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ABSTRACT

A Single-Cell Immune Map of Normal and Cancerous Breast Reveals an Expansion of

Phenotypic States Driven by the Tumor Microenvironment

Ambrose J. Carr

Knowledge of the phenotypic states of immune cells in the tumor microenvironment is es-

sential to understand immunological mechanisms of cancer progression, responses to cancer im-

munotherapy, and the development of novel rational treatments. Yet, this knowledge is opaque to

traditional bulk sequencing methods, and novel single-cell RNA sequencing (scRNA-seq) meth-

ods which could potentially address these questions introduce complex patterns of error into data

that are poorly characterized. This dissertation describes a computational framework, SEQC,

built to facilitate rapid and agile analysis of scRNA-seq approaches that utilize molecular bar-

codes. It combines SEQC with a clustering and normalization method, BISCUIT, and approaches

to examine phenotypic diversity and gene variation. These methods are applied to address the

unique computational challenges inherent to analysis of single-cell RNA-seq data derived from

multiple patients with diverse phenotypes. This dissertation describes an experiment compris-

ing scRNA-seq of over 47,000 immune cells collected from primary breast carcinomas, matched

normal breast tissue, peripheral blood, and using these computational approaches. This atlas re-

vealed significant similarity between normal and tumor tissue resident immune cells. However,

it also describes continuous tumor-specific phenotypic expansions driven by distinct environ-

mental cues. These results argue against discrete activation states in T cells and the polarization

model of macrophage activation in cancer, and have important implications for characterizing

tumor-infiltrating immune cells.
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Introduction

Tumors result from aberrant uncontrolled growth of human cells. However, it is understood

that individual cells within a tumor have uneven responsibility for patient mortality. A large

fraction of the cells are often terminally differentiated—unable to continue dividing. As a result,

limited numbers of cancer cells are capable of moving outside their tissue of origin, or embedding

themselves in other tissues. Heterogeneity of this type presents a challenge to the personaliza-

tion of cancer treatment, as until recently there were no tools to find these rare but dangerous

cells within the larger population of mostly-benign cancer cells without already knowing sur-

face markers that specifically identify them. As a result, scientists and clinicians were limited to

profiling cell types in aggregate, which produced an artificial, blurred average of all the cells in

a tumor. These results, which reflect no true cell state, proved only weakly predictive of cancer

outcomes.

The deficiency of experimental approaches to characterize novel cell phenotypes has signif-

icantly hampered the development of promising cancer treatments such as immunotherapies, a

category of biologic drugs that relieve immunosuppression. Currently, bio-markers that predict

treatment success are the presence of highly mutated surface proteins on a patient’s tumor cells,

abundant tumor infiltrating immune cells (TILs), and the evidence of active immunosuppression,
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driven by the pharmacologically targeted pathways. Unfortunately, these bio-markers have low

predictive power and cohorts selected for trials based on these characteristics display polariz-

ing results: a small subset of patients displays an extremely exciting complete remission, but

the great majority of patients still fail treatment. There is good reason to suspect that some of

these remissions may be permanent, suggesting that for a small number of patients, the immune

system holds the keys to curing them of cancer.

Yet, the majority of patients fail treatment, and the reasons for this failure are not clear. As a

result, these trials are ongoing across cancers, and rare success cases across many cancer types

hint that the immune system harbors an unharnessed and systemic capability to recognize, elim-

inate, and provide lasting immunity against cancer. However, a significantly uneven ratio of

success and failure suggests that there is hidden complexity in the tumor-immune ecosystem

that extends beyond the systems that are currently being targeted by drugs.

Because cancer treatments all kill human cells at some low rate, they carry significant toxicity.

Thus, to maximize patient survival, it is imperative that clinicians pair patients with rational

treatments based on the molecular characteristics of their tumors, as opposed to the current

standard which often involves cocktails of drugs designed to, on average, have the best effect

across patients.

Better characterization of immunosuppression systems may enable this kind of personaliza-

tion for immunotherapy. Unfortunately, sequencing bulk tumor or immune isolates cannot iden-

tify the patterns of immune suppression acting on individual cells, and as a result, has not been

an effective tool for personalizing cancer therapies against individual tumors. To resolve this

problem, researchers originally turned to cell sorting strategies that partition cells based on sur-

face proteins to identify and understand individual immune cells and immune cell populations.
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While powerful, these strategies are limited to deciphering a-priori known cell types or states,

which are defined by relatively simple combinations of surface proteins. In contrast, single-cell

RNA-seq (scRNA-seq) merges many of the strengths of fluorescence cell sorting and bulk RNA-

seq. scRNA-seq retains the unbiased measurement of all expressed genes, but adds the ability

to resolve phenotypes of individual cells. This unbiased, transcriptome-wide analysis approach

has accelerated cell state discovery and enabled, for the first time, unbiased measurement of

large-scale population interactions. However, the technology is fraught with new technical and

computational challenges, including a low signal to noise ratio and a low probability of captur-

ing and observing mRNA in cells. These problems have prevented its easy application to critical

biological questions.

