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SUMMARY

In schizophrenia, brain-wide alterations have been
identified at the molecular and cellular levels, yet
how these phenomena affect cortical circuit activity
remains unclear. We studied two mouse models of
schizophrenia-relevant disease processes: chronic
ketamine (KET) administration and Df(16)A+/�,
modeling 22q11.2 microdeletions, a genetic variant
highly penetrant for schizophrenia. Local field poten-
tial recordings in visual cortex confirmed gamma-
band abnormalities similar to patient studies. Two-
photon calcium imaging of local cortical populations
revealed in both models a deficit in the reliability of
neuronal coactivity patterns (ensembles), which
was not a simple consequence of altered single-
neuron activity. This effect was present in ongoing
and sensory-evoked activity and was not replicated
by acute ketamine administration or pharmacoge-
netic parvalbumin-interneuron suppression. These
results are consistent with the hypothesis that
schizophrenia is an ‘‘attractor’’ disease and demon-
strate that degraded neuronal ensembles are a com-
mon consequence of diverse genetic, cellular, and
synaptic alterations seen in chronic schizophrenia.

INTRODUCTION

Understanding of the neurobiology of schizophrenia (SZ) has

progressed considerably over the past several decades.

Research in human subjects with SZ has identified altered neu-

romodulation, excitatory/inhibitory balance, and neurodevelop-

mental processes at the molecular, synaptic, and single-cell

levels (Lewis, 2014; Poels et al., 2014). In parallel, altered

network connectivity and functional synchrony have been

described in SZ at the whole-brain level (Uhlhaas and Singer,

2010; Yang et al., 2014). However, these alterations have not

been connected into a coherent pathophysiology, and the het-

erogeneity and non-specificity of these biomarkers within and

across multiple psychiatric diagnostic groups have complicated

attempts (Clementz et al., 2016).
Perhaps at the heart of this issue is the possibility that the

fundamental neural deviations that set SZ apart from other

neuropsychiatric syndromes are best understood not at

elemental (proteins and single neuron) or global levels (gross

anatomy and fMRI), but at the circuit level (Arguello and Gogos,

2012; Sigurdsson et al., 2010) and within the stable dynamics of

intricately connected, local neocortical populations (Rolls et al.,

2008; Wang and Krystal, 2014). For instance, recent work in

rodents has shown that local populations of neurons in both

sensory and association regions exhibit repeating patterns of ac-

tivity made up of multineuronal ‘‘ensembles,’’ coactive groups of

neurons (Hebb, 1949) that are conserved across brain states and

stimulation paradigms (Carrillo-Reid et al., 2015, 2016; Harvey

et al., 2012; Luczak et al., 2009; Miller et al., 2014). These obser-

vations support the hypothesis that neural circuits have evolved

to build emergent functional states, such as ‘‘attractors,’’ con-

sisting of stable or semistable, recurrent activity patterns that

would theoretically underlie thoughts, perception, and action

(Hopfield, 1982; Yuste, 2015).

It is therefore plausible that in SZ, a diversity of lower-level mo-

lecular or synaptic alterations could generate a systematic disor-

ganization of local cortical ensembles, effectively destabilizing

otherwise reliable activity patterns present within neocortical

networks. In fact, in SZ patients, alterations in the functional dy-

namics of global networks have been inferred from changes in

interregional BOLD signal correlations (fMRI) and oscillatory

coherence (EEG) (Lo et al., 2015; Uhlhaas and Singer, 2010;

Zhu et al., 2016), providing some evidence for a circuit patho-

physiology at the macroscale. Albeit very informative, such

whole-brain methods provide only gross estimations of activity

within local regions of the cortex, essentially averaging across

the activity of tens to hundreds of thousands of neurons in a sin-

gle measurement and thus lacking the single-neuron resolution

that may be critically necessary to differentiate and assess the

robustness of repeating ensemble activations in local territories.

Indeed, a degradation of consistent synchrony among local

ensembles could undermine the robustness of signaling within

larger brain networks and underlie macro-level network abnor-

malities. At the behavioral level, spontaneously active and in-

consistently stimulus-driven ensembles or ‘‘attractor’’ patterns

could explain positive symptoms (perceptual distortions, halluci-

nations, and loose associations), while internally driven patterns,

which are unstable and highly susceptible to distraction, could

account for cognitive deficits (Rolls et al., 2008).
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Though theoretically powerful, empirical evidence for this

pathophysiological framework at the circuit local level is lacking.

To directly study themultineuronal dynamics of cortical microcir-

cuits, we performed two-photon calcium imaging (2P-Ca2+), a

method enabling stable, long-term observation of single-cell

spiking activity and patterned coactivations (ensemble activa-

tions) across local populations of neurons simultaneously in

awake mice (Cossart et al., 2003; Stosiek et al., 2003; Yuste

and Katz, 1991). We first induced an SZ-relevant brain state in

mice using the well-established ketamine (KET) pharmacological

approach (Behrens et al., 2007). In humans, acute blockade of

N-methyl D-aspartate glutamate receptors (NMDARs; with,

e.g., KET) consistently induces positive, negative, and cognitive

symptomology of SZ (Krystal et al., 1994). While neither an acute

nor a chronic KET model can be said to produce SZ in mice, the

chronic KETmodel recreates numerous SZ-relevant phenotypes

at multiple functional levels (Behrens et al., 2007; Phoumthip-

phavong et al., 2016). Indeed, in mice, chronic (7–14 days) sub-

anesthetic KET not only affects NMDAR neurotransmission, but

recapitulates key SZ pathophysiology, including alterations in

parvalbumin-containing (PV) interneurons (Behrens et al.,

2007), gamma oscillations (McNally et al., 2013; Sullivan et al.,

2015), dopaminergic levels and gene expression (Chatterjee

et al., 2012), dendritic spines (Phoumthipphavong et al., 2016),

and cognition (Featherstone et al., 2012).

In addition, we examined neocortical ensemble dynamics in a

mouse model of significant genetic risk for SZ. Deletions in the

22q11.2 portion of the human chromosome result in sporadic

cases of SZ in 30% of carriers, a penetrance that is among the

highest of all known risk genotypes for the disease (Hiroi et al.,

2013). Like other high-penetrance genetic risk factors, this muta-

tion nevertheless accounts for a small proportion of the SZ pop-

ulation (approximately 1% of cases). But, importantly, individ-

uals with SZ due to this genetic variant are phenotypically

identical to the rest of the SZ population (Karayiorgou et al.,

2010), sharing not only symptomology but also gray matter alter-

ations (Jalbrzikowski et al., 2013) and functional connectivity im-

pairments (Scariati et al., 2016). This critical section of the

genome carries around 25 genes expressed in the forebrain con-

trolling dopamine catabolism (COMT), microRNA production

(DGCR8), and axonal growth (RTN4R and ZDHHC8), among

others (Karayiorgou et al., 2010). Genetically engineered

Df(16)A+/� mice carry deletions syntenic to 22q11.2 deletions

and recreate a mosaic of SZ pathophysiology, including deficits

in cortical parvalbumin interneurons, dendritic spine stability

(Fénelon et al., 2013), and axonal branching (Mukai et al.,

2015), as well as impairments in synaptic plasticity (Fénelon

et al., 2013) and hippocampal-prefrontal synchrony-supported

working memory (Sigurdsson et al., 2010). By comparing adult

Df(16)A+/� mice (>P60; postnatal day 60) to their wild-type

(WT) littermate controls, we examined whether and how multi-

neuronal dynamics in sensory cortices are altered in this model

of SZ risk, and how such alterations compare to the KET model.

Our study examined local circuit activity in primary visual cor-

tex (V1). Despite traditional focus on prefrontal cortex, cell- and

subcellular-level pathophysiology in psychotic disease is actu-

ally cortex-wide (Glantz and Lewis, 2000; Hashimoto et al.,

2008; Uhlhaas and Singer, 2010). Moreover, visual processing
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abnormalities in particular are robustly reported in patients

(Spencer et al., 2004; Uhlhaas and Singer, 2010) and visual

perceptual disturbances are actually more common than audi-

tory sequelae in first episode patients and prodromal individuals

(Javitt, 2009). Given recent progress in understanding functional

properties (Niell and Stryker, 2008) and SZ biomarkers in mouse

visual cortex (Hamm and Yuste, 2016), we reasoned this cortical

area, which can be rigorously studied given its sensory accessi-

bility, could provide potent translational inroads to understand-

ing local cortical circuit dysfunction.

We find that both models produced deficits in stimulus-eli-

cited gamma power similar to those reported in sensory

cortices of human SZ patients (Spencer et al., 2004; Uhlhaas

and Singer, 2010). Increased single-neuron activity and back-

ground spectral power, a less consistent finding in SZ (Hamm

et al., 2014; Moran and Hong, 2011), were only observed in

KET mice. But neuronal ensembles were abnormal in both

models, with a systematic disorganization wherein the pres-

ence of distinct ensembles became less pronounced and

recurring ensemble activations became less reliable over time.

Importantly, acute NMDAR blockade and pharmacogenetic

suppression of PV interneurons (using inhibitory hM4D(i)

‘‘DREADDs’’; designer receptors exclusively activated by

designer drugs), both components of the chronic KET model,

disinhibited neuronal activity but were incapable of recreating

higher-order changes. Ensemble-level disorganization in KET

and Df(16)A+/�was present in both ongoing and visually evoked

activity, supporting the shallowed neocortical ‘‘attractor’’ land-

scape hypothesis of SZ (Rolls et al., 2008). Thus, our results

show that two distinct chronic manipulations modeling key

aspects of SZ risk and/or synaptic dysfunction generate

changes in functional circuit ensembles rather than simple alter-

ations in activity levels or functional connectivity, thus providing

a bridge between the pathophysiology of single neurons and

networks in a psychiatric disease.

RESULTS

KET and Df(16)A+/– Models Reproduce
Electrophysiological Phenotypes of SZ
To explore potentially altered dynamics of cortical circuits in the

pathophysiology of SZ, we used mice treated with chronic KET

orDf(16)A+/�mutants and performed all measurements in awake

animals. Subanesthetic levels of KET (60 mg/kg/day) or an

equivalent volume of saline (SAL) continuously (1 mL per hour)

was administered for 1 week with a subcutaneously implanted

osmotic minipump (Alzet, model 2001). Mutant Df(16)A+/� mice

were generated as in Stark et al. (2008). We first habituated

mice to awake head fixation on a rotating wheel allowing free

movement and recorded local field potentials (LFPs) from layer

2/3 of V1. We focused on oscillatory activity at baseline and dur-

ing the presentation of full-field grating stimuli. Frequency and

time-frequency spectra were first segregated with principal

component analysis (PCA) into five bins (Hamm and Yuste,

2016; Hamm et al., 2014) that conformed well to established

neocortical frequency bands (Buzsaki, 2009): low/theta/alpha

(1–14 Hz), beta (15–35 Hz), gamma1 (36–58 Hz), gamma2 (62–

110 Hz), and high (>111 Hz).



Figure 1. Abnormal Electrophysiology in KET and Df(16)A+/– Mice

LFP recordings from mouse V1 layer 2/3.

(A) Baseline power spectra corrected for 1/f component.

(B) The waveform of the initial event-related potential (LFP averaged over trials).

(C and D) Stimulus-induced gamma power time-frequency spectra (C), averaged over the first 500 ms (D).

