
Design and Performance Optimization of
Asynchronous Networks-on-Chip

Weiwei Jiang

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018

©2018

Weiwei Jiang

All Rights Reserved

ABSTRACT

Design and Performance Optimization of
Asynchronous Networks-on-Chip

Weiwei Jiang

As digital systems continue to grow in complexity, the design of conventional synchronous systems

is facing unprecedented challenges. The number of transistors on individual chips is already in

the multi-billion range, and a greatly increasing number of components are being integrated onto

a single chip. As a consequence, modern digital designs are under strong time-to-market pressure,

and there is a critical need for composable design approaches for large complex systems.

In the past two decades, networks-on-chip (NoCs) have been a highly active research area. In a

NoC-based system, functional blocks are first designed individually and may run at different clock

rates. These modules are then connected through a structured network for on-chip global commu-

nication. However, due to the rigidity of centrally-clocked NoCs, there have been bottlenecks of

system scalability, energy and performance, which cannot be easily solved with synchronous ap-

proaches. As a result, there has been significant recent interest in combing the notion of asynchrony

with NoC designs. Since the NoC approach inherently separates the communication infrastructure,

and its timing, from computational elements, it is a natural match for an asynchronous paradigm.

Asynchronous NoCs, therefore, enable a modular and extensible system composition for an object-

orient design style.

The thesis aims to significantly advance the state-of-art and viability of asynchronous and

globally-asynchronous locally-synchronous (GALS) networks-on-chip, to enable high-performance

and low-energy systems. The proposed asynchronous NoCs are nearly entirely based on standard

cells, which eases their integration into industrial design flows. The contributions are instantiated in

three different directions.

First, practical acceleration techniques are proposed for optimizing the system latency, in order

to break through the latency bottleneck in the memory interfaces of many on-chip parallel pro-

cessors. Novel asynchronous network protocols are proposed, along with concrete NoC designs.

A new concept, called monitoring network, is introduced. Monitoring networks are lightweight

shadow networks used for fast-forwarding anticipated traffic information, ahead of the actual packet

traffic. The routers are therefore allowed to initiate and perform arbitration and channel allocation

in advance. The technique is successfully applied to two topologies which belong to two different

categories a variant mesh-of-trees (MoT) structure and a 2D-mesh topology. Considerable and sta-

ble latency improvements are observed across a wide range of traffic patterns, along with moderate

throughput gains.

Second, for the first time, a high-performance and low-power asynchronous NoC router is com-

pared directly to a leading commercial synchronous counterpart in an advanced industrial tech-

nology. The asynchronous router design shows significant performance improvements, as well as

area and power savings. The proposed asynchronous router integrates several advanced techniques,

including a low-latency circular FIFO for buffer design, and a novel end-to-end credit-based vir-

tual channel (VC) flow control. In addition, a semi-automated design flow is created, which uses

portions of a standard synchronous tool flow.

Finally, a high-performance multi-resource asynchronous arbiter design is developed. This

small but important component can be directly used in existing asynchronous NoCs for perfor-

mance optimization. In addition, this stand-alone design promises use in opening up new NoC

directions, as well as for general use in parallel systems. In the proposed arbiter design, the alloca-

tion of a resource to a client is divided into several steps. Multiple successive client-resource pairs

can be selected rapidly in pipelined sequence, and the completion of the assignments can overlap in

parallel.

In sum, the thesis provides a set of advanced design solutions for performance optimization of

asynchronous and GALS networks-on-chip. These solutions are at different levels, from network

protocols, down to router- and component-level optimizations, which can be directly applied to

existing basic asynchronous NoC designs to provide a leap in performance improvement.

Table of Contents

List of Figures vi

List of Tables x

1 Introduction 1

1.1 Asynchronous Design: an Alternative Paradigm 3

1.1.1 Trends and Challenges in Synchronous Design 3

1.1.2 Introduction to Asynchronous Design: Advantages and Challenges 5

1.1.3 Asynchronous Design: Overview of Recent Success 8

1.2 Networks-on-Chip Introduction . 12

1.2.1 Conventional On-Chip Interconnects . 13

1.2.2 Network-on-Chip: Potential Benefits . 14

1.2.3 Why the Asynchronous Paradigm Fits NoC Architecture 16

1.2.4 Synchronous and Asynchronous NoC’s: Recent Advances and Future Trends 17

1.3 Research Focus . 22

1.3.1 An Overview of NoC Acceleration . 22

1.3.2 Research Challenges for NoC Acceleration 23

1.3.3 Synchronous NoC Acceleration: Existing Approaches and Bottlenecks . . 24

1.3.4 Asynchronous NoC Acceleration: A Missing Research Area 24

1.4 Contribution of the Thesis . 25

1.5 Organization of the Thesis . 28

i

2 Background: Asynchronous Design Basics 29

2.1 Handshaking Protocols: Control Signaling . 29

2.1.1 Four-Phase Protocol . 31

2.1.2 Two-Phase Protocol . 31

2.2 Data Encoding Schemes . 32

2.2.1 Delay-Insensitive Codes . 32

2.2.2 Single-Rail Bundled Data . 34

2.3 Special Asynchronous Elements and Components 35

2.3.1 C-Element and Asymmetric C-Element 35

2.3.2 Completion Detectors . 37

2.3.3 Mutual-Exclusion Element and Asynchronous Arbiters 38

2.4 Asynchronous Pipelines . 40

2.4.1 Mousetrap Pipeline . 41

2.4.2 Williams’ PS0 Pipeline . 43

2.4.3 High-Capacity Dynamic Pipeline . 44

3 Background: Network-on-Chip Basics 47

3.1 Network Topology . 47

3.1.1 Topology Classification . 48

3.1.2 Network Topology Examples . 49

3.2 Routing Basics . 52

3.2.1 Classification of Routing Algorithms . 52

3.2.2 Encoding Routing Information . 54

3.3 Flow Control Methods . 55

3.3.1 Store-and-Forward . 55

3.3.2 Cut-Through . 56

3.3.3 Wormhole Routing . 56

3.3.4 Virtual Channels . 57

3.4 Synchronous Router Architecture and Operation 58

3.4.1 Synchronous Router Structure without VC 58

3.4.2 Synchronous Router Structure with VCs: Two Structures 59

ii

3.4.3 Router Pipelining . 61

3.4.4 Pipeline Optimization: Speculation and Lookahead 62

4 A Low-Latency Asynchronous NoC for a Variant Mesh-of-Trees Topology 65

4.1 Introduction . 65

4.2 Related Work . 68

4.3 Background: Baseline and Predictive NoC Designs 68

4.3.1 The Baseline Network . 69

4.3.2 The Predictive Network . 72

4.4 Overview of the Approach . 73

4.5 Proposed Router Node Design . 75

4.5.1 Arbitration Node . 76

4.5.2 Routing Node . 84

4.5.3 Monitoring Network: A Quick Revisit . 84

4.6 Multi-Flit Design . 85

4.7 Experimental Results . 85

4.7.1 Asynchronous Primitives . 87

4.7.2 Asynchronous Network . 91

4.8 Conclusions and Future Work . 97

5 A Low-Latency Asynchronous NoC for a 2D-Mesh Topology 99

5.1 Introduction . 99

5.2 Related Work . 101

5.3 Background: Baseline NoC Design . 101

5.3.1 Input Port Module . 102

5.3.2 Output Port Module . 103

5.4 Overview of the Approach . 105

5.5 Proposed Router Node Design . 106

5.5.1 Input Port Module Architecture . 107

5.5.2 Output Port Module Architecture . 109

5.6 Monitoring Network: System- and Switch-Level Protocols and Design 111

iii

5.7 Local Input and Output Port Modules . 115

5.8 Deadlock Analysis . 115

5.9 Timing Analysis . 116

5.10 Experimental Results . 117

5.10.1 Experimental Setup . 117

5.10.2 Evaluation . 119

5.11 Conclusions and Future Work . 124

6 An Industrial High-Performance and Low-Power Asynchronous NoC Router 126

6.1 Introduction . 126

6.2 Proposed Asynchronous Router Design . 127

6.2.1 Overall Router Structure . 127

6.2.2 Input Buffer . 128

6.2.3 Proposed VC Flow Control . 129

6.3 Design Flow and Tools . 131

6.3.1 Design Validation Tool . 131

6.3.2 Design Flow and P&R Tool . 131

6.4 Experimental Results . 133

6.5 Conclusions . 136

7 A High-Throughput Asynchronous Multi-Resource Arbiter 137

7.1 Introduction . 137

7.2 Related Work . 139

7.3 Background: Baseline Multi-Resource Arbiter . 140

7.3.1 External Channel Protocols . 140

7.3.2 Structure . 142

7.3.3 Operation . 144

7.4 Overview of the Approach . 144

7.5 Proposed Static HC Pipeline . 146

7.5.1 Pipeline Protocol . 146

7.5.2 Pipeline Design and Structure . 148

iv

7.5.3 Related Work and Comparison . 148

7.6 Proposed Asynchronous Multi-Resource Arbiter 149

7.6.1 Structure . 149

7.6.2 Mapping Proposed Pipeline to the Design 152

7.6.3 Operation . 153

7.6.4 Details for Sub-Modules . 155

7.7 Timing Analysis . 160

7.8 Experimental Results . 161

7.8.1 Experimental Setup . 162

7.8.2 Simulation Results . 162

7.8.3 Summary and Discussion of Scaling Trends 166

7.9 Conclusions and Future Work . 166

8 Conclusions and Future Work 168

8.1 Conclusions . 168

8.2 Future Work . 170

Bibliography 170

v

List of Figures

1.1 A synchronous system . 4

1.2 A asynchronous system with distributed control 5

1.3 A GALS system . 10

1.4 Conventional on-chip interconnects: (a) Shared bus; (b) Point-to-point (P2P) 13

1.5 NoC examples: (a) A regular 2D-mesh NoC for a chip multiprocessor; (b)

An irregular network for a multimedia SoC 14

2.1 An asynchronous point-to-point communication channel 30

2.2 Asynchronous handshaking protocols: (a) four-phase (RZ); (b) two-phase

(NRZ) . 30

2.3 Asynchronous data encoding schemes: (a) dual-rail; (b) single-rail bundled

data . 33

2.4 A two-input C-element: (a) symbol; (b) implementation directly using tran-

sistors; (c) implementation using standard cells 35

2.5 An example asymmetric C-element: (a) symbol; (b) implementation directly

using transistors; (c) implementation using standard cells 36

2.6 A dual-rail completion detector . 37

2.7 An example of DIMS completion detector . 37

2.8 Mutual-exclusion element (Mutex): (a) block diagram; (b) implementation . 38

2.9 A balanced 3-way arbiter . 40

2.10 A high-performance 4-way arbiter . 41

2.11 Mousetrap pipeline . 42

2.12 Williams’ PS0 pipeline . 43

vi

2.13 High-Capacity (HC) pipeline: operational protocol 44

2.14 High-capacity (HC) pipeline: implementation 45

3.1 4×4 2D-mesh: (a) Network topology; (b) node structure 48

3.2 4×4 2D torus topology . 49

3.3 A basic 4×4 mesh-of-trees (MoT) network 50

3.4 A variant 4×4 mesh-of-trees (MoT) network 51

3.5 A variant 4×4 mesh-of-trees (MoT) network: a fan-out tree + a fan-in tree . 52

3.6 Header flit structure: (a) source routing; (b) destination-based 55

3.7 Timing diagrams for different flow control methods: (a) path of the packet;

(b) store-and-forward; (c) cut-through and wormhole routing 56

3.8 Apply virtual channel to wormhole routing: (a) head-of-line blocking sce-

nario; (b) solution with 2 VCs . 57

3.9 Synchronous router architecture (input/output buffers are optional) 59

3.10 Synchronous VC router architecture: crossbar sharing 60

3.11 Synchronous VC router architecture: crossbar replication 61

3.12 Pipelined operation for a 4-flit packet without stalls 62

3.13 Pipeline speculation for a 4-flit packet without stalls: (a) speculative SA; (b)

speculative SA+ST . 63

3.14 Lookahead routing computation for a 4-flit packet without stalls: (a) looka-

head RC only; (b) lookahead RC + speculative SA+ST 63

4.1 Mesh-of-trees: an efficient topology for connecting processors to memory . 66

4.2 Baseline routing node: (a) top-level; (b) latch control 69

4.3 Baseline arbitration node . 70

4.4 Baseline arbitration node: enhanced version to handle multi-flit packets . . . 71

4.5 Block structure of MoT network: predictive and new approach (a) Predictive

node; (b) New node; (c) MoT network with monitoring 74

4.6 New arbitration primitive: single-flit design 76

4.7 Mutex input control for single-flit design: (a) implementation (b) timing

diagram . 79

vii

4.8 Timing diagram for req-latch control . 80

4.9 Timing diagram for fan-in monitoring control 81

4.10 New root routing node: (a) top-level, (b) control logic 83

4.11 New non-root routing node: (a) top-level, (b) control logic 83

4.12 New arbitration primitive: multi-flit design 86

4.13 Mutex input control: multi-flit design . 86

4.14 Network-level latency: (a) baseline network; (b) predictive network; (c) new

network . 93

4.15 Network-level throughput: (a) baseline network; (b) predictive network; (c)

new network . 93

4.16 Latency comparison for 25% network load 94

4.17 Saturation throughput comparison . 94

4.18 Latency for the networks with multi-flit capability 96

4.19 Throughput for the networks with multi-flit capability 96

4.20 Performance comparison for multi-flit experiments 96

5.1 Baseline IPM architecture . 103

5.2 Baseline OPM architecture . 104

5.3 AEoLiAN overview: structure and operation 105

5.4 Proposed Input Port Module (IPM) architecture 107

5.5 Proposed Output Port Module (OPM) architecture 110

5.6 IPM details: Monitor Req Control . 113

5.7 IPM details: Monitor Ack Control . 113

5.8 OPM details: Monitor Output Channel Control 114

5.9 Timing digrams for single-packet processing: (a) Monitor Req Ctl; (b) Mon-

itor Ack Ctl; (c) Monitor Output Channel Ctl 115

5.10 Latency comparison for 25% network load 119

5.11 Latency for ’Bit rotation’ and ’Uniform random’ 120

5.12 Saturation throughput comparison . 121

5.13 Throughput for ’Bit rotation’ and ’Uniform random’ 122

viii

6.1 Node structure for proposed asynchronous double-plane router 128

6.2 Input buffer circular FIFO: structure . 129

6.3 Proposed VC control for an output channel interface 130

6.4 Design validation tool illustration . 131

6.5 Design flow illustration . 132

6.6 Actual layout for the proposed asynchronous router 132

6.7 Asynchronous vs. synchronous router: basic comparison 134

6.8 Asynchronous vs. synchronous router: projected results 135

7.1 Baseline asynchronous multi-resource arbiter: a black-box overview 141

7.2 External channel protocol . 142

7.3 Baseline asynchronous multi-resource arbiter 143

7.4 Protocol comparison: baseline vs. new . 145

7.5 Proposed pipeline: (a) operation protocol; (b) structure 147

7.6 Proposed asynchronous multi-resource arbiter 150

7.7 Masking/de-coupling unit: (a) structure; (b) implementation; (c) timing dia-

gram . 156

7.8 Pipeline register . 156

7.9 Client winner queue: (a) structure; (b) implementation for ‘write control’ . 157

7.10 Write destination decoder . 159

7.11 Individual cell implementation . 159

ix

List of Tables

4.1 Area comparison for pre-layout primitives (µm2) 87

4.2 Performance comparison for routing primitives 88

4.3 Performance comparison for arbitration primitives 89

4.4 Latency for monitoring control: node-level 90

5.1 Area comparison for pre-layout router nodes (µm2) 118

5.2 Zero-load latencies for the longest path in 8×8 mesh (ps) 123

7.1 Average latency comparison (ps) . 163

7.2 Cycle time comparisons (ps) . 164

x

Acknowledgments

I would like to thank many people who have helped me throughout the time I have spent in

Columbia. They have made this dissertation possible and successful.

First and foremost, I would like to express my sincerest gratitude to my advisor, Steven Nowick.

During my entire PhD life, Steve is my greatest supporter. I really appreciate his patient guidance

and the amount of time he spent with me for each research meeting. I still remember that there

was more than one time when we worked together until early morning and successfully made a

submission in time. He continually teaches me how to define problems, create systematic solutions,

and build communication skills. Outside research, Steve is always kind and encouraging. We have

a very good personal relationship. He has also spent much time in helping me with my job search.

Without Steve, I could never become the researcher I am right now.

I would like to thank other members of my dissertation committee – Luca Carloni, Simha Sethu-

madhavan, Montek Singh and Gennette Gill – for their time, valuable feedback and insightful com-

ments. In particular, I have enjoyed classes given by Luca and Simha at Columbia. They taught me

important background and useful skills for my research. Gennette, a former postdoc researcher of

Steve, also overlapped with me in Columbia. She, from time to time, gave interesting innovations

and inspired my research.

To other faculty members of the Columbia University – Stephen Edwards and Martha Kim – I

enjoyed interacting with you during group seminars.

I would like to thank Greg Sadowski and Wayne Burleson for giving me an opportunity to work

at AMD Research for a 6-month internship. Many thanks to Greg’s guidance and encouragement

during my internship. The outcome of the internship was a great success. We jointly issued a

US patent application. Our continued collaboration after my internship led to a paper publication

in the industrial session of DATE-17, a top-level conference. Also, many thanks to Wayne, who

volunteered to give the presentation in the conference.

xi

Then, I would like to thank my colleagues in the Computer Systems Lab, as well as my friends.

They made my daily working life enjoyable, and gave me a great amount of support through bad

times: Kshitij Bhardwaj, Marco Cannizzaro, Yu Chen, Nicola Concer, Emilio G. Cota, Georgios

Faldamis, Davide Giri, Cheoljoo Jeong, Jihye Kwon, Geoffray Lacourba, Hung-Yi Liu, Paolo Man-

tovani, Peggy McGee, Gabriele Miorandi, Michele Petracca, Luca Piccolboni, Baolin Shao, Chris-

tos Vezyrtzis and Young Jin Yoon. There are many more people who I cannot include in this list. I

wish all of you good luck in the future of your life.

Finally, I would like to give thanks to my parents, Shaoming Jiang and Qin Xu. You have raised

me and helped me build good attributes. Although you know almost nothing about my research,

during my entire PhD period, you encouraged me when I was under pressure, and gave me very

good advice and kept me on the ground during the good times. You also kept visiting me every

year to make my working life a joy. Thank you is simply insufficient. I would never have made it

without you.

Several grants have made this research possible: NSF Grant No. CCF-1527796, NSF Grant

No. CCF-1219013, NSF Grant No. CCF-0964606, NSF Grant No. CCF-0811504, and the TA

scholarship from Computer Science Department, Columbia University.

xii

This thesis is dedicated to:

My parents – Shaoming Jiang and Qin Xu.

xiii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Digital systems continue to grow in complexity. As transistor scaling continues, nowadays, the

number of transistors on individual chips is already in the multi-billion range. Meanwhile, more

components, such as processing cores, accelerators and memories arrays, are integrated onto a sin-

gle chip, as many-core architectures are targeted [17, 186, 200, 241]. As highlighted in the Inter-

national Technology Roadmap for Semiconductors (ITRS), conventional digital design approaches

are facing unprecedented challenges. These include dealing with the impact of increased variability,

power and thermal bottlenecks, high fault rates, aging and scalability issues [166]. Also, success

will rely on the designers’ ability to conceive large-scale electronic engines under strong time-to-

market pressure [18, 49].

As an alternative paradigm to address most of the design challenges faced by a conventional

synchronous, i.e. centralized clock, approach, asynchronous design – or the use of a hybrid mix

of asynchronous and synchronous components – has received continuous growth of interest over

the last two decades. Asynchronous systems naturally support modular and extensible system com-

position for an ‘object-oriented’ design style, on-demand operation without extensive instrumented

power management, and variability-tolerant design [166]. Asynchronous approaches have been

studied and successfully applied to a number of high-performance processors, as well as low-power

embedded consumer electronics. In addition, it is generally believed that some form of asynchrony

will inevitably be required to enable novel computing paradigms, such as quantum cellular au-

tomata, nanomagnetics and self-assembled molecular electronics [167].

Design challenges for asynchronous circuits still remain, however, in a wide range of topics,

1

CHAPTER 1. INTRODUCTION

including synthesis (both logic- and high-level design and optimization), testing, performance and

timing analysis, and formal verification [167], due to the unique features of asynchronous systems.

Although the historical lack of commercial asynchronous CAD tools is gradually been remedied,

at the current standing, only a few companies have developed custom in-house tools [13, 65, 227],

which are typically specialized for particular design styles, and are not generally available to other

researchers and designers [167]. Also, occasionally, when individual asynchronous components are

implemented within a complex clocked system, speed benefits of asynchrony can be lost due to the

synchronization needed at mixed-timing interfaces [167].

The use of networks-on-chip (NoC’s) is another recent thread for resolving the increasing com-

plexity in digital systems [26, 138]. NoC’s borrow ideas from general computer networks, and

provide structural communication infrastructures. In an NoC-based system, functional blocks are

first designed individually and may run at different clock rates. These modules are then connected

through a structured network for on-chip global communication [18, 49]. NoC’s entirely separate

computation from communication, hence they naturally support modular system composition and

plug-and-play assembly of functional units and cores. Research on networks-on-chip is highly ac-

tive since its invention. NoC’s are very cost efficient, since they find a balanced point between

network performance and the level of network resource sharing. Also, NoC’s have been demon-

strated to be able to handle a variety of real-world issues, such as congestion, fault tolerance and

real-time constraints.

In recent years, there has been significant interest to combine the notion of asynchrony with

NoC designs. Since the NoC approach inherently separates the communication infrastructure, and

its timing, from computational elements, it is a natural match for an asynchronous paradigm. The

increasing role of asynchrony in system communication is also highlighted in the recent ITRS re-

port.

This thesis aims to significantly advance the state-of-art for high-performance asynchronous

NoC’s. The contributions include several aspects. First, practical acceleration techniques are pro-

posed to focus on optimizing the network latency, while the throughput is still largely maintained

or even improved. Latency bottlenecks have been identified in many NoC’s, both synchronous

and asynchronous, especially for the memory interfaces of on-chip multiprocessors. In this thesis,

novel asynchronous network protocols, along with concrete NoC designs, are proposed to break

2

CHAPTER 1. INTRODUCTION

through the latency wall. The solutions improve the network performance considerably with only

small overhead. Second, an advanced asynchronous NoC router is instantiated and validated using

a leading industrial technology library. And for the first time, an asynchronous router is compared

to a commercial energy-efficient synchronous NoC baseline in an advanced technology. Finally, we

focus on a key component in an NoC – the arbiter. Arbiters are critical for NoC performance, and

sometimes the bottleneck for the router as well as the entire network. The proposed efficient and

scalable design can be directly applied in existing asynchronous networks, and promises its future

use in opening up new NoC directions.

This introduction chapter first reviews the background for two different aspects – (i) the notion

and potential benefits of asynchronous designs; and (ii) the concept of networks-on-chip and its

advantage over traditional interconnects. It then highlights the contributions and organization of the

thesis.

1.1 Asynchronous Design: an Alternative Paradigm

The section starts with a discussion of trends and challenges with traditional synchronous ap-

proaches. Then, the notion of asynchronous design, along with its advantages and challenges, is

introduced. Finally, we present an overview of recent advances in the asynchronous world.

1.1.1 Trends and Challenges in Synchronous Design

Synchronous design, as shown in Fig. 1.1, is the most commonly-used style in digital systems. The

system contains a collection of functional components which communicate using a global clock.

The components only exchange information at clock ticks: computations are complete and new

data must be ready before the arrival of the next clock tick.

The key benefit of a centralized clock is that it provides the designer with a discrete-time rep-

resentation of the system, which enables a firm understanding of time within the design. Specifi-

cation, implementation and verification are greatly simplified when the outputs only matter at the

end of every cycle. However, as the complexity of an individual chip increases, the large-scale and

high-density digital systems are posing significant challenges to the existing paradigm for globally

synchronous design.

3

CHAPTER 1. INTRODUCTION

Figure 1.1: A synchronous system

Clock distribution and clock power dissipation. As chips grow in complexity, the task of

distributing a single clock across an entire chip becomes harder. The global clock now must reach

a greater number of components, and physical design challenges become severe. Also, as the target

clock rate increases, the tolerable margin for clock skew decreases. On the other hand, about 1/4 to

1/3 of a synchronous chip’s power may be burned by the clock distribution itself [207, 210]. Power

consumption is now typically the key limitation for a system to achieve high operation speed, as

well as to prolong battery lifetimes in portable devices.

Worst-case performance. In a synchronous design, all components operate at the same pace,

and the clock rate is typically limited by the slowest component. Also, synchronous designs cannot

easily exploit variable data-dependent completion times, thereby being bound to worst-case perfor-

mance.

Design reuse and scalability. The synchronous approach becomes more difficult for design

reuse. Each component in a new product may need re-design if the new product imposes a different

clock rate from the old generation. However, as the system scales, there is a trend towards greater

modularity and reusability of hardware components. Design reuse is becoming critical to keep a

reasonable design cycle.

Interfacing with arbitrary environments. Frequently, a system environment is asynchronous.

The external devices such as memories and other peripheral equipment run at different speeds.

Synchronous designs need synchronizers to be added on the boundary of two clock domains, and

therefore extra performance, area and power overhead are required.

4

CHAPTER 1. INTRODUCTION

Figure 1.2: A asynchronous system with distributed control

1.1.2 Introduction to Asynchronous Design: Advantages and Challenges

In order to resolve the challenges faced by conventional synchronous designs, an alternative ap-

proach, named asynchronous or clockless design, has been targeted. A simplified model of an asyn-

chronous system is illustrated in Fig. 1.2, which has no global clock. Components communicate

through local handshaking channels, and can operate at different speeds.

While asynchronous design directly addresses the current challenges within the conventional

clocked design and offers fundamental benefits, it still has not been fully accepted by mainstream

industry due to its own unique challenges.

Several key advantages of asynchronous approach are first presented:

Lower power. Asynchronous circuits may save power consumption in terms of two aspects.

First, the clock distribution circuitry is entirely eliminated as the global clock is no longer needed.

Second, asynchronous components are only activated and consume power when stimulated by the

arrival of new inputs. In contrast, synchronous designs have switching activity throughout the entire

chip on every clock cycle, even when part of the design is idle and does no useful work. Although

modern synchronous designs are able to selectively shut down the clock for inactive modules using

clock-gating techniques, they are only partially effective and require extra overhead and design ef-

forts. In particular, coarse-grain clock-gating can only turn on or shut down the entire clock network.

The approach is not so useful when there are activities in only a portion of the circuits controlled

by a single clock tree [23]. On the other hand, modern fine-grain clock-gating can selectively en-

5

CHAPTER 1. INTRODUCTION

able or disable individual flip-flops. However, as the clock-gating controls are added close to the

leaves of the clock distribution tree, the technique largely does not yield power saving on the clock

network. Also, extra control logic at leaves can pose additional challenges in clock tree balancing

and physical layout [23, 101]. For asynchronous design, however, these power benefits are obtained

automatically [229, 230], since inactive components do not consume any dynamic power.

Higher performance. Asynchronous systems can potentially obtain better performance than

synchronous counterparts because they are not limited to worst-case timing assumptions. Compo-

nents notify their environment when the operation is completed through local handshaking com-

munication. Several early asynchronous designs take advantage of average-case performance, in-

cluding speculative completion for high-performance dynamic adders [168], and an asynchronous

implementation of the IA32 instruction-length decoder in Intel’s RAPPID project [212]. Recently,

average-case performance was also explored in NoC applications. In asynchronous NoC’s, while

the header flit needs to set up the path for the entire packet and incurs longer delay, the body and

tail flits are processed much faster [80, 82, 97]. The overall performance can be determined by a

combination of header, body and tail flits. In contrast, in synchronous NoC’s, every flit typically

advances at the same pace, which can limit performance.

Better scalability and modularity. Asynchronous components are self-contained. Smaller mod-

ules can be simply aggregated to build complex large systems. Also, asynchronous components

can be modularly replaced without having impact to the correctness of the entire system. The ease

of large-scale system integration was already shown in several recent industrial examples (STMi-

croelectronics’ P2012 [17], IBM’s TrueNorth [144] and the SpiNNaker neuromorphic chips [74,

76]), all of which used asynchronous or globally-asynchronous and locally-synchronous (GALS)

approaches. In contrast, any small changes in a synchronous system can lead to a potential re-work

for clock distribution [229].

Lower electromagnetic interference (EMI) and robustness. A synchronous design gener-

ates noise on its power-supply lines and emits electromagnetic radiation at the clock frequency

and its higher harmonics. In digital-analog mixed-signal designs, these electromagnetic emis-

sions can cause analog receivers to malfunction. Solutions such as shielding are costly. Asyn-

chronous circuits, in contrast, have much smoother radiation spectra, and also much lower ra-

diation power, thereby making them more compatible with sensitive analog circuitry [75]. A

6

CHAPTER 1. INTRODUCTION

good examples is the asynchronous 80C51 microcontroller fabricated by Philips Semiconductors.

The chip was able to achieve lower EMI noise emissions so that the microcontroller could op-

erate harmoniously with the radio-frequency (RF) data link, without the use of shielding [166,

230]. An enhanced version of the asynchronous microcontroller (SmartMX) is now used in more

than 75 countries, for biometric passports and IDs [166]. In fact, asynchronous designs are overall

more robustness to voltage, temperature and process variation. The approach has also been explored

to handle extreme environments, such as for space missions [198].

While asynchronous approach exhibits large attractions due to the above advantages, the design

style is not widely used because it has more challenging design requirements. A few of these

challenges are now presented:

Hazard-free design requirements. Hazards are usually not a problem for clocked designs, as

long as signals are stabilized before the arrival of each clock tick. On the other hand, in asyn-

chronous style designs, every transition on certain critical wires can potentially matter. The fun-

damental challenge of asynchronous design is to develop optimization techniques at each level of

the classic synthesis flow, from logic optimization to technology mapping, which simultaneously

guarantee hazard-freedom [167].

Testability. The state of an synchronous system is typically determined after each clock cycle.

Most testing is done through a ’single-stepped’ approach: the design is paused every cycle, and

the internal states of the circuits are extracted and compared with the expected results. In contrast,

asynchronous systems cannot be easily slowed down or paused, because of the lack of a centralized

control that clocking can provide. Also, an asynchronous operation or communication can com-

plete for an arbitrary long time, instead of a given number of cycles. This non-determinism adds

testing complexity. In addition, hazard-free requirements pose a special challenge to testability.

The testing tools need to ensure the absence of hazards, besides the functional correctness. Finally,

asynchronous designs use distinct storage elements from synchronous circuits and require different

testing approaches. Many asynchronous datapath use level-sensitive latches for storage instead of

edge-triggered flip-flops; asynchronous controllers typically store state on combinational feedback

wires rather than using flip-flops [167].

‘Computer-aided design’ (CAD) tools. Automated CAD tools are important for the design,

optimization and verification of large digital systems. Without having proper CAD tools, it is ex-

7

CHAPTER 1. INTRODUCTION

tremely difficult to obtain a good and correct design within a given time period. It is always chal-

lenging to develop asynchronous CAD tools which resolve the balance between two completing

needs: (i) to provide compatibility with existing synchronous languages and CAD tool flows, and

(ii) to design specification languages that best capture the fine-grain concurrency, distributed syn-

chronization, and underlying clockless paradigm of asynchronous systems [167]. Also, at current

standing, although automated CAD flows have been developed and used at several companies [13,

65, 227], these custom in-house tools are specialized for particular design styles, and are not gener-

ally available to other researchers and designers.

1.1.3 Asynchronous Design: Overview of Recent Success

Asynchronous design is not new [166]. The early years, from the 1950’s to the early 1970’s, in-

cluded the development of classical theory (Huffman [223], Unger [223], McCluskey, Muller [155]),

as well as use of asynchronous design in a number of leading commercial processors (Iliac I/II, At-

las, MU-5) and graphic systems (LDS-1). The middle years, from the mid 1970’s to early 1980’s,

were largely an era of reduced activity, due to the advent of the synchronous VLSI era. The mid

1980’s to late 1990’s, represented a revival of asynchronous design, with the beginning of mod-

ern methodologies for asynchronous controllers [14, 43, 70, 163, 220], pipelines [72, 129, 169,

165, 244], initial CAD tools, initial commercial low-power consumer products (Philips Semicon-

ductors [231]) and high-performance interconnection networks (Myricom). The modern era, start-

ing from the early 2000’s, includes a surge of activity, with modernization of design approaches,

CAD tools and optimization techniques, migration into on-chip interconnection networks (Plat-

form 2012 from STMicroelectronics [17]), several industrial update update at leading companies

(IBM’s FIR Filter [205], Intel’s RAPPID project [212]) as well as startups (Achronix [217], Ful-

crum [55]), and applications to emerging technologies (sub-/near-threshold circuits [135], sensor

networks [66], energy harvesting [40], CT-DSP [36, 37, 38, 234, 235], neuromorphic computers [74,

144]).

In this sub-section, we will not fully cover all the activities in the entire history. Instead, a set of

interesting and recent topics are selected and presented.

Asynchronous synthesis and optimization problems have been systematically addressed. In

terms of logic synthesis, hazard-free logic minimization techniques were proposed for both two-

8

CHAPTER 1. INTRODUCTION

level [71, 163] and multi-level optimizations [123, 164]. Two alternative widely-used approaches for

the specification and synthesis of hazard-free asynchronous controllers, burst-mode [162] and Petri-

net based [44], were also proposed. In addition, an alternative approach, called NULL Convention

Logic (NCL) was introduced by Karl Fant, targeted for the unified synthesis of both control and

datapath [132]. For high-level synthesis, in an early asynchronous approach called ACK [102],

systems are specified at a procedural level using VHDL with an add-on package of asynchronous

channel abstractions, and the compiler maps the system to distributed asynchronous control and

datapath. Resource sharing [7, 91] and scheduling [92] problems were also targeted.

A number of asynchronous specifcation languages and tool flows have also been implemented,

including the influential Caltech Synthesis Method from Alain Martin’s group [139], Philips’ Tan-

gram Compiler [225], along with its variant, Haste, and another enhanced public-domain version

Balsa [12], NCL-based approaches [132, 152, 187], and synthesis tools which target optimizing

pipelined systems [13, 45, 83] (including Proteus [13], which was developed at Fulcrum Microsys-

tems).

Testing of asynchronous circuits provides both challenges and opportunities which are distinct

from the testing of clocked circuits [166]. An advantage of some asynchronous circuits is that they

exhibit the useful property of self-checking, entering a deadlock state when subjected to certain

stuck-at faults. Fault diagnosis can take advantage of this additional failure mode [53, 176]. Also,

full-scan approaches were proposed for Sutherland’s micropipelines, in which the pipeline latches

and their controllers were modified to introduce a clocked scan mode of operation [113, 173]. A

similar full-scan approach was commercially used at Philips Semiconductors and was integrated

into their Tangram design flow. In addition, as the overhead can be unacceptably high when fine-

grained high-speed pipelines are used, several partial-scan [118] or non-scan [199] approaches were

also developed. Finally, a novel approach to testing delay faults – in particular, timing constraint

violations – in asynchronous pipelines has also been proposed [81].

A number of asynchronous processors have been built throughout the history of asynchronous

design. Several leading proessors from the 1950’s to 1970’s used asynchronous circuits exten-

sively, including ILLIAC I/II (University of Illinois), the Atlas and MU-5 (University of Manch-

ester), the DDM-1 dataflow machine (AI Davis/Burroughs) [56], and the designs from the seminal

Macromodules project [41]. The first modern single-chip asynchronous microprocessor was de-

9

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION 12

communication channels: asynchronous

Processing nodes: synchronous with wrappers

GALS System

Figure 1.4: Example of Mixed Synchronous/Asynchronous Architecture

cations such as pagers, cell phones, smart cards, and digital passports [42]. When compared

to a synchronous design, the asynchronous chips were found to have 3x to 4x lower power

with much lower EMI. Intel developed an experimental Pentium instruction-length decoder

called RAPPID which was found to be 3x to 4x faster than the synchronous sub-system

and 2x lower in power [81]. Sun Labs developed a commercial high-speed FIFO [57] and

IBM Research has developed several experimental high-speed pipelines, FIR filters, and

mixed-timing systems [85].

Some successful asynchronous design techniques have been the foundation for several

start-up companies, such as Fulcrum Microsystems (design ethernet routing chips), Cam-

gian Systems (very low-power/robust designs), Handshake Solutions (asynchronous tools

and designs), Achronix (high-speed FPGA’s) and Silistix (interconnect designs for low-end

mixed-timing systems).

1.2.4 Future Directions

While asynchronous circuits have potential, in practice, they will often be used in mixed-

timing systems that incorporate clocked components. These systems offer a good com-

promise between synchronous — which provides ample tool support, and asynchronous —

which offers distributed flow control. A globally-asynchronous locally-synchronous (GALS)

system is an example of one such architecture.

Figure 1.3: A GALS system

signed by Martin’s group at Caltech in 1988 [142]. The 16-bit RISC processor was developed as

a proof-of-concept to demonstrate the CHP complication approach, and the speed and robustness

of QDI circuits. Another influential processor was the Amulet 1, which was developed in 1993 by

Furber’s group, as an asynchronous ARM using micropipelines. These two projects set a founda-

tion for two decades of technical advances in all aspects of architecture, including pipeline circuits,

cache and memory design, speculation, exception handling, and on-chip networks [166]. These

first forays were quickly followed by more advanced designs, such as TITAC-1/2 [215], Amulet2e,

Amulet3i [78], MiniMIPS [142]. Other important milestones, using novel architectures include

the counterflow pipeline processor at Sun Microsystems Laboratories [209], an out-of-order ar-

chitecture featuring precise exceptions at University of Utah [188], a super-pipelined multimedia

processor at Sharp [219] and a low-power sensor-network processor from Cornell [66].

An alternative of constructing fully-asynchronous systems is called a globally-asynchronous

locally-synchronous (GALS) approach, which was also first proposed in this period [34, 193]. In

a GALS system, synchronous components, such as computational cores, memories and I/O units,

are integrated through asynchronous communication. The communication fabric can be either dis-

tributed asynchronous channels, as an example shown in Fig. 1.3, or a centralized communication

network. The latter structure effectively uses an asynchronous network-on-chip, which will be the

core of the thesis and introduced in Section 1.2. GALS approach allows design reuse of synchronous

functional blocks, and combines them with flexible asynchronous interconnect. The elimination of

10

CHAPTER 1. INTRODUCTION

global clocking provides a highly-scalable, low-power and robust mechanism for assembling com-

plex systems [120, 166, 216].

Commercial applications and industrial experiments. Asynchronous techniques has been suc-

cessfully migrated into commercial products by leading companies. Also, a number of industrial

researches have shown the success of asynchronous design, though they are not translated to actual

products.

At IBM research, a project was undertaken jointly with Columbia University to design a mixed

synchronous-asynchronous implementation of a finite impulse response (FIR) filter in 2000 [205].

The development was used for real channels of modern disk drives. The implementation exhibits

50% of reduction in worst-case latency and 15% higher throughput over IBM’s leading commercial

clocked version in the same technology.

Intel led an experimental project, called RAPPID, in the mid 1990’s, in which an asynchronous

implementation of the IA32 instruction-length decoder was designed and fabricated [212]. The

design significantly outperforms their commercial synchronous version: 3 times higher throughput,

half the latency and half the power consumption with similar area cost.

In the late 1990’s through early 2000’s, Philips Semiconductors (now NXP) achieved much

commercial success with its asynchronous 80C51 microcontroller [231]. The design exploited the

advantage of asynchrony, and achieves 3-4× lower power than their synchronous version. In addi-

tion, it shows much lower electromagnetic interference (EMI) noise emission, so that the controller

could operate along with the RF data link, with no use of shielding. The design was integrated

into a wide range of consumer electronics, such as pagers, cell phones, smart cards and digital IDs,

etc. [70, 163, 231]. More than 700 million copies were sold during that period.

Achronix Semiconductor, another example of asynchronous commercialization, invented the

Speedster 22i family of FPGAs in the mid 2000’s [217]. These high-performance FPGA chips

were claimed to be the fastest FPGA’s at release, which could operate at 1.5 GHz under 22nm

technology. The design applies asynchronous fine-grain bit-level pipelines, which is the key to

achieve fast operation.

Asynchronous design has also been used as a foundation for large-scale inter-processor commu-

nication, including the Torus routing chip [48], FLEETzero at Sun Microsystems Laboratories [42]

and the terabit-rate commercial crossbar switches of Intel/Fulcrum [55]. Also, several recent neu-

11

CHAPTER 1. INTRODUCTION

romorphic processors – IBM’s TrueNorth [144] and SpiNNaker [74], etc. – all of which use fully-

asynchronous interconnection networks to integrate massively-parallel architectures with thousands

of processing elements. (Detailed descriptions for some of these asynchronous NoC-based designs

are presented in Section 1.2.4.)

Other emerging areas. One of the intriguing directions is the development of continuous-time

digital signal processing (CT-DSP) processors [166], where input samples are generated depending

on the actual rate of change of the input’s waveform. The first general-purpose continuous-time

DSP was proposed by Vezyrtzis et al. [235]. Unlike synchronous DSPs, it maintains its frequency

response intact over varying sample rates and can support multiple input formats without any in-

ternal mode change,. Also, the approach eliminates all aliasing, and demonstrates a signal-to-error

ratio for certain inputs which exceeds that of clocked systems.

Asynchronous designs are also explored to handle extreme environments, such as for space mis-

sions. An asynchronous 8-bit data transfer system is designed using NCL and the high-temperature

SOI (HTSOI) process. The processor is proved to be fully operational over a 400 °C temperature

range (from -175 °C to +225 °C), with good resilience to single event transients (SET’s) [198].

1.2 Networks-on-Chip Introduction

Networks-on-chip is the other theme of the thesis. The concept was invented around 2000 [18, 49,

94], with several concrete NoC examples proposed around the same year [90, 238].

Nowadays, on-chip communication technology has become the limiting factor to achieve high

performance and low power consumption for the digital systems, and needs to be considered as a

first-class issue [18]. The reason is two-fold. First, modern chips can simply consist of tens or

hundreds of computational cores built with billions of transistors, divided into multiple timing do-

mains [207]. Success will rely on not only providing correct functional blocks, but also reliable

operation of the interaction between these components. Second, whereas computational units, stor-

age arrays and other functional blocks greatly benefit from transistor scaling, the delay and energy

consumption for global communication does not scale down [95, 214].

Networks-on-chip borrow ideas from general computer networks, and provide structural com-

munication infrastructures [18, 46, 138]. Much of the progress in this field is stimulated by the de-

12

CHAPTER 1. INTRODUCTION

(a) (b)

Processor

Video

Receiver Audio

Receiver

Memory
I/O

Interface

Video

Transmitter
DSP

Audio

Transmitter

Figure 1.4: Conventional on-chip interconnects: (a) Shared bus; (b) Point-to-point (P2P)

signer’s ability to complete large-scale digital system designs under strong time-to-market pressure

in a cost-effective way [18]. Since NoC’s separate the communication fabric from the computa-

tional units, which addresses the need of design modularity and allows computational modules to

be designed in a plug-and-play fashion, the designers thus does not need to focus on the communi-

cation technology. The notion of a network-on-chip provides integrated solutions to a wide range of

design problems, including high-performance computation, telecommunications, multimedia, and

consumer electronics domains.

1.2.1 Conventional On-Chip Interconnects

Before the notion of NoC’s was introduced, bus-based and point-to-point (P2P) interconnections,

illustrated in Fig. 1.4, were widely used for on-chip communication. However, these traditional

communication schemes have major limitations in scalability, and are no longer suitable for many

modern digital systems.

In a shared bus structure, shown in Fig. 1.4(a), a centralized bus is used, and all functional blocks

are attached to the bus. A transmission begins with a request to obtain the permission for utilizing

the bus. After the use of bus is arbitrated and granted, data is transferred. Other transmissions are

blocked until the current transmission is completed, and the bus is released.

Bus-based architectures are straightforward and simple to construct, but not scalable in terms

of performance and power consumption for modern large-scale systems. First, the structure has

13

CHAPTER 1. INTRODUCTION

Terminal

R

R

R R

R

R R

R

R

Terminal Terminal

Terminal Terminal Terminal

Terminal Terminal Terminal

Terminal =
Computational core,

memory or accelerator, etc.

R = Router = Channels/Links

DDR
SDRAM

au vu

rasterizer
R

R

BAB
calc

SRAM

RISC
CPU

audio
DSP

R

R R

R

R

R

R

R

R

Media
CPU

R

R

up
samp

R

R

iDCT

R
SRAM

R

R

(a) (b)

Figure 1.5: NoC examples: (a) A regular 2D-mesh NoC for a chip multiprocessor;

(b) An irregular network for a multimedia SoC

almost no capability for parallel data transmission, which leads to unacceptable performance degra-

dation as well as an extremely low efficiency for the use of the communication fabric. Also, since

each transmission is effectively a broadcast on the bus and to all units, a large amount of power is

consumed and wasted when the number of terminals increases.

Another conventional interconnect is point-to-point (P2P) architecture, shown in Fig. 1.4(b). A

dedicated channel is added for each pair of functional units, wherever needed. While the structure

usually has high performance, the number of channel links grows quadratically with the number of

functional blocks, and becomes unacceptable for large networks. Also, the routing of the channel

wires becomes extremely difficult when the system scales.

1.2.2 Network-on-Chip: Potential Benefits

Networks-on-chip, which borrow ideas from general computing networks, use separate infras-

tructure for on-chip communication between functional blocks [18, 46, 138]. However, they dif-

fer from general wide area networks in their smaller scale, and higher performance, as well as

quite different chip-level cost metrics [18]. Fig. 1.5 shows two NoC examples. They belong

to two different categories. The network on the left uses a regular mesh-based topology, in or-

14

CHAPTER 1. INTRODUCTION

der to connect a group of homogeneous functional units; On the other hand, the network on the

right is an irregular NoC used in a multimedia system to connect heterogeneous IP blocks [21,

182].

A network-on-chip is composed of nodes and channels. Nodes, as shown in Fig. 1.5, are also

called routers, which are used to direct the traffic in the network. Channels, also called links, connect

the nodes. Data are transmitted between nodes through a channel, using a communication protocol.

During a full transmission, the source functional block first communicates the attached router to

initiate the data transmission. The data is then packetized by the source router and injected into the

network. Then, packets are sent from a router to the next router, through a particular route in the

network, until they arrive at the destination. Finally, packets are decoded and the data is sent to the

receiver terminal.

Networks-on-chip have many benefits and provide a promising solution for modern digital sys-

tem design. Several key advantages of NoC’s are the following:

Improved scalability. While conventional interconnects will suffer unacceptable performance

degradation and area/energy inefficiency with the increasing number of functional blocks they con-

nect, networks-on-chip can easily scale to connect a large number of homogeneous or heterogeneous

components, because NoC’s are largely built in a structured manner. When the size of a system in-

creases, NoC’s are able to maintain stable performance with only moderate increases in area and

power cost for the communication fabric.

Better performance and energy efficiency. The two conventional interconnect structures rep-

resent two extremes – a system bus is a fully shared infrastructure for all terminal blocks, while

P2P channels are fully-dedicated for each source-sink pair. A NoC structure, however, finds a sweet

point between the two extremes. Unlike bus-based structures, NoC’s allow parallel data flows; on

the other hand, unlike P2P interconnects, NoC’s share resources between multiple transmissions.

Therefore, networks-on-chip provide relatively high performance with small to moderate area and

power cost – a much better performance and energy efficiency than traditional interconnects.

Design reuse. Since NoC’s entirely separate communication infrastructure from computational

units, the processing elements can be verified and optimized individually and employed in different

platforms by means of a plug-and-play design style [21]. The use of pre-verified design blocks

largely increases productivity, and time-to-market therefore can be kept as low as possible.

15

CHAPTER 1. INTRODUCTION

Design flexibility. As shown in Fig. 1.5, NoC-based systems provide the designer with a degree

of freedom to instantiate different structures, and therefore are suitable for a wide range of digital

designs. Networks can be tuned to have different topologies and routing strategies to accommodate

different applications. To support this flexibility, many NoC design automation techniques have

been developed, where routers and links are synthesized and connected together in an automated

design flow. Design flexibility and network reconfigurability will be the key in providing plug-and-

play component use.

1.2.3 Why the Asynchronous Paradigm Fits NoC Architecture

Many networks-on-chip are built using synchronous techniques, which are divide into two major

categories: (i) fully synchronous NoC’s and (ii) multi-synchronous NoC’s. However, these syn-

chronous NoC’s are facing unprecedented performance bottleneck and design challenges.

A fully synchronous NoC has a single clock distributed across the entire communication net-

work, which may run at a different clock rate from the functional IP blocks. It is a simple solution

but somewhat a compromise to support a system with multiple clock domains. As the network needs

to span across the chip, clock distribution is still very challenging. According to recent research,

these NoC’s consume up to 30% of the chip’s power budget due to clock distribution, otherwise

complex clock-gating techniques have to be applied [171]. Also, the NoC cannot run at a very high

speed, usually 2-3× slower than the functional IP blocks because of the power budget. The speed

constraints considerably limit the performance of the communication and the NoC may become the

bottleneck of the entire system.

A multi-synchronous NoC uses a different approach. Each router uses the same clock as the

terminal block it attaches to, or a dedicated and possibly faster clock [197]. Each router therefore

belongs to a different timing domain and typically runs at different speeds. Data transmissions,

therefore, require clock-domain crossing (CDC) at each hop, resulting in a significant performance

degradation. The approach is limited to systems with small to medium sizes, otherwise the clock

frequencies of the neighboring routers are forced to have close relationships.1

1Typically, a mesochronous approach is used. Neighboring routers run at the same frequency with undefined phase

skews. CDC’s between mesochronous blocks are much simpler, which can achieve much lower latency than that between

two heterogeneous asynchronous blocks.

16

CHAPTER 1. INTRODUCTION

In order to overcome the limitations of the above synchronous techniques, an alternative ap-

proach is proposed: an asynchronous NoC is used to connect the synchronous components. The

asynchronous paradigm is actually a natural match for NoC structures. Asynchronous interconnect

eliminates the need for global clock management across a large network, while the synchronization

is limited at only the source and the sink node. Effectively, the sync-to-async synchronization at

the source node is trivial, since asynchronous NoC’s can accept data at any time. Therefore, the

async-to-sync synchronization at the destination node is the only complication. In fact, the asyn-

chronous network, together with the synchronous functional blocks form an example of globally-

asynchronous locally-synchronous (GALS) system [120, 216]. The entire communication network

in a GALS system is asynchronous, and conversions to and from synchronous occurs only at the

destination and source nodes.

Overall, the asynchronous NoC area is a promising arena where the integrative benefits of asyn-

chronous design are making important inroads. This area is the focus of the thesis.

1.2.4 Synchronous and Asynchronous NoC’s: Recent Advances and Future Trends

Since the invention of the concept of network-on-chip, significant progress has been made for both

synchronous and asynchronous NoC’s. Networks-on-chip have been incorporated in a number of

academic and experimental design projects, as well as commercial applications.

Synchronous NoC Overview

Synchronous NoC’s are still the mainstream design approach for on-chip communication. A large

number of NoC designs have been proposed and a number of them have been fabricated [191].

These designs cover a wide range of topologies, including mesh [87, 98, 127, 146], ring [111],

and tree structures [90, 115]. Different flow-control mechanisms, including circuit- [87, 111, 127]

or packet-switching [87, 90, 98, 111, 146, 211], and different routing algorithms, from deter-

ministic [98, 111, 127, 211] to adaptive routing [90, 98, 146], have been explored and applied.

Also, several NoC’s support guaranteed service (GS) and multiple service levels [87, 111, 127,

146], while others propose advanced power management techniques [28, 30, 54, 186].

Design flexibility and network reconfigurability are the key to provide plug-and-play compo-

nent use. Network libraries are created to include all network components, such as routers and

17

CHAPTER 1. INTRODUCTION

channels. After designers describe communication requirements and constraints at high level of

abstraction, the most suitable network-on-chip will be synthesized, which assembles proper library

components [177, 190, 192, 211].

Network simulators are used to estimate and evaluate NoC performance and power consumption

without having a concrete gate-level design. These auxiliary tools are important for NoC structural

decisions at an early stage of the design flow, in order to minimize the design cost and the design

cycle. Also, they are used for a more accurate NoC evaluation at mid- to late-stages. NoC simulators

are not only proposed for conventional synchronous designs [3, 110, 237], but also for NoC’s with

extended wireless channels [33].

As size, complexity and integration density are making NoC’s increasingly vulnerable, fault

tolerance is another important topic [184]. Solutions for building reliable NoC’s are provided at

different levels. First, at a higher level, hardware redundancy can be provided. A backup spare

copy can replace the original piece of hardware when a hardware failure is detected. At the level

of network routing, adaptive routing allows data to be routed around the router with failure [181];

stochastic communication, on the other hand, transmits multiple copies of data and hopes at least

one of them will be received [178]. Finally, at a lower level, error detection/correction coding

schemes are used to detect or correct errors in each packet transmission [22].

Effectively, as of today, virtually all large-scale multicore processor chips are designed with

NoC’s [145]. As an early example, IBM’s CELL multiprocessor used a ring structure to connect

a main processor (PPE) and eight coprocessors (SPEs) [117]. The ring structure was recently ex-

tended and used in their POWER series multi-threaded chips [207]. On the other hand, 2D-mesh

networks are also widely used for tile-based structures, such as in the TRIPS processor [88], as well

as in Intel’s Polaris 80-core Teraflops processor [232].

Asynchronous NoC Overview

While synchronous NoC’s are powerful enough to support most of large-scale digital designs nowa-

days, asynchronous NoC’s are likely to become a more suitable approach for larger parallel systems

in the near future.

There has been a surge of research on asynchronous interconnect, due to its potential merits over

conventional synchronous networks. A number of asynchronous and GALS NoC designs have been

18

CHAPTER 1. INTRODUCTION

proposed in the past decade. They cover a wide range of research goals, forming a solid foundation

of the asynchronous NoC field. Chain is an early approach, using delay-insensitive (DI) codes on

the channel [8]. The interconnect mitigates crosstalk on the channel links, and was successfully

applied to an ARM-based smart-card chip. Several designs to support QoS have been proposed [27,

62, 63, 189]. They combine guaranteed service (GS) with best effort (BE) traffic, and enable mul-

tiple service levels. Fine-grain power management through dynamic voltage and frequency scaling

(DVFS) has been proposed in a GALS NoC structure [16]. Reliability and fault tolerance was also

targeted at the different network levels [99, 100]. Automated design flows are also being devel-

oped, leveraging commercial synchronous CAD tools, which use directives to meet asynchronous

timing without introduction of control hazards [80, 147, 221]. A recent asynchronous NoC applies

time-division-multiplexing (TDM), which traditionally requires a common time reference and was

usually implemented synchronously [112]. The design also has interesting elastic timing properties

that allow it to tolerate significant skew between network interfaces. Multicasting capability has

also been addressed, which can support many emerging NoC technologies [24].

Performance and power benefits. Performance and power benefits of asynchronous NoC’s over

their synchronous counterparts have been demonstrated in both high-performance shared-memory

chip multiprocessors [97] and Ethernet switch chips [133].

As a recent example, STMicroelectronics’ Platform 2012 (P2012) included a fully-asynchronous

network-on-chip [17]. implementing an advanced highly-customizable accelerator-based GALS

system. The asynchronous NoC is the key to facilitate its fine-grain power, reliability and variabil-

ity management. The first prototype chip integrates 4 clusters, each with 16 synchronous processors,

and delivered 80 GOPS performance with only 2W power consumption. Its performance efficiency,

i.e. performance per unit area and unit power, is much better than several recent Quadro and Nvidia

commercial GPU’s.

Another example is a recent hybrid packet/circuit-switched NoC from Intel Lab [35]. The

NoC can operate in two modes: a normal synchronous packet-switched mode and a fast ‘source-

synchronous’ circuit-switched mode. The latter mode is effectively implemented by asynchronous

operations. The chip was fabricated using advanced 22 nm tri-gate CMOS technology. The ‘source-

synchronous’ mode (which is actually a fully-asynchronous mode) shows a 2.7× increase in through-

put and a 93% reduction in end-to-end latency, compared to its normal synchronous mode.

19

CHAPTER 1. INTRODUCTION

The performance and power benefits of asynchronous NoC’s will be again demonstrated in

this thesis, through a head-to-head comparison between an asynchronous router vs. a synchronous

commercial counterpart in advanced technology (see Chapter 6).

Neuromorphic computers. An interesting emerging domain where asynchronous and GALS NoC’s

play an important role, is in building neuromorphic chips [166]. These brain-inspired architectures

involve billions of computational units, and each has closely-coupled local memory. In a neuro-

morphic system, neurons (or clusters of neurons) are mapped to processing elements or cores, and

synapses are mapped to communication channels. The communication is event-driven and high-

fanout. An asynchronous NoC architecture, therefore, is a natural fit for neuromorphic computing,

with its scalability, ease-of-integration and distributed communication.

As a recent example, IBM’s TrueNorth is a 5.4-billion transistor neuromorphic chip, the largest

chip when it appeared [5, 144]. The chip uses a GALS architecture: the design integrates 4096 syn-

chronous neurosynaptic cores, modeling 1 million neurons and 256 million synapses; the cores are

then integrated by fully-asynchronous on-chip communication. The power consumption of the chip

is extremely low: only 63 milliwatts when processing a 400x240 video input at 30 frames/second.

Another example for neuromorphic computer is SpiNNaker – Spiking Neural Network Archi-

tecture [74, 76]. The chip consists of up to 1 million ARM9 cores with 7T bytes RAM, which is

also GALS. The cores and memories are synchronous components, connected by an asynchronous

communication fabric. The computer shows comparable performance to modern PCs in several

applications with ultra-low energy consumption.