This dissertation will describe, in 4 chapters, technical and computational development to

support scRNA-seq and the application of scRNA-seq to better understand how variance in the

states of TILsmay explain the clinically observed variability in treatment results. Chapter onewill

review the literature of immuno-oncology and single-cell transcriptomics to contextualize the ap-

plication of single-cell technologies to TILs. Chapter two will examine droplet-based scRNA-seq

in detail, highlighting SEQC, a framework developed to control technical variances and produce

a cleaner view of TIL biology, while enabling rapid iteration of library construction to improve

data quality. Chapter three will address how new algorithms can help us generalize to an un-

derstanding of phenotypic states of populations of cells, despite the data’s high, 95% sparsity and

its derivation from multiple patients. Chapter four will combine the methods from chapters two

and three and apply them to a large set of more than 45,000 breast-carcinoma infiltrating immune

cells, characterizing TILs, but also distinguishing them from normal tissue-resident and blood-

resident immune phenotypes. Finally, the dissertation will conclude with a discussion of the
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outstanding challenges surrounding single-cell analysis of immuno-oncology and the single-cell

technologies themselves, and will point to promising directions for new research.
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Chapter 1

Review of Single-Cell Immuno-Oncology

1.1 Immune-Mediated Cancer Cell Killing

The adaptive immune system evolved to combat exogenous threats such as viruses and bac-

teria. However, it is increasingly thought to also play an important role in cancer surveillance

because, for a tumor to form and proliferate, it must evade recognition by the immune system

(Corthay, 2014). In a normal immune response, the primary surveillance cells that are tasked

with identifying foreign threats are called Dendritic cells. Dendritic cells warn other immune

cells of detected threats by presenting antigens—small pieces of foreign molecules—using a sys-

tem of surface receptors called major histocompatibility complex I and II (MHC-I, MHC-II). Any

antigen presented on an MHC molecule of an active Dendritic cell is presumed to identify a

molecule or cell that should be eliminated by the immune system (Joffre et al., 2009). In contrast,

antigens presented by inactive Dendritic cells are considered markers of human molecules or

cells, and suppress immune responses against cells carrying molecules that match the presented

antigen. Thus, it is of critical importance that (1) any tumor antigen presented on a Dendritic cell
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specifically mark a foreign cell type, as antigens shared by normal cells risk turning the immune

system on healthy human cells, and (2) that Dendritic cells bearing tumor antigens are activated

(Darrasse-Jèze et al., 2009; Steinman et al., 2000).

In cancer, specific tumor antigens can be mutated proteins, products of non-mutated proteins

that have much higher over-expression in tumor cells, or differentiation antigens associated with

tissue of origin; for example melanosome proteins in melanoma (Boon et al., 2006; Segal et al.,

2008). However, the latter case will produce an auto-immune reaction in addition to destroying

cancer cells because the antigen is partially shared with normal cells. To prevent widespread

auto-immunity, Dendritic cell activation is carefully controlled. Activation signals are plentiful,

including many signaling molecules that are generated during inflammation or innate immune

responses. These signals include CD40, IFN-α Toll-like receptor stimulation, or GM-CSF (Lippitz,

2013). Dying cells, another byproduct of an innate immune response, are thought to release

additional signals that result in Dendritic cell activation and maturation, including high mobility

group proteins, ATP, and ER proteins like calreticulin (Zitvogel and Kroemer, 2009).

Once a Dendritic cell has been exposed to a foreign antigen and activated, the second step of

an immune response is the migration of activated Dendritic cells to lymphoid organs. In a lym-

phoid organ, a tumor-antigen loaded Dendritic cell interacts with and activates CD8-expressing

T cells that carry a T cell receptor (TCR) that recognizes the antigen presented by the Dendritic

cell. Once a T cell is activated, it is primed to recognize the antigen that was presented to it by the

Dendritic cell, and is designed to interact with such cells and induce them to die. As a result, T cell

activation is also under tight control. Activation relies upon a host of pro- and anti-activation in-

teractions. The positive signals include CD28, CD137/4-1BB, OX40, HVEM, GITR, IL-2, and IL12

(Franciszkiewicz et al., 2012; Lippitz, 2013), while the negative signals include CTLA-4, TIM-3,
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VISTA, and LAG-3 (Sharma et al., 2017). The combination of these systems with diverse activa-

tion signals produces a complex set of possible responses and many functionally different T cell

states.