(E–H) Baseline spectra (E), event-related potentials (F), time frequency (G), and induced power spectra (H) plotted for Df(16)A+/� mice versus WT (*p < 0.05, two-

tailed; all spectra/lineplots averaged over all mice; nsal = 7, nket = 6, ndf16 = 8, ncontrol = 5 mice; error bars reflect SEM across mice).
Relative to SAL controls (n = 7), KET mice (n = 6) exhibited a

trend-level broadband increase in baseline spectral power in

the high gamma band (PCA-defined gamma2, 62–110 Hz;

t(11) = 1.81, p = 0.09). Df(16)A+/� (n = 8) mice, compared to their

WT littermates (n = 5), did not show an increase in background

spectral power at any frequency (Figures 1A and 1E; all p >

0.10; number of mice used is the same for all LFP comparisons

for all conditions). But during visual stimulation a significant

decrease in sensory-elicited gamma power was observed both

in KET (first 500 ms post-stimulus onset; gamma1 [36–58 Hz],

t(11) = 2.48, p < 0.05; gamma2, t(11) = 2.21, p < 0.05; Figures

1B–1D) and Df(16)A+/� mice (gamma1, t(11) = 2.04, p = 0.06;

gamma2, t(11) = 3.17, p < 0.01; Figures 1F–1H). Similar trends

were observed for gamma-band inter-trial phase coherence

(ITC), a measure of phase consistency of stimulus-induced

oscillations (although ITC values were relatively low above

40 Hz; see Figure S1 and details in caption). Neither KET nor

Df(16)A+/� mice showed obvious alterations in arousal, as evi-

denced by similar locomotion rates (Figures S1E and S1F;

tKET(11) =�0.12; p < 0.90; tDf16(11) =�1.35, p = 0.20) and similar

distributions of spectral power across low (<15 Hz)- and gamma/

high-frequency bands (>35Hz; Figures 1A, 1E, S1A, and S1B; ra-

tio, tKET(11) = �0.14, p = 0.89; tDf16(11) = �0.25, p = 0.81; Harris

and Thiele, 2011; Vinck et al., 2015). This held true when spectra

were normalized by average overall power (ostensibly; 0.5–

120 Hz; Figures S1C and S1D; reflecting ‘‘relative’’ power). Post

hoc examination of these relative power spectra demonstrated

a decrease specifically at the theta peak (6.5–7 Hz) in Df(16)A+/�

(t(11) = 2.21, p < 0.05), but not KET, mice (t(11) =�1.04, p = 0.32).

Alterations in prefrontal-hippocampal theta coherence have been

previously reported in Df(16)A+/� mice (Sigurdsson et al., 2010),

and these effects begin to suggest that such abnormalities could

extend to other neocortical regions.

Deficits in stimulus-driven gamma power are relatively consis-

tent in patients (Brenner et al., 2009; Uhlhaas and Singer, 2010),
especially when passive, simple paradigms and large samples

are studied (Hamm et al., 2014). While alterations in broadband

spectral power at baseline have been reported in KET models

in rodents (Kocsis et al., 2013), such increases are inconsistent

across other pharmacological and genetic models of SZ (Feath-

erstone et al., 2015; Sullivan et al., 2015), and similar observa-

tions, as well as changes in relative theta power, in SZ are

present but variable (Clementz et al., 1994; Hamm et al., 2014;

Hirano et al., 2015). In general, dysregulation of gamma-band

dynamics and signal to noise ratio, rather than a simple increase

or decrease, is a more consistent finding in SZ (Moran and Hong,

2011), and both models recapitulate this deficit in a primary sen-

sory cortex.

KET, but Not Df(16)A+/–, Mice Show Increased Neuronal
Activity
To measure neuronal population activity with single-cell

resolution, we virally expressed genetically encoded calcium

indicators (GCaMP6) in layer 2/3 of left monocular V1 under

the synapsin promoter, which infects neurons broadly (Figure 2),

and imaged populations of 50–150 neurons from V1 in a 500 3

500 mm field of view through a surgically thinned skull (z3.5–

4.0 Hz; Figures 2A, 2B, and S2). We first focused on the sponta-

neous ‘‘ongoing’’ activity in the absence of direct stimulation (i.e.,

during awake rest). Multineuronal recordings have shown that

non-stimulus-driven (ongoing) activity is not only abundant in

sensory neocortical circuits, but shares a temporal and spatial

structure with stimulus-evoked activity (Luczak et al., 2009),

recapitulating an intrinsic ‘‘ensemble’’ vocabulary of neuronal

circuits (Carrillo-Reid et al., 2015; Miller et al., 2014) and poten-

tially supporting intrinsically generated mental states (Ji and Wil-

son, 2007).

Spontaneous calcium transients (putative action potential

bursts; Chen et al., 2013; Smetters et al., 1999; measured by

change in fluorescence, Df/f; Figures S3, 2C, 2G, and 2K) were
Neuron 94, 153–167, April 5, 2017 155



Figure 2. Abnormalities in Neuronal Activity and Correlations in KET and Df(16)A+/– Mice

(A and B) SD projection frame of virally driven GCaMP6s expression in local V1 populations (A) before and after 1 week of minipump-delivered KET or (B) in

22q11.2 microdeletion model mice (Df(16)A+/�) or WT littermate controls.

(C) Raw fluorescence traces (f) for single cells recorded during non-locomotive awake rest in a dark room before and after 1 week of SAL treatment.

(D) Average activity levels across cells (percent of frames showing significant increases in Df, a signature of firing; response normalized to mouse-wise mean

response pre-treatment).

(E and F) Histograms of pairwise correlated activity (similarity index), with a vertical dotted line indicating statistical cut-off for significantly correlated cell pairs (i.e.,

values to the right of cut-off are significant at p < 0.05) (E). Bar plot displaying average correlations over all cell pairs (F).

(G–N) Plots repeated for (G–J) chronic KET and (K–N) Df(16)A+/� (one-way ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001; neuronal populations from nsal = 6, nket = 6,

ndf16 = 7, ncontrol = 7 mice; error bars reflect SEM across cells/cell pairs).
quantified in active layer 2/3 neurons before and after 1 week of

KET (n = 7 mice [6 for rest]; 434 cells pre-treatment [pre], 438

cells post-treatment [post]) or SAL control (n = 7 mice [6 for

rest]; 436 cells pre, 443 cells post; Figure S2) or in Df(16)A+/�

mice (n = 7 mice; 336 cells) or their WT littermates (n = 7 mice;

408 cells. These animal/cell counts were used for all resting-

state analyses, including single-cell, pairwise, and ensemble.).

When analyses focused on and were pooled across individual

neurons, we found that KET increased the average Df/f during

non-locomotive rest (Finteraction(1,1716) = 3.73, p < 0.05;

FKET(847) = 8.17, p < 0.01; FSAL(869) = 0.22, p = 0.69). This effect
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became more dramatic when analyses were limited to cells

measured on consecutive weeks (see Supplemental Informa-

tion; Figures S4A and S4B; FKET(146) = 20.61, p < 0.001), and

this analysis enabled a direct comparison of absolute flores-

cence values and dynamics (which vary between cells and

mice due to natural [i.e., intrinsic firing rate] or artificial reasons

[i.e., viral expression, skull thickness, or depth of imaging plane]).

In KET mice, the frequency of calcium transients did not change

(Finteraction (1,264) = 0.77, p = 0.38), but the average size of cal-

cium transients increased (Finteraction (1,264) = 42.13, p < 0.001;

FKET(1,146) = 28.51, p < 0.001). Interestingly, relative baseline



activity levels in individual cells did not increase evenly across all

neurons (pre- versus post-correlation KET, r = 0.22, p = 0.04;

SAL, r = 0.52, p < 0.001; Fisher r-to-z = 2.71, p < 0.01; Fig-

ure S4C). This non-uniform increase is consistent with previous

reports using acute PCP injection in rats (another NMDAR antag-

onist) (Kargieman et al., 2007), but as others recorded one

neuron per animal, they could only infer this population-level

effect.

Df(16)A+/� mice, on the other hand, did not show a significant

change in single-neuron activity levels at rest when compared to

littermate WT controls (F (1,742) = 1.66, p = 0.19; Figure 2L).

These effects showed a similar pattern as analyses of back-

ground LFP spectral power, suggesting that increased gamma

EEG power observed in SZ visual cortex (Venables et al., 2009)

could reflect an increase in neuronal spiking in superficial

neocortex. Further, KET mice in our study showed an increase

in single-neuron calcium transient size, but not frequency,

echoing again LFP studies in NMDAR-hypofunction mice report-

ing increased LFP gamma-burst magnitude, but not frequency

(Carlén et al., 2012).

Disorganization of Population Activity in KET and
Df(16)A+/– Mice
Calcium imaging in awake mice enables an examination of the

functional relationships and recurrent patterns of activity present

in local neuronal populations that are not accessible with LFP

(Harvey et al., 2012; Miller et al., 2014). We first sought to deter-

mine whether either model showed a simple increase or

decrease in coactivity among local neurons by examining the

average pairwise ‘‘similarity’’ between all neuron pairs (i.e., esti-

mating the proportion of shared or synchronous calcium events

across time; see STAR Methods). In histograms combined

across all mice and all cell pairs, both models (but not SAL) ap-

peared to show a positive shift in the distribution toward higher

similarity values (Figures 2L–2N). However, these differences

were not significant: using a frame shuffling procedure (which

maintained the activity level and pattern of each individual

neuron), we determined that the proportion of ‘‘significantly’’

similar or putatively functionally correlated cell pairs (actual

similarity greater than 99% of shuffled values) for each mouse/

circuit was neither increased nor decreased after SAL or KET

(Finteraction(1,10) = 1.92, p = 0.20), or in Df(16)A+/� (F (1,10) =

0.85, p = 0.37), even though average cell-cell similarity values

were increased in both models (Finteraction(1,132762) = 284, p <

0.0001; FKET(1,65954) = 446.4, p < 0.001; FSAL(1,66812) = 1.90,

p = 0.16; Fd(f16)A+/�(1,44210) = 76.0, p < 0.001; Figures 2F, 2J,

and 2M).

This analysis suggested potential alterations at the ensemble

or network level, but it was not clear from average pairwise

synchrony alone whether and how ensembles of three or

more neurons or network activity patterns are affected. For

instance, when observed en masse, cortical circuits cycle be-

tween relatively quiescent periods and periods of synchronized

activity (Miller et al., 2014). The latter consists of distinct

groups of coactive neurons, or ensemble activations, which

are neither constitutionally random nor perfectly uniform but

may reflect the recurrent activity of stable ‘‘attractor’’ states

that outline the computational building block of neuronal cir-
cuits (Carrillo-Reid et al., 2015; Hebb, 1949; Hopfield, 1982;

Luczak et al., 2009; Miller et al., 2014). Thus, to comprehen-

sively examine the effect of any manipulation on cortical circuit

dynamics, one needs to measure these population-level dy-

namics reliably.

To do so, we first identified and defined ‘‘ensemble’’ activa-

tions (or high population-coactivity states) statistically for each

imaging dataset as population coactivity above chance level

(Figures S5A–S5C; shuffling within neurons across time).

This analysis indicated that the frequency of such popula-

tion-wide events was not altered in either disease model (Fig-

ures S6A–S6C). To determine if ensembles were constitution-

ally different in these disease models, we also characterized

the instantaneous pattern of activity across all recorded

neurons for each ensemble activation (i.e., which cells are

active/inactive) as an n-dimensional vector (n = number of

neurons). We then quantified the consistency of these states

across subsequent ensemble activations using a ‘‘similarity in-

dex’’; i.e., a measure of the cosine of the angle between state

vectors, bound between 0 and 1 (1 = perfect similarity).

Smaller angles represent highly similar vectors and, thus,

points in time (or ensembles) with a highly similar constitution

or distribution of local population activity (and a high similar-

ity index).