Commercial applications. Asynchronous NoC’s have already been applied to commercial products.

One example is Intel’s recent FM5000/6000 series Ethernet switch chips, which are based on its

acquisition of the asynchronous startup Fulcrum Microsystems in 2011 [55]. The products support

industry-leading 40 gigabit Ethernet, include a fully-asynchronous high-speed crossbar switch that

provides a maximum of 640 Gbps bandwidth, 400 ns cut-through latency and high energy efficiency.

Future Directions

Higher-dimension chips. One of trends for NoC structure is the growth from 2D topologies to

2.5D and 3D [1, 61, 174]. A 3D chip is a stack of multiple device layers with direct vertical

interconnects tunneling between layers [51, 154]. Compared to conventional 2D networks, stacked

20

CHAPTER 1. INTRODUCTION

3D interconnects have a lower network diameter, 1 resulting in potentially higher performance. So

far, recent research in this area also has shown that 3D networks can achieve higher packing density,

reduce the total wiring cost, and are more immune to noise [50, 109, 174, 222, 236]. The 3D

structure, therefore, becomes a promising architecture for future many-core parallel systems.

Photonic networks-on-chip. On-chip photonics have been proposed as radical low-power and low-

latency alternatives to the conventional wire-based NoC’s. Fundamentally, optical techniques allow

concurrent multiplexing of the channel links. Multiple data streams using different wavelengths can

transmit data simultaneously on a single link, called a waveguide [20, 137, 195]. The wavelength-

division-multiplexing (WDM) technique effectively enables ideally an all-to-all P2P interconnect

topology without large overhead which is usually associated with wired NoC’s. In photonic NoC’s,

transmission does not need to wait for arbitration to access network resources. Additionally, the

communication is completed at the speed of light. However, many challenges, such as manufactur-

ing cost and yield, temperature sensitivity of photonic devices, design complexity and testing issues,

need to be overcome before silicon-photonic integration can be widely used [20].

Wireless networks-on-chip. Wireless communication channels can be added on top of a conven-

tional wired network to create low-latency and high-throughput single-hop communication between

two nodes that are physically far apart [60, 158]. By adding these virtual long links, the aver-

age hop between two routers is considerably reduced, resulting in potentially much higher perfor-

mance. While millimeter-wave antennas can be manufactured using current manufacturing tech-

niques, several challenges, such as transceiver design issues and robustness of noisy wireless chan-

nels, still need to be resolved before wireless interconnect technologies can be widely adopted [60,

158].

New applications: artificial intelligence and autonomous driving. Networks-on-chip also have

shown importance roles in emerging applications, such as AI and autopilot. AI processors typically

require massively parallel computing and include high-performance accelerators, while self-driving

applications must satisfy various timing constraints (e.g. for emergency braking control). NoC’s

are considered to be the best solution because of their flexibility to achieve high performance and

accommodate various constraints.

A number of AI processors have been proposed in the past few years since significant research

1The network’s diameter is the maximum number of hops that data can be transmitted.

21

CHAPTER 1. INTRODUCTION

progress has been made in AI field recently [39, 114, 116]. All of them include an array of proces-

sors and accelerators connected through a NoC. On the other hand, Mobileye (acquired by Intel)

and NVIDIA recently announced their autopilot platforms, both of which are also NoC-based sys-

tems [6, 124, 145].

1.3 Research Focus

The thesis aims to significantly advance the state-of-art and prove the viability of asynchronous and

GALS networks-on-chip, for the use of high-performance and low-energy systems. The contribu-

tions are instantiated in three different directions.

First, practical acceleration techniques are proposed to focus on optimizing the system latency,

while the throughput is still largely maintained or even improved, in order to break through the

latency bottleneck in the memory interfaces of many on-chip parallel processors. While these novel

acceleration technologies lift the network performance considerably, the designs are very cost effi-

cient in terms of both area and power.

Second, an advanced high-performance and low-power asynchronous router is instantiated and

validated using a leading industrial technology library. And for the first time, we compare an asyn-

chronous router design to a commercial energy-efficient synchronous NoC baseline in an advanced

technology. In addition, a semi-automated flow was used to develop the router design. The work

was completed in AMD Research, which shows great interest for further research and investments

in this area.

Finally, a high-performance multi-resource asynchronous arbiter design is developed. This

small but important component can be directly used in existing asynchronous NoC’s for perfor-

mance optimization. In addition, the well-structured stand-alone design promises its future use in

opening up new NoC directions.

This section only focuses on the first contribution, presenting the challenges and goals of net-

work latency acceleration. All the three contributions will be presented in details later in Section 1.4.

1.3.1 An Overview of NoC Acceleration

Network performance is drawing an increasing attention for recent NoC designs. Both latency and

throughput are primary metrics for performance evaluation. For on-chip multiprocessors, other

22

CHAPTER 1. INTRODUCTION

high-performance parallel computing systems, and applications with hard real time constraints, net-

work latency is often more important. These networks typically have small to medium traffic load,

with occasionally bursty traffic. On the other hand, throughput is critical for many GPU’s and

multimedia-based systems – large amount of data needs to be transmitted at a stable speed.

In particular, system latency draws rising attentions for memory (or cache) interfaces for shared-

memory parallel processors, and has been identified as a critical limitation [89, 185]. In practice, the

communication network between cores and cache typically has light traffic, as low as only 5-10%

of network saturation, and the key bottleneck is transport time.

Recently, for high-performance NoC’s, increasing interest has been raised in using transition-

signaling (i.e. 2-phase) single-rail bundled data protocol on inter-router channel communication [79,

80, 97, 165]. (The detailed explanation of the protocol is presented in Section 2.1.) The transition-

signaling only contains a single round-trip communication per data transaction, which can in princi-

ple double the channel throughput, compared to a 4-phase protocol. Simultaneously, the single-rail

data encoding, compared to most delay insensitive codes, can significantly increase the coding effi-

ciency, resulting in a much smaller area and a much better energy efficiency. It also allows design

reuse of synchronous components in asynchronous implementation. Therefore, in this thesis, we

select transition-signaling single-rail bundled data protocol for all the NoC designs.

1.3.2 Research Challenges for NoC Acceleration

There are two inevitable overheads when we use a network-on-chip: arbitration overhead and

transmission overhead. The arbitration overhead is the time spent on resources acquisition, i.e.

routers and channels, before they can be used for data transmission. The acquisition occurs with

the arrival of the header flit, and the acquired resources are held for the rest of flits in the packet.

The acquisition is usually completed on hop basis. Therefore, data needs to be stalled at each

router on the transmission path, waits for resource allocation for the next hop, and cannot advance

seamlessly. On the other hand, the transmission overhead is the actual time for advancing the

data continuously through the routers and links along the path, assuming no arbitration overhead.

Transmission overhead always exists, unless each pair of source and sink is directly connected

through a dedicated link.

It is always challenging to target both arbitration overhead and transmission overhead in a

23

CHAPTER 1. INTRODUCTION

single NoC solution. A smaller arbitration overhead usually leads to a more intelligent NoC design,

and a more complicated router, while a smaller transmission overhead is in favor of a simpler and

faster router design. One of the key focus areas of this thesis is to address both of the above two

overheads for network acceleration, and optimize the network latency.

1.3.3 Synchronous NoC Acceleration: Existing Approaches and Bottlenecks

A large amount of research has been pursued for synchronous NoC acceleration. The approaches

largely fall into two categories: (i) router speed-up techniques [93, 156, 157, 172] and (ii) router

bypassing techniques [122, 131, 150, 218]. While these techniques are efficient and have been

widely used for many existing synchronous networks, each of them has its own shortcomings.

Router speed-up techniques only target the transmission overhead, while arbitration overhead

is not touched at all. In these techniques, speculation is used to allow parallel operations, which

belonged to two different pipeline stages and were only able to complete serially, to be performed

in a single clock cycle. Therefore, the pipeline depth is decreased; the latency of data processing

in the router is therefore reduced. (More details on synchronous router pipeline optimization are

presented in Section 3.4.4.) Most fast router designs, however, result in a more complex router with

moderate to large area and power overhead due to speculation. Also, the clock rate is slower, which

partially cancels the benefit of having a shorter pipeline [156, 157, 172].

Router bypassing techniques provide additional dedicated high-speed routes which bypass in-

termediate routers, therefore resulting in significant performance improvements. Unlike router

speed-up techniques, the approach decreases both arbitration overhead and transmission overhead.

A bypassing route typically only eliminates arbitration for a short distance every time (e.g. 3-4

hops in [122]), and accelerates the transmission speed for the segment. Also, moderate to high

hardware overhead is required to construct bypassing routes: additional VCs are used in [122,

131], while an extra circuit-switched network plane is added in [157, 172], which almost doubles

the network area in the latter case. In addition, the non-bypass traffic will be slowed down, if it loses

the arbitration to access the bypassing route, as well as due to a more sophisticated router design.

1.3.4 Asynchronous NoC Acceleration: A Missing Research Area

There has been only limited work for performance optimization of asynchronous NoC’s. Since re-

source arbitration and data transmission have to be carried out in continuous time without being

24

CHAPTER 1. INTRODUCTION

aligned to clock cycles, there is no easy way to extend a synchronous acceleration technique to

asynchronous. Such extension, if possible, requires almost a complete re-design for network proto-

col, as well as for the router itself. Performance optimization for asynchronous NoC’s thus becomes

an understudied area. One of the key targets for this thesis is to close this gap. We propose sev-

eral novel high-performance asynchronous NoC designs, and open new research directions for the

future.

1.4 Contribution of the Thesis

In sum, this thesis presents a set of design solutions for the advancement of asynchronous on-chip

interconnection networks. The contributions are instantiated in three aspects, including: (i) latency

acceleration techniques to break through the latency wall in many high-performance CMP’s; (ii) an

industrial implementation of an advanced asynchronous router in a leading industrial library, and

its comparison to a commercial synchronous router counterpart; and (iii) an asynchronous multi-

resource arbiter design for direct use in existing asynchronous NoC’s or opening new NoC directions

for the future.

These three contributions are presented below in detail:

• Latency acceleration techniques for asynchronous NoC’s

A novel asynchronous network protocol is proposed, along with concrete asynchronous net-

work designs. We introduce a new concept: the use of a monitoring network. Monitoring

networks are lightweight shadow networks used for fast-forwarding anticipated traffic in-

formation. The routers are notified with incoming traffic in the near future, and therefore

allowed to initiate and perform arbitration and channel allocation in advance. While in a

non-optimized network, each header packet has to request the arbiter and win the arbitration

before it can be transmitted on the channel, the proposed solution entirely conceals the arbi-

tration overhead. To support this approach, entirely new communication protocols and router

node designs are proposed.

The new asynchronous NoC’s only have relatively small overhead. Although ‘early ar-

bitration’ techniques have already been proposed in several synchronous designs [2, 119,

25

CHAPTER 1. INTRODUCTION

121], those solutions are inadequate: Most require major hardware resource allocation – mul-

tiple extra VCs, hybrid networks with additional network planes, or wide control or monitor-

ing channels. In contrast, our proposed NoC’s only contain lightweight monitoring networks

with small channel widths, without creating an extra network plane; nor extra VCs are needed.

In addition, considerable and stable latency improvement are observed in all kinds of traffic

patterns, with moderate throughput gains.

The technique is successfully applied to two topologies – a mesh-of-trees (MoT) variant struc-

ture and a 2D-mesh structure. They are two important and quite distinct design points, for

different application domains. The MoT topology is largely used for memory interfaces of

on-chip multiprocessors (CMP’s), to connect between cores and caches (L1, L2, or last-level

caches). As these networks typically handle low to moderate traffic density, latency is the

key of our focus, and throughput is only moderately important. On the other hand, 2D-mesh

is heavily used in a wide range of different applications, from consumer electronics to high-

performance parallel computers. Latency is important for all these domains, while throughput

is also critical, since there are many applications (e.g. multimedia-based applications) that are

throughput dominated. Our goal is therefore two-fold: optimization for latency while main-

taining, or improving, throughput.

The ideas of the two NoC’s are quite similar, the ‘early arbitration’ protocols are, however,

fundemantally different for the two topologies.

(i) Accelerated NoC for a mesh-of-trees (MoT) variant topology. In the MoT network, a

coarse-grain monitoring synchronization protocol is used; All related routers on the paths are

informed with the anticipated traffic information in rapid sequence. The protocol is simple

and well suited for the topology, where the level of congestion and traffic interference is low.

(ii) Accelerated NoC for a 2D-mesh topology. On the other hand, in the 2D-mesh network, a

finer-grain router-by-router early arbitration is forced. While the coarse-grain synchronization

protocol is suitable for the MoT structure, it does not work well for 2D-mesh. This is because

there are much more traffic interference in mesh-based topologies: pre-allocation of routers

too early for one data stream can block other data streams from using this node for a large

amount of time, resulting in an unacceptable performance degradation. Hence, more tightly-

26

CHAPTER 1. INTRODUCTION

coupled synchronization of the monitoring token and the data flow is required.

• An industrial instantiation for a high-performance and low-power asynchronous router

The work presents a real industrial instantiation of an advanced high-performance and low-

power asynchronous router in a leading commercial technology library. This work was carried

out in collaboration with AMD Research. The proposed router integrates several advanced

router design techniques, including a low-latency circular FIFO for buffer design, and a novel

end-to-end credit-based virtual channel (VC) flow control. This asynchronous router is then

validated and compared to an AMD commercial synchronous router using a realistic 14nm

FinFET library. This is the first such comparison, to the best of our knowledge, for an asyn-

chronous router vs. an industrial synchronous baseline using an advanced technology library.

Unlike other baselines for research purposes, the synchronous design is used in recent high-

end AMD processors and graphic products. The results are thus more persuasive and closer

to the reality.

In addition, a semi-automated design flow is created for the asynchronous router design. In

particular, industrial tools are used for place-and-route (P&R) and design validation. These

tools leverages from a standard synchronous design flow and therefore open real future op-

portunities for industrial asynchronous NoC designs.

In summary, asynchronous NoC’s have been shown to be a very good solution for future

industrial products. Also, AMD has shown interests for further research in this area.

• A pipelined high-throughput asynchronous multi-resource arbiter

Arbiter is critical for NoC performance, and sometimes the bottleneck for the router as well

as the entire network. A new fine-grain pipelined asynchronous multi-resource arbiter is pro-

posed. Multi-resource arbitration is used in existing asynchronous NoC’s for VC allocation.

Also, it serves as a key component for a potential future NoC direction – spatial-division mul-

tiplexing (SDM) NoC’s. A SDM NoC divides inter-router links into identical sub-channels

for concurrent data transmission. SDM technique is proved to be an alternative strategy to

VCs for mitigating head-of-line blocking, in order for high network throughput.

The new arbiter design aims for high throughput while retains a low latency. The allocation

of a resource to a client is divided into several steps. Multiple successive client-resource pairs

27

CHAPTER 1. INTRODUCTION

can be selected rapidly in sequence, and the completion of the assignments can overlap in

parallel. Besides the NoC applications, it can also be treated as a great stand-alone design for

future large-scale parallel systems.

The research for this dissertation led to a patent application [107], and to several publica-

tions [67, 104, 105, 106].

1.5 Organization of the Thesis

This thesis is organized as follows.

Chapters 2 and 3 provide background for the thesis. Chapter 2 introduces basic concepts of

asynchronous design, including different types of handshaking, data encoding schemes, special

asynchronous components and several asynchronous pipelines. Chapter 3 covers fundamentals of

networks-on-chip. This includes a variety of network topologies, routing and flow control methods,

as well as typical synchronous router architectures and operations.

Chapters 4, 5, 6 and 7 form the core of this thesis. Chapters 4 and 5 present a novel network

protocol for end-to-end latency acceleration using monitoring techniques. This new protocol is

applied to a Mesh-of-Trees variant topology [67] and the 2D-mesh network [105], respectively,

in these two chapters. Chapter 6 presents a real industrial instantiation for a high-performance

and low-power asynchronous NoC router, using a partial automated design flow [104, 107]. The

router shows dominating results in all key metrics, compared to a leading commercial synchronous

counterpart. This indicates that industry has shown strong interests in developing asynchronous

NoC’s, and it is potentially a viable solution for future large-scale digital systems. In Chapter 7,

a high-throughput asynchronous multi-resource arbiter is proposed [106], which optimizes a core

component for existing and potentially future asynchronous NoC routers. It is also a good stand-

alone design for future parallel systems.

Finally, concluding remarks and future research directions are presented in Chapter 8.

28

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

Chapter 2

Background: Asynchronous Design

Basics

Since all the proposed networks-on-chip in the thesis are designed in asynchronous style, a review

of basic background material for asynchronous designs is now given. For more details on asyn-

chronous foundations, see [165, 166, 167].

The chapter begins with the two most fundamental decisions for asynchronous designs: the se-

lection for the type of handshaking protocol between adjacent stages (Section 2.1) and the selection

of the way that data is encoded (Section 2.2). Then, more advanced asynchronous background is

introduced, including several special but widely-used asynchronous elements and components (Sec-

tion 2.3), as well as asynchronous pipelines (Section 2.4). These are requirements for understanding

the more technical sections later on.

2.1 Handshaking Protocols: Control Signaling

Components of asynchronous circuits communicate with each other based on local handshaking

interfaces. A typical point-to-point communication is illustrated in Fig. 2.1. The structure contains

a sender, a receiver, and a handshaking channel. The channel typically has two control signals – a

request (REQ) and an acknowledgment (ACK). The role of REQ is to indicate when the data is valid

and ready to be sent by the sender, while ACK indicates when the receiver has successfully received

the data and ready to accept another one. Alternatively, the REQ may indicate a request for data,

29

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

REQ

ACK

Sender Receiver

Figure 2.1: An asynchronous point-to-point communication channel

REQ

ACK

Evaluation phase

Reset (RZ) phase

4-phase handshaking (RZ): one transaction

REQ

ACK

First transaction

Second transaction

2-phase handshaking (NRZ): two transactions

(a) (b)

Figure 2.2: Asynchronous handshaking protocols:

(a) four-phase (RZ); (b) two-phase (NRZ)

and the ACK indicate a confirming response.

The two most common handshaking protocols are shown in Fig. 2.2: (i) a four-phase proto-

col (return-to-zero (RZ)), and (ii) a two-phase protocol (non-return-to-zero (NRZ)), also known as

transition-signaling [25, 31, 159, 193, 213]. In a four-phase protocol, each transaction contains two

round-trip communications between the sender and the receiver. In contrast, the two-phase protocol

only uses a single round-trip communication per transaction.

Other communication protocols include pulse mode [179, 180] and single-track handshak-

30

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

ing [228]. These non-standard protocols attempt to combine the efficiency of two-phase signaling

(i.e. no RZ phase) with the benefits of four-phase signaling (i.e. level-based implementation). How-

ever, they have complexities in timing requirements, implementation, and signal integrity, and are

used in only a few applications, hence they are outside of the current research scope.

2.1.1 Four-Phase Protocol

A single transaction of a four-phase handshaking protocol is shown in Fig. 2.2(a). Both REQ

and ACK are initially at zero. The protocol is composed of two operating phases (but four wire

transitions): an evaluation phase and a reset phase, with two events in each. During the evaluation

phase, the sender initiates the operation by asserting REQ high, indicating the data is ready; the

receiver then asserts ACK high to the sender, indicating the data is received and no longer needed.

Next, in the reset phase, the REQ and ACK are deasserted in turn.

In a four-phase protocol, the state of channel always returns to a unique value after each transac-

tion, and therefore usually leads to a simpler hardware design. However, a major penalty of having

a reset phase is a decreased throughput performance due to two communication round-trips per

transaction.

2.1.2 Two-Phase Protocol

The two-phase handshaking protocol is illustrated in Fig. 2.2(b). Each transaction requires a single

round-trip with only two events. The REQ first toggles to initiate the transaction; the ACK then

toggles to indicate the data is received and completes the transaction. After each transaction, the

signals do not necessarily return to zero. A two-phase handshaking protocol is also known as

transition-signaling, because the actual value of the handshaking signals are not important. Instead,

each transition event of the signals is important.

Since there is no reset phase, the two-phase protocol can obtain much higher throughput per-

formance, and can be more favorable to high-performance systems. However, in practice, a number

of asynchronous designs supporting a two-phase protocol have larger overhead in complexity and

delay. In contrast, the proposed asynchronous NoC routers in this thesis are carefully engineered to

be quite lightweight, based on Mousetrap pipelining (see below), and results confirm the benefits of

this approach.

31

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

2.2 Data Encoding Schemes

After deciding a handshaking communication protocol, data needs to be added for most realistic

transmissions. Because there is no synchronizing clock, and only ’on-demand’ operation, data

encodings are needed which can directly indicate the validity of new data. Data typically replaces

the req wire in the asynchronous channel. The two most commonly used data encoding schemes

are (i) delay-insensitive (DI) codes and (ii) single-rail bundled data [57].

2.2.1 Delay-Insensitive Codes

Delay-insensitive data encoding allows data bits to be sent in any order, and can tolerate any skew

of bit arrival during a data transmission [166, 167, 233].

Typically, four-phase communication protocol is used along with DI codes. Initially, all the data

wires are initialized to zero, and during a transaction, a certain set of data bits will be asserted high

in any order. After the entire codeword is received by the receiver, in turn, the ACK is asserted high.

Finally, all the data bits are reset low, followed by the ACK going low [4].

DI codes have the following property. The receiver needs to identify a valid codeword without

ambiguity, regardless of the transmission time and relative skew of the distinct bits. Therefore,

every valid code in the codeword space cannot be a subset of any other codeword. (Such codes are

also called ‘unordered codes’ in the fault-tolerant community.) Several examples of DI codes are

introduced below.

Dual-Rail Code

A Dual-rail code encodes each bit with two wires, as shown in Fig. 2.3(a) [9, 57, 166, 233, 239].

The combinations 01 and 10 are used to communicate 0 and 1 value respectively. The value 00 is a

spacer, indicating the absence of valid data. The value 11 is not used and is invalid in the protocol.

Dual-rail encoding is simple but expensive. 2n wires are needed to communicate an n-bit value,

resulting in a severe reduction in coding efficiency. Nonetheless, dual-rail codes have been widely

and effectively used in asynchronous digital systems, including some commercial ones [55, 144,

166, 167, 198, 217, 240].

32

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

valid from before the req is

transmitted to after an ack is re-

ceived. Therefore, the scheme

facilitates the use of synchro-

nous-style computation blocks.

It also provides good coding

efficiency, with only one extra

req wire added to the datapath.

However, unlike DI codes, a one-

sided timing constraint must be

enforced: the req delay must

always be longer than worst-

case data transmission. To sup-

port this constraint, a small

matched delay is added, either

an inverter chain or carefully

replicated portion of the critical

path. Unlike in a clocked system,

though, this is a localized con-

straint: stages can be highly

unbalanced, each with its own

distinct matched delay. More-

over, the timing margins can be

made fairly tight because some parameters (e.g.,

process, voltage, temperature) tend to be locally

more uniform.

Finally, a hybrid scheme, called speculative

completion [26], uses bundled data, but also allows

variable-latency completion, including better than

worst-case, based on the actual data inputs. High-

performance parallel prefix adders (Brent-Kung,

Kogge-Stone) have been demonstrated, operating

at faster rates than synchronous designs.

Pipelining
Pipelining is a fundamental technique to in-

crease concurrency and boost throughput in high-

performance digital systems. All modern high-speed

processors, multimedia and graphics units, and

signal processors are pipelined. In a typical pipe-

lined implementation, complex function blocks are

subdivided into smaller blocks, registers are inserted

to separate them, and a clock is applied to all re-

gisters. In an asynchronous system, no global clock

is used and, instead, the interaction of neighboring

stages is coordinated by a handshaking protocol.

Developing better pipeline protocols and their

efficient circuit-level implementation has been the

focus of many researchers over the past two to three

decades. We review three leading representative

styles, starting with the seminal work of Sutherland.

More details can be found in a recent survey [24].

Sutherland’s micropipeline. Figure 4 shows a

basic micropipeline [22], which uses a two-phase

handshaking protocol and single-rail bundled data.

Each interface between adjacent stages has single-

rail data and a bundling signal ðreqiÞ going forward,

and an acknowledgment ðackiÞ going backward. A

delay element is added to match the worst-case

delay of the corresponding logic block.

The pipeline operates according to a so-called

capture-pass protocol. The protocol is implemented

using a simple control chain of Muller C-elements1

[22], [24] (with inversions on the right inputs),

operating on a set of specialized capture-pass data-

path latches. The latches are initially all normally

transparent, unlike synchronous pipelines, so the

entire pipeline forms a flow-through combinational

path. Locally, only after data advances through an

individual stage’s latches, the corresponding request

reqi�1 causes a transition on the C (i.e., capture)

control input, which makes those latches opaque,

thereby storing and protecting the data. Once data

1A C-element is a basic asynchronous storage element;
assuming inputs A and B, the output is 1 (0) if both inputs are
1 (0), otherwise it holds its prior value.

Figure 3. Asynchronous data encoding schemes. (a) Dual-rail encoding;
(b) single-rail bundled data.

May/June 2015 13

(a)

valid from before the req is

transmitted to after an ack is re-

ceived. Therefore, the scheme

facilitates the use of synchro-

nous-style computation blocks.

It also provides good coding

efficiency, with only one extra

req wire added to the datapath.

However, unlike DI codes, a one-

sided timing constraint must be

enforced: the req delay must

always be longer than worst-

case data transmission. To sup-

port this constraint, a small

matched delay is added, either

an inverter chain or carefully

replicated portion of the critical

path. Unlike in a clocked system,

though, this is a localized con-

straint: stages can be highly

unbalanced, each with its own

distinct matched delay. More-

over, the timing margins can be

made fairly tight because some parameters (e.g.,

process, voltage, temperature) tend to be locally

more uniform.

Finally, a hybrid scheme, called speculative

completion [26], uses bundled data, but also allows

variable-latency completion, including better than

worst-case, based on the actual data inputs. High-

performance parallel prefix adders (Brent-Kung,

Kogge-Stone) have been demonstrated, operating

at faster rates than synchronous designs.

Pipelining
Pipelining is a fundamental technique to in-

crease concurrency and boost throughput in high-

performance digital systems. All modern high-speed

processors, multimedia and graphics units, and

signal processors are pipelined. In a typical pipe-

lined implementation, complex function blocks are

subdivided into smaller blocks, registers are inserted

to separate them, and a clock is applied to all re-

gisters. In an asynchronous system, no global clock

is used and, instead, the interaction of neighboring

stages is coordinated by a handshaking protocol.

Developing better pipeline protocols and their

efficient circuit-level implementation has been the

focus of many researchers over the past two to three

decades. We review three leading representative

styles, starting with the seminal work of Sutherland.

More details can be found in a recent survey [24].

Sutherland’s micropipeline. Figure 4 shows a

basic micropipeline [22], which uses a two-phase

handshaking protocol and single-rail bundled data.

Each interface between adjacent stages has single-

rail data and a bundling signal ðreqiÞ going forward,

and an acknowledgment ðackiÞ going backward. A

delay element is added to match the worst-case

delay of the corresponding logic block.

The pipeline operates according to a so-called

capture-pass protocol. The protocol is implemented

using a simple control chain of Muller C-elements1

[22], [24] (with inversions on the right inputs),

operating on a set of specialized capture-pass data-

path latches. The latches are initially all normally

transparent, unlike synchronous pipelines, so the

entire pipeline forms a flow-through combinational

path. Locally, only after data advances through an

individual stage’s latches, the corresponding request

reqi�1 causes a transition on the C (i.e., capture)

control input, which makes those latches opaque,

thereby storing and protecting the data. Once data

1A C-element is a basic asynchronous storage element;
assuming inputs A and B, the output is 1 (0) if both inputs are
1 (0), otherwise it holds its prior value.

Figure 3. Asynchronous data encoding schemes. (a) Dual-rail encoding;
(b) single-rail bundled data.

May/June 2015 13

(b)

Figure 2.3: Asynchronous data encoding schemes:

(a) dual-rail; (b) single-rail bundled data

1-of-N and M-of-N Codes

Both 1-of-N and M-of-N codes are extensions of dual-rail codes. The 1-of-N code is also called

one-hot code [136]. The code contains N data wires, and in each transmission, only one wire will

be asserted. Therefore, N wires can encode N possible values. For large N, the 1-of-N code has an

extremely low coding efficiency, while it is very simple to implement. Therefore, it can be used for

small codeword spaces. However, 1-of-4 codes are widely used, with the same coding efficiency as

dual-rail, but less switching activities. An M-of-N encoding scheme also represents each codeword

using N wires. However, exactly M wires are asserted in each data transmission [73]. As a result, M-

of-N codes have much improved coding efficiency, and have been used for several applications [74,

76]; however, the encoding and decoding logic can be quite complex.

Transition-Signaling DI codes

Conventionally, DI codes are typically combined with a four-phase RZ communication protocol.

However, in principle, any DI code can also use a two-phase (NRZ) transition-signaling scheme.

An assertion of ‘1’ on a wire in the four-phase protocol is replaced by a ‘toggle’ on the same wire

33

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

in the two-phase protocol. Transition-signaling DI codes inherit the pros and cons of two-phase

communication. They halve the number of wire transitions on the channel and achieve higher

throughput, compared to the corresponding four-phase DI codes. However, they may induce more

complex hardware design.

Examples of transition-signaling DI codes are level-encoded dual-rail (LEDR) [58] and level-

encoded transition-signaling (LETS) codes [143]. These codes combine the benefits of both four-

phase and two-phase handshaking protocols. As in a four-phase protocol, data can be directly

extracted from a subsection of codewords. On the other hand, as in a two-phase protocol, there is

no RZ phase. Using LEDR as an example, it uses two wires to represent a single data bit. If the

new data value is different from the previous one, the first wire toggles, otherwise the second wire

toggles. Therefore, at any time, the actual data value is represented by the level of first wire. Also,

the arrival of a new data is indicated by a transition on exactly one of the wires. Details of these

codes are not presented, since they are beyond the current research scope.

2.2.2 Single-Rail Bundled Data

Another alternative encoding approach is single-rail bundled data, as shown in Fig. 2.3(b) [57, 165,

166, 167, 213]. The data channel uses a standard synchronous-style single-rail data encoding with

an extra bundling request, which indicates the data is valid. Unlike DI codes, single-rail data en-

coding requires a simple one-sided timing contraint: the bundling request must arrive at the receiver

after all data bits are stable and valid.

The bundled data scheme allows arbitrary glitches on data channel, as long as the data is sta-

bilized before REQ is transmitted. Both four-phase [230] and two-phase [201, 204, 213] commu-

nication protocols are widely used to combine with single-rail data encoding. Using the two-phase

operation as an example, a data transaction begins with changes on all data bits, if any. There is

no particular transition order imposed on the data wires. Also, arbitrary glitches are allowed. After

all data bits are stabilized, the REQ is toggled, indicating the data is valid. Then, the ACK toggles,

indicating the data is received and completes the transaction.

There are several advantages for single-rail bundled data scheme. First, since arbitrary data

glitches are allowed, the scheme facilitates simple reuse of synchronous functional blocks. Second,

it provides a much better coding efficiency, compared to any widely-used DI codes. For example,

34

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

CA
B

Out
Out

keeper

B

A
Out

Can be implemented as
an AOI222 gate

A
B

(c)(b)(a)

Figure 2.4: A two-input C-element: (a) symbol; (b) implementation directly using

transistors; (c) implementation using standard cells

compared to dual-rail code, single-rail encoding only needs half number of wires to encode the same

number of values. Finally, although a local one-sided timing constraint is forced with respect to the

arrival time of bundling request for each stage, the stages can be highly unbalanced and optimized

individually. This is unlike any synchronous clocked design.

In this thesis, we select single-rail bundled data encoding, combined with 2-phase (i.e. transition-

signaling) protocol for all the NoC designs, in order to obtain high performance with low cost.

2.3 Special Asynchronous Elements and Components

Several special asynchronous components are introduced in this section. These elements are rarely

used in synchronous designs, but widely-used in many asynchronous systems. They are preliminar-

ies to understand the following research.

2.3.1 C-Element and Asymmetric C-Element

A C-element, also called a Muller C-element [153, 155, 166, 167, 213], is a standard asynchronous

state-holding component. The element produces a high value output when all its inputs are high,

and a low value when all its inputs are low. If the inputs are not all high or all low, the C-element

holds its output.

Fig. 2.4 shows the symbol of a 2-input C-element and two possible implementations. The design

35

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

P
N

Out

Out

keeper

N

M

Out

Can be implemented as
an AOI222 gate

N
P

(c)(b)(a)

aC+
-M

P

 P: plus input
 M: minus input
 N: neutral input

M

Figure 2.5: An example asymmetric C-element: (a) symbol; (b) implementation directly

using transistors; (c) implementation using standard cells

on the left, shown in Fig. 2.4(b), is a simple and direct implementation using several transistors. The

design on the right, shown in Fig. 2.4(c), is built completely based on standard cells, as a small state

machine. While the former implementation is typically used in most of asynchronous designs due

to better performance and less power consumption, the standard-cell based design is easier to be

integrated into an automated design flow without the need of creating a new C-element cell. In fact,

the standard-cell based implementation was used in Tangram, an early commercial asynchronous

design flow by Philips Semiconductors [225]. Both implementations can be easily generalized to

more than two inputs. However, a high fan-in C-element is usually decomposed into multiple logic

levels, in order to maintain reasonable electrical behavior.

Asymmetric C-elements (aC) are extended C-elements, which allow inputs to only affect transi-

tions in one of the directions [15, 72]. Inputs of an aC are divided into three categories: (i) inputs

that affect up-transition only, marked as ‘+’ symbol; (ii) inputs that affect down-transition only,

marked as ‘-’ symbol; (iii) neutral inputs that affect both transitions. The output goes from 0 to 1

when all ‘+’ inputs and neutral inputs are high; the output goes from 1 to 0 when all ‘-’ inputs and

neutral inputs are low; otherwise the aC holds its output value.

Fig. 2.5 shows the symbol and implementations of a simple aC, with one ‘+’ input, one ‘-’ input

and one neutral input. Similarly, a transistor based and a standard-cell based design are shown. More

complicated aCs are typically decomposed into multiple logic levels and require careful custom

design.

36

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

x0
x1{bit0

x0
x1{bit1

...
x0
x1{bitn

C
Done

...

Figure 2.6: A dual-rail completion detector

x0x1{
x1
x5{

...

Done
...

Cx3
codeword0

Ccodeword1

x4
x7 C{codewordn

Figure 2.7: An example of DIMS completion detector

2.3.2 Completion Detectors

Unlike in synchronous designs, where the arrival of data is indicated by a global clock, completion

detectors (CD) are required in asynchronous systems, to detect the arrival of a valid delay-insensitive

codeword. Completion detectors are divided into two classes: CDs for return-to-zero DI codes [4,

175] and CDs for non-return-to-zero DI codes [32, 58, 143].

Fig. 2.6 shows a CD for dual-rail code, the simplest return-to-zero code [140, 227, 229]. The

design is composed of an array of OR2 gates feeding into a C-element. Each OR2 gate detects the

arrival of a single bit in the code. Therefore, the output of the C-element is asserted high when all

bits become valid, and deasserted low when all bits are reset.

A more general return-to-zero CD design style is the delay-insensitive minterm synthesis (DIMS)

approach [52, 68]. An example is shown in Fig. 2.7. The design consists of a bank of C-elements

feeding into an OR gate. In the approach, each C-element represents a distinct valid code (i.e. a

minterm) in the codeword space. When a valid code arrives, exactly one of the C-elements is acti-

37

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

A number of other dynamic pipeline styles have

been proposed [24], with a range of tradeoffs in per-

formance, robustness and other cost metrics. These

include dynamic GasP by Ebergen et al. (Sun Micro-

systems) [25]; PCHB/PCFB by Lines; high-capacity

(HC) and lookahead pipelines (LP) by Singh and

Nowick; IPCMOS by Schuster et al. (IBM Research);

and single-track styles by Beerel et al. Asynchronous

pipelines have been used commercially in Sun’s

UltraSPARC IIIi computers for fast memory access; in

Achronix’s Speedster 22i FPGA’s [5]; in the Ethernet

switch chips of Intel/Fulcrum Microsystems [4]; and

experimentally at IBM Research for a low-latency

finite-impulse response (FIR) filter chip [10].

Synchronization and arbitration
Two related capabilities are needed when han-

dling the continuous-time operation of an asynchro-

nous system: synchronization and arbitration.

Synchronization involves the interfacing of asyn-

chronous and synchronous systems, or two unrelat-

ed synchronous systems, where, at the boundary

crossing, an asynchronous signal must be safely

realigned to a clock domain.

A good overview of the topic

has been presented by Gino-

sar [27]. Any direct connec-

tion of asynchronous inputs

to synchronous registers can

cause setup time violations,

resulting in metastable oper-

ation and possible failure,

such as storing of intermedi-

ate voltage values or even

oscillatory behavior. The first

detailed published results

identifying and evaluating

metastability were presented in 1973 by Chaney

and Molnar (see [27]).

The classic solution for a single bit is to provide a

basic synchronizer: double or triple flip-flops in

series, to ensure sufficient stabilization time to pro-

duce a clean synchronous output, with extremely

high mean-time-between-failure (MTBF). Detailed

synchronizer performance analysis has been pro-

posed, which considers the impact of noise and

thermal effects, along with directions to improve

circuit design [28]. More general solutions have

been proposed for synchronization blocks which

support buffering and flow control [29], [30]. The

approach by Chakraborty and Greenstreet provides

an integrated study of synchronizing two clock

domains, ranging from mesochronous to hetero-

chronous communication [29].

Figure 7 illustrates an example of a mixed-clock

FIFO by Chelcea and Nowick [30], which can inter-

face two arbitrary clock domains, a sender (put

interface) and a receiver (get interface). The design

is one of a complete family of modular mixed-timing

interfaces, including other variants to support mixed

Figure 8. A two-way arbiter. (a) Block diagram, (b) timing, and (c) implementation.

Figure 7. Mixed-clock FIFO.

IEEE Design & Test16

Asynchronous DesignVPart 1: Overview and Recent Advances

(a)

A number of other dynamic pipeline styles have

been proposed [24], with a range of tradeoffs in per-

formance, robustness and other cost metrics. These

include dynamic GasP by Ebergen et al. (Sun Micro-

systems) [25]; PCHB/PCFB by Lines; high-capacity

(HC) and lookahead pipelines (LP) by Singh and

Nowick; IPCMOS by Schuster et al. (IBM Research);

and single-track styles by Beerel et al. Asynchronous

pipelines have been used commercially in Sun’s

UltraSPARC IIIi computers for fast memory access; in

Achronix’s Speedster 22i FPGA’s [5]; in the Ethernet

switch chips of Intel/Fulcrum Microsystems [4]; and

experimentally at IBM Research for a low-latency

finite-impulse response (FIR) filter chip [10].

Synchronization and arbitration
Two related capabilities are needed when han-

dling the continuous-time operation of an asynchro-

nous system: synchronization and arbitration.

Synchronization involves the interfacing of asyn-

chronous and synchronous systems, or two unrelat-

ed synchronous systems, where, at the boundary

crossing, an asynchronous signal must be safely

realigned to a clock domain.

A good overview of the topic

has been presented by Gino-

sar [27]. Any direct connec-

tion of asynchronous inputs

to synchronous registers can

cause setup time violations,

resulting in metastable oper-

ation and possible failure,

such as storing of intermedi-

ate voltage values or even

oscillatory behavior. The first

detailed published results

identifying and evaluating

metastability were presented in 1973 by Chaney

and Molnar (see [27]).

The classic solution for a single bit is to provide a

basic synchronizer: double or triple flip-flops in

series, to ensure sufficient stabilization time to pro-

duce a clean synchronous output, with extremely

high mean-time-between-failure (MTBF). Detailed

synchronizer performance analysis has been pro-

posed, which considers the impact of noise and

thermal effects, along with directions to improve

circuit design [28]. More general solutions have

been proposed for synchronization blocks which

support buffering and flow control [29], [30]. The

approach by Chakraborty and Greenstreet provides

an integrated study of synchronizing two clock

domains, ranging from mesochronous to hetero-

chronous communication [29].

Figure 7 illustrates an example of a mixed-clock

FIFO by Chelcea and Nowick [30], which can inter-

face two arbitrary clock domains, a sender (put

interface) and a receiver (get interface). The design

is one of a complete family of modular mixed-timing

interfaces, including other variants to support mixed

Figure 8. A two-way arbiter. (a) Block diagram, (b) timing, and (c) implementation.

Figure 7. Mixed-clock FIFO.

IEEE Design & Test16

Asynchronous DesignVPart 1: Overview and Recent Advances

(b)

Figure 2.8: Mutual-exclusion element (Mutex): (a) block diagram; (b) implementation

vated. However, this particular design style has exponential growth with respect to code size, and

thus has very high area and power cost.

An advanced CD design approach for 2-of-N codes was proposed in [32]. The detector archi-

tecture is a simple binary tree, composed of basic cells. The design is much more scalable than the

DIMS approach, as the area cost only grows logarithmically with respect to N. Also, the structure

can be used for both RZ and NRZ codes.

2.3.3 Mutual-Exclusion Element and Asynchronous Arbiters

Arbitration is critical in all asynchronous systems. An arbitration involves the resolution of two or

more competing clients requesting a shared resource. Arbitration is typically simple in synchronous

designs: in each clock cycle, requests arrived in previous cycles are examined and one of them is

selected to be the winner. However, arbitration is much more challenging in asynchronous designs:

requests can arrive in continuous time, possibly only a few picoseconds apart, and resolution must

be completed cleanly and safely, unaligned to any clock cycles [166].

Mutual-Exclusion Element

A mutual-exclusion element (mutex) is a basic component to resolve two-way arbitration. The

structure and a basic implementation of a mutex is shown in Fig. 2.8, due to Seitz [183, 189]. This

analog unit has two input requests and two output grants (i.e. acknowledgments), operating under a

four-phase RZ protocol.

The design is composed of a pair of cross-coupled NAND2 gates on the left (i.e. a SR latch) and

38

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

a filter on the right (consists of a cross-coupled structure using four transistors). If only one input is

asserted high, it is granted without contention. If both requests are asserted within a short period, the

SR latch on the left is put into a metastable state with undefined output. The filter on the right keeps

both outputs low until the metastability is resolved. Therefore, only one of the requests is granted

first, the second request will be granted until the first channel releases the request. Theoretically,

the resolution of metastability can take arbitrarily long time. However, in practice, only when two

requests arrive extremely closely (e.g., <1 ps), the arbiter may result in a relatively long delay.

Asynchronous Arbiters

Components that resolve N input requests are called N-way arbiters. A simple N-way arbiter can

be implemented using a tree structure composed of mutexes. However, this naive implementation

has very poor performance. The latencies in response to different input channels also vary a lot

when the tree is not balanced. (It is natural for a non-power-of-two arbiter in this implementation.)

Many different designs and optimizations have been thus proposed [62, 63, 80, 108, 148, 151, 160,

206, 226, 242], which target better performance, robustness, scalability and fairness. In particular, a

new arbiter design approach is introduced in [148], and applied to a family of arbiters with different

numbers of input requests (practically up to 16). The design targets an overall high performance,

as well as an increased robustness and impartiality across all inputs. The proposed arbiters use

flattened and rebalanced tree structures, which decrease the number of tree cells from each leaf to

the root (for performance), and simultaneously, allows an equal number of tree cells from each leaf

to root (for fairness).

Here we introduce two small but recently proposed arbiter examples: a balanced 3-way arbiter

and a high-performance 4-way arbiter. They are fundamental components used in my NoC research.

Fig. 2.9 shows the balanced 3-way arbiter solution [148]. The design contains three mutexes

connected in a ring-like structure. Each of the mutexes resolves a distinct pair of competition (a-b,

b-c or a-c). When a request arrives, before it is granted, it must pass through two mutexes (i.e win

two arbitrations over the other two inputs) in series. Although the design has a larger latency than a

basic 3-way tree arbiter in some cases, it provides high latency equalization between all inputs.

When all inputs arrive almost simultaneously, the arbiter may deadlock with each request win-

ning only the first stage of arbitration. Therefore, a deadlock detector is added to resolve this case.

39

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

Tree arbiter comparison

Feature Baseline Yakovlev Naqvi Proposed

ERP optzn. � � - �
QRL optzn. - � - -
EAR optzn. - - � -
MEs on critical path 1 1 �log(n)� 1 or 2a
latency low medium high low
grant overlapping (GO) high none moderate low/none
performance scaling factor nearly flat log log nearly flat
QDI (with complex gates)b � � - �
impartiality ←− power-of-2 only −→ good

a2 MEs on critical path for Proposed using 3-way TACs or root; see Fig. 3 and Sec. V.
bFor timing assumptions due to gate-level decomposition, see Section VI.

TABLE I. SUMMARY TABLE FOR n-WAY TREE ARBITERS

and requires complex interlocking circuitry to maintain correct
operation.2
Discussion. As far as scalability concerns, the basic token
ring [12] and Yakovlev’s tree arbiter [16] present modular
approaches to construct a general N-way arbiter. QNoC [2]
only explicitly describes architectures where N is a power-
of-two; other topologies are complex to construct, with severe
unbalance or overdesign issues. Ghiribaldi et al.’s approach [3],
which is effectively a tree structure but not so identified, can
easily be scaled. Naqvi and Steininger clearly identify their
design as a tree arbiter, but the scalability to non-power-of-two
N is not at all obvious, because of a complex synchronization
system among all the TACs (refer to [10] for more details).

As far as timing dependence concerns, the only QDI
arbiter is the linear QNoC [2], because by definition it has no
forks. The design of Yakovlev [16] appears to be QDI when
using complex gates, however the authors indicate that timing
assumptions are required under gate-level decomposition for
each cell. The 2x1 TAC implementation shown in Fig. 1(a) is
also QDI, under a complex gate assumption (see Section VI).
Finally, both Taubin [12] and Naqvi [10] use simple gate
decompositions; most of Taubin’s cells appear to be QDI, while
timing assumptions are presented explicitly by the latter. The
proposed TACs in this paper are formally verified to be QDI
under a complex gate assumption. As in [10], we also include
an in-depth analysis of the timing assumptions resulting from
the gate-level decomposition used in our architecture.
Summary of Proposed Approach Key comparative highlights
of the different tree arbiters are presented in Table I. The new
“rebalanced” flattened tree architecture (Proposed), with only
two levels, along with its new TAC cell designs, significantly
reduces latency variability and improves arbitration fairness,
i.e. impartiality. The approach is shown to be highly scalable.
The proposed arbiter provides both low latency and low
response time (the latter a metric of throughput), exhibiting
almost flat growth with increasing N due its parallelism.

III. 3-WAY ARBITER

The first contribution is a highly-balanced 3-way arbiter
cell, for use as a building block in the N-way tree arbiters, as
well as for use in stand-alone arbitration. This component has
special importance for constructing balanced arbiters where N
is not a power-of-two.

Several 3-way arbiter implementations have appeared in the
literature. A low-latency solution is proposed in [9], however
it may deadlock in some cases during transitory operation.
Deadlock-freedom can be ensured by additional logic, but with
a high latency cost. In [14], a 3-way arbiter is implemented
using a tri-flop metastability-resolving circuit. However, it
may fail when requests come close together, in a scenario
comparable to that of an SR latch when Set and Reset signals
arrive simultaneously. Finally, a 3-way arbiter can be easily

2The paper also includes a brief sketch of how to incorporate the ERP
optimization in Sec. III.C.1, but it is not evaluated in experiments; it is unclear
what impact this optimization would have on timing issues for the interlocking
circuits and the overall protocol.

ReqC

ReqB

ReqA

GrantB

GrantC

GrantA

M
u
t
e
x
A
-
B

M
u
t
e
x
B
-
C

M
u
t
e
x
C
-
A

XC

XB

XA

Deadlock
detector

YB

YA

YC

3-way
arbitration core

Grant Synchronizer

ReqA

ReqB

Grant[ABC]

Deadlock avoided during transitory phase because XA is precondition for XB

000 100 001 010

ReqC

XA

XB

XC

YA

YB

YC

After ReqA , mutexC-A immediately inverts its outputs

and YC overlaps with YA. In this case the grant

synchronizer delays the generations of GrantA until YA

ReqC gets a head start on ReqB because it is allowed
to win the first arbitration stage (mutexC-A)

000001 010

(a)

(b)

Fig. 2. Proposed 3-way arbiter: (a) implementation, (b) timing diagram.

constructed as an unbalanced tree arbiter, based on Fig. 1(b),
with one 2-way TAC and one direct input to the root.

The new proposed balanced 3-way arbiter solution is
depicted in Fig. 2(a). It contains three mutexes connected
in a ring-like structure, each of which resolves competition
between a distinct pair of requests (a-b, b-c and a-c). Each
request must pass through two mutexes in series in order to
be granted, which makes this solution conservative in terms of
latency. However, the design provides high latency equalization
in response to its different inputs. In the 3-way arbitration
core, the arbiter may deadlock if all three requests arrive
close together and each wins only the first stage of MEs
(XA = XB = XC = 1). Hence, a deadlock detector is
added to ensure no deadlock: it kills ReqA and the arbiter
will then be acquired by ReqC . From this moment it can
be demonstrated that deadlock can never occur: considering
for example the scenario in Fig. 2(b), the red arrow clearly
indicates that XA ↓ is precondition for XB ↑. Since the
delay δ(XA ↓→ XB ↑) is non-zero and dependent from
the resolution time of MutexA−B , the Xn[0:2] vector can not
have more than two bits high during a transitory phase, thus
deadlock is avoided. While this solution slightly biases the
arbiter, it does so only for an extremely rare case, which has
minimal impact on overall results (see Section VII).

An additional stage of logic, a grant synchronizer, has
been interposed between each Yi mutex output and the pri-
mary Granti output, for robustness. In particular, the arbiter
operation can be examined assuming the grant synchronizer is
removed, and Yi is identical to Granti. Consider a scenario
where Client A wins the arbiter (XA = GrantA = 1), and
then ReqC is asserted and wins only its first stage (XC = 1).
When Client A releases the arbiter (ReqA and XA deasserted),
Client C may rapidly win the arbiter (GrantC = 1) before
GrantA has been safely deasserted. This problem is called
Grant Overlapping (GO), and occurs only during transitory
operation, when for a limited time two grants are asserted high.
This problem is a formal violation of the arbiter protocol, since
by definition there is at most one winner at a time. Depending
on the nature of the arbitrated resource, GO may be a problem
or not. If the environment can accommodate two high grants,
or the transitory period is sufficiently short, there may no
problem, otherwise a malfunction may occur (see discussion
in [10]).

110

Figure 2.9: A balanced 3-way arbiter

It kills ReqA and allows ReqC to win the arbitration. Since this scenario is an extremely rare case,

the addition of deadlock detector has minimal impact on overall fairness and performance results.

Fig. 2.10 illustrates a high-performance 4-way arbiter [80, 148]. Unlike the conventional tree

arbiter, in which 2 levels of arbitrations are performed in series for any request being granted, the

critical path of the solution only has 1 mutex element.

As shown in the figure, the design contains three mutexes. The left mutex arbitrates between

requests 0 and 1. Similarly, the right mutex arbitrates between requests 2 and 3. The central mutex,

however, arbitrates between requests from the left and right pairs. When a request arrives, it activates

the left (or right) and the central mutexes simultaneously. Both arbitrations are resolved in parallel,

and therefore results in an improved performance.

2.4 Asynchronous Pipelines

Pipelining is widely used for boosting throughput performance in high-speed digital systems. Mod-

ern general-purpose processors, graphic units, as well as application-specific digital circuits, such

as multimedia and DSP processors, are all pipelined. So are the routers in most high-performance

NoC’s. A typical pipeline implementation divides complex functional blocks into smaller blocks.

Multiple data tokens are inserted into the pipeline back-to-back, and they are processed in different

40

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

�
..
. �
In
�
CD Routelnfo .� ctrl information
.... from cla.tapath

.;
II, .. "
� .�

9 .::

ACKX

REQx

Rout.Select.do
from Packet

Route Selector

Fig. 2.

Ack, -" ,- ��

Packet Route Selector
TailPu.ado

frOlll TaJ.l Detector

j

Ack2 -+-+--11
Ack3

ackno.l.�s frOll!
other Channel. �1C==�P�.C�k�et�p.�t��n��1�ed�O�

"
--���

�-�������-fb�q�O __ ---t
pipe1in!r�l:t'�;' 2

Fig. 3. Request Generator for Output Port Module 0

ACK3
ACK2
ACK1
ACKo

Tail.Passed3
TailPassed2
TailPa8sedl

1:! TailPassedo

.£ �:��:�i:�=:i:��
� �:�::��:���:t��
�

) -
1-

REQO
REO

RE02

REQ3

1
2

DATAo
DATA
DATA
DATA 3

-JFf,]..
FF;t n-a
FF-;j.

IIIP rr"" L'EX

'U�� � _ . l �� Pi- F- � ,," C .• no� � � �

= 1'-""
1 �

1 �[f,
En 1

� En
rFr D

LS
Q

Ll D
L
2Q En

DL3:lD
En

Ql
L4

M�
U D Q
X Dli:�

Fig. 4. Output Port Module

�t1
fr�
g �

ACKotJT

REQotJT

DATAo

signals are two-phase. Whenever a request transition arrives
on Reqx, it causes a transition on Reqo.

There are two cases of operation. If this is the Re
quest Generator for the target <?utput port, the unit re
ceives RouteSelectedo asserted high. It then enters packet
processing mode, and asserts PacketPc:thEnabledo high.
The XOR2 is used as a programmable Inverter, where the
correct polarity of the Reqo output is selected by the XOR?
gate (i.e. phase converter logic). Eventually, wh�n the tall
flit arrives, the Output Port Module asserts �atlF!assedo
high, which resets the Request Generator to an In�ctlve state
while deasserting PacketPathEnabledo low. Finally, the
TailPassedo signal is deasserted low.

Alternatively, if this is not the Request Generator for th.e
target output port, i.e. RouteSelectedo is not asser�ed, the umt
is not activated and PacketPathEnabledo remaInS low. As
each flit arrives, the Reqx transition causes a Reqo transition,
which is ignored by the corresponding Outpu.t . Port �odule.
In fact, in this case, Reqo makes two transltlOns for each
flit: the XOR3 observes the flit acknowledgment from every
other Output Port Module (i.e. ACK1, ACK2 or ACK3),
thus always returning Reqo to its original value.
C. Output Port Module Architecture

. . . Output Port Modules arbitrate between multlple IncomIng
requests trying to access the �ssociated o�tpu� channel. The
microarchitecture of an OPM IS presented In Fig. 4.

Initially, all PacketfathEnabledi a!1? Ta.iIPa.ssedi sig
nals are low, and the wires of each transltlOn-slgnahng REG.!i
and ACKi pair have the same value�. Latches Ll . to L4
are opaque, blocking new requests unttl they are arbitrated.
Latch LS and the Data Register are normally transparent,

Grantl Granto Grant2 Grantl

Fig. 5. Microarchitecture of new 4-input arbiter
assuming no congestion, similar to a basic MOUSETRAP
pipeline register.

A new transfer begins when a header flit arrives
from one of the IPMs, concurrently with the associated
PacketPathEnabledi signal asserted high. The 4-way mutex
arbitrates requests from multiple IPM's trying to access to
the same output channel, granting access to exactly one of
them. Once the mutex is resolved, it performs two concurrent
actions: it (i) selects the correct data input of the mult�plexer,
and (ii) forwards the winning request to the output register by
making the corresponding latch (Ll to L4) transp�t.:nt. The
4-input XOR gate functions as a. merg� elemen�, JOining four
mutually-exclusive two-phase Signals Into a single request.
This latch and the multiplexer are progratmned once at th.e
start of a packet transmission, and remain unchanged until
after the tail flit arrives .

After the output channel request, REQout, makes a transi
tion, the data register and latch LS are made opaque. They b�
come transparent again when the acknowledge, ACKoUT, IS
received, indicating that the flit has been received downstream.
When data and request are safely stored (ReqEnable g.oes
low), the unit sends an acknowledge, ACKi, to. the. appropnate
IPM, completing the left handshakIng commUnlcatlOn. As each
subsequent body flit of the packet arrives, as long a.n ac�o�l
edgment ACKoUT has been received for the prevlOus fllt, ItS
data D AT Ai propagates directly through the �ultiplexer and
data register, and its request REQi propagates directly through
the corresponding latch (Ll to L4), to th� o�tput �hannel.

Packet transmission ends after the tatl fllt amves. When
the flit is sent on the output channel, the TailPass�di
signal (asserted high) is sent to the source IPM, along with
the transition-signaling acknowledge, AC Ki: Once asserted,
TailPassedi will also cause the correspondIng request latch
(Ll to L4) to become opaque. In turn, the correspond�ng
IPM will de assert PacketPathEnabledi, thereby releaSIng
the mutex, and the Tail Detector then deasserts TailPassedi.
D. 4-Input Mutex Design

The microarchitecture of the new 4-input mutex is presented
in Fig. S. While a previous widely-used 4-input mutex design
[16], [2 1] uses 6 two-input mutex elements and has a se�Lal
critical path through 3 mutex elements, the propost.:� solutlOn
uses 3 two-input mutex elements and has a cntlcal path
through only 1 mutex element. .

In this design, the left mutex element arbitrates between
requests 0 and 1, the right mutex element arbitrates be�ween
requests 2 and 3, and the center mutex element arbitrates
between requests from the right a�d lef� pairs . . C-elements
are used to synchronize the operatlOn of the middle mutex
with the side ones, both during the acquire and rel.ease phases.
Whenever a grant is given, any other request comIng from the
channel on the same side of the winning one will be killed. The
rationale is that, when the winning request will be deasserted,
the middle mutex has to be released, so no other requests
must be coming from th<? sam� side. This b�havior provides
fair arbitration between IncomIng requests: In fact, requests
from the other side will now have an advantage in acquiring
the middle mutex. In other words, the policy implemented is
a round robin between left and right side, and round robin
between requests within the same side.

