Median 

(Interquartile Range) and Frequencies [%(n)]. 

Results 

Descriptive Statistics. Table 1 shows descriptive data from indoor and outdoor device 

calibration. RSSI values from the indoor calibration ranged -55 to -81dB, and outdoor data 

showed an RSSI range of -54 to -75dB. Using a subset of the data, Figure 1 shows the variance 

in RSSI at each observed distance for indoor and outdoor data sets, with the cluster of weaker 

RSSI values at 7m illustrating an example of signal attenuation.  

Simulation 

Given that path loss due to noise is a highly variable and influential element of the log-

distance path loss model (Seidel & Rappaport, 1992; Tateshi & Ikegami, 2008), a two-phased 

simulation study was conducted in order to assess the performance of competing distance 

estimators across a range of possible environmental noise conditions. Calibration data and results 

were used to parameterize the simulation model as described below:  

Methods 

Two separate simulation methods were used in this study in order to explore distance 

estimation under measurement conditions wherein 1) the path loss exponent is known or can be 

calculated for a given environment (fixed alpha), or 2) when the path loss exponent is unknown or 

cannot be calculated (random alpha). 

Method 1— Fixed Alpha. A total of N = 10,000 cases were generated for respective indoor 

and outdoor data sets in MATLAB. 
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Distance observations for each case were simulated as a first order Markov chain, such that 

the simulated proximity value at a given time would be contingent only upon the single proximity 

value observed immediately prior. The purpose of this approach was to simulate random data as a 

memoryless process with scheduled, 60 second sampling intervals under free-living conditions. 

The Markov property has been used in prior research on physical activity behavior to good effect 

(Kerr et al., 2016). Data were generated for hypothetical 12 hours periods with 60 second sampling 

intervals for each condition (j), where each indoor (j = 1) and outdoor (j = 2) data set respectively 

contained i = 720 observations. According to the manufacture, the wGT3X-BT accelerometer can 

measure received signal strength at distances of up to 20m in indoors environments and up to 50m 

outdoors (ActiGraph, 2014). Therefore, distances were simulated from 1m to 20m (indoor range) 

and from 1m to 50m (outdoor range). The state space Sj was defined as Sj = {1, 2, 3, …, nj}, where 

n1 = 20 and n2 = 50. Simulated transition matrices of sizes 20 x 20 and 50 x 50 were used to 

determine state transition probabilities in their respective indoor and outdoor applications. To 

simulate the transition matrix: 

1) Let zi ∈ {1, 2, 3, …, nj} denote the row number in the transition matrix Tj, and zi is the state 

of the process at time i ∈ [1, 720]. For each row vector of state transition probabilities, sjz, 

the kth element in sjz ∈ [P(sjz1), P(sjzk)] was derived using the height of the Gaussian 

probability density function with mean µjz = z and variance σ2 = Var(Sj) evaluated at k = 

{1, 2, 3, …, nj}, such that !9:;<=> =
3

√@A*B
CD

(EFG)B

BHB . The Gaussian distribution was used to 

simulate data collected in free-living conditions under the assumptions that 1) for any state 

transition, the probability of observing no change in states between time steps is highest, 

and 2) the state transition probabilities decrease as  increases. That is to say, the 1+- ii zz
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probability that the devices were observed at similar distances, relative to each other at 

each 1 minute sampling interval, was higher than the probability that they were observed 

at a more extreme relative distance in either direction (i.e., closer or nearer). 

2) Each row in Tj was standardized to sum to one 

To derive each simulated 12hr case of distance observations, the following procedure was used:  

Step 1) A random integer was drawn from the discrete uniform distribution d0 ~ 

Unif{1, nj} and was used as the starting distance (i.e., state) 

Step 2) Given zi, the corresponding probability row vector in Tj was used to 

calculate the cumulative sum vector, q, of the state transition probabilities as 

follows: qN  sjzk, with N = {1, 2,  …, nj} 

Step 3) An observation was drawn from the continuous uniform distribution xi ~ 

Unif(0,1), and di = m, where 	

Calibration results showed that α	∈	[1.3, 5] in indoor and outdoor environments, and prior 

studies have reported that α ∈ [1.8, 5.2] (Seidel & Rappaport, 1992; Tateshi & Ikegami, 2008). 

Fixed values for α	∈[1, 5] and simulated distances were used to calculate (2) RSSI values for each 

complete indoor (20m range) and outdoor (50m range) data set at each respective fixed value of 

alpha. Calibration data also showed standard deviations of SD(RSSI) = 5.34 for indoor data and 

SD(RSSI) = 5.65 for outdoor data; therefore, these values were used to compute random error for 

respective indoor and outdoor data sets. A prior study of path loss prediction models showed that 

SD ∈ [4.3, 16.3] across various indoor and multi-floored environments (Seidel & Rappaport, 

1992).  

The wGT3X-BT product manual (ActiGraph, 2014), and data from our device calibration 

confirmed, that RSSI values less than -90dB are not likely to be recorded by the receiver 

N
k 1=S=

iNN
xqm  max <=
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accelerometer. Accordingly, simulated RSSI observations that were less than -90dB, as well as 

corresponding distance and path loss exponent data, were removed from all cases prior to analyses. 

For both indoor data and outdoor data, the final training set (n = 7,000) and test set (n = 3,000) 

contained simulated RSSI, distance, and path loss exponent observations for each case. 

Method 2— Random Alpha. Data cases (N = 10,000) were generated for respective indoor and 

outdoor data sets.  

Distance observations were simulated using the Markov chain approach described 

previously. Path loss exponents in this method were allowed to vary across observations on the 

interval [1.3, 5]. This is because calibration results showed that at any fixed value of d ∈ [1, 10], 

the variance in received signal strength observations was zero when α	∈[1.3, 5] was fixed at any 

observed value. When α was not controlled, the variance in RSSIi was much higher in both 

environments, and in the range [0.4, 13] dB. These results show that the variance in RSSIi due to 

changes in α was high. Given calibration results, the path loss exponent was allowed to vary for 

each simulated RSSI observation since calibration data showed that α varies indoors and outdoors 

even when distance is constant.  

Path loss exponent data were also simulated as a Markov chain with transition probabilities 

generated from the normal probability density function in order to account for potential external 

sources of signal attenuation (Baccour et al., 2012). The state space for the path loss exponents 

was defined as S = {1.3, 1.4, 1.5, …, 5} in agreement with calibration results as described 

previously. The transition matrix for α was normally distributed, as described previously, and each 

row was standardized to sum to one. To derive each case of path loss exponents, a random number 

was drawn from the discrete uniform distribution α0 ~ Unif{1.3,5} and was used as the starting 

value. The cumulative sum of the state transition probabilities from the corresponding transition 
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matrix was calculated, and the new state αi was determined using the criteria described above (Step 

3). The path loss exponent Markov chain procedure was reiterated for all αi, resulting in a total of 

720 path loss exponent observations for each case. Element by element distance and path loss 

exponent data for each case were used to calculate (2) RSSI observations, with signal strength 

variance controlled, SD(RSSI) = 1, given that the path loss exponent was allowed to vary. 

Simulated RSSI observations that were less than -90dB, as well as corresponding distance 

and path loss exponent data, were removed from all cases prior to analyses. For both indoor data 

and outdoor data, the final training set (n = 7,000) and test set (n = 3,000) contained simulated 

RSSI, distance, and path loss exponent observations for each case of n = 720 observations. 

Statistical Analyses 

Statistical and Machine Learning. Distances were estimated from simulated indoor and 

outdoor RSSI data using several competing models: Linear Regression, regression tree using a 

Random Forest algorithm, Natural Cubic Spline, Artificial Neural Network, and Linear Regression 

with log10(d) as the outcome. Prior research on inter-device proximities using Bluetooth signals 

have shown that non-parametric methods perform optimally when compared to the use of the 

propagation model alone (1) to estimate distances (Zhuang, Yang, Li, Qi, El-Sheimy, 2016). Given 

the curvilinear relationship between RSSI and distance shown in the calibration results, in addition 

to potentially complex noise patterns in the signal due to various sources of RSSI attenuation, non-

linear statistical and machine learning approaches were employed to predict distances from RSSI 

data. The Natural Cubic Spline model fits a sequence of piecewise third-order polynomials over a 

series of discrete segments of a signal, where the function is constrained to be linear at the signal 

boundary, in order to yield a continuous, smooth curve (James, Witten, Hastie & Tibshirani, 2013). 

The Random Forest algorithm partitions, or splits, the predictor space (i.e., RSSI) into discrete 
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non-overlapping regions, and then assigns the mean of the response values (i.e., distance) observed 

within each given region as the predicted outcome for all elements within the predictor space 

subset. In order to determine an optimal split at each node in the tree, and to yield a tree that 

produces estimates with low variance, the algorithm repeats this process on a number of 

bootstrapped training sets using a random subset of predictors for each split to grow a forest of 

trees. Finally, the mean of the predicted values for each value in the predictor space is calculated 

across all trees in the forest to yield the final predictive model (Breiman, 2001). Neural Networks 

model a non-linear relationship between a response and any number of predictors. This study 

specified a single-layer, Bayesian regularized, feed-forward network, expressed as I =

J(J(KVT)WT) , where y is the predicted distance, X is a matrix comprised of a column of RSSI 

observations and an additional column of ones, and both V and W are arrays of model coefficients 

(i.e., weights). Model weights and bias values were determined using Bayesian regularization to 

optimize model generalization (Burden & Winkler, 2008). The “hidden layer” of unobserved 

variables is expressed as L = J(KMN), where H, a linear combination of the predictors to which 

the logistic function J(O) = 1/[1− CDS] has been applied, is similarly augmented to include a 

column of ones. The number of hidden layers determines the flexibility of the model, with more 

flexible models tending to lead toward overfitting thus limiting generalization of the model to new 

data sets (Keller, Kim, & Steiner, 2015). In specifying the Neural Network model, we found that 

increasing the number of hidden layers above one had little effect on model performance, thus we 

specified the model with a single hidden layer. Finally, the simple linear regression and linear 

regression with log10 transformed outcome models were included as baseline comparisons to the 

non-parametric approaches. At each iteration (N = 1,000) in the statistical and machine learning 
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procedure, 70% of training data cases were passed to each model, followed by 30% of test data 

cases which were passed to each trained model for cross-validation. 

Method 1 & 2—Fixed & Random Alpha. Indoor (20m range) and outdoor (50m range) 

distances were predicted using each model and each respective array of fixed path loss exponents. 

Distance (d) was used as the outcome and RSSI was the predictor. The cross-validated Root Mean 

Square Error (RMSE), UVWX =	Y
∑ ([\]
^
]_` D[])B

a
, and Mean Absolute Error (MAE), VbX =

∑ |^
]_` [\]D[]|

a
, for the estimated distances, I\d, versus true distances, Id, were calculated across both 

the fixed and random alpha conditions. 

Results 

Statistical and Machine Learning with Fixed Alpha. Figure 2 demonstrates the face 

validity of the data simulation approach when the path loss exponents were generated under the 

first simulation approach (i.e., fixed path loss exponents). Table 2 shows RMSE and MAE for 

distance estimates derived from statistical and machine learning algorithms across the range of 

values at which the path loss exponent was fixed. As the path loss exponent increased, the 

proportion of simulated distances greater than ~10m (for the 20m range) and greater than ~20m 

(for the 50m range) decreased given that the RSSI values were less than -90dB at higher 

distances. Thus, prediction error concomitantly decreased as the range of possible distances 

decreased. The Random Forest model estimated distances with the lowest RMSE and MAE for 

both indoor and outdoor data, and also provided estimates with marginally less variance than 

similarly performing models. For the 20m range (indoor), distances were predicted within 0.9m 

to 4.6m of the true distance, on average. Over the 50m range (outdoor), distances were predicted 

within 1.0m to 11.6m of the true distance, on average. Fitted values for the Random Forest 

model, when α was fixed at 2, are shown for both 20m and 50m ranges (Figures 3a & 3b).  
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Statistical and Machine Learning with Random Alpha. Fitted values for the Random 

Forest model, with a randomly varying α, are shown for both the 20m and 50m ranges (Figures 

4a & 4b). Error for the 20m range (indoor) distance predictions was lowest for the Random 

Forest (Figure 4c), Natural Cubic Spline, and Neural Network models, which had an RMSE of 

4.3(<0.01)m and MAE of 3.5(<0.01)m, on average.  For the remaining models, the average 

RMSE and MAE were respectively found to be: Linear Regression [4.4; 3.6]m, Linear 

Regression with log10(d) [4.6; 3.6]m. Error for the 50m range (outdoor) distance predictions was 

also lowest for the Random Forest (Figure 4d) and Natural Cubic Spline models, with an average 

RMSE of 11.7(0.02)m and MAE of 9.5(0.02)m. For the remaining models, the average RMSE 

and MAE were respectively found to be: Linear Regression [11.8; 9.7]m, Linear Regression with 

log10(d) [12.5; 9.6]m, and Neural Network [11.7; 9.6]m.  

Validation 

Sampling. The Random Forest model distance estimates were validated under two 

separate conditions: 1) a single beacon and receiver in indoor and outdoor environments, and 2) 

multiple beacons and receivers in indoor and outdoor environments. For the single beacon single 

receiver condition, data from the calibration phase, as described above, were used. For the 

multiple beacon and receiver condition, data were collected both indoors and outdoors at an 

Early Head Start (EHS) in a major metropolitan area. EHS is a nationally funded program that 

provides educational services for under-resourced young children (birth to 5 years) and their 

parents (ECLKC, 2016). Indoor data were collected within a range of 10m within various Early 

Head Start classrooms. Outdoor data were also collected within a range of 10m on the sidewalks 

of a publically accessible main thoroughfare as children walked alongside their parents or were 

pushed in strollers. Families (N = 34) with 24-35 month-old children attending an Early Head 
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Start were invited to participate. The mean age for children was 29(4) months and parents were 

32(6) years old, on average, with 96% of families self-reporting their ethnicity as 

Latino/Hispanic. The study was approved by the universities’ respective Institutional Review 

Boards, and all participating parents provided informed consent. 

Measures. 

Sociodemographic questionnaire. Parents completed a brief sociodemographic 

questionnaire and provided information on children’s sex and age, as well as their own age, sex, 

and ethnicity, as reported above. 

Physical activity. For each child-parent dyad, children and a single parent wore the 

ActiGraph wGT3X-BT devices at the hip for 7 days. Raw acceleration data were collected for 

both children and parents and were downloaded and exported using the ActiLife software in 15s 

and 60s epochs respectively. Data reduction was conducted in MATLAB R2017a using custom 

algorithms.  Following, device wear time was established for children’s (Cliff, Reilly, & Okely, 

2009) and parents’ (Choi, Lui, Matthews, & Buchowski, 2011) activity data using standard 

algorithms. Given that activity intensity was not required for this study, cut points were not 

applied to data. Finally, 30min time segments were extracted for each dyad that corresponded to 

the times during which they were observed to be indoors and outdoors at the EHS center. 

Proximity. Data on child-parent spatial proximities were collected via direct observation 

(i.e., ground truth) and were simultaneously measured using ActiGraph wGT3X-BT devices. 

Direct observations and accelerometer-derived Bluetooth measures were collected within indoor 

and outdoor settings, where dyadic counterparts were within a maximum range of 10m across 

conditions. Bluetooth signals were collected using 60s epochs, with devices initialized as the 

beacon and receiver for parents and children, respectively. Only proximity data where parent and 
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child had valid wear time data, as determined by the aforementioned physical activity wear time 

algorithms, were conserved. Bluetooth data (RSSI) were downloaded from children’s devices 

using ActiLife, and were exported for further analyses in MATLAB. 

Statistical Analyses 

Predicted distances for proximity data were estimated from accelerometer-derived 

proximity signals (RSSI) using the trained 20m random alpha Random Forest model, and the 

proportion of epochs with missing observations were calculated. RMSE and MAE were calculated 

for the single beacon condition given that epoch-to-epoch metered distances between devices were 

known. In order to determine agreement between the directly observed distances and the predicted 

distances for both the single and multiple beacon conditions, the proportion of observations 

accurately classified as <10m was calculated (Birkimer & Brown, 1979). Descriptive statistics are 

presented as Mean (Standard Deviation), Median (Interquartile Range), and Frequencies %(n). 

Analysis of validation data from the multiple beacon and multiple receiver condition showed that 

the median number of missing epochs between observations was 3(7.5), thus a 3 epoch moving 

average filter was applied to predicted distances in the multiple beacon scenario. The simple 

moving average filter is a finite impulse response filter that smooths a given signal, using the 

formula  ed =
f]gf]F`g⋯gf]Fi

jg3
 , where Z+1 is the length of the filter and xi is the ith observation in 

a given time series. 

Results 

Single beacon. The Random Forest model predicted distances from the original indoor 

calibration data with an RMSE and MAE of 2.7m and 2.5m, respectively, and a mean predicted 

distance of 6.9(1.8)m. Predicted distances for the outdoor calibration data had an RMSE and 
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MAE of 2.3m and 2.1m, respectively, and the mean predicted distance was 7.1(2.1)m. The 

majority of indoor (90%) and outdoor (100%) distances were accurately predicted as <10m. 

Multiple beacons. Results from the validation of accelerometer-derived proximity data 

when multiple beacon were used showed that, for raw signals, 32(24)% of indoor observations 

were missing and 25(25)% of outdoor observations were missing. The mean predicted distances 

for raw signals using the regression tree model were 8.4(3.2)m indoors and 9.2(1.4)m outdoors, 

and the proportion of observations correctly predicted as <10m were 58(23)% and 59(20)% for 

indoor and outdoor conditions, respectively. After applying a 3 epoch moving average filter, 

1(1)% and 1(2)% of indoor and outdoor observations were missing, respectively. The mean 

predicted distances for filtered signals in the respective indoor and outdoor conditions were 

8.2(3.8)m and 9.0(2.8)m, with 69(10)% and 67(16)% of observations correctly predicted as 

<10m across respective conditions.  

Discussion 

This study intended to validate the use of accelerometer-derived proximity signals as an 

objective measure of interspatial proximity within interpersonal contexts and during physical 

activity. Results from this simulation and validation study showed that received signal strength 

data collected using ActiGraph wGT3X-BT accelerometers can be used to estimate the distance 

between devices both in and out of direct line of sight. Thus, accelerometer-derived Bluetooth 

signals can be used as an objective measure of child-parent interpersonal distances in studies of 

child-parent co-participation in PA. To our knowledge, this study is the first to predict metered 

distances between accelerometers using ActiGraph “proximity tagging” data.  

Using a Random Forest model, simulated data showed that distances were predicted with 

an RMSE of 0.9 to 4.6m over a 20m range and 1.0 to 11.7m over a 50m range. Moreover, 
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validation data showed that the RMSE for indoor and outdoor predicted distances were 2.7m and 

2.3m, respectively, when proximity data were collected over a 10m range using a single beacon 

and receiver. A prior study on physical activity using GPS data for outdoor location estimation 

found that GPS data predicted subject location with an acceptable amount of error (3.02m) 

(Rodriguez, Brown, & Troped, 2005), so our results show that accelerometers with Bluetooth 

technology can be used to estimate distances with a similar accuracy as this well-accepted 

measurement methodology. Similarly, a study of indoor localization using smartphones and 

Bluetooth Low Energy devices showed estimate accuracies from < 3.1m to < 3.88m 90% of the 

time, across various measurement conditions (Zhuang et al., 2016). Combined, our simulation 

and validation results suggest that accelerometer-derived proximity data can provide acceptable 

estimates of the distance between devices over a 20m range, which is the maximum range that 

ActiGraph Corp. indicates that these devices can be used to measure proximity while indoors. 

However, given that the predicted distance errors for the simulated accelerometer-derived 

proximity data was quite high over the 50m range (i.e., the indicated maximum outdoor range for 

the ActiGraph proximity tagging feature), physical activity researchers might choose to use GPS 

data in outdoor measurement applications when more accurate estimates of interpersonal spatial 

distances are needed in outdoor environments. With respect to the 20m range, when the path loss 

exponent is known (i.e., device calibration within a given environment is feasible), the Random 

Forest model was able to predict distances on the range [1.0, 16.4]m; however, when the path 

loss exponent cannot be known, as may be the case in most free-living applications, the model 

predicted distances on the range [1.1, 11.8]m. 

Under conditions wherein multiple beacons and receivers were used, the proportion of 

predicted distances that were accurately classified as <10m was much lower, and the number of 
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missing observations was much higher, than in the single beacon condition. This may be 

attributed to higher levels of external signal interference between beacons and receivers due to 

the increased number of Bluetooth signals transmitted within the same environment, multiple 

Wi-Fi signals in the surrounding area, cellphones, and other sources of signal attenuation 

(Baccour et al., 2012). Therefore, a moving average filter was needed in order to recover 

proximity observations that would have been otherwise lost due to environmental noise. 

Moreover, in noisier environments, proximity data might best be used to determine the 

proportions of time that devices are within range, rather than to predict metered distances. We 

suggest the use of filtered proximity data over raw proximity signals to estimate either distances 

or the proportion of time that devices are within range. Finally, data from our lab (not shown) 

revealed that the receiver device will completely discharge within approximately 3 days when 

initialized with a 10s epoch sampling frequency. Therefore, we recommend using a 60s epoch 

sampling frequency in order to collect accelerometer-derived proximity data for greater than 3 

days.  

A limitation of this study is that the ActiGraph proximity tagging data file does not 

provide an additional wireless communication metric called the Link Quality Indicator (LQI). 

LQI data may provide further insight into the variance in signal strength (Baccour et al., 2012), 

which may improve model estimates. Another limitation of this study is that it was conducted in 

an urban environment, and evidence suggests that path loss exponents observed across various 

environments (e.g., rural and urban) may differ (Rappaport, 2002). Though the range of path loss 

exponents used in simulated data fell within the range of path loss exponents used in prior 

studies (Seidel & Rappaport, 1992; Tateshi & Ikegami, 2008), future studies should replicate the 

methodology of this study in other environments in order to determine if there are local 
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differences in path loss exponents that are observed when using ActiGraph wGT3X-BT 

accelerometers. Within the multiple beacon condition, the precise epoch-by-epoch distances 

between devices were unknown and all directly observed proximities were <10m between dyadic 

counterparts. Thus, we were limited from calculating the Root Mean Square Error or more robust 

measures of inter-observer agreement that require instances of nonoccurrence agreement (i.e., 

directly observed and accelerometer-derived distances that were >10m). Finally, prior studies 

have suggested that the distance-dependent path loss model should subtract some constant value 

(W) for any signal observed through an outdoor wall (Durgin, Rappaport, & Xu, 1998). This 

study did not measure W during the calibration phase, nor did it include W during simulations. 

However, the range of path loss exponents tested during the simulation conducted in our study 

reflect the path loss exponents that have been reported in prior research when devices were 

separated by up to 3 walls in prior research (Seidel & Rappaport, 1992).  

Physical activity researchers using ActiGraph proximity tagging data may use the 

methodology tested in this study in order to determine the distance between accelerometers worn 

by subjects under both controlled and free-living conditions. This approach may be particularly 

of use to researchers who are interested in measuring spatial proximities between children and 

parents to model child-parent PA behavior patterns. Prior studies have shown that the use of 

multiple static sensors may improve location estimates (Papamanthou, Preparata, Tamassia, 

2008); therefore, future studies should investigate distance estimation methods using multiple 

stationary and non-stationary devices in order to improve distance estimates. 

Conclusions 

A Random Forest model can be used to predict metered distances from accelerometer-

derived proximity data when devices are separated by up to 20 meters when using a single 
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beacon and receiver. Over a range of 50 meters, however, accelerometer-derived proximity data 

may not be useful in providing estimates of the distance between devices, depending on the level 

of accuracy required. Given that proximity signals are subject to various sources of external 

interference and noise, we suggest the application of a moving average filter to both smooth 

predicted distances and recover observations that might otherwise be lost. Future research on 

intra-familial co-participation in physical activity can use accelerometer-derived proximity data 

and the methods presented in this study to estimate proportions of time that devices are within 

range, as well as to predict distances between devices within a 20m range.  
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Table 1. Characteristics of ActiGraph wGT3X-BT proximity tagging data collected within 
indoor and outdoor environments in a major metropolitan area 
 Condition 
 Indoors Outdoors 
Variables   
Observations (n) 2,051 2,082 
Missing (%) 0.004 0.002 
Path loss exponent 2.00(1.46) 2.13(0.43) 
Note: Table values are Median(IQR) or Frequencies (%). The path loss exponent was 
calculated from received signal strength and distance observations collected within respective 
indoor and outdoor environments 
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Table 2. Root Mean Squared Error (left) and Mean Absolute Error (right) for distance estimates 
derived from statistical and machine learning algorithms using simulated indoor and outdoor 
ActiGraph wGT3X-BT proximity tagging data and a range of path loss exponents 
 a 
Error 1 2 3 4 5 
Indoor           
Linear  [4.7 3.9] [3.6 3.0] [3.1 2.5] [1.9 1.5] [1.0 0.8] 
log10(Y) [4.9 4.0] [4.1 3.2] [3.1 2.3] [1.8 1.3] [1.0 0.7] 
Cubic Spline [4.6 3.9] [3.7 3.0] [3.0 2.3] [1.8 1.3] [0.9 0.7] 
Neural 
Network 

 
[4.6 

 
3.9] 

 
[3.8 

 
3.0] 

 
[3.0 

 
2.3] 

 
[1.8 

 
1.3] 

 
[0.9 

 
0.7] 

Random 
Forest 

 
[4.6 

 
3.9] 

 
[3.7 

 
3.0] 

 
[3.0 

 
2.3] 

 
[1.8 

 
1.3] 

 
[0.9 

 
0.7] 

Outdoor           
Linear [11.6 9.7] [9.5 7.7] [5.9 4.5] [2.2 1.6] [1.1 0.8] 
log10(Y) [12.5 10.1] [10.1 7.8] [5.7 3.9] [2.1 1.4] [1.0 0.7] 
Cubic Spline [11.6 9.6] [9.4 7.5] [5.6 4.0] [2.0 1.4] [1.0 0.7] 
Neural 
Network 

 
[11.6 

 
9.6] 

 
[9.5 

 
7.6] 

 
[5.7 

 
4.0] 

 
[2.0 

 
1.4] 

 
[1.0 

 
0.7] 

Random 
Forest 

 
[11.6 

 
9.6] 

 
[9.4 

 
7.5] 

 
[5.6 

 
4.0] 

 
[2.0 

 
1.4] 

 
[1.0 

 
0.7] 

Note: At each fixed value of alpha, Table 2 shows model RMSE (left) and MAE (right) for 
predicted distances over 20m (indoor) and 50m (outdoor) ranges. Abbreviations: linear 
regression (Linear), regression tree (Tree), linear regression with log10(d) as the outcome 
[log10(Y)], path loss exponent (α), Root Mean Squared Error (RMSE), Mean Absolute Error 
(MAE), distance (d) 
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Figure 1. Scatterplots of received signal strength as a function of distance for ActiGraph 

wGT3X-BT proximity tagging calibration data collected indoors (left) and outdoors (right) in 

a major metropolitan area 

 

Figure 1a shows indoor RSSI variance given distance and lines of best fit. Figure 1b shows 

outdoor RSSI variance given distance and lines of best fit. Abbreviations: received signal 

strength (RSSI), decibels (dB), m (meters). 