In SAL-treated and WT animals we found, as previously re-

ported (Miller et al., 2014), ensemble activations with similarity

values far exceeding chance levels (similarity index; SI > 0.36–

0.41 based on within-frame shuffling; see STAR Methods; Fig-

ures 3A, 3B, 3E, 3F, S5D, and S5E). Df(16)A+/� and KET mice,

however, displayed a significant decrease in state-state similar-

ity, as though ensemble activity was not driven by stable groups

of coactive neurons but instead by continuously variable or

random activity states (Figures 3C, 3D, 3G, and 3H). This was

reflected in an �35% decrease in ensemble ‘‘reactivations’’

across mice/circuits measured (Finteraction(1,10) = 4.98, p <

0.05; FKET(1,5) = 8.01, p < 0.05; tSAL(1,5) = 0.02, p = 0.90;

Fd(f16)A+/�(1,12) = 6.00, p < 0.05; Figures 3I–3K). A comparison

of population activity patterns pre- and post-treatment showed

that while SAL mice displayed many ensembles (Figure S6D)

and/or recurrent population dynamics that repeated even after

1 week (PCA; Figures S6D and S6E), KET mice largely did not

(Figures S6F and S6G), suggesting that the local neuronal

ensembles that are otherwise stable over time within a circuit

(Carrillo-Reid et al., 2016) are disrupted in KET and Df(16)A+/�

(Figure S6 displays data from one representative SAL mouse

and one KET mouse exhibiting >40 re-identifiable neurons

across weeks).

Further analyses using k-means clustering revealed that in

control animals, ensemble activations appeared to consist of a

small number of semi-stereotyped unique ‘‘states’’ (rather than

one all-inclusive state; Figures 4A–4H), suggestive of distinct

‘‘basins of attraction’’ in the cortical network (Figure 4O; Rolls

et al., 2008) or motifs of activity (Luczak et al., 2009) made up

of recurrent pattern coactivation (ensembles) and co-suppres-

sion (decorrelated cell pairs). Interestingly, the distinctness of

these patterns appeared to be altered after KET and in

Df(16)A+/� (Figures 4B, 4D, 4F, and 4H). To quantify this at the

group level, we performed a variant of the ‘‘gap test’’ (Clementz
Neuron 94, 153–167, April 5, 2017 157



Figure 3. Unreliable Ensemble Activity in KET and Df(16)A+/– Mice

(A and B) Raster plot of single-neuron activity from one mouse during statistically defined ensemble activations (A) and a frame-by-frame matrix of similarity (B)

(SI; symmetric along diagonal) demonstrating reoccurring population-wide activity patterns (>60% similarity) are depicted alongside the spatial distribution (left)

of one repeating ensemble.

(C–H) Plots are repeated for (C and D) chronic KET and (E–H) in the Df(16)A+/� model.

(I–K) Histograms of SI from all state-state pairs along with inset barplots depicting proportion of statistically similar ensemble activations (p < 0.01) for (I) SAL, (J)

KET, and (K) Df(16)A+/� (neuronal populations from nsal = 6, nket = 6, ndf16 = 7, ncontrol = 7 mice; error bars reflect SEM across mice; I and J reflect within-subject

SEM across mice [i.e., pre- versus post-]).
et al., 2016; Yan and Ye, 2007) using k-means analyses with k =

2–15. As the number of fitted cluster centroids (‘‘k’’) increases,

the within-cluster distances necessarily decrease. The degree

to which an added centroid reduces distances approached

zero and became linear between 4 and 7, suggesting that in local

populations of �75 neurons, one can expect 4–7 distinct pat-

terns of activity to recur during 20 min of rest (similar to previous

measurements; Carrillo-Reid et al., 2015). In general, KET and

Df(16)A+/� mice showed higher within-cluster distances (Figures

4I–4K) and significantly smaller reductions of within-cluster dis-

tances with the inclusion of additional clusters in themodels (Fig-

ures 3L–3N; Fket(1,10) = 5.33, p < 0.05; Fdf(16)A+/�(1,12) = 4.40,

p < 0.05).

Our results are consistent with the hypothesis that bothmouse

models of SZ demonstrate an essential disorganization of

ensemble activity rather than, for instance, an increased number

of ensembles or network patterns. This degradation of neuronal

ensembles was present in both models of SZ pathophysiology

and/or genetic risk despite differences at the LFP, single-neuron,

or pairwise connectivity levels (Figure 8A).
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Abnormal Ensembles Reflect Chronic Alteration of
Neocortical Circuits
Although psychotic episodes can appear transiently in psychi-

atrically healthy individuals, due to drug use or sleep deprivation,

for example, SZ is a chronic disorder with persistent deficits in

cognition and information processing that even precede the first

psychotic episode for years (Kahn and Keefe, 2013). Because of

this, we next explored whether the disorganization of functional

neuronal ensembles identified in KET and Df(16)A+/� mice could

reflect chronic pathological changes to brain function or whether

more transient disruptions in neurotransmission could also

generate these effects. First, we tested whether a single dose

of subanesthetic KET could affect ensemble activity. In addition

to eliciting transient SZ-like positive, negative, and cognitive

symptomology in humans (Krystal et al., 1994), acute subanes-

thetic doses of KET induce hyperlocomotion, electrophysiolog-

ical, and other behavioral abnormalities in rodents (Amann

et al., 2010; Kocsis et al., 2013). To test this, we repeated

2P-Ca2+ imaging experiments described above, measuring local

neuronal ensembles during awake rest in an additional set of



Figure 4. Disorganized Ensemble Activity in KET and Df(16)A+/– Mice

(A and B) k-means clustering (k = 3) on spontaneous ensemble activations (A), plotted in principal component space (B) (first three PCs) from example mice,

demonstrates internally reliable and externally distinct repeating states, or putative ‘‘ensembles.’’

(C–H) Post-KET (C and D) and in 22q11.2 model (E–H).

(I–N) k-means was repeated across for k = 2–15 plotting (I–K) within-cluster distances and (L–N) decreases of within-cluster distances with added clusters

(neuronal populations from nsal = 6, nket = 6, ndf16 = 7, ncontrol = 7 mice; error bars reflect SEM across mice; I, J, L, and M reflect within subjects SEM across mice).
mice at baseline, after SAL injection, and after 15 mg/kg subcu-

taneous KET injection (n = 7 mice, 332 cells pre and post; 30 min

after injection). As expected, a single treatment of subanesthetic

KET (but not an equivalent volume of SAL) increased locomotion

(Figure 5A; F(2,6) = 8.92, p < 0.01; F base versus ket (1,6) = 6.96, p <

0.05). Although hyperlocomotion is not equivalent to any symp-

tom of SZ or psychosis in humans (which can even involve amo-

tivation, apathy, and reduced engagement in activities), it is a

well-replicated effect in acute KET studies of mice, and our

observation of this effect evinces the effectiveness of our

paradigm. Acute KET also disinhibited ongoing activity when

compared to baseline (during non-locomotive frames; Figure 5B;

F(2,662) = 14.8, p < 0.001; F base versus ket (1,171) = 11.56, p <

0.001), but pairwise correlations (Figure 5C; F(2,6) = 1.1, p =

0.35) and, importantly, the reliability of ongoing ensemble activa-

tions were clearly unaltered (Figure 5D; (F(2,6) = 2.10, p = 0.17;

KET slightly but non-significantly higher than baseline).

In addition, it has been shown that both the KET and

Df(16)A+/� models induce anatomical alterations in PV interneu-

rons (Behrens et al., 2007; Fénelon et al., 2013), a well-estab-

lished cortex-wide abnormality in human SZpatients (Hashimoto

et al., 2008). GABAergic pathophysiology is not limited to PV in-

terneurons in SZ (e.g., somatostatin-containing and cholesysto-

kinin-containing interneurons also show changes; Fung et al.,

2014), but given their dense local connectivity in neocortical cir-

cuits (Fino and Yuste, 2011) and their known role in modulating

fast network synchrony (Sippy and Yuste, 2013; Sohal et al.,

2009), it has been hypothesized that PV interneuron dysfunction
in particular may play a primary causal role in disrupting cortical

computations underlying sensory processing and cognition

(Javitt and Freedman, 2015; Lewis, 2014). In control experiments

in the current study, using Pv:Cre::tdTomato mice, which ex-

press a red fluorescent indicator in PV interneurons enabling sta-

ble recording of calcium dynamics (Figure S7A), we confirmed in

a subset of mice (n = 7; 56 cells) that activity levels in PV interneu-

rons in V1 were stable a week after SAL but decreased after

chronic KET (Figures S7B–S7E; see STAR Methods for detailed

analyses and results). Because of this, we further sought to

address whether transient decreases in local PV interneuron ac-

tivity alone could affect ensemble activity and explain our popu-

lation-level results.

Inhibitory DREADD channel hM4Di functionally silences host

cells primarily through the suppression of synaptic current

amplitude and release (Roth, 2016). Using awake pharmacoge-

netic suppression protocol methods (Hamm and Yuste, 2016;

Jackson et al., 2016) we virally expressed hM4Di specifically

in PV interneurons using the cre-lox system (Sohal et al.,

2009) and recorded LFPs and 2P-Ca2+ dynamics before and

after subcutaneous injection of clozapine N-oxide (12 mg/kg

CNO; a typically inert ligand that activates hM4Di) in PV-

hM4DImice (n = 7mice; 429 cells pre, 396 cells post) or controls

(n = 5 mice; 356 cells pre, 349 cells post). DREADD suppression

of local PV interneurons in the current study did not alter

locomotion (Figure 5E), but as expected, PV interneuron

suppression generally increased average Df/f values in the local

population (Figure 5F; FPVhM4D(1,824) = 18.49, p < 0.001;
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Figure 5. Acute KET and Interneuron Suppression Do Not Affect Ensemble Reliability

(A and B) Expected increases in (A) locomotion frequency (percent of frames recorded during locomotion) and (B) single-neuron activity were observed after

15 mg/kg acute KET compared to SAL control (332 cells base, post-SAL, post-KET).

(C and D) Functional correlations among all neuron pairs (C) and consistency of ensemble activations (D) were unaltered after acute KET, as population states

repeated within and across (gray box) treatment periods (each 20 min).

(E–H) CNO control experiments (mice injected only with GCaMP6; above; 356 cells pre, 349 cells post) are compared to DREADD suppression (hM4D(Gi); 429

cells pre, 396 cells post) of parvalbumin-containing (PV) interneuron experiments. (E) Locomotion was not affected but (F) single-neuron activity and (G) the

proportion of significantly coactive neuron pairs increased. (H) Ensemble activations nevertheless maintained reliable patterns of activity across time (*p <

0.05;***p < 0.001; one-way ANOVA; loco/neuronal populations from nket = 7, npv-hM4D = 7, ncno-control = 5mice; error bars reflect within-subject SEM acrossmice; B

and F reflect within-cell SEM across cells).
Fcontrol(1,706) = 0.88, p = 0.34). The proportion of correlated cell

pairs showed a clear increase after PV interneuron suppression

(F PVhM4D(1,6) = 6.64, p < 0.05; Fcontrol (1,4) = 0.09, p = 0.77; Fig-

ure 5G) and a more straightforward change in population coac-

tivity than in the chronic models. It is important to point out that

while PV interneurons may facilitate short timescale spike syn-

chrony, organizing spike timing in coactivated neurons by sup-

porting gamma-band oscillations (Sohal et al., 2009), our effect

indicates that shared variations in firing rates between neurons

over longer time courses (seconds to minutes) are suppressed

or modulated by PV interneurons, an effect that converges

with previous experiments in thalamocortical slices (Sippy and

Yuste, 2013). Further, this increase in pairwise correlations

was nevertheless not accompanied by any change in ensemble

reliability, as the number of significant framepairs (state repeats)

was again unchanged (F PVhM4D(1,6) = 0.27, p = 0.62; Fcontrol

(1,4) = 0.09, p = 0.77; Figure 5H).

Thus, NMDAR blockade or local PV interneuron suppression

was sufficient to disinhibit neurons at similar levels as chronic

KET, increase locomotion, and/or alter correlations between

local neuronal pairs, but neither manipulation disrupted the reli-
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ability of local ensemble activity. Altogether this suggests that

chronic models of SZ and potentially the disease itself involve

a breakdown of stable neocortical activity patterns, and this

disruption is beyond the effects that short-term disruptions in

local excitatory/inhibitory balance have on local circuit function.