Figure 2.10: A high-performance 4-way arbiter

sub-steps concurrently.

Although the idea of parallel processing for multiple input tokens is the same, the implemen-

tation approaches for synchronous vs. asynchronous pipelines are different [165]. In synchronous

pipelines, registers are inserted to separate sub-functional blocks and a global clock is simultane-

ously applied to all registers. However, in asynchronous pipelines, neighboring stages communicate

using local handshaking protocols, with unaligned timing of different stages.

This section reviews several leading asynchronous pipeline implementations, which are pre-

liminaries to understand my research. Section 2.4.1 reviews the Mousetrap pipeline [201, 204], a

well-known and widely-used high-performance static asynchronous pipeline. Sections 2.4.2 and

2.4.3 introduce two dynamic pipelines: Williams’ PS0 style [240] and the high-capacity style [202].

The former has a simple design, while the latter improves the data capacity and targets high perfor-

mance.

2.4.1 Mousetrap Pipeline

Mousetrap was a high-performance asynchronous static pipeline developed at Columbia University.

Fig. 2.11 shows a basic 3-stage Mousetrap pipeline. The pipeline uses a two-phase handshaking

41

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

advances through the next stage’s latches, where the

data is safely stored, a transition on the P (i.e., pass)

control input via ackiþ1, makes the current stage’s

latches transparent again, completing an entire cycle.

The latches indicate the completion of capture and

pass operations via Cd (capture done) and Pd (pass

done) outputs, respectively. Effectively, each data item

initiates a ‘‘wavefront,’’ which advances through the

pipeline and is protected by a series of latch-capture

operations. Predecessor stages, behind the wavefront,

are subsequently freed up through a series of pass

operations, once data has been safely copied to the

next stage. The old data can then be overwritten by

the next wave front.

Although micropipelines require specialized com-

ponents for implementation, they are remarkable in

the simplicity and elegance of their structure and

operation, and have inspired

several more advanced ap-

proaches. Their introduction by

Sutherland also provided deeper

insights into the nature of asyn-

chronous systems and triggered

a resurgence of research activity

in asynchronous design.

Mousetrap pipeline. We devel-

opedMousetrap at ColumbiaUni-

versity to be a high-performance

pipeline that supports the use of

an entirely standard cell method-

ology [23], [24]. Although its

two-phase capture-pass protocol

is based on that of micropipe-

lines, it has simpler control cir-

cuits and data latches, with much lower area and

delay overheads. Figure 5 shows a basic Mousetrap

pipeline. The local control for each stage is only a

single combinational exclusive-NOR (XNOR) gate,

and the storage for each stage is a single bank of level-

sensitive D-latches, both of which are available in

standard cell libraries.

Although the implementation is quite different,

the overall operation is similar to that of micropipe-

lines. Initially assume that all reqi and acki signals

are initially at 0, and all the data latches are there-

fore transparent. As new data arrives into stage i from

the left, and passes through the latch, the correspond-

ing reqi bundling signal toggles. As a result, the stage’s

XNOR toggles from 1 to 0, thereby capturing data in

the latch. It also requests the next data item from its left

neighbor by toggling acki . Subsequently, when stage i

Figure 5. Mousetrap pipeline.

Figure 4. Sutherland’s micropipeline.

IEEE Design & Test14

Asynchronous DesignVPart 1: Overview and Recent Advances

Figure 2.11: Mousetrap pipeline

protocol and single-rail bundled data encoding. A delay element is added to match the worst-case

delay of the functional block for each stage.

The pipeline uses a so-called capture-pass protocol. Unlike the synchronous pipelines, all the

latches are normally transparent. Overall, the entire pipeline forms a combinational flow-through

path. Locally, when a data token passes through the latches and enters the corresponding stage, the

latches are immediately closed to safely capture, i.e. protect, the data. Only after the successor

stage receives and captures this data token, the latches of the current stage are made open again and

allow new data to pass through.

While capture-pass protocol was first proposed and used in Sutherland’s micropipeline [213],

Mousetrap has much simpler control circuits and data latches. This leads to a much smaller area

and a much higher performance. In particular, the control of each stage is simply a XNOR gate, and

the data register is a single bank of level-sensitive D-latches. Both of them are available in standard

cell libraries.

A quick sketch of the operation is presented now. Initially, all the data latches are transparent,

and all reqi and acki are at 0. As new data arrives at stage i from left, with the corresponding

bundling signal reqi−1 toggles, the data immediately passes through the latch and enters the stage.

Three events occurs concurrently: (i) the stage’s XNOR toggles from 1 to 0, and captures the data

by closing the latches; (ii) an acknowledgment is sent to the left through toggling the acki; (iii) the

data is processed by the functional block and then sent to the next stage. Subsequently, when the

42

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

reduced switched capacitance, which in turn can

lead to higher speed and lower energy consump-

tion. However, dynamic logic also has its drawbacks:

greater design and validation effort, and less noise

immunity. Therefore, it is typically used only in

speed-critical parts of a design!!for example, in

ASICs and in arithmetic and logic units used

in high-speed microprocessors. However, recent in-

dustrial efforts continue to demonstrate the viability

and benefits of dynamic logic, even in modern

advanced VLSI processes. For instance, Intrinsity

(recently acquired by Apple) has developed a com-

plete general-purpose synchronous CAD design

flow based on domino logic, and used it to imple-

ment high-performance and low-power processor

cores, including an ARM Cortex-A8 processor in

45-nm technology.

For several reasons, dynamic logic is an espe-

cially good match for asynchronous pipelines. In

particular, in dynamic asynchronous systems, the

gate type is typically fully staticized domino,4-7,11,17

in which each dynamic gate output has an attached

primary inverter along with a weak feedback inver-

ter, forming a lightweight storage element. Such

gates have good immunity to the effects of leakage,

charge sharing, and noise. Moreover, DI-encoded

asynchronous data paths can gracefully accommo-

date delay variations introduced by uncertainty in

charge sharing and noise, because individual bits

can safely arrive with arbitrary skew. As a result, dy-

namic logic has been widely used in several recent

high-performance asynchronous commercial prod-

ucts, such as Ethernet switch chips from Fulcrum

Microsystems (currently 65 nm) and FPGAs from

Achronix Semiconductor (90-nm down to 22-nm

technologies).

Dynamic logic and

asynchronous pipelines
A unique feature of many

asynchronous dynamic pipe-

lines is that they are latchless.

Thus, with proper sequencing

of control operations, an asyn-

chronous pipeline can exploit

the implicit latching functional-

ity of dynamic gates and entirely

avoid explicit storage elements

between stages. Achieving simi-

lar latchless operation in a

synchronous implementation

typically would require using complex multiphase

clocking. This asynchronous feature provides the

benefits of reduced critical delays, smaller chip

area, and lower power consumption, thereby mini-

mizing some of the key overheads of fine-grained

pipelining.

Several asynchronous dynamic logic approaches

have been proposed.4,6,7,17,23,26,27 We will begin

by reviewing the PS0 pipeline style by Williams

and Horowitz,4 which is influential and an

important foundation for most later styles. The

‘‘Advanced Asynchronous Dynamic Pipeline Styles’’

sidebar highlights two recent higher-performance

approaches: a timing-robust style called the pre-

charge half-buffer (PCHB) by Lines,6 and our high-

capacity (HC) style,7 which provides high through-

put and high storage density.

The PS0 pipeline style

The PS0 pipeline style was introduced to support

pipelined computation in which low latency is criti-

cal.4 Because the pipeline has no latches, there is

no sequential overhead (i.e., no latches or registers)

on its forward path. As a result, in iterative computa-

tions that are implemented using self-timed rings, the

zero overhead to latency results in purely combina-

tional execution times for multistage operations.

This benefit was exploited in the design of self-

timed floating-point dividers based on the PS0 pipe-

line style in two commercial processors developed

at HAL Computers in the 1990s.5

Figure 6 shows the basic structure of a PS0 pipe-

line; each stage consists of a function block and a

CD. The data path uses DI coding (in particular,

dual-rail encoding) and contains only function

blocks, without any explicit registers.

Asynchronous Design

Fu
nc

tio
n

prech/eval
CD

ack1

Fu
nc

tio
n

prech/eval
CD

ack2

Fu
nc

tio
n

prech/eval
CD

ack3

Stage 2Stage 1 Stage 3

data_outdata_in

ack4

Figure 6. Classic dynamic-pipeline style: Williams and Horowitz’ PS0 pipeline.

(CD: completion detector.)

16 IEEE Design & Test of Computers

[3B2-9] mdt2011050008.3d 5/9/011 11:54 Page 16

Figure 2.12: Williams’ PS0 pipeline

next stage i+1 has received the data and an acknowledgment is placed on acki+1, stage i’s XNOR

toggles back to 1, opening the latches again and ready to accept the next new data. This completes

the cycle.

2.4.2 Williams’ PS0 Pipeline

Dynamic logic datapaths are commonly used for many high-performance digital systems. By re-

moving the pull-up logic, dynamic circuits have smaller area and power costs, and smaller switching

capacity for higher performance. However, dynamic logic is typically only used for speed-critical

components, since it requires greater design and validation efforts, and is less immune to noise.

Interestingly, dynamic logic is a particularly good match for asynchronous pipeline designs.

Local handshaking removes the need of designing a complex multiphase global synchronous clock.

Also, a DI datapath is immune to noises induced by delay variations on different data bits. Fur-

thermore, a key feature for most of asynchronous pipelines is that they are latchless. Asynchronous

pipelines can exploit implicit latching property of dynamic logic and avoid explicit data registers.

However, a synchronous implementation achieving the same latchless feature requires complex

multiphase global clock design. With the above advantages, asynchronous dynamic pipelines have

been used in several industrial products [55, 165, 217].

Fig. 2.12 shows a basic structure of a PS0 pipeline [240], which is the foundation of much sub-

sequent research. A four-phase (RZ) communication protocol is used, with dual-rail data encoding.

Each stage has a functional block and a completion detector. As shown in the figure, there are no

43

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICSSINGH AND NOWICK: DESIGN OF HIGH-PERFORMANCE DYNAMIC ASYNCHRONOUS PIPELINES 1273

Fig. 3. Details of a dynamic gate inside the function block: (a) PS0 with single
control signal and (b) HC with decoupled control signals.

2) Completion Generator: A completion generator is imple-
mented by an asymmetric C-element (aC) [7].1 An asymmetric
C-element has three types of inputs: those that are marked “+”,
those marked “-”, and a third type that is unmarked. The output
of the aC is set high when all the unmarked inputs and all the
“+” inputs go high. Conversely, the aC output is reset low when
all the unmarked inputs and all the “-” inputs go low. For all
other combinations, the aC holds its output value.

In an HC pipeline, the aC’s output Done is set when the
stage has begun to evaluate, i.e., when two conditions occur:
the stage has entered its evaluate phase (eval is high), and the
previous stage has supplied valid data input (completion signal
Req of previous stage is high). Done is reset simply when the
stage is enabled to precharge (pc asserted low). Thus, a stage’s
precharge will immediately reset Done, while evaluate will only
set Done if valid data inputs have also arrived.

The aC element output is fed through the matched delay,
which (when combined with the completion generator) matches
the worst-case path through the function block. Thus

(1)

where and are the evaluation and precharge times
for each stage, is the delay of the aC element, and is
the magnitude of the matched delay. Note that, for extremely
fine-grain or “gate-level” pipelines, the matched delay is often
unnecessary: the aC delay itself often already matches the func-
tion block delay, so no additional matched delay is required.

Finally, the completion signal (of stage in Fig. 2) is
fed to three components: 1) the previous stage’s controller, indi-
cating the current stage’s state; 2) the current stage’s controller
(through the matched delay); and 3) the next stage’s completion
generator (through the matched delay).

3) Stage Controller: The stage controller produces the con-
trol signals for the function block and the completion generator.
It receives two inputs—the delayed Done of the current stage
(i.e., outgoing Req), S, and the Done of the next stage, T—and
produces the two decoupled control signals, pc and eval.2 De-

1A similar style of completion generator is used in single-rail lookahead
pipelines [31], [33].

2Effectively, the role of the stage controller is analogous to that of the NAND

gate used in some of the lookahead pipelines (LP3/1, LP2/1, andLP 2=1) [31],
[33]: it combines multiple control inputs to produce the signals necessary for the
precharge and evaluation of the stage.

Fig. 4. Sequence of phases in a stage cycle and interaction between stages.

tails of the stage controller’s implementation will be discussed
shortly, after presenting the desired protocol.

B. Protocol

An HC pipeline stage simply cycles through three phases, as
shown in Fig. 4. After it completes its evaluate phase, it then
enters its isolate phase and subsequently its precharge phase.
As soon as precharge is complete, it reenters the evaluate phase,
completing the cycle.

The novelty of the approach is seen in the protocol which gov-
erns the interaction between stages. Unlike PS0 and
pipelines, there is now only one explicit synchronization point
between stages. Once a stage has completed its evaluate
phase, it enables the previous stage to perform its entire next
cycle: precharge, isolate, and evaluate new data item. In con-
trast, Williams’ PS0 uses two explicit synchronization points be-
tween adjacent stages: one to enable the start of evaluation, and
another to enable the start of precharge. Likewise, the single-rail
lookahead pipeline [33], [31], uses two explicit syn-
chronization points, but (unlike PS0) generated from two dis-
tinct stages: from (to start precharge) and from (to
start evaluation).

As in all pipelines, there is one additional implicit synchro-
nization point: the dependence of stage ’s evaluation on its
predecessor ’s evaluation. A stage cannot produce new data
until it has received valid inputs from its predecessor. Both of
the synchronization points are shown by the causality arcs in
Fig. 4.

The introduction of the isolate phase is the key to the new pro-
tocol. Once a stage finishes evaluation, it immediately isolates
itself from its inputs by a self-resetting operation, regardless of
whether this stage is allowed to enter its precharge phase. As a
result, the previous stage not only can precharge, but can even
safely evaluate the next data token, since the current stage will
remain isolated.

There are two benefits of this protocol: 1) higher throughput,
since a stage can evaluate the next data item even before stage

has begun to precharge and 2) higher capacity for the
same reason, since adjacent pipeline stages are now capable of
simultaneously holding distinct data tokens, without requiring
separation by spacers.

Interestingly, the HC protocol exhibits self-resetting features.
Once a stage completes evaluation, its eval signal is quickly
reset, so the stage can enter the isolate phase. Similarly, when a

Figure 2.13: High-Capacity (HC) pipeline: operational protocol

explict data registers to separate neighboring stages. Each functional block uses dynamic logic and

alternates between two phases: an evaluate phase and a precharge phase. In the evaluate phase, the

incoming data is evaluated and sent to the next stage; in the reset phase, the previously evaluated

data is cleared, and the output of the functional block is forced to be all 0s. In particular, when

a stage is in precharge, it has a blocking property to separate consecutive data tokens. The CD

identifies when the stage completes data evaluation, or when its output are all reset to 0s.

The operational protocol for PS0 pipeline is very simple. Overall, as a new data appears at the

input of the pipeline, the functional blocks evaluate the data one after the other, from left to right,

without any other synchronization. The fact of no explict latches results in low latency for each

data processing. Locally, the pipeline follows two basic rules: (i) a stage is precharged when the

successor stage completes evaluation; (ii) a stage is enabled to evaluate when the successor stage

completes precharge. The protocol ensures a stage holds a stable data output as long as the next

stage is still using the data (i.e. until the successor stage places an acknowledge on Prech/ Eval.

Therefore, two successive data tokens are always separated by a spacer, i.e. a precharging stage.

2.4.3 High-Capacity Dynamic Pipeline

A series of advanced dynamic pipelines are proposed based on Williams’ PS0 pipeline, target-

ing higher throughput [64, 69, 77, 134, 202, 203]. We focus on a so-called High-Capacity (HC)

44

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

Stage 2

ack2

Fu
nc
tio
n

NAND

INV

aC
+

gC+

_

+

pr
ec
h

ev
al

controller

req2
delay

req2req0

datain

ack1

Fu
nc
tio
n

gC+

_

+

pr
ec
h

ev
al

controller

Stage 1

delay

ack4

dataout

ack3

Fu
nc
tio
n

gC+

_

+

pr
ec
h

ev
al

controller

req3

Stage 3

delay

Figure 2.14: High-capacity (HC) pipeline: implementation

style [202].

One of the drawbacks for PS0 pipeline is that it only provides 50% storage capacity. Back-to-

back data tokens must be separated by an empty stage. Therefore, this leads to a considerable area

overhead: the number of pipeline stages are doubled for the same data capacity. This becomes a

disaster for applications where buffering capacity is important. In contrast, the HC pipeline allows

100% storage. Each stage can hold a distinct data item under congestion.

The HC pipeline uses a four-phase communication protocol with single-rail bundled data. Sim-

ilar to Mousetrap pipeline, a matched delay is inserted to each stage for matching worst-case delay

through the corresponding funtional block.

The pipeline protocol is fundamentally different from PS0. Each stage cycles through three

phases, as shown in Fig. 2.13, while the implementation of the pipeline is shown in Fig. 2.14.

This is realized by having two decoupled controls for dynamic gates: Precharge and Eval. In

evaluate phase, Eval is asserted high and Precharge is deasserted high. The stage is ready to process

incoming new data item; In precharge phase, Precharge is asserted low and Eval is deasserted low.

The stage is reset and its output are forced to be all 0s. In isolate phase, both controls are deasserted.

The output of the stage holds the value and immune from all inputs. Pull-up and pull-down are

simultaneously inactive and the gate is neither in evaluate nor precharge. This is the key innovation

45

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN BASICS

of the design.

The operation of the pipeline is simple. Initially, all stages are in evaluate phase, and ready for

new data tokens. As soon as a new data enters the stage and is evaluated, the stage is isolated to

protect the data. In parallel, an acknowledge is sent to the left, and allows new data arrival. Once the

successor stage evaluates the data and an acknowledge is received from right, the current stage is

enabled to complete an entire new cycle, without any further synchronization – precharge, evaluate

a new data item, and enters isolate.

As a consequence, only one backward synchronization between a pair of neighboring stages is

required in each cycle: the current stage has to stay isolated until the successor stage completes

evaluate. This is unlike the PS0 protocol, where two backward synchronizations are forced, by the

two operational rules listed above, respectively. The decreased number of synchronization points

allows a more loosely-decoupled protocol and therefore increased throughput.

46

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

Chapter 3

Background: Network-on-Chip Basics

An overview of basic concepts for networks-on-chip is now given. The chapter begins with net-

work topology, the static arrangement of channels and nodes in the network (Section 3.1). Next,

basic routing concepts (Section 3.2) and widely-used flow control methods (Section 3.3) are then

introduced. They describe how the data are transmitted in the network. Finally, the structures of

typical synchronous routers are presented, along with their operation (Section 3.4). Since most con-

cepts of synchronous routers are also inherited by asynchronous counterparts, the section will help

the readers to understand the asynchronous networks-on-chip and router designs in the following

chapters.

3.1 Network Topology

A network-on-chip is always composed of router nodes and channels (i.e. links). Network topology

defines the arrangement of nodes and how they are connected by the network links. Selection of

a network topology is usually the first step in designing a network-on-chip. Routing strategies and

flow control mechanism are highly dependent on the topology.

In this section, we first introduce common ways for topology classification. Then several topol-

ogy examples are introduced. In particular, my research focuses on two topologies – the variant

mesh-of-trees topology (used for NoC’s in Chapter 4) and the 2D mesh-based topology (used for

NoC’s in Chapter 5 and 6). Other widely-used topologies can be found in [46, 170].

47

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

6

Terminal

Switch

(a) (b)
Figure 2: 4x4 2D-mesh topology: (a) Network topology; (b) node structure

2.2 Network Topologies

 Network topologies introduced in this section are divided into two categories: (i) mesh-

based topologies and (ii) tree-based topologies. As of (i), two topologies are introduced –

2D-mesh and torus network. For (ii), three topologies are included – variant Mesh-of-Trees,

Fat Tree and Flattened Butterfly.

2.2.1 2D Mesh-Based Topology
 A 2D mesh-based topology is a direct network, where each router (i.e. switch) in the

network is connected to a terminal node, as shown in Fig. 2 [23]. A terminal node can be a

processing unit, a memory bank, etc. Each router typically has 5 ports, connecting to its

four neighbor nodes – west, east, north and south – and the local terminal node.

 In terms of routing, any router can be selected as the source or destination. There exist

multiple alternative paths that can be used to route the packet. Typically, multiple minimal

paths exist for each source-destination pair. Non-minimal paths are also used in non-

minimal routing algorithms.

2.2.2 2D Torus Topology
 The 2D torus network is another direct network, shown in Fig. 3 [3]. It is almost the

same as 2D-mesh network, with extra added links. The routers on the edge for the same

row/column are now connected with wrap-around channels.

2.2.3 Variant Mesh-of-Trees Topology
 A variant Mesh-of-Trees topology is an indirect network, which consists of a fan-out

network and a fan-in network, as shown in Fig. 4 [4][17][26][27][36]. In more detail, a

section of the network is shown in Fig. 5. It consists of a binary fan-out tree composed of

routing nodes, which emanates from source root nodes and terminate in mid-network with

leaf nodes; and a symmetric binary fan-in tree composed of arbitration nodes, which

emanates from destination root nodes and also terminates in mid-network with leaf nodes.

Figure 3.1: 4×4 2D-mesh: (a) Network topology; (b) node structure

3.1.1 Topology Classification

Direct and Indirect Networks

A router node can serve two functionalities. It is a terminal node if it acts as source and sink for

data transmission; it is a switching node if it is an intermediate node that only forwards data.

In a direct network, every router node is both a terminal and a switch. Data is forwarded directly

between terminal nodes. On the other hand, in an indirect network, a router can be either a terminal

or a switch, but cannot serve both functions. Indirect networks transmit data indirectly through

intermediate switches between each source-sink pair [18]. Many irregular networks are neither

direct nor indirect.

Regular and Irregular Networks

Regular network topologies arrange nodes and links in a disciplined way following regular graph

structures, such as rings, meshes and trees, etc. In contrast, irregular networks do not.

A regular network is often used if it needs to handle a wide range of traffic patterns when the

bandwidth requirements are unknown and unpredictable. An irregular network, however, is usually

carefully designed for certain types of applications, e.g. video coding or gaming. An irregular

network is called a custom topology. In such NoC’s, network traffic distributions are largely known

in advance and particular network topologies can be tuned for the applications [21].

48

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

7

 Figure 3: 4x4 2D Torus topology Figure 4: 4x4 variant Mesh-of-Trees

Figure 5: 4x4 variant Mesh-of-Trees: a fan-out tree + a fan-in tree

Leaf nodes of the two sub-networks are directly connected.

 Network routing is deterministic. Fig. 5 highlights a single flit traversal through the

network, from a source fan-out root to a destination fan-in root node. Each source-

destination pair is associated with a unique path through the network. This feature

significantly minimizes contention, since distinct fan-out sources are attached to different

fan-out trees, and distinct fan-in destinations are attached to different fan-in trees. This

separation guarantees that, unless the memory access traffic is extremely unbalanced,

packets between different sources and destinations will not interfere [4][5].

2.2.4 Fat Tree
 A Fat Tree topology is another indirect network, shown in Fig. 6 [3][37]. Unlike a

normal tree, in which the number of router nodes decreases when it approaches the root

level, in a fat tree, the number of router nodes at each level is constant. The figure shows

an example of 2-ary 5-tree. Each router typically has 4 ports – two ports connect two parent

routers in the upper level, and two ports connect two children in the lower level. Terminal

nodes are only attached to the lowest level.

 Packet routing in a fat tree is carried out in much the same as an ordinary tree, from one

terminal node to another. Packets are first routed from lower to higher level, called the

Figure 3.2: 4×4 2D torus topology

3.1.2 Network Topology Examples

2D Mesh-Based and 2D Torus Topologies

A 2D mesh-based topology is a direct network, where each router node in the network is connected

to a functional block, as shown in Fig. 3.1. A functional block can be a processing unit, a memory

bank, an accelerator etc. Each router typically has 5 ports, connecting to its four neighbor nodes –

west, east, north and south – and the local functional block.

A 2D torus network is another direct network, as shown in Fig. 3.2. It is almost the same as

2D-mesh topology, with extra added links. The routers on the edge for the same row/column are

now connected with wrap-around channels.

Both 2D mesh-based and torus networks are simple, and they are attractive for several reasons.

First, the regular physical arrangements are well matched for connecting homogeneous functional

blocks, such as cores in a parallel computer. Also, the links between neighboring routers are short.

Logically minimal paths are almost always physically minimal as well. This allows networks to ex-

ploit physical locality in communication [46]. What is more, mesh-based topologies have good path

diversity. Typically, multiple minimal paths exist for each source-destination pair. Non-minimal

paths can also be used in advanced routing algorithms.

One disadvantage for these two networks is that they have larger hop count than most of tree-

based topologies. This leads to higher latency. However, note that an increment in hop count is

required for path diversity [46].

49

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

2.1.1 Definition and Properties 281

the Ν χ Ν mesh of trees nodes and edges added
to form column trees

F i g u r e 2-1 The two-dimensional mesh of trees. Leaf nodes from the original

grid are denoted with circles. Nodes added to form column trees are denoted with

squares, and nodes added to form row trees are denoted with triangles.

Ν χ Ν grid of nodes nodes and edges added
to form row trees

Figure 3.3: A basic 4×4 mesh-of-trees (MoT) network

Basic and Variant Mesh-of-Trees Topologies

The construction of a basic 4×4 mesh-of-trees (MoT) network is shown in Fig. 3.3 [125]. The

network is constructed from a 4×4 grid of nodes, by adding binary trees in each row and column.

The topology is an indirect network. The leaves of binary trees (i.e. black circles) serve as sources

and sinks, while the remaining nodes (i.e. triangles and squares) are intermediate switches.

A simple minimal routing is usually used. If the source and the destination are inside the same

row/column, only the corresponding row/column binary tree is used for routing. Otherwise, if the

source and the destination are not in the same row or column, data is first sent from the source to

an intermediate node, which is at the same column (row) of the destination, through a row (column)

50

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

A Low-Latency Asynchronous Interconnection Network
with Early Arbitration Resolution

Georgios Faldamis
Cavium Inc.

San Jose, CA 95131
gfaldamis@hotmail.com

Weiwei Jiang
Dept. of Computer Science
Columbia University
New York, NY 10027
wjiang@cs.columbia.edu

Gennette Gill
D.E. Shaw Research
New York, NY 10036
gennette@gmail.com

Steven M. Nowick
Dept. of Computer Science
Columbia University
New York, NY 10027

nowick@cs.columbia.edu

Abstract. A new asynchronous arbitration node is introduced for
use as a building block in an asynchronous interconnection network.
The target network topology is a variant Mesh-of-Trees (MoT), com-
bining a binary fan-out (i.e. routing) network and a binary fan-in
(i.e. arbitration) network, which is becoming widely used for multi-
core shared-memory interfaces. The two key features are: (i) each
fan-in node can resolve its arbitration and pre-allocate the corre-
sponding input channel, before the actual data arrives; and (ii) a
lightweight shadow monitoring network fast forwards information as
soon as data enters the network without synchronization to a fixed-
rate clock, notifying each fan-in node on its path to enable the early
arbitration. Simulations of the new arbitration node, using IBM 90nm
technology and an ARM standard cell library, indicate latency reduc-
tions up to 54.4% over prior designs, while maintaining roughly com-
parable throughput. Network-level simulations were then performed
on eight diverse synthetic benchmarks, comparing the new approach
("early arbitration") with two earlier alternative asynchronous MoT
networks ("baseline" and "predictive"), using a mix of random and
deterministic traffic. Considerable improvements in system latency
were obtained on all benchmarks, ranging from 13.0% to 38.7%, with
especially strong benefits for the two most adversarial benchmarks.
1. Introduction
The introduction of networks-on-chip (NoC’s) in recent years has

been proposed to address several of the key challenges facing digital
system designers [7], including design time, scalability, reliability and
ease-of-integration. However, major challenges still remain in terms
of system latency, throughput and power [23, 22].
The focus of the current work is on designing a flexible, high-

performance and fully-asynchronous network, suitable for shared-
memory chip multiprocessors (CMP’s). The target network topology
is a variant Mesh-of-Trees (MoT), combining a binary fan-out net-
work (i.e. routing) and a binary fan-in network (i.e. arbitration) for
each source-sink pair, as shown in Fig. 1(a). While this NoC topol-
ogy is rarely used for embedded system-on-chip (SoC) platforms, it
is receiving increasing attention as a foundation for shared-memory
interface networks in high-performance parallel systems, to provide
needed bandwidth for globally uniform memory access. The clas-
sic MoT, unlike the variant, which places the functional units at the
leaves of the trees, also shows significant latency and throughput ben-
efits over other topologies, such as 2D-mesh [17, 18], but is proved to
have more contention and achieve lower saturation throughput than
the variant. Several recent shared-memory parallel processors are
using MoT, or close variants, for core-to-memory (or cache) inter-
faces [2, 24, 11]. Although MoT networks grow rapidly in size with
the number of cores and memories, they are viable for medium-size
parallel systems. In addition, extensions have been proposed to re-
duce area overhead through a hybrid MoT/butterfly topology, which
maintains the throughput and latency benefits of MoT with the area
advantages of butterfly [3].
There has been a surge of interest in recent years in asynchronous

and globally-asynchronous locally-synchronous design (GALS) [28].
Several GALSNoC solutions have been proposed to enable structured
system design. These approaches have been highly effective, espe-
cially for low- and moderate-performance distributed multicore sys-
tems [30, 1] which address a different point in the design space than
the proposed work. Some have low throughput (e.g., 200-250 MHz)

This work was partially supported by NSF Grant CCF-1219013.

0

1

2

3

0

1

2

3

Pr
oc

es
si

ng
 C

lu
st

er
s

M
em

or
y/

C
ac

he
 M

od
ul

es

Root
Nodes

Leaf
Nodes

Leaf
Nodes

Root
Nodes

Fan-out
Network

Fan-in
Network

(a)

fan-out
root

fan-in
root

fan-out network
consists of routing nodes

fan-in network
consists of arbitration nodes

the arbitration node
to be focused onPath of a flit

through network

(b)
Figure 1: Mesh-of-trees network: (a) top-level topology; (b) block structure

[1], while those with moderate throughput (e.g., near 500 MHz [30,
8, 25, 4] often have large overhead in router node latency and area.
Most are based on a standard 5-ported node architecture, and use four-
phase return-to-zero protocols, involving two complete roundtrip chan-
nel communications per transaction rather than the single roundtrip
communication targeted in our work (except for [14] which also uses
two-phase non-return-to-zero protocols.) They also typically use delay-
insensitive data encoding, resulting in a lower coding efficiency than
the single-rail bundled encoding used in this paper [1, 25, 20, 4, 30,
27].
The proposed solution builds on our previous work of [12, 10,

13], which uses a transition-signaling single-rail bundled scheme for
MoT networks. In [12, 13], two high-performance NOCs were in-
troduced: one fully-asynchronous and the other GALS-style. Each
used new lightweight asynchronous router node designs, targeting
an MoT topology. These NOCs showed significant benefits under
metrics of system latency, area and power. In particular the fully-
asynchronous network, in 90nm technology, provided much lower
system latency (by 1.7x) than a comparable synchronous network
operating at 800MHz, with identical throughput over the latter’s en-
tire operating range. Our more recent approach [10] added limited
dynamic reconfiguration capabilities to the network, using predic-
tion based on local recent traffic history, resulting in further perfor-
mance improvements for some benchmarks. The use of a transition-
signaling single-rail bundled scheme has also been recently extended
to implement a 5-port router, targeting a 2D-mesh topology [9].
However, both prior approaches ([12, 10, 13]) are shown to hit a

latency wall, due to the overhead incurred by two steps: arbitration
resolution and input channel allocation. At medium to high input
rates, and with adversarial traffic patterns, these overheads create a

978-1-4799-2816-3/14/$31.00 ©2014 IEEE 329

4B-2

Figure 3.4: A variant 4×4 mesh-of-trees (MoT) network

binary tree, then from that intermediate switch to the destination node through a column (row)

binary tree. It is simple to identify that there are two optimal minimal path in this case.

My research, however, focuses on a variant mesh-of-tree (MoT) topology [10, 11], instead of the

basic one, as shown in Fig. 3.4. While the figures look quite different, the variant topology actually

has the same structure as the basic one, but with the roots of binary trees being sources and sinks.

Compared to the traditional MoT network, the variant topology forces a simpler deterministic rout-

ing algorithm and has much less traffic contention, which is, therefore, more suitable for building

high-performance NoC’s.

The variant MoT network consists of a fan-out network and a fan-in network. In more detail, a

section of the network is shown in Fig. 3.5. It consists of a binary fan-out tree composed of routing

nodes, which emanates from the source root node and terminates in mid-network with leaf nodes; a

symmetric binary fan-in tree composed of arbitration nodes, which emanates from the destination

root node and also terminates in mid-network with leaf nodes. Leaf nodes of the two sub-networks

are directly connected.

Network routing for the variant MoT network is deterministic. Fig. 3.5 highlights a single flit

traversal through the network, from a source fan-out root to a destination fan-in root node. Each

source-destination pair is associated with a unique path through the network. This feature signif-

icantly minimizes contention, since distinct fan-out sources are attached to different fan-out trees,

and distinct fan-in destinations are attached to different fan-in trees. This separation guarantees that,

51

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

7

 Figure 3: 4x4 2D Torus topology Figure 4: 4x4 variant Mesh-of-Trees

Figure 5: 4x4 variant Mesh-of-Trees: a fan-out tree + a fan-in tree

Leaf nodes of the two sub-networks are directly connected.

 Network routing is deterministic. Fig. 5 highlights a single flit traversal through the

network, from a source fan-out root to a destination fan-in root node. Each source-

destination pair is associated with a unique path through the network. This feature

significantly minimizes contention, since distinct fan-out sources are attached to different

fan-out trees, and distinct fan-in destinations are attached to different fan-in trees. This

separation guarantees that, unless the memory access traffic is extremely unbalanced,

packets between different sources and destinations will not interfere [4][5].

2.2.4 Fat Tree
 A Fat Tree topology is another indirect network, shown in Fig. 6 [3][37]. Unlike a

normal tree, in which the number of router nodes decreases when it approaches the root

level, in a fat tree, the number of router nodes at each level is constant. The figure shows

an example of 2-ary 5-tree. Each router typically has 4 ports – two ports connect two parent

routers in the upper level, and two ports connect two children in the lower level. Terminal

nodes are only attached to the lowest level.

 Packet routing in a fat tree is carried out in much the same as an ordinary tree, from one

terminal node to another. Packets are first routed from lower to higher level, called the

Figure 3.5: A variant 4×4 mesh-of-trees (MoT) network: a fan-out tree + a fan-in tree

unless the traffic is extremely unbalanced, data between different sources and destinations will not

interfere [82].

3.2 Routing Basics

Once a network topology is determined, routing is the next logical step. Routing involves selecting

a path from the source node to the destination.

A well-designed routing algorithm is critical, and can push the network topology to its ideal

performance. It may have the following characteristics. First, a good routing algorithm attempts to

keep path lengths as short as possible. This reduces the number of hops and the overall latency of

data transmission. Many algorithms only use minimal paths, or in most cases. Second, the network

traffic is well balanced across the channels. There is no congestion area or hot spot most of the time.

This leads to a very good network throughput. Finally, the routing algorithm needs to be simple,

which is either independent to network state, or only monitors simple parameters in the network.

This is closely related to the router complexity.

3.2.1 Classification of Routing Algorithms

Deterministic Routing

Deterministic routing algorithms are simplest and most inexpensive to implement. In such routing

52

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

schemes, each source-sink pair only has a single pre-determined path. Data is always sent over

exactly the same route.

Besides its simplicity and low cost, deterministic routing also has several other advantages. Such

routing can always be used for any topologies. Other routing schemes, i.e. oblivious and adaptive

routing (see below), may require path diversity in the network, which may not even exist. Also,

deterministic routing is widely used especially for custom topologies, where designing randomized

or adaptive algorithms is much more difficult [46].

However, deterministic routing cannot adapt to different traffic patterns on the fly, and therefore

can result in large load imbalances in the network. It may create hot spots and congestion areas, and

sometimes can severely pull the network performance from what it can maximumly achieve.

A well-known example of deterministic routing is dimension-order routing in mesh-based and

torus networks [46]. Data first travels in one of the dimensions to the row or column of the des-

tination node, and then is delivered to the destination in the other dimension. It is obvious that

dimension-order routing only uses minimal paths. This routing algorithm is also called X-Y or Y-X

routing, depending on which dimension data travels first.

Oblivious Routing

Compared to deterministic routing, oblivious routing can use multiple paths between each source-

sink pair. However, the selection of paths is random, regardless of the network state. Most oblivious

routing algorithms are still simple and easy to implement, since after data is injected into the net-

work, the routing path is determined. This is the same as deterministic routing. Such a routing

scheme, however, provides path diversity in a limited way and somewhat leverages the traffic load

imbalances.

Two examples for oblivious routing are now introduced.

O1TRUN (orthogonal one-turn) routing, is a simple algorithm for 2D-mesh topology. Data

randomly selects either X-Y or Y-X path with equal probability when it is injected into the net-

work [194]. The routing guarantees data to turn at most once during its network traversal. O1TURN

routing is proved to provide nearly optimal worst-case throughput for all-to-all random traffic [194].

Valiant’s randomized routing is a more complicated oblivious routing example for 2D-mesh or

torus topology [46, 224]. When data is sent from a source to a destination, it is first sent from

53

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

the source to a randomly chosen intermediate node, and then sent from that intermediate node to

the destination. Usually dimension-order routing is used for both of the two phases. This algorithm

turns any original traffic pattern to an all-to-all random traffic, and therefore results in better network

load balance [224].

Adaptive Routing

Adaptive routing is a more advanced routing strategy. Such a routing scheme uses network state

information and determines the routing path on the fly during data transmission. A good adaptive

routing algorithm typically outperform a deterministic or oblivious routing algorithm, since they

route data around congestion areas in the network, which leads to a much better load balance.

However, these algorithms are more expensive and difficult to implement.

Most adaptive routing algorithms only monitor local network states, for example, whether 1-

hop or 2-hop neighbors are congested. This nature of locality can lead to a delay in responding to

changes in traffic patterns. There are many existing adaptive routing algorithms [46, 84, 98, 130,

245]. A survey of these algorithms is beyond the current research scope.

3.2.2 Encoding Routing Information

A packet is the basic unit in data transmission. However, a packet is usually further divided into

smaller units, called flits. Each packet contains a header flit, followed by a serial of body flits, and

ends with a tail flit [46, 49]. Routing information of a packet is always stored in its header flit. There

are two primary ways to encode this information.

Source routing stores the routing decisions for each hop on the path in the header flit, at the point

when the packet is injected into the network. A header flit structure is illustrated in Fig. 3.6(a). At

each hop, the corresponding address bits in the header are extracted, and directly used for routing

decision with no further computation. Because of its speed, simplicity and scalibility, source routing

is one of the most widely used routing methods. However, it is only viable for deterministic and

oblivious routing.

Destination-based routing only stores the destination information in the header, as shown in

Fig. 3.6(b). This information is repeatedly used for each hop on the path, to locally compute the

routing decisions. Destination-based method is typically slower than source-routing due to the need

54

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

Output port ID

for 1st hop

Output port ID

for 2nd hop
. . . Output port ID

for last hop

Zero-padding

if needed
Data bits (optional)

Address field Data field

Destination address

(e.g. X and Y coordinates for the destination router in a 2D-mesh network)
Data bits (optional)

Address field Data field

(a)

(b)

Figure 3.6: Header flit structure: (a) source routing; (b) destination-based

of per-router computation, but allows a smaller address field, and is a more general approach that

can also be used for adaptive routing.

3.3 Flow Control Methods

3.3.1 Store-and-Forward

In store-and-forward flow control, a packet travels through the entire path as an entity. Each router

along the routing path waits until the packet has been completely received, before it can forward the

packet to the successor node. After the transmission begins, the packet is sent continuously without

interruption.

In more detail, the packet must meet three prerequisites for starting a transmission: (i) the entire

packet transmission completed from the predecessor to the current node; (ii) a packet-sized buffer

allocated at the successor node; (iii) a free channel for transmitting the entire packet.

A timing diagram for store-and-forward flow control is shown in Fig. 3.7. Fig. 3.7(a) shows

the structure of the network and the path of the packet, while Fig. 3.7(b) illustrates a 4-flit packet

being forwarded over three hops without being stalled. The major drawback of store-and-forward

is obvious – very high end-to-end system latency.

55

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

H B B T

Cycle

1 2 3 4 5 6 7 8

C
h
a
n
n
el

H B B T

H B B T

9 10 11 12

1

2

3

R3R1 R2

Channel #1 Channel #2 Channel #3

R4
Data packet

H B B T

Cycle

1 2 3 4 5 6

C
h
a
n
n
el

H B B T

H B B T

1

2

3

(a)

(b) (c)

H = header flit

B = body flit

T = tail flit

Figure 3.7: Timing diagrams for different flow control methods:

(a) path of the packet; (b) store-and-forward; (c) cut-through and wormhole routing

3.3.2 Cut-Through

Cut-through flow control largely overcomes the latency penalty for store-and-forward. The ap-

proach allows a node to forward a packet as soon as a section of the packet is received, without

waiting for the arrival of the entire packet. The packet is still considered as an entity, and sent over

the channel continuously, since the buffer space is guaranteed to hold the packet at the next router.

Fig. 3.7(c) shows a timing diagram for the same packet being forwarded through the same path

using cut-through instead of store-and-forward. It is clear in the figure that a flit can be forwarded

as soon as it arrives at the router, in ideal case.

3.3.3 Wormhole Routing

Wormhole routing operates like cut-through, but with channel and buffer allocated on a per-flit

basis. Each packet is still treated as an entity. This means that, after the channel is allocated to

a packet, no other packet can use the channel until the transmission is over. However, the flits in

the packet are no longer guaranteed to be sent continuously, since a downstream router can stall

the transmission in the middle when there is not enough space to hold more flits. Compared to

cut-through, wormhole flow control largely decreases the buffer space requirement for achieving a

similar network performance. Ideally, the timing diagram for wormhole flow control is the same as

cut-through, as shown in Fig. 3.7(c). All networks and router designs in this thesis use wormhole

routing.

56

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

Router 1 Router 2

Channel used

by flow A

A A

AAB

B

B

B

Flow B is

blocked

Router 1 Router 2

Channel is idle,

but reserved by

flow B

Flow B is

blocked

A

B

B

B B

Flow A

Flow A

Flow B

Flow B

(a)

(b)

Figure 3.8: Apply virtual channel to wormhole routing:

(a) head-of-line blocking scenario; (b) solution with 2 VCs

3.3.4 Virtual Channels

Virtual channels are a commonly-used technique to resolve congestion and further increase the

network throughput. It is almost always combined with wormhole routing to maximize the network

performance [47]. A physical channel is allowed to be shared by multiple data flows. The technique

enables flit-level interleaving on the channel; flits from different data flows are sent using round-

robin. Each data flow, however, from its own perspective, still virtually has the full access of the

physical channel, and conforms to all wormhole regulations and operations. Each packet is now

assigned with a VC ID, which can be static throughout its transmission, or dynamically updated on

a hop-by-hop basis.

57

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

Fig. 3.8 shows a well-known congestion scenario, also called head-of-line blocking, and how

VC can resolve the congestion [46]. In Fig. 3.8(a), flow A is expected to send data from the west

port of router 1 to the east port of router 2, through the channel connecting two routers. The channel

is already reserved by flow B, as it is in the middle of a packet transmission. However, the south

port of router B is currently congested, and flow B is stalled. According to wormhole routing, flow

B will not release the channel until it transmits the entire packet. Therefore, the channel between

two routers is idle and wasted. Fig. 3.8(b) illustrates a solution with 2 VCs. As the channel can be

shared by two flows, flow A can successfully send its data without being blocked.

3.4 Synchronous Router Architecture and Operation

Routers are important components in any networks-on-chip. They direct the path of packets that

are transmitted in the network. Although the thesis focuses on asynchronous networks-on-chip and

asynchronous router designs, we start with an introduction for conventional synchronous routers.

This will help the readers understand the technical contents in the remaining of the thesis, since the

high-level structure and operation of asynchronous routers are largely similar to their synchronous

counterparts.

3.4.1 Synchronous Router Structure without VC

The structure of a typical synchronous router is shown in Fig. 3.9. It is composed of input units,

output units and a centralized crossbar, connecting those input and output units. Data first arrives

at a certain input unit, then travels through the crossbar, and is finally sent out by a particular output

unit.

Each input unit has an input channel, which is connected to an upstream neighbor router or a

local terminal. By symmetry, each output unit has an output channel, which is connected to a down-

stream neighbor or the local terminal. The numbers of input and output units are not necessarily to

be the same. Each input or output unit has a local control for flow control, allowing or stalling the

arrival and outgoing data transmission of the unit. Data buffers can be added to further increase the

throughput of the router, in exchange for extra area and power consumption.

The crossbar manages all traffic going from input units to output units. Its control, also called

58

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

Crossbar

Switch allocator

Input buffer

Input unit

control

Input buffer

Input unit

control

Input unit #0

Input unit #1

Input buffer

Input unit

control

Input unit #N

...

Input

channel #0

Input

channel #1

Input

channel #N

. . .

Output buffer

Output unit

control

Output buffer

Output unit

control

Output unit #0

Output unit #1

Output buffer

Output unit

control

Output unit #M

....
.
.

Output

channel #0

Output

channel #1

Output

channel #M

Figure 3.9: Synchronous router architecture (input/output buffers are optional)

the switch allocator, schedules these transmissions. We use fully-connected crossbars throughout

the thesis. In a fully-connected crossbar, each pair of input unit and output unit is connected using

dedicated datapath wires. Mux selection is used at the output unit side to select a particular input

unit and allows data transmission from that input unit only. Incoming data from the remaining input

units targeting the same output unit needs to wait until the current transmission is complete. Other

crossbar implementations also exist [46], but are not introduced in this thesis.

3.4.2 Synchronous Router Structure with VCs: Two Structures

Virtual Channel (VC) capability can be added on top of the basic router implementation presented in

Section 3.4.1. There are two widely-used structures for VC routers: crossbar-sharing and crossbar-

replication [149].

The structure for a crossbar-sharing VC router is illustrated in Fig. 3.10, with an example of 2

VCs. The architecture is largely the same as the basic router without VCs. The basic functionality

59

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

Crossbar

Switch allocator

Input unit #0

Input unit #1

Input unit #N

...

Input

channel #0

Input

channel #1

Input

channel #N

. . .

Output unit #0

Output unit #1

Output unit #M

....
.
.

Output

channel #0

Output

channel #1

Output

channel #M

Input buffer (VC #0)

Input unit

control

Input buffer (VC #1)

Input buffer (VC #0)

Input unit

control

Input buffer (VC #1)

Input buffer (VC #0)

Input unit

control

Input buffer (VC #1)

Output buffer (VC #0)

Output unit

control

Output buffer (VC #1)

Output buffer (VC #0)

Output unit

control

Output buffer (VC #1)

Output buffer (VC #0)

Output unit

control

Output buffer (VC #1)

VC allocator

Figure 3.10: Synchronous VC router architecture: crossbar sharing

for each module remains the same, as presented in Section 3.4.1. In addition, the input units need

to identify the data from different VCs. If static buffer management is used [103], as shown in the

figure, data labeled with different VCs are stored in dedicated buffer queues, respectively.1 The

output units enable flit-level interleaving on the output channel, which send out a single flit per VC

using round-robin. The crossbar has an additional control, a VC allocator, to assign a VC to each

packet before the packet is transmitted from an input unit to an output unit.

The other widely-used VC router structure, crossbar replication, is shown in Fig. 3.11. The

crossbar is replicated as many times as the number of VCs. Each crossbar is dedicated for processing

data from a particular VC. VCs separate different traffic classes inside the router, which are mixed

only on inter-router links. When a packet arrives, it is first assigned to a certain VC. Static buffer

management is more suitable in this structure, Therefore, the packet is stored into the input buffer

1With adaptive buffer management, buffer spaces are shared with data from different VCs. The buffers are used more

efficiently, while the control is more complex [103, 121, 161].

60

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

Crossbar #0

Switch allocator #0

Input unit #0

Input unit #1

Input unit #N

...

Input

channel #0

Input

channel #1

Input

channel #N

. . .

Output unit #0

Output unit #1

Output unit #M

....
.

.

Output

channel #0

Output

channel #1

Output

channel #M

Input buffer (VC #0)

Input buffer (VC #1)

Input buffer (VC #0)

Input buffer (VC #1)

Input buffer (VC #0)

Input buffer (VC #1)

Output buffer (VC #0)

Output unit

control

Output buffer (VC #1)

Output buffer (VC #0)

Output unit

control

Output buffer (VC #1)

Output buffer (VC #0)

Output unit

control

Output buffer (VC #1)

Crossbar #1

Switch allocator #1Input unit

control

Input unit

control

Input unit

control

VC allocator

Figure 3.11: Synchronous VC router architecture: crossbar replication

for that particular VC. Then the packet traverses the corresponding crossbar. Finally, it is stored into

the corresponding output buffer in the output unit, and merges with traffic of the other VCs on the

output channel.

3.4.3 Router Pipelining

No matter which structure is used for the VC implementation, each flit requires similar steps to travel

through the entire router. In a typical synchronous router, these steps are pipelined for achieving

higher throughput [46].

The conventional pipelined operation for a 4-flit packet is shown in Fig. 3.12. The header flit

incurs more steps than the body and tail flits, as it needs to set up the path and allocate resources for

the entire packet. In an ideal case with no stalls, it requires five cycles (i.e. five steps) for a header

flit to travel through each router. Header latency is an important parameter for network performance,

since the header flit is always the bottleneck, while body and tail flits simply follow the header path.

61

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

RC VA SA ST LTHeader Flit

SA ST LTBody Flit #1

Body Flit #2

Tail Flit

SA ST LT

SA ST LT

Cycle 1 2 3 4 5 6 7 8

Figure 3.12: Pipelined operation for a 4-flit packet without stalls

The five steps for a header flit passing through a router are introduced in order: (i) Routing

Computation (RC) calculates and determines the targeting output port for the packet. The operation

is completed once the packet arrives at the input unit; (ii) Virtual Channel Allocation (VA) selects

a VC and assigns the VC to the packet when there is available credit for that particular VC. An

available credit usually corresponds to an empty buffer space at the output unit, or at the input unit

of the downstream router when output buffer is not used; (iii) Switch Allocation (SA) searches for

an available timing slot for the flit to travel through the switch; (iv) Switch Traversal (ST) actually

sends the flit from the input unit to the output unit; (v) during Link Traversal (LT), the flit is sent

from the current router to the successor over the connected channel.

3.4.4 Pipeline Optimization: Speculation and Lookahead

Speculation and Lookahead are the two most common strategies used for router acceleration. For

synchronous router implementations, these optimizations can reduce the number of pipeline stages,

and thus improve network performance [46].

Speculation allows two pipeline stages to be performed in parallel, with the latter stage assuming

that the previous stage will succeed. Both SA and ST stages can apply speculation technique.

For speculative SA, SA is now ideally performed in parallel with VA, as shown in Fig. 3.13(a).

This can result in three different scenarios: (i) If both operations are successful, the speculation

succeeds, since VA and SA are completed in one cycle. (ii) If only VA is completed, with an unsuc-

cessful SA, the operation rolls back to a non-speculative case. The SA stage is delayed to the next

clock cycle. VA does not need to be repeated again. (iii) Finally, if even VA cannot be completed,

62

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

RC
VA

ST LTHeader Flit

SA ST LTBody Flit #1

Body Flit #2

Tail Flit

SA ST LT

SA ST LT

Cycle 1 2 3 4 5 6 7

SA
RC

VA
LT

SA
LT

1 2 3 4 5 6

ST
SA

ST

SA
LT

ST

SA
LT

ST

(a) (b)

Figure 3.13: Pipeline speculation for a 4-flit packet without stalls:

(a) speculative SA; (b) speculative SA+ST

ST LTHeader Flit

SA ST LTBody Flit #1

Body Flit #2

Tail Flit

SA ST LT

SA ST LT

Cycle 1 2 3 4 5 6 7

VA

LT

1 2 3 4 5

ST
SA

(a) (b)

SA
VA
NRC NRC

LT
SA
ST

LT
SA
ST

LT
SA
ST

NRC Next-stage Routing Computation=

Figure 3.14: Lookahead routing computation for a 4-flit packet without stalls:

(a) lookahead RC only; (b) lookahead RC + speculative SA+ST

then both VA and SA are tried again in parallel for the next cycle. The result of SA in the current

cycle is ignored, regardless of its success.

A similar speculation can be applied for ST. In this case, ST and SA are performed in parallel,

ideally. Furthermore, combining both speculations above, three steps – VA, SA and ST – can thus

be processed in a single clock cycle, as shown in Fig. 3.13(b).

Lookahead enables the Routing Computation (RC) of the current router to be completed in the

predecessor node. When a header flit arrives at a router, the RC step is already completed and

63

CHAPTER 3. BACKGROUND: NETWORK-ON-CHIP BASICS

therefore removed from the critical path. Unlike speculation, lookahead is always successful, if

applied. The lookahead technique can be applied only when the input-output path for the next

router is known in advance.

A timing diagram of lookahead strategy is shown in Fig. 3.14. The left figure shows the result

when the technique is used alone, while the right figure shows when it is combined with speculation.

Therefore, ideally, lookahead and speculation can shrink the pipeline depth to two cycles.

64

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

Chapter 4

A Low-Latency Asynchronous NoC for a

Variant Mesh-of-Trees Topology

4.1 Introduction

This chapter introduces our first low-latency asynchronous network-on-chip [67]. The target net-

work topology is the variant Mesh-of-Trees (MoT), combining a binary fan-out network (i.e. routing

for each source node) and a binary fan-in network (i.e. arbitration) for each destination node, which

was already introduced in Section 3.1.2. While this NoC topology is rarely used for embedded

system-on-chip (SoC) platforms, it is receiving increasing attention as a foundation for shared-

memory interface networks in high-performance parallel chip multiprocessors (CMP’s), to provide

needed bandwidth for globally uniform memory access. The network topology structure is again

shown in Fig. 4.1.

Several recent shared-memory parallel processors are using MoT, or close variants, for core-to-

memory (or cache) interfaces [10, 82, 89, 96, 97, 185]. Although MoT networks grow rapidly in

size with the number of cores and memories, they are viable for medium-size parallel systems. In

addition, extensions have been proposed to reduce area overhead through a hybrid MoT/butterfly

topology, which maintains the throughput and latency benefits of MoT with the area advantages of

butterfly [11].

In particular, among the above MoT networks, two of them use an asynchronous implementa-

tion. Our work is therefore carefully compared to those two networks. First, Horak et. al intro-

65

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

A Low-Latency Asynchronous Interconnection Network
with Early Arbitration Resolution

Georgios Faldamis
Cavium Inc.

San Jose, CA 95131
gfaldamis@hotmail.com

Weiwei Jiang
Dept. of Computer Science
Columbia University
New York, NY 10027
wjiang@cs.columbia.edu

Gennette Gill
D.E. Shaw Research
New York, NY 10036
gennette@gmail.com

Steven M. Nowick
Dept. of Computer Science
Columbia University
New York, NY 10027

nowick@cs.columbia.edu

Abstract. A new asynchronous arbitration node is introduced for
use as a building block in an asynchronous interconnection network.
The target network topology is a variant Mesh-of-Trees (MoT), com-
bining a binary fan-out (i.e. routing) network and a binary fan-in
(i.e. arbitration) network, which is becoming widely used for multi-
core shared-memory interfaces. The two key features are: (i) each
fan-in node can resolve its arbitration and pre-allocate the corre-
sponding input channel, before the actual data arrives; and (ii) a
lightweight shadow monitoring network fast forwards information as
soon as data enters the network without synchronization to a fixed-
rate clock, notifying each fan-in node on its path to enable the early
arbitration. Simulations of the new arbitration node, using IBM 90nm
technology and an ARM standard cell library, indicate latency reduc-
tions up to 54.4% over prior designs, while maintaining roughly com-
parable throughput. Network-level simulations were then performed
on eight diverse synthetic benchmarks, comparing the new approach
("early arbitration") with two earlier alternative asynchronous MoT
networks ("baseline" and "predictive"), using a mix of random and
deterministic traffic. Considerable improvements in system latency
were obtained on all benchmarks, ranging from 13.0% to 38.7%, with
especially strong benefits for the two most adversarial benchmarks.
1. Introduction
The introduction of networks-on-chip (NoC’s) in recent years has

been proposed to address several of the key challenges facing digital
system designers [7], including design time, scalability, reliability and
ease-of-integration. However, major challenges still remain in terms
of system latency, throughput and power [23, 22].
The focus of the current work is on designing a flexible, high-

performance and fully-asynchronous network, suitable for shared-
memory chip multiprocessors (CMP’s). The target network topology
is a variant Mesh-of-Trees (MoT), combining a binary fan-out net-
work (i.e. routing) and a binary fan-in network (i.e. arbitration) for
each source-sink pair, as shown in Fig. 1(a). While this NoC topol-
ogy is rarely used for embedded system-on-chip (SoC) platforms, it
is receiving increasing attention as a foundation for shared-memory
interface networks in high-performance parallel systems, to provide
needed bandwidth for globally uniform memory access. The clas-
sic MoT, unlike the variant, which places the functional units at the
leaves of the trees, also shows significant latency and throughput ben-
efits over other topologies, such as 2D-mesh [17, 18], but is proved to
have more contention and achieve lower saturation throughput than
the variant. Several recent shared-memory parallel processors are
using MoT, or close variants, for core-to-memory (or cache) inter-
faces [2, 24, 11]. Although MoT networks grow rapidly in size with
the number of cores and memories, they are viable for medium-size
parallel systems. In addition, extensions have been proposed to re-
duce area overhead through a hybrid MoT/butterfly topology, which
maintains the throughput and latency benefits of MoT with the area
advantages of butterfly [3].
There has been a surge of interest in recent years in asynchronous

and globally-asynchronous locally-synchronous design (GALS) [28].
Several GALSNoC solutions have been proposed to enable structured
system design. These approaches have been highly effective, espe-
cially for low- and moderate-performance distributed multicore sys-
tems [30, 1] which address a different point in the design space than
the proposed work. Some have low throughput (e.g., 200-250 MHz)

This work was partially supported by NSF Grant CCF-1219013.