 

 

 

 

 

 

 

 

 

 



 38 

Figure 2. Simulated received signal strength indicator and distance data with random noise 

 

Figure 2 shows illustrates the face validity of the simulated data over the 10m range and lines 

of best fit. Abbreviations: received signal strength (RSSI), decibel (dB), m (meters). 
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Figure 3. Fixed alpha—Random Forest fitted values (above) and prediction errors (below) as  

a function of signal strength for simulated indoor (left) and outdoor (right) conditions 

 

Figures 3a and 3b show the theoretical distance-RSSI relationships over the (a) 20m and (b) 

50m ranges derived from the propagation model in the absence of random noise and when the 

path loss exponent is fixed at 2 (i.e., free-space path loss) in relationship to the Random Forest 

model predicted distances with simulated random noise. Figures 3c and 3d show simulated 

signal strength and absolute differences between the true and Random Forest predicted 

distances fitted with a smoothing spline for the (c) 20m and (d) 50m ranges with simulated 

random noise. Abbreviations: propagation model (Prop), Random Forest model (RFor), 

received signal strength (RSSI), distance (dist), predicted (pred). 
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Figure 4. Random alpha—Random Forest fitted values (above) and prediction errors (below)  

as a function of signal strength for simulated indoor (left) and outdoor (right) conditions 

 

Figures 4a and 4b show the theoretical distance-RSSI relationships over the (a) 20m and (b) 

50m ranges derived from the propagation model in the absence of random noise and when the 

path loss exponent is fixed at 2 (i.e., free-space path loss) in relationship to the Random Forest 

model predicted distances when the path loss exponent varied on the range [1, 5] with 

simulated random noise. Figures 4c and 4d show simulated signal strength and absolute 

differences between the true and Random Forest predicted distances fitted with a smoothing 

spline for the (c) 20m and (d) 50m ranges when the path loss exponent varied on the range [1, 

5] and with simulated random noise. Abbreviations: propagation model (Prop), Random Forest 

model (RFor), received signal strength (RSSI), distance (dist), predicted (pred). 
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CHAPTER III 

Interactive dyadic physical activity and spatial proximity patterns in 2 year-olds and their 
parents 
 

Abstract 

Purpose: To characterize daily physical activity (PA) behaviors in 2 year-old girls and boys and 

their parents, with and without an objective measure of dyadic spatial proximity. Methods: 

Urban-dwelling parent-toddler dyads (N=110) wore accelerometers for 7 days, and parents 

completed a sociodemographic questionnaire. Accelerometers were initialized to collect PA and 

Bluetooth-based proximity data. After applying wear time algorithms, n=65 dyads were further 

analyzed using a dyadic analysis statistical methodology. The a priori significance level was 

p<0.05. Results: Toddler-parent sedentary and light PA time were respectively interdependent, 

but moderate-vigorous PA (MVPA) time was not. Toddlers were significantly more active on 

weekdays and weekends than their parents, and no differences were found in daily PA volumes 

between girls and boys. In dyads with proximity data (n=34), analyses of joint (i.e., proximal and 

mutual) PA time showed that girls participated in significantly more joint PA with their mothers 

than boys. Children who participated in ~2hrs of joint PA/day engaged in >60min of MVPA/day, 

while children with <60min of MVPA/day engaged in ~30min less joint PA time with their 

mothers. Boys and girls who engaged in joint PA with their mothers across greater relative 

distances also participated higher daily MVPA volumes, as compared to boys who engaged in 

joint PA at closer relative distances to their mothers. Conclusions: Toddlers who participated in 

more joint PA with their mothers, and at greater relative distances, engaged in >60min of daily 

MVPA. Further research on the dyadic activity-proximity relationship is needed across early 

childhood development. 
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INTRODUCTION 

Early childhood (2-5 years-old) is an essential period during physical activity (PA) 

behavior development (Kohl & Hobbs, 1998), and PA is an important predictor of health in the 

early years (Timmons et al., 2012). Research shows that parents play an important role in early 

childhood PA development and the years beyond (Booth et al., 2017; Kohl et al., 1998), with 

numerous reports of child and parent PA confirming positive associations between child-parent 

habitual daily PA volumes throughout childhood and well into adulthood (Telama, 2009; Yao & 

Rhodes, 2015). While a large body of evidence appears to support an interdependent child-parent 

PA relationship, research also shows that these dyadic PA interdependencies may not ubiquitous 

(Dlugonski, DuBose & Rider, 2017; Johansson et al., 2016). As such, further research is needed 

in order to better understand the interdependent child-parent PA relationship and contributing 

factors.  

Studies of dyadic PA in young children and their parents have reported differential 

associations between child and parent PA after stratifying analyses by child and parent sex 

(Johansson et al., 2016; Moore, et al., 1991). However, little is known about what contributes to 

these differences in the dyadic PA relationship between boys, girls, and their parents. A recent 

review of methods for measuring child and parent co-participation in PA has suggested the use of 

accelerometry in tandem with an objective measure of child-parent proximity in order to provide 

more robust descriptions of child-parent PA (Uijtdewilligen et al., 2017). Such a multi-sensor 

approach captures dyadic PA in terms of both dyadic activity intensities and spatial dynamics 

(Uijtdewilligen et al., 2017), which in their combination may help to reveal interpersonal factors 

associated with the child-parent PA relationship at a key developmental stage.  
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Few studies, however, have used wearable technology to measure child and parent PA and 

dyadic proximity in early childhood (Dlugonski et al., 2017; Uijtdewilligen et al., 2017). In a 

sample of 1-5 year-olds and their mothers, no differences in joint child-parent PA volumes were 

found between mothers and their children with respect to child sex (Dlugonski et al., 2017). By 

contrast, a report of objectively measured child-parent PA and proximity in older children (8-14 

year-olds) showed that child sex was associated with differences in joint child-parent PA volumes 

(Dunton et al., 2012). Given the potential influences of interpersonal proximity, child sex, and 

parent sex on the child-parent PA relationship, the need for further research on dyadic PA and 

proximity during early childhood is evident. This need is further underscored by the overall paucity 

of objective dyadic PA-proximity reports that are currently available to inform the developing 

definition of child and parent co-participation in PA (Uijtdewilligen et al., 2017). 

Therefore, the aims of this study were to measure dyadic physical activity and interpersonal 

spatial proximity in 2 year-old boys and girls and their parents using wearable technology in order 

to characterize: 1) habitual daily child-parent PA interdependence, with and without a measure of 

dyadic proximity, 2) hour-to-hour interactive child-parent PA interdependence over a 3 day period, 

and 3) joint physical activity behaviors in child-parent dyads. 

 
METHODS 

Site & Sample  

Study participants were recruited from an Early Head Start (EHS) in a major urban center, 

with a catchment area that serves under-resourced families across multiple city districts. EHS is a 

nationally funded program that aims to bolster the physical, cognitive, and socio-emotional 

development of children under 3 years and their parents. The EHS reported that 57% of its families 

share apartments with >1 families and 95% of families speak Spanish in the home. Families attend 
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the EHS center for ~3.5 hours once per week, and also receive semi-monthly home-visits from one 

of their regular classroom teachers. Parents of 24-35 month-old children attending the EHS were 

invited to participate in this study. All children who were 24-35 months-old without exclusion 

criteria were eligible for the study and were invited to participate. Exclusion criteria included 

children with extreme developmental delays, significant sensory or behavioral concerns, or health 

conditions that might restrict PA. The absence of exclusion criteria were confirmed by parental or 

teacher report at the time of recruitment. Parents provided informed consent according to the 

policies and procedures of the Institutional Review Boards that approved study protocols. 

Measures 

Physical Activity. Child-parent dyads were asked to wear triaxial ActiGraph 

accelerometers (Pensacola, FL; Models: wGT3X+ or wGT3X-BT) at the hip (anterior superior 

iliac spine) for 7 contiguous days (Aadland & Ylvisáker, 2015; Cliff, Reilly & Okely, 2009), 

except while bathing or during sleep. Accelerometers were initialized to collect triaxial data at 

30Hz for 8 days (Brønd & Arvidsson, 2016). ActiGraph data were exported from ActiLife software 

in 15s epochs for children and 60s epochs for parents. Data reduction procedures were conducted 

in MATLAB R2017a (The Mathworks, Inc, 2017). To yield accelerometer data with sufficient 

reliability (r >0.70), the nonwear time criteria applied to children’s accelerometer data were: 0cpm 

x 20min, <6 h·day-1, <3 days observed (Cliff, Reilly & Okely, 2009). For adults, nonwear time 

criteria were: 0cpm x 90min, 120s spike tolerance (bracketed by 30min spike tolerance windows), 

<6 h·day-1, <4 days observed (Barkin et al., 2017; Choi, Liu, Matthews & Buchowski, 2011), 

where cpm refers to the counts observed per minute. Accelerometer data were analyzed for N = 

110 parent-child pairs, and after applying data reduction algorithms, n=65 dyads met wear time 

criteria and were included in further analyses. Activity intensity thresholds for sedentary behavior 
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(SED), light PA (LPA), and moderate-vigorous PA (MVPA) were applied to accelerometer counts 

for children [SED (<25); LPA (>25 & <420); MVPA (>420)] and adults [SED (<99); LPA (<99 

& <1952); MVPA (>1952)] using established cut points (Freedson, Melanson & Sirard, 1998; 

Trost et al., 2012).The proportion of parents meeting current recommendations for MVPA of 

>150min/week were calculated (Garber et al., 2011). The proportion of children meeting current 

recommendations for TPA and MVPA of >180min/day and >60min/day, respectively, were also 

calculated (American Heart Association, 2016; Institute of Medicine, 2011). Total PA (TPA) was 

defined as any activity above the respective SED thresholds for children and parents. 

Proximity. Proximity tagging data that are available in newer accelerometers can be used 

as an objective measure of dyadic proximity (Uijtdewilligen et al., 2017). ActiGraph wGT3X-BT 

accelerometers were additionally initialized to collect proximity data in 60s epochs, with devices 

respectively assigned as “receiver” and “beacon” for child-parent dyads (Dlugonski et al., 2017). 

Accelerometer-derived proximity data can be used to predict metered distances between devices 

(<20m), as well as to yield proportions of time that devices are proximal (<50m) (McCullough, 

Keller, Qiu & Garber, 2018). Proximity data were conserved for periods during which dyads had 

mutually valid accelerometer wear time data. Proportions of time when receivers and beacons were 

within range were calculated. Metered distances between dyadic counterparts were also predicted 

from accelerometer-derived Bluetooth signals (McCullough et al., 2018), and were then 

transformed into z-scores in order to derive a standardized measure of the relative distance (i.e., 

nearer [<0] or farther [>0]) between child and parent during activity. Of the dyads meeting wear 

time criteria, n=34 dyads had proximity data and were included in further proximity analyses. All 

dyads with proximity data were also mother-child dyads. 
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In light of the current recommendation for a consensus on the definition of co-participation 

in PA (Uijtdewilligen et al., 2017), we focused on a single element of the current understanding of 

the term—mutual and proximal engagement in activity. We use the term joint to describe such 

bouts of activity wherein child and parent activity intensities are synchronous and dyadic 

counterparts are oriented proximally in space.  

Additional Measures. In order to compute descriptive statistics of sample characteristics 

and to also adjust models of child-parent activity and proximity for potentially influential 

covariables, parents were asked to complete a brief sociodemographic questionnaire. The 

questionnaire included items on children (age and sex) and parents (age, sex, country of origin, 

household income, education, and family size).  

Statistical Analyses 

A dyadic analysis methodology was employed for this study because it is expressly suited 

for studies wherein data have been purposively sampled in dyads (Kenny, Kahsy & Cook, 2006). 

Moreover, the application of a dyadic analysis methodology to child-parent PA data affords 

researchers an opportunity to analyze interactive child-parent PA patterns using over-time dyadic 

models, which can provide high-level detail on child-parent PA interdependencies at various 

temporal resolutions.  

Data were analyzed in MATLAB and MPLUS 7 (Muthén & Muthén, 2012). Descriptive 

statistics are reported as Mean (Standard Deviation), Median (Interquartile Range), or Frequencies 

(%) for child-parent sociodemographic characteristics, activity behavior, and dyadic proximity 

data. In order to test for interdependence between child and parent covariates of interest, intraclass 

correlations (rI) and Pearson’s correlations (r) were analyzed for child and parent proportions of 

time spent SED, in LPA, and in MVPA.24 Pearson’s correlations were repeated after conditioning 
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on child sex. Correlations between the proportion of time that children and parents spent in each 

respective activity threshold (SED, LPA, and MVPA) while proximal were also examined after 

conditioning on child sex.   

Partial correlations were tested between the proportions of time that children and parents 

spent in TPA, after controlling for children’s age and the mean daily proportion of time that dyads 

were proximal. The following linear mixed effects (LME) models were run after controlling for 

the random effect of dyad—Model 1: Weekday and weekend TPA ~ day (i.e., weekday and 

weekend), role (i.e., child and parent), day x role, child sex, and child age. Model 2: included 

proximity and a proximity x sex interaction as additional covariates to those in model 1. 

Continuous covariates were mean centered to facilitate interpretation of interaction effects. A 

residual maximum likelihood method was used in LME models with a sample size of n < 50, 

otherwise a maximum likelihood estimator was used (Snijders & Bosker, 2012). Respective 

models were systematically assessed for the assumptions of 1) within dyad interdependence and 

2) mutually independent residuals with distribution N~(0,σ2)—both of which were found to be 

tenable across models (Kenny et al., 2006; Snijders et al., 2012).  

Interactive hour-to-hour child and parent TPA behaviors were examined in an actor-partner 

interdependence model (APIM) (Kenny et al., 2006). The APIM estimates cross-partner influences 

within dyads and the stability of a given signal within-subjects over time. Dyadic hour-to-hour 

proportions of time spent in TPA were randomly extracted from 3 monitored days on which 

children and parents mutually had valid TPA data. A total of n=63 dyads had sufficient mutual 

wear time data and were included in the APIM analysis. Model 3: For a given hour, child TPA 

time (CHILDt) was regressed on lagged child (CHILDt-1) and lagged parent (PARENTt-1) TPA 

time, and parent TPA time (PARENTt) was regressed on lagged child and lagged parent TPA time. 
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To explore the influence of hourly dyadic proximity on hourly TPA time, an additional model was 

fit for dyads with proximity data. Again, here the model averaged over TPA hour-to-hour, and thus 

does not distinguish between periods of mutual engagement versus non-mutual engagement in PA 

during each hour. Additionally, the proportion of time spent in proximity hour-to-hour only 

represents the amount time that dyadic counterparts spent together each hour, and does not 

distinguish between periods of activity or inactivity. Model 4: The lagged proportion of time that 

children’s and parents’ devices were within range (PROXt-1) was added to the model, such that 

CHILDt-1 and PARENTt-1 TPA were regressed on PROXt-1, and PARENTt and CHILDt were 

regressed on PARENTt-1 and CHILDt-1. Continuous covariates were mean centered; the grand 

mean of CHILDt-1 and PARENTt-1 was respectively subtracted from each predictor according to 

APIM specifications in both models (Kenny et al., 2006). Both models were also respectively 

adjusted for correlated errors within dyads and repeated measures within subjects. Model fit was 

assessed for both Model 3 [!"# = 0.71, * > 0.05; CFI/TLI >1.0; RMSEA <0.01] and Model 4 

[!-# = 3.64, * > 0.05; CFI/TLI >0.99; RMSEA =0.01], and both were found to have good model 

fit. 

In order to explore differences in joint TPA with respect to child sex and MVPA, two 

separate two-way ANOVA models were run with post hoc multi-comparisons using Scheffe’s 

procedure. Model 5: Tested for differences in the proportion of time that children and parents 

engaged in joint TPA time, conditioning on the following dichotomous independent variables—

child sex (female; male) and mean daily MVPA volume (<60min/day; >60min/day). Model 6: 

Tested for differences in the mean relative distance (z-scores) at which child and parent engaged 

in joint TPA, conditioning on child sex and mean daily MVPA volume. Main effects and 

interaction effects were assessed in each respective model. The assumptions of normality and 
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homogeneity of variances were assessed and found to be tenable. Effect sizes are presented as 

partial eta squared.  

Tests for differences in MVPA and TPA time between dyads with and without proximity 

data showed that there were no significant differences for children nor parents. All models were 

estimated with an a priori significance level of α = 0.05. 

 
RESULTS 

 
Summaries of sociodemographic variables and descriptive statistics for wear time, activity, 

and proximity data are presented in Table 1. Of those who reported their ethnicity (n=43), >97% 

(42) identified as Latino/Hispanic and ~2% (1) identified as not Latino/Hispanic. Overall, children 

spent 52(8)% of their time SED, 38(5)% in LPA, and 10(4)% in MVPA, while parents spent 

56(9)% SED, 40(8)% in LPA, and 4(2)% of their time in MVPA. Dyadic counterparts were within 

proximity 73(18)% of mutually monitored wear time, on average, with a relative distance z-score 

of -0.01(0.21). Table 2 shows activity and proximity characteristics for girls, boys, and their 

mothers while their respective dyadic counterpart was engaged in activity of any given intensity. 

With respect to overall wear time, dyads engaged in joint SED 19(7)% of the time with relative 

distance z-score of -0.01(0.22), in joint MVPA <0.01(0.005)% of the time with a relative distance 

z-score of -0.001(0.46), and in joint TPA 15(5)% of the time with a relative distance z-score of 

0.14(0.54).  

Dyadic Activity-Proximity Interdependencies 

Without Proximity. Intraclass correlations for overall child-parent proportions of time 

spent SED (rI = 0.10), in LPA, (rI = 0.22), and in MVPA (rI <0.01) suggest that SED and LPA 

were interdependent within dyads. Pearson’s correlations showed that the mean daily proportions 

of time that children and parents spent SED each day were not significantly correlated (r = 0.20, p 
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>0.05), nor were the proportions of time spent in MVPA (r = - 0.07, p >0.05); however, mean 

daily proportions of time spent in LPA were significantly correlated (r = 0.27, p <0.05). After 

stratifying by child sex, no relationship (p >0.05) was found between the overall proportions of 

time that girls and their parents spent in SED (r = 0.03), LPA (r = 0.09), or MVPA (r = -0.06) each 

day. The proportions of time that boys and their parents spent SED (r = 0.45) and in LPA (r = 

0.44) were interdependent (p < 0.05), while boy-parent MVPA was not (r < 0.01, p >0.05).  

With Proximity. After conditioning on dyadic proximity, intraclass correlations for the 

child-parent proportions of time spent SED (0.69), in LPA (0.76), and in MVPA (<0.01) showed 

that proximal SED and LPA behaviors were interdependent within dyads. Pearson’s correlations 

showed that the mean proportions of time that children and their mothers spent SED were 

interdependent when dyadic counterparts were proximal (r = 0.78, p < 0.001).  The mean 

proportions of time spent in LPA were also interdependent when child and mother were proximal 

(r = 0.75, p <0.001); however, the mean proportions of time spent in MVPA were not 

interdependent when child and mother were proximal (r = -0.13, p >0.05).  

For girls and their mothers, the mean proportions of time spent SED were interdependent 

(r = 0.90, p <0.001) when proximal, LPA volumes were interdependent when proximal (r = 0.87, 

p <0.001), and the mean proportions of time spent in MVPA were not interdependent when 

proximal (r = 0.17, p >0.05). Among boys and their mothers, the mean proportions of time spent 

SED were interdependent when proximal (r = 0.72, p <0.01), the mean proportions of time spent 

in LPA were interdependent when proximal (r = 0.47, p <0.05), and the mean proportions of time 

spent in MVPA were not interdependent when proximal (r = -0.26, p >0.05).  

 Partial correlations showed that the proportions of time that child and mother spent SED 

while proximal remained positively associated (r = 0.74, p <0.001) after controlling for age and 
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the relative distance (z-score) at which child and mother engaged in SED while their respective 

counterpart was proximal and engaged in any activity intensity. The proportions of time that child 

and mother spent in TPA while proximal (r = 0.73, p <0.001) remained positively associated after 

controlling for age and the relative TPA distance z-scores for mothers and their children.  

Overall Daily Child-Parent PA 

Without Proximity. Results from model 1 showed that children spent 7(1)% (p <0.001) 

more time in weekday and weekend TPA than parents [42(1)%)], controlling for all other model 

covariates. Dyads were also 2(1)%, more active on weekdays (p <0.05) than weekends. Dyadic 

weekend and weekday TPA were not associated with child age nor sex (Adjusted R2= 0.39).  

With Proximity. After adjusting for the proportion of time that child-mother dyads were 

in proximity and the proximity x child sex interaction, there was a significant interaction 

between proximity and sex [βprox · βsex= 0.22(0.07), p <0.05]. For a 1% increase in the proportion 

of time that girls and their mothers were within proximity, there was a 0.13% decrease in the 

mean proportion of time that girl-parent dyads spent in TPA [52(6)%]. For boys and their 

mothers, a 1% increase in the proportion of time that dyadic counterparts spent in proximity was 

associated with a 0.23% decrease in the mean proportion of time that boy-mother dyads spent in 

TPA [56(7)%]. Role was also a significant covariate in the model (p <0.001), showing again that, 

on average, children spent additional time in TPA [8(2)%] above parents [41(2)%], controlling 

for all other model covariables. No other model covariates were significantly associated with 

dyadic weekday and weekend TPA (Adjusted R2= 0.40). 

Hour-to-Hour Interactive Child-Parent PA 

Without Proximity. Model 3 showed that on average children’s [β11= 0.37(0.02), p <0.001] 

and parents’ [β22= 0.47(0.02), p <0.001] own TPA behaviors during a given hour significantly 



 52 

predicted their own TPA behavior in the following hour after adjusting for all other model 

covariates. Parents’ TPA during a given hour was also positively associated with their children’s 

TPA over time [β21= 0.09(0.02), p <0.001]; however, children’s lagged TPA was not significantly 

associated with parents’ hourly TPA (p >0.05). Children’s and parents’ hourly TPA were also 

correlated from hour-to-hour  [φ= 0.29(0.02), p <0.001], and the variances were also correlated for 

child-parent hourly TPA (p <0.001). 

With Proximity. After adjusting for hourly dyadic proximity, dyadic hourly TPA remained 

correlated hour-to-hour (φ= 0.25, p <0.001); however, mothers’ TPA no longer predicted 

children’s PA hour-to-hour (Figure 1a). Lagged hourly dyadic proximity was significantly 

inversely associated (p <0.001) with lagged mothers’ TPA [β= -0.31(0.03)] at a given hour, but 

not children’s (p >0.05). Figure 1b shows dyadic mean hourly TPA and proximity signals 

throughout the day. The peak TPA time for parents was from 14:00 to 14:59, with parents spending 

[52.7(15.2)%] of their time in TPA on average, and was from 20:00 to 20:59 for children 

[56.0(14.1)%]. The mean proportion of time that dyads spent in proximity was lowest from 17:00 

to 17:59 [68.2(21.0)%]. 

Joint Dyadic PA 

Daily Activity Time. The two-way ANOVA (Figure 2a) on the daily proportion of time 

children and mothers spent engaged in joint TPA showed a non-significant child sex x MVPA 

volume interaction (F1,30 = 0.07, p > 0.05, 12# < 0.01), but significant main effects for child sex 

(F1,30 = 9.14, p < 0.01, 12# = 0.23) and MVPA volume (F1,30 = 8.69, p < 0.01, 12# = 0.23). Post 

hoc analyses showed that, on average, girls engaged in significantly more (p = 0.006) joint TPA 

time with mothers [18(1)%] than boys [13(1)%], and children who engaged >60min of daily 
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MVPA participated in significantly more (p = 0.005) joint TPA time with their mothers [18(1)%] 

than those with <60min of daily MVPA [13(1)%].  

Dyadic Distance. Figure 2b shows results from the two-way ANOVA on the relative 

distance (z-scores) between child and mother while engaged in joint TPA. There was a significant 

child sex x MVPA volume interaction (F1,30 = 4.37, p < 0.05, 12# = 0.13), a significant main effect 

for MVPA volume (F1,30 = 14.7, p < 0.001, 12# = 0.33), and a non-significant main effect of child 

sex (F1,30 = 0.9, p > 0.05, 12# = 0.03). Girls who engaged in >60min of daily MVPA participated 

in joint TPA at significantly (p = 0.04) greater distances from their mothers [0.17(0.10)] than boys 

with <60min of daily MVPA [-0.20(0.08)], as did boys with >60min of daily MVPA [0.26(0.07)] 

with respect to boys with less MVPA (p = 0.001). Girls with <60min of daily MVPA did not 

engage in joint TPA at significantly different distances [0.03(0.07)] than any other group (p > 

0.05), and there were no significant differences in relative dyadic distances between boys and girls 

with >60min of daily MVPA (p > 0.05). 