Further, our results challenge the notion that any disruption of

excitatory or inhibitory neurotransmission can disrupt existing

ensemble patterns in the cortex, and emphasize that ensemble

disorganization is not a simple computational or mechanistic

consequence of alterations in single-neuron activity or average

correlation values. Like our results, past studies have shown

acute blockade of NMDARs is sufficient to disinhibit brain activ-

ity and cause other transient sensory and cognitive disturbances

(Kargieman et al., 2007; Yang et al., 2014), perhaps through a

suppression of GABAergic cells in the thalamic reticular nucleus

(Kargieman et al., 2007). Yet chronic mouse models of KET and

genetic mouse models of SZ involve longer-lasting changes to

dendritic spine stability and local inhibitory interneuron popula-

tions (Behrens et al., 2007; Featherstone et al., 2012; Fénelon

et al., 2013), and these changes may together give rise to a last-

ing disorganization of local neuronal ensembles.



Figure 6. Sensory Stimulus-Evoked Responses and Pairwise Variability Are Altered in KET and Df(16)A+/– Mice

(A–F) Orientation selectivity (OSI) (A) and trial-averaged response curves (B) from visually responsive neurons from SAL-treated mice (pre versus post, n = 631

total cells), chronic KET-treated mice (pre versus post, n = 596) (C and D), and Df(16)A+/� mice (E and F) compared to littermate controls (n = 582).

(G–J) Shared variability among neuron pairs across presentations of the same stimulus (G) (‘‘noise correlations’’; same cells from A) varied with respect to the

orientation preference similarity of neuron pairs (H) and was not affected by KET (I and J).

(K and L) Df(16)A+/� mice, on the other hand, showed an increase in noise correlations among all neuron pairs in the local population regardless of whether they

shared stimulus preferences.

Line plots reflect average cell responses relative to their preferred stimulus (pre-treatment, B and D; within mouse, F), and/or including only cells with >0.1 OSI

(H, J, and L) (*p < 0.05; one-way ANOVA; nsal = 6, nket = 6, ndf16 = 7, ncontrol = 7 mice; error bars reflect SEM across cells/cell pairs).
Ensemble-Level Dysfunction during Visual Stimulation
in KET and Df(16)A+/–

Finally, we inquired whether the functional disorganization of

neuronal ensembles we observed in KET and Df(16)A+/� was

specific to ongoing or awake ‘‘rest’’ activity, suggesting a princi-

ple abnormality of intrinsic activity (Whitfield-Gabrieli and Ford,

2012), or perhaps also extended to stimulus-elicited brain states,

suggesting a more general circuit pathology. If so, this would

suggest a deficit in externally driven information processing,

possibly accounting for persistent perceptual deficiencies in

SZ (Javitt and Freedman, 2015).

As above, we first examined single-neuron activity, pairwise

correlations, and ensemble-wise functional characteristics in

V1 circuits in both models, but not during visual stimulation.

We presented awake mice with 3 s, square wave moving

gratings (100% contrast, 0.04 cycles per degree, 2 cycles per

second, 7–8 s gray screen interstimulus interval) of six different

orientations (0, 30, 60, 90, 120, and 150 degrees; 10–14 repeats

each). V1 neurons respond selectively to contours of particular

orientations in their visual field and this selectivity can be quan-

tified by the orientation selectivity index, OSI (Niell and Stryker,

2008) (Figures S2F and S2H). In our study, neurons showing sig-

nificant stimulus-driven activity (average stimulus-induced DF

greater than 1.67 SD above baseline fluctuation; Hamm and

Yuste, 2016; 70%–75% of neurons) maintained the same

preferred stimulus orientation prior to minipump insertion and

1 week after for the SAL or KET treatment (Figure S8), but KET

mice showed significantly decreased quantitative OSI values

(nKET = 6 mice, 297/299 cells pre/post; nSAL = 6 mice, 320/311

cells; Finteraction(1,1223) = 8.4, p < 0.01; Fsal(1,629) = 1.25, p =

0.26; Fket(1,594) = 9.73, p < 0.01; Figures 6A–6C and S8).

Examining stimulus response curves demonstrated significant
increases in activity driven across all stimuli (Fweek(1,594) = 6.01,

p < 0.05; FweekBYorientation(11,594) = 0.77, p = 0.67; Figure 6D), sug-

gestive of a decrease in subtractive inhibition or gain modulation

(Lee et al., 2014), another effect consistent with PV interneuron

dysfunction seen in KETmice in the current study (Figure S7). Inter-

estingly, neurons from Df(16)A+/� mice did not differ from neurons

from littermate controls on OSIs (nDf(16)A+/� = 7 mice, 336 cells;

nWT = 7 mice, 246 cells; F(1,580) = 0.96, p = 0.32; Figure 6E) and

exhibited equivalent stimulus response curves that did not differ

(Figure 6F; Fgrp(1,580) = 0.94, p = 0.33; FgrpBYorientation(11,580) =

0.66, p = 0.77). Thus, similar to what was observed during

ongoing activity during awake rest, the KET model involved disin-

hibition at the single-neuron level while Df(16)A+/� mice showed

no such abnormality.

During sensory stimulation, neocortical circuits display dy-

namic changes in correlated activity among neuronal pairs

(Averbeck et al., 2006). While correlations arise necessarily

due to shared responses to an external stimulus (or ‘‘signal cor-

relation’’), an additional source of correlations is shared vari-

ability across otherwise similar events (Hofer et al., 2011). In

other words, individual neurons do not respond identically to

the same stimulus over and over, and when this variability is

shared among neurons in a local network, it is referred to as

‘‘noise correlation.’’ While the computational consequences

of noise correlation are debated and complex (Averbeck

et al., 2006), an excess amount of noise correlation could be

detrimental to reliable stimulus encoding (Cohen and Maunsell,

2009). Here we focused on noise correlation across stimulus

presentations (within the same orientation, then averaged

across orientations) within neuron pairs using similar methods

as previously reported (Hofer et al., 2011). While neither

SAL nor KET affected noise correlations (Fsal(1,26488) = 3.26,
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p = 0.08; Fket(1,21004) = 0.23, p = 0.97; Figures 6G–6J;

pairsKETpre = 12,600, pairsKETpost = 9,238, pairsSALpre =

13,894, pairsSALpost = 11,772; nKET = 6 mice; nSAL = 6 mice),

Df(16)A+/� showed abnormally increased average noise

correlations among all neuron pairs (Fgroup(1,15656) = 152.48,

p < 0.001; Figure 6K; pairsdf16 = 9,442, pairsWT = 6,282;

nDf(16)A+/� = 7 mice; nWT = 7 mice). As expected, noise correla-

tions were modulated by the similarity of the preferred orienta-

tion of neurons, with neuron pairs sharing the same preferred

orientation showing higher noise correlation than pairs with

opposite preferred orientations (focusing only on OSIs > 0.1;

Mazurek et al., 2014; pairs = 15,724; 14 mice; F(2,15656) =

88.79, p < 0.001). Although a significant group by orientation

interaction effect was present (F(2,15656) = 3.23, p = 0.03), it

was small relative to the group effect, which was substantial

regardless of whether neuron pairs shared orientation prefer-

ence (Figure 6L). Again, similar to effects seen during ongoing

activity, no change was seen in the proportion of significantly

noise-correlated neuron pairs present (F(1,11) = 1.39, p = 0.24).

While both KET and Df(16)A+/� showed some abnormalities in

stimulus-evoked activity in V1 at single- and pairwise neuronal

levels, the nature of these effects diverged, with KET showing

single-neuron disinhibition and Df(16)A+/� showing augmented

noise correlations. We next examined whether a clear deficit in

ensemble regularity could again serve as a downstream conver-

gence point for these distinct abnormalities in low-level visual

stimulus processing, similar to what we observed during ongoing

ensemble activity during awake rest. First we demonstrated that

stimulus-evoked ensembles showed relative consistency (signif-

icant similarity) during and across repeated presentations of the

same stimulus (i.e., grating orientation; Figures 7A and 7B, left

panel). This characteristic was attenuated after KET (Figures

7C and 7D) and in Df(16)A+/� mice relative to littermate controls

(Figures 7E–7H) in representative samples. Figures 7I–7L further

illustrate this effect using a PCA-derived projection of the multi-

neuronal state space onto three dimensions, showing that the

trajectory of the local population activity state during visual stim-

ulation is consistent within and distinct between orientation an-

gles (separate PCA for each condition using average trial data

and neurons as variables; each trial is a line; each orientation

angle is a different shade of gray). These properties were dimin-

ished in the disease models (Figures 7J and 7L). To quantify this,

we calculated the relative change in between-trial population

similarity (SI; see above) from baseline (pre-stimulus, 1 s), aver-

aging over the stimulus presentation period (3 s), and normalizing

it by the SD of similarity values derived from a bootstrapped

distribution of ‘‘random’’ similarity values derived by shuffling

each mouse’s population activity (Figure S5E). This generated

a Z score metric for each trial for each mouse.

As expected, cross-trial similarity varied as a function of orien-

tation difference between trials (i.e., trials with the same orienta-

tion evoke more similar population states than different orienta-

tions; Forientation(2,12) = 22.57, p < 0.001), yet some similarity

above chance 0 was shared even among non-similar orienta-

tions. These stimulus-evoked population states were stable

before and after SAL treatment (Figures 7D–7G; Fgroup (1,36) =

0.09, p = 0.77; nSAL = 6 mice) but became less reliable after

KET treatment (Figures 7D–7G; Fgroup (1,36) = 7.58, p < 0.05;
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nKET = 6 mice) and in the Df(16)A+/� mice (Fgroup(1,41) = 5.78,

p < 0.05; nDf(16)A+/� = 7 mice; nWT = 7 mice). A group by orienta-

tion interaction effect did not reach significance for either model

(p > 0.05). Thus, activity states in local populations of neurons

that encode visual stimuli are unreliably activated by external

stimuli in our mouse models, supporting the notion that a gener-

alized disorganization of functional neocortical ensembles could

undermine short-term memory processes and/or the stable en-

coding of the environment (Hopfield, 1982; Rolls et al., 2008),

providing a basis to explain the symptomology of SZ.

DISCUSSION

AlteredNeuronal Ensembles in TwoMouseModels of SZ
We examined here the functional dynamics of local cortical

circuits in two distinct models of SZ-relevant brain pathophysi-

ology: a pharmacological model (KET) and a genetic model,

which additionally offered construct validity by recapitulating in

mice a strong causal factor for the disease (i.e., 22q11.2

microdeletions).

At the level of LFPs, which offer a gross-level estimate of

cortical activity levels and broad-scale synchrony, these models

generally recreated one of the most established endopheno-

types of SZ (decreased stimulus-elicited gamma-band tran-

sients), but differed in the degree to which background activity

levels were augmented (Figure 8). Further, at the single-neuron

level, KET disinhibited neurons, leading to larger calcium tran-

sients and reduced orientation selectivity, while Df(16)A+/� did

not differ from their littermate controls. Next, at the average pair-

wise level (correlations), both models showed what appeared to

be a dysregulation of synchrony, but the nature of this change

was not straightforward, showing no change in strongly corre-

lated neuron pairs despite a change in mean ‘‘similarity values.’’

Correlations among cell pairs across repeated visual stimula-

tions, or ‘‘noise correlations,’’ also differentiated KET and ge-

netic models, wherein only Df(16)+/� showed augmentations.

Yet where these models converged was at the ensemble

level, when local multineuronal activity patterns were measured

across time. Both models showed a systematic decrease in

state reliability across ensemble activations at rest and during

direct visual stimulation. Importantly, this decrease was not a

simple consequence of shared single-neuron activity level

changes or strengthening/weakening of functional correlations,

since neither disinhibition nor orientation selectivity nor pairwise

correlations alone could predict the ensemble-level abnormal-

ities apparent only in our chronic models. Instead, our results

likely reflect a disorganization of emergent multineuronal

dynamics.