0

1

2

3

0

1

2

3

Pr
oc

es
si

ng
 C

lu
st

er
s

M
em

or
y/

C
ac

he
 M

od
ul

es

Root
Nodes

Leaf
Nodes

Leaf
Nodes

Root
Nodes

Fan-out
Network

Fan-in
Network

(a)

fan-out
root

fan-in
root

fan-out network
consists of routing nodes

fan-in network
consists of arbitration nodes

the arbitration node
to be focused onPath of a flit

through network

(b)
Figure 1: Mesh-of-trees network: (a) top-level topology; (b) block structure

[1], while those with moderate throughput (e.g., near 500 MHz [30,
8, 25, 4] often have large overhead in router node latency and area.
Most are based on a standard 5-ported node architecture, and use four-
phase return-to-zero protocols, involving two complete roundtrip chan-
nel communications per transaction rather than the single roundtrip
communication targeted in our work (except for [14] which also uses
two-phase non-return-to-zero protocols.) They also typically use delay-
insensitive data encoding, resulting in a lower coding efficiency than
the single-rail bundled encoding used in this paper [1, 25, 20, 4, 30,
27].
The proposed solution builds on our previous work of [12, 10,

13], which uses a transition-signaling single-rail bundled scheme for
MoT networks. In [12, 13], two high-performance NOCs were in-
troduced: one fully-asynchronous and the other GALS-style. Each
used new lightweight asynchronous router node designs, targeting
an MoT topology. These NOCs showed significant benefits under
metrics of system latency, area and power. In particular the fully-
asynchronous network, in 90nm technology, provided much lower
system latency (by 1.7x) than a comparable synchronous network
operating at 800MHz, with identical throughput over the latter’s en-
tire operating range. Our more recent approach [10] added limited
dynamic reconfiguration capabilities to the network, using predic-
tion based on local recent traffic history, resulting in further perfor-
mance improvements for some benchmarks. The use of a transition-
signaling single-rail bundled scheme has also been recently extended
to implement a 5-port router, targeting a 2D-mesh topology [9].
However, both prior approaches ([12, 10, 13]) are shown to hit a

latency wall, due to the overhead incurred by two steps: arbitration
resolution and input channel allocation. At medium to high input
rates, and with adversarial traffic patterns, these overheads create a

978-1-4799-2816-3/14/$31.00 ©2014 IEEE 329

4B-2

Figure 4.1: Mesh-of-trees: an efficient topology for connecting processors to memory

duces a new set of lightweight routing and arbitration primitives, and combines them to build a

low-overhead asynchronous interconnection, which serves as our baseline approach [96, 97]. The

NoC shows significant benefits under metrics of system latency, area and power. In particular, it

provides much lower system latency (by 1.7×) than a comparable synchronous network operating

at 800MHz, with identical throughput over the latter’s entire operating range using a 90nm tech-

nology. Second, a more recent approach [82] adds limited dynamic reconfiguration capabilities to

the network, using prediction based on local recent traffic history, resulting in further performance

improvements for some benchmarks. This method will be called the predictive approach.

In practice, the communication network between cores and cache typically has light traffic,

and the key bottleneck is transport time. However, both baseline and predictive approaches ([82,

96, 97]), are shown to hit a latency wall, due to the overhead incurred by two steps: arbitration

resolution and input channel allocation. At medium to high input rates, and with adversarial traffic

patterns, these overheads create a ceiling or limit to the overall end-to-end system latency.

Our proposed network uses a fundamentally different approach from previous high-performance

asynchronous MoT networks, aimed at overcoming the latency bottleneck, while still maintaining

66

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

comparable throughput. In particular, a lightweight monitoring network is introduced, which pro-

vides rapid advance notification to all destination nodes, whenever a new flit enters the network. The

network information allows each router node on its path to complete arbitration and pre-allocate the

corresponding input channel, before the actual header flit arrival. As a result, in many traffic sce-

narios, the forward path through the network is directly optimized for end-to-end latency, and each

arbitration node is configured to operate as a simple FIFO stage. A potential latency reduction of

roughly 250 ps per switch: 150 ps for mutex set and 100 ps for channel opening. The approach

is supported by the design of a new arbitration node for the MoT network. Significantly improved

system latency results were obtained, across a diverse set of benchmarks. The proposed moni-

toring concept can not only facilitate early arbitration and channel pre-allocation for performance

improvements, but may be suitable as well to observe run-time workload characteristics, for both

synchronous and asynchronous NoC’s. This direction is becoming important for dynamic voltage

and frequency adjustment in the field of power management [29].

Since early arbitration and channel pre-allocation are applied to the fan-in network in the MoT

variant topology, which is a network to merge traffic flows, a special and simple monitoring protocol

is used. At a fan-in node, if monitoring tokens appear on either or both input channels, a monitoring

token is immediately sent on the output channel, indicating something is coming within the fan-in

cone, with no need to know which input monitoring actually wins the arbitration. Therefore, the

monitoring network entirely bypasses the arbitration logic, and arbitration and monitoring forward-

ing operate in parallel. The monitoring output of a node is simply an OR of the two monitoring

inputs. This optimization results in a considerably simpler and lightweight monitoring network

design.

The remainder of this chapter is organized as follows. Section 4.2 presents existing latency

acceleration techniques for general networks-on-chip. This discussion partially overlaps with Sec-

tion 1.3.3 in Introduction chapter, but provides more details. Section 4.3 introduces the two asyn-

chronous MoT networks, the baseline and predictive designs. They are prerequisites for understand-

ing our new work. Before diving into the detailed network design, an overview of the new approach

is presented in Section 4.4. Then, Section 4.5 provides the detailed design of the new network, and

Section 4.6 extends the basic design to handle multi-flit packets. Simulation results for the proposed

network are shown in Section 4.7. The chapter concludes in Section 4.8.

67

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

4.2 Related Work

Various acceleration techniques have been proposed for improving system latency in NoC’s. How-

ever, most of them target synchronous NoC’s.

An early single-cycle router in [156] speculatively allocates the switch as soon as a packet ar-

rives at the router without any arbitration, assuming no other packets complete for the same output

channel. However, it is only effective under congested scenarios where the input buffer contains

adjacent flits, otherwise it relies on prediction. Router bypassing techniques have been also pro-

posed in two recent approaches [122, 131], which provide additional dedicated high-speed VCs to

enable single-cycle transmission. However, both networks assume baseline 5-ported routers with

expensive 3-cycle operation, while our baseline uses low-radix routers with already heavily opti-

mized performance (2.4 Gigaflits/sec throughput and 365 ps node latency in 90 nm technology [96,

97]) which is much more challenging to accelerate. In addition, significant restrictions are imposed

in their approach: packets can only be accelerated within a small segment of 3-4 hops, then have

to regain high-speed VCs for the next segment; acceleration is not allowed across turns; and both

networks require packet priorities (either dynamically [122], or statically [131]).

In more recent work, WaveSync NoC [243] uses source-synchronous routing in a multi-synchronous

domain, where the source clock is propagated on channels, which is a different focus from ours; it

proposes acceleration techniques to avoid synchronization in non-congested router nodes. Another

emerging technique, a mm-wave hybrid NoC [59], based on a small-worlds topology, uses wire-

less channels to connect a subset of long-range multi-hop links for acceleration. However, it relies

the use of emerging technologies which are not yet fully available and which require high-cost

transceivers.

A number of synchronous NoC’s also use early information and aim for rapid pre-allocation.

However, all of them use mesh-based topologies, and are closer to our work in Chapter 5. The

introduction of these networks are thereby delayed to Section 5.2.

4.3 Background: Baseline and Predictive NoC Designs

In this section, two asynchronous networks, baseline and predictive, are introduced. They are a

prerequisite to understand our new approach. Also, the proposed network is closely compared to

68

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

4

0

1

2

3

0

1

2

3

0

1

2

3

2

0

1

3

2

0

1

3

0

1

2

3

2

0

1

3

M
em

or
y

M
od

ul
es

Pr
oc

es
sin

g
Cl

us
te

rs

(d)

(b)(a)

(c)

1

2

3

Figure 1. Mesh-of-trees network (N=4)

ns (at 25% load) and throughputs of 0.27-1.8 Gigaflits/s (at saturation
rate). We expect the new approach can be migrated in the future to
other network topologies. It also can be dropped into a GALS net-
work, following the approach outlined in [12].

2. BACKGROUND
2.1 Mesh-of-trees network

Our target network topology is a variant mesh-of-trees (MoT) [2],
which is designed to provide the needed bandwidth for a high-
performance parallel processor with globally uniform memory access.
It has been proven effective in recent detailed evaluations on a range
of traffic for chip multiprocessors (CMPs). In particular, for the CMP
platform introduced by Vishkin et al. [16], the mesh serves as a high-
speed parallel interconnect between cores and partitioned shared L1
data cache. Each of the 8 cores, or processing clusters, itself contains
16 separate processing units, or thread control units (TCUs), for a total
of 128 TCUs. Recent extensions have been proposed to reduce area
overhead through a hybrid MoT/butterfly topology, which maintains
the throughput and latency benefits of MoT with the area advantages
of butterfly [3].

The MoT network consists of two main structures: a set of fan-out
trees and a set of fan-in trees. Figure 1(b) shows the fan-out trees,
in which each source is the root of a binary tree. The 16 leaf nodes
represent connections to the leaves of the binary fan-in trees, which
have destinations as their roots (Figure 1(c)). An MoT network that
connects N sources and M destinations has logM levels of fan-out
and logN levels of fan-in trees. Network routing is deterministic and
packets are source routed.

During operation, a flit travels from the source root to one of the
leaves of the corresponding fan-out tree. It passes to the leaf of a cor-
responding fan-in tree, and then travels to the root of that fan-in tree
to reach its destination (Figure 1(d)). To minimize contention, fan-out
trees eliminate competition between packets from different sources,
and fan-in trees eliminate competition between packets to different
destinations. This separation guarantees that, unless the memory ac-
cess traffic is extremely unbalanced, packets between different sources
and destinations will not interfere. Therefore, the MoT network pro-
vides high average throughput that is very close to its peak throughput.
There are two switching primitives in a MoT network: (a) routing and
(b) arbitration.

2.2 Asynchronous Primitives
This section describes the two asynchronous components that were

used to create the original asynchronous mesh-of-trees network by
Horak et al. [12]: routing and arbitration network primitives. A
basic overview is provided below, and further details can be found
in [12, 11, 17]. These components are based on an existing linear
asynchronous pipeline called Mousetrap [21]. In particular, they use
single-rail bundled data encoding, in which a synchronous-style data
channel is augmented with an extra req wire, and a single transition
on the req accompanying the data “bundle” indicates the data is valid.

2.2.1 Routing primitive
The routing primitive, shown in Figure 2, receives one incoming

stream and conditionally passes it to one of two outgoing streams.
Figure 2(a) shows its structure. When the stage is empty the data reg-

Control
Latch

B

_

Req0

B

Req

Control
Latch Req1

Ack1

Data1

Data0

Ack

Ack0

(source routing)
Data

E

E

REG

D Q

REG

D Q

Toggle 0

w x0

y0

Req0

Ack

Req

B

En

Ack0

(a) (b)

Figure 2. Original routing node [12]: (a) top-level, (b) latch control

E

L7

D Q

E

L6

D Q

E

L5

D Q

S

Q

R

0

1

E

L1

D Q

E

L2

D Q

L3

Q D

EN

L4

Q D

EN

Req0

Ack0

Req1

Ack1

Mutex

Flow Control Unit

Ack

Req

Latch Controller

mux_select

E

R GE

D Q Data

Datapath

Data0

Data1

Figure 3. Original arbitration node [12]

ister is opaque. Following the bundled-data encoding, the basic op-
eration begins with new data arriving, including the routing signal B.
After the data inputs are stable and valid, a request transition on Req
occurs at the input. Then, the latch controller selected by the routing
signal, B, enables its latches (i.e. makes them transparent), thereby al-
lowing the data to flow to the successor stage. To complete the asyn-
chronous handshaking, three operations are preformed in parallel: 1)
a request transition is sent to the successor stage that is selected by
the routing signal B; 2) the data latches are made opaque, to protect
the recently-received data; 3) an acknowledgement transition is sent
to the predecessor stage. This completes one full cycle of operation
for the routing primitive.

Because it has separate latch control modules and data registers for
each output, this node is able to decouple processing between the two
output routing channels. Even if one of the output channels is stalled
awaiting acknowledgment, the other output channel can successively
process multiple full transactions. This concurrency feature provides
the capability of a limited virtual input channel, thereby providing
significant system-level performance benefits.

2.2.2 Arbitration primitive
The arbitration primitive mediates between two incoming streams

of flits–enforcing mutual exclusion–and merges the result into a single
outgoing stream. Thus, it provides complimentary functionality to the
routing primitive.

Figure 3 shows the design of the basic arbitration primitive. When
the arbitration primitive is empty, the control latches L1 and L2 are
opaque while the all other latches, including the data register, are
transparent. Following the bundled-data encoding, operation begins
when data appears at the input of an empty primitive followed by a
request transition from the previous stage. To resolve contention be-
tween potentially concurrent incoming requests, the incoming request

Figure 4.2: Baseline routing node: (a) top-level; (b) latch control

the these two previous networks in terms of area cost and performance. All the networks, including

both previous designs and the new network, uses a transition-signaling (2-phase) protocol, along

with single-rail bundled data encoding.

4.3.1 The Baseline Network

Two asynchronous components are used to create the original baseline network: routing and arbi-

tration primitives [96, 97]. The variant MoT network can be directly constructed using these two

fundamental building blocks.

Routing Primitive

The asynchronous routing primitive, shown in Fig. 4.2, receives one incoming stream and passes it

to one of the two outgoing channels. When the node is empty, both top and bottom data registers

are opaque. Following the transition-signaling bundled data protocol, the operation begins with new

data arriving, including the binary routing signal B. After data inputs are stable, a request transition

on Req occurs at the input channel. Then, the latch controller selected by the binary signal B, opens

its latches, thereby allowing the data to flow to the designated output. To complete the asynchronous

handshaking, three operations are performed in parallel: (i) data is sent out on the selected output

channel, along with a request transition; (ii) the data register is made opaque again, to protect the

69

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

E

L7

D Q

E

L6

D Q

E

L5

D Q

S

Q

R

0

1

E

L1

D Q

E

L2

D Q

L3

Q D

EN

L4

Q D

EN

Req0

Ack0

Req1

Ack1

Mutex

Flow Control Unit

Ack

Req

Latch Controller

mux_select
E

R GE

D Q Data

Datapath

Data0

Data1

Figure 3: Original arbitration node [12, 13]
tion begins when data appears at one of the input channels followed
by a transition on corresponding req. To resolve contention between
potentially concurrent incoming requests, the incoming request must
first trigger a lock on the mutex. Next, two operations take place con-
currently: 1) mux_select chooses the correct data input; and 2) either
L1 or L2 is enabled, thereby forwarding the winning request. After
the data is sent to the output channel, it is safely stored by making
L5-L7 and the data register opaque. The mutex is then immediately
reset and an acknowledge to the previous stage is generated. Finally,
the right environment acknowledges the current stage and the entire
operation is complete.
3. Overview of the Approach
The section introduces the basic strategy of the proposed new ap-

proach, by comparing it with two previous approaches: baseline [12,
13] and predictive [10].
The baseline design. The structure of a baseline asynchronous MoT
network is shown in Fig. 1(b) [12, 13]. The flit is forwarded through
the fan-out network followed by the fan-in network, with a path de-
termined by the flit’s source-routed address bits. After a flit arrives at
an arbitration node, e.g. the shaded node highlighted in Fig. 1(b), the
node first allocates and opens the channel. It then gets passed through
and sent to the output. Channel allocation only starts after the ar-
rival of an actual flit. If there is contention, with incoming flits on
both input channels, arbitration grants to exactly one of the request-
ing flits based on their relative arrival time. Since the design is asyn-
chronous, arbitration is not performed at discrete clock boundaries,
but in continuous time, using an analog arbiter. Once the winning flit
is processed, the other flit can win arbitration.
The predictive approach. The predictive approach [10] proposes en-
hanced arbitration nodes that can dynamically reconfigure themselves
to accelerate the forward transmission of a stream of flits. In partic-
ular, if the node detects streaming activity on one input channel, and
no incoming traffic on the other input channel, it predicts continued
streaming activity (i.e. based on temporal locality) and puts the active
input channel in an optimized state for improved performance.
Fig. 4(c) shows the network structure of the predictive approach,

and Fig. 4(a) presents an arbitration node’s operation. If all rele-
vant nodes correctly predict and prepare for a flit in advance, an ex-
press path is created when the flit passes through the entire fan-in
network. Prediction is performed locally, based solely on each ar-
bitration node’s recent observed traffic history. The node operates
normally as the baseline design, i.e. default mode, but enters a single-
channel-biased mode when two consecutive flits arrive on a single
channel. Once in biased mode, the arbiter is completely ignored and
the biased channel is held open. As a result, arbitration and channel
allocation steps are entirely eliminated. Subsequent flits arriving on
the biased channel will be directly sent to the output. The node reverts
to default mode when any flit arrives on the inactive input channel.
The challenge with this approach is that misprediction or thrashing

channel open
on-demand

channel
closed

Arbiter

channel open
on-demand

(blocked)

Predictor
(records history)

output
channel

Predictive arbitration node
(abstract view)

Mode changes
(at most

1 change per flit)

output
channel

channel open
on-demand

Arbiter

channel open
on-demand

Predictor
(records history)

Default
mode node

history

fan-out
root

fan-in
root

fan-out network
consists of routing nodes

fan-in network
consists of arbitration nodes

Monitoring
Control

Path of a flit
through network

Monitoring
Channel

Monitoring
Control

Monitoring
Control

Monitoring
Control

Monitoring
Channel

Monitoring
Control

Monitoring
Control

Monitoring
Control

Monitoring
Control

Monitoring
Control

Monitoring
Control

Monitoring
Control

Monitoring
Control

Monitoring
Control

Monitoring
Control

Monitoring
Control

Monitoring
Channels

Monitoring
Channels

Monitoring
Channels

Monitoring
Channel

channel
closed

channel
closed

Arbiter
(based on monitoring)

New arbitration node
(abstract view)

output
channel(pre-allocated)

monitoring
inputs

Flit enters
network

Flit passes
through the node

channel
closed

Arbiter
(based on monitoring)

Arbiter
(based on monitoring)

output
channel

monitoring
inputs

channel
closed

channel
closed

Arbiter
(based on monitoring)

input
channels

Initial
State

Channel
Pre-allocated

0

1

0

1

input
channels

channel
pre-opened

input
channels

0

1

Biased
mode

input
channels

0

1
(biased)

Predictor
(configures channels)

channel
held open

channel
held closed

Arbiter
(ignored) node

history

(a)

(b)

(c)

{ {

{ {

Figure 4: Block structure of MoT network: predictive and new approach
(a) Predictive node; (b) New node; (c) MoT network with monitoring

between modes may be induced, from adversarial traffic patterns.
A monitoring network is used to facilitate mode change operation

for safety purposes only. It is only used to enable a reversion from
optimized (i.e. biased) to unoptimized (i.e. default) mode.
The new approach. This approach proposes an alternative protocol
for accelerating the forward transmission of flits through the fan-in
network. New arbitration nodes are designed, which anticipate the
arrival of incoming traffic by receiving early notification through a
monitoring network. Once an arbitration node has been notified of
a pending flit arrival, it rapidly performs early arbitration and pre-
allocates the channel.
The overall network structure is the same as that of the predictive

approach, but with fundamentally different operation. When a flit
enters the network, injected by a source fan-out root node, advance
notification is generated and fast forwarded to all the nodes along its
path by the monitoring network. All arbitration nodes on the path
pre-allocate the corresponding input channel, well before the actual
flit arrives, as shown in Fig. 4(b). The input channel is then kept open
until the flit passes through the node, as a combinational flow-through
path with all latches transparent from a fan-in leaf to the fan-in root.
When the flit arrives, it is directly sent through the pre-allocated chan-
nel to the output, avoiding the overhead of a stop-and-go protocol,
The node then reverts back to the initial state and waits for the next
operation. In the case of contention, arbitration is used to select one
of the two input channels for pre-allocation; however, unlike the pre-
vious approaches, the arbitration is performed in advance, based on
monitoring signals.
Several comparisons of the new vs. previous approaches are now

highlighted. Similar to the baseline design, no history is recorded for
the flits; this design decision allows a much simpler design. Simi-
lar to the predictive approach, in friendly cases, the arbitration and
channel allocation are completely eliminated from the critical path,
but using quite different strategies. However, the monitoring network
has a major role in the new approach, as the node directly uses its ad-
vance notification to reconfigure in advance for higher performance.
In contrast, in the predictive approach, monitoring serves a secondary

331

4B-2

Figure 4.3: Baseline arbitration node

recently-received data; (iii) an acknowledgment transition is sent to the predecessor stage. This

completes one full cycle of operation for the routing node.

Because the routing primitive has separate latch control and data registers for each output chan-

nel, the node is able to decouple processing between the two output routing channels. Even if

one of the output channels is stalled awaiting acknowledgment, the other output channel can suc-

cessively process multiple full transactions. This concurrency feature provides the capability of a

limited virtual input channel, thereby providing significant system-level performance benefits [82,

96, 97].

Arbitration Primitive

The asynchronous arbitration primitive, shown in Fig. 4.3, mediates between two concurrent incom-

ing streams of flits – enforcing mutual exclusion – and merges the result into a single serial outgoing

stream.

70

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGYHORAK et al.: A LOW-OVERHEAD ASYNCHRONOUS INTERCONNECTION NETWORK FOR GALS CHIP MULTIPROCESSORS 499

Fig. 6. Structure of mutual exclusion element [33].

In an uncongested scenario, where the previous output
transaction is complete (Req and Ack have the same value),
the new data is propagated. In particular, the data register
and control latches L5–L7 are transparent, and the new flit
passes onto the output channel. The latch controller then
stores the data (i.e., making the latch data register opaque)
and concurrently generate a request to the next stage. It also
acknowledges to the flow control unit that data has been safely
stored. At this point, the flow control unit resets the mutex,
making the corresponding acknowledgment latch (L3 or L4)
transparent again, and sends the acknowledgment event on the
input channel, thereby completing the transaction.

Alternatively, in a congested scenario, the previous trans-
action on the output channel is not complete (Req and Ack
have opposite values, since the acknowledgment has not yet
been received). In this case, the new flit is not stored in the
primitive: the data registers and control latches L5–L7 are still
opaque, blocking the output channel from data overrun. Once
the Ack on the output channel is finally received, the latches
become transparent, and the flit is forwarded as above.

Several enhancements to the basic implementation are now
presented, as shown in Fig. 7: for power optimization, worm-
hole routing support and initialization.

3) Power Optimization: The basic design of Fig. 5
allows unnecessary glitch power consumption to occur on the
datapath. The addition of the SR latch in Fig. 7 eliminates this
glitching. Specifically, the mux select signal may transition
more than once per cycle for transactions on the Req1 port.
The optimization adds an SR latch to store the most recent
mutex decision at the end of each transaction. The result
of this optimization is that the mux select is limited to at
most one transition per transaction. The resulting power
savings can be significant, since the majority of the power is
consumed in the datapath.

4) Wormhole Routing Capability: The next enhancement
in Fig. 7 is support for wormhole routing of multi-flit pack-
ets [9]. A flow-control unit, or flit, is the smallest granularity of
message sent through the network. Wide packets are split into
multiple flits that travel contiguously through the network. In
wormhole routing, once arbitration is won by a packet head
flit in an arbitration node, each remaining flit in the packet
must be guaranteed unarbitrated access through the node until
the last flit of the packet exits. Each packet therefore includes
an inverted end-of-packet bit (end0/1), which is set to 1 in
every flit of a packet except the last one.

A “kill your rival” protocol is implemented in the design to
bias the selection of the mutex so that the next flit of a multi-flit
packet is guaranteed to advance without new arbitration. When
the first flit of a multi-flit packet wins the mutex, the opposing
request input to the mutex is forced to zero, or “killed.” This
operation either prevents future requests at the other mutex

Fig. 7. Enhanced arbitration primitive.

input from occurring, or in the case where a request was
already pending, kills the opposing request until the entire
multi-flit packet has advanced. The kill function is achieved
using a NOR gate located at the input of the mutex.

5) Initialization: The final addition shown in Fig. 7
is initialization logic based on an active-low reset signal.
Transparent latches with reset in the standard cell library
have longer delay and use more area and power. The goal is
selective partial-reset to have minimal impact on performance,
area, and power.

There are three targets of the initialization: resetting the
mutex, initializing a subset of the flow control unit latches
(L1–L4, L8–L9), and initializing the latch controller latches
(L5, L6, L7). The mutex is reset by adding two NAND2 gates
to drive the NOR2 outputs low; this NAND2 control is off
the critical path of normal mutex enabling. When the mutex
outputs are deasserted, latches L1, L2, L8, and L9 become
opaque, which is their correct enabling state; their actual Q
outputs are deasserted by the global reset. Of the above latches
on the critical path of normal operation, only latches L1 and
L2 receive explicit reset signals.

Finally, the latch controller latches, L5–L7, are initially set
to transparent (i.e., enable input high) by adding an AND2
to the feedback path to the XNOR2 control. Hence, latches
L5–L7, which are on the critical forward path, do not require
explicit resets. There is also an environmental requirement that
the Ack input is also low at initialization. When arranged in a
fan-in tree, this means that the corresponding root arbitration
primitive should have deasserted Ack inputs at initialization.

6) Performance Analysis: For the arbitration primitive,
forward latency is the time from a Req transition to a cor-
responding Req Out transition. The path includes acquiring
the mutex, and generating a new Req Out transition

L = tXNOR↑ + tNOR↑ + tME↑ + tL1G→Q
+ tXOR + tL5D→Q

. (7)

Cycle time is the time interval between successive flits
passing through the primitive. For this analysis we focus
on two steady-state input traffic patterns: successive packets
arriving at a single port and successive packets arriving at
both ports. The first case, which exercises a single port, may
occur in the network if traffic is unbalanced with certain paths
exercised more than others, as well as with larger multi-flit
packets that travel contiguously through the network. The
second case, with packets arriving at both ports, is likely in
situations with heavy load and contention, most notably at the
root of the fan-in tree.

Figure 4.4: Baseline arbitration node: enhanced version to handle multi-flit packets

When the arbitration primitive is empty, the control latches L1 and L2 are opaque while all the

other latches, including the data register, are transparent. Following the 2-phase bundled data pro-

tocol, operation begins when data appears at one of the input channels followed by a transition on

corresponding req. To resolve contention between potentially concurrent incoming requests, the in-

coming request must first trigger a lock on the mutex. Next, two operations take place concurrently:

1) mux select chooses the correct data input; and 2) either L1 or L2 is enabled, thereby forwarding

the winning request. After the data is sent to the output channel, it is safely stored by making L5-

L7 and the data register opaque. The mutex is then immediately reset and an acknowledge to the

previous stage is generated. Finally, the right environment acknowledges the current stage and the

entire operation is complete.

Enhanced Arbitration Primitive

An enhanced version of arbitration node is designed to support wormhole routing of multi-flit pack-

ets, shown in Fig. 4.4. As introduced in the Background chapter, Section 3.3.3, a flow-control unit,

or flit, is the smallest granularity of message sent through the network. Wide packets are split into

71

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

multiple flits that travel contiguously through the network. In wormhole routing, once arbitration is

won by a packet head flit in an arbitration node, each remaining flit in the packet must be guaranteed

unarbitrated access through the node until the tail flit exits.

A ‘kill your rival’ protocol is implemented to bias the selection of the mutex, so that the next

flit inside a multi-flit packet is guaranteed to advance without new arbitration. When the first flit

wins the mutex, the opposing request input to the mutex is forced to zero, i.e. ‘killed’. This either

prevents future requests at the other mutex input from occuring, or in the case where a request was

already pending, kills the opposing request until the entire multi-flit packet has advanced. The kill

function is achieved using a NOR gate located at the input of the mutex [97].

4.3.2 The Predictive Network

The predictive network by Gill et. al [82] is the first attempt to optimize the baseline network.

The network introduces a bi-modal arbitration node based on the earlier baseline approach. The

node can operate in either normal mode or a ‘single-channel-bias’ mode. Since there are two input

channels, it thus has three distinct modes: default, bias-to-0 and bias-to-1.

The node enters bias-to-0 mode when recent traffic has been observed only on input channel 0,

and input channel 1 is inactive (similarly, for entering bias-to-1 mode). In this case, it effectively

operates as a fast-forward ‘single input channel’ node: its arbitration unit is entirely bypassed (oper-

ating vestigially in parallel, but is not observed), resulting in lower node latency. In addition, when

single-input channel traffic is at moderate or high rate, higher node throughput is also obtained.

The node exits biased mode, reverting to default mode, when any flit arrives on the inactive

input channel. Note that once the node is in biased mode, it always passes through default mode

before changing to the other biased mode. Hence, all mode changes are between default and one of

the biased modes.

In summary, a node’s mode changes are determined entirely locally – at the node itself – based

solely on its recent observed traffic history. Hence, adjacent nodes may be in entirely different

states, at any time.

The predictive design uses the following mode change policy: (i) in default mode, if two suc-

cessive flits from one input channel are processed by the node, change to biased; and (ii) in biased

mode, if one flit arrives on the opposite input channel, revert to default.

72

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

4.4 Overview of the Approach

The section introduces the basic strategy of the proposed new approach. We also quickly review

the operation and strategy of the baseline [96, 97] and predictive [82] networks, in order to have a

head-to-head comparison.

The baseline design. In the baseline asynchronous MoT network [96, 97], the flit is forwarded

through the fan-out network followed by the fan-in network, with a path determined by the flit’s

source-routed address bits. After a flit arrives at an arbitration node, the node first allocates and

opens the channel. It then gets passed through and sent to the output. Channel allocation only starts

after the arrival of an actual header flit. If there is contention, with incoming flits on both input

channels, arbitration grants to exactly one of the requesting flits based on their relative arrival time.

Since the design is asynchronous, arbitration is not performed at discrete clock boundaries, but in

continuous time, using an analog arbiter. Once the winning flit is processed, the other flit can win

arbitration.

The predictive approach. The predictive approach [82], as introduced before in Section 4.3.2,

proposes enhanced arbitration nodes that can dynamically reconfigure themselves to accelerate the

forward transmission of a stream of flits. In particular, if the node detects streaming activity on one

input channel, and no incoming traffic on the other input channel, it predicts continued streaming

activity (i.e. based on temporal locality) and puts the active input channel in an optimized state for

improved performance.

Fig. 4.5(c) shows the network structure of the predictive approach, and Fig. 4.5(a) presents an

arbitration node’s operation. If all relevant nodes correctly predict and prepare for a flit in advance,

an express path is created when the flit passes through the entire fan-in network. Each node operates

normally as the baseline design, i.e. default mode, but enters a single-channel-biased mode when

two consecutive flits arrive on a single channel. Once in biased mode, the arbiter is completely

ignored and the biased channel is held open. As a result, arbitration and channel allocation steps

are entirely eliminated. Subsequent flits arriving on the biased channel will be directly sent to the

output. The node reverts to default mode when any flit arrives on the inactive input channel. The

challenge with this approach is that misprediction or thrashing between modes may be induced,

from adversarial traffic patterns.

A monitoring network is used to facilitate mode change operation for safety purposes only. It is

73

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

channel open

on-demand

channel

closed

Arbiter

channel open

on-demand

(blocked)

Predictor
(records history)

output

channel

Predictive arbitration node

 (abstract view)

Mode changes
(at most

1 change per flit)

output

channel

Default

mode node

history

fan-out

root

fan-in

root

fan-out network

consists of routing nodes
fan-in network

consists of arbitration nodes

Monitoring

Control

Path of a flit

through network

Monitoring

Channel

Monitoring

Control

Monitoring

Control

Monitoring

Channel

Monitoring

Control

Monitoring

Control

Monitoring

Control

Monitoring

Control

Monitoring

Control

Monitoring

Control

Monitoring

Control

Monitoring

Control

Monitoring

Control

Monitoring

Control

Monitoring

Control

Monitoring

Channels

Monitoring

Channels

Monitoring

Channels

Monitoring

Channel

channel

closed

channel

closed

Arbiter
(based on monitoring)

New arbitration node

(abstract view)

output

channel(pre-allocated)

monitoring

inputs

Flit enters

network

Flit passes

through the node

Arbiter
(based on monitoring)

output

channel

monitoring

inputs

input

channels

Initial

State

Channel

Pre-allocated

0

1

0

1

input

channels

channel

pre-opened

input

channels

0

1

Biased

mode

input

channels

0

1

(biased)

Predictor

(configures channels)

channel

held open

channel

held closed

Arbiter
(ignored)

node

history

(a)

(b)

(c)

{ {

{ {

Figure 4.5: Block structure of MoT network: predictive and new approach

(a) Predictive node; (b) New node; (c) MoT network with monitoring

74

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

only used to enable a reversion from optimized (i.e. biased) to unoptimized (i.e. default) mode.

The new approach. This approach proposes an alternative protocol for accelerating the forward

transmission of flits through the fan-in network. New arbitration nodes are designed, which antici-

pate the arrival of incoming traffic, rather than by prediction, by receiving an actual early notification

through a monitoring network. Once an arbitration node has been notified of a pending header flit

arrival, it rapidly performs early arbitration and pre-allocates the channel.

The overall network structure is the same as that of the predictive approach, but with funda-

mentally different operation. When a flit enters the network, injected by a source fan-out root node,

advance notification is generated and fast forwarded to all the nodes along its path by the monitor-

ing network. All arbitration nodes on the path pre-allocate the corresponding input channel, well

before the actual flit arrives, as shown in Fig. 4.5(b). The input channel is then kept open until the

flit passes through the node, as a combinational flow-through path with all latches transparent from

a fan-in leaf to the fan-in root. When the flit arrives, it is directly sent through the pre-allocated

channel to the output, avoiding the overhead of a stop-and-go protocol. The node then reverts back

to the initial state and waits for the next operation. In the case of contention, arbitration is used to

select one of the two input channels for pre-allocation; however, unlike the previous approaches, the

arbitration is performed in advance, based on actual monitoring signals.

Several comparisons of the new vs. previous approaches are now highlighted. Similar to the

baseline design, no history is recorded for the flits; this design decision allows a much simpler de-

sign. Similar to the predictive approach, in friendly cases, the arbitration and channel allocation

are completely eliminated from the critical path, but using quite different strategies. However, the

monitoring network has a major role in the new approach, as the node directly uses its advance no-

tification to reconfigure in advance for higher performance. In contrast, in the predictive approach,

monitoring serves a secondary role, to facilitate safe mode changes from optimized to default state.

4.5 Proposed Router Node Design

This section presents the design of the new network. Since there are two types of nodes in the MoT

network, routing and arbitration, both of the new primitives will be introduced. We select to start

with the new arbitration node because it contains most of the key changes, while the design of the

75

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

Mutex

Mutex Input
Control 0

Mutex Input
Control 1

mutex-req0

mutex-req1

onewins output-en

Req-Latch

Control

E
D Q
L1 E

D Q
L2

E
DQ

L4

zerowins

E
DQ

L3

RS

Q

0

1

mux_select

something-

coming-in-0
something-

coming-in-1

Monitor

Control

takeover
preackout0

preackout1

E

D Q

REG

something-

coming-out

ackin

reqout

dataout

reqin0

reqin1

datain0

datain1

ackout1

ackout0

Figure 4.6: New arbitration primitive: single-flit design

new routing node is more straightforward.

4.5.1 Arbitration Node

The structure of the new node is illustrated in Fig. 4.6. Compared to the baseline design [96,

97], additional monitoring channels are added to support early arbitration capability. There exist

three fundamental structural differences, compared to the baseline design: (i) two added mutex

input control units, one for each input channel; (ii) a critical path from input to output with a single

latch, while the previous designs use two latches; a new req-latch control is added to support this

change; and (iii) a new monitoring control unit. These modifications facilitate early arbitration and

allow the node to have extremely low latency, while still ensuring a simple design.

The mutex-input controls request and release the mutex during the operation. These controls

initiate early arbitration, by asserting mutex request high whenever informed by early monitoring

information. When a flit enters the network, something-coming-in, which is initially low, is asserted

high, causing the control unit to request and win arbitration (i.e. mutex component). The control

unit de-asserts its request, and releases the mutex, when the corresponding flit is sent to the output

76

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

channel.

The newly-added req-latch control unit enables a dramatic optimization in the node’s forward

path, reducing it from two latches [82, 96, 97] to a single one. This latch now serves two purposes:

(i) channel pre-allocation based on the winning of mutex, and (ii) flow control. In contrast, the

earlier designs use separate registers to handle the two purposes. This requires a significant protocol

modification on the req-latch control unit, which now opens the latch in synchronization with both

left and right channels: it awaits early arbitration to complete (assertion of a mutex output) and an

acknowledge of the previous flit by the right environment, for flow control (output-en signal asserted

high).

The monitoring control unit is part of the entire new monitoring network. It enables a rapid

propagation of the monitoring information from the node’s input to output. In particular, something-

coming-out is asserted high as soon as either of the two something-coming-in signals is asserted high

with only a two-gate delay latency. Since something-coming-in signals are not persistent (i.e. they

can go low early), a takeover is needed to maintain something-coming-out high until the actual flit

arrives and is sent to the output channel.

4.5.1.1 Operation

Before showing detailed component designs, the operation of the entire node is illustrated by three

simple scenarios. Advanced scenarios can be simply built upon these three cases.

Single Flit Processing with No Contention

This scenario illustrates how early arbitration works in a friendly case. The incoming flit is assumed

to arrive on channel 0, without loss of generality, and with no traffic on the other input channel.

Initially, latches L1 and L2 are opaque, while all others (including data register) are transparent.

First, when the flit enters the network, early arbitration is performed and channel 0 is pre-allocated,

well before the actual flit arrival: something-coming-in-0 is asserted high, causing the mutex-input-

control-0 unit to request the mutex. After the mutex is won (zerowins asserted high), latch L1 is

pre-allocated (i.e. becomes transparent), and the data mux selects the top input channel. Eventually,

the actual flit arrives. Since input channel 0 is now pre-allocated, the flit passes directly to the output

channel. A low forward latency is achieved: effectively one D-latch (L1) plus an XOR2. Finally,

77

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

both L1 and the data register quickly close for data protection. In parallel, the mutex is released,

allowing the left acknowledgment to be sent out through L3. In the end, the right environment

acknowledges, and the entire operation is complete.

Two Flits Back-to-Back on the Same Channel

This case illustrates when a data stream arrives on only one input channel, e.g. channel 0. The

first flit is processed similarly to the single-flit case above. In this scenario, though, the monitoring

signal, something-coming-in remains high, indicating that there are more incoming flits. Note that

the mutex is always briefly released between flits (i.e. zerowins de-asserted low), and something-

coming-in is then re-sampled by the mutex-input-control-0 unit for the second flit. The second

flit on this input channel is then processed following the same procedure as the first one. Finally,

something-coming-in is de-asserted low as no more flits are arriving. The mutex release between

the two flits is forced to create a window for the other channel to have an opportunity to win the

mutex. As a result, the arbitration is fair and starvation is avoided.

Contention between Two Channels

This scenario illustrates a simple case for the node to resolve contention. Two flits, one at each

input channel, enter the network within a close time margin. Both something-coming-in inputs

go high and the two mutex-input controls request the mutex almost simultaneously. Without loss

of generality, assume channel 0 wins the mutex. The flit on channel 0 is processed normally by

following the same procedure as in single-flit case, while the early arbitration on channel 1 cannot

further proceed. As soon as channel 0 releases the mutex, channel 1 continues with its own early

arbitration and the flit on channel 1 gets processed.

4.5.1.2 Details for Sub-Modules

Mutex Input Control

A more detailed view of this control unit and its operation are now presented. The new arbitration

node contains two Mutex Input Control units, one for each input channel, as shown in Fig. 4.7(a).

They are the core components that initiate early arbitration whenever notified by monitoring signals.

In processing each flit, the Mutex Input Control unit requests and releases the mutex exactly

78

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

aC
+ Flip-Flop

Control

CLK

D Q

DFF

Phase

Comparator

mutex-req0

preackout0

something-

coming-in-0
zerowins

(a)

something-

coming-in-0
en

x

mutex-req0

zero-wins

pre-ackout0

set phase reset phase

(i) single-flit

flit #1 flit #2

(ii) two back-to-back flits

Monitoring keeps high

(b)

Figure 4.7: Mutex input control for single-flit design:

(a) implementation (b) timing diagram

once, generating a clean pulse at its only output mutex-req0, as shown in Fig. 4.7(b)(i). An edge-

triggered D-flipflop and a phase comparator are the core components for pulse generation. The

phase comparator initially has different values at the two inputs and mutex-req0 is zero. When a

new flit enters the network and the local monitoring signal something-coming-in-0 is asserted high,

the Flip-Flop Control clocks the DFF. The two inputs of the phase comparator become equalized,

and the control output (mutex-req0) is asserted high, resulting in a request to the mutex. (Once

the mutex has been won, its zerowins output will then de-assert the Flip-Flop Control output.)

Eventually, once the actual flit arrives at the node and is sent to the output channel, pre-ackout

toggles. As a result, the bottom input to the phase comparator has a different value from the top

79

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

zerowins

output_en

latch_en

flit #1 flit #2

OR OR

Figure 4.8: Timing diagram for req-latch control

input. Hence, the mutex-req0 output is de-asserted low, thus releasing the mutex and also completing

the output pulse.

A timing diagram for two back-to-back flits on the same channel is shown in Fig. 4.7(b)(ii). If

flits are very close, something-coming-in-0 stays high; alternatively, with a wider gap, it will briefly

go low.

Req-Latch Control

This unit is implemented by two simple AND2 gates, one for each input channel already shown in

Fig. 4.6. A timing diagram of the processing of two successive flits, widely spaced, is illustrated in

Fig. 4.8.

The output of each of the AND2 gates, which opens the corresponding input channel, is as-

serted high based on a synchronization of its two inputs. For each AND2 gate, its left input (ze-

rowins/onewins) serves as a request for input channel allocation, controlling the corresponding latch

(L1 or L2). It is asserted high when the corresponding monitoring signal has arrived and wins early

arbitration, and is de-asserted low after the actual flit arrives and is transmitted to the output channel.

In particular, the corresponding preackout0/1 signal toggles, causing the mutex to reset, and thereby

de-asserting the corresponding mutex output (i.e., zerowins/onewins). The right input (output-en)

has the role of flow control; it is a busy flag indicating whether the successor is free to accept a new

data item. It is initially de-asserted high, indicating a free output channel. Once the flit arrives and

is sent out on this output channel, the reqout signal toggles and asserts the busy flag (output-en),

as well as closing the data register. Once the right acknowledge ackin is toggled, the busy flag is

de-asserted high.

For the case of downstream congestion, the right environment may take arbitrarily long to gen-

80

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

something-

mutex-req0

takeover

(a) single-flit (b) two back-to-back flits

flit #1 flit #2

coming-in-0

something-
coming-out

Monitoring keeps high

Figure 4.9: Timing diagram for fan-in monitoring control

erate its acknowledgment. Even so, if the advance monitoring indicates a second flit heading to

the same input channel, the node has sufficient parallelism to begin the pre-allocation step: it can

win arbitration (i.e. assert zerowins/onewins high), and request to enable the input channel. At this

point, as soon as the downstream congestion is cleared, the corresponding latch, L1 or L2, will be

finally be allowed to open again.

Monitoring Control

The unit is implemented using three simple AND2 gates, already shown in Fig. 4.6. The timing

diagram for its operation is shown in Fig. 4.9.

Consider a simple simulation for an individual fan-in node and a single flit, as shown in Fig. 4.9(a).

Assume the flit arrives on channel 0. When the flit enters the network, the node soon is notified:

something-coming-in-0 goes high and this information is quickly forwarded to something-coming-

out. Concurrently, takeover is asserted, to maintain this output value. Eventually, the actual flit

arrives, followed by something-coming-in-0 going low. but something-coming-out stays high due to

the takeover signal. Finally, after the flit is sent out on the output channel, the takeover is reset and

allows something-coming-out to be de-asserted low.

In the case when there are two back-to-back flits approaching the node on channel 0, monitoring

signals will stay high, until both incoming flits are processed. The timing diagram for this special

case is illustrated by Fig. 4.9(b). Effectively, the monitoring signals are not normal handshaking

signals, and no longer get reset when two consecutive flits are sufficiently close. It serves as a

state bit, indicating the existence of incoming flit(s). Alternatively, runt pulses are possible for

81

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

the monitoring signal, i.e. a brief de-assertion, when the flits are somewhat further apart. This

aggressive protocol is much more efficient than a classical deterministic handshaking protocol where

each asserted signal is required in turn to be de-asserted.

4.5.1.3 Timing Analysis

There are three key timing constraints residing in the arbitration node, which serve as design pa-

rameters for the physical layout level.

Monitoring operation: re-sampling time. Once asserted high, the monitoring input (something-

coming-in) must be de-asserted early enough to prevent a stale value from being re-sampled by the

mutex-input control unit, otherwise the input channel will be re-allocated with no incoming flit. In

practice, given the gate-level implementation, this timing condition has adequate margins. Soon

after a flit arrives, the corresponding monitoring input signal (something-coming-in) is de-asserted

low and immediately forwarded to the mutex-input control unit, thus nullifying the sampling signal.

Concurrently, after the flit is transmitted to the output channel, an entire mutex release cycle is initi-

ated, followed by a re-acquisition, before the mutex-input control unit can re-sample the monitoring

input.

Hold time. Once data advances through the latch (L1/L2), it must be securely stored before

new data arrives from the previous stage to prevent data overrun. In practice, L1/L2 closes nearly

simultaneously with generating the left acknowledgment, because it involves small local paths. In

contrast, the roundtrip time from generating the left acknowledgment to new data arrival involves

one complete non-local channel traversal as well as paths through the left neighbor’s control. The

timing constraint, therefore, is easily satisfiable.

Pre-mature input channel opening. This timing constraint occurs whenever a flit is sent on the

output channel. The right environment cannot acknowledge too quickly, before the mutex is re-

leased (i.e. zerowins/onewins goes low). Otherwise, L1/L2 will temporarily open for a short period;

although no functional error can occur, possible glitches in control signals and other electrical issues

may become a problem. In practice, as the right environment is normally another router of the same

type, and the round-trip latency from generating req-out to receiving acknowledgment involves a

complete non-local channel traversal, the timing constraint is also easily satisfiable.

82

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

Req
B

2

Latch/
Monitor
Control

2

Monitor
Control

Latch/

_

B

addr

Ack

Data

REG

E

D Q

REG

E

QD

Ack1
Req1

Data0

Req0
Ack0

Data1

3

2

1

0

3

2

1

0

(source routing)

something−
coming−out−1

something−
coming−out−0

(a)

Toggle 0

En

B
__

Req

addr [1-0] {

Ack

Latch
Control

Monitor
Control

0

1

2

3 }
something-

coming-out-0

Ack0

Req0

w x0

y0

(b)

Figure 4.10: New root routing node: (a) top-level, (b) control logic

B

Req
Latch/
Monitor
Control

Req1
Ack1

Monitor
Latch/

Control
Req0
Ack0

_

B

Data0

Data1

Ack

Data

REG

E

D Q

REG

E

D Q

1

0

0

1

2

1

0

3

coming−out−0
something−

coming−out−1
something−

(source routing)

something−
coming−in

(a)

Toggle 0

En

B
__

Req

Ack

Latch
Control

Monitor
Control

}something-
coming-out-0

Ack0

Req0

w x0

y0

aC_
1

aC_ 0

0

1{something-
coming-in

ta
ke

o
ve

r

(b)

Figure 4.11: New non-root routing node: (a) top-level, (b) control logic

83

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

4.5.2 Routing Node

In order for possible channel pre-allocation in arbitration nodes, lightweight monitoring control

units are also added in each level of routing nodes. The new routing designs are shown in Fig. 4.10

and 4.11 for fan-out root and non-root nodes, respectively.

A monitoring transition is initiated at the fan-out root when the data enters the network and been

quickly forwarded to all the routers along the path, including fan-out non-root nodes as well as fan-

in nodes. However, unlike the arbitration primitives, the fan-out nodes only passes the monitoring

information downstream without using it.

There are major differences in the protocol of monitoring signals between the new design and

the predictive design of Gill et. al [82]. The time of monitoring assertion is the same but the time

of de-assertion is significantly different. The monitoring channel of the predictive design uses a

partial handshaking protocol and something-coming-out de-asserts only after we send out a flit and

the right environment acknowledges. The new design, however, has no back pressure in monitoring

protocol. Something-coming-out de-asserts soon after a flit is put onto the output channel.

4.5.3 Monitoring Network: A Quick Revisit

The monitoring network is the key innovation of the entire new design. This lightweight shadow

network effectively anticipates the incoming traffic, when an actual new packet is injected into

the network, and allow routers on the path to prepare in advance. Although the detailed design

and operation for each of the fan-out fan-in monitoring control are already introduced in previous

sections, it is still worthwhile re-examining it for its system-level operation.

Overall, the structure of the monitoring network is a shadow replica of the entire MoT network.

For modularity, it is combined into the existing MoT network. Each node – routing or arbitration –

has an attached small monitoring control unit, implemented by several gates. The monitoring con-

trol units for fan-out primitives, shown in Fig. 4.10 and 4.11, are similar to those in Gill et. al [82],

with nearly identical functionality but using a different protocol in monitoring communication be-

tween neighbors. The monitoring control unit for each arbitration node was shown in Fig. 4.6.1

1The two top OR2 gates are combined using an OR3 gate in the actual implementation for improved

performance.

84

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

Monitoring has distinct roles in the two halves of the network: in the fan-out part, monitoring

signals only gets forwarded; in the fan-in part, monitoring signals get forwarded and are also used

for channel pre-allocation at individual nodes. Whenever a flit enters the network through a root

routing node, it initiates a monitoring signal transition. This signal is then rapidly forwarded to all

the fan-out and fan-in nodes along the targeted path. A rapid wave of monitoring signals going high

is detected as the relevant nodes get informed from the source to the destination only on this path.

Then, monitoring signals are de-asserted low, node by node, as the actual flit proceeds through each

router following the same path.

4.6 Multi-Flit Design

The previous Section 4.5 focused on a basic design to handle only single-flit packets. An enhanced

version for the new arbitration node is now presented to support multi-flit capability, as in [96,

97].

The multi-flit network has identical routing primitives as the single-flit implementation, but with

different arbitration nodes. The structure of a multi-flit fan-in node is shown in 4.12. It is largely

identical to the single-flit one, except for a different mutex-input-control unit. The new control

unit, shown in Fig. 4.13 replaces the one for single-flit design. In the new arbitration node, once

the header flit wins in early arbitration, the mutex is held until the entire packet is processed. To

implement this, the new mutex-input-control now takes a tail flag (end0/1) information from each

flit. Normal assertion of mutex-req is performed as before, but the de-assertion (i.e. arbitration

release) only occurs at tail flit.

Compared to the multi-flit design in [96, 97], the new approach no longer cycles the mutex on a

per-flit basis, which was repeatedly won and released. Therefore, the new design has direct benefits

in reduced switching activity, as well as improved throughput due to the complete elimination of

this protocol overhead.

4.7 Experimental Results

Detailed evaluations are now presented, for pre-layout technology-mapped network primitives as

well as 8×8 mesh-of-trees networks built upon these primitives. The results are compared to the

85

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

Figure 4.12: New arbitration primitive: multi-flit design

S Q
_

R
_

aC

+

reset-pulse

mutex-req0

zerowins

something-

coming-in-0

end0

preackout0
ackout0

Set Control

Reset Control

Figure 4.13: Mutex input control: multi-flit design

86

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

Table 4.1: Area comparison for pre-layout primitives (µm2)

Node Type
Included

Components
New

Implementations

total 991.4
control only 201.1
total 1056.6
control only 266.4
total 1033.7
control only 243.4
total 1042.5
control only 252.3
total 1039.0
control only 248.7
total 869.1
control only 190.5
total 1309.8
control only 632.4
total 947.3
control only 269.9

Arbitration

Routing

new

Version

baseline

root

typical

root

typical

predictive

new

baseline

predictive

baseline design of Horak et al. [96, 97] as well as the predictive design of Gill et al. [82]. Both of

the previous designs are re-implemented for fair comparison.

4.7.1 Asynchronous Primitives

An ARM 90nm SAGE-X standard cell library is used (the same as that used in [82]) for imple-

menting the new and previous network primitives with a 32-bit wide datapath. Results are obtained

using the Spectre simulator in Cadence Virtuoso environment at typical design corner with nominal

temperature and supply voltage (1.0V, 27◦C). As we use a different simulator from that of [82],

reasonable results deviations are observed. All the results are obtained for the single-flit designs.

Area Comparison

The new primitives are shown to have only little area overhead over the baseline counterparts. In

particular, the new arbitration primitive has significantly smaller area than the predictive one. Table

4.1 contains the results of total node area, as well as the control area alone, which excludes data

87

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

Table 4.2: Performance comparison for routing primitives

Single Alternating

Baseline 344 1.62 1.99
Predictive 344 1.58 1.99
New 344 1.62 1.99

Version Latency(ps)
Max. Throughput (GFPS)

path. The final layout node area is estimated by summing up the cell areas and then dividing by a

packing factor of 0.8. For the routing primitive, the new design has a comparable area as predictive

counterpart. When compared to the baseline, the control overhead of the new router primitive is

within 5.2%, for both typical and root nodes, as the additional monitoring control is extremely

simple. For the arbitration primitive, 28% less area is observed for the new node when compared

to the predictive counterpart, due to a much simpler fan-in design. Even compared to the baseline

arbitration primitive, the area overhead is less than 9%.

Latency and Throughput

Latency is calculated assuming an empty primitive, from an input request transition to the time that

the primitive toggles its output request. A complete 3-level fan-in tree is implemented for evaluating

maximum throughput under different steady-state traffic patterns in order to capture the realistic

handshaking protocol overhead between neighboring nodes and avoid over-optimistic performance

analysis. Then throughput is measured at the root primitive of the tree.

The new routing primitive has very close performance to both previous counterparts as expected,

since effectively no design modification is done in the fan-out nodes except for additional monitor-

ing controls off the critical path. The new arbitration primitive has significant latency reduction

comparing to the baseline, and moderate to large latency improvement over the predictive arbitra-

tion primitive, depending on different operating modes that the predictive node operates in. There

is a mix of throughput improvement and degradation for the new arbitration primitive, compared to

the previous counterparts.

Routing primitive. Table 4.2 shows the latency and throughput results for the new routing prim-

88

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

Table 4.3: Performance comparison for arbitration primitives

Single Alternating

baseline N/A 416 1.35 2.28
Default 472 1.25 2.00
Biased 264 1.77 N/A

new N/A 215 1.42 2.43

Version Latency(ps)
Max. Throughput (GFPS)Operating

Mode

predictive

itive. In order to show a complete range of performance, two different routing patterns are used for

experiments: single (i.e. packets are only routed to one output port) and alternating (i.e. packets are

routed to both output ports with a strict alternating pattern). Neither latency nor thoughput overhead

was observed for the new routing nodes, in either root or typical versions. The throughput in the

single case is even slightly better than predictive counterpart by an amount of 2.5%.

Arbitration primitive. Table 4.3 provides the performance results for the new arbitration primi-

tive. Similarly, experiments are done under two different traffic patterns: single and all, respectively.

The new arbitration primitive has significant latency reduction comparing to the baseline (by

48%), and moderate to large latency improvement over the predictive arbitration primitive, depend-

ing on different operating modes that the predictive node operates in (54% improvement in single

case and 19% in all case).

In terms of throughput, there is a mix of improvement and degradation for the new arbitration

primitive, compared to the previous counterparts. In single case, data stream arrives on only one

input channel. The new design has minor to moderate throughput improvements over the baseline

and predictive (default mode), by 5.2% and 13.7% respectively, mostly due to a simple design with

shorter forward path. However, about 20% worse throughput is observed, compared to the predictive

(biased mode). This is because at high data input rate, there is not enough margin between two

consecutive flits and the new design cannot fully complete channel pre-allocation before each flit

arrival, while the predictive design operates in biased mode and the channel is always allocated.

In all case, data streams arrive at both input channels. The new design also has better throughput,

compared to both the baseline and predictive counterpart, in particular, 20% better throughput for

89

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

Table 4.4: Latency for monitoring control: node-level

Node Type Node Level Event Transition Type
Latency

(ps)

0→1 240
1→0 (case #1) 396
1→0 (case #2) 385
0→1 40
1→0 (case #1) 257
1→0 (case #2) 245
0→1 41
1→0 (case #1) 263
1→0 (case #2) 364

Pre-allocation
(reqlatch-en) 0→1 463

Monitoring output
(something-coming-

out)

Monitoring output
(something-coming-

out)

N/AArbitration

Routing

root

typical

the latter comparison.

