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Abstract

Background

Body Mass Index (BMI), like most human phenotypes, is substantially heritable. However,

BMI is not normally distributed; the skew appears to be structural, and increases as a func-

tion of age. Moreover, twin correlations for BMI commonly violate the assumptions of the

most common variety of the classical twin model, with the MZ twin correlation greater than

twice the DZ correlation. This study aimed to decompose twin correlations for BMI using

more general skew-t distributions.

Methods

Same sex MZ and DZ twin pairs (N = 7,086) from the community-based Washington State

Twin Registry were included. We used latent profile analysis (LPA) to decompose twin cor-

relations for BMI into multiple mixture distributions. LPA was performed using the default

normal mixture distribution and the skew-t mixture distribution. Similar analyses were per-

formed for height as a comparison. Our analyses are then replicated in an independent

dataset.

Results

A two-class solution under the skew-t mixture distribution fits the BMI distribution for both

genders. The first class consists of a relatively normally distributed, highly heritable BMI with

a mean in the normal range. The second class is a positively skewed BMI in the overweight

and obese range, with lower twin correlations. In contrast, height is normally distributed,

highly heritable, and is well-fit by a single latent class. Results in the replication dataset were

highly similar.

Conclusions

Our findings suggest that two distinct processes underlie the skew of the BMI distribution.

The contrast between height and weight is in accord with subjective psychological
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experience: both are under obvious genetic influence, but BMI is also subject to behavioral

control, whereas height is not.

Introduction

Body Mass Index (BMI) is one of the more intensively studied phenotypes in the genetic epide-

miology literature. A 2012 meta-analysis identified 88 individual effect sizes from twin studies

[1] and estimated a mean heritability of 0.73 in males and 0.76 in females, with only a small

percentage originating in the shared environment and the remainder from the non-shared

environment. Several characteristics of BMI suggest that there may be more to its heritability

than meets the eye, however [2, 3]. First, the distribution of BMI has a strong positive skew [4],

which appears to shift towards the upper end of the distribution as a function of age [5, 6]. Sec-

ond, twin correlations for BMI commonly violate the assumptions of the standard version of

the classical twin model, called the ACE model, which partitions the variability of the pheno-

type into components attributable to the additive effect of genes (A) and shared and non-

shared environments (C and E respectively). An expectation of this simple model is that the

correlation between DZ twins should be at least half the correlation between MZ twins. In an

earlier meta-analysis that listed the individual MZ and DZ twin correlations [7], the MZ twin

correlation was greater than twice the DZ correlation for 24 out of 64 reported effects (38%).

These findings suggest that something other than the additive effects of individual genetic loci

plus the independent effects of environmental factors is contributing to twin resemblance.

The primary goal of this study was to use latent profile analysis (LPA) to decompose the

twin correlations and corresponding biometric components for BMI into multiple distribu-

tions using a large sample of twins. LPA estimates statistical models in multiple classes deter-

mined by the structure of the data. Our analysis differs from typical applications of LPA to

twin studies in several ways. First, it has recently become possible to loosen the classical

method of decomposing variables into normally distributed latent profiles (or classes); recent

developments using the software Mplus allow dependent variables to be decomposed into

more general skew-t distributions [4], making them much more flexible in the analysis of

skewed outcomes. Although BMI is often log-transformed in statistical analyses [8, 9] to create

a normal distributed phenotype, we contend that in transforming BMI important information

about the scale and skewness of the distribution of body mass is lost.

Second, the usual strategy in LPA-based models of twin studies has been to estimate the

classes on the individual phenotypes, and subsequently estimate the twin correlations for the

estimated classes [10, 11]. Here, we estimate the classes at the pair level, thus including the

twin correlations among the parameters being optimized by the LPA. Throughout, we com-

pare our BMI results to those for height, a normally distributed trait that does not produce

results at odds with the classical twin model. We hypothesize that the twin correlations for

BMI can be decomposed into a relatively normally distributed component within the normal

range of BMI, and a positively skewed component in the overweight and obese range of BMI.

In contrast, we hypothesize that the twin correlations for height will consist of one normally

distributed component.

Methods

The study was approved by the IRB at the University of Virginia (SBS #2014036900).

Twin models of BMI skew
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Subjects

This study included a sample of 7,086 (4,753 MZ; 2,300 DZ) twin pairs from the community-

based Washington State Twin Registry within a cross-sectional study design. Twins include

same-sex male and female twin pairs aged 18–97 years, reared together. Participants were

recruited from Washington State driver’s license and identification card applications [12]. All

twins completed an enrollment survey with questions related to childhood similarity to evalu-

ate twin zygosity (MZ vs. DZ), a common twin registry practice with an accuracy of 95–98%

compared to biological indicators [13, 14]. Twins were mailed an invitation letter and enroll-

ment survey including questions related to height and weight. Data collected from completed

questionnaires received between 2009 and 2015 were analyzed.