Chronic Manipulations Are Necessary for Altered
Ensembles
Acute KET blockade of NMDARs and pharmacogenetic sup-

pression of PV interneuron protocols employed in the current

study were sufficient to disinhibit neuronal activity at similar

levels as chronic KET, yet neither manipulation was sufficient

to disorganize ensemble-level activity like in our chronic models.

This finding is mechanistically informative in two ways. First,

local population activity patterns are stable in a healthy brain



Figure 7. Stimulus-Evoked Network States Are Altered Similarly in KET and Df(16)A+/– Mice

(A) Pre-treatment single-trial activity (Df) from individual cells (rows), averaged within trials (columns) and sorted by stimulus orientation.

(B) Cross-trial similarity matrix from trials in (A) (similarity index, SI).

(C–H) Same plots (C and D) after KET, (E and F) in littermate controls, and (G and H) in Df(16)A+/�.
(I–L) Population activity projected with PCA into three-dimensional space (each line is one trial; shade of gray denotes stimulus orientation). Similar ensemble

activations show similar line trajectories from origin.

(M–O) Average trial-evoked ensemble similarity (*p < 0.05, one-way ANOVA; neuronal populations from nsal = 6, nket = 6, ndf16 = 7, ncontrol = 7 mice; error bars

reflect within-subject SEM across mice; O reflects SEM across mice).
state (Figure S6D), but we have recently shown that with persis-

tent and direct perturbation at the microcircuit level, ensembles

in adult brains can be programed or ‘‘imprinted’’ (Carrillo-Reid

et al., 2016). Thus, while acute KETmay disinhibit neuronal activ-

ity, chronic NMDAR blockade or a genetic lesion (22q11.2micro-

deletions) additionally results in a persistent destabilization of

synapses and dendritic spines (Fénelon et al., 2013), essentially

deprogramming local ensembles that are the cortical building

blocks necessary for stable cognition. Indeed, many aspects

of SZ brain pathology involve deviant developmental trajectories
or exacerbation over time (Walterfang et al., 2008), so future

work could characterize ensemble organization across various

periods of development in relevant mouse models.

Second, it has been previously shown that chronic, but not

acute, NMDAR blockade is sufficient to alter local inhibitory

interneuron populations (PV interneurons; Behrens et al.,

2007), an effect that we replicate in the functional domain (Fig-

ure S7). PV interneurons play a critical role in organizing stim-

ulus-elicited local gamma synchrony and pairwise correlations

(Figure 5G; Sippy and Yuste, 2013; Sohal et al., 2009), yet our
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Figure 8. Summary of Effects and Model for Attractor Pathophysi-

ology of SZ

(A) LFP, cell-wise, pairwise, and ensemble-wise effects in both models

demonstrate that ensemble-level deficits are the most consistent across

models and conditions. Comparing to control animals, up arrows signify an

increase; down arrows a decrease; left/right a change in distribution; square is

no change.

(B) Iterative combination of k-means solutions across mice, where sponta-

neous ensemble activations were assigned to ‘‘clusters’’ based on cluster

sizes, and clusters were assigned to a specific location on a two-dimensional

PCA-derived map, organized spatially based on average inter-cluster dis-

tances within a group.

(C) Results after shuffling ensemble activations (across cells, 1,0003) indicate

that fully disorganized network activity would result in a single ‘‘default state’’

represented by a single Gaussian peak (dotted line on right).

(D–G) Control mice (pre-treatment/homozygous littermates), but not disease

model mice, showed a number of clear peaks, suggestive of attractors in the

network (neuronal populations from nWT = 7, nket = 6, ndf16 = 7 mice).
results suggest that suppressing PV interneurons alone is again

insufficient to produce the ensemble-level deficits seen in both

mouse models. This demonstration alone does not exclude a

causal role of PV interneuron in SZ. PV interneuron dysfunction

in the disease could play a developmental role, or, intriguingly,

the effect PV interneurons have on the network may even scale

nonlinearly with the degree of their suppression (e.g., partial sup-

pression disinhibits other interneuronsmore than pyramidal neu-

rons). Further, GABAergic pathophysiology in SZ is not limited to
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a simple decrease in PV interneuron activity, but involves com-

plex changes that may vary at the subecellular level depending

on the PV interneuron cell subtype (Lewis et al., 2012) and also

involves other subtypes including somatostatin and cholesysto-

kinin interneurons (Fung et al., 2014). Still, we provide some

evidence that changes and, in particular, long-term changes in

excitatory neurotransmission are critical for cortical assembly

disorganization, perhaps insofar as synaptic stability and

plasticity are affected. So while our chronic KET and Df(16)A+/�

models both alter inhibitory neurotransmission to various de-

grees, our results, together with recently accumulating evidence

from large-scale genetic studies of SZ (Hall et al., 2015), suggest

a critical (if not primary) role of glutamatergic synaptic deficits in

the disease etiology (Poels et al., 2014).

SZ as an Attractor Disease
These results are consistent with an ‘‘attractor’’ theory of SZ

(Rolls et al., 2008), in which the critical pathophysiology of the

disease involves altered multineuronal dynamics. The repeating

activity patterns described in this report could be naturally inter-

preted as representing cortical ‘‘attractors’’ (Hopfield, 1982) or

the preferred, semi-stable activity patterns in the neocortical

network involving recurrently coactive groups of neurons (or en-

sembles; Miller et al., 2014) (Rolls et al., 2008). Our observed

lack of reliability in the population-wide activity states observed

in both mouse models of SZ pathophysiology, both at rest and

during direct visual stimulation, is consistent with an alteration

in cortical attractors, resulting in an effective ‘‘shallowing’’ of

the cortical attractor landscape, wherein percepts, short-term

memories, or computational outcomes become highly unstable

(Rolls et al., 2008). To illustrate this possibility quantitatively, we

utilized the solutions of the k-means clustering analysis

described above, fixing the number of clusters to k = 6 (based

on Figures 4L–4N) and repeating the analysis 50 times for all

multineuronal datasets measured. We iteratively assigned

ensemble activations to clusters, and cluster centroids to a spe-

cific place in a two-dimensional plane, arranged by relative size

of the cluster groups (largest cluster at the plane origin) and

separated by average cluster-to-cluster centroid distances

across all micewithin a condition (Figures 8B–8G). While a boot-

strapped fully random distribution of ‘‘events’’ (based on shuf-

fled recorded data from each mouse) resulted in a single

Gaussian ‘‘valley’’ centered on the spot of the first ‘‘cluster’’

(the origin), recorded data from healthy circuits showed the

emergence of multiple ‘‘valleys’’ (Figures 8B and 8C), or putative

attractors (highly probable patterns in the space of possible ac-

tivity states). KET and Df(16)A+/� data can therefore be inter-

preted, with this demonstration, as showing a shallowing of

the attractor landscape in favor of one continuous distribution

of possible activity states (Figures 8D–8G). Elucidating the

exact meaning of observed, repeating population states

described herein is a key focus of ongoing work requiring further

study and perhaps a substantial advancement in measuring or

stimulating neurotechnology, including the ability to record

and manipulate all or most of the neurons in an intact, behaving

organism (Alivisatos et al., 2012).

In closing, we have established that unreliable and indistinct

ensemble activity in sensory cortex is present in two separate



mouse models of SZ-relevant pathophysiology and/or risk. Our

data suggest that changes affecting ensemble reliability across

time may represent a key emergent convergence point for

lower-level abnormalities. Causally linking local ensemble

dysfunction to alterations in global networks like those seen

in SZ patient samples (Yang et al., 2014) or to perceptual or

cognitive dysfunction fundamental to SZ (Javitt and Freedman,

2015) is a feasible next step given the recently established abil-

ity to carry out complex head-fixed behavioral studies in mice

(Harvey et al., 2012). Future work with even more diverse dis-

ease models will be informative, keeping in mind that the utility

of a model rests not necessarily in whether or how well it reca-

pitulates the disease but in how it is employed to test specific

hypotheses (Gordon and Moore, 2012). But intriguingly, the

ability to selectively activate, reinforce, and imprint neocortical

ensembles (Carrillo-Reid et al., 2016) could offer a novel thera-

peutic approach to SZ via the reprogramming of cortical

circuits to restabilize an altered attractor landscape and poten-

tially reverse some of the symptoms of the disease. Finally, our

results not only support and refine new computational hypoth-

eses regarding how neuronal circuit dysfunction relates to the

phenomenology of the disease, but they also underscore the

hypothesis that reliable ensemble activations and attractor

states comprise likely building blocks of perception and

thought.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were approved by the Columbia University Institutional Animal Care and Use Committee (IACUC) and

carried out in accordance with Columbia University institutional animal care guidelines. Chronic ketamine (KET) or saline (SAL) ex-

periments were performed on adult parvalbumin-Cre or parvalbumin-Cre 3 LSL-tdTomato transgenic mice, obtained from The

Jackson Laboratory (from a C57BL/6 background, 22-32 g), at the age of postnatal day (P) P60-P110 (first recording day).

Df(16)A+/� mice (RRID: MGI_3802827) and their wild-type, homozygous littermates/cagemates (WT; P80-P130, 22-32 g) were

generated on a C57BL/6J background (Stark et al., 2008). All animals were ketamine naive at the start of testing and were

not used for previous or subsequent experimentation. Calcium imaging data are reported on 7 SAL (2 female, 4 PV-cre, 3 PV-

cre;;td:tomato), 7 KET mice (2 female, 3 PV-cre, 4 PV-cre;;td:tomato), 7 Df(16)A+/� mice (all male), and 7 WT (all male). LFP data

are reported on 7 SAL and 6 KET treated mice (all PV-cre), and 8 Df(16)A+/� and 5 WT (all male). Group type was randomly assigned

(in pairs for KET/SAL experiments) and blind to the experimenter/analyst throughout experiments, data processing, and analysis.

Mice were housed in Allentown ventilated rack caging (IVCs cages) with 1 to 3 cagemates of the same sex on a 12 hr light/dark

cycle, and were fed Purina Lab Diet 5053. Sentinel mice tested negative on all major pathogens tested (14 viruses, M. pulmonis,

endo/ecto parasites) except murine norovirus (7/8 tested positive; MNV). MNV is by far the most common infectious agent in lab-

oratory mice and is typically asymptomatic (Perdue et al., 2007).

METHOD DETAILS

Animals, Surgery, and Training
Virus injection, head plate fixation, skull thinning, and minipump implantation (KET/SAL only) were carried out in that order over the

course of 5 weeks. In the first surgery (virus injection), 3-4 weeks prior to the first imaging session, mice were anesthetized with iso-

flurane (initially 3% (partial pressure in air) and reduced to 1%–2%). A small windowwasmade through the skull above left V1 using a

dental drill (coordinates from lambda: X =�250, Y = 20 mm) taking care not to pierce the duramater. A glass capillary pulled to a sharp

micropipette was advanced with the stereotaxic instrument, and 750nl solution of 1:1 diluted AAV1.Syn.GCaMP6f.WPRE.SV40

(3 KET, 2 SAL) or AAV1.Syn.GCaMP6s.WPRE.SV40 (all other mice; obtained from the University of Pennsylvania Vector Core)

was injected into putative layer 2/3 over a 5 min period at a depth of 200-300 mm from the pial surface using a UMP3 microsyringe

pump (World Precision Instruments).

Approximately 3 weeks after virus injection, mice were anesthetized as previously described and a titanium head plate was

attached to the skull centered around the virus injection site using dental cement (Miller et al., 2014). Mice were allowed to recover

for at least 5 days in their home cage. In this time, mice were given analgesics (5mg/kg carprofen I.P.) and accustomed to experi-

menter handling, including brief head-restraint periods, until mice showed non-stressed behavior, which usually began on the sec-

ond day. Mice then underwent training tomaneuver with their head fixed approximately 1 inch above a rotating wheel, beginning with

a 30 min session. This progressed until mice could distribute weight on the wheel evenly and appeared calm (grooming, locomotion)

and without signs of distress (tremors, freezing, etc), which generally occurred after the first session (Miller et al., 2014). During

training sessions and prior to the first imaging session, mice viewed moving square-wave gratings (see below) for stimulus

habituation.