DISCUSSION 
 

This study aimed to characterize the dyadic activity-proximity relationship in a sample of 

2 year-old boys and girls and their parents. Using a dyadic analysis statistical methodology, 

results showed that child and parent mean daily SED and LPA, but not MVPA behaviors, were 

interdependent. These results remained consistent even after specifically examining the periods 

of time during which child and mother were proximal. Hour-to-hour dyadic PA behaviors were 

also interdependent after controlling for dyadic proximity, which was inversely associated with 

maternal hourly PA. Results also showed that children who participated in greater amounts of 

joint (i.e., mutual and proximal) TPA time with their mothers also engaged in higher daily 

MVPA volumes than children who engaged in less child-mother joint TPA. Moreover, with 
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respect to joint TPA time, participating in dyadic PA across greater distances was associated 

with higher volumes of daily MVPA for children. Thus, the findings from our study suggest that 

interpersonal spatial dynamics between dyadic counterparts may help to explain some of the 

variability in early childhood PA, specifically with respect to children’s daily activity volumes 

and intensities. 

At the dyadic level, child-mother daily PA was inversely associated with the proportion 

of time that counterparts were proximal, and child sex was found to moderate the inverse 

relationship between dyadic PA and proximity. However, further analyses of hour-to-hour 

activity-proximity data revealed that the inverse relationship between dyadic proximity and PA 

was only significantly associated with maternal hourly PA, and that it had no association with 

children’s hour-to-hour PA behaviors. It is important to note, however, that our model made no 

constraints on mutuality with respect to child and mother activity intensities at any given hour. 

As such, our data suggest that mothers were less active as they and their children spent more 

time in proximity, irrespective of their counterpart’s level of activity, which includes proximal 

sedentary time. In another study of objectively measured activity and proximity in young 

children and their mothers, joint TPA time was inversely associated with mothers’ PA at times 

when they were not proximal to their children (Dlugonski et al., 2017). Though direct 

comparisons between studies may be limited due to differences in proximity data processing 

(McCullough et al., 2018), both point toward inverse associations between dyadic proximity and 

maternal PA behaviors. Thus, further research is needed to better explain influential factors in 

the observed inverse relationship among mothers, as well as to confirm its presence across 

diverse dyadic cohorts. Additionally, child and parent hour-to-hour PA variances in our study 

remained correlated between counterparts after adjusting for within-subject hourly PA tracking, 
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dyadic cross-partner interactions, and dyadic proximity. The remaining shared dyadic variance 

may point toward genetic, cultural, and environmental factors that were unexplained by the 

model (Kohl et al., 1998; Pérusse, Tremblay, Leblanc & Bouchard, 1989). As such, more 

research is needed in order to respectively characterize the relative contributions of learned, 

inherited, and environmental factors on the development of PA behavior in early childhood.  

Though the hour-to-hour interactive model seemed to suggest an arbitrary relationship 

between dyadic proximity and children’s PA behaviors, targeted evaluation of the time periods 

during which children and mothers were engaged in joint PA revealed that joint child-mother PA 

was associated with differences in toddlers’ daily MVPA volumes. Specifically, children in our 

study who engaged in higher daily volumes of moderate-vigorous PA (>60 min/day) also 

participated in ~2 hours of PA with their mothers each day, as where children with lower daily 

MVPA volumes (<60min/day) participated in ~1.5 hours of PA with their mothers daily. These 

results may provide initial evidence of a daily PA target for toddler-mother dyads; however, 

further study across early childhood is required to confirm suggested dyadic PA targets. Dually, 

these results invite research on the benefits of ~30min dyadic activity interventions in young 

children, particularly as they transition from age 2 years to 3 years—the age at which it is widely 

recommended that children participate in >60min of daily MVPA (American Heart Association, 

2016; Institute of Medicine, 2011). 

Furthermore, our novel analysis of relative distance scores between dyadic counterparts 

while engaged in joint PA showed that child-mother spatial dynamics were associated with 

differences in toddlers’ daily MVPA volumes. Specifically, girls and boys who engaged in 

>60min MVPA/day also participated in joint PA at greater distances from their mothers; this 

particular activity-proximity dynamic was especially important for boys. Among girls with lower 
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daily MVPA volumes, however, there were no differences in the relative distances at which they 

participated joint TPA when compared to any other group. Notably, girls in our study were also 

found to participate in more joint PA with their mothers than boys. A prior report of dyadic PA 

and proximity in 8-14 year-olds and their parents also showed that girls spent more time in joint 

MVPA with their parents than boys (Dunton et al., 2012), which similarly points towards sex-

dependent differences in the dyadic activity relationship (Johansson et al., 2015). Despite 

differences between boys and girls with respect to child-mother joint PA time, no differences 

were found between the overall time that boys and girls spent in PA. While our report of no 

difference in overall PA volumes between girls and boys is congruent with other studies of PA in 

2 year-olds (Johansson et al., 2016), these results remain striking because studies also report 

differences in PA between girls and boys by 3 years of age (Pate, Pfeiffer, Trost, Ziegler & 

Dowda, 2004). Taken together, these findings encourage especial attention toward the influence 

of sociocultural and interpersonal factors on the differential trajectories of PA behavior in young 

girls and boys. In order to better understand the contextual qualifiers that may explain these 

apparent sex-based differences, further research on PA behaviors in young boys and girls is 

needed with a particular focus to the concurrent influences of dyadic interpersonal spatial 

dynamics, parental support for PA, and parenting style (Beets, Cardinal & Alderman, 2010; 

Hennessy, Hughes, Goldberg, Hyatt & Economos, 2010). 

With regard to limitations of the study, the adult sample in our study was predominantly 

comprised of mothers and all families in our study reported an annual income below the federal 

poverty level, thus our results may be more indicative of activity proximity relationships in 

mother-toddler dyads. Finally, the use of dyadic analysis limits the direct comparison of these 

findings to other studies that have used a dyadic analysis approach to study child-parent PA 
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beahviaors (Uijtdewillgen et al., 2017). Findings from our study may, therefore, be generalizable 

to other under-resourced toddler-parent dyads living in areas of pronounced need within a major 

urban center.  

To our knowledge, this study is the first to use a dyadic analysis statistical methodology 

to analyze dyadic physical activity (Uijtdewillgen et al., 2017; Yao et al., 2015), as such 

parameter estimates were appropriately and necessarily adjusted for interdependent relationships 

between child and parent outcomes (Kenny et al., 2006). Along with the recent recommendation 

to include objective measures of dyadic proximity in studies of child-parent PA (Uijtdewillgen et 

al., 2017), we add that studies of dyadic PA and proximity should consider the use of dyadic 

analysis in the treatment of their dyadic data. Results from our study show its utility in analyzing 

correlated dyadic data, but also reveal its potential to uncover additional layers of information 

with regard to cross-partner and within-subject PA behavior patterns. For example, an 

unintended, albeit notable, artifact of employing the hour-to-hour actor-partner interdependence 

model was the discovery that toddlers’ hourly PA volumes were stable over time. Thus, while it 

is well-established that young children characteristically engage in random “short burst” PA 

patterns (Cliff et al., 2009), our data show that toddlers’ activity patterns also appear to exhibit a 

significant degree of consistency throughout the day.  

In conclusion, we found that child sex moderated the relationship between dyadic activity 

and proximity, and that differences in joint child and mother PA time were associated with 

children’s daily moderate-vigorous activity volumes. Girls engaged in more joint PA time with 

their mothers than boys, and relative distances between dyadic counterparts during joint PA were 

also associated with differences in children’s daily moderate-vigorous activity volumes. For boys 

in particular, engaging in bouts of joint PA that maximized relative dyadic distances was 
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associated with participating in higher daily volumes of moderate-vigorous PA. These findings 

show that relative dyadic distance may be an important explanatory factor in characterizing 

dyadic PA. Results from our study invite further investigation of sex-based differences in the 

dyadic activity-proximity relationship across diverse samples of young children and parents.  
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Table 1. Demographics, activity, inactivity, and spatial proximity in toddler-parent dyads 
attending an Early Head Start Program in a major metropolitan area  
  Dyads (n = 65) 

Variables Children Parents 
Sex   
     Female (n) 34 63 
     Male (n) 31 2 
Age  29 (4) months 32 (6) years 
Income below Federal Poverty Level (%)  100 
Family Size (n)  4.1(1.2) 
Country of Origin (%) (n = 58)   
     Mexico  66.7% 
     Dominican Republic  6.8% 
     Ecuador  10.0% 
     USA  8.3% 
     Other    8.1% 
Education (%) (n = 55)   
     Less than High School  50.9% 
     High School Diploma/GED  29.1% 
     Associates Degree/Some College  10.9% 
     College Degree/Graduate Degree  9.1% 
Accelerometer Wear time   
     Days 5.5 (1.5) 6.4 (1.0) 
     Weekend days (n = 53) 1.4 (0.8) 1.6 (0.7) 
     Hours/day 10.1 (1.3) 12.3 (1.5) 
Daily Minutes by Activity Intensity   
     SED 312.6 (61.3) 415.2 (84.0) 
     TPA 293.7 (60.1) 356.1 (83.2) 
     MVPA 61.3 (27.6) 27.2 (15.9) 
Meeting PA Guidelines (%)   
     MVPA 44.6a 40.0b 
     TPA 98.5c  
Proximity Wear Time (n = 34)   
     Days  6.4(1.1) 
     Hours/day  12.4(1.4) 
Note: Table values are Mean (Std. Deviation) or Frequencies (%). Abbreviations: physical 
activity (PA), Sedentary Behavior (SED); Moderate-Vigorous Physical Activity (MVPA); Total 
Physical Activity (TPA). Activity Guidelines are: a) American Heart Association,28 b) American 
College of Sports Medicine,29 c) Institute of Medicine30 
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Table 2. Mother-child activity and dyadic proximity characteristics stratified by child sex 
 Girl-Mother Dyads (n = 15) Boy-Mother Dyads (n = 19) 
 Girls Mothers Boys Mothers 
Time (%) spent in each 
intensity while proximal 

    

     SED 38(21)% 40(19)% 35(13)% 46(11)% 
     LPA 32(13)% 34(15)% 28(5)% 28(9)% 
     MVPA 5(4)% 3(3)% 7(4)% 3(3)% 
Relative distance (z-scores)     
     SED 0.07(0.17) -0.13(0.33) 0.11(0.29) -0.07(0.48) 
     LPA 0.23(0.16) 0.18(0.15) 0.12(0.29) 0.15(0.31) 
     MVPA 0.12(0.18) 0.24(0.19) 0.27(0.36) -0.17(0.41) 
Note: Table values are Median(IQR). All values are interpreted with respect to the indicated 
dyadic counterpart, as their dyadic partner was proximally engaged in activity of any intensity. 
Relative distances (z-scores) for dyadic counterparts: Nearer <0; Farther >0. Abbreviations: 
sedentary (SED), light physical activity (LPA), moderate-vigorous physical activity (MVPA).  
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Figure 1. Associations between toddler-mother hourly physical activity time and dyadic 
proximity over 72hrs among urban-dwelling families  

 
Note: Figure 1a shows that children’s and mothers’ time spent in total physical activity (TPA) 
during a given hour significantly predicted (p < 0.01) their respective time spent in TPA during 
the following hour after controlling for dyadic proximity. The model also shows an inverse 
relationship between hour-to-hour dyadic proximity and maternal PA. Figure 1b illustrates 
hourly proximity-activity signals for child-parent dyads. Asterisk (*) indicates p < 0.01. 
Abbreviations: prox (proximity). 
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Figure 2. Differences in child-mother joint physical activity time (left) and relative distances 
(right) 

a b 

  

Note: Figure 2a shows that girls spent more time in joint PA with their mothers than boys, and 
children who engaged in >60min MPVA/day participated in more joint PA than those with <60min 
MVPA/day. Figure 2b shows that girls and boys who participated in joint PA with their mothers 
across wider relative distances participated in >60min MVPA/day, compared to boys with <60min 
MVPA day who participated in joint PA at closer relative distances. Abbreviations: physical 
activity (PA), moderate-vigorous PA (MVPA), minutes (min). 
 



CHAPTER IV 
 
Calibration of a dual-sensor camera for detecting triaxial physical activity signals in young 
children 
 
Abstract 
 

Objective measures of physical activity (PA) are important for accurately assessing PA 

behaviors in early childhood. Remote sensors, such as 3D cameras, can provide additional 

contextual and group-based data that can enhance what is known about PA in young children; 

however, no physical activity cut points exits for PA data collected using a 3D camera. Purpose: 

To develop triaxial physical activity cut points, as measured by an infrared-depth sensing camera, 

in young children. Methods: Families with children (2-5 years-old) were recruited and invited to 

participate in semi-structured 20 minute play sessions that included activities such as quiet play, 

walking, running, etc. while indoors. During the play session, children’s PA was recorded using 

an infrared-depth sensing camera, Microsoft’s Kinect (MSK). PA video data were analyzed via 

direct observation using the Children’s Activity Rating Scale (CARS), and infrared-depth PA 

video data were processed and converted into triaxial PA accelerations using computer vision. PA 

data from children (n = 10) were analyzed, and the Receiver Operating Characteristic Area Under 

the Curve (AUC) was calculated in order to determine triaxial cut points for infrared-depth sensor-

derived PA data. Results: Children were 45(12) months-old on average, 6 were girls, and 4 were 

boys. A CART algorithm accurately predicted the proportion of time that children spent sedentary 

(AUC = 0.89), in light PA (AUC = 0.87), and moderate-vigorous PA (AUC = 0.92) during the 

play session, and there were no significant differences (p > 0.05) between observed and CART 

predicted proportions of time spent in each activity intensity. Conclusions: Results from this study 

showed that a computer vision algorithm and 3D camera can be used to estimate the proportion of 

time that children spend in all activity intensities without the use of wearable technology. 

66
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INTRODUCTION 
 

The health-enhancing benefits of physical activity (PA) in early childhood (ages 2-5 years) 

have been widely reported (Ekelund et al., 2012; Janz et al., 2010), and evidence suggests that 

social and contextual factors, such as proximity to others, may influence PA behaviors in young 

children (Knuth et al., 2017; Uijtdewilligen et al., 2017). To date, multiple wearable sensors (e.g., 

accelerometers and GPS devices) have been used simultaneously to provide social and contextual 

information alongside objective estimates of children’s daily PA volumes (Rowlands & Eston, 

2007; Uijtdewilligen et al., 2017). However, the cost of such a multi-sensor measurement approach 

may be a limitation, and the use of multiple wearable sensors during free-living activities may 

increase participant burden especially in young children.  

As an alternative method for dynamically measuring PA and social-contextual signals, 

studies have shown that video data can be processed using computer vision algorithms to extract 

information about physical activity behaviors within a given context (Carlson et al., 2017). 

Computer vision uses an array of techniques from fields such as engineering and machine learning 

to extract meaningful information (e.g., facial features and hand gestures) from digital images 

including video (Han, Ling, Shao, Xu, Shotton, 2013). While a small number of studies have used 

custom computer vision algorithms to convert video-recorded PA behaviors into quantifiable PA 

signals (Silva et al., 2015, Maile et al., 2015; Carlson et al., 2017), no study has validated such a 

method for estimating PA volumes and intensities in young children. 

Of the available studies that have used computer vision to estimate PA volumes (Silva et 

al., 2014; Carlson et al., 2017), only one has calibrated an algorithm to measure PA in children 

from a camera (Silva et al., 2015). This study of 10 year-old children was the first to establish that 

a ceiling-mounted 2D camera could be used to automatically derive estimates of PA velocities in 
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bi-dimensional space (Silva et al., 2015). Concurrently, a feasibility study demonstrated the 

potential application of three-dimensional (3D) cameras to measure PA (Maile et al., 2015); 

however, PA was only analyzed in one of the available three dimensions and the algorithm was 

not calibrated for activity intensity estimation. A recent report in adults revealed that computer 

vision algorithms can also accurately estimate time spent in PA outdoors when compared to 

acceleroemtery (Carlson et al., 2017), but direct application of their findings may be limited to use 

in adults alone given that energy expenditure profiles, as they relate to physical activity, change 

over time due to maturation (Rowland, 2005). 

While the feasibility and validity of using computer vision to estimate activity volumes and 

intensities has been shown (Maile et al., 2015; Carlson et al., 2017), little is known about the use 

of computer vision to measure PA in young children. Given the lack of available methods to 

measure young children’s PA from video data using an automated process, the need for a validated 

computer vision algorithm for estimating PA in young children is clear. Therefore, the purpose of 

this study was to calibrate triaxial physical activity cut points for a three-dimensional camera in a 

sample of 2-5 year-old children. 

 

METHODS 

Sample. Families with 2-5 year-old children were recruited from community centers, 

preschools, early childhood centers, day cares, and a hospital located within a major urban center 

via flyers, emails, and word-of-mouth. Children for whom engaging in moderate-vigorous physical 

activity would present any concerns for safety due existing medical conditions were excluded from 

participating in the study. The presence of exclusion criteria were confirmed via parental report at 

the time of recruitment and were confirmed during an orientation session. Informed consent was 
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obtained by one or both parents for N = 11 children, and the study was approved by the Institutional 

Review Board at both Columbia University Medical Center and Teaches College, Columbia 

University. 

Play Session Protocol. After providing informed consent, families were scheduled to attend 

a 20 minute indoor play session. The play session took place on a 100 square foot padded play 

area located within our laboratory. Prior to beginning the play session, parents were informed that 

the target physical activity behaviors for children to perform were: quiet play, climbing, walking, 

running, and jumping. Children and their parents were then invited to play freely with various 

affordances for movement (e.g., toy cars, blocks, risers, bubbles, etc.) for the first 10 minutes of 

the play session. If all of the target behaviors were performed within the first 10 minutes of the 

play session, families were invited to continue engaging in semi-structured play for the remaining 

10 minutes. Otherwise, if a given behavior was not performed within the first 10 minutes of the 

play session, a member of the research team introduced various games (e.g., “tag”) and pretend 

play scenarios into the play session in order to encourage children to perform the target physical 

activity behavior.  

Measures 

Sociodemographic. Parents were asked to complete a questionnaire that included items on 

children’s sex and age. 

Anthropometric. Children’s height was measured in meters (m) using a stadiometer, and 

weight was measured in kilograms (kg) using a calibrated scale. Body Mass Index (BMI) was 

calculated as kg/m2, and children’s BMI percentiles were determined according to the reference 

values provided by the Centers for Disease Control (CDC, 2012). 

Physical Activity. In order to validate triaxial physical activity intensity cut points for an 



 70 

infrared-depth camera, physical activity was concurrently measured during the play session using 

Microsoft’s Kinect for Windows and also by direct observation (i.e., the ground truth). 

Microsoft’s Kinect (MSK). Children’s physical activity behaviors were measured remotely 

during the play session using Microsoft’s Kinect for Windows (v1). MSK is a low-cost, portable 

3D camera fit with a color and infrared-depth sensor (Han et al., 2013). During the 20 minute play 

session, infrared and depth sensor data were collected via MSK using Kinect Connect (Appendix 

E). Kinect Connect was initialized to simultaneously collect infrared and depth image frames with 

a 480 x 640 pixel resolution as 16-bit unsigned integers at 30Hz, and frames were iteratively stored 

as *.bin files on a specified end point. Triaxial physical activity counts for all persons (i.e., 

children, parents, and research team members) who entered the frame during the recording were 

respectively extracted and processed from *.bin files using Kinect Analyze (Appendix E). Kinect 

Analyze converts infrared-depth image data into an array of unique triaxial acceleration signals 

for each moving object (e.g., person) that enters the frame using a computer vision algorithm that 

is described in detail elsewhere (Appendix C; Appendix E). Triaxial video-derived activity data 

for children were exported in 5s epochs as vector magnitude activity counts from Kinect Analyze 

for further analyses. Review of the data showed that the infrared-depth sensor signal was severely 

corrupted by noise in one child’s play session, thus this case was removed from the data set. For 

the remaining children (n = 10), triaxial acceleration data that corresponded to the first 5 minutes 

of the play session were extracted and used for comparison to direct observation. 

Children’s Activity Rating Scale (CARS). Unprocessed 2D play session video data that 

were collected using the infrared camera were converted from *.bin files into 16-bit, 480 x 640 

pixel images. Following, each frame was processed in the spatial and frequency domains using an 

image restoration algorithm, and then exported as *.avi video files for direct observation analyses 



 71 

using the KinetiWave toolbox, Kinect Share (Appendix E). From the restored video recordings, 

children’s physical activity behaviors were coded using a second-by-second CARS protocol (Van 

Cauwenberghe, Labarque, Trost, De Bourdeaudhuij. & Cardon, 2011; Puhl, Greaves, Hoyt & 

Baranowski, 1990). CARS activity intensity categories (i.e., 1 = lying down or sitting, 2 = standing, 

3 = walking, 4 = walking, moderate, 5 = running, strenuous activity) were modified to reflect the 

following four categories: 1) lying down or sitting, 2) standing, 3) walking, 4) running or jumping 

(Puhl et al., 1990; Trost et al., 2012). Two trained coders applied the CARS protocol to play session 

*.avi files using a computer-based direct observation system, Visual Movement Analysis Platform 

(Appendix E). After coding all videos, the second-by-second data were reintegrated into 5s epoch 

data using a standard weighted average formula (Trost et al., 2012). For every 5s, each activity 

code within the epoch was multiplied by the frequency of its occurrence in the epoch, and the mean 

was calculated iteratively. Following, the weighted CARS scores were recoded into the standard 

physical activity intensity classifications using the following thresholds: sedentary behavior (SED) 

>2; light physical activity (LPA) 2 to 2.99; and moderate-vigorous physical activity (MVPA) > 3 

(Trost et al., 2012). In order to assess inter-rater reliability between coders, the intraclass 

correlation (ICC) was calculated for n = 4 randomly selected 20min play session videos that were 

coded by both raters. The ICC for the weighted mean CARS scores (rICC = 0.95) showed acceptable 

agreement between raters. 

Statistical Analyses 

Data were analyzed using MATLAB R2017b (The MathWorks, Inc., Natick, MA). 

Descriptive statistics are presented as Mean (Standard Deviation), Median (Interquartile Range), 

and Frequencies [%(n)]. In order to determine optimal early childhood physical activity cut points 

for an infrared-depth camera, the Receiver Operating Characteristic Area Under the Curve (AUC) 
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and its bootstrapped 95% confidence interval were computed using several competing non-

parametric classifiers. The boundary between SED and LPA/MVPA combined, as well as the 

boundary between MVPA and SED/LPA combined, were estimated using separate logistic 

regression models (Trost et al., 2012). This serial approach to determining physical activity cut 

points was repeated using a Classification and Regression Tree (CART) algorithm. Given a binary 

or multiclass categorical outcome variable, the CART algorithm iteratively partitions a given 

predictor space into a cascade of binary decisions (i.e., a decision tree) toward predicating classes 

for new data set while simultaneously reducing the overall model classification error (Breiman, 

Friedman, Olshen & Stone, 1984). Additionally, both a multinomial regression and a multiclass 

CART algorithm, wherein all classes were simultaneously modeled, were used in order to explore 

the results of calibrating activity cut points in parallel. The model with the highest AUC was 

identified as the model with optimally performing physical activity cut points for remotely sensed 

triaxial acceleration data in 2-5 year-old children. The difference between the observed and 

estimated proportions of time spent in each activity intensity were calculated using a Wilcoxon 

Signed Rank test, and the significance level was established a priori at α = 0.05. 

 

RESULTS 

 Children were 45(12) months-old, on average, 60% (6) were girls and 40% (4) were boys. 

BMI percentiles showed that 70% (7) of children were normal weight, 20% (2) were at risk of 

overweight, and 10% (1) were overweight. Table 1 shows the performance of each of activity 

intensity classifier in comparison to direct observation. Overall, the CART algorithm outperformed 

all other classifiers, as it had the highest AUC across all activity intensities. The CART algorithm 

underestimated the proportion of time spent SED, and overestimated LPA and MVPA time; 
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however, CART predicted values did not significantly differ from the observed activity volumes 

for any activity intensity. The logistic regression model performed poorly for all activity intensity 

estimates, and significantly overestimated the proportion of time spent in all three intensities. 

While the multinomial model performed slightly better than the logistic regression model, it 

significantly overestimated MVPA and under estimated LPA. The multiclass CART algorithm 

performed similarly to the CART model; however, the mean difference between the observed and 

predicted proportions of time spent in LPA was lower for the multiclass model.  

 

DISCUSSION 

 This study aimed to calibrate a computer vision algorithm to estimate physical activity 

behavior intensities in young children using an infrared-depth camera. To our knowledge, this is 

the first study to use computer vision to objectively measure PA in young children. Results showed 

that triaxial physical activity acceleration signals derived from a 3D camera can be used to 

accurately estimate children’s physical activity and the relative proportions of time spent in each 

activity intensity without the use of a wearable sensor. Of the competing activity intensity 

classifiers, the CART algorithm predicted the proportion of time that 2-5 year-olds spent in activity 

during an indoor play session with good to excellent accuracy and without significant over- or 

underestimation.  

Proportions of time spent in each activity intensity were estimated at the individual-level 

in our study of 10 children, and participants were allowed to engage in their choice of physical 

activity during the semi-structured play session with their parents. A prior study in 8 children (10 

years-old) calibrated a computer vision algorithm to estimate group-level PA intensities using a 

low frequency sampling method (i.e., periodic 10s observations) while children played basketball 
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indoors (Silva et al., 2015). In a study of 9 adults, activity intensities were estimated at the group 

level while participants were asked to sit, stand, walk, and jog while outdoors using an ecological 

assessment measurement approach that took periodic activity samples (Carlson et al., 2017). 