Body mass index

The main outcome was BMI calculated from self-reported height and weight and expressed as

kg/m2. These measures were collected from responses to the survey questions “What is your

current height?” in feet and inches and “What is your current weight?” in pounds. In a sample

of twins (n = 144 pairs) participating in an ongoing funded study [15], there was excellent

agreement between mean self-reported and measured BMI (26.7 vs. 27.5 kg/m2, respectively;

r = 0.97), suggesting our use of self-reported height and weight for BMI is an acceptable

measure.

Statistical analyses

Latent profile analyses (LPA) of BMI were estimated for the one, two, and three class models

using the default normal distributions. As the distribution of BMI is positively skewed [4],

non-normal mixture modeling with the skew-t distribution was also estimated for the one,

two, and three class models. The skew-t distribution takes into account excessive skewness

and kurtosis of the BMI distribution by including parameters for skew and degrees of freedom

[16, 17].

We conducted the profile analysis on a simple model of the between and within pair vari-

ances of BMI in the twins. The models were fitted at the twin-pair level, with the latent classes

estimated based on the within-pair and between-pair means and variances of the twin pairs.

The between-pair means were constrained to be equal between MZ and DZ twin pairs but var-

ied across the classes, whereas the within-pair means were fixed at zero, as is typical of two-

level models. The between- and within-pair variances were allowed to vary between MZ and

DZ twin pairs and across classes. The sum of the between- and within-pair variances (equal to

the total phenotypic variance) were constrained to be equal between MZ and DZ twin pairs,

but were allowed to vary across classes. Skew parameters for the between- and within-pair vari-

ances, and degrees of freedom for each class were also estimated in the skew-t mixture models.

The ratio of the between pair variance to the phenotypic variance estimates the intraclass cor-

relation for the twins. We refer to these models as intraclass correlation models.

As a comparison, similar mixture models were performed for height. Considering the dif-

ferences in average BMI and height between men and women, the mixture models were fitted

separately for each sex.

All mixture models were estimated using 100 random starting values and 20 final stage opti-

mizations in order to replicate the best log-likelihood. The log-likelihood (LL), Bayesian infor-

mation index (BIC; [18]) and entropy were reported for each latent class mixture model. The

BIC imposes a penalty term to the LL for the number of model parameters, with a lower BIC

value indicative of better model fit [19, 20]. Entropy is a measure of classification accuracy; a

model with entropy closer to 1 suggests greater classification accuracy [21]. Three criteria were

Twin models of BMI skew
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used to determine the best latent class solution: the lowest BIC value relative to the other mod-

els, a substantively meaningful model, and adequate group membership per latent class (at

least 10% of the sample).

The probability that each twin pair belonged to each of the latent classes was estimated

based on the data and the maximum likelihood parameter estimates associated with the mix-

ture model. Twin pairs were assigned to membership in the latent class to which they had the

highest likelihood of being a member. All mixture modeling and twin analyses were performed

using Mplus version 7.4 [22].

Results

Descriptive statistics

Descriptive statistics and the distribution of BMI by gender and zygosity are presented in

Table 1 and Fig 1. As expected, BMI is positively skewed in both men and women. We also

compared BMI to the distribution of weight, with the linear and quadratic effects of height par-

tialed out. This distribution was identical to the BMI distribution (r = 1 for both gender, Figs 2

and 3), suggesting that the skew of the BMI distribution is not a peculiarity of the way BMI is

calculated, but is in fact, a structural property of human body size.

We began by estimating twin correlations and a classical twin (ACE) model for BMI in

men and women. In men, the MZ twin correlation (rMZ) was 0.71 (SE = 0.02), the DZ twin cor-

relation (rDZ) was 0.36 (SE = 0.04). In women, rMZ was 0.73 (SE = 0.01), rDZ was 0.44 (SE =

0.02). These correlations are consistent with the heritability coefficient [2(rMZ – rDZ)] of 0.70

and 0.58 for men and women; a small proportion of the variance attributed to the shared fam-

ily environment (2rDZ – rMZ = 0.01 and 0.15, for men and women) and non-shared environ-

ment and measurement error (1 - rMZ = 0.29 and 0.27 for men and women). These findings

are consistent with previous reports of twin studies of BMI [23].