On the first day of imaging, mice were anesthetized again with isoflurane and a small circle (approximately 1 mm in diameter) was

thinned with a dental over the left V1 centered just anterior to the injection site or removed (for LFP experiments). The skull was

thinned until the bone, moistened with saline, was transparent enough so that the underlying vasculature was visible to the naked

eye (usually 20 min of drilling). The thin skull preparation prevents exposure of the cortex and meninges and is a minimally invasive

method for chronic imaging of cortical changes (Yang et al., 2010). The mouse was then allowed to wake up and was transferred to

the wheel. After approximately one hour, imaging began. After the first imaging session, mice were returned to their home cage (SAL/

KET) or sacrificed (Df(16)A+/�/WT). The following day, (for SAL/KET) an osmotic minipump was implanted subcutaneously (Alzet,

model 2001) which released approximately 60 mg/kg/day ketamine HCL (KET mice) or an equivalent volume of saline (SAL mice)

at 1.0 ml per hour for 7 days. This dose is within the previous range suggested for mouse chronic ketamine models (Behrens

et al., 2007; Chatterjee et al., 2012). The pump was weighed before and after filling to ensure the absence of air bubbles (per man-

ufacturer’s instructions).

To estimate plasma levels of ketamine achieved during this procedure, KET mice were sacrificed at day 4 blood was harvested

from a cardiac puncture, centrifuged at 2000 cycles per second at 4C, and the supernatant serum was stored at �20 C. Ketamine

in the serum samples was extracted using liquid –liquid extraction and quantitated using liquid chromatography-tandemmass spec-

trometry (LCMS/MS) using platform comprising Agilent 6410 triple quad mass spectrometer coupled with Agilent 1290 Infinity

UHPLC (Agilent Technologies) controlled by MassHunter v 3.1 (Agilent Technologies, Santa Clara, CA). Average plasma levels of ke-

tamine were 135.1 ng/ml (range 129.8-142.4), a concentration at the low end of acute ketamine induced psychotic brain states in

human studies (Driesen et al., 2013). As expected, saline treated mice (n = 3) did not express detectable levels of ketamine

(< 2.50 ng/ml). The second imaging day took place oneweek after implantation of theminipump. Skull thinningwas repeated if neces-

sary (about 20%of the time). Animals were sacrificed shortly after the final imaging session, and pumpswere removed and inspected

to ensure the absence of perforation or clogging.
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Genotyping of Df(16)A+/– mice
Df(16)A+/� were acquired from a colonymaintained by the Gogos lab (Stark et al., 2008). Mice were genotyped twice from tail samples

(stored at �20C for less than 2 weeks) collected before and after experimentation. Samples were screened for the presence of the

deficiency (Df(16)A) by using the primers: 50- ATTCCCCATGGACTAATTATGGACAGG-30 and 50 GGTATCTCCATAAGACAGAATG

CTATGC 30, which amplify an 829 basepair band. Primers 50 CTAGGCCACAGAATTGAAAGATCT 30and 50GGTGGAAATTC

TAGCATCATCC 30 amplify a 324 bp internal control band. PCR cycling conditions we used were: 94�C for 3 min; 35 cycles of 94�C
for 30 s, 60�C for 1min, and 72�C for 1 min; 72�C for 10 min.

Two-Photon Calcium Imaging
The activity of cortical neurons was recorded by imaging fluorescence changes under a two-photon microscope (Bruker Ultima

In Vivo; Billerica, MA) excited with a Ti:Sapphire laser (Chameleon Ultra II; Coherent) tuned to 940 nm. The laser beam was intensity

modulated with a Pockels cell (Conoptics 350-160BK, with 302 RM driver) and scanned with galvometers through a 20 3 0.9 N.A.;

(Olympus) water immersion objective (Figures 2A and 2B). To ensure stability of the imaging meniscus for long duration imaging

sessions, a small volume (approx. 1ml) of Aquasonic ultrasound gel (Parker Laboratories) was centrifuged and dolloped onto a

moistened, thinned skull. Scanning and image acquisition were controlled by Prairie View software (3.395 frames per second

for 256 3 256 pixels, 1.6 microsecond dwell time per pixel, 200-225 um beneath the pial surface). The Pockels cell blanked the

laser outside the imaging field to minimize laser exposure. On both imaging days (before and after treatment) mice were allowed

1 hr on the wheel before imaging began. Imaging consisted of a visual stimulation condition (15 min), followed by 20-40 min of

awake rest in a dark room with the monitor off, followed by a second visual stimulation. Rest sessions were not collected for

1 SAL and 1 KET mouse. Sessions started at the same time of day for both sessions within a mouse (starting between 11am

and 4pm). Mice and recordings (LFP, locomotion) were visually monitored by the experimenter to ensure they were awake during

data collection. On week 1, at the end of the session, an imaging dataset was recorded in which the field of view was slowly moved

systematically in 3 dimensions, thoroughly surveying the cortical area where our calcium indicator was expressed. This movie

helped in locating the same cortical region on week 2 (using mainly vasculature landmarks as a guide; e.g., Figures S2A and

S2C). Locomotion was recorded with an infared LED/photodarlington pair (Honeywell S&C HOA1877-003), which consists of a

small c-shaped device positioned at the edge of the rotating wheel (striped with black tape) connected to the imaging computer

as an analog input. Locomotion was detected as voltage detections in the photodarlington readout. While previous work has sug-

gested that locomotion enhances visual processing in V1 in mice (Niell and Stryker, 2010), most of our mice did not exhibit enough

locomotion to enable thorough examination of this effect in our chronic models (< 10% of frames). Therefore, when detected,

frames or trials during locomotion periods were excluded along with the previous and subsequent 12 frames; this did not change

the pattern of effects.

Visual Stimulation
Visual stimuli were generated using the Psychophysics Toolbox in MATLAB (MathWorks) and displayed on a liquid crystal display

monitor (19-inch diameter, 60-Hz refresh rate) positioned 15 cm from the right eye, roughly at 45� to the long axis of the animal. Stimuli

were full-field squarewave gratings (100%contrast, 0.04 cycles per degree, 2 cycles per second) drifting in twelve different directions

in random order presented for 3 s, followed by an interstimulus interval of 7-8 s of mean luminescence gray screen (Figure S2E). In

each session, mice saw a total of 15 presentations of each stimulus. The timing and identity of gratings played in MATLAB were syn-

chronized with image acquisition by outputting an analog voltage trigger synchronized with stimulus onset and offset and recorded

with the imaging computer using Prairie View 5.2 software (Bruker; Billerica, MA). The timing between actual stimulus onset and re-

corded voltage traces in Prairie View was confirmed beforehand using a photodiode sensor with a reverse biased voltage output re-

corded by the software in tandem with the MATLAB output triggers.

Local Field Potential recordings
Local field potentials (LFPs) were recorded as previously reported in our lab (Hammand Yuste, 2016), usingmice that did not undergo

virus injection or skull thinning described above. Recordings occurred in Df(16)A+/� and WT mice or in SAL/KET treated mice only

after treatment due to the invasiveness of intracortical LFPs. On the day of recording a small craniotomy was made (less than

1 mm2). LFPs were either recorded with a single AgCl- electrode in a glass pipette filled with saline solution or a single contact

from a 16 channel linear silicon probe (spaced at 50 Um intervals; model a1x16-3mm 50-177, Neuronexus Technologies, Ann Arbor

MI) inserted perpendicular to and with the top electrode aligned just at the pial surface (visually confirmed with an adjustable mini-

ature digital microscope; Adafruit (New York, NY)). Recordings were made from approximately 250um below the pial surface. Re-

cordings were referenced to the skull above prefrontal cortex and grounded to the headplate. Continuous data were acquired

with either a MultiClamp 700B amplifier/software (Molecular Devices, Sunnyvale, CA) or a Plexon MiniDigi amplifier and software

(Plexon, Dallas, TX) and analog filtered from 0.1 Hz to 10 kHz. Mice viewed visual stimuli (described above) of either 1 or 3 s in dura-

tion. LFP data were manually prescreened for excessive artifact (e.g., signal greater than 8 standard deviations) and deviant trials

were removed. Trials during locomotion were also excluded (a total of < 10% of trials). Data were then digitally filtered from 0.5 to

300Hz (bandpass least-squares FIR) and with a 60Hz notch filter.
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Acute ketamine and pharmacogenetic suppression of PVs
As described above, an additional set of adult parvalbumin-Cre mice were injected with both GCaMP6s and

AAV5hsynDIOhM4D(Gi)mCherry (UNC vector core), and underwent headplate implantation, head-fixation training, and imaging

(n = 7, n = 5 GCaMP6 only controls). The efficacy of our methods in successfully targeting PVs have been previously verified in

our lab with mCherry and PV immunohistochemistry (Hamm and Yuste, 2016; Jackson et al., 2016; Sippy and Yuste, 2013). On

the day of recording, mice ambulated on a treadmill in a dark room as described above while images were recorded at approximately

4 Hz. Then mice each received a subcutaneous injection of Clozapine N-Oxide (12 mg/kg; Hamm and Yuste, 2016; Perova et al.,

2015), followed by a second set of images recorded starting 30 min later. For testing of the effects of acute ketamine, adult Pv-Cre

mice (n = 3) or wild-type (n = 4) underwent a similar set of procedures as CNO injected mice except three recording sessions were

acquired, each 30 min post-injection and lasting at least 20 min: baseline, post-saline injection (subcutaneous), and post-ketamine

injection (15mg/kg, subcutaneous; equivalent volumes used for SAL and KET).

Study of Parvalbumin-containing Interneurons
Using transgenicmice expressing cre-recombinase selectively in PVs (PV-cre) crossedwith cre-reportingmice expressing the flores-

cent protein td-Tomato (Ai14; B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J), PVs were identified in a subset of mice (PVcre::

tdTomato) by somatic co-localization of GCaMP6s and tdTomato (Figure S7A; 22 PVs across 3 SAL mice; 34 PVs across 4 KET

mice; average of 4 neurons per imaged population) (Hofer et al., 2011; Miller et al., 2014). Cells co-expressing tdTomato and

GCaMP6s were identified with two-photon stimulation at 940 nm or 1010 nm and using 2 PMTs filtered for green (510/20 nm) and

red (607/45); we typically identified 2 to 4 per mouse (at max 8, always less than 8%; Figure S7). Florescent traces from PV ROIs

were identified and processed similarly to non-PVs with regard to pixel selection and halo subtraction (see above). Two-photon im-

aging measured calcium dynamics in PVs are known to differ substantially from pyramidal neurons, with longer decays and more

ongoing fluctuation (Hofer et al., 2011). This may be partially due, among other differences, to the higher baseline firing rates and

calcium buffering dynamics of PVs. In the present study, we focused on PV calcium dynamics i) evoked by visual stimuli and ii) locked

to statistically defined ‘‘ensemble activations’’ (or high activity states of the network).

QUANTIFICATION AND STATISTICAL ANALYSIS

Depending on the question addressed, analyses focused on cell averages (e.g., activity levels, orientation tuning, correlation coef-

ficients) or mouse-wise averages (LFP meausres, locomotion, proportion of significant correlation pairs, ensemble/network-level),

from 6-7 mice for each condition per set of experiments (e.g., chronic saline versus ketamine). This report contains no independent

replications of any set of experiments. Statistical tests for each experimental condition is described in the following sections and

include paired t tests, independent t tests, one-way ANOVAs, repeated-measures ANOVAs, andmixed ANOVAs (between andwithin

subject factors). As clarified in figure legends, error bars reflect standard errors of the mean (SEM), but, when statistical comparisons

were mixed ANOVA, repeated-measures ANOVA, or paired t tests, standard error bars reflect within-subjects/within-cells standard

error (Loftus and Masson, 1994).