Comparatively, a continuous sampling approach was used during our semi-structured and dyadic 

play session protocol, and the large volume of data used to calibrate the computer vision algorithm 

was highly variable across all sessions and participants with respect to physical activity intensity 

and spatial patterning. Thus, our cut points were specifically calibrated to capture the short-burst, 

multiplanar physical activity behaviors that young children typically exhibit. Our study contributes 

evidence of both the feasibility and validity of using computer vision to analyze individual PA 

behaviors within dyadic contexts to an emerging area of physical activity measurement research. 

A strength of our study is that 3000s of data were used to calibrate the computer vision 

algorithm across ten 2-5 year-old children. The only other study using computer vision to measure 

PA in children used a total sample of 1000s for algorithm calibration. Thus, the findings presented 

herewith comprise the largest study of computer vision–based methods to measure physical 

activity in children to date. At the same time, a limitation of this study was that the sample size 

precluded the inclusion of additional covariates that may help to improve cut point performance, 

such as age. Though studies using accelerometers have shown that activity intensity cut points may 

be similar for toddlers (2-3 year-olds) and preschool-aged (3-4 year-olds) children (Trost et al., 

2012) at higher activity intensities, research also shows that age-specific cut points may improve 

activity estimates for accelerometer-derived data (Sirard et al., 2005). As such, further research is 

needed to determine if 3D camera-derived activity intensity classifiers would dually benefit from 

the inclusion of age as a model covariate in young children in much larger samples. Additionally, 

these cut points were developed using a computer vision algorithm that was tuned for indoor 
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physical activity measurement. Therefore, the algorithm and cut points may be specific to indoor 

physical activity measurement. Future studies should continue to develop methods for measuring 

physical activity in young children across a broader range of contexts using computer vision. 

  

CONCLUSIONS 

 Computer vision methods can be used to accurately predict the proportions of time that 2-

5 year-old children spend in activity from a 3D camera. Future studies should investigate the use 

of 3D camera-based sensors and computer vision to remotely measure physical activity behaviors 

in children across various developmental age periods and environmental contexts. 
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Table 1. Performance of activity intensity classifiers for the infrared-depth sensing camera as compared to direct 
observation 
 Median (IQR) AUC (95% C.I.) Mean Difference p-value 
SED (% time)     
     Direct Observation 25 (20)%    
     Logistic Regression 17 (25)% 0.69 (0.64 to 0.72) 5% > 0.05 
     CART 33 (27)% 0.89 (0.87 to 0.91) -8 % > 0.05 
     Multinomial Regression 24 (25)% 0.70 (0.66 to 0.74) 0.8% > 0.05 
     Multiclass CART 36 (24)% 0.86 (0.82 to 0.88) -11% > 0.05 
LPA (% time)     
     Direct Observation 37 (28)%    
     Logistic Regression 4 (10)% 0.53 (0.50 to 0.60) 34% < 0.01 
     CART 29 (13)% 0.87 (0.85 to 0.90) 8% > 0.05 
     Multinomial Regression 69 (32)% 0.55 (0.49 0.59) -24% < 0.05 
     Multiclass CART 40% (10) 0.83 (0.78 to 0.86) 2% > 0.05 
MVPA (% time)     
     Direct Observation 28 (18)%    
     Logistic Regression 0 (0)% 0.69 (0.65 to 0.72) 26% < 0.01 
     CART 24 (15)% 0.92 (0.89 to 0.93) 4% > 0.05 
     Multinomial Regression 8 (10)% 0.69 (0.65 to 0.74) 18% < 0.01 
     Multiclass CART 25 (17)% 0.88 (0.85 to 0.91) 4% > 0.05 
Note: Table shows differences between proportions of time in each activity intensity as determined by direct 
observation and each respective classifier. Abbreviations: sedentary (SED), light physical activity (LPA), 
moderate-vigorous physical activity (LPA), proportion of time (% time), receiver operating characteristic area 
under the curve (AUC), bootstrapped 95% Confidence Interval (95% C.I). 
Mean difference overestimates are indicated by positive values, and negative values suggest underestimation. 
Wilcoxon Signed Rank Test p-values show significant differences (p < 0.05) between directly observed and 
estimated proportions of time in each activity intensity. 

 



 79 

Appendix A 
 

Literature Review 
 
 
Introduction 
 

Physical activity is defined as any bodily movement caused by musculoskeletal 

contraction that results in increased energy expenditure (Casperson, Powell & Christenson, 

1985), and physical activity (PA) is essential for health in young children (2-5 year-olds) 

(Andersen et al., 2006). Given that parental reports of young children’s PA behaviors are 

typically of limited validity (Oliver, Schofield & Kolt, 2007; Sarker et al., 2015), objective 

methods of physical activity measurement are preferred in estimating pediatric energy 

expenditure (Eston & Rowlands, 1998). Of the available objective methods, accelerometry is a 

feasible and valid means by which to measure physical activity behaviors in young children (Van 

Cauwenberghe, Gubbels, De Bourdeaudhuij & Cardon, 2011; Oftedal, Bell, Davies, Ware & 

Boyed, 2014; Eston et al., 1998). Newer triaxial accelerometers are light-weight and small 

devices, most commonly worn at the hip or wrist (Migueles et al., 2017), that are well-tolerated 

in diverse samples of young children (Costa Barber, Cameron & Clemes, 2014; Oftedal et al., 

2014).  

The use of triaxial accelerometers in particular affords researchers the ability to measure 

physical activity in three orthogonal planes of motion (Welk, 2005), which enables researchers to 

better measures the characteristically multiplanar physical activity behaviors of young children 

(Gabbard, 2012; Oftedal et al., 2014). Additionally, the time sampling capabilities available in 

accelerometers allow researchers to analyze physical activity and intensity patterns in light of 

diurnal rhythms (Rowlands & Eston, 2007), while the use of traditional pedometers do not. 

Furthermore, research shows that, in place of pedometers, accelerometers can be used to 
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determine daily step volumes in young children (Pagels, Bolderman & Raustorp, 2011), and that 

accelerometer-derived step counts can be paired with timestamp data to produce metrics on time-

dependent cadence patterns (Barreira, Katzmaryk, Johnson & Tudor-Locke, 2012). In light of the 

multiplanar, short burst, and Brownian motion-like nature of physical activity in young children 

(Gabbard, 2012; Rowland, 2005), the benefits of using triaxial accelerometry to objectively 

measure physical activity behavior in early childhood is clear (Oftedal et al., 2014).  

Methodological studies in accelerometry and wearable sensor data analytics have shown 

that data processing considerations are multifactorial (i.e., sampling frequency, cut-points, epoch 

length, data reintegration, number of monitoring days, etc.), and that each factor respectively 

affects accelerometer-derived estimates of physical activity, sedentary behavior, and overall 

estimate reliability (Banda et al., 2016; Brønd & Arvidsson, 2015; Cliff et al., 2009; Welk, 2005; 

Trost et al., 2000). Moreover, differences in any of the aforementioned accelerometer 

specifications limit the generalizability of the findings (Banda et al., 2016; Smith et al., 2017). 

As such, recent studies have suggested that a consensus be reached on accelerometer data 

processing techniques in order to facilitate comparisons between studies, and that studies should 

apply and report on many data processing techniques simultaneously until the field reaches 

consensus (Kerr et al., 2017; Smith et al., 2017). 

Relatedly, some PA measurement studies have investigated the use of remote sensors and 

multi-sensor systems as a means to objectively measure activity in tandem with contextual and 

group-based data (Dlugonski, DuBose & Rider, 2017; Maile et al., 2015). However, no 

consensus statements exist with regard to device specifications nor data analysis protocols in 

remote sensor and multi-sensor systems in physical activity measurement, which clearly mirrors 

the cluster of current issues faced broadly within the field of objective physical activity 
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monitoring (Banda et al., 2016, Kerr et al., 2017; Smith et al., 2017). For example, a recent study 

employed a multi-sensor measurement system, comprised of a wearable accelerometers and 

Bluetooth sensors, to objectively measure child-parent physical activity and spatial proximity 

(Dlugonski et al., 2017); however, the validity of the method the study used to estimate dyadic 

proximity is unknown. Thus, the findings of that study may not be generalized to any other 

population with any modicum of certainty. A recent remote sensor study pioneered the use of a 

3D camera to measure children’s PA in addition to contextual information (Maile et al., 2015). 

However, the study did not calibrate their method against a gold-standard criterion method, thus 

no cut points exist that can be used to interpret the activity signals meaningfully. In order to align 

remote sensor and multi-sensor physical activity research with the recommended trajectory for 

wearable activity monitoring, further research is needed to test the validity and reliability of 

these novel applications of remote and multi-sensor devices within physical activity 

measurement. 

Given these nontrivial measurement considerations, in addition to those specific to 

measuring short-burst, multiplanar physical activity behaviors in young children, the goals of this 

review of the literature were to: 1) briefly describe the nature of physical activity behavior in 

young children, 2) provide an overview of the health-benefits of PA in young children, 3) 

describe accelerometry and measurement in young children, 4) discuss the state of remote and 

multi-sensor physical activity measurement in young children, and 5) consider how remote and 

multi-sensor measurement might be more closely aligned with current measurement and analysis 

recommendations in wearable activity monitoring.  

 

Early childhood PA behavior 
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Early childhood is a critical period for the development of physical activity behaviors 

(Kohl & Hobbs, 1998). Rowland (2005) describes physical activity behaviors in children as short 

bouts of intense activity, mixed with moderate and low intensity movement—reminiscent of 

Brownian motion. In a study of children age 6-10, conducted using direct observational 

techniques, researchers found that 95% of the intense activity bouts recorded did not last beyond 

15s, and that intense movement generally lasted no longer than 3s (Bailey et al., 1995). These 

short-burst activities in children appear to utilize both aerobic and anaerobic metabolic substrates 

(Rowland, 2005).   

Since the sporadic, short-burst nature of PA in young children is inextricably linked to 

metabolic substrate utilization (Rowland, 2005), it follows that higher-resolution and temporally 

sophisticated measurement approaches are well-suited for modeling early childhood PA 

behaviors. Studies that have applied higher-resolution analytical approaches have revealed the 

importance of higher sampling frequencies, as well as the benefit of considering temporal-

dependence in pediatric PA measurement and analyses (Baquet, Stratton, Van Praagh & 

Berthoin, 2007; Berman, Bailey & Cooper, 1998; Obeid, Nguyen, Gabel & Timmons, 2011). As 

an example, Baquet and colleagues (2007) used brief measurement episodes (i.e, 2s epochs) to 

analyze physical activity behaviors in 8-10 year-olds, and showed that >80% of the time a bout 

of moderate-vigorous activity lasted less than ten seconds. Relatedly, in a study of 6-10 year-

olds, Berman (1998) reported that time spent in episodes of higher intensity activity, while brief, 

accounted for 40% of energy expenditure in a study that used spectral analysis to analyze PA 

direct observation and indirect calorimetry data in 3s epochs. In young children (3-5 years-old), 

Ruiz (2013) used 15s epoch accelerometer data to reveal that children’s PA patterns might be 

characterized along two dimensions—isolated and clustered; sustained or occurring in spurts. 
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Research on these activity patterns and wellness in young children also show, for example, that 

the PA temporal patterns may be associated with respiratory health (Goldsmith, Lui, Jacobson & 

Rundle, 2016). Few studies, however, have blended high-resolution analyses of physical activity 

with patterns and clustering methods to better understand how these unique features of early 

childhood PA are associated with health outcomes. 

As it is known that early childhood is a critical period with regard to lifelong health and 

behavioral outcomes (Janz et al., 2010; Telama, 2009), more research is needed on the 

development PA behaviors in young children. More specifically, studies that employ higher 

resolution analyses, which can be better tailored to model the intermittent and seemingly-random 

nature of early childhood PA, are required. These studies will be able to provide the requisite 

level of detail in the analysis of short-burst PA behaviors and its temporally dependent 

associations with health outcomes in young children (Goldsmith et al., 2016). 

 

Benefits of PA in young children 

Cardiometabolic risk factors in children (e.g., higher levels of fasting glucose, higher 

blood pressure, insulin resistance, triglycerides, overweight/obesity) place children at higher risk 

of developing cardiovascular disease and/or diabetes throughout the lifespan (Camhi & 

Katzmarzuk, 2010). While, higher volumes of daily physical activity are known to improve 

cardiometabolic outcomes in children (Ekelund, 2012), a majority of young children appear to be 

insufficiently active (Hnatiuk, 2012; Spittaels, 2012; Hinkley, 2012). Moreover, PA behaviors, 

anaerobic power, and aerobic fitness levels appear to carry-forward over time during early 

childhood years (Caldwell et al., 2016; Gabel et al., 2011), and PA behaviors patterns from 

childhood track forward into adolescence and adulthood (Telama, 2009). Thus, the volumes of 
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daily PA in which young children engage can inform what is known about key health outcomes 

such as adiposity, bone health, motor development, psychosocial health, and cardiometabolic 

health indicators (Timmons, 2012), and also point toward health and behavioral outcomes 

throughout the lifespan (Janz et al., 2010; Telama, 2009). 

Furthermore, there appear to be differences in the associations between PA and various 

cardiometabolic risk factors in boys and girls, across ages, across physical activity intensities, as 

well as differences in children who are healthy weight and overweight/obese (Jiménez-Pavón et 

al., 2013; Laguna et al., 2013; Remmers et al., 2013; Collings et al., 2013). These apparent 

moderators suggest the need for further research on associations between physical activity and 

cardiometabolic risk in children with specific focus on the number and severity of 

cardiometabolic risk factors at the time of measurement, sociodemographic and anthropometric 

differences, in addition to intensities of physical activity. 

 

Associations 

Accelerometry data in childhood physical activity research shows that physical activity 

shares a positive collinear relationship with aerobic fitness, as measured by treadmill endurance 

time or cycle ergometer predicted V̇O2max (Andersen et al., 2006; Rowlands, Eston & Ingledew, 

1999). Higher levels of daily physical activity also appears to be inversely associated with BMI, 

body fat, insulin resistance, fasting blood glucose, systolic and diastolic blood pressure, 

triglycerides, and cholesterol in children (Andersen et al., 2006; Remmers et al., 2013, Rowlands 

et al., 1999, Timmons et al., 2012). Notably, moderate-vigorous PA in particular has been shown 

to be inversely associated with cardiometabolic risk factors independent of sedentary time in 

children (Ekelund, 2012), which suggests that PA behavior in itself plays a critical role in 
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predicting risk for disease and early markers of the same in young children. Similarly, 

irrespective of dietary behaviors, children with an unhealthy diet who engaged in sufficient 

volumes of daily activity had lower abdominal adiposity when compared to children who had an 

unhealthy diet and were insufficiently active (Loprinzi, Lee, Andersen, Crespo & Smit 2015). In 

a study of 16,224 children ages 2-9 years-old, physical inactivity was associated with higher 

odds of having clustered CVD risk factors (Jiménez-Pavón, 2013).   

Objectively measured physical activity behaviors in children also appear to be associated 

with gross motor development and fundamental movement skills in young children (Barnett et 

al., 2016; Williams et al., 2008). In particular, physical activity appears to be positively 

correlated with motor coordination, object control skills, and locomotor skills in early childhood. 

Evidence dually suggests that PA in the early years (age 5) predicts bone health at later 

developmental stages (ages 8 and 11 years) (Janz et al., 2010), and also that childhood PA is 

associated with bone health in adulthood (Gunter, Almstedt & Janz, 2012). Across several of 

these studies, however, important moderators in the relationship between PA and health 

outcomes have also been identified such as children’s age, sex, weight status, and even the level 

of physical activity intensity in which they engage. 

 

Potential Moderators 

In a study investigating associations between physical activity and BMI, Remmers and 

colleagues (2013) showed that physical activity was not associated with changes in BMI among 

normal weight girls across the ages of 5-9 years, but that it was inversely associated with BMI in 

boys of the same age. Further, higher daily volumes of light physical activity were associated 

with decreases in BMI for overweight/obese boys, but not for girls. Jiménez-Pavón (2013) 
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showed that total physical activity (and vigorous PA in particular) was associated with CVD risk 

scores in 2-6 year-old boys but not in girls. The study also showed that among older children (6-

9 years), PA was associated with CVD risk scores irrespective of gender, and across activity 

intensity thresholds.  

Loprizni (2015) revealed that children who engaged in sufficient physical activity and 

healthy eating habits had lower cardiometabolic risk than those who did not; however, there were 

no differences between groups of adolescents with various combinations of healthy lifestyle 

behaviors (i.e., sufficient physical activity and/or health eating habits). Thus, physical activity 

had differential cardiometabolic protective effects across developmental periods. In a study of 

preschoolers, conducted by Collings (2013) and colleagues, vigorous physical activity was 

inversely associated with BMI, but not moderate intensity exercise. Not surprisingly, time spent 

in PA also appears to differ among normal weight children and healthy weight children, with 

normal weight children spending more time in physical activity than those who are 

overweight/obese (Laguna, 2013). Moreover, the relationship between bone mineral content and 

physical activity may also be moderated by sex (Janz et al., 2010), with positive associations 

reported between PA behavior and bone health over time (ages 5 to 11) in boys but not in girls. 

 Across all of these studies using accelerometers to measure PA and health in children, 

however, different devices, data reduction algorithms, activity intensity cut points, and methods 

of analyses were used to estimate activity volumes. Therefore, the interpretability and 

generalizability of each report on the dose-response between PA minutes and health are 

extremely limited outside of any case wherein precisely the same methods are used (Banda et al., 

2016). Given the critical role that accelerometer specifications play in interpreting the 

associations between PA and crucial health outcomes in children, such bone health and 
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cardiometabolic risk factors, each aspect of designing an accelerometer-based measurement 

study should be thoroughly considered. 

 

Accelerometry 

 Within the context of physical activity measurement, accelerometers are used in the form 

of wearable activity monitors that quantify volumes of physical activity after being calibrated 

(Rowlands et al., 2007; Welk, 2005). Currently, the underlying hardware within these devices are 

typically differential capacitance accelerometers or piezoelectric/piezoresistive compressive 

integrated chips that measure perturbations from a semi-static state (Chen, Janz, Zhu & Brychta 

2012). These particular types of acceleration transducers record signals that are caused by both 

gravitational acceleration and also those caused by human movement. Moreover, these 

acceleration signals are measured in up to three orthogonal planes (vertical, antero-posterior, and 

mediolateral) depending upon the available degrees of freedom within the inertial measurement 

unit (Sasaki, John & Freedson, 2011). 

 The choice of device plays a significant role in physical activity measurement and 

activity estimate interpretation across studies, as data suggest that activity counts registered 

across devices differ (Rowlands, 2015). When comparing the GENEActiv and ActiGraph triaxial 

accelerometers with a concurrent hip-worn placement protocol in adults, Rowlands (2015) and 

colleagues found that, after processing raw acceleration data from both devices in both the time 

and frequency domains, activity counts from the ActiGraph accelerometer were consistently 

lower than those recorded by the GENEActiv. Interestingly, a recent study has proposed a new 

algorithm that allows researchers to transform raw acceleration signals from a alternative 

accelerometer models into the popularly used ActiGraph activity counts (Brønd, Andersen & 



 88 

Arvidsson, 2017). As such, the former problem of device specific cut points may become moot 

as physical activity measurement research progresses. In order to validate this new algorithm for 

inter-device cut point transformations and calculations in young children, specifically, further 

research is needed. 

 
Accelerometry in Early Childhood  
 

As an alternative to the use of parental proxy reports for measuring young children’s 

physical activity, given their limited validity (Oliver et al., 2007; Sarker et al., 2015), researchers 

commonly use accelerometry to measure physical activity behavior in children (Rowlands et al., 

2007). Furthermore, while pedometers provide useful objective estimates of daily activity 

volumes in young children (Pagel et al., 2011), accelerometers afford researchers additional 

temporal and multidimensional details that are especially pertinent to PA measurement in young 

children. Specifically, accelerometers timestamp physical activity signals (Rowlands et al., 2007, 

which allows researchers to conduct higher resolution analyses of PA behavior (Goldsmith et al., 

2016), whereas pedometers typically do not timestamp discrete observations.  Given the 

intermittent and pulsatile nature of PA in young children (Rowland, 2005), additional temporal 

specificity during the measurement process extends the ability for researchers to characterize 

these short burst PA behaviors in early childhood (Ruiz et al., 2013).  

Additionally, young children typically engage in multiplanar physical activity behaviors 

(Gabbard, 2012), which suggests the use of monitors that measure physical activity in three-

space (i.e., triaxial accelerometers) (Oftedal, Bell, Davies, Ware & Boyd 2014). Thus, while both 

uniaxial and triaxial accelerometers have been validated in young children (Ott, Pate, Trost, 

Ward & Saunders, 2000), research shows that triaxial accelerometers may more sensitively 

estimate physical activity behaviors in young children (Oftedal et al., 2014).  
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Beyond selecting an appropriate monitor for an early childhood population, the devices 

must be initialized using the correct sampling frequency (i.e., the number of raw accelerations 

sampled per second), given that differences in sampling frequency can significantly impact data 

analysis and estimation when data are converted from raw accelerations (g) to activity counts 

(Brond, 2015; Chen, Janz, Zhu & Brychta, 2012). Furthermore, the placement of the device must 

be considered for both practical (i.e., ease of use by the participating population) and 

measurement reasons (i.e., cut points used must be placement specific) (Welk, 2005). When 

accelerometers are placed at the hip in young children, evidence suggests that contralateral 

placement (i.e., whether the device is consistently placed on the dominant or non-dominant side) 

is not important (Cliff et al., 2009). Finally, data should be collected over several contiguous 

days in order to meet sufficient reliability (r > 0.70) requirements (Trost et al., 2000).  

Prior to applying validated cut points to accelerometer signals, data must first be cleaned 

by distinguishing non-wear time from sedentary time using validated algorithms (Cliff et al., 

2009; Oliver et al., 2011). Data sets meeting and not-meeting established wear time criteria 

(which include the number of minutes/hour, hours/day, and day/week) are determined, and cut 

points are applied to cleaned data sets meeting wear time criteria. Epochs, or discrete sampling 

intervals over which data are summarized, are an important feature of measurement that can also 

affect analysis and estimation (Cliff et al., 2009; Kim et al., 2013; Banda et al., 2016).  

After data have been cleaned, age- and population-appropriate cut points must be applied 

to physical activity counts (i.e., arbitrary values that serve as a proxy for physical activity 

intensity) in order to classify counts into various activity intensities (i.e., sedentary behavior, 

light PA, moderate PA, and vigorous PA) (Welk, 2005; Costa et al., 2014; Oftedal et al., 2014). 

Cut points should be epoch specific, and data should be directly summarized in the epoch length 
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of interest from raw accelerations (Banda et al., 2016). The development of physical activity cut 

points are often determined using indirect calorimetry as a measure to establish its criterion 

validity (Welk, 2005); however, in younger children (~2 years-old), direct observation has been 

used given the apparent impracticability of requiring children to wear apparatuses that measure 

gas exchange during physical activity (Costa et al., 2014). Given that young children typically 

move in short-burst physical activity patterns (Bailey et al., 1995; Berman et al., 1998), shorter 

epochs (<5 seconds) may more sensitively characterize PA behaviors in children (Oftedal et al., 

2014; Baquet et al., 2007).  Finally after data are classified into different activity intensities, time 

spent in respective activity intensities are estimated. 

Owing to the fact that differences in accelerometer specifications may affect physical 

activity estimates (Banda et al., 2016), further discussion of each parameter is warranted. 

Moreover, given that population characteristics should be carefully considered when designing 

an accelerometer study, each discrete aspect of accelerometer measurement design will be 

interpreted in light of the short-burst, multiplanar physical activity behavior patterns that are 

characteristic of young children.  

 

Placement 

Studies of young children show that differences in device placement affect 

accelerometer-derived estimates of daily activity volumes (Cliff et al., 2009). In young children, 

uniaxial and triaxial accelerometers have been worn at either the hip, wrist, ankle, umbilicus, or 

sacrum to measure physical activity behaviors (Oftedal et al., 2014; Trost et al., 2012; Kelly et 

al., 2004; Toschke, von Kries, Rosenfield, & Toschke, 2007). A recent report of current trends in 

accelerometer methods showed that among studies using newer triaxial accelerometers, 92% 
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used a hip-worn protocol and the remaining 8% used a non-dominant wrist-worn protocol 

(Migueles et al., 2017). While there are currently no guidelines with regard to device placement 

(Welk, 2005), some research suggests that wrist-worn placements may be best for measuring PA 

in young children (Johansson, Larisch, Marcus & Hagströmer, 2015). Given that recent 

recommendations aim to improve interpretability of findings across studies (Kerr et al., 2017), 

further research on differences in device placement in very young children is needed.  

Differences in placement also directly affect accelerometer-derived activity intensity 

counts (Kerr et al., 2017). In a sample of 5-6 year-olds, Tochke (2007) and colleagues found that 

uniaxial accelerometer-derived activity counts were significantly higher when devices were worn 

at the umbilicus rather than at the anterior superior iliac crest. In 4 year-old children, wrist-worn 

activity counts were also found to be higher than those recorded while devices were worn at the 

anterior superior iliac crest (Johansson et al., 2015). It is possible that these differences are 

explained by the differential relationships between the device placement and center of mass at 

each wear location (Chen et al., 2012). Thus, while device placement is a matter of preference in 

studies using accelerometry to measure PA (Welk, 2015), the impact of placement on the 

interpretability of findings across studies suggests the need for some consensus on device 

placement in early childhood physical activity research. 