Latent profile analyses

BMI. The fit statistics of the mixture models under normal and skew-t distributions for

BMI are presented in Table 2. The one-class skew t distribution mixture models fit better than

the one-class normal distribution mixture models for both men and women (BICskewt = 30805

and BICnormal = 31570 for men; BICskewt = 58163 and BICnormal = 60924 for women), indicating

that excessive skewness and kurtosis need to be taken into account when modeling the distri-

bution of BMI. For both men and women, the two-class skew-t distribution mixture models

had lower BICs than the one- and three-class skew-t mixture models, suggesting that the two-

class solutions were better fit for both gender. The entropy value probabilities were 0.723 and

0.783 for men and women, respectively, suggesting adequate latent class separation (18). For

men, the three-class skew-t distribution mixture model had zero individuals in one of the

Table 1. Descriptive statistics of body-mass index (BMI).

BMI BMI residual

Gender Zygosity M Var Skew Kurt M Var Skew Kurt

Men MZ 26 22 1.1 2.7 0.01 22 1.1 2.6

DZ 26 23 1.2 3.5 -0.01 22 1.2 3.5

Women MZ 26 37 1.5 3.0 -0.20 37 1.5 3.1

DZ 26 40 1.3 2.2 0.43 39 1.4 2.2

M = mean. Var = variance. Skew = skewness. Kurt = kurtosis.

https://doi.org/10.1371/journal.pone.0194968.t001
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latent classes, suggesting that a third latent class was not needed. Similar results were found for

women: one of the latent classes had less than 2% of the participants, suggesting that the three-

class skew-t distribution mixture model was not a good fit.

Table 3 shows the estimated parameters from the two-class skew-t mixture models. In both

men and women, the solution consisted of one relatively non-skewed distribution, with mean

BMI in the normal range (M ~ 22kg/m2 for both men and women), and a skewed distribution,

with mean BMI in the overweight range (M ~ 29kg/m2 for both men and women). We subse-

quently labeled the latent profile with mean BMI in the normal range as the "normal" class,

and the other one the "overweight" class.

Table 3 presents the number and proportion of twin pairs in each latent profile by gender

and zygosity. Fig 4 illustrates the distributions of BMI in the normal (in grey) and overweight

(in tan) latent classes. Consistent across gender and zygosity, the normal profile shows a rela-

tively normal distribution, with a mean BMI of between 21 and 22 units, and a small variance.

All twins in the normal class have BMI� 30. The overweight class shows a positively skewed

distribution, with a mean BMI of about 29 units and a much larger variance.

The number of individual twins in each latent class stratified by their measured BMI is pre-

sented in Fig 5. For both men and women, the majority of twins in the normal class have BMIs

within the normal range (BMI< 25), and only a very small proportion have BMIs in the

Fig 1. Distribution of BMI by gender.

https://doi.org/10.1371/journal.pone.0194968.g001
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overweight range (25� BMI< 30). In the overweight class, the proportion of twins with nor-

mal BMI was relatively small, whereas most twins have BMIs in the overweight or obese range

(BMI� 30).

The twin correlations in the normal class (rMZ = 0.79 and rDZ = 0.28 for men; rMZ = 0.71

and rDZ = 0.29 for women) are indicative of high heritability, no effect of family environment,

a relatively small effect of non-shared environment, and a modest violation of the ACE model.

In contrast, the smaller twin correlations in the overweight class (rMZ = 0.5 and rDZ = 0.01 for

men; rMZ = 0.5 and rDZ = 0.14 for women) suggest a large non-shared environmental effect

and a severe violation of the ACE model. These twin correlations are illustrated in Fig 6. MZ

twin correlations are higher than DZ twin correlations in both classes for men and women;

correlations are higher in the normal class compared to the overweight class for both men and

women, and for MZ and DZ twins.

To explore the extent to which the normal/overweight class distribution was associated

with age, we computed the Pearson correlations between age and the estimated class probabili-

ties of being in the overweight class. The estimated class probability was used to take into

account measurement error in the estimation of the most likely latent class membership.

Twins in the overweight class were, on average, older (mean age = 44 to 48 years old) than

those in the normal class (mean age = 34 to 40 years old).

Fig 2. Distribution of weight, with the linear and quadratic effects of height partialed out, by gender.

https://doi.org/10.1371/journal.pone.0194968.g002
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Fig 3. Association between BMI and weight, with the linear and quadratic effects of height partialed out, by gender.

https://doi.org/10.1371/journal.pone.0194968.g003

Table 2. Fit statistics of the intraclass correlation mixture models under normal and skew-t distributions for BMI and height.