Monitoring signals. Table 4.4 evaluates the performance of the new monitoring signals, as they

advance through a single node. For root routing primitive, the assertion (0 to 1) latency is measured

from an input request transition to the time that something-coming-out is asserted high. For all the

other routing and arbitration primitives, it is the time between something-coming-in and something-

coming-out. The de-assertion delay (1 to 0) is divided into two cases. Case #1 is measured when a

node is empty, from the time that a new request arrives until something-coming-out is de-asserted.

Case #2 is for the case that a node is congested and is measured from the time that an acknowledge

from the successor arrives until the time that something-coming-out deasserts. The assertion latency

needs to be small, as the monitoring signal must be quickly forwarded, while the de-assertion latency

is less important. Overall, for all non-root routing primitives as well as all arbitration primitives, the

assertion delay is extremely fast: under 41ps. Pre-allocation time is also evaluated for the arbitration

primitive, from something-coming-in assertion to the point when the channel is opened. The result,

463 ps, is fast enough for every fan-in node on the path to complete channel pre-allocation before

actual flit arrival when the network is lightly loaded.

90

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

Design Complexity

The new arbitration node is also much simpler than the predictive one. It uses only a single analog

mutex, while the predictive design requires five mutexes to solve complex mode change scenarios.

The predictive node also contains complex Policy and Safety modules to store history information

and maintain channel configuration. The new design requires none of these, and has simpler req-

and ack-latch control units. However, the new design has two added small mutex-input-controls to

allow channel pre-allocation.

4.7.2 Asynchronous Network

Experiments were also performed for both network latency and throughput, using 8×8 mesh-of-

trees networks. We conduct two sets of experiments: for single-flit and multi-flit designs. Single-flit

experiments compare three networks: the baseline, predictive and new. For multi-flit experiments,

only two networks are compared, baseline and new, since the predictive design does not support

multi-flit packets.

Experimental Setup

A similar network setup is used as in [82]. We use an asynchronous NoC simulator introduced

in [82] developed by our group for testing, debugging and performance measurements, based on a

PLI (Programming Language Interface) framework.

The initial generic framework was developed by Prof. Simha Sethumadhavan (Columbia Uni-

versity) for synchronous applications only. Networks are modeled in structural Verilog using the

same 90nm standard library while the test environment is written in C. Packet source queues are

installed at network inputs ports for recording of latency [46]. For single-flit experiments, the input

environment generates flits at random intervals that conforms to an exponential distribution. For

multi-flit experiments, flits within a packet are put into the source queue almost simultaneously and

the mean time between packet headers follows an exponential distribution. We follow the standard

procedure to ensure a long enough warm-up and measurement time for each benchmark [46], where

one simulation with given warm-up and measurement phases is compared to another with both of

these periods doubled, to check whether results are comparable.

Gate modeling. Our previous work of [82] employs a fixed-latency gate model by taking the

91

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

average of rising and falling transitions. Here a more accurate model is extracted by Cadence

simulations, which assigns distinct latencies to rising and falling transitions for each pair of I/O

paths of each gate, rather than using a single fixed latency model.

Benchmarks. Experiments are conducted for the same eight synthetic benchmarks as in [82],

chosen to represent a wide range of network conditions. Three benchmarks provide friendly sce-

narios with no contention, where each fan-in node receives data on only one input channel: 1) Bit

permutation [46], 2) Digit permutation [46] and 7) Random single source broadcast. Three bench-

marks provide moderate contention, where some fan-in nodes have light or no contention, and others

have moderate contention: 4) Simple alternation with overlap, 5) Random restricted broadcast with

partial overlap and 8) Partial streaming. The two remaining benchmarks are most adversarial, with

heavy contention at some fan-in nodes: 3) Uniform all-to-all random [46] and 6) Hotspot8 [46]. The

predictive network has particularly poor performance on these two, even worse than the baseline

network.

Network-Level Simulation Results: Single-Flit Design

Overall, for the single-flit experiments, the new network has moderate to high latency reductions

across all benchmarks, over both baseline and predictive networks, ranging from 13 to 39%. For

throughput, the new network out-performs the baseline network, in six of eight benchmarks, with

improvements up to 17%, and only minor degradation in the other two benchmarks. Compared to

the predictive network, the new network has almost identical throughput, within 6%.

Latency. Fig. 4.14 contains detailed latency results for the three networks. Results are plotted as

the average end-to-end network latency for each flit vs. the mean offered data input rate [82]. When

lightly loaded, network latency in the baseline network is nearly 2400 ps for every benchmark. The

predictive network has a latency around 1900 ps for friendly benchmarks but up to 3000 ps for the

adversarial ones. Like the baseline, the new network has a quite stable latency over all benchmarks;

however, the latter is overall much lower, around 1700 ps. Fig. 4.16 highlights network latencies

at identical input rates. An offered throughput of 25% saturation rate is chosen; this rate is high

enough to differentiate benchmarks while still retaining an uncongested network.

Compared to the baseline network, significant improvements are uniformly observed, ranging

from 23% to 30%. Compared to the predictive network, the new network obtains improvements

92

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

0
0
.5

1
1
.5

Latency (ps)

D
a
ta

 r
a
te

 p
e
r

a
c
ti

v
e
 i

n
p

u
t

(G
F
/
s
)

(a
)

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

0
0
.5

1
1
.5

D
a
ta

 r
a
te

 p
e
r

a
c
ti

v
e
 i

n
p

u
t

(G
F
/
s
)

(c
)

 #

1

 #

2

 #

3

 #

4

 #

5

 #

6

 #

7

 #

8

B
e
n

c
h

m
a
rk

s

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

0
0
.5

1
1
.5

D
a
ta

 r
a
te

 p
e
r

a
c
ti

v
e
 i

n
p

u
t

(G
F
/
s
)

(b
)

Fi
gu

re
4.

14
:N

et
w

or
k-

le
ve

ll
at

en
cy

:(
a)

ba
se

lin
e

ne
tw

or
k

[9
6,

97
] ;

(b
)p

re
di

ct
iv

e
ne

tw
or

k
[8

2]
;(

c)
ne

w
ne

tw
or

k

0

0
.51

1
.52

0
0
.5

1
1
.5

2
D

a
ta

 r
a
te

 p
e
r

a
c
ti

v
e
 i
n

p
u

t
(G

F
/
s
)

(c
)

 #

1

 #

2

 #

3

 #

4

 #

5

 #

6

 #

7

 #

8

B
e
n

c
h

m
a
rk

s

0

0
.51

1
.52

0
0
.5

1
1
.5

2
D

a
ta

 r
a
te

 p
e
r

a
c
ti

v
e
 i
n

p
u

t
(G

F
/
s
)

(b
)

0

0
.51

1
.52

0
0
.5

1
1
.5

2

Normalized output data

rate (GF/s)

D
a
ta

 r
a
te

 p
e
r

a
c
ti

v
e
 i
n

p
u

t
(G

F
/
s
)

(a
)

Fi
gu

re
4.

15
:N

et
w

or
k-

le
ve

lt
hr

ou
gh

pu
t:

(a
)b

as
el

in
e

ne
tw

or
k

[9
6,

97
] ;

(b
)p

re
di

ct
iv

e
ne

tw
or

k
[8

2]
;(

c)
ne

w
ne

tw
or

k

93

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

2
3

8
1

2
3

9
8

2
4

6
8

2
4

1
6

2
3

7
8

2
4

6
8

2
3

6
8

2
4

2
5

1
9

2
9

1
9

4
0

2
8

8
5

2
1

6
6

2
0

6
0

3
0

1
6

1
9

1
0

2
0

9
1

1
6

7
8

1
6

8
9

1
7

6
9

1
7

0
6

1
6

6
8

1
8

9
1

1
6

6
1

1
7

1
3

0

500

1000

1500

2000

2500

3000

3500

#1 #2 #3 #4 #5 #6 #7 #8

L
a
te

n
c
y
 (

p
s
)

Benchmarks

Baseline

Predictive

New

% Improvement

Figure 4.16: Latency comparison for 25% network load

1
.1

7

1
.1

7

1
.5

5

1
.2

0

1
.4

7

0
.2

6

1
.6

8

1
.0

7

1
.3

8

1
.3

6

1
.4

6

1
.4

2

1
.5

1

0
.2

4

1
.6

7

1
.2

2
 1
.3

7

1
.3

6
 1

.5
4

1
.3

8
 1

.5
4

0
.2

4

1
.6

9

1
.1

6

0

0.5

1

1.5

2

#1 #2 #3 #4 #5 #6 #7 #8

S
a
tu

ra
ti

o
n

 d
a
ta

 r
a
te

 (
G

F
/
s
)

Benchmarks

Baseline

Predictive

New

% Improvement

Figure 4.17: Saturation throughput comparison

from 13% to 21% for friendly and moderately adversarial benchmarks, with even higher improve-

ments – near 38% – for the most adversarial benchmarks.

The two key contributions – merging latches on the forward path and channel pre-allocation

– are now separately evaluated, to observe their impact. By merging latches, the network latency

94

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

is improved by roughly 250 ps (13%), when comparing the predictive and the new network in the

three friendly benchmarks (1, 2 and 7). These benchmarks have persistent source-sink pair-wise

streaming traffic with no contention. Hence, the involved fan-in routers in the predictive network

stay in optimal configuration (i.e. held in the biased mode), and therefore this differential identifies

the improvement due solely to the latch removal. For other benchmarks, the latency gains are

always higher (up to roughly 38% in benchmarks 3 and 6), showing the additional contribution of

the channel pre-allocation scheme.

The stability of the latency is also a key metric for memory access in shared-memory CMP’s,

capturing the degree of latency variation at fixed load under a variety of benchmarks. As high-

lighted in Fig. 4.16, while the predictive network has high latency variation, ranging from 1910 ps

to 3016 ps, the new approach has nearly uniform latency over all benchmarks, which is another

important benefit of the proposed approach.

Throughput. Fig. 4.15 explores network throughput, with results plotted as the output rate nor-

malized to the number of active input sources vs. the mean offered data input rate [82]. Under fairly

lightly-loaded traffic conditions, throughput tracks the input data rate. As the input rate increases,

throughput results begin to level off to the saturation throughput. Fig. 4.17 provides a clean vision

of the differences in saturation throughput values for the three networks. Compared to the base-

line, the new network exhibits minor to moderate improvements – up to 17% – for six benchmarks,

with up to 8% degradation on the two most adversarial ones. Compared to the predictive network,

the new network exhibits nearly identical throughput – from 6% degradation to 6% improvement–

across all benchmarks.

Monitoring Network Evaluation. Finally, network-level simulations show that the monitoring

network can rapidly forward monitoring information and allows enough time for each fan-in node

on the path to complete channel pre-allocation before actual flit arrives. In a zero-load network, the

tightest margin between monitoring signal arrival and actual flit arrival is 590 ps, which occurs at

leaf fan-in nodes.

Network-Level Simulation Results: Multi-Flit Design

Considering a multi-flit design, Figs. 4.18, 4.19 and 4.20 show the network-level latency and

throughput results for the baseline and new networks using a fixed packet length of 8 flits. Only

95

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

1000

2000

3000

4000

5000

6000

0 50 100 150

L
a
te

n
c
y
 (

p
s
)

Data rate per active input (Mpackets/s)

#1 - baseline

#3 - baseline

#1 - new

#3 - new

Benchmarks

Figure 4.18: Latency for the networks with multi-flit capability

0

50

100

150

200

250

0 50 100 150 200

N
o
rm

a
li

z
e
d

 o
u

tp
u

t
d

a
ta

 r
a
te

(M

P
a
c
k
e
ts

/
s
)

Data rate per active input (MPackets/s)

#1 - baseline #3 - baseline

#1 - new #3 - new

Benchmarks

Figure 4.19: Throughput for the networks with multi-flit capability

2
4

4
1

 2
9

2
3

1
6

9
6

 2
1

3
1

0

500

1000

1500

2000

2500

3000

3500

4000

#1 #3

L
a
te

n
c
y
 (

p
s
)

Benchmarks

baseline

new

improvemen

t%

30.52 27.09

improvement

1
3

7
.0

9
2

.0

1
5

6
.4

1
0

4
.8

0.0

50.0

100.0

150.0

200.0

250.0

#1 #3

S
a
tu

ra
ti

o
n

 d
a
ta

 r
a
te

 (
M

P
a
c
k
e
ts

/
s
)

Benchmarks

baseline

new

improvement

14.14 13.98

Figure 4.20: Performance comparison for multi-flit experiments

96

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

two representative benchmarks are picked for the experiment. Benchmark 1 (shuffle) is a friendly

benchmark with no contension and benchmark 3 (all-to-all random), a widely-used benchmark that

is moderate adversial. Significant improvements are observed in network latency (27% and 31%).

Throughput is also considerably better (around 14%) for both tested benchmarks. These strong re-

sults prove the effectiveness of anticipation in the multi-flit case. Results are also obtained for a fixed

packet length of 3 flits. Similar improvements in latency (28% and 31%) but smaller improvements

in throughput (3% and 14%) are obtained.

4.8 Conclusions and Future Work

This chapter introduces a novel network protocol to address the system-latency bottleneck for high-

performance asynchronous interconnection networks using a Mesh-of-Trees variant topology. The

topology is efficient for connecting processing clusters to memory tiles in shared-memory chip

multiprocessors. A lightweight shadow monitoring network is proposed to fast-forward information

on arriving packets, in advance, allowing each node on its path to complete both arbitration and

channel allocation before the data arrives.

Detailed experiments are performed to compare the proposed network with two of our earlier

asynchronous designs [96, 97] at both router- and network-level. At router-level, the new asyn-

chronous arbitration primitive only has small overhead when compared to the baseline, while is

significantly simpler than the predictive counterpart (28% less in area). Also, the new arbitration

node only has one mutex, while the predictive design requires five to solve complex mode change

scenarios. At network-level, the new network shows stable improvements in end-to-end system

latency over the baseline network, 24-30% improvements for all 8 benchmarks, while up to 38%

latency improvements were obtained over the predictive network. In addition, the attached monitor-

ing network is extremely simple and fast – only several gates are added for each node – providing

enough slack for early arbitration and channel pre-allocation.

Future work will be focused on narrowing the window between channel reservation and the

actual flit arrival, which can potentially increase the network utilization. Instead of triggering the

pre-allocation right after the flit enters the network, it can be triggered at the middle of the network,

but still allowing enough time for completing pre-allocation in time. Also, mixed-timing interfaces

97

CHAPTER 4. A LOW-LATENCY ASYNCHRONOUS NOC FOR A VARIANT MESH-OF-TREES
TOPOLOGY

will be created to connect the network with functional cores to form a GALS system for further

experiments on real traffic benchmarks.

98

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

Chapter 5

A Low-Latency Asynchronous NoC for a

2D-Mesh Topology

5.1 Introduction

In the previous chapter, a novel monitoring technique is applied for a Mesh-of-Trees (MoT) variant

topology. The lightweight monitoring network fast forwards early information of incoming traffic

and allows routers on the path to prepare in advance. Although MoT topology and its variants are

receiving increasing interest and attention, they are still used in only specialized applications. Mesh-

based NoC structures are still the mainstream. Acceleration techniques for mesh-based topologies

are more important and challenging: they have higher-radix switches with non-trivial routing, and

with more complex resource sharing.

This chapter introduces and applies a monitoring network to a 2D-mesh topology, and presents

our second asynchronous low-latency network-on-chip [105]. The new NoC is called AEoLiAN,

Asynch-ronous Early-arbitration approach for a Lightweight Accelerated Network. Similarly, a low-

overhead monitoring network is introduced, for a 2D-mesh, which allows arbitration and channel

allocation to be performed in advance of a packet through the network. However, compared to the

optimized MoT network in Chapter 4, AEoLiAN has fundamentally new monitoring protocols and

components.

The new monitoring protocol uses a fine-grain and synchronized router-by-router early arbitra-

tion, with monitoring and data advancing independently at different speeds. In contrast, the MoT

99

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

monitoring network informs all routers on a packet’s path in rapid sequence. This coarse-grain ap-

proach does not work for 2D-mesh topology, because the 2D-mesh topology is much more complex

and there is much more traffic interference in mesh-based structures: pre-allocation of routers too

early for one data stream can block other data streams from using this node for a large amount of

time, resulting in an unacceptable performance degradation and congestion. The more conservative

synchronization protocol is selected to avoid such over provisioning, as well as to conquer deadlock

issues.

The proposed 2D-mesh monitoring network is quite lightweight, compared to many recent early

arbitration techniques used in synchronous NoC’s. For example, SMART NoC [119], one of the

most well-known optimized synchronous networks, requires substantial extra network resources,

including additional VCs and link resources, to enable a complete multi-hop channel reservation for

a packet in the preceding clock cycle. In contrast, our approach exploits fine-grain asynchronous

operation, which allows rapid ‘sub-cycle’ pre-allocation decisions, on a hop-by-hop and node-by-

node basis, resulting in lightweight dynamic resource allocation as a packet advances. Interestingly,

given the decoupled and fine-grain operation of the new asynchronous NoC, only a narrow in-

crease in channel width – 11 extra bits per channel – is needed to support the monitoring network,

without the need to accommodate worst-case notification scenarios within each clock cycle as in

synchronous approaches.

The AEoLiAN network was implemented and simulated on 6 diverse synthetic benchmarks in

an 8×8 2D-mesh network topology. Uniform improvements in system latency are obtained over

all the benchmarks and over a wide range of injection rates. Pre-allocation was shown to be nearly

completed in advance, with only slight overlap, with the arrival of packet headers. Interestingly, the

acceleration technique also provided significant throughput gains for several of the benchmarks, by

reducing network congestion. A small number of additional experiments were also performed by

perturbing packet size, network dimension and link length. The new NoC shows almost identical,

or only slightly degraded, latency.

The remainder of the chapter is organized as follows. Section 5.2 introduces related work on

various of early arbitration techniques used for synchronous NoC’s. Section 5.3 presents the base-

line network by Ghiribaldi et al. [80], which we build on and compare to. An overview of the

approach is first provided in Section 5.4, before diving into the detailed network design. From Sec-

100

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

tion 5.5 to 5.7, implementation details of the network is presented. Section 5.8 presents an informal

explanation for why the network has no deadlock. Section 5.9 provides major timing constraints

of the network. Detailed experimental results for the proposed 2D-mesh NoC design is shown in

Section 5.10. Finally, Section 5.11 concludes the chapter.

5.2 Related Work

A number of mesh-based synchronous NoC’s use early information and aim for rapid pre-allocation.

While several demonstrate effectiveness in latency improvements, most require major hardware

resource allocation to support such acceleration on a per-clock cycle basis: multiple extra virtual

channels (VCs), hybrid configuration networks requiring additional planes, and wide control or

monitoring channels.

The SMART NoC [119] uses clockless repeated links to pre-allocate channels for multiple-hops

simultaneously, allowing packets to potentially traverse multiple routers in one cycle. However, it

requires wide monitoring channels with many extra VCs to obtain the full benefits of the approach.

In particular, it includes an example (Fig. 7 [119]) with 24 distinct smart links emanating from

each router, each with 2-4 address bits, and 12 VCs are proposed to obtain maximal benefits for

its experimental results. Deja Vu [2] uses a hybrid network and requires an expensive dedicated

monitoring plane, with the same channel width as the data plane, to support early arbitration; also,

the environment must inject monitoring information into the network earlier than the data, unlike

our proposed approach. The approach of [121] uses ‘advanced bundles’ to set switch allocation

one cycle in advance; however, it builds on a slow 3-cycle baseline switch, and reported network-

level performance had minimal latency improvement from 10-40% injected load and only modest

improvements at other rates.

5.3 Background: Baseline NoC Design

The proposed work builds on a recent general-purpose asynchronous NoC router design with no

latency acceleration, presented in [80]. This 5-ported switch uses a nearly entirely standard cell

design, with low overhead and simple optimized control. It is a VC-less design, using destination

addressing and X-Y routing, and uses a two-phase transition-signaling protocol, along with single-

101

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

rail bundled data encoding.

When compared to a highly optimized synchronous switch, xpipesLite [211], the baseline asyn-

chronous switch demonstrated significant benefits: 71% reduction in switch area, 60-85% reduction

in overall power, and a 44% average reduction in energy per flit, in the same technology. Unlike

a number of prior asynchronous NoC’s, which have been targeted to low or moderate throughput

with high router node latency and area [27, 133], this switch also exhibited high throughput (903

ps average cycle time) and relatively low latency (1195 ps per router, header flit), in a low-power

standard-Vth 40nm technology.

The router microarchitecture has two sets of components: Input Port Modules (IPMs) and Out-

put Port Modules (OPMs). Five IPMs are connected through the crossbar to five OPMs, using a

standard organization [46]. Each component is based on Mousetrap asynchronous pipelines [201,

204], which use a normally-transparent capture-pass protocol with single-level D-latch registers.

An IPM has a single input channel and four output channels, while an OPM has four input

channels and one output channel. The IPM computes the current node’s routing information, and

propagates it to the designated OPM; input data is also broadcast 4-way to all OPMs. The role of the

OPM is to (i) use the routing information to identify a valid request, (ii) resolve arbitration between

competing requests, and (iii) allocate the designated output channel.

Details of an IPM and OPM module are introduced below, repectively. A more complete pre-

sentation can be found in [80].

5.3.1 Input Port Module

The structure of an IPM is shown in Fig. 5.1. Initially, the single-latch input register is normally

transparent, as in Mousetrap pipelines, and all Request Generators are inactive.

The operation starts with a header flit arriving at the input channel. Following the transition-

signaling bundled data protocol, DataIN becomes valid, and then a transition occurs on ReqIN. The

header flit then directly passes through the input register, which is default-open, and immediately

broadcast speculatively to all output channels. However, the header also activates Packet Route Se-

lector to compute the real designated output port. The corresponding Request Generator is then ac-

tivated, and asserts PacketPathEnable high on that port. The targeted OPM, which receives Packet-

PathEnable will identify the valid data, and sends acknowledgment back to the IPM. The remaining

102

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

II. PREV IOUS WOR K
There has been a surge of interest in recent years in

GALS and asynchronous design [1], [2]. Several GALS NoC
solutions have been proposed to enable structured system
design. Several of these approaches have been highly effec
tive, especially for low- and moderate-performance distributed
multicore systems [6], [12], thus targeting a different point
in the design space than the proposed work. Some have low
throughput (e.g., 200-250 MHz) LI3], while those with moder
ate throughput (e.g., near 500 MHz [6], [14], [15], [16]) often
have significant overheads in router node latency/area/energy
per-bit. Almost all use four-phase return-to-zero protocols,
involving two complete roundtrip channel communications per
transaction (rather than the single roundtrip communication
targeted in our work), and delay-insensitive data encoding,
resulting in lower coding efficiency than the single-rail bundled
encoding used in this paper [14], [15], [12], [13], [17].

Closer to our work is a promising recent approach targeting
a two-phase protocol using a cOlmnercial computer-aided
design (CAD) flow [18]. However, it has overheads due to
a delay-insensitive (LEDR) data encoding and flipflop-based
registers, and is not currently even suitable as a NoC. The
GALS neural network system of [13] also includes two-phase
channels between chips, with four-phase channels on chip, but
uses delay-insensitive encoding.

The proposed NoC is based on MOUSETRAP pipelines
[7], [19], which use a low-overhead single-latch-based archi
tecture. This paper delivers a previously unexplored design
point for asynchronous NoC architectures, relying on two
phase bundled data encoding. We propose a more aggressive
approach than [10], who limits the two-phase protocol to
inter-switch links. The proposed solution builds on the work
of [9] and [20], which demonstrate that transition-signaling
single-rail bundled data can be efficiently employed in basic
routing and arbitration functions. However, [9] and [20] target
only simple tree-based switch architectures, while this work
addresses the intricacy of a full 5-ported switch design.

III. SWI TCH ARCHI TECTURE
The proposed switch architecture is highly modular and

can support the connection of an arbitrary number of input
ports (Input Port Modules, IPMs) with output ports (Output
Port Modules, OPMs). While the design space is potentially
quite large, this paper analyzes and characterizes a specific
design point with the following features: 5 input and 5 output
ports, 32-bit flit width, wormhole switching and algorithmic
dimension-order routing. The ultimate goal is in fact to assess
the quality metrics that transition-signaling bundled data can
achieve on a specific design point of practical interest.

The switch architecture is inspired by the xpipesLite archi
tecture [1 1], which represents an ultra-low complexity design
point in the space of fully-synchronous NoCs. Given this,
coming up with an asynchronous switch consisting of the same
building blocks while further cutting down on area and power
is the challenge that this paper takes on. xpipesLite will be
retained as reference design point to prove the claim of low
implementation overhead and competitive design point.
A. Mousetrap Pipelines

The new asynchronous switch introduced in the following
sections, is based on an existing asynchronous pipeline called
MOUSETRAP [7], [19], which provides high-throughput op
eration with low hardware overhead. Each MOUSETRAP
stage uses a single register based on level-sensitive latches
(rather than edge-triggered flipflops) to store data, and simple
stage control (replacing the clock) consisting of only a single
combinational gate. These designs use single-rail bundled
data encoding, where a synchronous-style data channel is
augmented with an extra req wire, and a single transition on
the req accompanying the data bundle indicates the data is
valid. The req wire has a simple one-sided timing constraint
that its delay is always slightly greater than the data channel.
For further details, see [7], [19].

DATAIN

input
channel

r---------------�====��l- �QO
PacketPathEnabledo

:a;;-==---:"'i....:.-l- TailPassedO
=

r-------__ � DATAO �
,---�L-L �Ql �

PacketPathEnabledl �

I ��==:S#:j:; TailPassedl �
i-= DATAl � ,---�L-L �Q2 .flo

PacketPathEnabled2 5

Fig. l. Input Port Module

B. Input Port Module Architecture

Input Port Modules route the packet to the correct Output
Port Module, comparing the internal switch address with the
destination address contained in the header flit. The microar
chitecture of an IPM is presented in Fig. 1.

The single-latch input register is normally transparent, as
in MOUSETRAP pipelines, and the four Request Generator
blocks are initially inactive. The basic operation of the module
begins with a head flit arriving from the input channel,
signalled by REQIN (soon after DAT AIN arrives). The flit
passes directly though the the input register, which then makes
itself opaque, safely storing the data. It also sends the request
(REQx) to all four Request Generator blocks, and an ac
knowledge (AC KIN) on the input channel. The head flit also
indicates to the Packet Route Selector to compute the single
target output port, and to assert the corresponding one of four
RouteSelected signals high. This signal sets the corresponding
Request Generator to packet processing mode, which asserts
its PacketPathEnabledi output high and sends it to the
target Output Port Module. In tandem, the Reqx signal is
broadcast to all four Request Generator modules, which result
in transitions on all four output requests (REQo to REQ3,
one to each of the four Output Port Modules); however, only
the one targeted Output Port Module will be activated, and the
other requests are ignored (see details below).'

The target Output Port Module, after receiving both
PacketPathEnabledi and Reqi, sends acknowledgment
AC Ki to the Input Port Module. The Ack Generator then
makes a transition on output AC Kx, causing the input register
to become transparent again. It is also sent to the Packet Route
Selector, which de asserts the Route Selected output.

As long as the Request Generator Block is still in packet
processing mode, its PacketPathEnabledi output remains
high, and all the flits of the packet are directly transferred to
the corresponding Output Port Module. Finally, when a tail
flit is received, TailPassedi is asserted by the Output Port
Module, which resets the Request Generator to inactive mode
and deasserts the PacketPathEnabledi signal.

Details of the Packet Route Selector are shown in Fig. 2.
The XOR2 converts the two-phase signals Req and Ack to a
level signal, and a matching delay line enforces hazard-free
operation of the combinational routing logic.

The implementation of the Request Generator associated
with Output Port 0 is shown in Fig. 3. The Route Selectedo,
TailPassedo and PacketPathEnabledo signals are all four
phase (i.e. level) and active-high; when the block is inactive,
these signals are deasserted low. In contrast, the Req and Ack

I Note that, since a two-phase signaling protocol is used. a REQi signal
may at times have the opposite polarity of the incoming request REQx,
depending on the number of flits that have been transmitted in previous
transfers, and to which of the four Output Port Modules.

Figure 5.1: Baseline IPM architecture

OPMs simply ignore the data. After the header flit activates the corresponding Request Generator,

PacketPathEnable signal remains high throughout the entire packet processing. Body and tail flits

are directly transferred from IPM to the designated OPM at a very fast rate, as routing computation

is no longer needed. Finally, after the tail flit is passed to the OPM and the acknowledge is received,

the Request Generator is deactivated. The IPM is reset to the initial state and waits for the next

packet processing.

5.3.2 Output Port Module

Fig. 5.2 shows the microarchitecture of the OPM. The module arbitrates between multiple incoming

requests and merge them on the single output channel.

An asynchronous 4-way mutual exclusion element (mutex) performs arbitration, and a 4-way

MUX selects the appropriate input data from the crossbar. The Tail Detector detects when a tail flit is

sent out. The right data register uses a capture-pass protocol for flow control, and other components

103

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

�
..
. �
In
�
CD Routelnfo .� ctrl information
.... from cla.tapath

.;
II, .. "
� .�

9 .::

ACKX

REQx

Rout.Select.do
from Packet

Route Selector

Fig. 2.

Ack, -" ,- ��

Packet Route Selector
TailPu.ado

frOlll TaJ.l Detector

j

Ack2 -+-+--11
Ack3

ackno.l.�s frOll!
other Channel. �1C==�P�.C�k�et�p.�t��n��1�ed�O�

"
--���

�-�������-fb�q�O __ ---t
pipe1in!r�l:t'�;' 2

Fig. 3. Request Generator for Output Port Module 0

ACK3
ACK2
ACK1
ACKo

Tail.Passed3
TailPassed2
TailPa8sedl

1:! TailPassedo

.£ �:��:�i:�=:i:��
� �:�::��:���:t��
�

) -
1-

REQO
REO

RE02

REQ3

1
2

DATAo
DATA
DATA
DATA 3

-JFf,]..
FF;t n-a
FF-;j.

IIIP rr"" L'EX

'U�� � _ . l �� Pi- F- � ,," C .• no� � � �

= 1'-""
1 �

1 �[f,
En 1

� En
rFr D

LS
Q

Ll D
L
2Q En

DL3:lD
En

Ql
L4

M�
U D Q
X Dli:�

Fig. 4. Output Port Module

�t1
fr�
g �

ACKotJT

REQotJT

DATAo

signals are two-phase. Whenever a request transition arrives
on Reqx, it causes a transition on Reqo.

There are two cases of operation. If this is the Re
quest Generator for the target <?utput port, the unit re
ceives RouteSelectedo asserted high. It then enters packet
processing mode, and asserts PacketPc:thEnabledo high.
The XOR2 is used as a programmable Inverter, where the
correct polarity of the Reqo output is selected by the XOR?
gate (i.e. phase converter logic). Eventually, wh�n the tall
flit arrives, the Output Port Module asserts �atlF!assedo
high, which resets the Request Generator to an In�ctlve state
while deasserting PacketPathEnabledo low. Finally, the
TailPassedo signal is deasserted low.

Alternatively, if this is not the Request Generator for th.e
target output port, i.e. RouteSelectedo is not asser�ed, the umt
is not activated and PacketPathEnabledo remaInS low. As
each flit arrives, the Reqx transition causes a Reqo transition,
which is ignored by the corresponding Outpu.t . Port �odule.
In fact, in this case, Reqo makes two transltlOns for each
flit: the XOR3 observes the flit acknowledgment from every
other Output Port Module (i.e. ACK1, ACK2 or ACK3),
thus always returning Reqo to its original value.
C. Output Port Module Architecture

. . . Output Port Modules arbitrate between multlple IncomIng
requests trying to access the �ssociated o�tpu� channel. The
microarchitecture of an OPM IS presented In Fig. 4.

Initially, all PacketfathEnabledi a!1? Ta.iIPa.ssedi sig
nals are low, and the wires of each transltlOn-slgnahng REG.!i
and ACKi pair have the same value�. Latches Ll . to L4
are opaque, blocking new requests unttl they are arbitrated.
Latch LS and the Data Register are normally transparent,

Grantl Granto Grant2 Grantl

Fig. 5. Microarchitecture of new 4-input arbiter
assuming no congestion, similar to a basic MOUSETRAP
pipeline register.

A new transfer begins when a header flit arrives
from one of the IPMs, concurrently with the associated
PacketPathEnabledi signal asserted high. The 4-way mutex
arbitrates requests from multiple IPM's trying to access to
the same output channel, granting access to exactly one of
them. Once the mutex is resolved, it performs two concurrent
actions: it (i) selects the correct data input of the mult�plexer,
and (ii) forwards the winning request to the output register by
making the corresponding latch (Ll to L4) transp�t.:nt. The
4-input XOR gate functions as a. merg� elemen�, JOining four
mutually-exclusive two-phase Signals Into a single request.
This latch and the multiplexer are progratmned once at th.e
start of a packet transmission, and remain unchanged until
after the tail flit arrives .

After the output channel request, REQout, makes a transi
tion, the data register and latch LS are made opaque. They b�
come transparent again when the acknowledge, ACKoUT, IS
received, indicating that the flit has been received downstream.
When data and request are safely stored (ReqEnable g.oes
low), the unit sends an acknowledge, ACKi, to. the. appropnate
IPM, completing the left handshakIng commUnlcatlOn. As each
subsequent body flit of the packet arrives, as long a.n ac�o�l
edgment ACKoUT has been received for the prevlOus fllt, ItS
data D AT Ai propagates directly through the �ultiplexer and
data register, and its request REQi propagates directly through
the corresponding latch (Ll to L4), to th� o�tput �hannel.

Packet transmission ends after the tatl fllt amves. When
the flit is sent on the output channel, the TailPass�di
signal (asserted high) is sent to the source IPM, along with
the transition-signaling acknowledge, AC Ki: Once asserted,
TailPassedi will also cause the correspondIng request latch
(Ll to L4) to become opaque. In turn, the correspond�ng
IPM will de assert PacketPathEnabledi, thereby releaSIng
the mutex, and the Tail Detector then deasserts TailPassedi.
D. 4-Input Mutex Design

The microarchitecture of the new 4-input mutex is presented
in Fig. S. While a previous widely-used 4-input mutex design
[16], [2 1] uses 6 two-input mutex elements and has a se�Lal
critical path through 3 mutex elements, the propost.:� solutlOn
uses 3 two-input mutex elements and has a cntlcal path
through only 1 mutex element. .

In this design, the left mutex element arbitrates between
requests 0 and 1, the right mutex element arbitrates be�ween
requests 2 and 3, and the center mutex element arbitrates
between requests from the right a�d lef� pairs . . C-elements
are used to synchronize the operatlOn of the middle mutex
with the side ones, both during the acquire and rel.ease phases.
Whenever a grant is given, any other request comIng from the
channel on the same side of the winning one will be killed. The
rationale is that, when the winning request will be deasserted,
the middle mutex has to be released, so no other requests
must be coming from th<? sam� side. This b�havior provides
fair arbitration between IncomIng requests: In fact, requests
from the other side will now have an advantage in acquiring
the middle mutex. In other words, the policy implemented is
a round robin between left and right side, and round robin
between requests within the same side.

Figure 5.2: Baseline OPM architecture

manage handshaking with crossbar and output channel, as well as reset of the internal components.

Initially, the mutex is reset, with all inputs and outputs at zero. L1-L4 are normally opaque,

blocking data requests until they win arbitration. L5 is a capture-pass latch, which is normally

transparent. The operation begins when a header flit arrives from one of the IPMs, concurrently

with the associated PacketPathEnable signal asserted high. The flit requests the mutex, wins the

arbitration, and then the corresponding channel (L1-L4) will be open. The header flit is then directly

put onto the output channel through the default-open output latch (L5). After the mutex is won, the

channel will be held open throughout the entire packet processing. The remaining channels cannot

win arbitration until the current packet is processed. Therefore, the body and tail flits of the current

packet are directly sent out without being arbitrated again. Finally, after the tail flit sent out, a

TailPass signal is sent back to the corresponding IPM, the IPM, in turn, deasserts PacketPathEnable,

resets the mutex and closes the channel. The OPM is then reset back to the initial state.

104

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

Figure 5.3: AEoLiAN overview: structure and operation

5.4 Overview of the Approach

The section introduces the basic strategy of AEoLiAN, and highlights the key features that are

distinct from a previous baseline asynchronous NoC [80] with no early arbitration capability.

A structural and operational overview of AEoLiAN is shown in Fig. 5.3. The new NoC consists

of two sub-networks: a lightweight and narrow monitoring network for fast forwarding the early

notification of incoming data, and the standard datapath network for normal packet processing.

Once a packet enters the network, its destination address in the header flit serves as the monitoring

information, and it is rapidly advanced along the expected routing path through the monitoring

network. Every router on the path performs early arbitration and channel pre-allocation based on

the receipt of this information. Typically, the data only waits for a very short period in each router

after it arrives, before the channel is completely allocated. In contrast, in the earlier NoC [80],

arbitration is not allowed to start until the actual data arrives at each router, resulting in a long data

wait time.

Lookahead routing is combined with the monitoring network, to further speed up its forward la-

tency. A non-classical approach is proposed, which has higher parallelism to improve performance.

There are two key distinctions. First, in a classical scheme [156], a packet must arrive at the cur-

rent node before it initiates computation of lookahead routing for the successor node, while in the

105

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

proposed approach the computation is initiated earlier – just after the advance monitoring arrives.

Second, the classical approach begins lookahead computation after switch allocation in the current

node, while the proposed approach begins the computation in parallel with early arbitration. As a

result, the above new protocol enhancements provide significantly accelerated performance.

In case of any contention, early arbitration is performed on a router-by-router basis. That is,

if the monitoring loses the early arbitration at a certain router node, it is not allowed to further

propagate, until it finally wins at the current router. The corresponding data packet also has to wait

until the monitoring wins the arbitration and allocates the channel. In both cases, the monitoring

proceeds as an arbitration ‘wave,’ by winning early arbitration at each router on the expected path. In

other words, the monitoring network decides the processing order for input data streams in advance,

and the actual data simply follows and replays the pre-determined order. This fine-grain ‘router-by-

router’ early arbitration mechanism enables a simple design, which eliminates the need for over-

provisioning the network as is required in some recent synchronous approaches, which use extra

VCs to support multi-hop single-cycle transmissions, or expensive hybrid multi-plane networks.

Instead, the fine granularity of asynchronous operation (a router node can forward monitoring in

little more than 200 ps), allows ‘sub-cycle’ pre-allocation decisions on a hop-by-hop basis, using

limited channel resources, based on ambient dynamic traffic.

Different handshaking protocols are used in the monitoring network vs. datapath. Data channels

retain a 2-phase NRZ handshaking protocol with single-rail bundled data encoding, as in [80], to

allow a high processing rate. On the other hand, the monitoring channels only operate on a slower

per-packet basis, and use a 4-phase RZ protocol, with the packet destination encoded using single-

rail bundled data. The use of the 4-phase protocol, with a clean ‘return-to-zero,’ simplifies the

monitoring control, without sacrificing performance of the entire NoC in most of cases.

5.5 Proposed Router Node Design

The new asynchronous 5-port router builds on the baseline design with no early arbitration capabil-

ity [80], including the integration of monitoring capability and an entirely new monitoring/data-path

control, along with new protocols for synchronization of the monitoring and datapath. The basic

structure and operation of the Input Port Module (IPM) and Output Port Module (OPM) are first

106

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

Ackout
Reqin

Datain

REQx

Data Ack Ctl

ackin[0-3]

Dataout0

Dataout2

Dataout3

Reqout0

Reqout1

Reqout2

Reqout3

ACKx

4

Data Req
Ctl1

Dataout1

Data Req
Ctl2

Data Req
Ctl3

6 Destination-out0
Monitor-reqout0

Monitor-reqout3

Monitor
Ack Ctl

Monitor-ackin0
Tail-passed0Route-sel0

Route-sel1

Route-sel2

Route-sel3

Monitor-ackout

6

4

Destination-in

Route-sel-in[0:3]

Datapath

Monitoring
Control

Destination-out1
Monitor-reqout1

Monitor-ackin1
Tail-passed1

Tail-passed2

Destination-out2

Tail-passed3

Monitor-reqout2

Monitor-ackin2

6

6

R
E
G

Monitor
 Req Ctl0

Monitor Req Ctl3
(to local OPM)

Monitor
 Req Ctl1

Monitor
 Req Ctl2

Data Req
Ctl0

en
D Q

ACKx

REQx

Ackout

Reqin

M
o

n
it

o
r

In
p

u
t

C
h

a
n

n
el

D
a

ta
 In

p
u

t
C

h
a

n
n

el

M
o

n
it

o
r

C
h

a
n

n
el

s
to

A

ss
o

ci
a

te
d

 O
P

M
s

D
a

ta
 C

h
a

n
n

el
s

to

A
ss

o
ci

a
te

d
 O

P
M

s

Figure 5.4: Proposed Input Port Module (IPM) architecture

introduced, in turn. Each contains a lightweight monitoring control and the datapath. Then the mon-

itoring network is presented separately, including a more integrated view of its control components

residing in the IPM and OPM. The section closes with timing analysis.

5.5.1 Input Port Module Architecture

An Input Port Module, shown in Fig. 5.4, routes the packet to the selected Output Port Module.

It has a single input channel from the upstream neighbor, and four output channels that connect

to 4 different Output Port Modules through a crossbar. Each channel is now augmented by a nar-

row monitoring sub-channel. Monitoring information typically arrives earlier than actual data, and

initiates both early arbitration and channel pre-allocation.

5.5.1.1 Structure

An Input Port Module is divided into two independent blocks – the monitoring control on top, and

the datapath at bottom.

107

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

The datapath consists of an input register, four Data Request Control units (one for each output

port), and a Data Ack acknowledgment generator for the input channel. The datapath allows a

packet to enter the IPM as soon as it arrives at the input channel, through the capture-pass input

register. The packet is then quickly broadcast to all OPMs, with corresponding requests sent out

by the four Data Request Controls. However, only the selected OPM will accept the data. All the

remaining requests will be cancelled.

The monitoring control is part of the entire monitoring network. It consists of four Monitoring

Req Controls on the right, each communicating with a different OPM, and a Monitoring Ack Control

on the left, for handshaking with the predecessor router. Both control units use 4-phase handshaking

protocols, and are initialized to the all-0 (i.e. reset) state. In more detail, the Monitoring Req Control

initiates early arbitration as soon as the advance notification arrives, which includes the destination

address and the lookahead information. It then asserts the appropriate monitoring req to one of the

OPMs, and also forwards the packet destination along with the request. Only one of the control

units is activated at a time. The unit serves two purposes: (i) a FIFO stage and flow control for the

monitoring network, to maintain the monitoring information until the successor router safely stores

it; and (ii) synchronization with datapath, to keep the monitoring request asserted throughout the

processing of the entire packet. The Monitoring Ack Control simply merges the four monitoring

reqouts and generates the acknowledgment to the predecessor, allowing a new monitoring token to

arrive.

5.5.1.2 Operation

The basic operation of the IPM is illustrated by a friendly scenario with a single packet and no

contention. Without loss of generality, this packet is assumed to be routed to OPM0. Initially, all

handshaking signals are zero for both monitoring and data channels. In particular, a 1-hot encoding

is used for the lookahead routing address, Route-sel-in; this DI code serves as a bundling signal for

the single-rail Destination-in address.

First, monitoring arrives on the input channel before the header flit, after a new packet is in-

jected into the network, with an asserted Route-sel-in[0] signal. The Monitor Req Ctl0 immediately

asserts Monitor-reqout0 high, and passes it, along with the destination address, to OPM0. Then an

acknowledgment is generated to the left. In friendly case, the entire 4-phase monitoring handshak-

108

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

ing completes quickly on the left channel. In parallel, on the right channel, OPM0 acknowledges

on Monitor-ackin0, indicating early arbitration and channel pre-allocation are completed, and mon-

itoring information has also been received by the downstream successor. Note that Monitor-reqout0

still remains high.

Next, the header flit of the actual packet arrives. The header is broadcast to all four OPMs,

similar to the approach in [80]. Since the designated channel is already pre-allocated in OPM0, the

header is immediately sent to the next router. Each body flit is processed the same as the header.

Eventually the tail flit arrives. After it is sent out, the OPM0 asserts Tail-Passed0 high, indicating

the entire packet has been processed. At this point, Monitor-reqout0 finally goes low, allowing the

release of the arbiter and output channel. Finally, Monitor-ackin0 and Tail-Passed0 are de-asserted

low almost simultaneously, thereby completing the entire operation.

In a contentious case, with two back-to-back incoming packets, the new monitoring token can

arrive before Monitor-reqout is de-asserted for the first packet. However, the second request is not

generated until the previous Monitor-reqout is de-asserted, even if it would request a different OPM,

to avoid malfunction in the router.

5.5.2 Output Port Module Architecture

An Output Port Module, shown in Fig. 5.5, arbitrates between multiple incoming data streams that

try to access the associated output channel. By symmetry, it has four input channels and one output

channel, with each channel containing a monitoring sub-channel. Upon receiving early monitoring

requests from the IPM, the OPM starts arbitration and channel allocation, well in advance.

5.5.2.1 Structure

The OPM also consists of a monitoring control and datapath, which synchronize with each other.

The structure of the datapath is similar to [80], as described in the Background section.

The new monitoring control contains three important components:

(i) The Packet Route Pre-Computation Unit computes the lookahead routing information for

the successor router node. The unit supports parallel computation for all the incoming monitoring

channels, and select one of them based on the results of early arbitration. The routing information

calculation is done in parallel with arbitration, and therefore its latency cost is entirely removed

109

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

en
D Q
L1 en

D Q
L2 en

D Q
L3 en

D Q
L4

FFa
rst4-Way Arbiter

FFb
rst

FFc
rst

FFd
rst

Tail Detector

m
u

te
x-

w
in

[0
-3

]

D
at

a
M

u
x

en
D Q
L5

en

D Q
Data
Reg

tailFlag

FF0

FF1

FF2

FF3

4 Datapath

Reqin0

Reqin1

Reqin2

Reqin3

Datain0
Datain1
Datain2
Datain3

Tail-passed0
Tail-passed1
Tail-passed2
Tail-passed3

Ackout0

Ackout1

Ackout2

Ackout3

Dataout

Reqout

Ackin

D
a

ta
 O

u
tp

u
t

C
h

a
n

n
el

D
a

ta
 C

h
a

n
n

el
s

fr
o

m
 A

ss
o

ci
a

te
d

 IP
M

s

Monitoring Control

Monitor
Ack Ctl

4
Monitor-ackout[0-3]

Monitor-reqin3
Destination-in3

Monitor-reqin2
Destination-in2

Monitor-reqin1
Destination-in1

Monitor-reqin0
Destination-in0

6

6

6

6
M

o
n

it
o

r
C

h
a

n
n

el
s

fr
o

m

A
ss

o
ci

a
te

d
 IP

M
s

4
Route-sel

4Monitor Output
Channel Ctl

Packet Route
Pre-Computation

Unit

6

Monitor-ackin

Route-sel-out

Destination-out

M
o

n
it

o
r

O
u

tp
u

t
C

h
a

n
n

el
Figure 5.5: Proposed Output Port Module (OPM) architecture

from the critical path. In the proposed design, a simple X-Y routing is used. However, other types

of routing algorithms can also be supported.

(ii) The Monitor Output Control quickly forwards the lookahead routing information from the

Packet Route Pre-Computation Unit to the monitoring output channel. It is also a decoupling unit,

enforcing monitoring flow control, which delays sending out a monitoring token until the monitor-

ing output channel completes its previous 4-phase communication with the successor router node,

Effectively, it allows the router to prepare the next monitoring input, in case the output channel

incurs a long communication delay.

(iii) The Monitor Ack Control is simply a de-mux to route a handshaking acknowledgment from

the downstream router back to the correct IPM.

110

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

5.5.2.2 Operation

A similar single-packet friendly case is illustrated for basic operation of the new OPM. The packet

is assumed to arrive from IPM0. First, monitoring arrives from IPM0, with an asserted bundling

request Monitor-reqin0, which is kept high throughout the processing of the packet. Two opera-

tions are initiated concurrently: early arbitration and lookahead routing computation. The mutex

resolution and the completion of pre-computation are synchronized: both must be completed before

the monitoring information is sent out through the Monitor Output Channel Control. At this point,

latch L1 is opened, i.e. the output channel is pre-allocated. In friendly case, the monitoring out-

put channel on the right responds quickly, and completes the entire 4-phase handshaking without

any other synchronization. When the actual packet arrives, the header flit is sent out as soon as L1

opens, through the capture-pass output data register. The channel remains allocated; each body flit

is processed exactly the same as the header flit. Finally, after the tail flit is placed onto the output

channel. Tail-Passed0 is asserted high. In turn, IPM0 de-asserts Monitor-Reqin0 low, and releases

the mutex. The entire operation completes with de-assertion of Tail-Passed0 and Monitor-ackout0.

In case of contention, two monitoring requests from different IPMs arrive almost simultane-

ously. Lookahead routing information will be computed in parallel for both. Based on the arbiter

result, the winner processes the packet following the same procedure as in single-packet case. The

losing channel, though it completes lookahead computation, does not send out this information. Its

data packet must also wait, as its channel is not allocated. Eventually, the first packet is processed

and releases the mutex. The losing channel then immediately continues its operation by winning

the arbitration, allocating the channel, and forwarding lookahead information.

5.6 Monitoring Network: System- and Switch-Level Protocols and

Design

In the previous Section 5.5, the structure and operation of monitoring controls were introduced

individually for each of the IPM and OPM. Here, the monitoring network is re-examined in a more

integrated way, from several different views: (i) at system level, the flow control of monitoring

tokens – how these tokens are generated, stalled and forwarded through the entire path; (ii) at switch

level, the interaction between the IPM and OPM monitoring controls; (iii) detailed implementation

111

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

of supporting monitoring components.

System-Level Operation

When a packet enters the network, a corresponding monitoring token is generated at the source

node, and injected into the monitoring network. The token contains the destination address of the

packet, and the lookahead routing information computed by each router on the path. Considering

a single source-destination path, the monitoring network is effectively a linear FIFO, with extra

synchronization with datapath. A monitoring token has to be kept until (i) the next FIFO stage

(i.e. the successor router) safely stores it, and (ii) the corresponding packet is entirely processed by

the current router. The monitoring FIFO can only store one token per router, only half capacity of

the datapath. However, because each packet only requires a single monitoring token, the capacity

of the monitoring network is sufficient in the case of multi-flit packets. By having fewer number

of pipeline stages, the monitoring network is optimized for area and latency, without sacrificing

performance.

Switch-Level Operation

The monitoring operation inside a single router is now considered. In particular, it involves the in-

teraction between IPMs and OPMs across the crossbar. The monitoring channel connecting an IPM

and an OPM effectively uses a modified 4-phase handshaking protocol. After the IPM sends out

a request, the OPM has to acknowledge three separate events: (i) early arbitration is resolved and

channel pre-allocation is done; (ii) the successor router has received and safely stored the monitor-

ing token; and (iii) the corresponding packet has been processed and the monitoring token becomes

stale. Event (i) and (ii) are acknowledged using a merged monitor-ack signal, while event (iii) is

indicated by Tail-passed. After both acknowledgments are received, which can be in either order,

the monitor-reqout is reset, followed by monitor-ack and Tail-passed de-asserted almost simultane-

ously. Then, a new monitoring token is allowed to be sent out, if one is pending.

Individual Control Units

Each sub-block within IPMs and OPMs is now presented to provide the final details for the moni-

toring implementations. The three key monitoring control units are: the Monitor Req Control, and

112

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

C
Tail-passed0

Monitor-reqout0

Monitor-ackin0

Route-sel-in0

-

ack-count

Comparators
1

1

Ack Counter
(mod2)

Req Counter
(mod2)

Input Counter
(mod2)

1

+

stale

req-countinput-count

Reg Destination-out0
Destination-in0

delivered

Monitor-reqout1

Monitor-reqout3
Monitor-reqout2

Toggle

Toggle

en

en

Toggle
en

6

Figure 5.6: IPM details: Monitor Req Control

Monitor-reqout0Toggle
en

1

Monitor-reqout1

Monitor-reqout2

Monitor-reqout3

Monitoring
Output Detector

Monitoring
Output Merge

Toggle
en

1

Toggle
en

1

Toggle
en

1

reqout-det0

Toggle
en

1

reqout-merge

2-to-4
phase

Converter

4

Monitor-ackout

Route-sel-in[0-3]

reqout-det1

reqout-det2

reqout-det3

reqin-det

Monitoring Input Detector

Figure 5.7: IPM details: Monitor Ack Control

113

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

C
Monitor-ackin

Route-sel-out0

Route-sel-in0

Comparator

en

1

Output Counter
(mod2)

en

Input Counter
(mod2)

1

+stale

req-countinput-count
Toggle Toggle

Figure 5.8: OPM details: Monitor Output Channel Control

the Monitor Ack Control in IPM; the Monitor Output Channel Control in OPM.

The Monitor Req Control, shown in Fig. 5.6,1 implements the handshaking protocol introduced

in the node-level operation above. The one-hot Route-sel-in is asserted high to indicate the arrival

of a new monitoring token. If the unit is quiescent, Monitor-reqout is immediately sent to the OPM.

After the OPM acks on both Monitor-ackin and Tail-passed, Monitor-reqout is reset. Then the

OPM de-asserts both Monitor-ackin and Tail-passed. At this point, Route-sel-in is re-sampled to

potentially start another operation. However, the unit can discriminate a stale Route-sel from a new

token, by recording the spacing between two valid Route-sel tokens.

The operation of the Monitor Ack Control is trivial, as shown in Fig. 5.7. First, a monitoring

token arrives by asserting Route-sel-in. When one of the monitoring reqouts goes high, indicating

the monitoring token is safely stored, the control generates the monitoring ack to the predecessor.

Then, the predecessor de-asserts Route-sel-in. Without any other synchronization, Monitor-ackout

is reset to complete the entire 4-phase RZ handshaking protocol. The operation repeats for the next

monitoring token.

The Monitor Output Channel Control in the OPM has four identical sub-blocks, one for each

Route-sel wire. Each block, as shown in Fig. 5.8, is entirely a sub-design of Monitor Req Control.

Similarly, when the unit is quiescent, Route-sel quickly propagates from input to output. However,

the next Route-Sel cannot be generated until (i) a new token arrives, and (ii) the right monitoring

channel completes the entire 4-phase handshaking protocol. Effectively the control can also be

1A generalized C-element asserts its output high when both the neutral input and the ’+’ input go high; it

de-asserts its output low when both the neutral input and the ’-’ input go low.

114

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

Route-sel-in0

Monitor-reqout0

Monitor-ackin0

Tail-passed0

Destination-in0

Destination-out0

Destination-in

Destination-out

Route-sel-in[0]

Monitor-reqout0

Monitor-ackout

Route-sel-in0

Route-sel-out0

Monitor-ackin

(b)

(c)(a)

Figure 5.9: Timing digrams for single-packet processing:

(a) Monitor Req Ctl; (b) Monitor Ack Ctl; (c) Monitor Output Channel Ctl

treated as a decoupling unit, allowing the router to prepare a new monitoring token while the output

channel incurs a long reset phase in the 4-phase communication.

The corresponding timing diagram for a friendly single-packet processing scenario is shown in

Fig. 5.9, for each control unit presented above.

5.7 Local Input and Output Port Modules

While the previous subsections focused on a typical IPM and OPM, in a 5-port router, only four of

the five IPMs/OPMs are typical, and the remaining one IPM/OPM needs to communicate with the

network interface – namely the local IPM/OPM. The local IPM generates the monitoring informa-

tion for each packet entering the network, and serves as the starting point of its entire monitoring

path. The local OPM terminates the monitoring from further propagation, as there is no successor

router. The designs of the local IPM and OPM are straightforward extensions of the typical ones,

which provide the capability of initiating and terminating the monitoring signals.

5.8 Deadlock Analysis

The proposed network has no deadlock. In fact, it is deadlock non-increasing, compared to the

baseline network. Because the baseline uses a dimensional-order routing, which conforms the turn

115

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

model and guarantees no deadlock, the proposed network, using the same routing algorithm, also

has no deadlock. A short explanation is given below. A formal proof is beyond the scope of the

thesis.

A monitoring token is always accompanied by an actual packet. The corresponding monitoring

token of a packet is only generated after that packet is injected into the network. The monitoring

serves as an early header, which operates just as the header flit in the original network. It requests

and wins the arbitration and opens the channel, router by router in serial order. On the other hand,

the proceeding of the monitoring is restricted. A monitoring token cannot be forwarded to the next

router until the successor router has sent out the tail flit of the previous packet, and is fully ready to

accept new data.

Therefore, if the monitoring token wins the arbitration and allocates the channel at a certain

router, even though the monitoring signal is far ahead of the actual packet by any number of hops,

it clears the entire path for the actual packet to this point. There is no impedance for the packet

to proceed from the source to the current router. That is, within a finate amount of time after the

monitoring, the actual packet is guaranteed to arrive. This property guarantees the deadlock freedom

of the new network.

5.9 Timing Analysis

The new added monitoring network is carefully designed to contain only a few one-sided timing

constraints, shown below, where both racing paths involve a global channel or intra-node crossbar

communication. The remaining constraints involve a fast local path vs. a slower global channel or

crossbar communication, and can be simply satisfied.

The rest of the timing constraints in the datapath must still be satisfied (e.g. the bundling timing

constraints in the datapath, and several timing constraints related to the Mousetrap-style latch con-

trols); several of these constraints are discussed in [80], for parts of the datapath that are invariant

between the baseline and new designs. Note that single-rail bundled data asynchronous NoC’s have

been demonstrated as robust and correctly implemented, including at post-layout levels, in several

recent designs [80, 97].

Input Bundling. A standard bundling timing constraint has to be satisfied for the monitoring

input channel of each IPM. Typically, Packet Destination has to be stabilized before the arrival of

116

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

Route-sel, in order for the Monitor Req Ctl to safely store the destination information. However,

the network can even tolerate a reversed skew, where Route-sel arrives slightly earlier than Packet

Destination. This reversed bundling margin can be up to the delay of an AND2 and generalized

C-element in series.