Spectral analysis of LFP
Baseline LFP power wasmeasured in 2 s windows (0.5 Hz resolution) between and after visual stimulations. A Fast-Fourier transform

(FFT) was carried out, and the spectral power (squared absolute value of the complex output of the FFT) was averaged across all time

windows, divided (relative; Figures S1C and S1D) or not divided (absolute; Figures 1A and 1E) by the broadband power across fre-

quencies from 1 to 120 Hz, and then multiplied by the frequency (for rescaling for visual presentation only, i.e., correcting for 1/f

component).

For analysis of stimulus elicited oscillatory dynamics, LFP data from single trials were segregated into bins �2000ms pre to

5000ms post grating stimulus onset. Data were convolved with a family of modified morlet wavelets from ranging from 2 to 120Hz

in 2Hz and 20ms steps with wavelet size increasing linearly from 1 to 20 cycles using code written in MATLAB and EEGLAB 9.0 (De-

lorme and Makeig, 2004). This approach is ideal for time varying analysis of oscillatory dynamics since it optimizes effective fre-

quency resolution at low frequencies and time resolution at higher frequencies (Hamm et al., 2012). Oscillatory power was expressed

in decibels and was averaged over trials. Average power values for each frequency in the baseline period (�1000ms to�100ms pre-

grating onset) were subtracted to yield a single time-frequency evoked spectra for each mouse (Figures 1D and 1H).

Statistical comparisons focused on frequency bins derived via principal components analysis (Hamm and Yuste, 2016; Hamm

et al., 2014). Trial averaged time-frequency spectra (including baseline) were converted to z-scores for each mouse, and concate-

nated in time across all mice. A scree plot indicated that 5 components were present. After varimax rotation, the final frequency bins

were 1-14Hz (low/theta/alpha), 15-34 Hz (beta), 35-58 Hz (gamma1; excluding 59-61 Hz), 62-110 Hz (gamma2), and > 111Hz (high

frequency; excluding 119-121 Hz), highly consistent with traditionally demarcated bin boundaries (Buzsaki, 2009). Baseline absolute

power spectra were compared between SAL/KET and Df(16)A+/�/WT with 2 sample t tests (df = 11) for each frequency band. Stim-

ulus elicited power was averaged across the first 500ms post-grating onset (since this was when the majority of the response was

present) for each bin. Two sample t tests (df = 11) were applied for each frequency band, (comparing between SAL/KET and

Df(16)A+/�/WT).
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Phase locking (or inter trial phase coherence) assess the consistency of the stimulus elicited LFP waveform without regard to

amplitude variations. It is calculated by dividing the complex result of the wavelet analysis by its absolute value for every frequency

and time point (and normalized for number of trials as previously described; Hamm et al., 2012). Statistical comparisons were carried

out in the same manner as for spectral power, except focusing the first 150 ms where the response is maximal.

For all oscillatory measures, two-tailed significance was used, but trend-level effects were reported since LFP experiments had an

a priori directional hypothesis based on the schizophrenia literature (SZ > H for baseline; H > SZ for stimulus evoked; Hamm et al.,

2014; Uhlhaas and Singer, 2010).

Image Analysis
Imaging datasets were scored similarly to previous reports (Chen et al., 2013; Hamm and Yuste, 2016). The raw images were pro-

cessed to correct translational brain motion artifacts using the MOCO algorithm and plugin (Dubbs et al., 2016) written in house for

ImageJ (Schneider et al., 2012). Then, cell regions of interest (ROIs) were detected semi-automatically for each imaging session and

individually confirmed as follows. Mean, standard deviation, and std3 skewness projections (pixel-wise) were calculated across all

imaging frames (roughly 14000-25000) and plotted for reference (Figure S3A). Then, rectangular sections were selected around the

apparent cell bodies using a GUI created in MATLAB. A principal components analysis (PCA) was computed on the pixels contained

within the sections, and the pixels with weights at least 80%of themaximum of the first PCA component were defined as the ROI and

spatially plotted (Figure S3B) along with the florescence trace averaged across these pixels (e.g., Figure S3C, top). Cells with faint,

sparse (< 5 events across both weeks), or largely atypical calcium transients were excluded from further analysis at this step (< 20%;

cells not showing periods of low florescencewith intermittent sharp peaks; e.g., Figure S3; Chen et al., 2013). In general, these criteria

focused analyses on cells with a bursting profile and firing rate typical of layer 2/3 neocortical neurons (Pyramidal and non-PV pyra-

midal neurons). PVs, for example, which have higher baseline activity and ostensibly different calcium indicator dynamics (Hofer

et al., 2011) were likely excluded at this step, and, when possible (using mice with florescent indicator tdTomato tagged to PVs),

we were able directly confirm these differences and exclude PVs from network analyses (Figure S7). This exclusion did not substan-

tively affect the main results (e.g., ensemble reliability Finteraction(1,10) = 4.98, p < .05 without PVs; Finteraction(1,10) = 5.14, p < .05 with

PVs). The average number of active cells used for further analyses did not differ between conditions within experiments (mean/range;

SALpre = 74 (52/93); SALpost = 79 (53/100); KETpre = 75 (53/100); KETpost = 73 (45/120); Finteraction(1,12) = 0.58, p = 0.28;

Fgroup(1,12) = 0.14, p = 0.71; WT+/� = 66 (31/101); Df(16)A+/� = 51 (25/85); F(1,12) = 1.65, p = 0.22). Florescence of active cells

was then calculated as the average across all pixels within this ROIminus the average of the pixels just outside the selected rectangle,

termed the ‘‘halo,’’ which excluded pixels from nearby cell bodies (Figure S3C). This subtraction removed background contamination

from neuropil and nearby cells. Completing this step ensures maximal correspondence between florescence and actual cell spiking

(Chen et al., 2013). The remaining traces were then filtered with a 3 s lowess envelope (Hamm and Yuste, 2016), a regression based

smoothing approach which is tolerant of sharply changing values on the edges of the window. Finally, the first discrete derivative was

scored either as Df (within cell/single cell comparisons), or as within-cell maximum normalized Df (population analyses).

Single cell analyses
For each neuron recorded, we estimated events using thresholds set as 3.1 standard deviations (p < .001) above baseline Df for each

neuron (lower 8% of values; Carrillo-Reid et al., 2015; Hamm and Yuste, 2016). We first quantified overall activity levels as the pro-

portion of frames during which a neuron was ‘‘active’’ (i.e., displaying an event). Events/active frames were automatically marked as

time frameswithDf valueswhich exceeded thresholds. Single calcium events normally consist of multiple closely co-occurring action

potentials, or ‘‘bursts.’’ For scaling consistency across experiments and conditions and to account for baseline differences across

mice, we divided activity levels for each neuron by the mouse-wise average from week 1 only (SAL/KET), or by the global average

from WT mice (22q11.2 model). This procedure did not change the pattern of results (i.e., KET still showed an increase when using

raw values Fket(872) = 5.76, p < .05; means/std; KETpre = 2.8% active frames/1.7; KETpost = 3.1/1.7; WT = 2.6/1.2; Df(16)A+/� =

2.5/1.1). For SAL/KET experiments, activity level comparisons were carried out with a 2-by-2 mixed ANOVA on individual cells

with TREATMENT as the between subject variable and WEEK as the within subject variable. Follow-up one-way ANOVAs were car-

ried out separately for KET and SAL to interpret interactions. For Df(16)A+/� experiments, a single one-way ANOVAwas carried out on

activity levels.

In order to understand the nature of this change in KET, we focused on neurons identifiable pre and post SAL/KET treatment (Fig-

ures S2 and S4; 4 SAL, 5 KET). Week 2 sessions in which a substantial number of cells (> 10) from week 1 could be located precisely,

cells were visually matched between weeks by 2 independent scorers for subsequent comparisons. Since the GCaMP6 series has

near zero basal florescence, this was a difficult task to dowith certainty during the imaging session, and had to be performed post hoc

using z-projection plots (see Figure S3). Only regions of interest with agreement between the 2 scorerswere counted as the same cell.

The average overall activity level (average Df over all frames), event maximum, and event frequency (contiguous active frame blocks,

or ‘‘events,’’ per minute) were quantified for each cell and condition. Again, values were normalized within each mouse using the

week-1 event size and event rate, and the same statistical procedures were repeated.

Differences in single neuron disinhibition was one principal difference found between our pharmacological and genetic models.

One potential confound is that only the KET/SAL experiments included female mice (n = 4; 2 each) and GCaMP6f (n = 5; 3 KET,

2 SAL), while the genetic model experiments were on only males and with only GCaMP6s, but additional analyses refute this
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possibility. First, excluding females from the KET/SAL analysis did not change the effects (Finteraction(1,1382) = 4.79, p < .05;

FKET(765) = 5.61, p < .05; FSAL(617) = 0.54, p = 0.46; n = 5 mice KET, 767 cells; n = 5 mice SAL, 619 cells). Second, while GCaMP6f

has a much shorter decay time than GCaMP6s, our analyses focused only on the rise magnitudes/times (increases in florescence)

and were therefore less likely affected by this experimental difference. The data concur with this hypothesis, since excluding

GCaMP6f mice from an alternative analyses show that KET still showed disinhibition of ongoing activity (Finteraction(1,1060) = 6.11,

p < .05; FKET(468) = 7.89, p < .01; FSAL(892) = 0.43, p = 0.50; n = 4 mice KET, 470 cells; n = 5 mice SAL, 619 cells).

Pairwise analysis
Pairwise coactivity (or functional connectivity) between single cells was assessed by calculating similarity values between cell pairs.

For each cell, the Df value across all frames was vectorized in n-dimensional space (where n = number of frames). The similarity of

each cell/vector pair (Ca, Cb) was calculated as the angle between the vectors in n-dimensional space, or the normalized inner-prod-

uct (Carrillo-Reid et al., 2015):

SindexCa;Cb =Ca$Cb

.��
jCa j 2 + jCb j 2

�.
2
�
:

Thismetric is bound between 0 and 1 (1meaning that activity across time points is completely identical between cells) and is similar

to cosine similarity with the added provision that cell pairs with similar relative magnitudes will have higher values than those with

differing relative magnitudes, a step not necessary when cell activities are binary. This similarity metric was chosen to assess

cell-cell correlations instead of more traditional methods (e.g., Pearson correlation) since calcium transients (rises in florescence)

are relatively sparse (approx. 3% of frames on average) do not show negative values. Detecting a difference between an absence

of coactivation between cells (0 correlation) and an inhibitory relationship (negative correlation) would prove difficult to interpret

directly. Thus high cell-cell similarities represented high coactivation probabilities between cells across up-states, and low values

represented a lack thereof. Since wide distributions of similarity values were observed, and could vary depending on the activity level

and the duration of recording, we first sought, within each network, to determine what a ‘‘significant’’ amount of pairwise synchrony

was with a bootstrapping procedure. Individual cell time courses were shifted by random amounts in time separately for each cell

(holding individual cell activity levels constant at each step) and average pairwise synchrony values were calculated for all cells in

these surrogate datasets. This step was repeated 10000 times (Cossart et al., 2003), creating a distribution of similarity indices ex-

pected at chance level for each cell pair. Cutoffs were set at the 99th percentile of the random distributions. For each mouse, we

determined the proportion of cell pairs greater than this cutoff, and compared these proportions with a 2-by-2 mixed ANOVA on

mice with TREATMENT as the between subject variable and WEEK as the within subject variable. Follow-up one-way RM

ANOVAs were carried out separately for KET and SAL to interpret interactions. For Df(16)A+/� experiments, a single one-way

ANOVA was carried out. As we observed obvious changes in the distribution peaks despite no change at the tails (Figures 2I

and 2M), we additionally compared the means of all cell-pairs across all mice with the same statistical approach. Importantly, while

traditional tests of distribution differences (e.g., Kolmogorov–Smirnov or Cramer-von Mises tests) both confirmed that KET and

Df(16)A+/� pairwise coactivity distributions were deviant, these tests were overpowered in this experiment and were excluded.