Normal Skew-t

Gender Class df LL BIC Entropy df LL BIC Entropy

BMI Men 1 5 -15765 31570 - 6 -15379 30805 -

2 10 -15323 30725 0.752 12 -15270 30633 0.723

3 15 -15256 30630 0.739 19 -15265 30678 0.799

Women 1 5 -30441 60924 - 6 -29056 58163 -

2 10 -28887 57859 0.82 12 -28727 57555 0.783

3 15 -28637 57401 0.749 19 -28728 57616 0.82

Heighta Men 1 5 -12964 25967 - 7 -12660 25376 -

2 10 -12596 25270 0.91 - - - -

Women 1 5 -22892 45827 - 7 -22318 44695 -

2 10 -22223 44531 0.92 - - - -

df = degrees of freedom. LL = log-likelihood. BIC = Bayesian information index. Entropy is not available for one-class models as there was no class separation.
a The three-class solutions under the normal mixture distribution are omitted here as one latent class had zero observations for men, and two latent classes had less than

10% of the sample for women. Only the one-class solutions are presented for the skew-t mixture distribution as results showed only excessive kurtosis, but not excessive

skewness, needed to be accounted for.

https://doi.org/10.1371/journal.pone.0194968.t002
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Table 3. Descriptive statistics and twin correlations of BMI and height for the intraclass correlation mixture models.

Gender Profile Zyg N (%) M SD Skew Kurt r (95% CI)

BMI Men Normal MZ 690 (40.9%) 22.7 2.0 -0.5 -0.4 0.79 [0.77, 0.82]

DZ 325 (38.7%) 22.6 2.0 -0.4 -0.2 0.28 [0.18, 0.38]

Overweight MZ 995 (59.1%) 28.5 4.5 1.0 3.5 0.5 [0.45, 0.54]

DZ 514 (61.3%) 28.4 4.6 1.2 4.2 0.01 [-0.07, 0.1]

Women Normal MZ 1595 (52%) 21.9 2.1 0.0 -0.7 0.71 [0.69, 0.73]

DZ 649 (44.4%) 22.0 2.1 -0.1 -0.6 0.29 [0.22, 0.36]

Overweight MZ 1470 (48%) 29.8 6.3 1.1 2.0 0.5 [0.46, 0.54]

DZ 812 (55.6%) 29.6 6.5 0.9 1.3 0.14 [0.07, 0.2]

Height Men MZ 1649 (100%) 5.9 0.2 -0.1 0.3 0.85 [0.84, 0.86]

DZ 749 (100%) 5.9 0.2 0.2 1.6 0.5 [0.44, 0.55]

Women MZ 2930 (100%) 5.4 0.2 0.1 1.6 0.82 [0.81, 0.84]

DZ 1290 (100%) 5.4 0.2 0.3 3.0 0.49 [0.45, 0.53]

Zyg = zygosity. M = mean. SD = standard deviation. Skew = skewness. Kurt = kurtosis. r = rMZ for MZ twin pairs; rDZ for DZ twin pairs. 95% CI = 95% confidence

interval.

https://doi.org/10.1371/journal.pone.0194968.t003

Fig 4. BMI density of the two latent classes by gender and zygosity. Note. The densities of the single-class BMI are illustrated in dashed lines.

https://doi.org/10.1371/journal.pone.0194968.g004
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Height. The fit statistics of the mixture models under normal and skew-t distributions for

height are presented in Table 2. Among the one-class models, the skew-t distribution mixture

models had lower BICs than the normal mixture models. The degree of freedom parameters

(df = 5.80, SE = 0.51, p< .0001 for men; df = 6.27, SE = 0.47, p< .0001 for women) deviated

from that of the normal distribution (df� 30), whereas the skew parameters were non-signifi-

cant (skew = -0.07, SE = 0.16, p = 0.687 for men; skew = 0.18, SE = 0.14, p = 0.188 for women).

These results suggested the need to account for excessive kurtosis but not excessive skewness

for height. Subsequent multi-class mixture models were only estimated using normal

distributions.

For both men and women, although the two-class mixture models showed improvements

in BIC over the one-class mixture model, more than 90% of the participants were estimated to

belong to one class (94% for men and 95% for women), suggesting that the one-class solution

was a sufficient fit to the current data for both men and women. Descriptive statistics of height

by sex and zygosity are presented in Table 3. The distributions of height are almost identical

between MZ and DZ twin pairs, with men being slightly taller than women (Fig 7). It should

also be noted that the distribution of height is relatively normal for both men and women.

The twin correlations of height by sex and zygosity are also illustrated in Fig 8. The height

of MZ twin pairs, regardless of sex, are highly correlated with each other, whereas moderate

Fig 5. Distribution of participants in normal and overweight class, stratified by BMI.

https://doi.org/10.1371/journal.pone.0194968.g005

Twin models of BMI skew

PLOS ONE | https://doi.org/10.1371/journal.pone.0194968 March 28, 2018 9 / 15

https://doi.org/10.1371/journal.pone.0194968.g005
https://doi.org/10.1371/journal.pone.0194968


correlations were observed between DZ twin pairs. These results suggest high heritability of

height, with very small family environment effects.