Output Bundling. A similar bundling timing constraint has to be satisfied on the monitoring

output channel of each OPM. However, this constraint is easily satisfied, since the bundling request

Route-sel has a longer path in the OPM through the Monitor Channel Output Ctl, while the desti-

nation information is directly sent out by the Pre-Computation Unit. Typically, Packet Destination

is sent out earlier than Route-sel by a margin of an AND2 gate plus an aC delay.

Data Request Reset. Another timing constraint must be enforced in the crossbar between IPM

and OPM. The scenario occurs after a complete packet has been processed, i.e. the tail flit is sent

out by an OPM. The source IPM of the tail flit must quickly cancel the three incorrect data request

toggles sent to the remaining OPMs, before one of these OPMs opens its channel due to a new

channel pre-allocation. This constraint is simply satisfied, since a channel pre-allocation involves

an arbiter operation, which is typically slow. The margin of the timing constraint is the 4-way arbiter

latency plus an extra logic gate delay. As always with one-sided constraints, additional delays can

be padded to increase this margin.

5.10 Experimental Results

Detailed evaluations are now presented for the new asynchronous early arbitration network, AEo-

LiAN, using technology-mapped pre-layout implementations. The new network is first simulated in

an 8×8 2D-mesh on 6 synthetic benchmarks and compared to our previous baseline low-overhead

asynchronous network without early arbitration capability [80], including area, latency and throu-

ghput. Then, a small number of additional experiments are performed to show the effectiveness of

our approach under different network conditions, by changing packet size, network dimension and

link length.

5.10.1 Experimental Setup

The baseline and new networks are implemented with a 64-bit wide datapath. A single router is first

mapped using the FreePDK 45nm Namgate standard cells in Cadence Virtuoso environment. An

117

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

Table 5.1: Area comparison for pre-layout router nodes (µm2)

Baseline New Synchronous (projected)

5081.4 8272.9 17369.5

accurate gate model is then extracted using Spectre simulation (at 1.0V, 27◦C) to determine distinct

latencies for rise and fall transitions, for every pair of I/O paths of each gate.

We developed an asynchronous NoC simulator for network evaluations, based on a Program-

ming Language Interface (PLI) framework. Networks are modeled in structural Verilog with stan-

dard cells, using the gate models obtained above, while the test environment is written in C. Flits

within a packet are placed into the source input queue simultaneously, and the mean time between

packet headers follows an exponential distribution. We follow the standard procedure to ensure a

long enough warm-up and measurement time [46].

Experiments are largely performed using an 8×8 2D-mesh topology with a fixed packet size of

5 flits. The link length and link delay between two neighbor routers are assumed to be 1mm and 100

ps, respectively, following the floorplan of a 45nm Freescale PowerPC e200z7 core as used in [119].

These parameters are changed later to run a small number of additional experiments.

Benchmarks

Experiments are conducted using six synthetic benchmarks, to cover a wide range of different net-

work traffic conditions. Three permutation traffic patterns use different one-to-one mappings for

source-destination pairs [46]: 1) Bit complement, 2) Bit rotation, and 3) Transpose. Three addi-

tional benchmarks provide non-deterministic traffic to multiple destinations: 4) Uniform random,

in which each source is equally likely to send a packet to every destination; 5) Hotspot10, in which

each of the middle four routers receives approximately 10% of the packets from all the other nodes,

while the remaining traffic is equally distributed to other destinations; and 6) Multiple-to-all, in

which the middle four routers can be the only sources and send packets to all the other routers with

equal probability.

118

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

5
1

1
6

3
1

7
8

4
2

8
7

2
7

9
6 3

7
3

5

3
5

8
6

3
1

7
5

2
0

8
2 2
7

0
7

1
8

3
2 2
3

9
7

2
2

9
6

0

1000

2000

3000

4000

5000

6000

Bit
Complement

Bit Rotation Transpose Multiple to all Uniform
Random

Hotspot10

A
ve

ra
ge

 L
at

en
cy

 (
p

s)

Benchmarks

Baseline New

% Improvement

37.9 34.4 36.8 34.4 35.8 35.9

Figure 5.10: Latency comparison for 25% network load

5.10.2 Evaluation

Area Comparison

Table 5.1 compares router area for three designs – new and baseline asynchronous routers [80],

as well as a state-of-the-art synchronous switch, xpipeLite [211]. For asynchronous routers, we

divide the raw cell areas by a packing factor of 0.8 to obtain the final layout areas. The result of the

synchronous switch is simply scaled, according to [80]. The new router has 63% more area than

the baseline, but the absolute overhead is modest, since both routers only have basic functionality

without including any input buffers or VCs; such overhead would be amortized with these extra

features. On the other hand, the new design only costs less than half area than the synchronous

counterpart, demonstrating its lightweight feature.

In terms of monitoring channel width, the overhead is only 11 extra bits, to support a 2D-mesh

topology with 8×8 dimension. Interestingly, the width increases only logarithmically with network

dimension. It also increases only linearly with router radix. Hence, the monitoring channel appears

quite viable, in terms of overhead, for many applications.

Latency

Fig. 5.10 presents the network latency comparison at a particular input traffic rate, for the new

network vs. the baseline [80]. We chose 25% because it is high enough to show the characteristics

119

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

1000

3000

5000

7000

9000

11000

13000

15000

0 0.2 0.4 0.6

A
ve

ra
ge

 L
at

en
cy

 (
p

s)

Data rate per active input (GF/s)

 Bit rotation (baseline)

 Bit rotation (new)

 Uniform random (baseline)

 Uniform random (new)

Figure 5.11: Latency for ’Bit rotation’ and ’Uniform random’

of different benchmarks while retaining a network that is largely uncongested. Latency is calculated

for the header flit. Overall, considerable latency improvements are obtained across all benchmarks,

ranging from 34.4% to 37.9%. Even though the absolute latency values are quite different for the

benchmarks, the improvements are quite stable, showing the effectiveness of the new network across

a range of network conditions and traffic patterns.

Two benchmarks, Bit rotation and Uniform random, shown in Fig. 5.11, are picked for more

detailed simulation, to highlight network latency under a complete spectrum of offered data input

rates. The two benchmarks are selected as they have quite different characteristics. Bit rotation has

a deterministic traffic flow between each distinct source-destination pair, while Uniform random is

based on evenly-distributed communication throughout the network. For each benchmark, before

saturation, the gap between two corresponding curves, baseline vs. the new, remains almost un-

changed. The trend strongly indicates that the new network provides very good improvement for all

data input rates, as long as the network is not saturated.

Throughput

Interestingly, while our main focus is on latency acceleration, noticeable throughput improvements

are also obtained by the new network for most of the benchmarks. Fig. 5.12 provides a clean vision

120

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

0
.2

8

0
.6

9

0
.5

3

1
.6

8

0
.5

4

0
.3

0

0
.3

3

0
.8

7

0
.6

3

2
.0

3

0
.6

1

0
.3

1

0

0.5

1

1.5

2

2.5

Bit
complement

Bit rotation Transpose Multiple-to-all Uniform
random

Hotspot10Sa
tu

ra
ti

o
n

 T
h

ro
u

gh
p

u
t

(G
F/

s)

Benchmarks

Baseline New

% Improvement

16.1 27.1 17.3 20.7 14.7 3.6

Figure 5.12: Saturation throughput comparison

of the differences in saturation throughput values for the two networks. This metric identifies the

input rate beyond which no further improvement in network throughput can be obtained. Overall,

in five of the six benchmarks, the new network exhibits consistent moderate to high improvements,

ranging from 14.7 to 27.1%. For the remaining benchmark, Hotspot10, the new network shows only

negligible gain.

The improvement in saturation throughput is closely correlated to the level of contention in

network traffic. The more contention, the less improvement. These differences are due to the

distinct operating scenarios of the network, as contention varies. In non-contentious traffic with

high injection rates, the monitoring network in the new design shrinks the gap between two back-

to-back packets, having the same IPM-to-OPM path. The lookahead information contained in the

monitoring allows the second packet to be prepared in advance, hence it can go through faster.

In contentious traffic, multiple packets from distinct input channels compete for the same output

channel. In this case, even with the baseline network, due to high traffic, route computation for

a waiting packet is entirely completed before the winning packet has released the channel, hence

there is no significant acceleration due to early arbitration. In this case, baseline and new networks

have similar operation. Hotspot-10 is an extreme example.

Detailed throughput results for two benchmarks are shown in Fig. 5.13. The output rate is

normalized to the number of active input sources, and the mean offered data rate is varied from

zero-load to saturation.

121

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

0

0.2

0.4

0.6

0.8

1

0 1 2 3

N
o

rm
al

iz
ed

 o
u

tp
u

t
d

at
a

ra
te

 (
G

F/
s)

Data rate per active input (GF/s)

 Bit rotation (baseline)

 Bit rotation (new)

 Uniform random (baseline)

 Uniform random (new)

Figure 5.13: Throughput for ’Bit rotation’ and ’Uniform random’

Comparison to Ideal Networks

Table 5.2 compares the baseline and new networks with two ideal networks, in terms of zero-load

latency for the longest path in 8×8 2D-mesh network, through 15 routers and 14 hops. The goal is to

estimate how close to ideal operation the actual network provides. The first ideal network assumes

a fully-anticipatory monitoring network, in which channel pre-allocation can be entirely completed

before actual data arrival. The second ideal network assumes a dedicated network where each

source-sink pair is connected by an ideal point-to-point link, with no intermediate routers. The new

network clearly shows a predictable large improvement over the baseline. However surprisingly,

the new design also closely approaches the first ideal network within a small margin: only 488 ps.

This indicates the channel is almost allocated before actual data arrives, with only a sub-ideal 35 ps

late arrival time. For the comparison with the second ideal point, the dedicated network operates

at 1400 ps while the new network is significantly slower. This outcome is understandable, as the

second network assumes extremely unrealistic network resources with no routers on a 14-hop path.

Overall, the absolute value of the new zero-load latency is extremely low: only 3476 ps ignoring

link delays, and hence a 232 ps latency for each router.

Additional Experiments

Finally, a small number of additional experiments are performed, to gain insight into the new ap-

122

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

Table 5.2: Zero-load latencies for the longest path in 8×8 mesh (ps)

Baseline New
Ideal network #1

(fully pre-allocated)

Ideal network #2

(dedicated network)

8087 4876 4388 1400

proach under varied parameters. Results are obtained using only the Uniform random benchmark.

The experiments include: (i) varying link length: 2mm (200 ps) and 4mm (400 ps); (ii) varying

packet size: single-flit and 8-flit packets; and (iii) varying network dimension: using a reduced

4×4 2D-mesh network. The parameters are changed one at a time, while keeping the remaining

parameters as original.

Latency. In experiment (i), when the link length uniformly increases from 1mm to 2mm and

4mm, latency improvements only decrease moderately (36%→28%→22%), as expected, as the

optimizable portion of the path (i.e. the nodes) contributes a smaller proportion of the delay. In

experiment (ii), when varying packet size, the improvement is 36% and 34% for single-flit and 8-flit

packets, respectively (compared to 36% for the earlier 5-flit packets), showing almost no impact.

Finally, a latency improvement of 31% is observed in experiment (iii) of 4×4 2D-mesh, which is

only slightly degraded over the 8×8 2D-mesh.

Saturation Throughput. Saturation throughput has mixed trends. In experiment (i), when using

longer link lengths (2mm and 4mm) for both the new and baseline NoC’s, the improvement is only

4-5% over baseline in each case, while the original network (1mm length) exhibits a 15% improve-

ment. In both examples, the system bottleneck becomes the round-trip communication between

neighbor routers on the longer links, therefore the router optimization has a diminished role. In ex-

periment (ii), there was significant performance degradation for the single-flit packets, 33%, while

the 8-flit packets retained the observed improvements. The former degradation indicates that the

monitoring protocol becomes a bottleneck for single-flit traffic: single-flit packets arrive back-to-

back, and the overhead of the four-phase monitoring protocol affects the processing rate. We believe

that the protocol overhead, for this one special case, can be largely overcome by circuit-level moni-

toring link acceleration and protocol enhancement. In experiment (iii), resulting improvements are

almost identical between the 4×4 and 8×x8 2D-meshes.

123

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

Impact of Path Length on Proposed Approach. Concerns may be raised that our approach may

not perform well for shorter path length or smaller networks, as monitoring might require several

hops to get ahead of actual data. In practice, this is not the case. First of all, the above 4×4 2D-mesh

experiment indicates a 31% latency improvement over baseline, vs. 36% for an 8×8 2D-mesh. On

the other hand, the 3 permutation benchmarks picked for 8×8 network show highly-diverse average

hop-count (4/6/8), but near-stable latency gains. Effectively, in our early arbitration protocol, after

the first hop, a stable gap between monitoring and data is observed through the entire path, hence

all remaining nodes are accelerated. As a result, stable latency improvements are obtained under

widely varying network diameters.

Discussion

Unlike the monitoring protocol used in Chapter 4, a fine-grain and tightly-synchronized protocol is

selected for the 2D-mesh topology. Early arbitration is performed on a router-by-router basis. That

is, if the monitoring loses the early arbitration at a certain router node, it is not allowed to further

propagate, until it finally wins at the current router. The corresponding data packet also has to wait

until the monitoring wins the arbitration and allocates the channel.

Despite a conservative protocol, the network still shows dominating results over the baseline

approach, which is attributed to two factors. First, a non-classical lookahead approach is used.

Lookahead routing computation is initiated by the early monitoring information, instead of the ac-

tual data, and completed in parallel with early arbitration. Second, at the low-level implementation,

the monitoring network bypasses both the input capture-pass register in the IPM and the output

capture-pass register in the OPM, which considerably improves latency.

The net result of the combination of the above two factors is a well-structured design with a

carefully-selected synchronized monitoring protocol, which considerably lifts the latency perfor-

mance, while moderately improving the network throughput.

5.11 Conclusions and Future Work

This chapter introduces a new asynchronous NoC, AEoLiAN, to latency acceleration for a 2D-mesh

topology. The method includes a lightweight monitoring network, with a modest increase in width:

only 11 bits per channel. Uniform system latency results over 6 diverse benchmarks were obtained,

124

CHAPTER 5. A LOW-LATENCY ASYNCHRONOUS NOC FOR A 2D-MESH TOPOLOGY

ranging from 34.4-37.9%, for moderate traffic, as well as substantial throughput benefits. As future

work, we aim to migrate this approach to support VCs, and also to add mixed-timing interfaces

to build a complete GALS system. Simulations will be performed on real benchmarks for more

accurate results, while synchronization overhead is taken into account.

125

CHAPTER 6. AN INDUSTRIAL HIGH-PERFORMANCE AND LOW-POWER ASYNCHRONOUS
NOC ROUTER

Chapter 6

An Industrial High-Performance and

Low-Power Asynchronous NoC Router

6.1 Introduction

In the previous two chapters, a new asynchronous monitoring technique was proposed and applied

to two different network topologies. The corresponding shadow monitoring networks notify the

relevant routers early and let routers prepare for the incoming traffic in advance, and dynamically

adjusting to network traffic conditions, at very low cost. The use of a monitoring approach results

in considerable end-to-end latency improvements, as well as benefits to throughput.

However, the above two networks are only implemented at pre-layout (but post-mapped) levels,

with buffers and virtual channel (VC) implementation largely ignored. In this chapter, a realistic in-

dustrial instantiation of a high-performance and low-power asynchronous router is presented, using

a leading cutting-edge technology and a semi-automated design flow [104]. The work was in col-

laboration with, and completed during my internship at, AMD Research. This work also highlights

the recent interest in industry in developing asynchronous NoC’s, and in their potential as a viable

solution for future large-scale digital systems.

The key contributions of the research are the following: (i) A basic 5-port asynchronous router is

designed and implemented using an advanced industrial technology – a 14nm FinFET library. (ii) A

novel end-to-end credit-based virtual channel (VC) flow control is proposed, which has fewer back-

ward credit synchronizations to the upstream router, and is expected to outperform previous designs.

126

CHAPTER 6. AN INDUSTRIAL HIGH-PERFORMANCE AND LOW-POWER ASYNCHRONOUS
NOC ROUTER

(iii) We provide the first published comparison for a high-performance asynchronous NoC router

vs. an industrial synchronous NoC baseline router using such an advanced technology library. Un-

like other baselines for research purposes, the synchronous design is used in recent high-end AMD

processors and graphic products, to handle system-level configuration and power/performance mon-

itoring and control. The comparison results are thus more persuasive and closer to reality. (iv) Fi-

nally, several industrial tools are used in the design process, for place-and-route (P&R) and design

validation. These tools are modified from a standard synchronous design flow and thus open real

future opportunities for industrial asynchronous NoC designs.

Besides the new VC technique, the asynchronous router also integrates low-latency input buffers

using a circular FIFO design. Since buffers and VCs are commonly used in most of industrial NoC’s,

these router-level optimizations are important, and also orthogonal to network-level acceleration

methods we proposed in Chapters 4 and 5.

The chapter is organized as the following. Section 6.2 presents the overall structure of the

proposed asynchronous router, and the designs for high-performance buffers and VC controls. Sec-

tion 6.3 introduces the complete design flow and the industrial tools been used. Section 6.4 shows

the results for the proposed asynchronous router and compare them to the AMD commerical syn-

chronous counterpart. Section 6.5 concludes the chapter. Due to confidentiality reasons, low-level

design details are not shown, while all the results are presented in relative numbers only.

6.2 Proposed Asynchronous Router Design

6.2.1 Overall Router Structure

The router is designed for a 2D-mesh with a double-plane NoC, the same structure as the syn-

chronous network to which we compare. Each router node in a double-plane structure contains two

uncorrelated and identical sub-routers, as shown in Fig. 6.1. The request plane routes read and write

request packets and the response plane delivers read and write responses. When a request arrives at

the destination, a response packet is generated and sent back to the source node.

Each sub-router inherits a replicated-switch credit-based VC architecture [149]. As shown in

Fig. 6.1, switches are replicated as many times as the number of VCs, e.g., Switches 0/1. VCs

separate different traffic classes inside the router, which are mixed only on inter-router links. This

127

CHAPTER 6. AN INDUSTRIAL HIGH-PERFORMANCE AND LOW-POWER ASYNCHRONOUS
NOC ROUTER

Switch 0

Switch 1

W
e
st

 I
n

te
r
fa

c
e

E
a
st

 I
n

te
r
fa

c
e

North Interface

South Interface

L
oc

al
 I
nte

rf
ac

e

Request Plane

West Channel

Router for

Request Plane

Request Plane

South Channel
Response Plane

South Channel

Request Plane

East Channel

Response Plane

East Channel

Request Plane

North Channel

Response Plane

North ChannelLocal

Terminal

Response Plane

West Channel

Router for

Response Plane

Fig. 1. Node structure for proposed asynchronous double-plane router

An Asynchronous NoC Router in a 14nm FinFET Library:
Comparison to an Industrial Synchronous Counterpart

Weiwei Jiang*, Davide Bertozzi†, Gabriele Miorandi†, Steven M. Nowick*, Wayne Burleson‡ and Greg Sadowski‡

 *Columbia University, New York, NY, USA {wjiang, nowick}@cs.columbia.edu

 †University of Ferrara, Ferrara, Italy {davide.bertozzi, gabriele.miorandi}@unife.it

 ‡Advanced Micro Devices, Inc., Boxborough, MA, USA {wayne.burleson, greg.sadowski}@amd.com

Abstract—An asynchronous high-performance low-power 5-

port network-on-chip (NoC) router is introduced. The proposed

router integrates low-latency input buffers using a circular FIFO

design, and a novel end-to-end credit-based virtual channel (VC)

flow control for a replicated switch architecture. This asynch-

ronous router is then compared to an AMD synchronous router,

in a realistic advanced 14nm FinFET library. This is the first

such comparison, to the best of our knowledge, using a real

synchronous router baseline already fabricated in several

commercial products. Initial post-synthesis pre-layout

experiments show dominating results for the asynchronous

router, when compared to the synchronous router. In particular,

55% less area and 28% latency improvement are observed for

the asynchronous implementation. Also, 88% and 58% savings in

idle and active power, respectively, are obtained.

I. INTRODUCTION
Over the last decade, networks-on-chip have become a

standard approach for on-chip communication. These networks
typically use packet switching in a structured architecture, and
inherently separate the computational elements from the
communication infrastructure [3]. Recently, there has been
increasing interest in building asynchronous NoCs, since they
eliminate global clock management across a large network, and
are therefore a natural match for NoC approaches [1][3][6].

Several recent commercial asynchronous and globally-
asynchronous locally-synchronous (GALS) NoCs have been
proposed: Intel’s FM5000/6000 series Ethernet switch chips
[6]; IBM’s TrueNorth neuromorphic chip, modeling 1M
neurons and 256M synapses with 4096 neurosynaptic cores
[4]; STMicroelectronics’ STHORM processor, an accelerator-
based many-core GALS system [3]. These industrial examples
exhibit flexible integration of heterogeneous components, as
well as significant power and area benefits.

This paper provides the first comparison for an asynch-
ronous router vs. an industrial synchronous baseline using an
advanced technology library. While the library is state-of-art,
the routers use simple structures and avoid advanced
optimizations (lookahead/speculation), yet still achieve fairly
high performance. Unlike other baselines for research
purposes, the synchronous design is used in recent high-end
AMD processors and graphic products, to handle system-level
configuration and power/performance monitoring and control.
The results are thus more persuasive and closer to reality. In
addition, industrial tools are used for place-and-route (P&R)
and design validation. These tools are modified from a
standard synchronous design flow and therefore open real
future opportunities for industrial asynchronous NoC designs.
Also, the new asynchronous router contains a novel end-to-end
credit-based VC control with potentially higher throughput.

II. BACKGROUND AND OVERVIEW OF THE APPROACH

The section reviews our foundational 5-port VC-less

asynchronous router [1] on which we build. It also reviews our
previous state-of-the-art credit-based VC control [5], and
outlines our new optimized VC strategy.

Our original router [1] explores a unique design point for
asynchronous NoCs, using two-phase handshaking and
bundled data encoding. This direction has recently shown
promise by other groups: Imai and Yoneda [6] adopt this
protocol, but limit its use to intra-switch, while using an inter-
switch channel encoding with higher cost; the VC-less BAT-
Hermes [2] includes realistic input buffers, but has expensive
packet control and crossbar transmission. A two-phase protocol
[6] is used for our proposed router, both intra- and inter-switch,
which has only a single round-trip channel communication per
transmission. Single-rail bundled data encoding [6] provides
coding efficiency nearly identical to a synchronous design. In
the new design, 5 Input Port Modules (IPMs) are connected
through a crossbar to 5 Output Port Modules (OPMs). An IPM
computes routing and propagates it to the designated OPM,
while broadcasting it to all OPMs. An OPM identifies a valid
request, and resolves arbitration between competing requests.

The new router also inherits a replicated-switch credit-
based VC architecture [5]. As shown in Fig. 1, switches are
replicated as many times as the number of VCs, e.g., Switches
0/1. (It also uses a double-plane structure; see Sec. III below.)
VCs separate different traffic classes inside the router, which
are mixed only on inter-router links. This structure outperforms
a crossbar-sharing approach for asynchronous routers [5],
although the latter is a typical approach for synchronous.

A new credit-based VC control is proposed. In [5], the
credit count is decreased when a flit is sent out and is increased
when the successor releases an input buffer slot. These two
operations are mutually exclusive, and treated symmetrically at
the same priority. A credit-increment operation can thus
potentially block credit-decrement, and delay sending out a flit
[5]. In contrast, the new approach only updates the credit when
a flit is sent out. Credit-increment requests are queued and are
only updated along with the next credit-decrement request.
This ‘lazy-update’ scheme prevents unnecessary credit-
increment updates and potentially increases the throughput.

III. PROPOSED ASYNCHRONOUS ROUTER DESIGN
The router is designed for a 2D mesh with a double-plane

NoC, the same structure as the synchronous network, which
This work was partially supported by NSF Grant CCF-1527796, and by

the Italian Government through a ‘Fondo Giovani’ fellowship.

Figure 6.1: Node structure for proposed asynchronous double-plane router

structure outperforms a crossbar-sharing approach for asynchronous routers [149], although the

latter is a typical approach for synchronous.

In each sub-router (ignoring the added VCs and buffers), the switch design is identical to our

baseline in Chapter 5 [80]. When a packet arrives, it is first demuxed and routed to a certain switch,

depending on its statically assigned VC, and then traverses the switch through arbitration, and finally

merges with traffic of the other VC on the output channel.

6.2.2 Input Buffer

FIFOs are commonly used to provide additional storage capacity, in order to improve system-level

performance. Input buffers are commonly used for NoC routers. Multiple registers can be placed

one after the other to build a serial FIFO, but this introduces a severe latency penalty. Therefore, an

efficient transition-signaling circular FIFO is used with constant low access time, which can provide

128

CHAPTER 6. AN INDUSTRIAL HIGH-PERFORMANCE AND LOW-POWER ASYNCHRONOUS
NOC ROUTER

DATA,. 1-__ ---+-... DATAo.n

Fig. 6. Circular FIFO: top-level view

E. Transition-Signaling Circular FIFO
FIFOs can be useful to provide additional storage capacity,

so to improve system-level performance. Multiple MOUSE
TRAP registers can be placed one after the other, so to build
a serial FIFO, but this introduces severe latency penalty. To
overcome this issue, a new circular FIFO is here proposed.
Unlike [22], which uses a bus-based interface, the proposed
design can provide much lower latency and cycle time.

The microarchitecture of the transition-signaling circular
FIFO is shown in Fig. 6. The FIFO uses a two-phase protocol
with single-rail bundled data. Write and Read Pointers are 1-
hot level signals, selecting the active Write or Read Control
Blocks. A new transfer begins when new Data arrives, stabi
lizes and is then followed by ReqI N signal assertion (high in
the case under analysis). A new data can be stored in a buffer
slot only if: (a) the write pointer selects that slot, and (b) that
slot is empty (Fulli is at the same logic level of EmptYi)' This
condition is detected in the Write Control Block by an AND
gate merging the two conditions, as can be seen in Fig. 7(a).
The 2-input XOR in the Write Control block implements a
phase conversion, to provide the correct polarity of the Request
signal at the input of the Request Latch, similar to the strategy
used in the PacketRouteSelector in the Input Port Module.
The new request causes the active Write Control block to assert
Fullo, close the corresponding register to store the coming
Data (by deasserting Eno), and assert the acknowledge to the
input. This acknowledge will be merged by the N-input XOR
to generate the AckoUT signal upstream. Finally, when ReqIN
and AckoUT are at the same logical value, the Write Counter
selects the following buffer position for the next operation.
This concludes data storage.

When Fullo and Emptyo are at different logic levels, it
means that new data is available in the corresponding buffer
position. If this is the case and the read pointer selects that
position, the Read Control Block (see Fig. 7(b» will assert
a Request, which will be merged with all the other signals
outgoing from the other Read Blocks to generate the output
Request ReqOUT, together with data from the selected posi
tion. After this event (now ReqOUT and AckIN are at different
logic values), the ReadPointero is immediately deasserted, to
safely freeze the current value of the output request. In more
detail, request latches inside the Read Control Blocks are now
closed, while the active Read Control Block makes its internal
acknowledge latch transparent, to route the incoming signal to
the correct buffer position. Next, an acknowledge signal comes
from the downstream environment, causing Emptyo to make
a transition and ReadPointerl to be asserted high, thereby
concluding data transmission.

This FIFO is an important element, not yet exploited in
this paper, but necessary when considering complete NoC
topologies where larger queues might be required.

F Timing Constraints
To work properly, the proposed architecture requires some

one-sided timing constraints to be enforced.

Writepointeri

AckOUT ReaciPointeri

Fu11i+l

ReqIN

to register I s control por

(a) Write Control Block (b) Read Control Block
Fig. 7. Schematic of Write and Read Control Blocks

One is the matching delay inside the PacketRouteSelector
block, in order to provide glitch-free operation.

A second constraint is in the Output Port Module: data
must be stable long enough before latches are closed inside
the output register, i.e. to meet the latches' setup time. This
constraint applies to both head flit path setup and body flit
propagation, and requires constraining the control path (latches
Ll-4 and XOR gates) over the multiplexer delay.

Finally, a subtle failure condition can occur during mutex
release after a tail flit has passed. The first path starts in the
Output Port Module, when acknowledge is generated. This
path goes to the Input Port Module, through the acknowledge
merge block, through the input register control gate, making
the register transparent and allowing a request eventually
pushing at its input to enter the module, to propagate through
the RequestControl Block, and to reach the Output Port
Module. The AND gates above latches Ll-4 ensures that once
TailPassed signal is asserted, these are closed when the new
request comes, reducing the otherwise longer path through
PacketPathEnabled deassertion and mutex release.

Other relative timing constraints exist inside the 4-input
mutex, the Request Control Block and the circular FIFO, but
they are typically satisfied in normal operation of the switch.

IV. SE MI -AuTO MATED DESIGN FLOW
All the previously mentioned constraints, plus other delay

requirements needed to increase performance, have been en
forced across all the steps from logical synthesis to layout de
sign by means of mainstream CAD tools in a semi-automated
design methodology. We use a Low-Power Standard-Vt 40nm
Industrial Technology library, Normal Process, 1.2V Supply
Voltage and 300K Nominal Temperature.

Entry level - The various blocks have been described with
low-level RTL models: their functionality has been specified
using logical operators, with only few exceptions when imple
menting specific asynchronous cells. Our technology library
does not include C-elements nor mutexes, therefore we use
their standard-cell equivalent implementations [23], [24].

Logic Synthesis - The design is synthesized and mapped to
the target library using the Synopsys Design Compiler. When
using asynchronous design style, not only functionality, but
also dynamic behavior is important. In order to ensure glitch
free operation, the tool must be prevented from applying logic
optimizations to the design. On the other hand, automatic
buffer insertion is a useful optimization option that we would
like to exploit. This behavior can be achieved by using the
seccompile_directives and secstructure directives of the tool.
While Design Compiler does not understand relative timing
constraints, they can be enforced through multiple iterations:
in a first run, only max delays are enforced, in order to
meet a generic target (max performance, minimum area);
then, in a second run, the delay of the paths that have to be
matched can be extracted from the netlist (gectimingyath,
gecattribute timing_path arrival) and assigned to the required
path (set_min_delay). The same procedure can be used to
check whether the given constraints have been fulfilled, and
iterate again if necessary.

Physical Switch Design - For this purpose we used Synop
sys IC Compiler. As in the technology mapping procedure, it is
possible to enforce, extract and compare the delays between
different paths, and automatically verify if constraints have

Figure 6.2: Input buffer circular FIFO: structure

much lower latency and cycle time. The FIFO structure is shown in Fig. 6.2. Its microarchitecture

and operation have already been presented in [80].

Compared to a typical synchronous circular FIFO, the proposed asynchronous FIFO shows two

significant and unusual advantages: (i) First, each asynchronous storage element is a single level-

sensitive D-latch register, which has full storage capacity. In contrast, synchronous FIFO requires

Flip-Flop (FF) or double-latch storage registers. A D-latch has approximately only half area and

power cost as a FF, and usually has much lower latency. Since buffers usually occupy a large amount

of area in routers, this is one of the key benefits for asynchronous switches. (ii) Second, written-in

data can be immediately read out through a very short latency for the asynchronous circular FIFO.

Write/read operations do not have to be aligned to clock cycle. On the contrary, it takes at least 2-3

cycles for any synchronous FIFOs from writing in to reading out a data item.

6.2.3 Proposed VC Flow Control

A new credit-based VC control is proposed, which outperforms the design of [149]. In [149], a

protocol is used where the credit count is decreased whenever a flit is sent out and is increased

129

CHAPTER 6. AN INDUSTRIAL HIGH-PERFORMANCE AND LOW-POWER ASYNCHRONOUS
NOC ROUTER

Mutex

Mutex

Input Ctl0

Mutex

Input Ctl1

Full

Detector0

Timer 0

mutex
_req0

mutex
_req1

zerowins

forced
_clk0

full0

fu
ll

0
_

v
al

id

Full

Detector1

Timer 1

onewins

forced
_clk1

full1

fu
ll1

_
v

alid

E
D Q

L1 E
D Q

L2

E
D Q

L6
E

D Q
L7

E
D Q

L5

L3

D Q

E

L4

D Q

E

Ackin

Reqout

Credit_increment0

Credit_increment1

Ackout1

Ackout0

Reqin0

Reqin1

D
a

ta
M

u
x

R S

Q

sel

Datain0

Datain1

E

D Q

Data
Reg

Dataout

Q

_

T
w

o
 d

a
ta

 i
n

p
u

t
c
h

a
n

n
e

ls
:

e
a

c
h

 f
ro

m
 a

 d
if
fe

re
n

t

V
C

 a
n

d
 c

o
rr

e
s
p

o
n

d
in

g
 s

w
it
c
h

 (
O

P
M

)

D
a

ta
 o

u
tp

u
t

c
h

a
n

n
e

l:

to
 t

h
e

 o
u

tp
u

t
lin

k

VC controls:

from the output link

Fig. 2. Proposed VC control for an output channel interface

contains two uncorrelated and identical networks, as shown in
Fig. 1. The request plane routes request packets and the
response plane delivers responses. In each router, the switch is
identical to the original switch [1] but with an extra circular
input buffer added. The packets are routed to the appropriate
switch (in the same plane), based on its statically-assigned VC.

Input buffer. An optimized circular FIFO implementation,
presented in [1], is now integrated into the proposed design.

VC flow control. Fig. 2 shows the new VC flow control. It
takes input streams from 2 VCs, performs flit-level arbitration
and merges them to a single output stream. The Full Detector
updates the credit every time a flit is sent out. The update
considers all queued credit-increment requests as well as the
current credit-decrement. If there is no credit, the VC is
blocked; Timer is activated, which constantly checks at a fixed
rate if any credits are released; if so, blocking is released.

IV. DESIGN FLOW AND TOOLS

Design validation tool. Detailed gate-level functional
validation is performed for both pre- and post-layout designs
for a single double-plane router node. A synchronous industrial
tool is used, with a new wrapper to synchronize the I/O data to
an external clock. Hence, the asynchronous router with
wrapper can simply be plugged into the existing tool, and
standard benchmarks used, as in a synchronous testing flow.

Design flow and P&R tool. The design was first manually
synthesized by mapping each gate to a real library.
Asynchronous one-sided timing constraints are satisfied by
manually adding proper inverter-chain delays. Manual
mapping prevents logic optimization, which can potentially
create control glitches. Research solutions for asynchronous
logic synthesis automation have been proposed [1], which are
not included due to the extensive effort required to re-
instrument the stable industrial flow. However, it is expected
that no serious obstacles appear to their inclusion in the future.

The P&R flow uses a standard automated synchronous
approach, without logic optimization. The final asynchronous
layout is shown in Fig. 3, which was used for design validation.

Although post-layout results could not be reported at this
time, due to the use of advanced commercial technology, this
flow demonstrates the viability of incorporating asynchronous
physical design into a leading industrial environment.
Furthermore, the strong initial asynchronous results are highly
encouraging, and expected to contribute to industrial
motivation to invest in asynchronous CAD tool development.

V. EXPERIMENTAL RESULTS

Comparisons are performed for a single pre-layout router
node in terms of area, latency and power. The synchronous
baseline is a typical 3-cycle router, with fine-grain clock
gating. It also has some additional functionality for error
detection and router configuration; these contribute only 1-4%
area and power increase, with negligible performance impact.
All results are presented in relative numbers only, due to

confidentiality reasons. Based on industrial experience, it is
expected that pre-layout comparisons and post-layout
comparisons will be similar for such a small router design.

For the basic comparison, both routers have 2 VCs, each
with buffer depth of 7. Each is synthesized using a low-power
industrial 14nm library (0.65V, TT corner, 273K). The
synchronous router is synthesized targeting a 1 GHz clock rate,
based on the performance requirements of several high-end
AMD products, using a standard automated flow, while the
asynchronous router is synthesized manually, as indicated.
Evenly distributed random traffic is sent from all input ports to
output ports, with a random packet size between 2 and 6.

In Fig. 4, the left two bars of each group show outcomes for
the basic comparison. The asynchronous router dominates the
results: 55% lower area and 28% latency improvement, with
88% and 58% savings in idle and active power, respectively.

Fig. 4 also presents some estimated results for (i) a 7-port
router with 2 VCs, and (ii) a 5-port router with 8 VCs. The
former is important for 3D stacking, and the latter represents a
more realistic VC configuration. For both synchronous and
asynchronous routers, area and power costs noticeably increase
in (i) and (ii), due to higher radix or more VCs, while latency is
largely unchanged. However, relative asynchronous area and
power benefits are largely maintained, though latency
improvements are reduced for the 7-port configuration.

VI. CONCLUSIONS
The paper presents the first comparison of an asynch-

ronous vs. commercial synchronous NoC router in an advanced
technology. The new design uses several industrial tools for
P&R and design validation. A novel end-to-end credit-based
VC control is also included. Results show the asynchronous
router obtains significant benefits in area, latency and power.

REFERENCES
[1] A. Ghiribaldi, D. Bertozzi, and S.M. Nowick. A transition-signaling bundled data

NoC switch architecture for cost-effective GALS multicore systems. In Proc. of

DATE Conf., pp. 332-227, 2013.

[2] M. Gibiluka, M.T. Moreira, F.G. Moraes and N.L.V. Calazans. BAT-Hermes: a

transition-signaling bundled-data NoC router. In Proc. of Latin American

Symposium on Circuits & Systems, pp. 1-4, 2015.

[3] D. Melpignano, L. Benini, E. Flamand and F. Clermidy et al. Platform 2012, a

many-core computing accelerator for embedded SoCs: performance evaluation of

visual analytics applications. In Proc. of DAC Conf., pp. 1137-1142, 2012.

[4] P. Merolla et al. A million spiking-neuron integrated circuit with a scalable

communication network and interface. In Science, 345(6197):668-673, 2014.

[5] G. Miorandi, A. Ghiribaldi, S.M. Nowick, and D. Bertozzi. Crossbar replication

vs. sharing for virtual channel flow control in asynchronous NoCs: a comparative

study. In IFIP/IEEE VLSI-SoC Conf., pp. 1-6, 2014.

[6] S.M. Nowick and M. Singh. Asynchronous design – part I: overview and recent

advances. In IEEE Design and Test, 22(3):5-18, 2015.

Fig. 3. Actual layout for the proposed asynchronous router

Fig. 4. Asynchronous and synchronous router comparison

Figure 6.3: Proposed VC control for an output channel interface

whenever the successor releases an input buffer slot. These two operations are mutually exclusive,

and treated symmetrically at the same priority. As a result, a non-critical credit-increment operation

can thus potentially block a critical credit-decrement, and delay sending out a flit. In contrast, the

new VC approach only updates the credit when a flit is sent out. Credit-increment requests are

queued and are only updated along with the next credit-decrement request. This new ‘lazy-update’

scheme prevents unnecessary credit-increment updates and potentially increases the throughput.

Fig. 6.3 shows the microarchitecture of the new VC flow control. The module is part of the

router interface. It takes two input data streams from two VCs, performs flit-level arbitration and

merges them into a single output stream. The Full Detector and Timer units are the core of the

new VC control. The Full Detector updates the credit every time a flit is sent out. The update

considers all queued credit-increment requests as well as the current credit-decrement. The unit

also prevents further arbitration requests for the corresponding VC when no credit is available. In

that case, Timer is also activated, which constantly checks at a configurable given rate if any credits

are released. When there is available credit again, the blocking is released.

130

CHAPTER 6. AN INDUSTRIAL HIGH-PERFORMANCE AND LOW-POWER ASYNCHRONOUS
NOC ROUTERDesign Validation ToolDesign Validation Tool

15

Pre- or Post-layout netlist

Synchronize async I/O data

to a given clock
Async Router

Design

Wrapper

Standard Sync Simulator

Re-used standard sync I/Os and benchmarks

(Ideal wrapper,

not considering metastability)

Figure 6.4: Design validation tool illustration

6.3 Design Flow and Tools

6.3.1 Design Validation Tool

Functional validation at gate-level are performed for both pre- and post-layout designs for a single

node. The validation tool is migrated from that used in the AMD industrial setting for the syn-

chronous design. As shown in Fig. 6.4, a wrapper is added for the asynchronous router to synchro-

nize the input and output data to a given clock. Therefore, the asynchronous router with wrapper

can be simply plugged into the existing tool, and uses any standard benchmarks as for synchronous

testing.

6.3.2 Design Flow and P&R Tool

An illustration of the entire design flow is shown in Fig. 6.5. The design was first manually syn-

thesized by mapping each gate to a real commercial cell library. Asynchronous one-sided timing

constraints are satisfied by manually adding proper inverter-chain delays. Manual mapping prevents

logic synthesis automation, which can potentially create control glitches. More systematic research

131

CHAPTER 6. AN INDUSTRIAL HIGH-PERFORMANCE AND LOW-POWER ASYNCHRONOUS
NOC ROUTERDesign Flow and Place & Route ToolDesign Flow and Place & Route Tool

Expect further synthesis automation can be included with reasonable effort

16

Manual Synthesis

Automated P&R

Timing

violations?

Manual Timing

Correction

Yes

No

Final Layout

Manually add inverter chainsManually derive gate netlist

Standard sync P&R with ‘don’t touch’ everything

- An async logic synthesis solution was proposed in [Ghiribaldi/Bertozzi/Nowick DATE-13]

Figure 6.5: Design flow illustration

Figure 6.6: Actual layout for the proposed asynchronous router

solutions for asynchronous logic synthesis automation have been proposed in [80], which are not

included due to the extensive effort required to re-instrument the stable industrial flow. However, it

is expected that no serious obstacles appear to their inclusion in the future.

The P&R flow uses a standard automated synchronous approach, without logic optimization.

The final asynchronous layout is shown in Fig. 6.6, which was used for post-layout design valida-

132

CHAPTER 6. AN INDUSTRIAL HIGH-PERFORMANCE AND LOW-POWER ASYNCHRONOUS
NOC ROUTER

tion.

In sum, compared to the fully-automated synchronous design flow, the asynchronous router is

implemented using a different semi-automated process. The synchronous design is, in fact, some-

what more optimized. Several optimization techniques are used during design synthesis, including

logic optimization with gate transformations, gate selection from different categories (i.e. high- or

low-VT gates), as well as low-level transistor sizing. There optimizations were turned off for man-

ual synthesis of the asynchronous router, to ensure hazard freedom on control paths. Minimum-size

gates with typical VT are selected for most parts of the design. Higher-drive gates are only used

where the design has large fan-out. However, even with these disadvantages in the design flow, the

asynchronous results still dominate the synchronous counterpart.

Although post-layout results could not be reported at this time, due to the use of advanced com-

mercial technology, this flow demonstrates the viability of incorporating asynchronous physical

design into a leading industrial environment. Furthermore, the strong initial asynchronous results

are highly encouraging, and are expected to contribute to industrial motivation to invest in asyn-

chronous CAD tool development.

6.4 Experimental Results

Experiments are performed for a single pre-layout router node in terms of area, latency and power.

The synchronous baseline is a typical 3-cycle router, with fine-grain clock-gating. It also has some

additional functionality for error detection and router configuration; these contribute only 1-4%

area and power increase, with negligible performance impact. All results are presented in relative

numbers only, due to confidentiality reasons. Based on industrial experience, it is expected that

pre-layout comparisons and post-layout comparisons will be similar for such as small router design.

The results for the basic comparison is shown in Fig. 6.7. Both asynchronous and synchronous

routers are configured to have 2 VCs, each with buffer depth of 7. Each router is synthesized

using a low-power industrial 14nm library (0.65V, TT corner, 273K). The synchronous router is

synthesized targeting a 1 GHz clock rate, based on the performance requirements of several high-

end AMD products, using a standard automated flow, while the asynchronous router is synthesized

manually, as indicated. Evenly distributed random traffic is sent from all input ports to all output

133

CHAPTER 6. AN INDUSTRIAL HIGH-PERFORMANCE AND LOW-POWER ASYNCHRONOUS
NOC ROUTER

Basic comparison: 5-port router with 2 VCsBasic comparison: 5-port router with 2 VCs

Comparison for 5-port router with 2 VCs

19

 Asynchronous router dominates in area, latency and power

Sync router Async router

Figure 6.7: Asynchronous vs. synchronous router: basic comparison

ports, with a random packet size between 2 and 6. The asynchronous router dominates the results:

55% lower area adn 28% latency improvement, with 88% and 58% savings in idle and active power,

respectively.

There are three reasons why the asynchronous design can achieve fundamentally better results

than the synchronous counterpart.

The first reason is related to the clock distribution and clock power consumption. The syn-

chronous router requires a fairly complicated clock tree to distribute the clock, while the asyn-

chronous design entirely eliminates the clock distribution. This is a considerable save in both power

and area cost. Also, asynchronous components consume dynamic power only when they are acti-

vated. Effectively, the asynchronous router provides clock gating at an arbitrary granularity without

any instrumentation. The synchronous design, however, requires extra hardware to implement fine-

grain clock-gating.

Second, the asynchronous router uses single-stage latch registers for data storage, compared to

FF’s used in the synchronous router. Interestingly, even using single-latch architectural registers,

the asynchronous design requires only simple one-sided (i.e. worst-case) timing constraints to be

satisfied (unlike several synchronous single-latch approaches which have min/max constraints or

pulse-mode operation). The input and/or output buffers always consume a large amount of, some-

times even dominate, the area and power consumption of a router. Since an asynchronous-style

single-stage D-latch register only consumes roughly half area and power as a typical FF, this be-

134

CHAPTER 6. AN INDUSTRIAL HIGH-PERFORMANCE AND LOW-POWER ASYNCHRONOUS
NOC ROUTER

0

1

2

3

Area Latency Idle Power Active Power

(*projected results)
Sync node: 5-port 2VC Async node: 5-port 2VC

Sync node: 7-port 2VC* Async node: 7-port 2VC*

Sync node: 5-port 8VC* Async node: 5-port 8VC*

Figure 6.8: Asynchronous vs. synchronous router: projected results

comes another major source of area and power savings. Also, single-level latches are only activated

when data exists, while the FF’s are activated every clock cycle. What is more, some of these asyn-

chronous latch-based data registers use a capture-pass protocol and are normally transparent, so data

can go through these registers directly whenever it arrives. However, FF-based registers require the

clock to be broadcast to each of the FF in the register bank, which considerably degrades the latency

performance.

Finally, unlike the synchronous router, the overall performance of the asynchronous router is

an average among all flits (i.e. header, body and tail flits), which is not limited to the worst-case.

In particular, in the asynchronous router, the header flit sets up the switch path and has the worst

latency. The body and tail flits only need to follow the pre-setup path, including pre-open channel

latches, and default-open flow control registers. These non-blocking latches ensure a much faster

processing speed for body and tail flits. In contrast, for the synchronous baseline router, the clock

rate needs to be set according to the worst case – the header flit. There is no performance speed-up

for body and tail flits.

Also, unrelated to our results, asynchronous NoC’s can handle varied link lengths with little

overhead. The synchronous NoC’s must discretize each link communication to a fixed number of

clock cycles. For example, for short links, where data can be transmitted much less than a clock

cycle, a full cycle is still allocated for the link traversal. For asynchronous NoC’s, however, the link

transmission latency is entirely flexible and not aligned to clock cycles.

135

CHAPTER 6. AN INDUSTRIAL HIGH-PERFORMANCE AND LOW-POWER ASYNCHRONOUS
NOC ROUTER

As additional experiments, Fig. 6.8 presents estimated results for two useful alternative designs:

(i) a 7-port router with 2 VCs, and (ii) a 5-port router with 8 VCs. The former is important for

3D stacking, and the latter represents a more realistic VC configuration. For both synchronous

and asynchronous routers, area and power costs noticeably increase in (i) and (ii), due to higher

radix or more VCs, while latency is largely unchanged. However, relative asynchronous area and

power benefits are largely maintained, though latency improvements are reduced for the 7-port

configuration.

6.5 Conclusions

This chapter focuses on a real-world instantiation of a high-performance asynchronous router in

an industrial setting. A high-performance and low-power asynchronous router is implemented,

integrating low-latency input buffers, and a novel end-to-end credit-based virtual channel (VC)

flow control approach. The new VC approach has fewer backward credit synchronizations to the

upstream router – only updating the credit count when a flit is sent out – and thus is expected

to outperform previous designs. The router is implemented using a cutting-edge 14nm FinFET

library, and compared directly to an AMD commercial synchronous counterpart. To the best of our

knowledge, this is the first comparison for an asynchronous router vs. an industrial synchronous

baseline using such an advanced technology library. Also, several industrial tools are used in the

design process, for place-and-route (P&R) and design validation. The development of this project

at AMD Research, and the harnessing of some synchronous CAD tools in the design flow, highlight

industrial interest in developing asynchronous NoC’s, and their use as a potentially viable solution

for future large-scale commercial digital systems.

136

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

Chapter 7

A High-Throughput Asynchronous

Multi-Resource Arbiter

7.1 Introduction

While previous chapters present complete NoC or router designs, including new techniques for

performance optimization, this chapter focuses on a single important component that is almost

always used in any NoC: an arbiter. Arbiters are critical for NoC performance, and sometimes

the bottleneck for the router as well as the entire network. In synchronous designs, the arbi-

tration problem is fundamentally simplified: resources are allocated based on distinct discrete

clock cycles. In contrast, asynchronous arbiters are required in asynchronous NoC’s. The asyn-

chronous arbitration problem deals with competing requests and resource assignments in contin-

uous time, unaligned to clock cycles, which may arrive arbitrarily close together (e.g. a few pi-

coseconds or less), therefore the problem is fundamentally more challenging [80, 104, 105, 148,

166].

Generally speaking, there are two types of arbiters: single-resource arbiters and multi-resource

arbiters. Single-resource arbiters, also called single-resource multi-way arbiters, are used to de-

cide the serial order in which the requests are served when several clients want to access a single

shared resource concurrently. Multi-resource arbiters generalize the case: they assign multiple in-

terchangeable resources among a number of requesting clients.

In asynchronous NoC’s, single-resource arbiters are usually used for channel arbitration when

137

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

multiple incoming data streams compete for the same single output channel. There is already a

large amount of existing work on asynchronous single-resource arbiters, with different structures

and interesting trade-offs [62, 63, 80, 108, 148, 160, 206, 242]. Several simple arbiter examples

were introduced in Section 2.3.3 as asynchronous background. In particular, a new scalable arbiter

design approach was recently presented in [148], and applied to a family of arbiters with different

numbers of input requests (practically up to 16). The designs have simple structures, targeting an

overall high performance, as well as an increased robustness and impartiality across all inputs.

In this chapter, our focus is instead on multi-resource arbiters, which are more complex and

for which there are only limited existing efficient designs and only little recent research. In asyn-

chronous NoC’s, multi-resource arbiters are typically used for VC allocation for packets to select

any available VC from a VC pool of the same service level [62, 63]. Also, multi-resource ar-

biters can be used for a novel type of NoC – asynchronous spatial-division multiplexing (SDM)

NoC’s [126, 128, 208]. SDM is a promising direction for future NoC’s, where inter-router links

are subdivided into sub-channels for concurrent data transmission. The SDM technique has been

proved to be an alternative strategy to the classic VC approach for mitigating head-of-line blocking,

in order to target high network throughput. Multi-resource arbiters are used to select any one of

potentially several free sub-channels as an output channel for a data transmission.

The chapter proposes a new high-throughput asynchronous multi-resource arbiter based on fine-

grain pipelining [106]. The allocation of a resource to a client is divided into several steps, where

multiple successive client-resource pairs can be selected rapidly in sequence, and the completion

of the assignments can overlap in parallel. The proposed arbiter is well-structured and highly scal-

able, and can be simply extended to a design with arbitrary numbers of clients and resources. In

addition, a new static four-phase asynchronous pipeline structure is introduced and applied to the

arbiter design, incorporating a highly-concurrent handshaking protocol. In particular, experiments

are performed at two interesting and different design points: 4×3 and 8×4. Results show that the

proposed arbiter achieves considerable lower cycle time than a previous baseline design at both de-

sign points. Interestingly, in spite of the pipelining, the new arbiter exhibits slightly better latency

in light traffic.

The remaining of the chapter is organized as follows. Section 7.2 introduces existing approaches

for multi-resource arbiter. Most previous designs are from Yakovlev’s group, and we use one of their

138

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

designs as baseline for comparison. Section 7.3 then presents the structure and the operation for the

baseline design. Through Sections 7.4 to 7.7, the proposed asynchronous multi-resource arbiter is

introduced. Before diving into details of the design, we start with an overview of the approach in

Section 7.4, and Section 7.5 presents a new high-performance asynchronous pipeline style. The

pipeline is actually a novel static implementation of the dynamic HC pipeline [202], which is a new

general structure that can be used for a variety of asynchronous applications. The pipeline is applied

extensively in our proposed arbiter design in modified ways; then, Sections 7.6 and 7.7 present the

details of the proposed arbiter design and the timing analysis, respectively. Experimental results for

the new arbiter and its comparison with the baseline are given in Section 7.8. Finally, the chapter

concludes in Section 7.9.

7.2 Related Work

There is only limited prior work on asynchronous multi-resource arbiter design. Yakovlev’s group

is the only one having several recent publications, including two different approaches: serial as-

signment and parallel assignment.

A serial design [85, 86] allows only one resource allocation at a time. The implementation is

simple, with an elegant structure, which exhibits good scalability and has relatively low latency.

The protocol, however, is quite conservative and slow when there are multiple waiting clients and

resources, resulting in poor throughput.

Two different parallel designs have also been proposed. A multi-token ring arbiter [85, 86]

consists of a ring of client cells and resource tokens continuously propagating in the ring. A client

cell obtains a resource when needed, and puts the token back after usage. The arbiter is expected to

have high performance. However, the paper highlights several significant shortcomings. First, each

cell always requires two arbitrations in series: to resolve if a token in the ring will be acquired by the

cell, and also if it must compete with a token that the cell wants to put back into the ring. Also, the

design is not suitable for nearly-equal client and resource numbers, since the result is a congested

ring which has slow movement of tokens. Finally, the design is typically for passive resources only.

Another alternative parallel design uses a monolithic arbiter with synchronization based on dis-

crete time frame division [196]. In each time frame, a static set of requesting clients and resources

139

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

are maximally matched, as in a synchronous design. Any late-arriving requests must be deferred

until a later time frame. The results shows some performance improvement over the serial design.

The design, however, requires a mutex for each client and resource channel, as well as a large num-

ber of high fan-in gates and C-elements, and hence is not scalable for larger arbiter size. In addition,

many details of the implementation are not included, and results are largely missing.

The committee problem [19] is a more complex multi-resource arbitration problem. While it

is largely orthogonal to the basic multi-resource arbitration problem on which we focus, the idea

of client competition and parallel resource assignments also exists. In a committee problem, a set

of professors is assigned to committee groups. The problem is to schedule committee meetings

concurrently if all the professors in the group are available, while no professor can attend multiple

meetings simultaneously. Several solutions were proposed [19]. In the best design, each committee

in parallel examines its members, and locks available members during the examination. The com-

mittee starts the meeting when all the members are available. Otherwise, it releases the obtained

professors and restarts a meeting request. While exploiting the parallelism in protocol, the design is

based on a communicating sequential process (CSP) two-phase model specification, which results

in quite slow and complex hardware.

7.3 Background: Baseline Multi-Resource Arbiter

This section reviews the non-pipelined serial asynchronous multi-resource arbiter, invented by Gol-

ubcovs and Yakovlev et al. [85, 86]. The design uses a simple and clean protocol, and appears to

be the best existing asynchronous solution. It serves as the baseline for the comparison. We start

with a black-box view of the arbiter with introduction on its channel protocols. Then the detailed

structure of the design is introduced, followed by a simple simulation.

7.3.1 External Channel Protocols

A black-box structural overview of a NxM baseline asynchronous multi-resource arbiter is shown

in Fig. 7.1. There are N client channels on the left, and M resource channels on the right.

Clients can initiate concurrent and independent requests, and are granted when resources are

available. The resource ID contains the result of allocation, and is delivered along with the grant

140

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

client_r0
client_g0

resource_id0

resource_id1

client_rN
client_gN

resource_idN

.

.

.

resource_r0

resource_g0

client_r1
client_g1

resource_r1

resource_g1

resource_rM

resource_gM

.

.

.

N x M
Asynchronous

Multi-Resource
Arbiter

R
e

so
u

rc
e

ch

an
n

e
l 0

R
e

so
u

rc
e

ch

an
n

e
l 1

R
e

so
u

rc
e

ch

an
n

e
l M

C
lie

n
t

ch
an

n
e

l 0
C

lie
n

t
ch

an
n

e
l 1

C
lie

n
t

ch
an

n
e

l N

{

{

{

{

{

{

Figure 7.1: Baseline asynchronous multi-resource arbiter: a black-box overview

to a winning client. Likewise, resources also have to proactively report their availability through

resource requests, and therefore are called active resources [85, 86]. The resource channel then

operates symmetrically to the client channel, but without ID information. As an alternative, passive

resources automatically become available to clients immediately after each utilization, without any

explicit asserted request. Active resources can be useful to properly handle when a resource fails

or it turns off to save power. In addition, an active protocol can be simply transformed back to a

passive protocol, if a resource immediately reports its availability after it is released. The baseline

design assumes active resources, which our new design also inherits.

All the client and resource channels use a four-phase communication protocol. The entire life-

time of a client making use of a resource actually involves three operation phases, as shown in

Fig. 7.2. The resource first needs to be matched with the client (assignment phase). During this

phase, the client and resource requests are asserted high, and both channels are granted. The client

then holds and uses the resource for an arbitrarily long time (utilization phase). There is no channel

activation in this phase. Finally, the assignment is released (release phase), during which client and

resource requests are de-asserted low, followed by both grants de-asserted low.