Finally, active, cancer-specific T cells must enter the tumor to find and destroy tumor cells.

Chemokines CX3CL1, CXCL9, CXCL10, CCL5 all encourage trafficking of T cells to tumors (Fran-

ciszkiewicz et al., 2012). At the tumor site, regulatory T cells are produced by interacting with

inactive, antigen-presentingDendritic cells. These cells must be present in lower frequencies than

effector T cells for cancer cell killing to proceed. The goal of anti-tumor response is to produce

a self-sustaining immune cycle wherein the killing of cancer cells produces antigens and activa-

tion signals for Dendritic cells, which in turn provoke the subsequent stages of the immune cycle

(Chen and Mellman, 2013).

How then do tumors that express large numbers of antigens avoid immune-mediated cell

killing? It has become clear that immunosuppression occurs at each stage of the immune re-

sponse, and that there are a variety of actors that play a part during each stage.

1.2 Malignant Immunosuppression

The adaptive immune response begins with Dendritic cells, whose activation can be inhib-

ited by factors in the tumor microenvironment (Michielsen et al., 2012; Chevalier et al., 2017).

As discussed above, inactive Dendritic cells that present tumor antigens can actively suppress

immune responses. In addition to being incapable of activating effector T cells, They recruit T

Regulatory cells, which suppress T cell mediated cell killing (Ohta et al., 2006; Curiel et al., 2004).

However, because adjuvants can usually be found that will activate Dendritic cells, more research

has focused on the later stages of the immune response: T cell activation and T cell killing.
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For normal T cell activation to proceed, the Dendritic cell must signal that it is active, which

is communicated by cell-surface presentation of B-7 family ligands. These B-7 ligands complex

with CD80 and CD86, which when activated alongside T cell receptor recognition of the anti-

gen presented by the Dendritic cell, signals that the antigen recognized by the T-cell should be

the target of an immune response. CTLA-4 is a competitive inhibitor for B-7 ligands, and when

present will out-compete CD80 and CD86 (Qureshi et al., 2011). This competitive inhibition sup-

presses T cell activation (Wing et al., 2008) and may bias T cells towards immunosuppressive

regulatory cell states. Conversely, the elimination of the CTLA-4 receptor in mice causes a lethal

lympho-proliferative disorder, suggesting that it unleashes unrestrained clonal T cell expansion

(Tivol et al., 1995). Thus, CTLA-4 functions as an immune checkpoint.

Since the discovery of CTLA-4, myriad additional immune checkpoints have been uncovered

including but probably not limited to TIM-3, BTLA, VISTA, and LAG-3. Each of these proteins

has been observed on cancer cells, and when present, produces complex patterns of T cell sup-

pression. As a result, each protein is being investigated as a possible drug target (Sharma et al.,

2017).

In addition to the more general CTLA-4 pathway, numerous other mechanisms exist that

have been observed to suppress T cell activation in certain contexts. Release of adenosine by

tumor cells, triggered by hypoxic conditions, suppresses activation and recruits T Regulatory

cells (Ohta et al., 2006). VEGF-A and EDNRB/ETBR, molecules secreted by tumor cells to control

tumor vasculature and oxygen availability, may reduce T cell homing and adhesion, excluding

them from the tumor environment (Bouzin et al., 2007). Additionally, VEGF-A can induce IL-

10 secretion, which suppresses IFN-γ, a critical T cell activation signal. IL-10 is one of many

mechanisms by which myeloid derived suppressor cells, immune cells which are functionally
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characterized by their ability to suppress anti-tumor immune responses, exert their effects. Other

mediators of suppression include the production of reactive oxygen species and the secretion of

NO, arginase, prostaglandin E2, or TGF-β, several of which are clinically prognostic indicators

of suppression (Muller and Scherle, 2006).

At later stages of an immune response, the most prominent inhibitor of T cell mediated cell-

killing is PD-1, which is expressed on the cell surface of activated T cells. The activity of PD-1

functions similarly to CTLA-4: when a T-cell complexes with its target, it will induce the cell to

die. However, if PD-1 becomes activated, it is interpreted by the T-cell as a signal that the target

cell was mistakenly identified, and causes the T-cell to die instead (Keir et al., 2008). The ligands

for PD-1, PD-L1 and PD-L2, are expressed on tumor and Dendritic cells, and this pathway is

therefore thought to serve an immuno-regulatory function. Unlike CTLA-4 knockout mice, PD-1

-/- mice survive, but display chronic autoimmune phenotypes (Nishimura et al., 1999; Nishimura

et al., 2001).