Replication

We applied the same statistical analyses to decompose the twin correlations and corresponding

biometric components for BMI into multiple distributions in another large independent

cohort of twins for a replication study. This cohort included 13,553 (5,965 MZ, 7,588 DZ) twin

pairs from the National Academy of Sciences-National Research Council Twin Registry

(NAS-NRC Twin Registry [24]). Twins were same-sex male twin pairs, average aged 45

(SD = 3.9, range = 40–56) years at the time height and weight data was collected.

The distribution of BMI is positively skewed for MZ (M = 21.9, variance = 6.0, skew = 0.98,

kurtosis = 2.21) and DZ (M = 22.1, variance = 6.3, skew = 1.09, kurtosis = 2.79) twins. With

rMZ = 0.80 and rDZ = 0.42, twin correlation is consistent with the heritability of 0.76 for BMI; a

small proportion of the variance attributed to the shared family environment (2rDZ − rMZ =

0.04) and non-shared environment and measurement error (1 - rMZ = 0.20).

Results showed that the two-class skew-t distribution mixture model was the best fit for the

intraclass correlation model (S1 Table). The two-class skew-t solution consisted of a normal

Fig 6. Associations of BMI between twin pairs of the two latent classes by gender and zygosity.

https://doi.org/10.1371/journal.pone.0194968.g006
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BMI class (M ~ 21kg/m2) that is relatively normally distributed, and an overweight class (M ~

24kg/m2) that is positively skewed (S2 Table and S1 Fig). The twin correlations in the normal

class (rMZ = 0.81 and rDZ = 0.24) are indicative of high heritability, whereas those in the over-

weight class (rMZ = 0.56 and rDZ = -0.05) suggest a large non-shared environmental effect and

a severe violation of the classical twin model (S2 Fig). Twins in the overweight class were, on

average, older than those in the normal class (r = 0.12 and 0.16, for MZ and DZ twins, respec-

tively; all ps< .001).

Discussion

The current study presents a unique investigation of the skewed nature of BMI using latent

profile analyses in a large sample of twin pairs. The BMI latent classes were estimated by

including the twin correlations in the optimization process; twin pairs were therefore assigned

to be in the same latent class. Our use of the skew-t distribution in the estimation accounts for

the excessive skewness and kurtosis of the skewed distribution of BMI (4, 13, 14). The findings

show that the skewness of the BMI distribution can be decomposed into a relatively normally

distributed component within the normal BMI range, and a positively skewed component in

the overweight and obese range of BMI, with the former more highly correlated in twin pairs

Fig 7. Distribution of height (in feet) between twin pairs by gender and zygosity.

https://doi.org/10.1371/journal.pone.0194968.g007
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than the latter. Twin correlations in the first class conformed to the assumptions of the classical

twin model; those in the second class did not. Similar results were obtained when the analyses

were replicated using another large sample of twin pairs.

Our analyses suggest that two distinct processes underlie the skew of the BMI distribution

and the tendency for twin correlations for BMI to violate the assumptions of the classical twin

model. The first process is relatively normally distributed, in the normal range of BMI, and

highly heritable. The second process is positively skewed, in the overweight and obese range of

BMI, with lower twin correlations, especially for DZ twins. The near-zero DZ twin correlations

represent a severe violation of the assumptions of the classical ACE twin model, and for that

matter any genetically based twin model, none of which predict correlations of zero in DZ

twins. In contrast to BMI, height is normally distributed, highly heritable, does not violate the

classical twin model, and is well-fit by a single latent class. This contrast between height and

weight is in accord with human psychological and physiological experience of height and BMI:

both are under obvious genetic influence, but BMI is also subject to individual behavioral and

environmental control, whereas height is not [25].

Our finding that twins in the overweight class are more likely to be older than those in the

normal class is consistent with the positive shift in BMI with age in other samples [5, 6]. It is

Fig 8. Associations of height (in feet) between twin pairs by gender and zygosity.

https://doi.org/10.1371/journal.pone.0194968.g008
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possible that these changes in the BMI distribution over age may be largely due to the posi-

tively skewed distribution of BMI, reflecting increased environmental contribution to the

change in BMI with age. That is, BMI in the normal range may be largely inherited, whereas

BMI above the normal range accrues during the lifespan according to individual level pro-

cesses that are less correlated in twin pairs. A meta-analysis of 40 twin cohorts showed that the

heritability of BMI decreases with age in both men and women [26], suggesting that the gain

in BMI, which is reflected in the skewness of the BMI distribution, may be less heritable than

the BMI distribution within the normal range. Nonetheless, this hypothesis with respect to the

two distinct processes of BMI needs to be tested with data in which repeated measures BMI

are collected across ages.