 

Sampling Frequency 

Broadly, accelerations in human movement are <10Hz (Welk, 2002), and when measured 

proximally (e.g., at the hip) accelerations are in the range [0.3,3.5]Hz—at the head [-0.2,0.2]g, 

upper-body [-0.3,0.8]g, and up to 8.1g at the ankle when walking down stairs (Mathie, Coster, 

Lovell & Celler, 2004). In running, the dominant frequency can reach up to 18Hz using a hip-
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worn device protocol, and heel strikes during walking can reach 60Hz when measured by ankle-

worn accelerometers (Chen et al., 2012). Given the Nyquist principle, in order for a signal to be 

properly recovered without aliasing, a sampling rate of twice the highest expected observed 

frequency is needed (Gonzalez & Woods, 2008). In most cases, a sampling frequency of 30Hz is 

sufficient to capture human physical activity when using a hip-worn accelerometer protocol 

(Chen et al., 2012). However, when attempting to capture the braking and propulsive phases of 

running, for example, evidence suggests the need for sampling rates up to 100Hz when using 

hip-worn accelerometers (Vähä-Ypya, Vasankari, Husu, Suni & Sievänen, 2016). 

Studies have shown that differences in the sampling rate used to collect accelerometer 

data affect the activity counts derived from the raw acceleration data (Brønd et al., 2015). As 

such, careful attention must be given to the sampling rates used to initialize devices prior to data 

collection.  In young children, the majority of recent studies using accelerometers initialized 

devices with a 30Hz sampling frequency (Migueles et al., 2017), with the two next common 

sampling rates being 60Hz, followed by a tie between 80Hz and 100Hz. As with device 

placement, differences in sampling frequency protocols limit the comparisons that can be made 

between studies.  

For example, Costa (2014) and colleagues calibrated triaxial accelerometer cut points to 

measure physical activity in 2-3 year-olds using data collected at 80Hz with a manipulated data 

collection filter (i.e., low frequency extension). In order to compare the newly calibrated cut 

points to existing ones, several sets of early childhood physical activity cut points that were 

originally developed for data collected at 30Hz were applied to the 80Hz accelerometer data. 

Results from the comparison showed that triaxial cut points in toddlers did not outperform the 

existing uniaxial cut points. By contrast, Oftedal et al., 2014 showed that, for data collected at 
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30Hz, triaxial accelerometer cut points were able to achieve a higher sensitivity and specificity in 

distinguishing physical activity in young children than 30Hz uniaxial cut points. Given the 

evidence of an effect of sampling frequency on the derived activity estimates, it is possible that 

the difference between these two studies using triaxial accelerometers in young children is due to 

the sampling frequency protocols. Oftedal (2014) appropriately kept the sampling frequency at 

30Hz which is in alignment with the original sampling rate for the uniaxial cut points, whereas 

Costa (2014) applied cut points intended for 30Hz data to 80Hz data that additionally used a low 

frequency extension filter. It is possible that the Costa (2014) cut points would have performed 

optimally if calibrated using data collected at 30Hz and then compared to the uniaxial cut points 

originally designed for data collected at 30Hz.  

Since sampling frequency appears to play a key role in deriving estimates of time spent in 

physical activity, further research on the optimal sampling rates for capturing the short burst PA 

patterns of young children, using a range of accelerometer placement protocols, is needed.  

 

Signal Filtering 

 Few studies of young children have reported on the signal filtering method used during 

the data collection and processing phases (Migueles et al., 2017). Moreover, a small number of 

studies have reported collecting data using a low frequency extension filter; however, little is 

known about the effects of a low frequency extension filter versus a normal filter on 

accelerometer signals in early childhood PA measurement. A study in adults showed that the 

addition of a low frequency extension filter during the data collection process, in comparison to a 

normal filter, affects activity estimates (Cain, Conway, Adams, Husak & Sallis, 2013). In light of 

filter specific differences in activity counts, Cain (2013) and colleagues suggest that cut points 
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and nonwear time algorithms may need to be not only device specific but also specific to the 

filtering methods used during data collection.  Studies are needed to determine the extent to 

which the inclusion of a low frequency extension filter, versus a normal filter, affects activity 

estimates in young children. Moreover, in agreement with the current recommendations for more 

detailed reporting of wearable data collection and processing procedures across all studies (Kerr 

et al., 2017; Smith et al., 2017), research in young children should consistently report on the type 

of signal filtering methodology employed during data collection.  

 A methodological study on the comparative effects of an array of signal filtering 

techniques, all aimed at removing the gravitational component present within raw accelerometer 

signals, showed that variability in energy expenditure was differentially explained by filter 

selection (van Hess et al., 2013).  In particular, the use of a Euclidean Norm Minus One (ENMO) 

[||k|| - 1g] or a High-Pass Filtered Euclidean Norm (HFEN+) [the Euclidean Norm of the high-

pass 4th order Butterworth filtered raw accelerations with cut-off frequency ω0 = 0.2Hz; plus the 

Euclidean norm of the low-pass 4th order Butterworth filtered raw acceleration with cut-off 

frequency ω0 = 0.2Hz minus 1g], where ||k|| is the vector magnitude of raw triaxial accelerations 

(x, y, z), explained the most variability in adult PA energy expenditure as measured by both 

indirect calorimetry and doubly labeled water methods. Studies investigating the effects of signal 

filtering on variability explained in pediatric PA energy expenditure are limited. As the current 

recommendations point toward the analysis of raw accelerometer signals for better 

interpretability between studies (Smith et al., 2017), more specific criteria on the signal filtering 

specifications that are most appropriate for measuring physical activity in young children are 

required. 
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Epoch Length 

The majority of recent studies using objective measures to quantify early childhood 

physical activity have analyzed accelerations 15s episodes, or epochs (Migueles et al., 2017). 

Several studies show that the choice of epoch length, like other accelerometer specification, can 

drastically change the results derived from these wearable activity monitors (Banda et al., 2016; 

Kim, Beets, Pate, & Blair, 2013). Studies investigating the effect of epoch length on activity 

estimates show that the use of shorter epochs (2s) in measuring physical activity in young 

children may provide additional detail on physical activity patterns in this population, especially 

within the higher activity thresholds (Baquet et al., 2007). Research also discourages 

reintegrating shorter epochs into larger epochs, as this may lead to biased estimates of activity 

volumes (Kim et al., 2013). 

Physical activity measurement researchers have argued for the use of shorter epochs in 

early childhood physical activity analyses given the short-burst nature of physical activity at this 

age (Costa et al., 2014; Oftedal et al., 2014). Methodological studies have shown that shorter 

epochs (<5s) provide a sufficient level of detail by which to assess and characterize daily activity 

volumes in young children (Costa et al., 2014; Johansson et al., 2015; Oftedal et al., 2014). 

Given that few studies have analyzed children’s physical activity data in <2s epochs (Migueles et 

al., 2017), additional higher-resolution studies of early childhood physical activity using very 

brief epoch lengths will provide useful data on the short-burst nature of early childhood physical 

activity. Moreover, in order to align early childhood measurement research with the prevailing 

recommendations (Kerr et al., 2017), further research is needed to determine the optimal epoch 

length for measuring physical activity behaviors in young children.  
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Wear Time Criteria 

Distinguishing between device nonwear time and observed sedentary behavior is an 

important consideration in studies using wearable activity monitors (Cliff et al., 2009). In young 

children, the added layer of day time naps must also be factored into the analysis of physical 

activity signals since parents may or may not remove the activity monitors during these brief 

periods of time. While a recent review of studies using triaxial accelerometers reports that no 

current definitions of wear time are available for young children (Migueles et al., 2017), earlier 

studies suggest that 20min periods of 0cpm were sufficient for discriminating non-wear time and 

sedentary time in young children (Cliff et al., 2009). Studies in young children have used 

nonwear periods of 10, 20, 30min strings of zeros (Migueles et al., 2017);  

Research on nonwear time algorithms in adults have proposed that the use of a spike 

tolerance can improve nonwear time estimation by filtering artifact out of the signal when 

devices are in an otherwise semi-static state (Choi, Lui, Matthews & Buchowski, 2011; Oliver et 

al., 2011). No studies in young children, however, appear to report on the use of a spike tolerance 

during non-wear time estimation (Migueles et al., 2017). Further research on the utility of 

applying spike tolerance criteria to nonwear time algorithms in young children is needed. 

Additionally, there appear to be no available algorithms to determine when young children are 

being carried or pushed in a stroller. Thus, studies that can begin to help separate volitional 

physical activity time from those periods when children are in passive translocation should be 

conducted.  

In light of the variable nature of human PA behaviors, studies have shown that protocols 

using multiple accelerometer wear days improve activity estimate reliability (Addy, Trilk, 

Dowda, Bryun & Pate, 2015; Trost et al., 2000). The definition of a valid observation day, 
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however, is contingent upon the minimum number of observation hours required for a given 24hr 

period to be included in further analyses (Migueles et al., 2017), and differences in the number of 

hours required to constitute an observation day may affect activity estimates (Ruiz et al., 2013). 

In terms of the number of hours required, a study of ~5 year-olds showed that increasing the 

observation hours per day from 3hr/day to 10hr/day had only a small effect on estimate 

reliability (Penpraze et al., 2006). With regard to the number of days, >3 days led to satisfactory 

reliability (r >0.60); however, 7 days of contiguous measurement resulted in very good reliability 

(r >0.80).  Similarly, a study of 3-5 year-olds conducted by Addy (2013) and colleagues showed 

that an accumulation of >5 observation days led to satisfactory reliability (r >0.75). In a sample 

of ~7 year-old children, Trost (2000) and colleagues reported that physical activity data acquired 

over ~4.7 observation days resulted in reliability estimates of >0.80, and that the number of days 

required to reach 0.80 reliability ranged from 4.2 to 8.8 days depending on the children’s age 

group. Since young children engage in short burst PA, more studies are needed on PA estimate 

reliability in children younger than 3 years-old in order to develop evidence-based consensus 

statements inclusive of physical activity monitoring in the very young. 

 

Cut points 

Estimates of the amount of time that children spend in various intensities of activity are 

contingent upon the cut points used to classify the accelerometer activity counts (Welk, 2005). 

Accelerometer counts are arbitrary values that are the product of signal processing and data 

reduction procedures. Physical activity cut points are typically developed by calibrating 

accelerometer-derived activity counts against a criterion measure, usually either direct or indirect 

calorimetry or direct observation, for the purpose of determining meaningful movement intensity 
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thresholds for accelerometer data (Welk, 2005). These movement intensities respectively relate 

to energy expenditure (from low to high), and are widely known as sedentary behavior (SED), 

light physical activity (LPA), moderate physical activity (MPA), and vigorous physical activity 

(VPA). Time spent in each of these activities are used as predictors of short- and long-term 

health outcomes in children (Andersen et al., 2006; Janz et al., 2010). Notably, PA estimates 

derived from any given set of cut points do not appear to be generalizable to activity estimates 

derived using another (Banda et al., 2016). Thus, the precision of reported associations between 

accelerometer-derived activity estimates and health may be cut point biased to a degree. The 

recent recommendation that researchers apply multiple analytic approaches to accelerometer data 

may help to overcome the cut point specificity conundrum (Smith et al., 2017). 

Since 2010, more than 12 sets of physical activity cut points have been recently reported 

in the early childhood triaxial accelerometer-based PA measurement literature (Migueles et al., 

2017), and the most commonly used set of cut points in young children (2-5 year-olds) appear to 

be the Evenson 2008 values calibrated in 5-8 year-olds. This is interesting, given that anaerobic 

power and speed have been reported to increase with age and body size in young children (Gabel 

et al., 2011; Rowland, 2005) and energy expenditure levels (i.e., the accelerometer criterion 

measure during calibration) measured during PA in older children are likely to be significantly 

lower in young children (Schmelzle. Schröder, Armburst, Unverzagt & Fusch, 2004). An 

example of cut points that clearly take age into account are the Sirard (2005) values, which 

adjust physical activity intensity cut point equations for age in 3-5 year-old children. Early 

childhood physical activity researchers in particular should consider the rapid changes in 

metabolic substrate utilization during the early childhood years throughout the measurement 

process in order to move toward the most robust measures of activity in this age group.  
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 Butte (2014) and colleagues calibrated activity intensity cut points for both uniaxial and 

triaxial accelerometers in ~4 year-old children against room calorimetry. When compared against 

such a precise measure of energy expenditure, confusion matrices showed that sedentary 

behavior was correctly classified >81% of the time using accelerometry, and that light and 

moderate PA were correctly classified >64% and >62% of the time, respectively. Using indirect 

calorimetry as the criterion measure in 3-5 year-olds, Pfeiffer (2006) and colleagues reported that 

73% and 85% of moderate and vigorous activity observations agreed, respectively, between 

accelerometer- and calorimeter-derived estimates of energy expenditure. The difference in 

accuracy for children of roughly the same age, may potentially be explained by differences in the 

criterion measures that were respectively used, accelerometer models, age of the children being 

measured, or data analysis specifications (Banda et al., 2016; Gabel et al., 2011). Regardless of 

the source of variance between cut points, the fact remains that cut point selection will affect 

energy expenditure estimates—showing again that consensus statements on accelerometer-data 

analyses are required in order for the field to advance (Kerr et al., 2017). 

While, like other accelerometer specification domains, cut point selection is a matter of 

choice, recommendations on which cut points should be used in early childhood will allow for 

broader interpretation of early childhood activity estimates across studies. This need is especially 

underscored by the significant role that cut points play in determining estimates of daily activity 

volumes that are used as predictors of pediatric health (Andersen et al., 2006; Ekelund et al., 

2012). Thus, newer studies have begun to investigate the use of accelerometer data analysis 

methods that can decouple accelerometer estimates from these specific constraints—toward 

universal triaxial activity cut points (Brønd et al., 2017; Vähä-Ypyä et al., 2015). 
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Classification & Pattern Recognition  

Recently, the field of PA measurement has moved toward the analysis of raw triaxial 

accelerations so as to make use of the granular level of detail available in accelerometer signals 

for pattern recognition, and also to address practical issues such interpretation of findings across 

studies (Brønd et al., 2017; Rowlands et al., 2015; Vähä-Ypyä et al., 2015). Accelerometer signal 

features from the time and frequency domains (e.g., peak power, signal entropy, mean amplitude 

deviations, power spectral density, etc.) have been explored as predictors of physical activity 

mode (e.g., walk, jog, sprint) in classification problems (Vähä-Ypyä et al., 2015). Time and 

frequency domain traits have also been used to calibrate activity cut points that can be used 

across activity monitors and using data sampled at [10, 30, 100] Hz (Vähä-Ypyä et al., 2015). 

Moreover, raw acceleration data from wrist-worn protocols has been used to classify sedentary 

behavior modes (e.g., sitting, lying, etc.) in classification analyses (Rowlands et al., 2016). With 

the recent release of an algorithm that can generate a common set of activity counts across a 

range of devices using raw acceleration signals (Brønd et al., 2017), it seems the analysis of raw 

acceleration data will become an essential feature of wearable activity monitor research moving 

forward (Smith et al., 2017). 

Similarly, studies using advanced statistical treatments of accelerometer data have been 

able to solve physical activity classification and pattern recognition questions (Witowski et al., 

2014; Ruiz et al., 2013; Pober et al., 2006). Berman et al., (1998) used spectral analysis to 

determine patterns, intensities and frequencies of physical activity bouts in 6-10 year-old boys 

and girls. Researchers found that boys engaged in slightly longer bouts of physical activity than 

girls; however, girls engaged in slightly more bouts of PA than boys. Ruiz (2013) and 

colleagues, devised a system of rules (i.e., fuzzy logic) to determine patterns in the way that short 
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burst physical appear in young throughout the day using accelerometer data. The team identified 

four patterns of physical activity behaviors in young children: isolated and clustered episodes; 

spurts and sustained bouts of movement. Using Quadratic Discriminant Analysis and Hidden 

Markov Models (HMM), Pober and colleagues (2006) were able to classify various activities 

(e.g., vacuuming, sitting, walking) with the HMM correctly classifying activity mode >80% of 

the time. Witowski (2014) and colleagues also explored the use of several HMMs to classify 

activity mode and bouts using a simulation approach, and further supported the use of HMM in 

future PA research interested in PA mode classification. 

A recent study in adults applied a text mining approach to develop and test bigram 

analyses in physical activity phenotyping (Millard, Tilling, Lawlor, Flach & Gaunt, 2017). 

Millard et al, 2017 and colleagues showed that examining couplets of epoch level activity 

classifications may provide a promising means by which to correlate PA traits and health 

outcomes. The combined use of machine learning and signal feature extraction to classify 

movement features from the Laban Movement Analysis repertoire (e.g., sudden, sustained, 

bound, free) have also been explored (Kikhia et al., 2014). Using a Laban-based approach, 

researchers were able to discern qualitative differences in movement effort-states (i.e. bound—

free, sustained—sudden, strong—light) in adults, which may be useful in further phenotyping 

more subtle physical activity traits in healthy and clinical populations. However, little work of 

this nature has been explored in children. 

  Ellis, Kerr, Godbole, Staudenmayer & Lancriet (2015) applied a multi-step machine 

learning approach to develop physical activity intensity cut points for adults. A Random Forest 

algorithm was trained to predict activity mode (i.e., in a vehicle, sitting, standing, 

walking/running) from triaxial wrist- and hip-worn accelerometer data. Ellis and colleagues used 
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a wearable video camera to determine activity class labels for the machine learning algorithm. 

Results showed that hip and wrist placement yielded very good overall classification accuracies 

of >89% and >84%, respectively. Artificial Neural Networks (ANN) have also been used to 

predict energy expenditure from accelerometer activity counts (Montoye, Mudd, Biswass & 

Pfeiffer, 2015; Staudenmayer, Pober, Crouter, Bassettm Freedson & 2009). Montoye (2015) and 

colleagues trained an ANN to predict energy expenditure from accelerometer-derived activity 

counts using a simulated activities of daily living protocol in adults. The group reported high 

correlations (r >0.89) between the ANN calibrated activity cut points, using a thigh-worn 

protocol, and the observed energy expenditure as measured by indirect calorimetry. Similarly, 

Staudenmayer et al., (2009) trained an ANN to predict energy expenditure in METs (Metabolic 

Equivalents) and also to predict activity mode in adults, using indirect calorimetry as the 

criterion measure. The ANN was able to predict METs with an RMSE of 1.1, and activity mode 

was predicted correctly >88% of the time. Taken together, these findings suggest that the 

application of advanced statistical analyses to accelerometer data can yield useful layers of 

insight to physical activity measurement, which are needed in order to better characterize PA 

behavior and its associations with health outcomes. As with other aspects of wearable PA 

monitoring, more research is needed in young children using these advanced statistical 

techniques, so that pediatric physical activity measurement continues to progress in stride with 

PA studies conducted at other periods across the lifespan.  

 
Toward Remote & Multi-Sensor Systems 

New frontiers in PA measurement have introduced the use of 3D cameras as a feasible 

measure of PA in children, though further research is needed in order to determine the criterion 

validity of this technology to measure PA (Maile et al., 2015). At the same time, Silva et al., 
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(2015) presented a method for converting physical activity data collected via 2D camera into 

velocities to which MET related speed thresholds could be applied for energy expenditure 

estimation. Authors report that the use of a 2D camera in PA measurement research is a 

promising tool that requires further study. While there are few studies using remote sensors to 

measure physical activity behavior in children, this new area of the literature begs further 

investigation given its ability to provide contextual and group-based information about PA 

behaviors. These applications may be of especial interest in research on dyadic and family-based 

physical activity patterns. 

Dyadic PA research, where two dyadic counterparts simultaneously and respectively 

wear activity monitors, may be considered a multi-sensor measurement approach. Though 

studies applying such an approach to measure child-parent PA in the young are few (Yao & 

Rhodes, 2015), insights gleaned from the available studies confirm that child-parent physical 

activity behaviors are interdependent even in early childhood (Yao et al., 2015). In light of these 

findings, a recent study has tasked the field with developing valid objective measures of child-

parent co-participation in PA, as there currently appear to be few studies employing such 

methods (Uijtdewilligen et al., 2017). For example, a study of maternal-child PA using 

accelerometers, with simultaneous dyadic spatial proximity measurement via Bluetooth sensors, 

reported no validation study for the use of Bluetooth signals to measure dyadic proximity 

(Dlugonski et al., 2017). Thus, while the approach was a novel application of a multi-sensor 

system, the validity, and thereby also the generalizability, of the approach is uncertain. 

Multi-sensor PA measurement studies have also used multiple sensors for a single person 

for the purpose of better capturing physical activity behavior from a multi-dimensional 

perspective (Ojiambo et al., 2012; Duncan, Badland & Schofield, 2009; Roudpoushti, Dias, 
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Peixoto, Metsis & Nunes, 2017). Ojiambo (2012) and colleagues compared the use of a uniaxial 

accelerometer with simultaneous heart rate measurement to triaxial accelerometry in young 

children, and showed that uniaxial accelerometers plus heart rate monitors combined provided 

similar information about energy expenditure to a triaxial accelerometer. Duncan et al., (2009) 

showed the feasibility of the combined use of heart rate monitors and GPS data to characterize 

relationships between physical activity intensities and the environment in children. Using a 

multi-sensor system comprised of 17 inertial measurement units embedded within a suit and a 

multilevel Bayesian program, Roudpoushti (2017) and colleagues recently showed that an 

integrated sensor system can be used to determine contextual, human-to-human interactive, and 

activity modality in adults.  

The applications of multi-sensor systems to measure physical activity in young children, 

their parents, and families is largely untapped. Moreover, there appear to be no consensus 

statements on the use of multi-sensor or remote sensor systems on standards of measurement in 

physical activity research. Further research is needed to inform the filed on best practices in early 

childhood physical activity measurement with respect to the use of multi-sensor and remote 

sensor systems. 

 
 
Future Directions 

Physical activity is essential for children’s health, and accurate measurement of physical 

activity is needed to predict important short- and long-term health outcomes in children with 

certainty. Wearable activity monitor research, while able to provide objective insights into PA 

behavior, is fraught with limitations, especially with regard to generalizability of findings across 

studies. While current research efforts are aimed at addressing these limitations through novel 
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analysis techniques and filed wide statements on best practices in measurement reporting, the 

lack of studies in early childhood research prevent informed recommendations for PA 

measurement in this population group. Furthermore, the recent application of remote sensors to 

measure PA dually requires inclusion within future guidelines on objective activity 

measurement. The potential benefits of objective PA measurements to accurately classify, 

predict, and characterize human behavior and associations with health continue to emerge. 

Further work is needed to explore the uses of available novel techniques for signal processing 

and data analyses in children in order to extend what is known about physical activity and health 

in the early years. 
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Appendix B 
 
Validity of a novel objective screening test for risk of physical inactivity in toddlers 
 
 
INTRODUCTION 
 

Physical activity (PA) behavior in early childhood (2-5 years-old) is positively associated 

with short- and long-term health outcomes in children (Ekelund et al., 2012; Janz et al., 2010). 

Evidence suggests, however, that <41%of young children may be receiving the health-enhancing 

benefits of PA due to insufficiently volumes of daily PA (Bai et al., 2016). In order to identify 

young children who may require PA interventions in order to meet current recommendations for 

early childhood PA (AHA, 2016; IOM, 2011), efficient and accurate screening tests for physical 

inactivity in young children are needed. Parental proxy reports of children’s PA are a widely 

available, time efficient instrument for estimating daily PA volumes in children; however, the 

validity of these questionnaires in young children is limited (Oliver, 2007; Sarker, 2015). It 

follows that the use of parental proxy reports as a screening tool for physical inactivity in young 

children is dubious. 

Alternatively, accelerometers are widely used to accurately estimate daily activity 

volumes in young children (Butte et al., 2014; Rowlands & Eston, 2007), and thus identify those 

at risk of daily physical inactivity (Bai et al., 2016). Standard accelerometery protocols in young 

children typically include continuous measurement over periods of >3 days (Van Cauwenberghe 

et al., 2011), which may be a limitation of their application across various contexts especially 

when few devices are available for use in large samples. To our knowledge, brief accelerometer 

data segments (< 1 hour) have not been explored as a means by which to identify children at risk 

of insufficient daily activity. Thus, toward effectively hybridizing the brevity of parent 

questionnaires with the accuracy of accelerometry, this study aimed to evaluate the accuracy and 
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reliability of PHIT (Physical Inactivity Test)—a brief (15-60min) accelerometer-based protocol 

and algorithm for identifying risk of daily physical inactivity in 24-35 month-olds. 

 
METHODS 
 

Site & Sample. Families (N = 119) with 24-35 month-old children were recruited from an 

Early Head Start located within a major urban center. Each week, families attended the Early 

Head Start center for approximately 3.5 hours on a single day, and they also received semi-

monthly visits in the home from one of their regular classroom teachers. The study protocol was 

approved by the Institutional Review Boards (IRB) of Teachers College, Columbia University 

and Columbia University Medical Center, and parents provided informed consent according to 

IRB procedures and policies. 

 
Measures 
 

Sociodemographic. Parents completed a questionnaire that included items on child age 

and sex.  

Physical Activity. ActiGraph wGT3X-BT triaxial accelerometers (ActiGraph Corp., 

Pensecola, FL) were used to measure daily PA volumes in children, and devices were initialized 

to collect raw triaxial accelerometer signals at 30Hz. Parents were asked to place the hip-worn 

activity monitor on their child for 1 week, and to remove the activity monitor before bedtime or 

water-based activities (e.g., bathing, swimming, etc.). Accelerometer data were downloaded 

from activity monitors in ActiLife v6 as both raw triaxial signals and in 15s epochs, and then 

were exported for further analyses in MATLAB R2017b (The MathWorks, Inc., 2017). Cliff 

(2009) wear time criteria of (0cpm x 20min; < 6 hr·day-1; < 3 days observed) were applied to 15s 

epoch data. Following, Trost (2012) uniaxial cut points (Sedentary [<25], total PA (TPA) [>25], 
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moderate-vigorous PA (MVPA) [>420]) were applied to 15s epoch data in order to calculate the 

total minutes spent in each activity intensity per day.  