The challenge of multi-resource arbitration largely concentrates on getting an efficient design

for the assignment phase. Hence, this is the main focus of our research.

141

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

Client/Resource Req

Client/Resource Grant

Resource ID
(client channel only) Valid ID

Assignment

phase

Utilization

phase

Reset

phase

A
 s

in
g

le
 c

li
en

t
o

r

re
so

u
rc

e
ch

an
n

el

1 2 3

Figure 7.2: External channel protocol

7.3.2 Structure

Fig. 7.3 shows the architecture of a 4×3 baseline arbiter example, with four client channels and

three resource channels. As indicated before, each channel contains a four-phase request and a

grant. The resource IDs for client channels are 1-hot encoded, and indicate the assignment result.

The entire design is divided into three major blocks. The Client Generator arbitrates between

concurrent client requests and produces a single winner. The Resource Generator has a similar

structure for resources. The Assignment Unit pairs the two winners, then records the assignment

and generates the grants.

There are several important components of the Assignment Unit. The core of the unit is a 4×3

cell bit array, which stores a snapshot of the currently active assignments. In particular, each cell

presents the state of a distinct client-resource pair: a 1 value indicates ‘assigned’, and a 0 value

means ‘not assigned’. At any time, there can be multiple assigned client-resource pairs.

In the array, restricted operation is enforced, where only a single cell can be written to 1 at any

time, which is the essence of a serial approach. The Client Winner Generator sends information on a

single client winner to the array, and the Resource Winner Generator sends similar information on a

single resource winner, and the array then records the winning pair in the corresponding cell. After

assignment, the two Grant Generators inform the client-resource pair of the start of the utilization

142

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

Resource Arbiter
ce

ll

0
0

column0_

block_req [0:2]

23

ce
ll

1
0

ce
ll

2
0

column0_

block_ack

ro
w

_

m
u

te
x

w
in

0

C
li

en
t

A
rb

it
er

column_

mutexwin0

re
so
u
rc
e_
re
q
0

re
so

u
rc

e_
g
0

re
so

u
rc

e

_
re

q
0

H
1

0

H
0

0

H
2

0 client_req0

ce
ll

0
1

column1_

block_req [0:2]

ce
ll

1
1

ce
ll

2
1

column1_

block_ack

column_

mutexwin1

H
1

1

H
0

1

H
2

1 client_req1

ce
ll

0
2

column2_

block_req [0:2]

3

ce
ll

1
2

ce
ll

2
2

column2_

block_ack

column_

mutexwin2

H
1

2

H
0

2

H
2

2 client_req2

ce
ll

0
3

column3_

block_req [0:2]

3

ce
ll

1
3

ce
ll

2
3

column3_

block_ack

column_

mutexwin3

H
1

3

H
0

3

H
2

3

client_req3

Row Blocking

Unit 0

ro
w

0
_
b
lo

ck
_
re

q
 [

0
:3

]

ro
w

0
_
b
lo

ck
_
ac

k
4

ro
w

1
_
b
lo

ck
_
re

q
 [

0
:3

]

ro
w

1
_
b
lo

ck
_
ac

k

ro
w

2
_
b
lo

ck
_
re

q
 [

0
:3

]

ro
w

2
_
b
lo

ck
_
ac

k

Resource Grant

Generator

client_g3

resID3

O
u

tp
u

t
cl

ie
n

t
gr

an
ts

(e
ac

h
 a

ss
o

ci
at

e
d

 w
it

h
 a

 r
e

so
u

rc
e

 ID
)

re
so
u
rc
e_
g
0

Output resource grants

re
so
u
rc
e_
g
1

re
so
u
rc
e_
g
2

re
so
u
rc
e_
re
q
1

re
so
u
rc
e_
re
q
2

Input resource requests

client_g0

client_req0

client_g1

client_req1

client_g2

client_req2

In
p

u
t

cl
ie

n
t

re
q

u
e

st
s

client_g3

client_req3

R
es

o
u

rc
e

W
in

n
er

G

en
er

a
to

r C
lie

n
t

W
in

n
er

G

en
er

a
to

r

A
ss

ig
n

m
en

t
U

n
it

re
so

u
rc

e

_
re

q
1

ro
w

_

m
u

te
x

w
in

1

re
so

u
rc

e

_
re

q
2

ro
w

_

m
u

te
x

w
in

2

re
so

u
rc

e_
g
1

re
so

u
rc

e_
g
2

3

4

3

2
2

2

44 4

Row Blocking

Unit 2

4

2
3

2
3

2
3

C
o
lu

m
n

B
lo

ck
in

g
 U

n
it

 1

C
o
lu

m
n

B
lo

ck
in

g
 U

n
it

 2

3
3

3

3

client_g2

resID2

client_g1

resID1

client_g0

resID0

Row Blocking

Unit 1

C
o
lu

m
n

B
lo

ck
in

g
 U

n
it

 0

C
li

en
t

G
ra

n
t

G
en

er
at

o
r C
o
lu

m
n

B
lo

ck
in

g
 U

n
it

 3

3
3

3

Fi
gu

re
7.

3:
B

as
el

in
e

as
yn

ch
ro

no
us

m
ul

ti-
re

so
ur

ce
ar

bi
te

r

143

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

phase by asserting the corresponding grants. When the client and resource request to release the

assignment (i.e. reset phase of handshaking channels), the corresponding cell is cleared (i.e. reset

to 0), thereby ending the utilization phase. Finally, blocking units are provided in each row and

column; when the Assignment Unit writes a cell, these units prevent any spurious writing to other

cells in the same row or column.

7.3.3 Operation

As illustration, a simple scenario is simulated, where a single client and resource request are re-

ceived and paired together, both arriving on channel #0. The client request is assumed to arrive first,

and quickly arbitrated to become the winner. The resource winner is generated similarly. Next,

cell00 synchronizes on the winner pair, and initiates row and column blocking in parallel, before

the assignment can be recorded into the cell. The operation disables all other cells in the same row

and column. A single round-trip communication between the cell and the blocking unit is required

to complete each blocking operation. is recorded, and grants are generated. Finally, both arbiters

are reset right after grant generation, and row/column blocking is released, to allow the next serial

assignment. At any time, an assigned cell can be cleared, without synchronization with ongoing

assignments.

While the above protocol is well-structured, it has significant performance overhead. In par-

ticular, a sequence of steps – arbitration, cell selection, row and column blocking, and cell write

– must be followed in series, for a single assignment, before any new assignment can be started,

resulting in a critical throughput bottleneck. The goal of the new approach is to break through the

serial limitation, and allow both pipelining and limited overlapped concurrent operation (e.g. in cell

writes).

7.4 Overview of the Approach

The basic strategy of the new approach is now introduced, before delving into details in the new

design.

As shown in Fig. 7.4(a), the baseline protocol is simple but conservative. Assignments are per-

formed successively without any overlapping. An assignment begins with two concurrent arbitration

144

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

Queuing

Client

Client

arbitration

Resource

arbitration

Client

arbitration

Resource

arbitration

Select
Commit

assignment

Client

arbitration

Queuing

Client

Resource

arbitration

Select

1st assignment

2nd assignment

1st assignment 2nd assignment

(a) Baseline serial protocol

(b) New pipelined protocol

Commit

assignment

Client

arbitration

Resource

arbitration

Select
Commit

assignment

Queuing

Client

Select
Commit

assignment

Queuing

Client

Figure 7.4: Protocol comparison: baseline vs. new

steps, ‘client arbitration’ and ‘resource arbitration’, where a client winner and a resource winner are

determined. As soon as both arbitrations are complete, the pair is selected (i.e. the corresponding

cell synchronizes row/column requests, then activates blocking) and the assignment is committed

(i.e. the cell is written, then client and resource grants are generated, followed by release of the

two arbiters). A ‘commit’ saves the pair and the informs both client and resource. The ‘commit’ is

always followed by the ‘select’ without any delay.

The proposed protocol is shown in Fig. 7.4(b); it includes fine-grain pipelining to deliver higher

throughput. In particular, as shown, the assignment operation is now broken into four sub-steps,

including a new inserted queueing step. The result is that multiple assignments can be active simul-

taneously, operating on different sub-steps. The queue is a special multi-token circular FIFO, which

provides additional parallelism, by allowing the arbiter to complete multiple successive operations

even when the downstream pipeline is congested. It also offers fast data access time. Finally, the

‘commit assignment’ sub-step is distinct: this last operation is not pipelined, but instead full parallel

145

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

overlap of multiple ‘commit assignment’ sub-steps are supported by a concurrent hardware unit.

7.5 Proposed Static HC Pipeline

Before we present the proposed arbiter design, a new high-performance asynchronous pipeline is

first introduced. This pipeline is then intensively used in the new arbiter with some modifications. In

addition, it can be treated as a general stand-alone pipeline approach to be used in many non-arbiter

applications, which advances the state-of-art of high-performance asynchronous pipelines.

Our proposed design effectively implements the high-capacity dynamic pipeline [202] using

static logic. The pipeline protocol is highly concurrent with only one backwards synchronization

arc, while static logic provides a better level of robustness.

The section is organized as the following. The pipeline protocol is first presented, then followed

by a design overview. Finally, we introduce the related work, and compare the new pipeline with an

existing well-known design through careful analysis.

7.5.1 Pipeline Protocol

The overall protocol of the new pipeline is shown in Fig. 7.5(a), and the actual design is illus-

trated in Fig. 7.5(b). Forward and backward synchronization are commonly-used terminologies in

asynchronous pipelines [166, 202, 165, 239]. A forward synchronization is always enforced in any

asynchronous pipeline: data needs to be processed and forwarded stage by stage. A backwards

synchronization, on the other hand, is for the successor stage notifying and coordinating with the

current stage to continue the operation.

The new static HC pipeline inherits a four-phase communication protocol from the conventional

HC pipeline. The four-phase communication protocol is selected in order to comply with external

requests and grants, which are also level signals. Expensive protocol conversion is thus avoided. The

new protocol also only has a single backwards synchronization arc as the dynamic HC pipeline, for

high throughput.

Each pipeline stage cycles through three phases, as shown in Fig. 7.5(a), which are largely

mapped from the original dynamic HC pipeline. The phases have different names, since static logic

is used. Initially, stage N is in the ‘eval’ phase. As soon as a new data enters the stage, it captures the

146

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

R E G rs
tfu

ll
/e

m
p

ty
A

ck

G
en

er
at

o
r

en

D
at

ai
n

C
D

ac
k

o
u

t

D
Q

ac
k

o
u

t

C

en

rs
t

D
at

ai
n

_
v

al
idfu

ll
/e

m
p

ty

D
at

ai
n
_
v

al
id

C
D

R E G rs
tfu

ll
/e

m
p

ty
A

ck

G
en

er
at

o
r

en

D
at

ao
u

t

C
D

ac
k

in

C
D

LOGIC

St
a

g
e

N

LOGIC

R E G rs
tfu

ll
/e

m
p

ty
A

ck

G
en

er
at

o
r

en
C

D
C

D

LOGIC

ac
k

o
u

t

St
a

g
e

N
-1

D
at

ai
n

ac
k

in

D
at

ao
u

t

St
a

g
e

N
+1

E
va
l

H
o
ld

R
es
et

(e
n

 =
 1

rs
t

=
0

)

(e
n

 =
 0

rs
t

=
0

)

(e
n

 =
 0

rs
t

=
1

)(t
ra
n
sp
a
re
n
t)

E
va
l

H
o
ld

R
es
et

(t
ra
n
sp
a
re
n
t)

(a
)

(b
)

Fi
gu

re
7.

5:
Pr

op
os

ed
pi

pe
lin

e:
(a

)o
pe

ra
tio

n
pr

ot
oc

ol
;(

b)
st

ru
ct

ur
e

147

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

data and moves to the ‘hold’ phase. In parallel, the data is first evaluated and then sent to the next

stage. In addition, the stage also acknowledges the previous stage N-1, with its single backwards

synchronization arc (which will in turn initiate the ’reset’ of the predecessor). Once the successor

stage N+1 has completed its evaluation phase, it enables stage N to complete an entire cycle, without

any further synchronization – reset, evaluate a new data item, and hold it.

The new protocol largely follows the HC pipeline, with a small modification required due to

the use of static logic. In particular, an early done optimization is still used, as in the dynamic HC

pipeline [202], where the current stage acknowledges the previous stage at the start of its evaluation.

However, a new early isolate optimization is now needed: a stage must be isolated as soon as a new

data arrives, i.e. when its evaluation begins. In contrast, the original HC pipeline used a late isolate,

only after evaluation is complete. This optimization is needed with the static design: while in the

original HC, dynamic gates and registers are inherently immune to the reset of their inputs (after

start of evaluation), the static HC pipeline must isolate the D-latch registers to prevent reset inputs

from propagating forward.

7.5.2 Pipeline Design and Structure

An example of a proposed 3-stage static HC pipeline is shown in Fig. 7.5(b). A 4-phase handshak-

ing protocol is used for control. The data is DI encoded. Data registers are composed of single-level

D-latches. Each register is controled by an enable and a reset signal. In each phase, a distinct con-

figuration is applied for the two controls. There are two completion detection units (CDs) per stage.

They are used for detecting a valid data, and placed on the left and right of the register, respectively.

This is similar to the pre-charged half-buffer (PCHB) pipeline, invented by A. Lines [134]. The

NOR2 gate is used to control the opening and closing of the register, while the Ack generator sends

the acknowledgment to the left.

7.5.3 Related Work and Comparison

There are only a few asynchronous pipelines using a four-phase protocol and static logic datap-

ath [72, 129, 244]. Most have two backwards synchronization arcs per cycle between two adjacent

stages [129, 244]. Only the fully-decoupled pipeline in [72] has a protocol with only one back syn-

chronization arc, and uses a similar static HC protocol as ours. However, the Furber/Day design has

148

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

significant performance overhead and complex controls.

In particular, a careful analysis indicates that compared to Furber/Day’s approach, the proposed

pipeline halves the forward latency per stage, and has slightly better cycle time. The forward latency

of the proposed pipeline is only a ‘D to Q’ delay of a single D-latch, while Furber/Day’s design

involves two asymmetric C-elements (aCs), and one of them is a 4-input aC with relatively high

stack. For the cycle time, the new pipeline has a result that is estimated as equal to 13 simple logic

gates, while Furber/Day’s design involves 14 simple logic gates. Also, the stage control of the new

pipeline is simple, containing two low-cost CDs for detecting a valid small delay-insensitive (DI)

code (e.g. 1-hot data in our case), two standard cells and a regular 2-input C-element. In contrast,

the Furber/Day’s pipeline contains four non-standard aCs per stage. Some of them are 3- and 4-input

aCs with relatively high stacks.

7.6 Proposed Asynchronous Multi-Resource Arbiter

In this section, the new multi-resource arbiter is presented in detail. We start with its overall structure

and operation, then followed by the design of all sub-module blocks and their operation. While

the focus is on a particular instance, a 4×3 arbiter, the design can easily be generalized to higher

dimensions.

7.6.1 Structure

Fig. 7.6 shows the architecture of the entire design. The arbiter has four clients and three resources.

A four-phase communication protocol is used, both for external client and resource channels and all

internal handshaking channels.

The structure is divided into three blocks. The new Client Winner Serializer generates client

winners serially, and enqueues the winners. Similarly, the Resource Winner Serializer creates a

queue of available resources. Each of the serializer units is also a fine-grain pipeline, allowing mul-

tiple data items to be processed simultaneously. In contrast, in the baseline approach, the client and

resource units process and produce only a single winner at a time. The new Assignment Unit then

selects client-resource pairs from the two queues, and commits the assignments. Interestingly, this

unit effectively allows full parallelism: the selections are taken concurrently, and multiple parallel

149

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

Pipeline Regiester

cl
ie

n
t_

r0
cl
ie
n
t_
re
q
0

cl
ie
n
t_
re
q
1

cl
ie
n
t_
re
q
2

cl
ie
n
t_
re
q
3

cl
ie

n
t_

r1

cl
ie

n
t_

r2

cl
ie

n
t_

r3

la
te

st
-c

li
en

t-

w
in

n
er

(c
li

en
t

ID
 i

s

1
-h

o
t

en
co

d
ed

)

C
li

en
t

G
ra

n
t

G
en

er
at

o
r

client_g0

resID0

client_g1

resID1

client_g2

resID2

client_g3

resID3

C
lie

n
t

W
in

n
er

 S
er

ia
liz

er

A
ss

ig
n

m
en

t
U

n
it(s

el
ec

te
d
-p

a
ir

 I
D

 =

co
n

ca
te

n
a

ti
o

n
 o

f
tw

o
 1

-h
o

t
ID

s)

cl
ie

n
t-

w
in

n
er

0

ac
k

4

select-pair0

4

cl
ie

n
t-

w
in

n
er

1

(c
li

en
t

ID
s

a
re

1
-h

o
t

en
co

d
ed

)

ack

7

ac
k

Input client requests

O
u

tp
u

t
cl

ie
n

t
gr

an
ts

(e
ac

h
 a

ss
o

ci
at

e
d

 w
it

h
 a

 r
e

so
u

rc
e

 ID
)

C
el

l

3
0

C
el

l

3
0

C
el

l

3
1

H
30

C
el

l

3
2

H
31

H
32client

_req3

C
el

l

3
0

C
el

l

2
0

C
el

l

2
1

H
20

C
el

l

2
2

H
21

H
22client

_req2

C
el

l

3
0

C
el

l

1
0

C
el

l

1
1

H
10

C
el

l

1
2

H
11

H
12client

_req1

C
el

l

3
0

C
el

l

0
0

C
el

l

0
1

H
00

C
el

l

0
2

H
01

H
02client

_req0

W
ri

te
 D

es
ti

n
at

io
n
 D

ec
o
d
er

1
2
 C

el
l-

W
ri

te
 H

an
d
-

S
h
ak

in
g
 C

h
an

n
el

s
re

so
u

rc
e_

re
q

0

re
so

u
rc

e_
re

q
1

re
so

u
rc

e_
re

q
2

3

Resource Grant

Generator

re
s_
g
0

re
s_
g
1

re
s_
g
2

Output resource grants

Masking/

De-Coupling Unit

cl
ie

n
t_

g
0

cl
ie

n
t_

g
1

cl
ie

n
t_

g
2

cl
ie

n
t_

g
3

N-Way Arbiter

Client Winner

Queue

4

4
ac

k cl
ie

n
t-

w
in

n
er

2

4
ac

k

S
el

ec
t

U
n
it

 0

7

select-pair1

7

ack

select-pair2

7

ack

S
el

ec
t

U
n
it

 2

Pipeline Register

re
s_

r0
re
so
u
rc
e_
re
q
0

re
s_

r1

re
s_

r2

la
te

st
-r

es
o

u
rc

e-

w
in

n
er

(r
es

o
u
rc

e
ID

 i
s

1
-h

o
t

en
co

d
ed

)

R
es

o
u

rc
e

W
in

n
er

 S
er

ia
liz

er
re

so
u

rc
e-

w
in

n
er

0 ac
k

3

3

re
so

u
rc

e-

w
in

n
er

1

(r
es

o
u

rc
e

ID
s

a
re

1
-h

o
t

en
co

d
ed

)

ac
k

Masking/

De-Coupling Unit

re
s_

g
0

re
s_

g
1

re
s_

g
2

M-Way Arbiter

Resource Winner

Queue

3

3
ac

k
re

so
u

rc
e-

w
in

n
er

2

3
ac

k

re
so
u
rc
e_
re
q
1

re
so
u
rc
e_
re
q
2

Input resource requests

S
el

ec
t

U
n
it

 1

4

3
3

3

3

4 4 4

3

3
3

3

H
0

0
H

1
0

H
2

0
H

3
0

H
0

1
H

1
1

H
2

1
H

3
1

H
0

2
H

1
2

H
2

2
H

3
2

re
s_
g
0

re
s_
g
1

re
s_
g
2

Fi
gu

re
7.

6:
Pr

op
os

ed
as

yn
ch

ro
no

us
m

ul
ti-

re
so

ur
ce

ar
bi

te
r

150

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

assignments are allowed to be recorded into the cell. In contrast, the baseline Assignment Unit al-

lows only a single selection and a commit at any time. Both the pipelining and parallelism features

introduced above are highlighted in the new protocol, as shown in Fig. 7.4. Finally, at a macro level,

the three units form a non-linear pipeline: the Assignment Unit is a join stage, which merges the

data from the two serializer stages [169]. The three blocks are now introduced in turn.

The Client Winner Serializer has four client requests as inputs, and has three output channels.

Each output channel contains a single client winner, 1-hot encoded, and an acknowledgment. The

unit is further pipelined into three stages. The left stage generates a client winner using a normal

single-resource arbiter. The middle is a fast single FIFO stage, which decouples the arbiter from the

right stage. The right stage is a multi-token Client-Winner Queue, which stores successive winners,

and provides parallel access to the Assignment Unit. The queue depth is three, which equals the

maximum number of concurrent assignments allowed in the design.

The Resource Winner Serializer has almost the same structure and operation as the Client Win-

ner Serializer.

The Assignment Unit obtains two sets of winners from the two serializers, clients and resources

respectively, and also receives direct client and resource requests from the external channels. In

turn, the unit produces grants for these external client and resource channels. The unit provides

three key functions: (i) select (i.e. make final decisions) on client-resource pairs, performed by

the Select Units; (ii) commit the assignments, where assignments are recorded into the cell array,

and external grants are generated; and (iii) clear the assignments, in which the assignment record is

cleared in the array, and the external grants are also de-asserted.

The cell array in the new design has a somewhat similar structure and role as the baseline

approach. However, the new cell array is much simpler, since select operations are extracted out

to a linear number of Select Units, while the baseline design folds select and recording of commits

into each cell in the quadratic array. In addition, unlike the original design, the array now allows

concurrent writes: each cell has a dedicated channel for its own write operation, hence the array can

accommodate multiple parallel threads. In contrast, in the baseline design, the array has a single

write access shared among all cells, hence writes are fully serialized.

The Grant Generators have the same role and design as those in the baseline approach. They

receive the assignment record from the array and generate grants to external client and resource

151

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

channels. Whenever an assignment is recorded in the array, a pair of grants for the corresponding

client and resource channels is asserted simultaneously. On the other hand, the pair of grants is

de-asserted when the assignment is cleared.
7.6.2 Mapping Proposed Pipeline to the Design

The new static HC pipeline is used in multiple locations in the overall design, with variations on

the basic stucture. While two of the three major units in the structure, Client Winner Serializer and

Resource Winner Serializer, extensively apply the new pipeline technique, the Assignment Unit is

largely a parallel unit with no pipelining. The discussion now focuses on the three-stage pipeline

within the Client Winner Serializer, as an example. The other serializer has similar structure.

In the pipeline, the middle and right stages largely make direct use of the new static HC pipeline,

while the left stage is a special case, interfacing to the clients, where a simpler protocol can be used.

The left stage is effectively a parallel to series protocol converter: its pipeline register, Masking/De-

Coupling Unit, interfaces between the slower external handshaking operation on the multi-channel

parallel client interface (i.e. which maintain persistent access to a resource during the entire utiliza-

tion phase) and the fast handshaking operation required with the serial N-way arbiter of the stage.

Fundamentally, each client channel interface has separate control. A conservative communication

protocol is selected for each control slice of this stage, with two backwards synchronization arcs,

since high-throughput is not required for the interface with each client channel. This protocol is

known as Williams’ PS0 protocol [166, 239].

The middle stage is a simple Pipeline Register. It directly uses a copy of the static HC pipeline

stage, with a small modification. In particular, since the left stage uses a PS0 protocol, the left ac-

knowledgment from the middle stage provides two backwards synchronization arcs, with simplified

control. As a result, the left CD of the middle stage is eliminated.

The right stage is not a simple operator, but rather a multi-token circular FIFO. It is funda-

mentally a static HC stage, but with multiple output channels, which allow parallel access to the

Assignment Unit. Therefore, the static HC control is basically copied for each FIFO slot, with

partially merged control.

152

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

7.6.3 Operation

The operation of the proposed multi-resource arbiter is now illustrated by two scenarios: (i) a

friendly case to show the basic operation, where there is only a single client request and a sin-

gle available resource; (ii) a bursty case where all client requests arrive within a small time window

while all resources are available. The latter scenario shows how the client-resource pairs can be

selected rapidly in sequence and assignments are completed in parallel with overlap.

Friendly Scenario

Without loss of generality, the client and resource requests are assumed to arrive both on channel

#0. Initially, all handshaking signals are de-asserted low, the two single-resource arbiters are reset,

and the two queues are empty. The cell array stores 0s in all cells.

Assume the resource request arrives first, with asserting resource req0 high. It is immedi-

ately forwarded by the default-transparent Masking/De-Coupling Unit, and then requests the M-

way arbiter (i.e. client r0 asserted high) and wins the arbitration (i.e. client g0 asserted high).

The Pipeline Register then captures the winner, and asserts its acknowledge high back to the

Masking/De-Coupling Unit, which in turn releases the M-way arbiter (i.e. enters reset phase). In

parallel, the winner is also forwarded to, and stored in, the Resource Queue. The queue imme-

diately outputs the winner to the Assignment Unit (by asserting a valid output data high) and the

Select Unit0 is partially enabled. The queue also asserts its acknowledgment to the Pipeline Reg-

ister. Eventually, a client request arrives, which follows a similar procedure, and the client queue

likewise outputs the winner on its top channel.

Next, the select and commit operations are performed. In particular, Select Unit0 synchronizes

the client and resource winners, and generates the winner pair’s ID (i.e. select pair0 ID is asserted

and becomes valid), which is sent to the Write Destination Decoder. The decoder translates the

pair into the unique output channel to the array, which is attached to the corresponding assignment

cell. A ‘write request’ is immediately asserted high to Cell00. The assignment is then recorded

in the array by writing a 1 into the cell. At this point, all activated channels in the Assignment

Unit already have asserted their requests high without receiving an acknowledgment (i.e. client-

/resource-winner0 channels, select-pair0 channel, and the input channel to cell00).

After completing the cell write, two threads occur concurrently: (i) cell00 broadcasts the new

153

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

stored value to both Grant Generators, resulting in external grants asserted high for both active

client and resource channels; and (ii) an acknowledgment is sent backwards from the assignment

cell to the two queues (via the decoder and the select units). At this point, all related channels

indicated above complete the active phase of their 4-phase handshaking. The occupied slots in both

queues are first cleared (i.e. freed up); the select unit and the decoder are then reset in serial order.

Finally, after an arbitrarily long time, the client and resource each finish their utilization phases.

The assignment is then released. The external requests, client req0 and resource req0, are both de-

asserted low, which can occur in any order. These two de-asserted requests are directly forwarded to

Cell00, which is cleared (i.e. 0 is written). The two external grants are then de-asserted accordingly.

Bursty Scenario

In this more complex scenario, as there are four client requests and three available resources, three

assignments are completed. Each assignment is similar to the friendly case, but with significant

overlap of operation.

First, the three resource requests arrive in any order, informing their availability, with no client

requests presented. These three resources are stored into the resource queue, loosely depending on

their arrival time. They are placed onto different output channels of the FIFO, in order from top to

bottom, and in turn partially enable the three Select Units. Next, four client requests arrive almost

simultaneously. Similar to the resources, the first three client winners are stored into the client

queue, quickly one after the other, and sent out on different output channels, while the fourth must

wait at the input of the queue. As soon as each client winner appears on the output of the queue, the

corresponding Select Unit is fully enabled and the selection proceeds as in the friendly case. The

three selections occurs in sequence, since the Select Units receive requests in order; however, the

hardware units are actually decoupled, hence in practice the operations may in fact overlap.

Finally, commit operations occur for these multiple assignments. Unlike the baseline, the design

allows fully-parallel access to the array, and the commits can all occur concurrently, including cell

writes and external grant generation. Each separate thread observes the same protocol as for the

friendly case.

154

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

7.6.4 Details for Sub-Modules

This sub-section provides further implementation details of each sub-module shown in the design

structure.

7.6.4.1 Masking/De-Coupling Unit

Fig. 7.7 introduces the Masking/De-Coupling Unit for the client side. The unit is a decoupled and

customized register. It decouples the long-term handshaking protocol with the client interface, from

the rapid handshaking and release of the arbiter. The design takes multiple client requests as inputs

from left, and has a single output channel to the right. The arbiter can receive multiple competing

input requests, as desired.

A detailed individual element is shown in Fig. 7.7(b) for one of the client input channels. The

element is initially transparent. After the client request arrives and passes through, the latch becomes

opaque. When the output request wins the mutex and the winner being stored by the Pipeline

Register, the element is acknowledged, and forces a reset on its own output, thereby releasing the

arbiter and allowing another client to win. There are two pre-conditions for the element to become

transparent again (i.e., evaluate phase), which occur in order: (i) the right acknowledgment is de-

asserted when the corresponding winner is safely stored into the FIFO; and (ii) the external client

request goes low, after the resource is assigned, used, and finally released.

7.6.4.2 Pipeline Register

The Pipeline Register, as shown in Fig. 7.8, is a normal static HC register with simplification. As

discussed before, the left part of the control and left CD are deleted, and a more conservative PS0-

style acknowledgment is sent to the left.

7.6.4.3 Client and Resource Winner Queues

The two queues are implemented as circular FIFOs to store the client and resource winners, respec-

tively. The FIFO is serial-in-parallel-out, allowing data immediately to appear on the output channel

after it is stored into the queue. It is fundamentally a static HC stage, interfacing with multiple out-

put channels in a round-robin fashion. It is also the key component to create parallel threads for

155

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

client_req0

In
p

u
t

cl
ie

n
t

re
q

u
e

st
s

O
u

tp
u

t
ch

an
n

e
l:

to

 t
h

e
 a

rb
it

ra
ti

o
n

 s
ta

ge

D Q
client_req0

C
en

rst

ack0

client_

mutexreq0

(a)

client_req0

client_

mutexreq0

ack0

(c)

Masking/De-Coupling

Element 0
ack0

client_mutexreq0

client_req1
Masking/De-Coupling

Element 1 ack1

client_mutexreq1

client_req2
Masking/De-Coupling

Element 2 ack2

client_mutexreq2

client_req3
Masking/De-Coupling

Element 3 ack3

client_mutexreq3

ack4

(b)

Figure 7.7: Masking/de-coupling unit:

(a) structure; (b) implementation; (c) timing diagram

D Q

Datain [0:3]

en

rst
ackin

Dataout [0:3]

In
p

u
t

ch
an

n
e

l:
fr

o
m

 a
rb

it
ra

ti
o

n
 s

ta
ge

4

REG

ackout O
u

tp
u

t
ch

an
n

e
l:

to
 c

ir
cu

la
r

FI
FO

data_valid

4

4

4

CD

Figure 7.8: Pipeline register

156

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

R

E

G
rst

rst

Datain

Write

Ctl

en

en

en

ackout0

ackout1

ackout2

ackout

Write Counter
Write Ptr (1-hot)

Dataout0

Dataout1

Dataout2

ackin0
ackin1
ackin2

In
p

u
t

ch
an

n
e

l:

fr
o

m
 ‘P

ip
el

in
e

R
eg

is
te

r'

O
u

tp
u

t
ch

an
n

e
ls

:
to

 ‘A
ss

ig
n

m
en

t
U

n
it

’

clk

fu
ll

/

em
p
ty

2

D
at

ai
n
_

v
al

id

full/empty

ackin

en

write_ptr

Ack

Generator

ackout

Datain_valid

DQ
ackout

C
en

rst

Datain_valid

full/

empty

(a)

(b)

R

E

G

rst

R

E

G

CD

CD

CD

fu
ll

/

em
p
ty

1

Write

Ctl
full/empty0

CD

Write

Ctl

Figure 7.9: Client winner queue: (a) structure; (b) implementation for ‘write control’

client-resource selections.

The structure of the queue is shown in Fig. 7.9. The design is modified from a non-parallel-out

transition-signaling circular FIFO proposed in [80]. The data registers, implemented by D-latches,

are storage elements. The Write Counter outputs a round-robin 1-hot pointer to select an active

register to write.

A write operation starts when a new data arrives at the input channel. The data register is default-

open, and the data immediately passes through. The state of the slot is changed to ‘full’, and the

register is closed with an acknowledgment asserted to the left. The input channel then completes

157

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

the reset phase of the four-phase protocol without other synchronization, during which the write

pointer is moved to the next slot. The register will open again when the following two conditions

hold: (i) the pointer selects the slot again; (ii) the data is read out.

A read operation simply starts as soon as a new data is stored into the FIFO. A read request is

put onto on the output channel. When the entire four-phase handshaking is completed on the output

channel, the data is read out. The state of slot is also changed back to ‘empty’.

7.6.4.4 Select Unit

Each Select Unit synchronizes a pair of client and resource winners and makes the final selection

of the pair. The unit actually has no logic inside: the two input winner IDs (each using a 1-hot DI

code) are concatenated to form a selected-pair ID, which is a new DI code, and sent on the output

channel. The acknowledgment input is simply forked and broadcast to the two serializers.

7.6.4.5 Write Destination Decoder

The detailed implementation of the Write Destination Decoder is shown in Fig. 7.10. The unit

translates each selection result to an output channel activation. Whenever a selection result arrives

at any of the three input channels, a write request is immediately placed onto the associated output

channel for the pair. The unit allows up to three parallel decoding operations. Decoded cell desti-

nations never overlap, since the pending clients are never paired to the same resource, or vice versa.

In practice, however, decoding is very fast, and thus each request is completed without overlapping.

The unit contains twelve Req Generators (one for each output channel) and three Ack Genera-

tors (one for each input channel), and effectively serves as a crossbar. A Req Generator detects a

distinct client-resource pair, which can arrive from any of the input channels. The Req Generator

also routes the acknowledgment from the output channel back to the source input channel. Each

Ack Generator, in turn, merges those directed acknowledgments from all Req Generators.

7.6.4.6 Individual Cell of the Array

An individual cell, shown in Fig. 7.11, is a single-bit memory, and stores the ‘assignment state’ for

a particular client-resource pair. The unit receives a four-phase input channel from the Decoder,

and two direct inputs of the entire arbiter design: the external client and resource requests, which

158

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

cl
ie

n
t_

w
in

n
er

0

[0
:3

]

4 3

re
so

u
rc

e_
w

in
n

er
0

[0
:2

](1
-h

o
t)

(1
-h

o
t)

select-pair0 ackout0

C C C

demux
sel

cl
ie

n
t_

w
in

n
er

0
 [

0
]

re
s_

w
in

n
er

0
 [

0
]

reqout00 ackin00

To cell00

. . .

. . .

From ‘Select Unit0'

cl
ie

n
t_

w
in

n
er

1
 [

0
]

re
s_

w
in

n
er

1
 [

0
]

cl
ie

n
t_

w
in

n
er

2
 [

0
]

re
s_

w
in

n
er

2
 [

0
]

Ack
Generator 0

Req
Generator 00

C C C

demux
sel

cl
ie

n
t_

w
in

n
er

0
 [

0
]

re
s_

w
in

n
er

0
 [

1
]

reqout01 ackin01

To cell01

cl
ie

n
t_

w
in

n
er

1
 [

0
]

re
s_

w
in

n
er

1
 [

1
]

cl
ie

n
t_

w
in

n
er

2
 [

0
]

re
s_

w
in

n
er

2
 [

1
]

Req
Generator 01

C C C

demux
sel

cl
ie

n
t_

w
in

n
er

0
 [

3
]

re
s_

w
in

n
er

0
 [

2
]

reqout32 ackin32

To cell32

cl
ie

n
t_

w
in

n
er

1
 [

3
]

re
s_

w
in

n
er

1
 [

2
]

cl
ie

n
t_

w
in

n
er

2
 [

3
]

re
s_

w
in

n
er

2
 [

2
]

Req
Generator 01

cl
ie

n
t_

w
in

n
er

1

[0
:3

]

4 3

re
so

u
rc

e_
w

in
n

er
1

[0
:2

](1
-h

o
t)

(1
-h

o
t)

select-pair1 ackout1

From ‘Select Unit1'

Ack
Generator 1

. . .

cl
ie

n
t_

w
in

n
er

2

[0
:3

]

4 3

re
so

u
rc

e_
w

in
n

er
2

[0
:2

](1
-h

o
t)

(1
-h

o
t)

select-pair2 ackout2

From ‘Select Unit2'

Ack
Generator 2

. . .

{ {{
Figure 7.10: Write destination decoder

C
(= stored data)

write_req

client_req

resource_req

write_ack

H

Broadcast to
two ‘Grant Generators'

Direct inputs of the
entire arbiter design

From ‘Write
Destination Decoder'

{

{

Figure 7.11: Individual cell implementation

159

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

are associated with the assignment pair. The output is the single-bit data stored by the cell. The

cell is considerably simplified when compared to the baseline design, since the selection operation

is extracted out, and blocking capability is no longer needed and therefore deleted.

There are only two cell operations, ‘write’ and ‘clear’, which must strictly alternate. In a ‘write’,

the assignment is recorded by writing a 1 into the cell. The client and resource requests are first

asserted high in any order, followed by a write request asserted high. The cell is then written, and

acknowledges the decoder unit. The cell value is also broadcast to both grant generators to grant the

active external client and resource channels. Finally, the input channel completes the reset phase of

the handshaking protocol with the decoder. On contrary, a ‘clear’ operation writes a 0 into the cell.

The event occurs when the external client and resource channels each release the assignment. The

two external release requests, i.e. client/resource requests de-asserted, communicate directly with

the cell, which is then cleared.

7.7 Timing Analysis

The proposed asynchronous multi-resource arbiter involves a few simple pipeline-related timing

constraints. In contrast, the Assignment Unit has entirely QDI1 operation, with largely a sequential

protocol on parallel threads. Since the left and right pipelined units basically use a static HC pro-

tocol, most timing constraints are directly transformed from those in HC dynamic pipeline [202].

Also, timing constraints on the N-way arbiters are already listed in [148]. The baseline approach,

presented in [85], also has several one-sided timing constraints; however, these are not explicitly

identified in this chapter.

The new design has three pipeline stages. Two of them, the linear Pipeline Register and a

circular FIFO, largely operate as HC style, and have similar timing constraints. The Masking/De-

Coupling Unit is a non-standard pipeline element, and operates differently. The timing constraints of

the Pipeline Register and the circular FIFO will be discussed, while the constraints of Masking/De-

Coupling Unit, which are similar and much easier to satisfy in practice, will be omitted.

1Quasi-delay insensitive (QDI) is a type of robust asynchronous design style. QDI circuits operate correctly as-

suming arbitrary gate delays, but all wires at each fanout point must have roughly equal delays, i.e. an isochronic fork

assumption [141, 166].

160

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

Timing constraints for Pipeline Register

(i) Hold time. After data passes through the pipeline register, there is a race between two events:

(a) the closing of the latch to safely store the data, needs to occur earlier than (b) data reset on the

input channel. Since (a) is a local operation for the register control only involving two logic gates,

while (b) contains a round-trip communication with the left arbitration stage to release the arbiter,

the constraint can typically be simply satisfied.

(ii) Register re-open time. After data goes through the pipeline register, there is another race

between two events: (a) the data reset on the input channel, needs to occur earlier than (b) data is

stored downstream and the current register is re-opened. Otherwise, a stale data item will be stored.

In practice, event (b) requires a complete four-phase communication (i.e. 2 round-trips) with the

FIFO stage, while (a) only has a fast arbiter reset operation, as in (i). The timing constraint can also

be simply satisfied.

Timing constraints for circular FIFO

This stage also includes the above two timing constraints, as well as an additional constraint.

(iii) Write pointer update. A race starts right after the input channel resets the data, between two

events: (a) the write pointer is moved to the next slot, which needs to occur earlier than (b) new data

arrival on the input channel, otherwise, the new data will be stored into the same FIFO slot. The

constraint can be easily satisfied, because the pointer update involves only a local simple operation

through the Write Counter, while a round-trip communication with the left stage is required for a

new data to arrive.

7.8 Experimental Results

Detailed evaluations are now presented for the new asynchronous multi-resource arbiters. Results

are obtained for two different sizes, 4×3 and 8×4. Each of the proposed arbiters is compared to the

baseline non-pipelined design with the same size [85], in terms of area, performance and robust-

ness. Both technology-mapped implementations are at pre-layout level, using the same standard

cell library, for fair comparison.

These two design points are carefully selected. The 8×4 arbiter is substantially larger than the

161

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

4×3 one, with more complicated bookkeeping for concurrent assignments. Also, they are funda-

mentally different arbiter classes. The 4×3 arbiter has similar number of clients and resources,

while the 8×4 arbiter has many clients with few resources. Finally, with two design points, a flavor

of scaling trends can be observed.

7.8.1 Experimental Setup

All arbiter designs, the two baseline and two new designs, are mapped using the FreePDK 45nm

Nangate library. Analog mutual exclusion elements (mutexes) are implemented with a combination

of two NAND2 gates and four transistors [183]. The remaining parts of the designs use standard

cells. The asynchronous sequential C-elements and aC-elements are implemented using combina-

tional gates with feedback. Results are obtained using the Spectre simulator in the Cadence Virtuoso

environment at a typical design corner with nominal temperature and supply voltage (1.0V, 27◦C).

7.8.2 Simulation Results

Area Comparison

Pre-layout areas are compared for the baseline vs. new arbiters, at both design points. The final

layout area is estimated by summing up the raw cell areas and dividing by a packing factor of 0.8.

For 4×3 arbiters, the baseline design has an area of 398.3µm2, while the new arbiter occupies

667.7µm2. A 67.6% increase of area is observed for the 4×3 arbiter size. For 8×4 arbiters, the

baseline and new designs have an area of 868.2µm2 and 1271.5µm2, respectively. The area over-

head of the new approach becomes less: only 46.5%. However, for both design points, the absolute

area overhead is quite small. As an application example – an asynchronous SDM NoC [208] –, the

multi-resource arbiter is estimated to occupy one order of magnitude smaller area than the router in

which it is used.1

More insight is gained by focusing on the cell array, which is the core component of both

baseline and new designs. The NxM array is the only quadratic area contributor (i.e. growing with

NxM). Interestingly, the new array has significantly smaller area than the baseline: 174.8 vs. 213.9

1According to the implementation in [105], a basic asynchronous router has an area of 5081.4 µm2, while

the new arbiter area is only 667.7 µm2 using a similar technology library.

162

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

Table 7.1: Average latency comparison (ps)

Baseline

New

1
st
 assignment Average

 552

 544 1397

 1112 1110

 968

 1673

 970

Latency

2
nd

 assignment 3
rd

 assignment
Average

improvement

12.8%
 N/A

 N/A

4
th

 assignment

4x3
Arbiter

Baseline

New

 710

 687 1758

 1975 1558

 1217

 2401

 1492
24.5%

 2305

 32298x4
Arbiter

µm2, respectively, for the 4×3 arbiters; and 456.0 vs. 570.3 µm2, respectively, for the 8×4 arbiters.

In order not to overstate the benefits, the array area of the new design also includes its periphery (i.e.

the decoder). This area improvement is stable: 18.2% (4×3) and 20.0% (8×4). Since the remaining

components in baseline and new arbiters grow only linearly in area, a smaller array provides better

scalability for larger arbiter sizes, as the size of the array will eventually dominate the entire design

area. Therefore, it is expected that the overall area overhead of the new approach will become even

smaller beyond the 8×4 design point.

Zero-Load Latency

In order to obtain zero-load latency results, each arbiter is set up with no client requests while all

resources are available. Latency is then calculated from the arrival of a client request to the assertion

of the client grant. Comparable results are observed for baseline and new approaches at both design

points. For 4×3 arbiters, the baseline has a latency of 555 ps, while the new arbiter has a result

of 537 ps. For 8×4 arbiters, the latencies are 712 ps and 689 ps, for baseline and new designs,

respectively. Interestingly, in spite of the overhead of fine-grain pipelining, the proposed approach

obtains slightly better latency. This is largely due to the deletion of ‘blocking’ from the critical path

of assignment commitment.

Average Latency: Bursty Client Requests

Table 7.1 shows the average latency when a burst of client requests arrives. The arbiter starts with no

client requests and all available resources. All client requests then arrive within a small time frame,

and three assignments are successively completed. The latency of each assignment is recorded and

163

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

Table 7.2: Cycle time comparisons (ps)

Case #1:

back-to-back assignments

Case #2:

congestion scenario

Baseline New Improvement

 591

 789

 452

 742

 23.5%

 6.0%

Baseline New Improvement

 887

 1059

 566

 1024

 36.2%

 3.3%

4x3 Arbiter 8x4 Arbiter

the average is taken. The scenario examines an adversarial case where the arbiter needs to complete

many resource allocations at its maximum rate.

The new 4×3 arbiter shows a moderate improvement of 12.8%, when compared to the 4×3

baseline design. When the arbiter size grows, a larger relative improvement of 24.5% is observed

for the new 8×4 arbiter, when compared to its corresponding baseline approach. As shown in the

table, for each of the design points, the baseline and new designs have similar latencies for the first

assignment, because the first one is largely the same as the zero-load case, and the baseline and new

arbiters have comparable zero-load performances. However, latency differences increase rapidly as

more assignments being tested. The reason is that the new arbiter allows back-to-back assignments

to overlap and be performed in parallel, while the baseline design only allow serial operation.

Cycle Time #1: Back-to-Back Assignments

Cycle times for back-to-back assignments are shown in Table 7.2. The benchmark shows the max-

imum rate for assignment completion, which can be directly translated to throughput performance.

The same benchmark is performed as in the ‘average latency’ case. The metric is the time interval

between two consecutive assignments being granted. The new arbiters show large improvement for

both 4×3 and 8×4 design points: 23.5% and 36.2%, respectively, over the baseline designs. The

result again validates the benefits of fine-grain pipelining.

Discussion: separating the benefits of pipelining vs. parallelism. Each of the two techniques

used in the proposed design, pipelining and parallelism, has its own benefits. The pipelining tech-

nique decouples the winning of arbitration from the actual assignment operation. The client and

resource winner pairs are therefore provided to the middle assignment unit at a very fast rate. Com-

pared to the baseline design, when there are multiple active requests, the overhead of winner arbi-

164

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

tration is removed from the critical path. The parallelism technique further enables the assignment

unit a faster rate of absorbing winner pairs. This is because each assignment operation is still much

slower than the rate of winner pair generation. Each selected pair is now absorbed as soon as it ar-

rives. By combining the two techniques, pipelining and parallelism, the throughput is now entirely

determined by the rate of pair selection.

Cycle Time #2: Congestion Scenario

Finally, cycle time is obtained for a typical congestion scenario, also as shown in Table 7.2. During

setup, all the clients and resources are busy: a maximum number of assignments (e.g. three in 4×3

arbiters and four in 8×4 arbiters) are already completed, and an extra client is waiting. The time is

computed from when an assignment is released to when the same resource is allocated to the waiting

client. The new arbiters show slightly better cycle time, by 6.0% and 3.3%, respectively, for two

different design points, 4×3 and 8×4. It is understandable, because the scenario only involves one

assignment, and effectively is a variant of a zero-load latency scenario, while the proposed pipeline

technique requires multiple overlapping operations to exhibit its benefits.

The ‘congestion scenario’ actually has a dual case: a single active client channel with back-to-

back sequential requests, and all resources are available. In this case, we also expect similar and no

worse cycle time results for the new approach over the baseline.

Robustness: Grant-Overlapping Problem

A robustness challenge for arbiters has been identified as the grant-overlapping (GO) problem [148],

where a new grant may be illegally asserted before the previous grant has been de-asserted. Such

behavior is a specification violation, though in some environments it can be safely tolerated. The

problem, previously defined for single-resource arbiters, can be simply extended to multi-resource

designs, for each individual resource: where two distinct grants can briefly overlap with identical

resource ID. However, GO exists for neither the baseline nor the new design. In both arbiters,

a resource needs to proactively inform the arbiter its availability every time after it is used and

released. This protocol thus provides a gap between two usages for the same resource and prevents

the GO problem.

165

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

7.8.3 Summary and Discussion of Scaling Trends

Overall, the new arbiter has significant performance benefits over the baseline. As a highlight, when

the arbiter size grows from 4×3 to 8×4, the cycle time improvement for processing back-to-back

assignments increases from 23.5% to 36.2%. The performance benefit of the new approach comes

from two factors. First, the two pipelined serializers (client and resource) allow high-rate back-to-

back arbitration of the input streams, decoupled from the operation of the assignment unit, unlike

the baseline. Second, the assignment unit is instrumented for parallel (i.e. overlapping) operation,

hence it can process multiple back-to-back assignments simultaneously, also unlike the baseline.

Interestingly, the performance improvement increases with larger number of clients and resources,

since the larger arbiters and assignment unit in the baseline become a greater serial bottleneck, while

the new design maintains decoupled pipelined arbitration and concurrent assignment.

In terms of area, the new arbiter has moderate overhead compared to baseline: 67.6% (4×3)

and 46.5% (8×4). However, as indicated earlier, the absolute area of the arbiter is quite small: only

403.3 µm2 for the larger 8×4 size. In addition, it typically occupies only a small fraction of area of

a NoC switch. In terms of scaling trends, the quadratic array is always smaller in the new design,

and its size starts to dominate in larger arbiters (see earlier), leading to continued area overhead

reduction as the size increases. These encouraging trends strongly indicate that beyond the 8×4

design point, the new arbiter will have a even better performance gain with a smaller overhead.

Also, the new approach is overall suitable for a wide range of arbiter classes.

7.9 Conclusions and Future Work

The chapter introduces a new asynchronous multi-resource arbiter. The proposed design targets

high-throughput by using a fine-grain pipeline protocol. The client-resource pairs are now selected

rapidly in sequence, and multiple back-to-back assignments can largely overlap. The proposed ar-

biter is simple and highly scalable, which can be simply extended to a design with arbitrary numbers

of clients and resources. It can be directly used in existing asynchronous NoC’s for performance

optimization. In addition, the well-structured stand-alone design promises its future use in SDM

NoC’s, which opens up new NoC directions. In addition, a new static four-phase asynchronous

pipeline is introduced, with only a single backwards synchronization arc per cycle, and has been

166

CHAPTER 7. A HIGH-THROUGHPUT ASYNCHRONOUS MULTI-RESOURCE ARBITER

successfully incorporated into the microarchitecture. The results are obtained for two new arbiters

with different sizes, 4×3 and 8×4. Large improvements in throughput are observed at both design

points, when the new design is compared to the corresponding baseline serial approach.

In terms of future work, the proposed asynchronous multi-resource arbiter will be deployed

in real asynchronous NoC’s, either for VC allocation or SDM area. Also, it will be integrated and

tested in a variety of other applications, e.g. asynchronous Multiple-Input-Multiple-Output (MIMO)

queues and asynchronous RAID storage systems, to prove its high-quality as a stand-alone design.

167

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis presented a set of design solutions for performance optimization and evaluation of asyn-

chronous on-chip interconnection networks, in order to significantly advance the state-of-art and

prove the viability of asynchronous and GALS networks-on-chip, for the use of high-performance

and low-energy systems. The contributions are instantiated in three ways. First, practical acceler-

ation techniques are proposed to focus on optimizing the system latency, in order to break through

the latency bottleneck in the memory interfaces of many on-chip parallel processors. While these

novel acceleration technologies lift the network performance considerably, the designs are very cost

efficient in terms of both area and power. Second, an advanced high-performance and low-power

asynchronous router is instantiated and validated using a leading industrial technology library, in

collaboration with AMD Research. And for the first time, an asynchronous router design is com-

pared to a commercial energy-efficient synchronous NoC baseline in an advanced technology, i.e.

14nm FinFET. Finally, a high-performance multi-resource asynchronous arbiter design is devel-

oped. This small but important component can be directly used in existing asynchronous NoC’s for

performance optimization. In addition, the well-structured stand-alone design promises its future

use in opening up new NoC directions.

Latency acceleration for asynchronous NoC’s. A new concept, named a monitoring network,

168

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

is introduced. Monitoring networks are lightweight shadow networks used for fast-forwarding an-

ticipated traffic information. The routers are notified with incoming traffic in the near future, and

therefore allowed to initiate and perform arbitration and channel allocation in advance. Correspond-

ing NoC designs are proposed to implement the protocol. The technique is successfully applied to

two network topologies which belong to two different categories – a mesh-of-trees (MoT) variant

structure and a 2D-mesh structure. The solution has only small overhead, without creating an ex-

tra network plane; nor extra VCs are needed. Considerable and stable latency improvements are

observed in all kinds of traffic patterns, with moderate throughput gains.

An industrial instantiation for a high-performance and low-power asynchronous router. The

work was completed and in collaboration with AMD Research, which provides an industrial imple-

mentation of an asynchronous NoC router in a leading technology. The proposed router integrates

several advanced techniques, including a low-latency circular FIFO for buffer design, and a novel

end-to-end ‘lazy’ credit-based virtual channel (VC) flow control. This asynchronous router is then

compared to an AMD commercial synchronous router using a realistic 14nm FinFET library. This

is the first such comparison, to the best of our knowledge, for an asynchronous router vs. an indus-

trial synchronous baseline using an advanced technology library. The synchronous design is used

in recent high-end AMD processors and graphic products. In addition, a semi-automated design

flow is created for the asynchronous router design. In particular, industrial tools are used for place-

and-route (P&R) and design validation. These tools are modified from a standard synchronous

design flow and therefore open real future opportunities for industrial asynchronous NoC designs.

Significant benefits in terms of area, latency and power were obtained.

A pipelined high-throughput asynchronous multi-resource arbiter. Finally, a new fine-grain

pipelined asynchronous multi-resource arbiter is proposed. This is an understudied but important

research area. Multi-resource arbitration is used in existing asynchronous NoC’s for VC allocation.

Also, it serves as a key component for a potential future NoC direction – spatial-division multiplex-

ing (SDM) NoC’s. Besides the NoC applications, it can be treated as a great stand-alone design for

future large-scale parallel systems. The new arbiter design aims for high throughput while retains a

low latency. The allocation of a resource to a client is divided into several steps. Multiple successive

client-resource pairs can be selected rapidly in sequence, and the completion of the assignments can

overlap in parallel.

169

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2 Future Work

There are a few potential areas for future work.

Post-layout evaluation and fabrication. Most of the designs in this thesis, including the early

arbitration NoC’s in Chapters 4 and 5, as well as the arbiter design in Chapter 7 are implemented

and evaluated only at pre-layout level. In order for more accurate results and comparisons for the

performance and power of the designs, full layout and possibly fabrication are required.

Build complete GALS systems. This thesis only focuses on the NoC itself. The designs are ei-

ther for the interconnection networks only (Sections 4, and 5), or for individual routers (Section 6)

and the router’s sub-components (Section 7). The next step is to use these networks and compo-

nents as the communication fabric to build complete GALS systems. These GALS systems can be

high-performance chip multiprocessors (CMP’s) or lower-power embedded systems. Mixed-timing

interfaces typically need to be implemented and added to connect the synchronous cores with the

network-on-chip. In the performance comparison, the synchronization overhead will be thereby

taken into account, and results are closer to the reality.

Simulations on real parallel benchmark suites. In the near future, after a complete CMP

system is built, real benchmarks suites for parallel computing, such as PARSEC and SPLASH-2,

can be used for testing instead of synthetic benchmarks. These benchmarks are much closer to real-

world large-scale multi-threaded commercial applications, and therefore more accurate performance

and power numbers can be obtained.

Synthesis flow integration. In the next step, an automated design flow for NoC synthesis and

verification can be integrated. The lack of CAD tools is one of the key reasons to prevent asyn-

chronous style designs from industrial consideration. Our next step is to optimize the design flow

in Section 6, and integrate it with emerging tools [147], in order to bring our designs a step closer

to the industry.

Practical applications for the proposed multi-resource arbiter. The proposed asynchronous

multi-resource arbiter in Section 7 will be deployed in real asynchronous NoC’s, either for VC

allocation or SDM area. Also, it will be integrated and tested in a variety of other applications, e.g.

asynchronous Multiple-Input-Multiple-Output (MIMO) queues and asynchronous RAID storage

systems, to prove its high-quality as a stand-alone design.

170

BIBLIOGRAPHY

Bibliography

[1] A.B. Abdallah. Multicore systems on-chip: Practical software/hardware design. Atlantis

Press, 2013.

[2] A.K. Abousamra, R.G. Melhem, and A.K. Jones. Deja Vu switching for multiplane NoCs.

In Proceedings of the ACM/IEEE International Symposium on Networks-on-Chip (NOCS),

pages 11–18, 2012.

[3] N. Agarwal, T. Krishna, L.-S. Peh, and N.K. Jha. GARNET: A detailed on-chip network

model inside a full-system simulator. In Proceedings of the IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), pages 33–42, 2009.

[4] V. Akella, N.H. Vaidya, and G.R. Redinbo. Asynchronous comparison-based decoders for

delay-insensitive codes. IEEE Transactions on Computer Aided Design of Integrated Circuits

and Systems, 47(7):802–811, 1998.

[5] F. Akopyan, J. Sawada, A. Cassidy, R.A.-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Naka-

mura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J.B. Kuang, R. Manohar, W.P.

Risk, B. Jackson, and D.S. Modha. TrueNorth: Design and tool flow of a 65 mW 1 million

neuron programmable neurosynaptic chip. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 34(10):1537–1557, 2015.

[6] T. Amert, N. Otterness, M. Yang, J. Anderson, and F.D. Smith. GPU scheduling on the

NVIDIA TX2: Hidden details revealed. In Proceedings of the IEEE Real-Time Systems

Symposium (RTSS), pages 1–12, 2017.

171

BIBLIOGRAPHY

[7] R.M. Badia and J. Cortadella. High-level synthesis of asynchronous systems: Scheduling

and process synchronization. In Proceedings of European Conference on Design Automation

(EDAC), pages 70–74, 1993.

[8] J. Bainbridge and S. Furber. Chain: A delay-insensitive chip area interconnect. IEEE Micro,

22(5):16–23, 2002.