A few limitations of this study should be noted. First, height, weight and zygosity were all

self-reported. Second, participants were primarily Caucasians, which limits generalizability of

our findings to other race/ethnic groups. Future research should replicate our findings among

populations of different race/ethnic composition. Third, the cross-sectional nature of our data

limits our ability to examine potential differential causal relationships between BMI, genetic,

behavioral, and environmental factors. Future research should make use of longitudinal stud-

ies to examine such associations, and investigate how components of BMI change or stabilize

across the lifespan.

Deeper understanding of the nature of these weight classes will require more information

at the genetic, environmental, and phenotypic level. It would be interesting to know, for exam-

ple, whether either candidate genes or polygenic risk scores are more correlated with one dis-

tribution than the other. Similarly, one could investigate how dietary or activity behaviors, or

food and activity environments, differ between the classes, or how the classes change or stabi-

lize across the lifespan.

We have explored statistical models of twin development that emphasize reciprocal effects

of differences in phenotype and individual behavior, demonstrating that such processes have

the result of systematically depressing DZ twin correlations [27]. To date these models have

mostly been applied to cognitive development, but they would appear to be broadly applicable

to BMI as well. It should also be noted that positively skewed distributions are characteristic of

a wide range of human phenotypes, like alcohol consumption [28] and mood [29], that com-

prise both normal and disrupted behavior. Many of these same human phenotypes frequently

violate the classical twin model in the same way as BMI, with MZ twin similarity more than

twice that of DZ twins [30, 31]. We hypothesize that many of these phenotypes consist of a

normally distributed portion in the normal range under strong genetic control, and a skewed

portion with a mean in the pathological range, representing environmental or reciprocal pro-

cesses at the individual level.

Supporting information

S1 Table. Fit statistics of the mixture models under normal and skew-t distributions for

BMI (NAS-NRC Twin Registry sample).

(DOCX)

S2 Table. Descriptive statistics and twin correlations of BMI for the intraclass correlation

mixture models (NAS-NRC Twin Registry sample).

(DOCX)

S1 Fig. BMI density of the two latent classes by zygosity (NAS-NRC Twin Registry sam-

ple).

(PDF)

Twin models of BMI skew

PLOS ONE | https://doi.org/10.1371/journal.pone.0194968 March 28, 2018 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194968.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194968.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194968.s003
https://doi.org/10.1371/journal.pone.0194968


S2 Fig. Associations of BMI between twin pairs of the two latent classes by zygosity

(NAS-NRC Twin Registry sample).

(PDF)

Author Contributions

Conceptualization: Eric Turkheimer.

Data curation: Glen E. Duncan.

Formal analysis: Siny Tsang, Eric Turkheimer.

Investigation: Eric Turkheimer.

Methodology: Siny Tsang, Eric Turkheimer.

Visualization: Siny Tsang.

Writing – original draft: Siny Tsang, Eric Turkheimer.

Writing – review & editing: Siny Tsang, Glen E. Duncan, Diana Dinescu, Eric Turkheimer.

References
1. Elks CE, den Hoed M, Zhao JH, Sharp SJ, Wareham NJ, Loos RJ, et al. Variability in the heritability of

body mass index: a systematic review and meta-regression. Front Endocrinol (Lausanne). 2012; 3:29.

https://doi.org/10.3389/fendo.2012.00029 PMID: 22645519; PubMed Central PMCID:

PMCPMC3355836.

2. Franz CE, Grant MD, Jacobson KC, Kremen WS, Eisen SA, Xian H, et al. Genetics of body mass stabil-

ity and risk for chronic disease: a 28-year longitudinal study. Twin Res Hum Genet. 2007; 10(4):537–45.

https://doi.org/10.1375/twin.10.4.537 PMID: 17708694.

3. Silventoinen K, Kaprio J. Genetics of tracking of body mass index from birth to late middle age: evidence

from twin and family studies. Obes Facts. 2009; 2(3):196–202. https://doi.org/10.1159/000219675

PMID: 20054225.

4. Muthen B, Asparouhov T. Growth mixture modeling with non-normal distributions. Stat Med. 2015; 34

(6):1041–58. https://doi.org/10.1002/sim.6388 PMID: 25504555.

5. Gordon-Larsen P, Adair LS, Nelson MC, Popkin BM. Five-year obesity incidence in the transition period

between adolescence and adulthood: the National Longitudinal Study of Adolescent Health. Am J Clin

Nutr. 2004; 80(3):569–75. PMID: 15321794.