 
PA Guidelines. Using the 7-day accelerometer wear time data, children were respectively 

classified as meeting or not meeting current daily moderate-vigorous PA (MVPA) and total PA 

(TPA) activity guidelines for 24-35 month-olds. Children participating in daily volumes of 

MVPA <60min were classified as not meeting MVPA guidelines (AHA, 2016). For TPA, 

children who participated in <180min daily were classified as not meeting guidelines (IOM, 

2011). The term “daily” was conservatively defined as any day with valid observation data 

(Beets et al., 2011). That is to say, children with >1 day(s) of insufficient PA time in a given 

intensity were classified as not meeting respective guidelines.  

 
PHIT. Children were also screened for risk of daily physical inactivity using brief (< 1 

hour) segments of triaxial accelerometer data. From the full 7-day wear period, segments [15, 30 

45, 60min] were randomly extracted from the period during which children were in the Early 

Head Start classroom. The brief raw triaxial accelerometer data segments of each length were 

respectively analyzed using a novel physical inactivity screening tool, Physical Inactivity Test 

(PHIT). PHIT is a custom signal processing algorithm for raw triaxial accelerometer data that 

rates brief signals for risk of daily physical inactivity. Ratings for a brief signal are determined 

based upon a number of signal features and covariates including the mean amplitude deviation, 

signal autocorrelation, peak power from the frequency domain, children’s age, and interactions 

between terms. Signal ratings (PHIT scores) for each case are represented as a positive scalar 

that dually reflects activity intensity and volume. Lower PHIT scores, relative to a given activity 

intensity, represent lower levels of physical activity at the indicated activity intensity. For each 
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child in our study with valid wear time data, PHIT scores were calculated separately for each 

activity intensity of interest (i.e., MVPA and TPA) across respective accelerometer data 

segments of each length.  

 

Statistical Analyses 
 

A binary classification decision tree (CART) machine learning algorithm was used to 

respectively fit MVPA and TPA PHIT scores as predictors of children not meeting PA guidelines 

during the 7-day wear period. The CART algorithm determines optimal partitions of the 

predictor space for all variables entered into a model in order to build a decision tree that 

ultimately returns the class of a given vector of data based upon the partitions within the tree 

(Breiman, 1984). CART algorithm receiver operating characteristic area under the curve (AUC) 

and bootstrapped 95% confidence intervals were evaluated across n = 1,000 iterations for each 

respective observation length. For the optimally performing observation length, cut points for 

both MVPA and TPA PHIT scores are respectively presented as decision tree equations. Optimal 

performance was defined as the observation length with the highest PHIT score AUC and the 

narrowest 95% confidence intervals. PHIT scores were also used to classify children at risk of 

daily physical inactivity using a custom 2-step algorithm (Figure 1). The bootstrapped 

sensitivity, specificity, positive and negative predictive values for the 2-step PHIT decision tree 

were calculated across n = 1,000 iterations. All data were analyzed in MATLB R2017b, and 

descriptive statistics are presented as Mean (Standard Deviation), Median (Interquartile Range) 

and Frequencies [%(n)]. In order to assess reliability for PHIT, raw accelerometer data for two 

non-overlapping 15min segments were randomly selected across all cases, and the 2-step PHIT 

algorithm was applied. The intraclass correlation (ICC) between PHIT results for each segment 
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was calculated, and the Spearman-Brown Prophecy Formula was used to determine the requisite 

length of the test in order to achieve sufficient (>0.70) reliability.  

 
RESULTS 
 

Children (n = 60) with valid 7-day wear time data were 29(4) months-old on average, and 

53%(32) were girls. On average, children wore the activity monitors for 5(1) days and 10.1(1.3) 

hours/day. Analysis of 7-day wear time data showed that 75%(45) and 32%(19) of children did 

not meet MVPA and TPA guidelines, respectively. Validation results for PHIT scores are shown 

in Table 1. For the optimally performing observation length (15min), children’s median PHIT 

scores were 10.05(1.30) and 3.92(0.44) for MVPA and TPA, respectively. For the 15min 

observation length, the following PHIT score cut point equations (Eq. 1, Eq. 2) were derived for 

identifying 24-35 month-olds who did not meet activity guidelines: 

!"#$	&'() = 1 ∗ '(#.'/ ≤ 11.20) ∗ '(#.'/ ≤ 10.52) + ⋯ 
																														0 ∗ '(#.'/ ≤ 11.20) ∗ '(#.'/ > 10.52) ∗ '(#.'/ ≤ 10.54) +⋯	
																														1 ∗ '(#.'/ ≤ 11.20) ∗ '(#.'/ > 10.52) ∗ '(#.'/ > 10.54) +⋯	
																														0 ∗ '(#.'/ > 11.20) 

 
 
 

(1) 
 
/#$	&'() = 1 ∗ '(#.'/ ≤ 3.86) ∗ '(#.'/ ≤ 3.43) +⋯	
																										0 ∗ '(#.'/ ≤ 3.86) ∗ '(#.'/ > 3.43) ∗ '(#.'/ ≤ 3.56) +⋯	
																										1 ∗ '(#.'/ ≤ 3.86) ∗ '(#.'/ > 3.43) ∗ '(#.'/ > 3.56) +⋯	
																										0 ∗ '(#.'/ > 3.86) ∗ '(#.'/ ≤ 4.07) + ⋯	
																										1 ∗ '(#.'/ > 3.86) ∗ '(#.'/ > 4.07) ∗ '(#.'/ ≤ 4.11) +⋯	
																										0 ∗ '(#.'/ > 3.86) ∗ '(#.'/ > 4.07) ∗ '(#.'/ > 4.11) 

 
 
 
 
 

(2) 
 

where, the conditional I(x) is 1 if x is true and 0 if x is false, PHIT is the PHIT score, and the 

outcome (risk of insufficient activity at a given intensity) is binary [0,1], with 0 indicating low 

risk and 1 indicating high risk. 

 
Validation results for the 2-step PHIT decision tree (shown in Figure 1) are presented in 

Table 2. Across all iterations of the bootstrap procedure, 0%(0) of the screening tests were 
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rendered invalid by the 2-step algorithm. Of the children who received a preliminary positive 

screening, and would be asked to wear the monitor for an additional 7 days, 94.4% would be 

identified as insufficiently active during the 7-day wear period. Thus, the 5.6% of children who 

received a false preliminary positive screening would wear the activity monitor for an additional 

7 days unnecessarily. Of the children who were both insufficiently activity during the 7-day wear 

period and did not receive a preliminary positive screening, 91% received a positive screening 

(see Figure 1). Across the entire cohort, <4% of children would have received a false negative 

screening, and no children would have received a physical activity prescription in error. 

The intraclass correlation between PHIT results for the two non-overlapping 15min 

samples was [rI = 0.56]. After applying the Spearman-Brown prophecy formula, the PHIT 

algorithm reliability was [rI = 0.73] using 2 fifteen minute samples, [rI = 0.80] for 3 fifteen 

minute samples, [rI = 0.84] for 4 fifteen minute samples.  

 
DISCUSSION 
 

The aim of this study was to determine the accuracy of Physical Inactivity Test, a novel 

method for objectively screening for risk of physical inactivity in 24-35 months-old using brief 

accelerometer data segments. Results showed that PHIT scores for raw triaxial accelerometer 

signals (15min), collected while children were in an Early Head Start, were valid and reliable 

predictors of children meeting activity guidelines at both the MVPA and TPA intensities. 

Moreover, using the 2-step PHIT algorithm, toddlers at risk of daily physical inactivity were 

accurately triaged into high and low physical inactivity risk groups. PHIT can be used within an 

Early Head Start setting to efficiently identify 24-35 month-olds at high risk of daily physical 

inactivity and who are in need of physical activity interventions. 
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To date, parent questionnaires are widely used as a time efficient means of estimating 

young children’s daily physical activity volumes (Oliver et al., 2007; Sarker et al., 2015). These 

proxy reports, however, appear to have limited validity (Oliver et al., 2007). By contrast, the 2-

step PHIT algorithm was able to identify >91% of children at high risk of daily physical 

inactivity using brief (15min) objective PA measures and without the need for 7-day activity 

monitoring. Furthermore, >94% of children who received a preliminary positive PHIT screening 

were observed to be insufficiently active during the 7-day accelerometer wear time period. 

Additionally, the reliability of the 2-step cascaded PHIT algorithm was found to be >0.80 when 2 

or more 15min samples of activity data were sampled. The need for more than one period of data 

to improve daily activity volume estimate reliability is common in accelerometer-based studies 

of physical activity (Trost et al., 2000); however, the current standard in young children is >3 

days of continuous measurement with several hours per day (Cliff et al., 2009). Thus, our results 

suggesting that at least two brief (15min) measurement periods are required for reliable physical 

activity estimation is consistent with studies using longer measurement periods. Taken together, 

these results point toward the use of PHIT as a valid, reliable, and time efficient alternative to 

parental proxy reports for identifying toddlers at risk of daily physical inactivity. 

To our knowledge, this is the first study to identify toddlers at risk of failing to meet 

current activity guidelines using brief accelerometer data segments. For 15-30min data segments, 

the sensitivity, specificity, and positive predictive value of the 2-step PHIT decision tree were 

excellent (>90%), and the negative predictive value was very good (>86%). While the 45-60min 

data segments performed well, both segments had lower AUC values for PHIT scores than the 

15-30min segments. This could be due to the fact that the data segments were randomly selected, 

and the longer monitoring periods were liable to capture more discretionary sedentary activities 
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(e.g., circle time, lunch, etc.) during the 3.5hr Early Head Start class time. In comparing the 

15min and 30min segment, the PHIT score AUC value was more stable for the 15min segment. 

As such, we recommend the use of a 15min segment of raw triaxial accelerometer data to 

calculate PHIT scores for use within the 2-step PHIT algorithm.  

Accelerometer data used in this study were specifically sampled from a period of time 

when children were within an Early Head Start classroom setting. A prior study of highly active 

versus less active children showed that highly active children engaged in greater volumes of 

activity than their less active counterparts while indoors, but that the groups were not 

significantly different outdoors (Howie, 2013). Additionally, the PHIT cut point equations for 

24-35 month-old were determined using a hip-worn triaxial accelerometer (ActiGraph wGT3X-

BT). Therefore, the use the PHIT cut point equations from this study may limited to use within 

indoor classroom settings for 24-35 month-olds using similar accelerometer specifications. 

Further research is needed to determine which classroom periods are the most reliable testing 

times for using PHIT in young children.  

 
CONCLUSION 
 

Within an Early Head Start setting, Physical Inactivity Test accurately identified toddlers 

at risk of daily physical inactivity from a brief period (15min) of objectively measured PA. These 

findings suggest that relatively short data segments that capture indoor physical activity behaviors 

can be used as a proxy for daily activity volumes observed over longer periods of time. Future 

studies should determine which classroom periods are optimal for using the PHIT algorithm 
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Table 1. Accuracy of PHIT scores in identifying toddlers at risk of insufficient daily activity 
according to current physical activity recommendations 
 Observation Length 
Accuracy Indices 15min 30min 45min 60min 
 n = 53 n = 60 n = 58 n = 55 
PHIT Scores†  
(AUC [95% C.I.]) 

    

     Not Meeting MVPAa 0.96 [0.89, 0.99] 0.97 [0.91, 0.99] 0.92 [0.77, 0.99] 0.95 [0.86, 0.99] 
     Not Meeting TPAb 0.95 [0.87, 0.98] 0.94 [0.84, 0.98] 0.92 [0.81, 0.97] 0.90 [0.78, 0.97] 
aAmerican Heart Association. The AHA’s Recommendation’s for Physical Activity in Children 
bInstitute of Medicine. Early Childhood Obesity Prevention Policies 
†Receiver Operating Characteristic Area Under the Curve and Bootstrapped 95% Confidence Intervals 
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Table 2. Accuracy of the 2-step cascaded PHIT in 24-35 month-olds 
 Observation Length 
Accuracy Indices 15min 30min 45min 60min 
 n = 53 n = 60 n = 58 n = 55 
PHIT Screening Test† 
(%) 

    

     Sensitivity 90% 93% 96% 96% 
     Specificity 92% 93% 92% 70% 
     Positive Predictive  
     Value 

94% 96% 96% 86% 

     Negative Predictive  
     Value 

86% 88% 92% 90% 

†All values were bootstrapped 
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Figure 1. Cascaded 2-step PHIT decision tree for identifying toddlers (24-35 months-old) at 
risk of daily physical inactivity 
 

 
 
Note. Figure 1 shows the 2-step decision tree employed by the Physical Inactivity Test (PHIT), 
a screening test for identifying toddlers at risk of participating in insufficient volumes of daily 
physical activity from brief periods (<1 hour) of accelerometer-derived physical activity data  
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Appendix C 
 
Quantizing three-dimensional physical activity videos: A dual-sensor algorithm for 
Microsoft’s Kinect 
 
 

Physical activity has known known cardiometabolic benefits (Andersen et al., 2006) and the 

measurement of physical activity is useful for determining individual- and population-level 

health-related behaviors of the same (Cliff, Reilly & Okely, 2009). Respective intensities of 

physical activity, namely, sedentary, light-lifestyle, moderate, vigorous, activity behaviors, have 

known associations with various health factors, and are based upon intensity cut points 

(Anderson et al., 2006; Bai et al., 2016; Cliff, Reilly, & Okely). Historically, physical activity 

has been measured using wearable sensors, and most recently with the use of triaxial 

accelerometers and device specific cut points. While there are some studies that have employed 

remote sensors to analyze physical activity behavior (Silva et al., 2015), these studies have only 

used 2D and thus are limited when compared to 3D (Maile et al., 2015). Thus, the need for 

objective cut points for 3D remote sensors remains.  

Thus, as a precursor to developing physical activity cut points for a remote sensor, this study 

aimed to develop an algorithm to convert remotely sensed physical activity videos acquired 

using Microsoft’s Kinect for Windows (v1) into triaxial accelerations. 

METHODS 

Site & Sample 

Physical activity data were collected on video using Microsoft’s Kinect for Windows (v1) in 

the Applied Physiology Laboratory at Columbia University Teachers College. The Kinect is 

equipped with both a depth sensor and color sensor, and the reliability of the device has been 

established in prior research (Stone et al., 2013). The color sensor was initialized to collect infrared 
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data, images, f(x, y, t), were quantized as 16-bit unsigned integers, and each video frame was 

sampled at a resolution of 480 x 640 pixels, where x and y represent respective row and column 

pixel coordinates and t represents the time of image acquisition for each frame. Sampling and 

quantization parameters were identical for the depth sensor; however, pixel values at a given 

coordinate (x, y) represent the distances from the sensor in mm. One subject (N = 1) participated 

in the study presented herewith. The subject engaged in two separate 60s measurement conditions 

in order to generate comparative data for algorithm performance analyses. The two conditions 

were as follows: 1) the subject performed low-level intensity (i.e., sedentary and light intensities) 

physical activity behaviors (e.g., walking and standing), and in the second segment performed 2) 

higher-level intensity (i.e., moderate to vigorous intensities) physical activity behaviors (e.g., 

running and jumping). Video data capturing the physical activities performed across the respective 

conditions were collected using both the infrared and depth sensors, with a frame rate of 30Hz. All 

acquired frames were directly stored in MATLAB R2016a at the time of acquisition using a custom 

algorithm. The image acquisition algorithm collected f(x, y, t) for both infrared and depth sensors 

simultaneously, where time was measured in milliseconds using the local CPU time. 

 
Analysis 
 

In studies of wearable physical activity monitors, triaxial acceleration data simultaneously 

reflect perturbations (i.e., movements) in the frontal, vertical, and sagittal planes over time (Sasaki, 

John & Freedson, 2012). It follows that pixel values acquired from the infrared sensor were used 

to provide information about physical activity in the frontal (x) and vertical (y) planes, and the 

depth sensor intensity values were used for the sagittal (z) plane. 

The analysis of physical activity images was conducted in MATLAB across several stages that 

included: 1) image acquisition, 2) image processing, 3) image representation & description, 4) 
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calibration, and 5) Fourier motion analysis. At each stage of the analysis, custom algorithms were 

implemented in order to ultimately convert the three-dimensional video signals into triaxial 

physical activity accelerations.  

To evaluate algorithm performance, triaxial accelerations results derived from physical activity 

video data were compared between the lower- and higher-level physical activity conditions 

described previously. Descriptive statistics [Mean (Standard Deviation)] of the triaxial vector 

magnitudes were calculated for each respective condition.  

RESULTS 

Image Acquisition 

As shown in Fig 1, the image acquisition algorithm captured physical activity data from both 

the infrared (Fig 1A) and depth (Fig 1B) sensors. Data frames were visually inspected to determine 

the performance of each of the sensors in capturing physical activity data at various locations in 

the environment. While the infrared camera consistently collected data across all frames, the depth 

sensor was unable to quantize object depth when the subject was flush against the wall (Fig 1C). 

Given that sagittal values are required in order to compute triaxial acceleration values, frames 

lacking depth data for the object of interest required further consideration at later steps in the 

algorithm. 

Image Processing 

For the purposes of image segmentation, difference images (shown in Fig 2A) between 

consecutive infrared video frames were calculated (1),  

 
!"#(%, ') = 	 +1 if	|0(%, ', 1") − 	0(%, ', 1")| > 1500

0 otherwise   
(1) 
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where, dij(x, y) is the resultant image, ti denotes the image frame to be differenced, and tj = ti-

1 as the reference image frame (Gonzalez & Woods, 2008). Assuming, that the sum of pixels 

representing a single human object in the frame was no larger than threshold T1 = 6000 pixels (as 

determined by iterative analyses), any differenced frames with total number of foreground pixels 

greater than T1 were deemed unevaluable given that they were too noisy to extract the object of 

interest. In order to enhance object boundary information for each difference image dij a Sobel 

edge detector was applied in both the horizontal and vertical directions (Fig 2B). Following, the 

edge detected image was convolved with a kernel of size 3 x 3, where the origin in the output 

image g(x, y) was equal to 1 when the sum of the kernel in f(x, y) > 5 (Fig. 2C). As shown in Fig 

2D, morphological closing was then applied to the remaining pixels using a disk (r = 9) for the 

purpose of maximizing object shape information within the determined boundary. 

Fig 2E shows the results of morphological reconstruction using the opened image as the marker 

and the original difference image frame as the mask. In order to derive a single connected 

component that delineates the object of interest, geodesic dilation was applied to the reconstructed 

image using the dilated reconstructed image as a marker, where the structuring element was a 

square (w = 25). Afterward holes were filled in the dilated image using 8-connected pixels (Fig 

2F). Finally, the object was thinned for the purpose of reducing the size of any residual noise 

components in the image. 

Image Description & Representation  

The number of connected components in the thinned image were calculated and returned in an 

output image z(x, y). Any components comprised of < 300 pixels were set to zero, and the resultant 

mask z1(x, y) was multiplied by the thinned image. Thus, any additional artifact in the image was 

removed, as shown in the final product of the algorithm (Fig 3).  
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In order to distill a single pixel that represents the position of the object, as needed for further 

motion analyses, the object centroid was evaluated using the thinned image. Fig 5A shows the 

object centroid superimposed on the original infrared image (with updated color mapping) and the 

depth image (scaled for visibility). As can be seen in the depth sensor image (Fig 4B), and as noted 

previously, there is a chance that the depth sensor pixel intensity at the centroid coordinates may 

be equal to zero given noise in the sensor. 

To determine if an evaluable depth sensor intensity value was proximal to the centroid 

coordinates, an increasing window around the centroid was evaluated with a maximum windows 

size of 11 x 11 pixels (Fig 5). Any frame without a depth sensor intensity value was deemed 

unevaluable for triaxial acceleration calculations. 

Calibration  

A sensor calibration procedure was conducted in order to convert the distance between pixels 

into meters at various distances from the sensor. For this process, an object with known height 

(1.75m) was placed at various distances from the sensor. The pixel coordinates corresponding to 

the upper- and bottom-most edges of the object were manually collected within each frame of 

interest. The Euclidean distance between each respect pair of two points were calculated, and the 

depth sensor pixel intensity was conserved at each location where the object was located. The 

resultant Euclidean distance values were divided by the known height of the object giving m/pixel, 

and the Pearson’s pairwise correlation between m/pixel ~ pixel intensity (depth) was evaluated. A 

line of best fit for the correlated data point yielded (2), which was used to determine m/pixel for a 

given depth pixel intensity value for the Fourier motion analyses. 

=
>?%@A = 1.5 ∗ 10DEF ∗ (!@>1ℎ) + 6.4 ∗ 10DEK  

(2) 
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Fourier Motion Analysis 

Intensity values at each centroid location were used to conduct Fourier motion analyses. For 

each respective plane of movement (x, y, z), the singular intensity value at a given centroid location 

was extracted, and was used to develop a weighted projection (Gonzalez et al., 2008). For example, 

the intensity value given at centroid location (x, y) in the M x N image was projected onto a 1-D 

array of size 1 x N for, with pixel value at location y for all x-axis projection. The same was done 

for all y and z axis measurements. 

 The resultant triaxial weighted projections were each multiplied by (3), where a1 is a 

positive integer equal to 30/max velocity expected in a given plane, x is each value in the projected 

vector, Δt is the relative time interval between frames, and j = √−1. The maximum velocities 

expected in the x and z planes was 4m/s and was 2.8m/s in the y plane. Following, the sum of all 

transformed elements in a given array was calculated.   

exp	[P2RST%∆1] (3) 
 

Finally, the fast Fourier transform was computed for each of the aforementioned vectors of 

projected values, each of size K = 30, where K is the relative frame observed during a given second. 

A peak search over the 30 transformed data points collected at each second revealed the frequency-

velocity relationship as the first peak within the signal. Velocity (V1), in units of pixels, was then 

determined by dividing the corresponding frequency value located at the peak location by a1. To 

derive the sign of the velocity component, the second derivative of the transformed projection was 

calculated for the real and imagined components of the values. Where the resultant signs for the 

real and imaged components were congruent, the velocity was positive, and was negative 

otherwise. To convert the velocity into m/s, V1 was multiplied by the results of (2), where the depth 
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value was the observed value in the given epoch. This process was iterated across observations 

and all planes. 

Triaxial Accelerations 

Velocity values obtained from Fourier motion analysis were transformed into acceleration 

(units g) using standard methods, and the Euclidean norm of the acceleration signals was used to 

calculate the vector magnitude. Finally, these observations were transformed from milli-g into 

standard activity counts by multiplying the vector magnitude values by 1000. Results from a 

comparison of the remote sensor derived triaxial accelerations from the lower- and higher-intensity 

experimental conditions showed that the M(SD) vector magnitudes were 4.7(10.8) and 16.0(15.3), 

respectively. 

DISCUSSION 

This study provides the requisite foundation for future work on the development of physical 

activity cut points for remote sensors, and specifically for Microsoft’s Kinect for Windows (v1). 

Comparison of the results from the two experimental conditions showed that the derived vector 

magnitude values were higher in the condition that included jumping and running than in the 

condition that only included walking and standing. A delimitation of this study was that the 

algorithm only focused on analyzing data for one subject. Future studies that wish to track multiple 

objects simultaneously will need to employ a Kalman filter in order to predict centroid locations 

when objects may be obstructed by one another. Furthermore, future studies should focus on 

testing the validity of the derived acceleration signals against standard wearable monitors. 