Even the SAL model, which ostensibly exhibited nearly identical distributions before and after treatments (Figure 2E), elicited a sig-

nificant effect in both K-S and C-M tests.

Population analysis
Population level analyses of ongoing activity focused on the state similarity of cortical ‘‘ensemble’’ activations, or time-frames with

significant levels of coactivity. First, a bootstrap approach was carried out on individual datasets in order to determine what charac-

terized an ensemble as opposed tomomentarily high activity states occurring due to uncorrelated variation in firing rates across cells.

Df values were normalized within cells by dividing all values by their maximum Df across all recorded frames (Figure S5A). Df values

across all cells were then averaged within each frame (Figure S5B), yielding a value for each frame which is bound between 0 and 1,

and represents the percentage of total possible network activity (e.g., 0.12 = 12% inferred activity ceiling). Importantly, the relative

amount of network-wide coactivity did not differ between conditions (Figures S6A–S6C). Individual cell time courses were then

shifted by random amounts in time separately for each cell (holding individual cell activity levels constant at each step) and average

network activity values were calculated for all frames in these surrogate datasets. This step was repeated 10000 times (Cossart et al.,

2003), creating a distribution of network activity magnitudes expected at chance level (Figure S5C). Cutoffs were set at the 99th

percentile of the random distributions, which determined that the global ‘‘ensemble’’ definition (i.e., when combining all 38 datasets)

was 0.06 or 6% of ceiling. We determined cutoffs on individual datasets, assigning instantaneous ‘‘peak’’ activity frames (local max-

ima in Figure S5B separated by at least 1.5 s) which exceeded thresholds as ‘‘ensemble activations.’’ Focusing only on peaks served

to exclude the similarity shared by adjacent frames. Each dataset exhibited between 150 and 250 significant ensembles activations

during the first 20 min ongoing activity, so we focused further analyses on just the highest 150 peaks from each dataset.

The next step was to determine which ensemble activations showed population level patterns of activation which repeated, or had

similarity values with subsequent ensemble activity above chance values, suggesting recurrent ensembles or attractor states in the

ongoing activity. We calculated between frame ‘‘similarity index’’ as described above on frame-frame pairs (instead of cell-cell ac-

tivity patterns), yielding 150 by 150 similarity matrices for eachmouse (Figures 3B and S5D). We then used a bootstrap method again
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to determine what constitutes ensemble repeats (Figure S5E), using within-frame shuffling 10000 times, holding overall activity levels

constant. The global significant similarity value across all ensemble activity was S.I. = 0.47, p < .01. Individually derived S.I. cutoffs

were derived for each mouse, for each week (when applicable), and used to i) re-adjust histograms for group-wise plotting (Figures

3I–3K) and ii) to determine the proportion of significant ensemble repeats, which was between 15% and 25% of frames on average,

(15-25 times more likely than chance). The proportion of ensemble repeats for each mouse was compared with the same ANOVA

models as described for pairwise comparisons.

Next ongoing data from ensemble activation frames was factorized with Principal Components Analysis (P.C.A; cells as variables)

to i) demonstrate that a variety of network patterns were present in the ongoing activity (Carrillo-Reid et al., 2015; Miller et al., 2014)

rather than simply one repeated high activity state (Figures 3A, S6D, and S6E), and ii) further confirm that KET reduced overall activity

pattern fidelity across time rather than simply increasing the number of distinct states present (Figure 6G). To further address

(ii) (Clementz et al., 2016; Yan and Ye, 2007), we reduced ensemble activity into three principal components using a VARIMAX factor

rotation after P.C.A for each population imaged. We then carried out k-means clustering (clustering ensemble activations in P.C.

space) for four representative datasets using k = 3 in order to depict i) the uniqueness of separate, observable ensemble states clus-

ters in control mice and ii) the disruption thereof in diseasemodels. Second, using all datasets, we carried out k-means repeatedly for

each population from k = 2 to k = 15, repeating 100 times for each k to ensure the stability of the solutions, and quantifying the average

within cluster distances (i.e., Euclidean distances), dividing by their decrease from the ‘‘1-cluster’’ solution (average distance from the

overall mean; Figures 4B–4H). Next, we quantified the discrete first-derivative of this plot (Figures 4L–4N), estimating the degree to

which added clusters parse the ensemble activation variance in P.C. space. Since large decreases in within-cluster distances were

seen from k = 2 to k = 5, we compared these models across mice within experiments (SAL, KET, Df(16)A+/�) with one-way ANOVAs.

(Note: ‘‘representative’’ datasets in Figures 2A, 2B, 3A–3H, 3L–3S, 6A–6L, S2A–S2D, S2I–S2L, S3, S5A, S5D, S6D–S6G, S7A, S7B,

and S7D each originate from separate cell populations in order to better represent the breadth of the effects.)

Analysis of stimulus evoked activity
Df values were averaged within trials (free of locomotion ± 3 s) from stimulus onset to offset and across trials of the same stimulus

(approximately 15 trials per stimulus). Analyses focused on cells exhibiting significant stimulus evoked activity that is, cells for which

the average stimulus evoked activity exceeds 1.67 standard deviation of the baseline for at least one stimulus orientation/direction

(KET = 70%, SAL = 72%, Df(16)/WT = 75%; Hamm and Yuste, 2016). 1 SAL mouse and 1 KETmouse failed to show consistent stim-

ulus elicited activity at week 1 and were excluded from this portion of the study. The orientation selectivity index (O.S.I), which

estimates the degree to which a cell prefers lined visual stimuli of a particular angle or orientation, was calculated on average Df re-

sponses (R) across 12 orientations (K; where q is the angle of the stimulus direction, 0: 2pi radians) as

O:S:I=
���
X
k

Rk$expð2iqkÞ
.X

k

Rk

��� :

This metric, akin to 1-circular variance, has been demonstrated to be stable and effective at detecting selectivity differences be-

tween populations (Mazurek et al., 2014). Although direction selectivity could be detected in some cells, it was sparse overall and

weaker than O.S.I., in agreement with previous reports in V1 (Marshel et al., 2011), so analyses focused on O.S.I. Changes in overall

O.S.I. for SAL/KET were tested with a 2-by-2mixed ANOVA on individual cells with TREATMENT as the between subject variable and

WEEK as the within subject variable. Significant interactions were followed up by a one way ANOVA.

Average responses across cells displaying orientation selectivity (O.S.I. of at least 0.1 given 30 trials per orientation per week; Ma-

zurek et al., 2014) were plotted as a function of stimulus direction (x axis) on the same scale across conditions (Figures 6B, 6D, and 6F)

by dividing responses by the response to their average ‘‘preferred’’ orientation at week 1 (SAL/KET) or the average ‘‘peak’’ across all

neurons in DF16/WT (Lee et al., 2014). Cell response curves then were compared for SAL, KET, and DF16/WT with 2-by-12 MIXED

ANOVAswith TREATMENT as a between subjects variable andWEEKaswithin subject variables. In KET, To understand the nature of

the O.S.I. changes, additional analyses focused on cells visually identifiable and which showed visually driven activity in week 1 and 2

(n SAL = 45 cells, n = 4 mice; n KET = 62, n = 5 mice). For Figures S8A and S8C, the preferred angle of each cell was estimated similarly

to the O.S.I, but instead of the absolute value, the imaginary component of the log transform of the above expression was calculated

(i.e., computational preference).

For assessing noise correlations, we focused on visually active neurons with at least 0.1 O.S.I. (to ensure the reliability of the as-

sessed ‘‘preferred orientation’’). For each stimulus orientation, for each cell pair, we quantified the pearson correlation coefficient of

average responses (stim-on mean minus baseline 1 s), and then averaged over different orientations. We then grouped pairs into

shared preference (difference of computational preference ± 15 degrees), +/�45 (between 30 and 60 deg difference), and opposite

(between 75 and 115 degrees). For SAL, KET, andDf(16)+/�/WT, we computedmixed ANOVAs on the proportion of significantly noise

correlated neurons per mouse with ORIENTATION as a within-subjects factor and WEEK (or GROUP) as a between subjects factor

(3X2). Next we applied these same statistical models to individual cell pairs.

Population level analyses of visually evoked responses utilized the same similarity metric as for ongoing activity analyses, but

focused on average stimulus elicited responses across neurons on individual trials rather than ‘‘up-states.’’ This step quantified

whether directly evoked population-wide patterns of activity, without regard to single-cell orientation preferences or baseline levels

of activity, were more similar across trials of the same stimulus type compared to different stimulus types. Similarity between all trials
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was calculated on within trial averages (0-3.5 s post stim onset to account for offset induced activity), yielding a T by T matrix of sim-

ilarity valueswhere T = total trials (Figures 7B, 7D, 7F, and 7H). Next, bootstrapped similarity distributions described abovewere used

to derive amean and standard deviation of expected chance level population similarity for eachmouse/neuronal-population studied.

Individual trials (i.e., matrix cells in Figure 7B) were then rescored as ‘‘Z’’ scores for each trial, and these values were then averaged to

yield (i) within-stimulus-type, (ii) cross-stimulus-type (30 and 60deg differences), and (iii) opposite stimulus type intertrial ensemble

similarity (barplots in Figures 7M–7O). For SAL, KET, and Df(16)+/�/WT, we then computed mixed ANOVAs on mouse-wise average

population similarity z-scores with ORIENTATION difference as a within-subjects factor and WEEK (or GROUP) as a between/within

subjects factor (3X2; within for KET/SAL).

For depiction of this effect on single trials (state-space plots in Figures 7I–7L), Df values from �2 to 7 s post stimulus onset for all

trials and all cells from one representative mouse from each condition were subjected to a PCA (cells as variables) with a VARIMAX

rotation applied to the covariance matrix, thereby limiting and optimizing the resulting solution to a minimal number of components

(usually 3-6, based on the screeplot). This enabled the n-dimensional network state space (n = number of neurons) in which similarity

was computed to be plotted in 2 dimensions (principal component space). In Figure 7, single trials are plotted as continuous trajec-

tories in time and color coded with regard to the stimulus the mouse saw on a given trial.

Acute ketamine and PV-suppression experiments
Calcium imaging data were processed and analyzed with the same methods and statistical comparisons as described above for

chronic models. One-way ANOVAs were used for acute ketamine experiments (base versus sal versus KET) and two-way mixed

ANOVAs were used for DREADD experiments (base VS CNO-control; base VS CNO-h4MD(Gi)), followed by one-way ANOVAs to

follow-up on interactions.

Analysis of PV interneurons
For each interneuron we calculated change in florescence from baseline (2 s before each event), divided by the standard deviation of

florescence during baseline across all time points (z-Df/f). While this measure does not purely assess the absolute activity of PVs, it

reliably indexes the signal to noise ratio of PV responses to visual stimuli and during spontaneous ensemble activations in the local

network (Figure S7C) and results in PVs untreated mice conform with previously published properties of PVs (Hofer et al., 2011; Niell

and Stryker, 2008). For statistical comparisons, cell responses were normalized within mice (see above). Visually evoked PV z-df/f

scores were averaged within the 3 s of stimulus presentation and compared with 2-by-2 mixed ANOVAs with TREATMENT as the

between subject variable and WEEK as the within subject variable. PV activity locked to statistically identified ensemble activations

(above) was averaged within the first 2 s after peak network Df and compared with 2-by-2 mixed ANOVAs with TREATMENT as the

between subject variable and WEEK as the within subject variable.

ADDITIONAL RESOURCES

MOCO software for motion correction is available at http://www.columbia.edu/cu/biology/faculty/yuste/Methods/moco.zip.
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