6. Hayes A, Gearon E, Backholer K, Bauman A, Peeters A. Age-specific changes in BMI and BMI distribu-

tion among Australian adults using cross-sectional surveys from 1980 to 2008. International Journal of

Obesity. 2015; 39(8):1209–16. https://doi.org/10.1038/ijo.2015.50 PMID: 25869604

7. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human

adiposity. Behav Genet. 1997; 27(4):325–51. PMID: 9519560.

8. Schousboe K, Willemsen G, Kyvik KO, Mortensen J, Boomsma DI, Cornes BK, et al. Sex differences in

heritability of BMI: a comparative study of results from twin studies in eight countries. Twin Res. 2003; 6

(5):409–21. https://doi.org/10.1375/136905203770326411 PMID: 14624725.

9. Silventoinen K, Jelenkovic A, Sund R, Hur YM, Yokoyama Y, Honda C, et al. Genetic and environmental

effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis

of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical mea-

sures in Twins (CODATwins) study. Am J Clin Nutr. 2016; 104(2):371–9. https://doi.org/10.3945/ajcn.

116.130252 PMID: 27413137; PubMed Central PMCID: PMCPMC4962159.

10. Kendler KS, Eaves LJ, Walters EE, Neale MC, Heath AC, Kessler RC. The identification and validation

of distinct depressive syndromes in a population-based sample of female twins. Arch Gen Psychiatry.

1996; 53(5):391–9. PMID: 8624182.

11. Scherrer JF, Xian H, Slutske WS, Eisen SA, Potenza MN. Associations between obsessive-compulsive

classes and pathological gambling in a national cohort of male twins. JAMA Psychiatry. 2015; 72

(4):342–9. https://doi.org/10.1001/jamapsychiatry.2014.2497 PMID: 25671842.

12. Afari N, Noonan C, Goldberg J, Edwards K, Gadepalli K, Osterman B, et al. University of Washington

Twin Registry: construction and characteristics of a community-based twin registry. Twin Res Hum

Twin models of BMI skew

PLOS ONE | https://doi.org/10.1371/journal.pone.0194968 March 28, 2018 14 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194968.s004
https://doi.org/10.3389/fendo.2012.00029
http://www.ncbi.nlm.nih.gov/pubmed/22645519
https://doi.org/10.1375/twin.10.4.537
http://www.ncbi.nlm.nih.gov/pubmed/17708694
https://doi.org/10.1159/000219675
http://www.ncbi.nlm.nih.gov/pubmed/20054225
https://doi.org/10.1002/sim.6388
http://www.ncbi.nlm.nih.gov/pubmed/25504555
http://www.ncbi.nlm.nih.gov/pubmed/15321794
https://doi.org/10.1038/ijo.2015.50
http://www.ncbi.nlm.nih.gov/pubmed/25869604
http://www.ncbi.nlm.nih.gov/pubmed/9519560
https://doi.org/10.1375/136905203770326411
http://www.ncbi.nlm.nih.gov/pubmed/14624725
https://doi.org/10.3945/ajcn.116.130252
https://doi.org/10.3945/ajcn.116.130252
http://www.ncbi.nlm.nih.gov/pubmed/27413137
http://www.ncbi.nlm.nih.gov/pubmed/8624182
https://doi.org/10.1001/jamapsychiatry.2014.2497
http://www.ncbi.nlm.nih.gov/pubmed/25671842
https://doi.org/10.1371/journal.pone.0194968


Genet. 2006; 9(6):1023–9. https://doi.org/10.1375/183242706779462543 PMID: 17254446; PubMed

Central PMCID: PMCPMC2953369.

13. Eisen S, Neuman R, Goldberg J, Rice J, True W. Determining zygosity in the Vietnam Era Twin Regis-

try: an approach using questionnaires. Clin Genet. 1989; 35(6):423–32. PMID: 2736790.

14. Torgersen S. The determination of twin zygosity by means of a mailed questionnaire. Acta Genet Med

Gemellol (Roma). 1979; 28(3):225–36. PMID: 297423.

15. Duncan G. Subjective and objective report of body mass index (BMI). 2017.

16. Lee S, McLachlan G. Finite mixtures of multivariate skew t-distributions: some recent and new results.

statistics and Computing. 2014; 24(2):181–202.

17. Lin TI. Robust mixture modeling using multivariate skew t distributions. Statistics and Computing. 2010;

20(3):343–56.

18. Schwarz G. Estimating the dimension of a model. The annals of statistics. 1978; 6:461–4.

19. Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster

analysis. Computer Journal. 1998; 41(8):578–88.