Additionally, longer observational periods should be used in future work with along with a larger 

sample size. 
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CONCLUSIONS 

The Microsoft Kinect can be used to capture and analyze physical activity data. Future research 

is needed to establish valid cut points, and to analyze multiple objects within a given image. 
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Fig 1. Frames of physical activity acquired with the Kinect infrared (A) and depth sensors (B & 
C) 

 

 

 
 
Note: Figure 1 shows results of the image acquisition algorithm (A & B), and also that the object 
of interest was unable to be quantized by the depth sensor when the subject was flush against the 
wall (C). 
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Fig 2. Iterative image processing of a physical activity frame acquired from the Kinect 
infrared sensor 

A B 

  
C D 

  
E F 

  
 
Note: Figure 2 shows the iterative results of taking the difference image (A), Sobel edge 
detection (B), regional pixel majority (C), morphological closing (D), reconstruction (E), and 
geodesic dilation followed by the filling of any holes in the object (F). 
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Fig 3. Final infrared physical activity image after image processing, thinning, and masking 

 
 
Note: Figure 3 shows the results of the combination of image processing and image 
description (i.e., connected component) algorithms. 
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Fig 4. Object centroid superimposed onto infrared (A) and depth (B) frames of physical activity  
A 

 
B 

 
Note: Fig 4 shows infrared image with color remapping (A), depth sensor with color axis 
scaling (B), and the object centroid as a red star 
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Fig 5. Iterative depth sensor intensity value algorithm, with increasing window size  
 
Sub depth_window( ) 
     window_size = 0 
     while depth_intensity = 0 
          do window_size = window_size + 1 
               if window_size < 10     then 
                    center window at centroid (x, y) 
                    remove pixels with intensity = 0 in window 
                    calculate median of remaining pixels 
                    depth_intensity = median pixel value 
               else  
                    depth_intensity = Inf 
                end 
           end 
     end 
End Sub 
 
Note: Figure 5 outlines an algorithm that searched for the nearest pixel intensity to a given 
centroid  
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Appendix D 
 

KinetiWave: A platform for health-related biometrics 



Acquiring, processing, and analyzing infrared-depth cam
era data for physical activity m

easurem
ent

A com
puter vision algorithm

 by:

Aston K. M
cC

ullough, M
Phil, M

S, M
A, C

FP
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Signal A
cquisition

1: Im
ages (resolution: 480 x 640 pixels) of the environm

ent are collected in 3 dim
ensions via infrared-depth sensors at 30H

z as a
video

2: Infrared and depth sensor data are passed to a com
puter, as tw

o separate channels, and each as 16-bit unsigned integers. Each fram
e is 

labeled w
ith a tim

estam
p using the local C

PU
 tim

e. D
ata (acquisition start tim

e, fram
e-by-fram

e tim
estam

ps, depth im
ages, infrared im

ages) are 
respectively converted into a *.bin form

at
3: D

ata are passed as separate *.bin files to a user-defined end point w
here they are stored

•Infrared-
D

epth 
C

am
era1

•C
om

puter
2

•End point

3
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Im
age R

estoration

4: Im
age data are taken from

 the end point (as in 3), and converted from
 *.bin files into 16-bit unsigned integers, w

ith a resolution 480 x 640 pixels
5: Im

ages are restored and cleaned in both the spatial and frequency dom
ains. Spatial dom

ain techniques include adaptive histogram
 

equalization follow
ed by a log transform

. Frequency dom
ain techniques w

ere applied after im
plem

enting a Fast Fourier Transform
 and included, 

rem
oval of periodic noise through m

asking, value exponentiation, and im
age sharpening. Follow

ing, the Inverse Fast Fourier Transform
 is applied

6: R
estored im

ages are converted into *.avifiles for view
ing as videos for coding, direct observation, or other purposes

•
R

econstitution

4

•
R

estoration

5
•

C
onversion

6
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Im
age A

nalysis

7: Infrared and depth sensor im
ages are taken 30 fram

es at a tim
e, the difference im

age betw
een consecutive fram

es is distilled, the edge 
inform

ation from
 the difference im

age is assessed
8: In order to separate objects of interest from

 noise, difference im
ages from

 both the infrared and depth sensors im
ages are iteratively and 

sim
ultaneously treated using a series of im

age processing steps (i.e., pixel m
ajority estim

ation, geodesic dilation, geodesic
erosion, 

m
orphological restriction by dilation, opening, closing, hole filling and thinning)

9: The num
ber of blobs, the location of their respective centroids, and their sizes are assessed. Blobs over or under a given threshold, in term

s of 
their size, are rem

oved as noise, and others are conserved as objects of interest

•D
ifferences 

and edges

7

•
Im

age 
Processing

8
•

Im
age 

D
escription

9
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O
bject Tracking

10: The height and w
idth of each extracted object of interest (i.e., blobs) w

ithin a given fram
e are determ

ined, and a bounding
box is centered 

around each blob at its centroid fram
ing the object of interest

11: A num
eric identifier is assigned to each bounding box and the tim

e at w
hich the blob w

as registered is stored
12: The intensity value of the pixel located at each respective centroid is stored for every blob for both the infrared and depth im

ages for each 
fram

e

•Bounding 
box

10

•Identifier
11

•D
ata 

extraction

12
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O
bject Tracking

13: T
he centroid data and pixel inform

ation are passed to a standard K
alm

an
filter for signal sm

oothing
14: (a) T

he location of the K
alm

an
filtered centroid is com

pared to the location of all other historical centroids. If the centroid coordinates fall w
ithin 

a single existing bounding box that has been stored w
ithin the m

em
ory, the new

 centroid inform
ation is stored under that identifier, and the 

location of the bounding box is re-centered and resized at the location of the new
 centroid. (b) T

he size of the new
 bounding box is determ

ined by 
the standard deviation of the historical errors betw

een the location of the observed and K
alm

an
filtered centroids, w

hich is calculated using the 
E

uclidean D
istance betw

een the tw
o locations. In both the vertical and horizontal dim

ensions, if the height/w
idth of the box is >

 2 standard 
deviations than the error, the box shrinks to the m

edian size of the last <
3 box in each respective dim

ension. O
therw

ise, the m
ax size of the last 

several boxes is chosen to resize the box in each dim
ension

•K
alm

an
F

ilter1
3

•M
em

ory 
phase 14
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O
bject Tracking

15: If the new
ly observed centroids fall w

ithin no exiting bounding box, the process is reiterated, after 1) translating the location of the new
ly 

observed centroid by 2 tim
es the standard deviation of respective errors (as in 14b) for each bounding box, and 2) the size of each bounding box 

is tem
porarily increased to 2 tim

es the standard deviation of the historical errors associated w
ith the bounding box. If a single m

atch is found, the 
algorithm

 resizes the bounding box as in 14b. If the centroid falls w
ithin m

ultiple boxes, the algorithm
 m

oves to a tie breaker phase

•Translation 
and 
Expansion

15
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O
bject Tracking

16: If m
ultiple potential candidate bounding boxes are discovered in 15, a tie breaker protocol is initiated for each respective candidate bounding 

box. First, the Kalm
an

filtered value of the new
 centroid is determ

ined under the assum
ption that it belongs to the candidate bounding box. Thus, 

the a posteriorivalues from
 the candidate box are used to determ

ine sm
oothed location of the new. Then a cost function is applied, in w

hich 1) 
the log-likelihood of the new

 centroid belonging to the candidate box is calculated, and  then 2) log-likelihood is w
eighted by the inverse of the 

proportion of pixels that overlap betw
een the new

 centroid’s bounding box and the candidate bounding box. The bounding box w
ith the low

est 
cost is assigned the new

 centroid. If no candidate bounding box w
as found in 15, how

ever, then a new
 bounding box is added to

the m
em

ory as 
in 11-12

•Tie 
breaker

16
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O
bject Tracking

17: For any historical bounding box w
here a new

 centroid has not been added for a given period of tim
e, the bounding box is rem

oved as a 
candidate for all future observations. The criteria for determ

ining if a bounding box should no longer be an active candidate
are 1) there w

as only 
a single observation for that box w

ithin the last 1s, 2) there w
ere no observations in the last 2s for bounding boxes w

ith <10 stored observations, 
3) there w

ere no observations in the last 3s for bounding boxes w
ith a >

10 stored observations

•Vanishing 
boxes17
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M
otion A

nalysis 

18: After the end of a video signal is reached, the iteratively stored centroids for each bounding box are processed using a Fourier M
otion 

Analysis technique. Taking 30 fram
es at a tim

e, the centroid locations and intensity values are m
ultiplied by a constant factor (see Appendix C

), 
and the Fast Fourier Transform

 of the transform
ed centroids values are assessed using a periodogram

. A peak finding algorithm
 is applied to the 

data in the periodogram
, and the real and im

aginary parts of the value at the given peak are determ
ined. This process is reiterated for data 

collected in each dim
ension (x, y, z). The resultant signal is a m

 x 3 array of centroid velocities. The velocities are given positive or negative 
values using the im

aginary and real parts of the signal, and the updated velocity values are transform
ed into accelerations.

•Fourier 
m

otion 
analysis18

156



M
otion A

nalysis 

19: The triaxial acceleration signals are transform
ed into an m

x 1 array of vector m
agnitude values by taking the Euclidean N

orm
 of the m

x 3 
vector of accelerations given by 18.

•
Triaxial 
Accelerations

19
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Appendix E 
 

Glossary 
 
Note: All definitions are provided with respect to movement/physical activity 
 
 
Energy Expenditure—calories burned as a result of basal physiological processes and physical 
activity  
 
Indirect Calorimetry—a method of measuring energy expenditure through the analyses of gas 
exchange via inhalation and exhalation.  
 
Laban Movement Analysis—a codified method of qualitative movement analysis that 
deconstructs movements in terms of space, time, energy, and relationships 
 
METs—(Metabolic Equivalent) a measure of energy expenditure. For reference, 1 MET is 
associated with 1 min of sedentary behavior (e.g. sitting). Moderate intensity physical activity 
(e.g., walking briskly at 4mph) is associated with 3-6 METs. Vigorous intensity activity (e.g., 
jogging/running at 6mph) is associated with 6 METs. 
 
Multiplanar—transverse, sagittal, and coronal planes of motion 
 
Physical Activity—any bodily movement caused by musculoskeletal contractions that results in 
an increase in energy expenditure 
 
Short-burst physical activity—relatively brief, usually <15s, episodes of physical activity that 
naturally occur in children 
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Appendix F 
 

Study Instruments 



Patient Health Questionnaire-2: Screening Instrument for Depression 

 

OVER THE 
PAST TWO 
WEEKS, HOW 
OFTEN HAVE 
YOU BEEN 
BOTHERED 
BY ANY OF 
THE 
FOLLOWING 
PROBLEMS? 

NOT 
AT 
ALL 

SEVERAL 
DAYS 

MORE 
THAN 
ONE-
HALF 
THE 
DAYS 

NEARLY 
EVERY 
DAY 

Little 
interest or 
pleasure in 
doing 
things 

0 1 2 3 

Feeling 
down, 
depressed, 
or 
hopeless 

0 1 2 3 
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Early Childhood Active Play Study 

Subject ID: ________  Date: _____________ 

Play Session Data Sheet 
 
TEMPORAL CALIBRATION: 
 

ActiLife CPU Time:     ____H    ____ M   ____S 
 

Kinect CPU Time:    ____H    ____ M   ____S 
 

BioCapture CPU Time:  ____ ActiLife   ____ Kinect 
 
 Devices synchronized using Atomic Time: _____ Yes ____ No 
  
 External time piece used (?): If yes, time  __ H __ M __ S  
  

NOTES: 
 
ANTHROPOMETRICS: 
    HEIGHT:   WEIGHT: 
PLAY ACTIVITIES: 
 
 _____ Crawling 
 
 _____ Jumping (in place) 
 
 _____ Jumping (traveling) 
 

_____ Walking 
 

 _____ Running (in place) 
 
 _____ Running (traveling) 
 
 _____ Climbing 
 
 _____ Rolling 
 
 _____ Sedentary 
 
For younger children: 
 
 _____ Stroller 
 
 _____ Carried by parent 
 
 
Notes: 
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Early Childhood Active Play Study 
 

Subject ID: ________  Date: _____________ 
 

Pediatric Bruce Protocol Data Sheet 
 
ACCOMODATION PERIOD: 
 

- Start at 0% grade and 0.5mph 
- Increase speed incrementally (0.5mph) until 3.5mph 
- Then, increase grade incrementally (1%) until 6% 
- Cool down 

 

Max speed Max incline Steady gait  
(check one) 

 
 

 YES  
NO  

 

 
NOTES: 
 
 
PEDIATRIC BRUCE: 
 

Stage Speed/Incline Time in 
Stage HR Steady gait 

(check one) 

Warm-up <1.7mph / 0% 2mins 
 
 

YES  
NO  

 

1 1.7mph / 10% 3mins 
 
 

YES  
NO  

 

2 2.5mph / 12% 3mins 
 
 

YES  
NO  

 

3 3.4mph / 14% 3mins 
 
 

YES  
NO  

 

4 4.2mph / 16% 3mins 
 
 

YES  
NO  

 

5 5.0mph / 18% 3mins 
 
 

YES  
NO  

 

6 5.5mph /20% 3mins 
 
 

YES  
NO  

 

Cool Down - 2mins  
YES  
NO  

 

TERMINATE TEST: HR >200bpm OR any sign of unsteady gait 
 
NOTES: 
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Baseline Data Collection

Record ID __________________________________

Outside your house (but associated with it) is there Yes
ample space for your child to play or move around No
freely? (backyard, front yard, garden, etc) (If you answered YES please proceed with the next

question, if you answered NO please go to SECTION
B)

SECTION A- In the outdoor space is (are) there:

More than one type of ground texture? (grass, dirt, Yes
concrete, wood, sand, etc) No

One or more sloped surfaces? (varied degrees and Yes
types of inclines or gradual slopes and slopes) No

Any apparatus (man made or natural) that your child Yes
can grasp and hang from? No

Any stairs? (at least two (2) or more steps) Yes
No

Any apparatus or platform that permits your child to Yes
climb on/off and step or jump from. (It must be about No
eight-inches or more)

A play area (playground) designed for your young Yes
children ? No

SECTION B- Inside your house is (are) there:

Enough space for your child to play or move around Yes
freely? No

More than one type of ground texture? (carpet, wood, Yes
tile, linoleum, etc). No

Material for your child to fall safely on? (carpet Yes
with padding, one-inch mat,,  etc) No

Any furniture or apparatus that your children can Yes
grasp and hang from safely? No

Any stairs? (at least two (2) or more steps) Yes
No

Any furniture or apparatus that permits your child to Yes
climb on/off and step or fall from? (Examples are No
sofas, small tables, chair, etc).

Any furniture or apparatus with a platform Yes
eight-inches (8") tall or more, the child can use to No
jump from?

A playroom? (room used only for kids to play) Yes
No
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A special place for toys that is accessible to the Yes
child so that she/he may choose when and with what to No
play? (toy bins, drawers, or shelves)

A special place for toys that is accessible to the Yes
child so that she/he may choose when and with what to No
play? (toy bins, drawers, or shelves)

SECTION C- During the day (but only referring to the time spent in your house): 

My child plays with other children as a usual and Yes
ordinary every day event. No

I (or my husband/wife) usually have a daily special Yes
time for playing with my child. No

Other adults, rather than parents, regularly play Yes
with my child. No

When playing, my child is always allowed to choose Yes
the toys or physical activities by herself / himself. No

My child usually wears clothes that allow freedom to Yes
move and explore. No

My child is often barefoot in the house. Yes
No

I (or my husband/wife) usually try to encourage my Yes
child to reach and grasp objects. No

I (or my husband/wife) usually try to engage my child Yes
in movements, games or actions in order to teach No
her/him parts of the body.

I (or my husband/wife) regularly try to teach my Yes
child movement or action words as "stop", "run", No
"walk", "crawl", etc.

SECTION D- On a typical day, how would you describe the amount of awake time your child
spends in each of the situations below? (Read carefully each question and mark the box
respective to your answer)

Carried in adult arms, attached to caregiver's body No time
or in some carrying device. Very little time

Some time
A long time

In a seating device (high chair, stroller, car seat, No time
sofa, or any other type of seating devices) Very little time

Some time
A long time

In a Playpen or some other similar equipment. No time
Very little time
Some time
A long time

On the bed or crib (while awake). No time
Very little time
Some time
A long time
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Restrained to a specific space in the floor No time
Very little time
Some time
A long time

Free to move in any space of the house No time
Very little time
Some time
A long time

How do you consider the living space inside your Very Small
house? Small

Reasonable/Moderate
Ample/Big
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Parenting SOS Pt ID -
PPA1  v. 1 .0 1 / 4

The next questions are going to ask you about some of the things you may have around your
house and how much you use them.  Please think about items both inside and outside your
house.  Read each item and select the best answer for you.  We are interested in what you do,
what you have, and how you feel.  Take your time and answer as accurately as possible.

Parenting SOS

1.  How many working televisions are in your house?

PPA1 1 0 1 2 3 4 5 6 7 more
Ð

if "0"
skip to 7

2.  Does your child have a TV in their
     bedroom?

PPA1 2 yes no

3.  Do you have a TV in your bedroom? PPA1 3 yes no

4.  Do you have a TV in your kitchen? PPA1 4 yes no

5.  On an average day, how many minutes do you 
spend watching TV, movies, or videos?

PPA1 5

6.  How often is the TV in your house on when people are at home?

PPA1 6 very rarely rarely sometimes often very often always

7.  How many video game systems (X-box, Gameboy, Playstation, Nintendo DS, Wii) 
are in your house? [This does not include computers.]

PPA1 7 0 1 2 3 4 5 6 7 other
Ð

if "0"
skip to 10

8.  Does your child have a video game
system in their bedroom?

PPA1 8 yes no

9.  On an average day, how many minutes do
      you or another adult in your house
      spend playing video games?

PPA1 9

minutes

minutes

Pt ID -6012185395
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Parenting SOS

10.  How many computers (laptop or desktop) are in your house?

PPA1 10 0 1 2 3 4 5 6 7 other

11.  Does your family have a
      dog?

PPA1 11 yes no Î if "no" skip to 13

12.  How often does your child play with your dog outside?

PPA1 12 never very rarely rarely sometimes often very often

13.  Please fill in the bubble that best represents how often you use each item while at home:
  very rarely, rarely, sometimes, often or very often.  If you do not have an item at
  home, please mark "do not have."

PPA1 13a

very
rarely

rarely sometimes often very
often

do not
have

a.  stationary exercise
     equipment (bike,
     treadmill, elliptical)

PPA1 13b
b.  weight lifting/resistance
     training equipment (free
     weights, Nautilus, Total

Gym)
PPA1 13cc.  workout DVDs/videos

PPA1 13dd.  shoes for running/walking

PPA1 13ee.  exercise/yoga mat

PPA1 13ff.  adult bicycle

PPA1 13gg.  bicycle trailer (for hauling
     kids or groceries)

PPA1 13hh.  jogging stroller

PPA1 13ii.  canoe/kayak

PPA1 13jj.  skiis (water or snow)

Pt ID -1329185391
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Parenting SOS

14.  Please fill in the bubble that best represents how often your child uses each item while at
  home: very rarely, rarely, sometimes, often or very often.  If you do not have an item
  at home, please mark "do not have."  For example, if you do not have tumbling mats at your
  house, but you do have a snow sled that is used once or twice a year, you should mark "do
  not have" for the mats and "very rarely" for the sled.

PPA1 14a

very
rarely

rarely sometimes often very
often

do not
have

a. basketball hoop

PPA1 14bb.  climbing structure

PPA1 14cc.  balancing surface (balance
beams, boards)

PPA1 14dd.  playhouse

PPA1 14ee.  sandbox

PPA1 14ff.  slide

PPA1 14gg.  swing (swing, rope)

PPA1 14hh.  pool (permanently
     installed in-ground or

above)
PPA1 14ii.  trampoline

PPA1 14jj.  balls (soccer, baseball, kick,
    foam, basket, etc)

PPA1 14kk.  baseball equipment
(bat, mitt, tee)

PPA1 14ll.  hockey sticks

PPA1 14mm.  racquets (tennis,
     badminton)

PPA1 14nn.  soccer/hockey goal

PPA1 14oo.  yard games (croquet,
horse shoes)

Pt ID -4007185397
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Parenting SOS

PPA1 14p

very
rarely

rarely sometimes often very
often

do not
have

p.  bicycle/tricycle/balance
bike

PPA1 14qq.  skates (roller/inline/ice)

PPA1 14rr.  push/pull toys (wagon,
wheelbarrow, dump truck, etc.)

PPA1 14s
s.  jumping play equipment

(jump ropes, hula hoops,
     mini trampolines)

PPA1 14tt.  twirling play equipment
(ribbons, scarves, batons)

PPA1 14u
u.  tumbling mats

PPA1 14v
v.  buckets or shovels

PPA1 14w
w.  Frisbee or activity disc

PPA1 14x
x.  sand/water table

PPA1 14y
y.  snow sled

Pt ID -1746185394
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The next set of items is about the rules around your house.  We are interested in what you do
and how you feel.  Please read each item and select the best answer for you.  Take your time
and answer as accurately as possible.  Your responses are important to us.

Parenting SOS

1.  Fill in the bubble that describes how often your child is allowed to do each of the
following activities while playing inside your house.  For example, we don't have a
swing or rope in the house and we don't want the kids swinging on anything else, so
they are not allowed to swing on anything while playing.

a.  hopping, skipping or galloping PPA2 1a anytime sometimes never

b.  running around PPA2 1b anytime sometimes never

c.  chasing PPA2 1c anytime sometimes never

d.  rough housing or wrestling PPA2 1d anytime sometimes never

e.  jumping from a height PPA2 1e anytime sometimes never

f.  flipping (somersault) or tumbling PPA2 1f anytime sometimes never

g.  climbing PPA2 1g anytime sometimes never

h.  swinging or hanging PPA2 1h anytime sometimes never

i.  balancing PPA2 1i anytime sometimes never

j.  piling up pillows and juming on
    them

PPA2 1j anytime sometimes never

k.  throwing, kicking or bouncing a ballPPA2 1k anytime sometimes never

2.  When my child is inside the house his/her play
should be calm and quiet.

PPA2 2

strongly
disagree

disagree not sure agree strongly
agree

3.  When inside the house, my child can use toys
     and equipment for physically active play. (for
     example, gross motor activities like running,
     jumping, hopping or tumbling)

PPA2 3

4.  How often do you ask your child to calm down his/her indoor play?

PPA2 4 never very rarely rarely sometimes often very often

Pt ID -7772397316
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Parenting SOS

Please fill in the bubble that best describes how often you do each of the following things related to
your child's outdoor play:  never, very rarely, rarely, sometimes, often, or very often.

never very
rarely

rarely sometimes often very
often

PPA2 5

How often do you . . .

5.  ask your child not to run when (s)he is
playing outside?

6.  ask your child to try and stay clean when
playing outside?

PPA2 6

7.  let your child play outside on hot days? PPA2 7

8.  let your child play outside on cold days? PPA2 8

9.  ask your child to calm down his/her
outdoor play?

PPA2 9

10.  ask your child not to get his/her
      clothes dirty while (s)he is playing
      outside?

PPA2 10

11.  ask your child not to play in puddles when
(s)he is playing outside?

PPA2 11

12.  Do you limit the amount of time your child watches TV, videos, or movies
  during the week (Monday - Friday)?

PPA2 12 yes no Î If no, skip to #14

13.  About how much time is (s)he allowed to watch each weekday?  
(Please report total minutes.) PPA2 13

total minutes

14.  Do you limit the amount of time your child watches TV, videos,
  or movies on the weekend (Saturday - Sunday)?

PPA2 14 yes no Î If no, skip to #16

15.  About how much time is (s)he allowed to watch each
 weekend day?  (Please report total minutes.)

PPA2 15

total minutes

Pt ID -8770397315
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Parenting SOS

16.  Do you limit the amount of time your child plays video games
   during the week (Monday - Friday)?

PPA2 16 yes no Î If no, skip to #18

17.  About how much time is (s)he allowed to play video games
  each weekday?  (Please report total minutes.)

PPA2 17

total minutes

18.  Do you limit the amount of time your child plays video games
  on the weekend (Saturday - Sunday)?

PPA2 18 yes no Î If no, skip to #20

19.  About how much time is (s)he allowed to play video games 
 weekend day? (Please report total minutes.)

PPA2 19

total minutes

Please fill in the bubble that best describes how often you do each of the following things:
never, very rarely, rarely, sometimes, often, or very often.

never very
rarely

rarely sometimes often very
often

PPA2 20

How often do you . . .

20.  offer TV, video, or movie time to your
       child as a reward for good behavior?

21.  take away TV, video, or movie time as a
  punishment for bad behavior?

PPA2 21

22.  offer sports or physical activities to your
       child as a reward for good behavior?

PPA2 22

23.  use sports or phywical activities to get
      your child to do something? (for
      example:  "You can't go outside to
      play until you eat your peas.")

PPA2 23

Pt ID -6433397319
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PPA2 24

strongly
disagree

disagree not sure agree strongly
agree

Pleaseread each of the following statements and then fill in the bubble that best describes how much
you agree or disagree with that statement:  strongly disagree, disagree, neither agree not
disagree, agree, or strongly agree.

I tightly monitor the time my child. . .

24.  watches TV or videos during the week
  (Monday - Friday).

PPA2 2525.  watches TV or videos on the weekend 
 (Saturday - Sunday).

PPA2 2626.  plays videos games during the week 
 (Monday - Friday).

PPA2 2727.  plays video games on the weekend
  (Satday - Sunday).

28.  How many days per week does your family have the television on during breakfast?

29.  How many days per week does your family have the television on during the evening meal?

PPA2 28 0 1 2 3 4 5 6 7

PPA2 29 0 1 2 3 4 5 6 7

never very
rarely

rarely sometimes often very
often

PPA2 30

How often . . .

30.  does your child get extra TV, video, or
       movie time as a reward?

31.  does your child get extra outside  time
  as a reward?

PPA2 31

32.  do you use TV time to control your
       child's behavior? (example:  "If you
       don't stop that you will not be ble to
       watch TV today.")

PPA2 32

33.  do you use sports or physical activities
       to control your child's behavior?
       (example:  "If you don't stop that you
       will not be ble to go to karate
       tonight.")

PPA2 33

34.  do you take outside time away from your
  child for bad behavior?

PPA2 34

Pt ID -1140397319
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We are interested in what you do and how you feel.  Please read each item and select the
best answer for you.  Take your time and answer as accurately as possible.  Your responses
are important to us.

Parenting SOS

For the following items, please read each statement and fill in the bubble which best describes how
much you agree or disagree with that statement:  strongly disagree, disagree, neither agree nor
disagree, agree or strongly agree.

1.  My child needs my help getting out the toys or
equipment (s)he likes to play with outside.

PPA3 1

strongly
disagree

disagree neither
agree nor
disagree

agree strongly
agree

2.  My child enjoys being physically active. PPA3 2

3.  I have control over how much TV my child
     watches.

PPA3 3

4.  Other adults in my child's life make it hard to
     get my child to be physically active.

PPA3 4

5.  My child would rather play inside than outside. PPA3 5

6.  My family is physically active. PPA3 6

7.  I enjoy watching TV/movies with my child. PPA3 7

Each week, how often (on average) do you participate in moderate or vigorous physical activities or
sports?  Moderate or vigorous physical activities get you breathing harder and your heart beating
faster.  Examples include:  walking brisky, hiking, jogging or running, dancing, yard work, swimming,
aerobics and basketball.

8.  How often do you participate in moderate or
     vigorous physical activities or sports each week?

PPA3 8 if 0, skip to #10

times per week

9.  About how many minutes each time? PPA3 9

minutes per
session

Pt ID -0706368291

186



PPA3  v. 1 .0 2 / 4

Parenting SOS

10.  How much do you enjoy physical activities or sports?

PPA3 10 don't enjoy sort of enjoy really enjoy thoroughly enjoy

11.  How much do you enjoy watching TV or movies during your free time?

PPA3 11 don't enjoy sort of enjoy really enjoy thoroughly enjoy

12.  How often does your family use physical activities or sports as a form of family recreation?  
  (for example, going on bike rides together, hiking, ice skating)

PPA3 12 rarely once in a while relatively often frequently

13.  How often do you go to your child's sporting events, lessons, or other organized physical
  activities with them? (for example, watch your child perform in a dance recital, swim meets,
  or practice)

PPA3 13 rarely sometimes usually almost always

14.  How valuable is it to you that your child be physically active?

PPA3 14 not valuable of little value moderately valuable valuable very valuable

15.  During the past year has an adult in your family paid fees so your child could take
  lessons, classes or play sports involving moderate or vigorous physical activity?
  (for example, dance, soccer, karate, basketball, swimming, gymnastics, horseback riding)

PPA3 15 yes no Î If no, skip to #17

16.  For how many activities have you or other adults paid fees?
PPA3 16

17.  How much do you use your own behavior to encourage your child to be physically active?

PPA3 17 I don't use my own behavior to encourage my child to be active.