[9] W.J. Bainbridge, W.B. Toms, D.A. Edwards, and S.B. Furber. Delay-insensitive point-to-

point interconnect using M-of-N codes. In Proceedings of the IEEE International Symposium

of Asynchronous Circuits and Systems (ASYNC), pages 132–140, 2003.

[10] A.O. Balkan, M.N. Horak, and U. Vishkin. Layout-accurate design and implementation

of a high-throughput interconnection network for single-chip parallel processing. In IEEE

Symposium on High-Performance Interconnects (HOTI), pages 21–28, 2007.

[11] A.O. Balkan, G. Qu, and U. Vishkin. An area-efficient high-throughput hybrid interconnec-

tion network for single-chip parallel processing. In Proceedings of the ACM/IEEE Design

Automation Conference (DAC), pages 435–440, 2008.

[12] A. Bardsley and D.A. Edwards. The Balsa asynchronous circuit synthesis system. In Forum

on Design Languages, 2000.

[13] P. Beerel, G.D. Dimou, and A.M Lines. Proteus: An ASIC flow for GHz asynchronous

designs. IEEE Design and Test, 28(5):38–51, 2011.

[14] P. Beerel and T.H.-Y. Meng. Automatic gate-level synthesis of speed independent circuits.

In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (IC-

CAD), pages 581–587, 1992.

[15] P.A. Beerel, R.O. Ozdag, and M. Ferretti. A Designer’s Guide to Asynchronous VLSI. Cam-

bridge University Press, 2010.

[16] E. Beigne, F. Clermidy, S. Miermont, and P. Vivet. Dynamic voltage and frequency scaling

architecture for units integration within a GALS NoC. In Proceedings of the ACM/IEEE

International Symposium on Networks-on-Chip (NOCS), pages 129–138, 2008.

172

BIBLIOGRAPHY

[17] L. Benini, E. Flamand, D. Fuin, and D. Melpignano. P2012: Building an ecosystem for a

scalable, modular and high-efficiency embedded computing accelerator. In Proceedings of

the IEEE Design, Automation and Test in Europe (DATE), pages 983–987, 2012.

[18] L. Benini and G. De Micheli. Networks on chip: A new SoC paradigm. IEEE Transactions

on Computers, 35(1):70–78, 2002.

[19] I. Benko and J. Ebergen. Delay-insensitive solutions to the committee problem. In Proceed-

ings of the IEEE International Symposium of Asynchronous Circuits and Systems (ASYNC),

pages 228–237, 1994.

[20] K. Bergman, L.P. Carloni, A. Biberman, J. Chan, and G. Hendry. Photonic network-on-chip

design. Springer, 2014.

[21] D. Bertozzi and L. Benini. Xpipes: A network-on-chip architecture for gigascale systems-

on-chip. IEEE Circuits and Systems Magazine, 4(2):18–31, 2004.

[22] D. Bertozzi, L. Benini, and G. De Micheli. Error control schemes for on-chip communica-

tion links: The energy-reliability tradeoff. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 24(6):818–831, 2005.

[23] E. Bezati, S.C. Brunet, M. Mattavelli, and J.W. Janneck. Coarse grain clock gating of stream-

ing applications in programmable logic implementations. In Proceedings of the IEEE Elec-

tronic System Level Synthesis Conference (ESLsyn), pages 1–6, 2014.

[24] K. Bhardwaj, W. Jiang, and S.M. Nowick. Achieving lightweight multicast in asynchronous

NoCs using a continuous-time multi-way read buffer. In Proceedings of the ACM/IEEE

International Symposium on Networks-on-Chip (NOCS), pages 1–8, 2017.

[25] G. Birtwistle and A. Davis. Asynchronous Digital Circuit Design. Workshops in Computing,

Springer-Verlag, 1995.

[26] T. Bjerregaard and S. Mahadevan. A survey of research and practices of network-on-chip.

Journal of ACM Computing Surveys, 38(1):1–51, 2006.

173

BIBLIOGRAPHY

[27] T. Bjerregaard and J. Sparsoe. A router architecture for connection-oriented service guar-

antees in the MANGO clockless network-on-chip. In Proceedings of the IEEE Design, Au-

tomation and Test in Europe (DATE), pages 1226–1231, 2005.

[28] P. Bogdan, R. Marculescu, S. Jain, and R.T. Gavila. An optimal control approach to power

management for multi-voltage and frequency islands multiprocessor platform under highly

variable workloads. In Proceedings of the ACM/IEEE International Symposium on Networks-

on-Chip (NOCS), pages 35–42, 2012.

[29] P. Bogdan, R. Marculescu, S. Jain, and R.T. Gavila. An optimal control approach to power

management for multi-voltage and frequency islands multiprocessor platforms under highly

variable workloads. In Proceedings of the ACM/IEEE International Symposium on Networks-

on-Chip (NOCS), pages 21–28, 2012.

[30] P. Bogdan, P.P. Pande, M.H. Amrouch, and J.H. Shafique. Power and thermal management in

massive multicore chips: Theoretical foundation meets architectural innovation and resource

allocation. In Proceedings of the IEEE International Conference on Compliers, Architectures

and Synthesis of Embedded Systems (CASES), pages 1–2, 2016.

[31] E. Brunvand. Translating concurrent communicating programs into asynchronous circuits.

PhD thesis, School of Computer Science, Carnegie Mellon University, 1991.

[32] M. Cannizzaro, W. Jiang, and S.M. Nowick. Practical completion detection for 2-of-N delay-

insensitive codes. In Proceedings of the IEEE International Conference on Computer Design

(ICCD), pages 151–158, 2010.

[33] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti. Noxim: An open, extensible

and cycle-accurate network on chip simulator. In Proceedings of the IEEE International

Conference on Application-Specific Systems, Architectures and Processors (ASAP), pages

162–163, 2015.

[34] D.M. Chapiro. Globally-asynchronous locally-synchronous systems. PhD thesis, Department

of Computer Science, Stanford University, 1984.

174

BIBLIOGRAPHY

[35] G. Chen, M.A. Anders, H. Kaul, S.K. Satpathy, S.K. Mathew, S.K. Hsu, A. Agarwal, R.K.

Krishnamurthy, V. De, and S. Borkar. A 340 mV-to-0.9 V 20.2 Tb/s source-synchronous hy-

brid packet/circuit-switched 16x16 network-on-chip in 22 nm Tri-Gate CMOS. IEEE Journal

of Solid-State Circuits, 50(1):1444–1454, 2015.

[36] Y. Chen. Digital signal processing with signal-derived timing: analysis and implementation.

PhD thesis, Department of Electrical Engineering, Columbia University, 2017.

[37] Y. Chen, X. Zhang, Y. Lian, R. Manohar, and Y. Tsividis. A continuous-time digital IIR filter

with signal-derived timing, agile power dissipation and synchronous output. In Proceedings

of the IEEE Symposium on VLSI Circuits (VLSIC), pages C272–C273, 2017.

[38] Y. Chen, X. Zhang, Y. Lian, R. Manohar, and Y. Tsividis. A continuous-time digital IIR filter

with signal-derived timing and fully agile power consumption. IEEE Journal of Solid-State

Circuits, 53(2):418–430, 2018.

[39] W. Choi, K. Duraisamy, R.G. Kim, J.R. Doppa, P.P. Pande, R. Marculescu, and D. Mar-

culescu. Hybrid network-on-chip architectures for accelerating deep learning kernels on het-

erogeneous manycore platforms. In Proceedings of the IEEE International Conference on

Compliers, Architectures and Synthesis of Embedded Systems (CASES), pages 1–10, 2016.

[40] J.F. Christmann, E. Beigne, C. Condemine, N. Leblond, P. Vivet, G. Waltisperger, and

J. Willemin. Bringing robustness and power efficiency to autonomous energy harvesting mi-

crosystems. In Proceedings of the IEEE International Symposium of Asynchronous Circuits

and Systems (ASYNC), pages 62–71, 2010.

[41] W.A. Clark and C.E. Molnar. Macromodular computer systems. Computers in Biomedical

Research, 4:45–85, 1974.

[42] W.S. Coates, J.K. Lexau, I.W. Jones, S.M. Fairbanks, and I.E. Sutherland. FLEETzero: An

asynchronous switching experiment. In Proceedings of the IEEE International Symposium on

Advanced Research in Asynchronous Circuits and Systems (ASYNC), pages 173–182, 2001.

[43] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Complete

state encoding based on the theory of regions. In Proceedings of the IEEE International

175

BIBLIOGRAPHY

Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC), pages

36–47, 1996.

[44] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: A tool

for manipulating concurrent specification and synthesis of asynchronous controllers. IEICE

Transactions on Information and Systems, E80-D(3):315–325, 1997.

[45] J. Cortadella, A. Kondratyev, L. Lavagno, and C.P. Sotiriou. Desynchronization: Synthesis

of asynchronous circuits from synchronous specifications. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 25(10):1904–1921, 2006.

[46] W. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan

Kaufmann Publishers, Inc., 2003.

[47] W.J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel and Distributed

Systems, 3(2):192–205, 1992.

[48] W.J. Dally and C.L. Seitz. The torus routing chip. Distributed Computing, 1(4):187–196,

1986.

[49] W.J. Dally and B. Towles. Route packets, not wires: On-chip interconnection networks. In

Proceedings of the ACM/IEEE Design Automation Conference (DAC), pages 684–689, 2001.

[50] S. Das, J.R. Doppa, P.P. Pande, and K. Chakrabarty. Energy-efficient and reliable 3D

network-on-chip (NoC): Architectures and optimization algorithms. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–6, 2016.

[51] S. Das, A. Fan, K.-N. Chen, C.S. Tan, N. Checka, and R. Reif. Technology, performance, and

computer-aided design of three-dimensional integrated circuits. In Proceedings of the ACM

International Symposium on Physical Design (ISPD), pages 108–115, 2004.

[52] I. David, R. Ginosar, and M. Yoeli. An efficient implementation of boolean functions as

self-timed circuits. IEEE Transactions on on Computers, 41(1):2–11, 1992.

[53] I. David, R. Ginosar, and M. Yoeli. Self-timed is self-checking. Journal of Electronic Testing,

6(2):219–228, 1995.

176

BIBLIOGRAPHY

[54] R. David, P. Bogdan, R. Marculescu, and U. Ogras. Dynamic power management of voltage-

frequency island partitioned networks-on-chip using Intel’s single-chip cloud computer. In

Proceedings of the ACM/IEEE International Symposium on Networks-on-Chip (NOCS),

pages 1–2, 2011.

[55] M. Davies, A. Lines, J. Dama, A. Gravel, R. Southworth, G. Dimou, and P. Beerel. A

72-port 10G ethernet switch/router using quasi-delay-insensitive asynchronous design. In

Proceedings of the IEEE International Symposium of Asynchronous Circuits and Systems

(ASYNC), pages 103–104, 2014.

[56] A.L. Davis. The architecture and system method of DDM1: A recursively structured data

driven machine. In Proceedings of the ACM Annual Symposium on Computer Architecture

(ISCA), pages 210–215, 1978.

[57] A.L. Davis and S.M. Nowick. Asynchronous Circuit Design: Motivation, Background and

Methods. Chapter in Asynchronous Digital Circuit Design, G. Birtwistle and A. Davis editors,

Springer-Verlag (Workshops in Computing Series), pages 1–49, 1995.

[58] M.E. Dean, T.E. Williams, and D.L. Dill. Efficient self-timing with level-encoded 2-phase

dual-rail (LEDR). In Proceedings of the 1991 University of California/Santa Cruz Confer-

ence on Advanced Research in VLSI, pages 55–70, 1991.

[59] S. Deb, K. Chang, X. Yu, S.P. Sah, M. Cosic, A. Ganguly, P.P Pande, B. Belzer, and D. Heo.

Design of an energy-efficient CMOS-compatible NoC architecture with millimeter-wave

wireless interconnects. IEEE Transactions on Computers, 62(12):2382–2396, 2012.

[60] S. Deb, A. Ganguly, P.P. Pande, B. Belzer, and D. Heo. Wireless NoC as interconnection

backbone for multicore chips: Promises and challenges. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, 2(2):228–239, 2012.

[61] Y. Deng and W. Maly. 2.5D system integration: A design driven system implementation

schema. In Proceedings of the ACM/IEEE Asia and South Pacific Design Automation Con-

ference (ASPDAC), pages 450–455, 2004.

177

BIBLIOGRAPHY

[62] R. Dobkin, R. Ginosar, and I. Cidon. QNoC asynchronous router with dynamic virtual chan-

nel allocation. In Proceedings of the ACM/IEEE International Symposium on Networks-on-

Chip (NOCS), page 218, 2007.

[63] R. Dobkin, R. Ginosar, and A. Kolodny. QNoC asynchronous router. Integration, the VLSI

Journal, pages 103–115, 2009.

[64] J. Ebergen, J. Gainsley, J. Lexau, and I. Sutherland. GasP control for domino circuits. In

Proceedings of the IEEE International Symposium of Asynchronous Circuits and Systems

(ASYNC), pages 12–22, 2005.

[65] D. Edwards and A. Bardsley. Balsa: An asynchronous hardware synthesis language. Com-

puter Journal, 45(1):12–18, 2002.

[66] V. Ekanayake, C. Kelly, and R. Manohar. An ultra low-power processor for sensor networks.

In Proceedings of the ACM International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), pages 27–36, 2004.

[67] G. Faldamis, W. Jiang, G. Gill, and S.M. Nowick. A low-latency asynchronous interconnec-

tion network with early arbitration resolution. In Proceedings of the ACM/IEEE Asia and

South Pacific Design Automation Conference (ASPDAC), pages 329–336, 2014.

[68] K.M. Fant. Logically Determined Design: Clockless System Design with NULL Convention

Logic. Wiley-Interscience, 2005.

[69] M. Ferretti and P.A. Beerel. High performance asynchronous design using single-track full-

buffer standard cells. IEEE Journal of Solid-State Circuits, 41(6):1444–1454, 2006.

[70] R.M. Fuhrer, B. Lin, and S.M. Nowick. Symbolic hazard-free minimization and encoding of

asynchronous finite state machines. In Proceedings of the IEEE/ACM International Confer-

ence on Computer-Aided Design (ICCAD), pages 604–611, 1995.

[71] R.M. Fuhrer, S.M. Nowick, and M. Theobald. MINIMALIST: An Environment for the Syn-

thesis, Verification and Testability of Burst-Mode Asynchronous Machines. Technical report,

Department of Computer Science, Columbia University, 1999.

178

BIBLIOGRAPHY

[72] S.B. Furber and P. Day. Four-phase micropipeline latch control circuits. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 4(2):247–253, 1996.

[73] S.B. Furber, A. Efthymiou, and M. Singh. A power-efficient duplex communication systems.

In Alex Yakovlev and Reinder Nouta, editors, Asynchronous Interfaces: Tools Techniques,

and Implementations, pages 145–150, 2000.

[74] S.B. Furber, F. Galluppi, S. Temple, and L.A. Plana. The SpiNNaker project. Proceedings of

the IEEE, 102(5):652–665, 2014.

[75] S.B. Furber, J.D. Garside, S. Temple, J. Liu, P. Day, and N.C. Paver. AMULET2e: An

asynchronous embedded controller. In Proceedings of the IEEE International Symposium of

Asynchronous Circuits and Systems (ASYNC), pages 290–299, 1997.

[76] S.B. Furber, D.R. Lester, L.A. Plana, J.D. Garside, E. Painkras, S. Temple, and A.D.

Brown. Overview of the SpiNNaker sytem architecture. IEEE Transactions on Computers,

62(12):2454–2467, 2013.

[77] S.B. Furber and J. Liu. Dynamic logic in four-phase micropipelines. In Proceedings of the

IEEE International Symposium on Advanced Research in Asynchronous Circuits and Systems

(ASYNC), pages 11–16, 1996.

[78] J.D. Garside, W.J. Bainbridge, A. Bardsley, D.M. Clark, D.A. Edwards, S.B. Furber, J. Liu,

D.W. Lloyd, S. Mohammadi, J.S. Pepper, O. Petlin, S. Temple, and J.V. Wood. AMULET3i

– an asynchronous system-on-chip. In Proceedings of the IEEE International Symposium on

Advanced Research in Asynchronous Circuits and Systems (ASYNC), pages 162–175, 2000.

[79] D. Gebhardt, J. You, and K.S. Stevens. Comparing energy and latency of asynchronous

and synchronous NoCs for embedded SoCs. In Proceedings of the ACM/IEEE International

Symposium on Networks-on-Chip (NOCS), pages 115–122, 2010.

[80] A. Ghiribaldi, D. Bertozzi, and S.M. Nowick. A transition-signaling bundled data NoC

switch architecture for cost-effective GALS multicore systems. In Proceedings of the IEEE

Design, Automation and Test in Europe (DATE), pages 332–337, 2013.

179

BIBLIOGRAPHY

[81] G. Gill, A. Agiwal, M. Singh, F. Shi, and Y. Makris. Low-overhead testing of delay faults in

high-speed asynchronous pipelines. In Proceedings of the IEEE International Symposium on

Asynchronous Circuits and Systems (ASYNC), pages 46–56, 2006.

[82] G. Gill, S.S. Attarde, G. Lacourba, and S.M. Nowick. A low-latency adaptive asynchronous

interconnection network using bi-modal router nodes. In Proceedings of the ACM/IEEE

International Symposium on Networks-on-Chip (NOCS), pages 193–200, 2011.

[83] G. Gill and M. Singh. Automated microarchitectural exploration for achieving throughput

targets in pipelined asynchronous systems. In Proceedings of the IEEE International Sympo-

sium of Asynchronous Circuits and Systems (ASYNC), pages 117–127, 2010.

[84] C.J. Glass and L.M. Ni. The turn model for adaptive routing. Journal of the ACM, 41(5):874–

902, 1994.

[85] S. Golubcovs, D. Shang, F. Xia, A. Mokhov, and A. Yakovlev. Concurrent multiresource

arbiter: Design and applications. IEEE Transactions on Computers, 62(1):31–44, 2013.

[86] S. Golubcovs, D. Shang F. Xia, A. Mokhov, and A. Yakovlev. Modular approach to multi-

resource arbiter design. In Proceedings of the IEEE International Symposium of Asyn-

chronous Circuits and Systems (ASYNC), pages 107–116, 2009.

[87] K. Goossens, J. Dielissen, and A. Radulescu. AEthereal network on chip: Concepts, archi-

tectures and implements. IEEE Design and Test of Computers, 22(5):414–421, 2005.

[88] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S.W. Keckler, and D. Burger.

On-chip interconnection networks of the TRIPS chip. IEEE Micro, 27(5):41–50, 2007.

[89] B. Grot, D. Hardy, P. Lotfi-Kamran, B. Falsafi, C. Nicopoulos, and Y. Sazeides. Optimizing

data-center TCO with scale-out processors. IEEE Micro, 32(5):52–63, 2012.

[90] P. Guerrier and A. Greiner. A generic architecture for on-chip packet-switched interconnec-

tions. In Proceedings of the IEEE Design, Automation and Test in Europe (DATE), pages

250–256, 2000.

180

BIBLIOGRAPHY

[91] J. Hansen and M. Singh. A fast branch-and-bound approach to high-level synthesis of asyn-

chronous systems. In Proceedings of the IEEE International Symposium on Asynchronous

Circuits and Systems (ASYNC), pages 107–116, 2010.

[92] J. Hansen and M. Singh. Multi-token resource sharing for pipelined asynchronous systems.

In Proceedings of the IEEE Design, Automation and Test in Europe (DATE), pages 1191–

1196, 2012.

[93] M. Hayenga, N.E. Jerger, and M. Lipasti. SCARAB: A single cycle adaptive routing and

bufferless network. In Proceedings of the IEEE/ACM International Symposium on Microar-

chitecture, pages 244–254, 2009.

[94] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist.

Network on chip: An architecture for billion transistor era. In Proceedings of the IEEE

Nordic Microelectronics Conference (NORCHIP), pages 1–8, 2000.

[95] R. Ho, K.W. Mai, and M.A. Horowitz. The future of wires. In Proceedings of the IEEE,

pages 490–504, 2000.

[96] M.N. Horak, S.M. Nowick, M. Carlberg, and U. Vishkin. A low-overhead asynchronous

interconnection network for GALS chip multiprocessors. In Proceedings of the ACM/IEEE

International Symposium on Networks-on-Chip (NOCS), pages 43–50, 2010.

[97] M.N. Horak, S.M. Nowick, M. Carlberg, and U. Vishkin. A low-overhead asynchronous

interconnection network for GALS chip multiprocessors. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 30(4):494–507, 2011.

[98] J. Hu and R. Marculescu. DyAD: Smart routing for networks-on-chip. In Proceedings of the

ACM/IEEE Design Automation Conference (DAC), pages 260–263, 2004.

[99] M. Imai and T. Yoneda. Duplicated execution method for NoC-based multiple processor sys-

tems with restricted private memories. In Proceedings of the IEEE International Symposium

on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 463–471,

2011.

181

BIBLIOGRAPHY

[100] M. Imai and T. Yoneda. Improving dependability and performance for fully asynchronous

on-chip networks. In Proceedings of the IEEE International Symposium of Asynchronous

Circuits and Systems (ASYNC), pages 65–76, 2011.

[101] S. Ishihara, M. Hariyama, and M. Kameyama. A low-power FPGA based on autonomous

fine-grain power gating. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

19(8):1394–1406, 2011.

[102] H. Jacobson, E. Brunvand, G. Gopalakrishnan, and P. Kudva. High-level asynchronous sys-

tem design using the ACK framework. In Proceedings of the IEEE International Symposium

on Advanced Research in Asynchronous Circuits and Systems (ASYNC), pages 1–11, 2000.

[103] N. Jiang, J. Balfour, D.U. Becker, B. Towles, W.J. Dally, G. Michelogiannakis, and J. Kim. A

detailed and flexible cycle-accurate network-on-chip simulator. In Proceedings of the IEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS), pages

86–96, 2013.

[104] W. Jiang, D. Bertozzi, , G. Miorandi, S.M. Nowick, W. Burleson, and G. An asynchronous

NoC router in a 14nm FinFET library: Comparison to an industrial synchronous counterpart.

In Proceedings of the IEEE Design, Automation and Test in Europe (DATE), pages 732–733,

2017.

[105] W. Jiang, K. Bhardwaj, G. Lacourba, and S.M. Nowick. A lightweight early arbitration

method for low-latency asynchronous 2D-mesh NoC’s. In Proceedings of the ACM/IEEE

Design Automation Conference (DAC), pages 1–6, 2015.

[106] W. Jiang and S.M. Nowick. A high-throughput asynchronous multi-resource arbiter using

a pipelined assignment approach. In Proceedings of the IEEE International Symposium of

Asynchronous Circuits and Systems (ASYNC), pages 1–9, 2017.

[107] W. Jiang and G. Sadowski. Self-timed router with virtual channel control. US Patent Appli-

cation No. 15/085,783 (2016).

[108] M.B. Josephs and J.T. Yantchev. CMOS design of the tree arbiter element. IEEE Transactions

on VLSI Systems, 4(4):472–476, 1996.

182

BIBLIOGRAPHY

[109] J.W. Joyner, P. Zarkesh-Ha, and J.D. Meindl. A stochastic global net-length distribution for

a three-dimensional system-on-a-chip (3D-SoC). In Proceedings of the IEEE International

ASIC/SOC Conference, pages 147–151, 2001.

[110] A.B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A power-area simulator for in-

terconnection networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

20(1):191–196, 2012.

[111] F. Karim, A. Nguyen, and S. Dey. An interconnect architecture for networking systems on

chips. IEEE Micro, 22(5):36–45, 2002.

[112] E. Kasapaki and J. Sparso. Argo: A time-elastic time-division-multiplexed NoC using asyn-

chronous routers. In Proceedings of the IEEE International Symposium of Asynchronous

Circuits and Systems (ASYNC), pages 45–52, 2014.

[113] A. Khoche and E. Brunvand. Testing micropipelines. In Proceedings of the IEEE Interna-

tional Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC),

pages 239–246, 1994.

[114] G. Kim, K. Lee, Y. Kim, S. Park, I. Hong, K. Bong, and H.-J. Yoo. A 1.22 TOPS and

1.52 mW/MHz augmented reality multicore processor wih neural network NoC for HMD

applications. IEEE Journal of Solid-State Circuits, 50(1):113–124, 2015.

[115] J. Kim, J. Balfour, and W. Dally. Flatten butterfly topology for on-chip networks. In Proceed-

ings of the IEEE/ACM International Symposium on Microarchitecture, pages 37–40, 2007.

[116] Y. Kim, D. Shin, J. Lee, Y. Lee, and H.-J. Yoo. A 0.55 V 1.1 mW artificial intelligence pro-

cessor with on-chip PVT compensation for autonomous mobile robots. IEEE Transactions

on Circuits and Systems, PP(99):1–14, 2017.

[117] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communication network: Built

for speed. IEEE Micro, 26(3):10–23, 2006.

[118] A. Kondratyev, L. Sorensen, and A. Streich. Testing of asynchronous circuits by ‘inappro-

priate’ means. In Proceedings of the IEEE International Symposium on Advanced Research

in Asynchronous Circuits and Systems (ASYNC), pages 171–180, 2002.

183

BIBLIOGRAPHY

[119] T. Krishna, C.-H. Chen, W.-H. Kwon, and L.-S. Peh. SMART: Single-cycle multihop traver-

sals over a shared network on chip. IEEE Micro, 34(3):43–56, 2014.

[120] M. Krstic, E. Grass, F.K. Gurkaynak, and P. Vivet. Globally asynchronous, locally syn-

chronous circuits: Overview and outlook. IEEE Design and Test, 24(5):430–441, 2007.

[121] A. Kumar, P. Kundu, L.-S Peh, A.P. Singh, and N.K. Jha. A 4.6Tbits/s 3.6GHz single-

cycle NoC router with a novel switch allocator in 65nm CMOS. In Proceedings of the IEEE

International Conference on Computer Design (ICCD), pages 63–70, 2007.

[122] A. Kumar, L.-S Peh, P. Kundu, and N.K. Jha. Express virtual channels: Towards the ideal

interconnection fabric. In Proceedings of the ACM/IEEE International Symposium on Com-

puter Architecture (ISCA), pages 150–161, 2007.

[123] D.S. Kung. Hazard-non-increasing gate-level optimization algorithms. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 631–634,

1992.

[124] J. Lbanez-Guzman, C. Laugier, J.D. Yoder, and S. Thrun. Autonomous driving: Context and

state-of-the-art. Springer, 2012.

[125] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Array, Trees, Hyper-

cubes. Morgan Kaufmann Publishers, 1992.

[126] A. Leroy, P. Marchal, A. Shickova, F. Catthoor, F. Robert, and D. Verkest. Spatial division

multiplexing: A novel approach for guaranteed throughput on NoCs. In Proceedings of the

IEEE/ACM/IFIP International Conference on the Hardware/Software Codesign and System

Synthesis (CODES+ISSS), pages 81–86, 2005.

[127] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor. Concepts and implementa-

tion of spatial division multiplexing for guaranteed throughput in networks-on-chip. IEEE

Transactions on Computers, 57(9):1182–1195, 2008.

[128] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor. Concepts and implementa-

tion of spatial division multiplexing for guaranteed throughput in networks-on-chip. IEEE

Transactions on on Computers, 57(9):1182–1195, 2008.

184

BIBLIOGRAPHY

[129] M. Lewis, J. Garside, and L. Brackenbury. Reconfigurable latch controllers for low power

asynchronous circuits. In Proceedings of the IEEE International Symposium of Asynchronous

Circuits and Systems (ASYNC), pages 27–35, 1999.

[130] M. Li, Q.-A. Zeng, and W-.B. Jone. DyXY: A proximity congestion-aware deadlock-free

dynamic routing method for network on chip. In Proceedings of the ACM/IEEE Design

Automation Conference (DAC), pages 849–852, 2006.

[131] Z. Li, J. Wu, L. Shang, R.P. Dick, and Y. Sun. Latency criticality aware on-chip communi-

cation. In Proceedings of the IEEE Design, Automation and Test in Europe (DATE), pages

1052–1057, 2009.

[132] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev. Asynchronous design using

commercial HDL synthesis tools. In Proceedings of the IEEE International Symposium on

Advanced Research in Asynchronous Circuits and Systems (ASYNC), pages 1–12, 2000.

[133] A. Lines. Asynchronous interconnect for synchronous SoC design. IEEE Micro, 24(1):32–

41, 2004.

[134] A.M. Lines. Pipelined Asynchronous Circuits. Technical report, Department of Computer

Science, California Institute of Technology, 1998.

[135] T.-T. Liu, L.P. Alarcon, M.D. Pierson, and J.M. Rabaey. Asynchronous computing in sense

amplifier-based pass transistor logic. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 17(7):883–892, 2009.

[136] D.W. Lloyd and J.D. Garside. A practical comparison of asynchronous design styles. In

Proceedings of the IEEE International Symposium of Asynchronous Circuits and Systems

(ASYNC), pages 36–45, 2001.

[137] J. Luo, A. Elantably, V.D. Pham, C. Killian, D. Chillet, S. Le Beux, O. Sentieys, and

I. O’Connor. Performance and energy aware wavelength allocation on ring-based WDM 3D

optical NoC. In Proceedings of the IEEE Design, Automation and Test in Europe (DATE),

pages 1372–1375, 2017.

185

BIBLIOGRAPHY

[138] R. Marculescu, U.Y. Ogras, L.-S. Peh, N.E. Jerger, and Y. Hoskote. Outstanding research

problems in NoC design: System, microarchitecture, and circuit perspectives. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 28(1):3–21, 2009.

[139] A.J. Martin. Programming in VLSI: from Communicating Processes to Delay-Insensitive Cir-

cuits. Technical report, Department of Computer Science, California Institute of Technology,

1989.

[140] A.J. Martin. Asynchronous datapaths and the design of an asynchronous adder. Technical

report, California Institute of Technology, 1991.

[141] A.J. Martin, S. Burns, T.K. Lee, D. Borkovic, and P.J. Hazewindus. The design of an asyn-

chronous microprocessor. In Advanced Research in VLSI, pages 351–373, 1989.

[142] A.J. Martin, M. Nystrom, and C.G. Wong. Three generations of asynchronous microproces-

sors. IEEE Design and Test, 20(6):9–17, 2003.

[143] P.B. McGee, M.Y. Agyekum, M.A. Mohamed, and S.M. Nowick. A level-encoded transitions

signaling protocol for high-throughput asynchronous global communication. In Proceedings

of the IEEE International Symposium of Asynchronous Circuits and Systems (ASYNC), pages

116–127, 2008.

[144] P.A. Merolla, J.V. Arthur, R.A.-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson,

N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S.K. Esser, R. Appuswamy, B. Taba,

A. Amir, M.D. Flickner, W.P. Risk, R. Manohar, and D.S. Modha. A million spiking-

neuron integrated circuit with a scalable communication network and interface. Science,

345(6197):668–673, 2014.

[145] G. De Micheli and L. Benini. Networks on chip: 15 years later. IEEE Transactions on

Computers, 50(5):10–11, 2017.

[146] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth using looped con-

tainers in temporally disjoint networks within the Nostrum network on chip. In Proceedings

of the IEEE Design, Automation and Test in Europe (DATE), pages 1–6, 2004.

186

BIBLIOGRAPHY

[147] G. Miorandi, M. Balboni, S.M. Nowick, and D. Bertozzi. Accurate assessment of bundled-

data asynchronous NoCs enabled by a predictable and efficient hierarchical synthesis flow.

In Proceedings of the IEEE International Symposium of Asynchronous Circuits and Systems

(ASYNC), pages 10–17, 2017.

[148] G. Miorandi, D. Bertozzi, and S.M. Nowick. Increasing impartiality and robustness in high-

performance N-way asynchronous arbiters. In Proceedings of the IEEE International Sym-

posium of Asynchronous Circuits and Systems (ASYNC), pages 108–115, 2015.

[149] G. Miorandi, A. Ghiribaldi, S.M. Nowick, and D. Bertozzi. Crossbar replication vs. sharing

for virtual channel flow control in asynchronous NoCs: A comparative study. In Proceedings

of the IEEE International Conference on Very Large Scale Integration (VLSI-SoC), pages

1–6, 2014.

[150] M. Modarressi, H. Sarbazi-Azad, and M. Arjomand. A hybrid packet-circuit switched on-

chip network based on SDM. In Proceedings of the IEEE Design, Automation and Test in

Europe (DATE), pages 566–569, 2009.

[151] A. Mokhov, V. Khomenko, and A. Yakovlev. Flat arbiters. Fundamenta Informaticae, No.

1-2, pages 63–90, 2011.

[152] M. Moreira, A. Neutzling, M. Martins, A. Reis, R. Ribas, and N. Calazans. Semi-custom

NCL design wth commercial EDA frameworks: Is it possible? In Proceedings of the IEEE In-

ternational Symposium of Asynchronous Circuits and Systems (ASYNC), pages 53–60, 2014.

[153] M. Moreira, B. Oliveira, F. Moraes, and N. Calazans. Impact of C-elements in asynchronous

circuits. In Proceedings of the IEEE International Symposium on Quality Electronic Design

(ISQED), pages 437–443, 2012.

[154] P.R. Morrow, C.-M. Park, S. Ramanathan, M.J. Kobrinsky, and M. Harmes. Three-

dimensional wafer stacking via Cu-Cu bonding integrated with 65-nm strained-Si/low-k

CMOS technology. IEEE Electron Device Letters, 27(5):335–337, 2006.

[155] D.E. Muller and W.S. Bartky. A theory of asynchronous circuits. In International Symposium

on the Switching Theory in Harvard University, pages 204–243, 1959.

187

BIBLIOGRAPHY

[156] R. Mullins, A. West, and S. Moore. Low-latency virtual-channel routers for on-chip net-

works. In Proceedings of the ACM/IEEE International Symposium on Computer Architecture

(ISCA), pages 188–197, 2004.

[157] R. Mullins, A. West, and S. Moore. The design and implementation of a low-latency on-

chip network. In Proceedings of the ACM/IEEE Asia and South Pacific Design Automation

Conference (ASPDAC), pages 164–169, 2006.

[158] J. Murray, P. Wettin, P.P. Pande, and B. Shirazi. Sustainable wireless network-on-chip archi-

tectures. Morgan Kaufmann, 2016.

[159] C. Myers. Asynchronous Circuit Design. John Wiley and Sons, 2001.

[160] S.R. Naqvi and A. Steininger. A tree arbiter cell for high speed resource sharing in asyn-

chronous environments. In Proceedings of the IEEE Design, Automation and Test in Europe

(DATE), pages 1–6, 2014.

[161] C.A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M.S. Yousif, and C.R. Das. ViChaR:

A dynamic virtual channel regulator for network-on-chip routers. In Proceedings of the

IEEE/ACM International Symposium on Microarchitecture, pages 333–346, 2006.

[162] S.M. Nowick and D.L. Dill. Synthesis of asynchronous state machines using a local clock.

In Proceedings of the IEEE International Conference on Computer Design (ICCD), pages

192–197, 1991.

[163] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free logic with multiple-

input changes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 14(8):986–997, 1995.

[164] S.M. Nowick and C.W. O’Donnell. On the existence of hazard-free multi-level logic. In

Proceedings of the IEEE International Symposium on Advanced Research in Asynchronous

Circuits and Systems (ASYNC), pages 109–120, 2003.

[165] S.M. Nowick and M. Singh. High-performance asynchronous pipelines: An overview. IEEE

Design and Test of Computers, 28(5):8–22, 2011.

188

BIBLIOGRAPHY

[166] S.M. Nowick and M. Singh. Asynchronous design – part 1: Overview and recent advances.

IEEE Design and Test, 32(3):5–18, 2015.

[167] S.M. Nowick and M. Singh. Asynchronous design – part 2: Systems and methodologies.

IEEE Design and Test, 32(3):19–28, 2015.

[168] S.M. Nowick, K.Y. Yun, P.A. Beerel, and A.E. Dooply. Speculative completion for the de-

sign of high-performance asynchronous dynamic adders. In Proceedings of the IEEE Inter-

national Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC),

pages 210–223, 1997.

[169] R.O. Ozdag and P.A. Beerel. High-speed QDI asynchronous pipelines. In Proceedings of

the IEEE International Symposium of Asynchronous Circuits and Systems (ASYNC), pages

13–22, 2002.

[170] P.P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Performance evaluation and design

trade-offs for network-on-chip interconnect architectures. IEEE Transactions on Computers,

54(8):1025–1040, 2005.

[171] R. Parikh, R. Das, and V. Bertacco. Power-aware NoCs through routing and topology recon-

figuration. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), pages

1–6, 2014.

[172] L.-S. Peh and W.J. Dally. A delay model and speculative architecture for pipelined routers.

In Proceedings of the IEEE International Symposium on High-Performance Computer Archi-

tecture (HPCA-01), pages 164–169, 2001.

[173] O.A. Petlin and S.B. Furber. Built-in self-testing of micropipelines. In Proceedings of the

IEEE International Symposium on Advanced Research in Asynchronous Circuits and Systems

(ASYNC), pages 22–29, 1997.

[174] G. Philip, B. Christopher, and P. Ramm. Handbook of 3D Integration: Technology and

Application of 3D Integrated Circuits. Wiley-VCH, 2008.

189

BIBLIOGRAPHY

[175] S.J. Piestrak. Membership test logic for delay-insensitive codes. In Proceedings of the IEEE

International Symposium of Asynchronous Circuits and Systems (ASYNC), pages 194–204,

1998.

[176] S.J. Piestrak and T. Nanya. Towards totally self-checking delay-insensitive systems. In

Proceedings of the IEEE International Symposium on Fault-Tolerant Computing (FTCS),

pages 228–237, 1995.

[177] A. Pinto, L.P. Carloni, and A.L. Sangiovanni-Vincentelli. Efficient synthesis of networks on

chip. In Proceedings of the IEEE International Conference on Computer Design (ICCD),

pages 1–5, 2003.

[178] M. Pirretti, G.M. Link, R.R. Brooks, N. Vijaykrishnan, M. Kandemir, and M.J Irwin. Fault

tolerant algorithms for network-on-chip interconnect. In Proceedings of the IEEE Com-

puter Society Annual Symposium on VLSI Emerging Trends in VLSI Systems Design (ISVLSI),

pages 1–6, 2004.

[179] L.A. Plana. Contributions to the Design of Asynchronous Macromodular Systems. PhD

thesis, Department of Computer Science, Columbia University, 1999.

[180] L.A. Plana and S.H. Unger. Pulse-mode macromodular systems. In Proceedings of the IEEE

International Conference on Computer Design (ICCD), pages 348–353, 1998.

[181] V. Puente, J.A. Gregorio, F. Vallejo, and R. Beivide. Immunet: A cheap and robust fault-

tolerant packet routing mechanism. In Proceedings of the IEEE Annual International Sym-

posium on Computer Architecture (ISCA), pages 1–12, 2004.

[182] A. Pullini, F. Angiolini, S. Murali, D. Atienza, G. De Micheli, and L. Benini. Bringing NoCs

to 65 nm. IEEE Micro, 27(5):75–85, 2007.

[183] J. Rabaey, A. Chandrakasan, and B. Nokolic. Digital Integrated Circuits: A Design Perspec-

tive (2nd Edition). Prentice-Hall, 2003.

[184] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch. Methods for fault tolerance in networks-on-

chip. ACM Computing Surveys, 46(1):8:1–38, 2013.

190

BIBLIOGRAPHY

[185] A. Rahimi, I. Loi, M.R. Kakoee, and L. Benini. A fully-synthesizable single-cycle inter-

connection network for share-L1 processor clusters. In Proceedings of the IEEE Design,

Automation and Test in Europe (DATE), pages 1–6, 2011.

[186] A.M. Rahmani, M.-H. Haghbayan, A. Miele, P. Liljeberg, A.Jantsch, and H. Tenhunen.

Reliability-aware runtime power management for many-core systems in the dark silicon era.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(2):427–440, 2017.

[187] R.B. Reese, S.C. Smith, and M.A. Thornton. Uncle – An RTL approach to asynchronous

design. In Proceedings of the IEEE International Symposium of Asynchronous Circuits and

Systems (ASYNC), pages 65–72, 2012.

[188] W.F. Richardson and E. Brunvand. Precise exception handling for a self-timed processor.

In Proceedings of the IEEE International Conference on Computer Design (ICCD), pages

32–37, 1995.

[189] D. Rostislav, V. Vishnyakov, E. Friedman, and R. Ginosar. An asynchronous router for mul-

tiple service levels networks on chip. In Proceedings of the IEEE International Symposium

of Asynchronous Circuits and Systems (ASYNC), pages 1–10, 2005.

[190] P.K. Sahu and S. Chattopadhyay. A survey on application mapping strategies for network-

on-chip design. Journal of Systems Architecture, 59(1):1987–2000, 2013.

[191] E. Salminen, A. Kulmala, and T.D. Hamalainen. Survey of network-on-chip proposals. In

OCP-IP White Paper, pages 1–13, 2008.

[192] C. Seiculescu, S. Murali, L. Benini, and G. De Micheli. SunFloor 3D: A tool for networks

on chip topology synthesis for 3-D systems on chips. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 29(12):1987–2000, 2010.

[193] C.L. Seitz. System timing. Carver A. Mead and Lynn A. Conway, editors, Introduction to

VLSI Systems, Addison-Wesley, 1980.

[194] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and M. Thottethodi. Near-optimal worst-case through-

put routing for two-dimensional mesh networks. In Proceedings of the ACM/IEEE Interna-

tional Symposium on Computer Architecture (ISCA), pages 432–443, 2005.

191

BIBLIOGRAPHY

[195] A. Shacham, K. Bergman, and L.P. Carloni. Photonic network-on-chip for future generations

of chip multiprocessors. IEEE Transactions on Computers, 57(9):1246–1260, 2008.

[196] D. Shang, F. Xia, and A. Yakovlev. Highly parallel multi-resource arbiters. In Proceedings

of the IEEE International Symposium on Circuits and Systems (ISCAS), pages 4117–4120,

2010.

[197] A. Sheibanyrad, A. Greiner, and I. M.-Panades. Multisynchronous and fully asynchronous

NoCs for GALS architecture. IEEE Design and Test of Computers, 25(6):572–580, 2008.

[198] P. Shepherd, S.C. Smith, J. Holmes, A.M. Francis, N. Chiolino, and H.A. Mantooth. A ro-

bust, wide-temperature data transmission system for space environments. In IEEE Aerospace

Conference (AERO), pages 1–13, 2013.

[199] F. Shi, Y. Makris, S.M. Nowick, and M. Singh. Test generation for ultra-high-speed asyn-

chronous pipelines. In Proceedings of the IEEE International Test Conference (TEST), pages

1–10, 2005.

[200] A.K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on multi/many-core systems:

survey of current and emerging trends. In Proceedings of the ACM/IEEE Design Automation

Conference (DAC), pages 1–10, 2013.

[201] M. Singh and S.M. Nowick. MOUSETRAP: High-speed transition-signaling asynchronous

pipelines. In Proceedings of the IEEE International Conference on Computer Design (ICCD),

pages 9–17, 2001.

[202] M. Singh and S.M. Nowick. The design of high-performance dynamic asynchronous

pipelines: High-capacity style. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 15(11):1270–1283, 2007.

[203] M. Singh and S.M. Nowick. The design of high-performance dynamic asynchronous

pipelines: Lookahead style. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 15(11):1256–1269, 2007.

192

BIBLIOGRAPHY

[204] M. Singh and S.M. Nowick. MOUSETRAP: Ultra-high-speed transition-signaling asyn-

chronous pipelines. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

15(6):684–698, 2007.

[205] M. Singh, J.A. Tierno, A. Rylyakov, S. Rylov, and S.M. Nowick. An adaptively pipelined

mixed synchronous-asynchronous digital FIR filter chip operating at 1.3 Gigahertz. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 18(7):1043–1056, 2010.

[206] T. Singh and A. Taubin. A highly scalable GALS crossbar using token ring arbitration. IEEE

Design and Test of Computers, 24(5):464–472, 2007.

[207] B. Sinharoy, J.A. Van Norstrand, R.J. Eickemeyer, H.Q. Le, J. Leenstra, D.Q. Nguyen,

B. Konigsburg, K. Ward, M.D. Brown, J.E. Moreira, D. Levitan, S. Tung, D. Hrusecky, J.W.

Bishop, M. Gschwind, M. Boersma, M. Kroener, M. Kaltenbach, T. Karkhanis, and K.M.

Fernsler. IBM POWER8 processor core microarchitecture. IBM Journal of Research and

Development, 59(1):2:1–21, 2015.

[208] W. Song and D. Edwards. Asynchronous spatial division multiplexing router. Microproces-

sors and Microsystems, 35(2):85–97, 2011.

[209] R.F. Sproull, I.E. Sutherland, and C.E. Molnar. The counterflow pipeline processor architec-

ture. IEEE Design and Test, 11(3):48–59, 1994.

[210] M. Stan and W. Burleson. Low-power CMOS clock drivers. In Proceedings of the Inter-

national Workshop on Timing Issues in the Specification and Synthesis of Digital Systems

(TAU), pages 149–156, 1995.

[211] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, and G.D. Micheli. xpipesLite: A

synthesis oriented design library for networks on chip. In Proceedings of the IEEE Design,

Automation and Test in Europe (DATE), pages 1188–1193, 2005.

[212] K.S. Stevens, S. Rotem, R. Ginosar, P. Beerel, C.J. Myers, K.Y. Yun, R. Koi, C. Dike, and

M. Roncken. An asynchronous instruction length decoder. IEEE Journal of Solid-State

Circuits, 36(2):217–228, 2001.

[213] I.E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738, 1989.

193

BIBLIOGRAPHY

[214] D. Sylvester and K. Keutzer. A global wiring paradigm for deep submicron design. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(2):242–252,

2000.

[215] A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku, Y. Ueno, and

T. Nanya. TITAC-2: An asynchronous 32-Bit microprocessor based on scalable-delay-

insensitive model. In Proceedings of the IEEE International Conference on Computer Design

(ICCD), pages 288–294, 1997.

[216] P. Teehan, M. Greenstreet, and G. Lemieux. A survey and taxonomy of GALS design styles.

IEEE Design and Test, 24(5):418–428, 2007.

[217] J. Teifel and R. Manohar. Highly pipelined asynchronous FPGAs. In Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA), pages

133–142, 2004.

[218] N. Teimouri, M. Modarressi, and H. Sarbazi-Azad. Power and performance efficient partial

circuits in packet-switched networks-on-chip. In Proceedings of Euromicro International

Conference on Parallel, Distributed and Network-Based Processing (PDP), pages 509–513,

2013.

[219] H. Terada, S. Miyata, and M. Iwata. DDMPs: Self-timed super-pipelined data-driven multi-

media processors. Proceeding of the IEEE Design and Test, 87(2):282–295, 1999.

[220] M. Theobald and S.M. Nowick. Fast heuristic and exact algorithms for two-level hazard-free

logic optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 17(11):1130–1147, 1998.

[221] Y. Thonnart, E. Beigne, and P. Vivet. A pseudo-synchronous implementation flow for WCHB

QDI asynchronous circuits. In Proceedings of the IEEE International Symposium of Asyn-

chronous Circuits and Systems (ASYNC), pages 73–80, 2012.

[222] A.W. Topol, D.C. La Tulipe, L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U.

Singco, A.M. Young, K.W. Guarini, and M. Leong. Three-dimensional integrated circuits.

IBM Journal of Research and Development, 50(4/5):491–506, 2006.

194

BIBLIOGRAPHY

[223] S.H. Unger. Asynchronous Sequential Switching Circuits. New York, NY: Wiley, 1969.

[224] L.G. Valiant. A scheme for fast parallel communication. SIAM Journal of Computing,

11(2):350–361, 1982.

[225] K. van Berkeal, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The VLSI-programming

language Tangram and its translation into handshake circuits. In Proceedings of the European

Conference on Disign Automation (EDAC), pages 384–389, 1991.

[226] C.H. van Berkel and C.E. Molnar. Beware the three-way arbiter. IEEE Journal of Solid-State

Circuits, 34(6):840–848, 1999.

[227] K. van Berkel. Handshake Circuits: An Asynchronous Architecture for VLSI Programming.

Cambridge University Press, 1993.

[228] K. van Berkel and A. Bink. Single-track handshaking signaling with application to mi-

cropipelines and handshake circuits. In Proceedings of the IEEE International Symposium on

Advanced Research in Asynchronous Circuits and Systems (ASYNC), pages 122–133, 1996.

[229] K. van Berkel, M.B. Josephs, and S.M. Nowick. Scanning the technology: Applications of

asynchronous circuits. In Proceedings of the IEEE, pages 223–233, 1999.

[230] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor, and G. Stegmann. An

asynchronous low-power 80C51 microcontroller. In Proceedings of the IEEE International

Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC), pages

96–107, 1998.

[231] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor, and G. Stegmann. An

asynchronous low-power 80C51 microcontroller. In Proceedings of the IEEE International

Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC), pages

1–12, 1998.

[232] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh,

T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. hoskote, N. Borkar, and S. Borkar. An 80-tile

sub-100-W TeraFLOPS processor in 65-nm CMOS. IEEE Journal of Solid-State Circuits,

43(1):29–41, 2008.

195

BIBLIOGRAPHY

[233] T. Verhoeff. Delay-insensitive codes–an overview. Distributed Computing, 3(1):1–8, 1988.

[234] C. Vezyrtzis, W. Jiang, S.M. Nowick, and Y. Tsividis. A flexible clockless digital filter. In

Proceedings of the IEEE European Solid-State Circuit Conference (ESSCIRC), pages 65–68,

2013.

[235] C. Vezyrtzis, W. Jiang, S.M. Nowick, and Y. Tsividis. A flexible event-driven digital fil-

ter with frequency response independent of input sample rate. IEEE Journal of Solid-State

Circuits, 49(10):2292–2304, 2014.

[236] P. Vivet, Y. Thonnart, R. Lemaire, C. Santos, E. Beigne, C. Bernard, F. Darve, D. Lattard,

I. M.-Panades, D. Dutoit, F. Clermidy, S. Cheramy, A. Sheibanyrad, F. Petrot, E. Flamand,

J. Michailos, A. Arriordaz, L. Wang, and J. Schloeffel. A 4x4x2 homogeneous scalable 3D

network-on-chip circuit with 326 MFlit/s 0.66 pJ/b robust and fault tolerant asynchronous 3D

links. IEEE Journal of Solid-State Circuits, 52(1):33–49, 2017.

[237] P. Wehner, J. Rettkowski, T. Kleinschmidt, and D. Gohringer. MPSoCSim: An extended OVP

simulator for modeling and evaluation of network-on-chip based heterogeneous MPSoCs. In

Proceedings of the IEEE International Conference on Embedded Computer Systems: Archi-

tectures, Modeling and Simulation (SAMOS), pages 390–395, 2015.

[238] D. Wiklund and D. Liu. Switched interconnect for system-on-a-chip designs. In Proceedings

of the IP 2000 Europe Conference (IP2000), pages 1–6, 2000.

[239] T.E. Williams. Self-timed rings and their application to division. PhD thesis, De-

partment of Electrical Engineering and Computer Science, Stanford University, 1991.

(http://vlsiweb.stanford.edu/people/alum/pdf/9105 Williams SelfTimedRings.pdf).

[240] T.E. Williams and M.A. Horowitz. A zero-overhead self-timed 160-ns 54-b cmos divider.

IEEE Journal of Solid-State Circuits, 26(11):1651–1661, 1991.

[241] D.H. Woo and H.-H.S. Lee. Extending Amdahl’s law for energy-efficient computing in the

many-core era. IEEE Transactions on Computers, 41(12):24–31, 2008.

[242] A. Yakovlev, A. Petrov, and L. Lavagno. A low latency asynchronous arbitration circuit.

IEEE Transactions on VLSI Systems, 2(3):372–377, 1994.

196

BIBLIOGRAPHY

[243] Y.S. Yang, R. Kumar, G. Choi, and P. Gratz. WaveSync: A low-latency source synchronous

bypass network-on-chip architecture. In Proceedings of the IEEE International Conference

on Computer Design (ICCD), pages 241–248, 2012.

[244] K.Y. Yun, P.A. Beerel, and J. Arceo. High-performance asynchronous pipeline circuits. In

Proceedings of the IEEE International Symposium of Asynchronous Circuits and Systems

(ASYNC), pages 17–28, 1996.

[245] Z. Zhang, A. Greiner, and S. Taktak. A reconfigurable routing algorithm for a fault-tolerant

2D-Mesh network-on-chip. In Proceedings of the ACM/IEEE Design Automation Conference

(DAC), pages 441–446, 2008.

197

	List of Figures
	List of Tables
	1 Introduction
	1.1 Asynchronous Design: an Alternative Paradigm
	1.1.1 Trends and Challenges in Synchronous Design
	1.1.2 Introduction to Asynchronous Design: Advantages and Challenges
	1.1.3 Asynchronous Design: Overview of Recent Success

	1.2 Networks-on-Chip Introduction
	1.2.1 Conventional On-Chip Interconnects
	1.2.2 Network-on-Chip: Potential Benefits
	1.2.3 Why the Asynchronous Paradigm Fits NoC Architecture
	1.2.4 Synchronous and Asynchronous NoC's: Recent Advances and Future Trends

	1.3 Research Focus
	1.3.1 An Overview of NoC Acceleration
	1.3.2 Research Challenges for NoC Acceleration
	1.3.3 Synchronous NoC Acceleration: Existing Approaches and Bottlenecks
	1.3.4 Asynchronous NoC Acceleration: A Missing Research Area

	1.4 Contribution of the Thesis
	1.5 Organization of the Thesis

	2 Background: Asynchronous Design Basics
	2.1 Handshaking Protocols: Control Signaling
	2.1.1 Four-Phase Protocol
	2.1.2 Two-Phase Protocol

	2.2 Data Encoding Schemes
	2.2.1 Delay-Insensitive Codes
	2.2.2 Single-Rail Bundled Data

	2.3 Special Asynchronous Elements and Components
	2.3.1 C-Element and Asymmetric C-Element
	2.3.2 Completion Detectors
	2.3.3 Mutual-Exclusion Element and Asynchronous Arbiters

	2.4 Asynchronous Pipelines
	2.4.1 Mousetrap Pipeline
	2.4.2 Williams' PS0 Pipeline
	2.4.3 High-Capacity Dynamic Pipeline

	3 Background: Network-on-Chip Basics
	3.1 Network Topology
	3.1.1 Topology Classification
	3.1.2 Network Topology Examples

	3.2 Routing Basics
	3.2.1 Classification of Routing Algorithms
	3.2.2 Encoding Routing Information

	3.3 Flow Control Methods
	3.3.1 Store-and-Forward
	3.3.2 Cut-Through
	3.3.3 Wormhole Routing
	3.3.4 Virtual Channels

	3.4 Synchronous Router Architecture and Operation
	3.4.1 Synchronous Router Structure without VC
	3.4.2 Synchronous Router Structure with VCs: Two Structures
	3.4.3 Router Pipelining
	3.4.4 Pipeline Optimization: Speculation and Lookahead

	4 A Low-Latency Asynchronous NoC for a Variant Mesh-of-Trees Topology
	4.1 Introduction
	4.2 Related Work
	4.3 Background: Baseline and Predictive NoC Designs
	4.3.1 The Baseline Network
	4.3.2 The Predictive Network

	4.4 Overview of the Approach
	4.5 Proposed Router Node Design
	4.5.1 Arbitration Node
	4.5.2 Routing Node
	4.5.3 Monitoring Network: A Quick Revisit

	4.6 Multi-Flit Design
	4.7 Experimental Results
	4.7.1 Asynchronous Primitives
	4.7.2 Asynchronous Network

	4.8 Conclusions and Future Work

	5 A Low-Latency Asynchronous NoC for a 2D-Mesh Topology
	5.1 Introduction
	5.2 Related Work
	5.3 Background: Baseline NoC Design
	5.3.1 Input Port Module
	5.3.2 Output Port Module

	5.4 Overview of the Approach
	5.5 Proposed Router Node Design
	5.5.1 Input Port Module Architecture
	5.5.2 Output Port Module Architecture

	5.6 Monitoring Network: System- and Switch-Level Protocols and Design
	5.7 Local Input and Output Port Modules
	5.8 Deadlock Analysis
	5.9 Timing Analysis
	5.10 Experimental Results
	5.10.1 Experimental Setup
	5.10.2 Evaluation

	5.11 Conclusions and Future Work

	6 An Industrial High-Performance and Low-Power Asynchronous NoC Router
	6.1 Introduction
	6.2 Proposed Asynchronous Router Design
	6.2.1 Overall Router Structure
	6.2.2 Input Buffer
	6.2.3 Proposed VC Flow Control

	6.3 Design Flow and Tools
	6.3.1 Design Validation Tool
	6.3.2 Design Flow and P&R Tool

	6.4 Experimental Results
	6.5 Conclusions

	7 A High-Throughput Asynchronous Multi-Resource Arbiter
	7.1 Introduction
	7.2 Related Work
	7.3 Background: Baseline Multi-Resource Arbiter
	7.3.1 External Channel Protocols
	7.3.2 Structure
	7.3.3 Operation

	7.4 Overview of the Approach
	7.5 Proposed Static HC Pipeline
	7.5.1 Pipeline Protocol
	7.5.2 Pipeline Design and Structure
	7.5.3 Related Work and Comparison

	7.6 Proposed Asynchronous Multi-Resource Arbiter
	7.6.1 Structure
	7.6.2 Mapping Proposed Pipeline to the Design
	7.6.3 Operation
	7.6.4 Details for Sub-Modules

	7.7 Timing Analysis
	7.8 Experimental Results
	7.8.1 Experimental Setup
	7.8.2 Simulation Results
	7.8.3 Summary and Discussion of Scaling Trends

	7.9 Conclusions and Future Work

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Bibliography