20. Nylund KL, Asparoutiov T, Muthén BO. Deciding on the number of classes in latent class analysis and

growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling-a Multidisci-

plinary Journal. 2007; 14(4):535–69.

21. Celeux G, Soromenho G. An entropy criterion for assessing the number of clusters in a mixture model.

Journal of Classification. 1996; 13(2):195–212.

22. Muthén LK, Muthén B. Mplus. Statistical analysis with latent variables. User’s Guide. 7th ed. Los Ange-

les, CA: Muthen & Muthen; 2012.

23. Dinescu D, Horn EE, Duncan G, Turkheimer E. Socioeconomic modifiers of genetic and environmental

influences on body mass index in adult twins. Health Psychol. 2016; 35(2):157–66. https://doi.org/10.

1037/hea0000255 PMID: 26348497; PubMed Central PMCID: PMCPMC4913513.

24. Gatz M, Butler DA. National Academy of Sciences-National Research Council Twin Registry (NAS-

NRC Twin Registry). Ann Arbor, MI: Inter-university Consortium for Political and Social Research

(ICPSR); 1958–2013 [RESTRICTED].

25. Turkheimer E. Genetics and human agency: comment on Dar-Nimrod and Heine (2011). Psychol Bull.

2011; 137(5):825–8. https://doi.org/10.1037/a0024306 PMID: 21859182.

26. Silventoinen K, Jelenkovic A, Sund R, Yokoyama Y, Hur YM, Cozen W, et al. Differences in genetic and

environmental variation in adult BMI by sex, age, time period, and region: an individual-based pooled

analysis of 40 twin cohorts. Am J Clin Nutr. 2017; 106(2):457–66. https://doi.org/10.3945/ajcn.117.

153643 PMID: 28679550; PubMed Central PMCID: PMCPMC5525120.

27. Beam CR, Turkheimer E. Phenotype-environment correlations in longitudinal twin models. Dev Psycho-

pathol. 2013; 25(1):7–16. https://doi.org/10.1017/S0954579412000867 PMID: 23398749.

28. Rehm J, Rehn N, Room R, Monteiro M, Gmel G, Jernigan D, et al. The global distribution of average vol-

ume of alcohol consumption and patterns of drinking. Eur Addict Res. 2003; 9(4):147–56. doi: 72221.

https://doi.org/10.1159/000072221 PMID: 12970583.

29. Rushton JL, Forcier M, Schectman RM. Epidemiology of depressive symptoms in the National Longitu-

dinal Study of Adolescent Health. J Am Acad Child Adolesc Psychiatry. 2002; 41(2):199–205. https://

doi.org/10.1097/00004583-200202000-00014 PMID: 11837410.

30. Lykken DT. The mechanism of emergenesis. Genes Brain Behav. 2006; 5(4):306–10. https://doi.org/

10.1111/j.1601-183X.2006.00233.x PMID: 16716200.

31. Lykken DT, McGue M, Tellegen A, Bouchard TJ Jr. Emergenesis. Genetic traits that may not run in fam-

ilies. Am Psychol. 1992; 47(12):1565–77. PMID: 1476327.

Twin models of BMI skew

PLOS ONE | https://doi.org/10.1371/journal.pone.0194968 March 28, 2018 15 / 15

https://doi.org/10.1375/183242706779462543
http://www.ncbi.nlm.nih.gov/pubmed/17254446
http://www.ncbi.nlm.nih.gov/pubmed/2736790
http://www.ncbi.nlm.nih.gov/pubmed/297423
https://doi.org/10.1037/hea0000255
https://doi.org/10.1037/hea0000255
http://www.ncbi.nlm.nih.gov/pubmed/26348497
https://doi.org/10.1037/a0024306
http://www.ncbi.nlm.nih.gov/pubmed/21859182
https://doi.org/10.3945/ajcn.117.153643
https://doi.org/10.3945/ajcn.117.153643
http://www.ncbi.nlm.nih.gov/pubmed/28679550
https://doi.org/10.1017/S0954579412000867
http://www.ncbi.nlm.nih.gov/pubmed/23398749
https://doi.org/10.1159/000072221
http://www.ncbi.nlm.nih.gov/pubmed/12970583
https://doi.org/10.1097/00004583-200202000-00014
https://doi.org/10.1097/00004583-200202000-00014
http://www.ncbi.nlm.nih.gov/pubmed/11837410
https://doi.org/10.1111/j.1601-183X.2006.00233.x
https://doi.org/10.1111/j.1601-183X.2006.00233.x
http://www.ncbi.nlm.nih.gov/pubmed/16716200
http://www.ncbi.nlm.nih.gov/pubmed/1476327
https://doi.org/10.1371/journal.pone.0194968