I rarely use my own behavior to encourage my child to be active.

I often use my own behavior to encourage my child to be active.

I constantly use my own behavior to encourage my child to be active.

Pt ID -2530368298
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Parenting SOS

18.  How important is it to you to be actively involved in your child's sporting events?

PPA3 18 It is not particularly important to me to be involved.

It is sort of important to me to be involved.

It is important to me to be involved.

It is extremely important to me to be involved.

19.  How active are you in enrolling your child in sports?

PPA3 19 I rarely enroll my child in sports.

I enroll my child once in a while.

I frequently enroll my child in sports.

I go out of my way to enroll my child in sports.

20.  During the last month, how many times have you
  taken your child to play at a park?

PPA3 20 time(s) to park
in last month

For the following items, please read each statement and fill in the bubble which best describes how
much you agree or disagree with that statement:  strongly disagree, disagree, neither agree nor
disagree, agree or strongly agree.

21.  My child does not like being physically active. PPA3 21

strongly
disagree

disagree neither
agree nor
disagree

agree strongly
agree

22.  I am in charge of how much TV my child
       watches during his/her free time at home. PPA3 22

23.  When inside, my child can easily get toys that
  are used for physically active play.

PPA3 23

24.  When outside, my child can get to toys or
  equipment without help from an adult.

PPA3 24

Pt ID -4231368298
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Parenting SOS

25.  My child would rather watch TV than play a
  sport or active game.

PPA3 25

strongly
disagree

disagree neither
agree nor
disagree

agree strongly
agree

26.  I can get my child to be physically active at home.PPA3 26

27.  Other adults in my child's life make it hard to
  enforce household rules about TV viewing.

PPA3 27

28.  I like being physically active with my child. PPA3 28

Pt ID -6542368295

190



PPA4  v. 1 .0 1 / 4

Parenting SOS

PPA4 9 .

Pt ID -
PPA4  v. 1 .0 1 / 4

The next questions are about some of the things that you and your child do during a typical
week.  We are interested in what you do and how you feel.  Please read each item and select
the best answer for you.  Take your time and answer as accurately as possible.  Your
responses are important to us.

Parenting SOS

During the past 7 days, about how many hours did your child spend watching TV,
videos, or movies?  Please report separately for weekdays and weekend days.
Estimate to the nearest .5 hour.

1.  Total hours for last 5 weekdays (Mon-Fri):

2.  Total hours for last 2 weekend day (Sat-Sun):

PPA4 1 .

PPA4 2 .

On the scale provided, fill in the bubble that best describes how often you do each of the following
during a typical week:  never, very rarely, rarely, sometimes, often, or very often.

never very
rarely

rarely sometimes often very
often

PPA4 3

During a typical week, how often . . .

3.  do you tell your child how sedentary habits
can be unhealthy?

4.  do you watch TV or videos with your child? PPA4 4

5.  do you send your child outside to play so you
can get things done around the house? PPA4 5

6.  do you take your child to the park to play? PPA4 6

During the past 7 days, about how many hours did your child spend playing
outside?  Please report separately for weekdays and weekend days.  Estimate to
the nearest .5 hour.

7.  Total hours for last 5 weekdays (Mon-Fri):

8.  Total hours for last 2 weekend days (Sat-Sun):

PPA4 7 .

PPA4 8 .

9.  During the past 7 days, about how many hours did
     your child spend doing an organized sport, class or
     lessons that included vigorous physical activity?

Estimate to the nearest .5 hour.

hours

hours

hours

hours

hours

Pt ID -5919609829
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Please fill in the bubble that best represents how often each of the following things happen during a
typical week:  never, very rarely, rarely, sometimes, often, or very often.

never very
rarely

rarely sometimes often very
often

PPA4 10

During a typical week, how often . . .

10.  do you tell your child that physical activity is
  good for health?

PPA4 11
11.  does your behavior encourage your child to

  be sedentary?

PPA4 12
12.  do you praise your child for participating in

  sports or physical activities?

PPA4 13
13.  do you turn on the TV, a video, or movie for

  your child when the weather is bad?
  (for example, raining, too hot, too cold)

PPA4 14
14.  do you say things to encourage your child to

  do physical activities or play sports?

15.  How do you rate your child's level of physical activity, compared to others the
  same age and sex?

PPA4 15 much less than others

somewhat less than others

about the same as others

somewhat more than others

much more than others

Please fill in the bubble that best represents how often each of the following things happen during a
typical week:  never, very rarely, rarely, sometimes, often, or very often.

never very
rarely

rarely sometimes often very
often

PPA4 16

During a typical week, how often . . .

16.  does your child hear you say that you were
  too tired to be active?

PPA4 17
17.  does your child see you watching TV or

  movies?

Pt ID -1265609829
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Parenting SOS

never very
rarely

rarely sometimes often very
often

PPA4 18

During a typical week, how often . . .

18.  do you play sports, active games, or do
  other physical activities with your child?

PPA4 1919.  do you try to get your child to play outside
  when the weather is nice?

PPA4 20
20.  do you transport your child to a place
       where (s)he can be physically active or
       play sports?

21.  What does your child usually do when (s)he has a choice about how to spend
  free time?

PPA4 21 almost always chooses activities like TV, reading, listening to mucic, or computers

usually chooses activities like TV, reading, listening to mucic, or computers

just as likely to choose TV and reading as active games or sports

usually chooses activities like bicycling, dancing, outdoor games, or active sports

almost always chooses activities like bicycling, dancing, outdoor games, or active sports

Please fill in the bubble that best represents how often each of the following things happen during a
typical week:  never, very rarely, rarely, sometimes, often, or very often.

never very
rarely

rarely sometimes often very
often

PPA4 22

During a typical week, how often . . .

22.  does your child hear you talk about
  participating in a sport or being
  physically active?

23.  does your child see you doing, or going to
  do, something that is physically active?
  (for example, walking , biking, playing sports)

PPA4 23

24.  do you turn on the TV, a video, or
       movie for your child so you can get
       things done around the house?

PPA4 24

25.  do you try to get your child be to physically
  active instead of watching TV? PPA4 25

26.  do you say things to encourage your child to
  spend less time being sedentary? PPA4 26

Pt ID -5702609829
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Parenting SOS

Please fill in the bubble that best represents how important each of the following this is to you:
unimportant, of little importance, moderately important, important, or very important.

unimportant of little
importance

moderately
important

important very
important

PPA4 27

How important is it for your child . . .

27.  to participate in sports?

PPA4 2828.  to be physically active when (s)he grows
       up?

Pt ID -9464609828
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SKIP! Demographic Questionnaire 
 

SKIP! Pre-assessment  
 

    

                                                                                                                               Today’s  date:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Child’s  Name:                                           

Child’s  DOB:                                                                     

Child’s  Gender:        Male 

                               Female 

Parent’s  name:                                                                                                  Parent’s  DOB: 

Ethnicity:      

Father’s  education:         Less than High School 

                                          High School or GED 

                                          Associate degree, vocational school or some college 

                                          B.S or Advances Degree 

Mother’s  education:       Less than High School 

                                          High School or GED 

                                          Associate degree, vocational school or some college 

                                          B.S or Advances Degree 

Living arrangements:     Family lives in own apartment 

            Family shares apartment with others 

          Living in a shelter 

Family components:           Single parent 

                                              Both parents 

Number in family:                                                        Number in household: 

Annual Income:              less than/equal to $12,950 

                                          between $12,951 and $49,400 

                                          between $49,401 and $127,550 

                                          more than $127,550 

 

195



 196 

Appendix G 
 

Institutional Review Board Documents 



 

 
Attached to Protocol: IRB-AAAK9304
Principal Investigator: Carmen Rodriguez (cr14)
IRB Protocol Title: SKIP! Small Kids in Physical Activity
 

 

 
Consent Number: CF-AABB8450
Participation Duration:  
Anticipated Number of Subjects: 200
Research Purpose: Research Purpose
The purpose of this study is to assess whether the SKIP! program makes participating families more active than non-
participating families, and whether their physical activity can be effectively measured using accelerometers.

 

 

 

 
Information on Research
 
The purpose of this form is to give you information to help you decide if you want to take part in a research study. One
of the investigators (the researchers for this project) will discuss the study with you. If at any time you have questions
about the study, please ask a member of the study team. Take all the time you need to decide whether you want to
take part in this research study. This consent form is written to address a research subject. If, however, you will be
providing permission as the parent or legal guardian of a minor, the words 'you' and 'your' should be read as 'your
child'.
 
Why is this study being done?
We are doing this research study to find out whether the SKIP! program is effective in making families more physically

Columbia University Consent Form

Protocol Information

General Information

Contacts

Contact Title Contact Information
Carmen Rodriguez Principal Investigator Phone: 212-660-6200

Email: cr14@cumc.columbia.edu

Information on Research

Medical Center IRB: 212-305-5883
CF#: AABB8450  Copied From #: AABB8450
Printed on: 10/20/2017 at 17:40                                    Page 1 of 6 10/18/2017
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active in their daily lives. SKIP! is a program designed to encourage physical activity in toddlers and support active
play time between parents and children. We are also doing this study to find out whether it makes sense to use a small
device called "accelerometer" to measure the amount of physical activity a toddler experiences. Accelerometers are
small, unobtrusive devices that can be worn on a belt around a person’s waist or arm. They have been used to
measure physical activity in preschool-aged children, older children, and adults, but we do not know whether
accelerometers will be effective for toddlers.
 
You are being asked to participate in this study because you have a child between 24 and 36 months of age and
because he/she attends the Columbia University Early Head Start program. About 200 parent/child pairs are expected
to be enrolled in this study, and we expect this study will be completed by the end of the school year.
 
What is involved in this study?
If you decide to participate in this study, we will collect height and weight measurements for you and your child and ask
you to complete a brief demographic questionnaire. You will then join the following 6 parts of the study.
 
In part 1, we will ask both you and your child to wear an accelerometer for 7 days in a row (5 weekdays, 2 weekend
days) at the beginning of the semester. We will provide your family with the accelerometers and will provide you with
training on what they are and how they are used. During the semester, you and your child will also be asked to wear
the accelerometer during your normal group sessions on eight separate days throughout the semester. Finally, at the
end of the semester, you will be asked to take the accelerometer home for 7 days (5 weekdays, 2 weekend days) in a
row.
 
In the second part of the study, we will time how long it takes your child to move from lying down on the floor to a
standing position at the beginning and end of the semester.
 
The third part of the study is allowing trained research assistants to visit your home and observe your child’s physical
activity. The researcher will setup a convenient time to visit the home. There will be 2 visits, and each visit will last 30
minutes. While at your home the researchers will fill out a form about your child’s movement behaviors. Then, we will
compare the information provided by the accelerometer with the information gathered by the research assistants in
order to determine if the accelerometer measurements of physical activity are correct.
 
The fourth part of the study is allowing a CUEHS teacher to complete a short questionnaire with you during your
regular home visits. The questionnaire will help to identify the number and kinds of opportunities your child has
available to develop his or her various movement skills while at home.
 
The fifth part of this study will ask you to fill out a short weekly questionnaire regarding your child's participation in
physical activity or health and wellness activities over the last seven days throughout the semester.
 
For the last part  of this study, we will ask you to participate in a focus group where we will ask you, along with a small
group of other parents who are participating in the study for your opinions on the physical activity intervention in which
you and your child are participating. We will use this information to evaluate and improve the intervention.
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Risks
What are the risks of this study?
 
General Risks
There may be risks or discomforts if you take part in this study. For example, you and/or your child may become
bored, frustrated or annoyed. We will make every effort to prevent and minimize these discomforts. In addition, you
may be uncomfortable having a research assistant visit your home. Research assistants will receive training in proper
conduct during home visits to ensure that they are respectful of your home and your needs. While there is no evidence
that accelerometers can cause any harm to you or your child, there is a chance that you or your child may not want to
wear the accelerometer. To help with children who do not want to wear the accelerometer, we will provide you with
training on how to help your child to be more comfortable with the devices. However, you and your child can stop using
the accelerometers at any time if you or the child becomes too uncomfortable to continue with the study.
 
 
 

 

 
Benefits
Are there benefits to participating in this study?
You and your child will not receive personal (direct) benefit from taking part in this research study. However, the
information collected from this research may help researchers to measure physical activity in toddlers in the future,
and may help researchers better understand toddlers' physical activity experiences.
 

 

 
Alternative Procedures
What other options are there?
You may choose not to take part in this research study. Your child's Head Start services will not be impacted in any
way.
 
 
 

 

 
Confidentiality
What about confidentiality?

Risks

Benefits

Alternative Procedures

Confidentiality
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Any information collected during this study that can identify you by name will be kept confidential. All of the information
collected by research assistants and through the use of accelerometers will be coded with a numerical system which
will be entered into a password secured computer database. This number will be the only identifier to appear on any
data collection tools. Hard copies of completed consent forms will be secured in separate, locked filing cabinets at
Head Start accessible by the PI. We will do everything we can to keep your data secure, however, complete
confidentiality cannot be promised. Despite all of our efforts, unanticipated problems, such as a stolen computer, may
occur, although it is highly unlikely. The research file that links your name to the code number will be kept in a locked
file cabinet and only the investigator and study staff will have access to the file.
 
Access to your health information is required to be part of this study. If you choose to take part in this study, you are
giving us the authorization (i.e. your permission) to use the protected health information and information collected
during the research that can identify you. The project does not involve collecting health information that may be
considered sensitive.
 
The following individuals and/or agencies will be able to look at and copy your records:
 
-The investigator, study staff and other professionals who may be evaluating the study
-Authorities from Columbia University and New York Presbyterian Hospital, including the Institutional Review Board
(IRB),
-The Office of Human Research protections (OHRP).
 
Loss of Confidentiality
A risk of taking part in this study is the possibility of a loss of confidentiality. Loss of confidentiality includes having your
personal information shared with someone who is not on the study team and was not supposed to see or know about
your information. The study team plans to protect your confidentiality. Their plans for keeping your information private
are described in the 'confidentiality' section of this consent form.
 
Your authorization to use and share your health information does not have an expiration (ending) date.
 
You may change your mind and revoke (take back) this consent and authorization at any time and for any reason. To
revoke this consent and authorization, you must contact Carmen Rodriguez, Ph.D.,212-660-6200.
 
However, if you revoke your consent and authorization, you will not be allowed to continue taking part in the Research.
Also, even if you revoke this consent and authorization, the Researchers and the Sponsor (if applicable) may continue
to use and disclose the information they have already collected.
 
 
 
 

 

 
Compensation.

Compensation
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You will receive $10 for attending Play Day and consenting to participate in this research study. Your child will receive
a toy after wearing the accelerometer for 7 consecutive days.
 

 

 
Additional Costs
There are no costs to you for taking part in this study.
 

 

 
Voluntary Participation
Participation in this study is voluntary. Refusal to participate will involve no penalty or loss of benefits to which you are
otherwise entitled. You may discontinue participation at any time without penalty or loss of benefits to which you are
otherwise entitled.
 
 
 

 

 
Permission for Future Contact
The researchers may want to contact you in the future via text message in order to offer reminders and suggestions for
at-home play.All future contact will be directly related to the SKIP! program.
 
Please initial below to show whether or not you give permission for future contact.
 
______ (initial) I give permission to be contacted in the future for reminders and suggestions related to the SKIP!
program.
 
If you give permission for future contact, please fill out the information below:
 
Name:________________________________
 
Child's Name: _______________________
 
Child's Birth Date: _______________________
 
Cell Phone Number: _______________________
 

Additional Costs

Voluntary Participation

Additional Information
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Whom do I call if I have any questions or problems?
If you have any questions or concerns about the study, you may contact Carmen Rodriguez, Ph.D., 212-660-6200.
 
If you have any questions about your rights as a subject, you may contact:
Institutional Review Board
Columbia University Medical Center
154 Haven Avenue, 1st floor New York, NY 10032
Telephone: 212-305-5883
 
An Institutional Review Board is a committee organized to protect the rights and welfare of human subjects involved in
research. More information about taking part in a research study can be found on the Columbia University IRB website
at: http://cumc.columbia.edu/irb.
 
 
Statement of Consent
I have read the consent form and talked about this research study, including the purpose, procedures, risks, benefits
and alternatives with the researcher. Any questions I had were answered to my satisfaction. I am aware that by signing
below, I am agreeing to take part in this research study and that I can stop being in the study at any time. I am not
waiving (giving up) any of my legal right by signing this consent form. I will be given a copy of this consent form to
keep for my records.
 
 
 

 

 
 
Participant Signature Lines

 
Study Participant
Print Name ____________________________  Signature _____________________________________________
Date _________________________________
 
 
Child (PRINT NAME)
Print Name ____________________________

 
Research Signature Lines

 
Person Obtaining Consent
Print Name ____________________________  Signature _____________________________________________
Date _________________________________
 

Signatures
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Teachers College, Columbia University
525 West 120th Street
New York NY 10027

212 678 3000
www.tc.edu

Principal Investigator: Aston K. McCullough, M.A.

Study: Validation of the ActiGraph accelerometer RSSI-based Location Based Services

INFORMED CONSENT

DESCRIPTION OF THE RESEARCH:

Research Purpose
The purpose of this study is to learn more about how the radio signals sent between
wireless devices can be converted into distances.

Information on Research
The purpose of this form is to give you information to help you decide if you want to take
part in a research study. One of the investigators (the researchers for this project) will
discuss the study with you. If at any time you have questions about the study, please ask a
member of the study team. Take all the time you need to decide whether you want to take
part in this research study.

Why is this study being done?

We are doing this research study to learn more about how the radio signals that are sent
between wireless devices can be recalculated into measures of distance (i.e., meters). To
do this, we will ask you to wear a small, unobtrusive device called an accelerometer that
is worn on a belt around a person’s waist. The wireless signals sent between devices are
Bluetooth-based, and are similar or identical to the ones commonly used to communicate
between devices you might use daily such as a smart phone or laptop.

You are being asked to participate in this study because you have already completed a
brief health questionnaire during an initial screening, and you are a healthy adult (i.e.,
aged 18+).  About 52 participants are expected to enroll in this study, and we expect this
study will be completed by July 2016.
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What is involved in this study?

If you decide to participate in this study, it will have 2 parts, involving 2 visits to our
laboratory or a community space. The first visit is today and you have already agreed to
attend this 20 minute introductory session where you have learned about the study and
have been given an opportunity to ask any questions. If you agree to participate in the
study, you will be invited to remain here to be fitted with the small accelerometer device
and to participate in the first session. We will also ask you to repeat the brief health
questionnaire once more to ensure that your health status has not changed since the time
of the initial screening, and then will measure the distance of the hip-worn accelerometer
to the floor in order to record its exact placement.

Following, you and three other participants will be asked to complete simple tasks such
as standing at specific markers on the floor for 60 seconds at a time, and walking short
distances at two different speeds in time with a metronome. You will be asked to
complete the simple standing and walking tasks several times for a total of 60 minutes. At
the end of the session, we will set up another visit to our laboratory or a large community
space within 8-10 days.

During your next and final visit to the laboratory (or large community space) (visit 2),
you will be asked to wear the accelerometer while you complete a series of simple tasks
outdoors during the 90 minute session that will be held on the Columbia University
campus or an outdoor community space. The outdoor session will be very similar to the
first session with the primary difference being the distance you will be asked to travel and
the addition of a jogging/running task. Once outdoors, you will again be asked to stand at
specific spatial markers for 60 seconds at a time, and also to walk for short distances at
two speeds in time with a metronome. Finally, we will ask you to jog/run at two different
speeds also in time with a metronome. You will be asked to complete the simple
standing, walking, jogging/running tasks several times.

In order for us to code where you are in space as you travel in each session, both sessions
(indoors and outdoors) will be videotaped. All or part of you, including facial features,
may be videotaped; however since your moving profile is the intended primary image
that we wish to record, we will be placing the cameras such that your faceless profile
should appear more prominently than other distinguishing features. The video coding
process will require all externally distinguishing features to be obscured, such that your
likeness will appear as a shadow on a white background during the analysis process. The
portable video cameras will be placed in locations such that the entire Teachers College
Applied Physiology Laboratory (or indoor community space)/outdoor space on Columbia
University’s campus (or outdoor community space) and all of the study participants can
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be seen. You must be comfortable being videotaped in order to participate in this
particular study.

During videotaping, there is no one operating the camera and thus, the videos will not
zoom in on a particular participant. Additionally, while the participants will not be
individually audiotaped, all or part of their conversations may also be recorded from the
internal microphones on the Samsung portable video cameras. The conversations will not
be analyzed as part of the study, and in reviewing the videotapes there will be no audio.

Videotape files will be stored on an encrypted, password protected hard-drive kept in a
locked office. The files will be stored on the encrypted hard-drive until all data analysis
has been completed and all manuscripts have been published.  The original videotape
files will be immediately deleted from the video camera.

RISKS AND BENEFITS:

Risks
What are the risks of this study?

General Risks
There may be some risks or discomforts if you take part in this study, although these are
minimal. For example, you may become bored, frustrated or annoyed when engaging in
the measurement sessions.  There is also a remote possibility that you could fall or be
hurt while engaging in the sessions. We will make every effort to prevent and minimize
these discomforts by allowing appropriate time for rest and by supervising the sessions
carefully. There is the chance that you may find the accelerometer belt to be somewhat
uncomfortable. There is no evidence that accelerometers can cause any harm to you, but
there is a chance that you may not want to wear the accelerometer. You can stop using
the accelerometers at any time if you wish.

Benefits
Are there benefits to participating in this study?
You will not receive personal (direct) benefit from taking part in this research study.
However, the information collected from this research may help researchers to better
measure social and environmental factors that may impact physical activity behaviors.

Alternative Procedures
What other options are there?
You may choose not to take part in this research study at any time without any penalty.

PAYMENTS:
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You will not receive any payment for taking part in this study. You will receive a 4-ride
Metro card at the end of the second session.

DATA STORAGE TO PROTECT CONFIDENTIALITY:

All information collected during this study will be kept confidential. All of the
information collected by research assistants and through the use of accelerometers will be
encrypted with a code and not by your name. We will keep a record of your name and
code in a separate file that will not be connected to your data. This file will be stored in
password secured computer database.

The following individuals and/or agencies will be able to look at and copy your records:

-The investigator, research study staff
-Authorities from Columbia University, including the Institutional Review Board (IRB),
-The Office of Human Research protections (OHRP)

TIME INVOLVEMENT:

You will be asked to come to Teachers College on two separate days, and to participate
in the study for approximately 170 minutes. Participation in this study is voluntary; you
can decide whether or not to participate. Refusal to participate will involve no penalty or
loss of benefits to which you are otherwise entitled. You may discontinue participation at
any time without penalty or loss of benefits to which you are otherwise entitled.

HOW WILL RESULTS BE USED:

The results of the study will be presented as the analyses of aggregated data and will be
used for publication in research journals, conference presentations, and for educational
purposes.
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Teachers College, Columbia University
525 West 120th Street
New York NY 10027

212 678 3000
www.tc.edu

PARTICIPANT'S RIGHTS

Principal Investigator: Aston K. McCullough, M.A.

Study: Validation of the ActiGraph accelerometer RSSI-based Location Based Services

• I have read and discussed the Research Description with the researcher. I have
had the opportunity to ask questions about the purposes and procedures regarding
this study.

• My participation in research is voluntary. I may refuse to participate or withdraw
from participation at any time without jeopardy to future medical care,
employment, student status or other entitlements.

• The researcher may withdraw me from the research at his/her professional
discretion.

• If, during the course of the study, significant new information that has been
developed becomes available which may relate to my willingness to continue to
participate, the investigator will provide this information to me.

• Any information derived from the research project that personally identifies me
will not be voluntarily released or disclosed without my separate consent, except
as specifically required by law.

• If at any time I have any questions regarding the research or my participation, I
can contact the investigator or Dr. Carol Ewing Garber, who will answer my
questions. The investigator's phone number is (212) 678-3355. Dr. Carol Ewing
Garber’s phone number is 212-678-3891.

• If at any time I have comments, or concerns regarding the conduct of the research
or questions about my rights as a research subject, I should contact the Teachers
College, Columbia University Institutional Review Board /IRB. The phone
number for the IRB is (212) 678-4105. Or, I can write to the IRB at Teachers
College, Columbia University, 525 W. 120th Street, New York, NY, 10027, Box
151.

• I should receive a copy of the Research Description and this Participant's Rights
document.
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• The written, video and/or audio taped materials will be viewed only by the
principal investigator and members of the research team. If video and/or audio
taping is part of this research,
I ( ) consent to be audio/video taped.
I ( ) do NOT consent to being video/audio taped.

• Written, video and/or audio taped materials
( ) may be viewed in an educational setting outside the research

( ) may NOT be viewed in an educational setting outside the research.

• My signature means that I agree to participate in this study.

Participant's signature: ________________________________ Date:____/____/____

Name: ________________________________

Investigator's Verification of Explanation

I certify that I have carefully explained the purpose and nature of this research to
__________________________________ (participant’s name) in age-appropriate
language. He/She has had the opportunity to discuss it with me in detail. I have answered
all his/her questions and he/she provided the affirmative agreement (i.e. assent) to
participate in this research.

Investigator’s Signature: _________________________________________

Date: ______________________
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