Tumor cells are capable of expressing the majority of the immune-inhibitory markers and

secreting many of the immunosuppressive compounds discussed above. Because of the variety of

mechanisms through which tumor cells are capable of inducing this effect, it is logical to expect a

large variance in the druggability of each pathway across patients. This fact may partially explain

the frequent treatment failures observed in immunotherapy trials. Even our limited knowledge

of the functionality of these pathways reveals a system of tremendous complexity. It is designed

to carefully balance immunity against foreign pathogens against the risk of self-recognition and

auto-immunity. Because of this balance, cancer is often able to avoid detection by co-opting

systems the body uses to prevent auto-immunity.
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1.3 Immune Therapies for Cancer

Over the past decade, some of the most promising advances in oncology have come from

vaccines that paint the cancer as an immune target or drugs that disrupt cancer’s ability to mas-

querade as “self.” The idea behind cancer vaccines is to stimulate the immune system to recognize

a tumor as a pathogen and eliminate it. However, early attempts at vaccines quickly taught that

simply exposing the body to cancer antigens was not enough—if Dendritic cells are exposed to an

antigen in absence of an activation signal, they tend to suppress, instead of activate, the immune

response (Rosenberg, Yang, and Restifo, 2004). In contrast, follow-up studies that added adjuvant

treatments designed to stimulate Dendritic cells had more positive effects: co-administration of

IL-2, a Dendritic cell activation signal, with gp100, a melanocyte differentiation antigen improved

melanoma outcomes (Eberlein, 2012). Similar pairings have been effective in intraepithelial neo-

plasia, B-cell lymphomas, and non-small cell lung cancer. (Eberlein, 2012; Stockman, 2011), There

have also been attempts to use viral vectors encoding tumour antigens to exploit the naturally

strong antiviral immune response to elicit reactivity against cancer antigen, but these attempts

have missed phase 3 trial targets (Bavarian-Nordic, 2017).

A second type of vaccine involves ex-vivo culturing of Dendritic cells with tumor antigens.

This hyper-personalized treatment selects for Dendritic cells that show reactivity against the pa-

tient’s tumor, which can then be injected back into the patient alongside an activation adjuvant

to foment an immune response. Unfortunately, the complexity of cell isolation, ex-vivo manipu-

lation and re-infusion has made this approach very costly. Consequently, it has been unpopular

with pharmaceutical companies and has seen limited commercialization (Mellman, Coukos, and

Dranoff, 2011). However, unlike the culturing of Dendritic cells, engineered T cells have been
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successfully commercialized to treat acute lymphoblastic leukemia (Yescarta, Kite Pharma) and

large B cell lymphoma (Kymriah, Novartis). These approaches identify immunogenic antigens in

a patient’s tumor and engineer chimeric T cell receptors to recognize and respond to them.

While cancer vaccines have shown some success, there are still several challenges that have

prevented it from evolving into a broadly effective treatment strategy. First, there is confusion

about which tumor antigens are adequately immunogenic to activate Dendritic cells, and which

are adequately expressed across cells in the tumor to enable pan-cancer targeting. Second, safe

adjuvant therapies for Dendritic cell activation are not yet apparent; most induce moderate to

strong autoimmune side effects. Finally and most critically, though the conditions for immu-

nization eventually may be optimized, effectiveness can be dampened by immunosuppression

mechanisms acting at any of the stages identified above: Dendritic cell priming and activation,

T cell activation, and T cell mediated cell killing. As a result of the linear nature of this activa-

tion process, therapies that enter earlier in the chain, such as activated Dendritic cells must pass

additional immune checkpoints relative to those that enter towards the end, such as activated T

cells in CAR-T therapies, and as such often have lower success rates. However, it is not yet clear

how difficult each immune checkpoint is to pass, how commonly cancer co-opts each checkpoint

to block immune activation, and the what effect the interaction of multiple mechanisms has at

each checkpoint.

In addition to cancer vaccines, there have been attempts to deplete immune-regulatory cells

such as T Regs from the tumor environment. Hampering this approach, no specific surface

marker of T Reg cells has yet been identified that is not also expressed on effector T cells, al-

though some proteins such as GITR and OX40 may be transiently expressed (Ito et al., 2006;

Cohen et al., 2010). As a result, depletion methods tend to remove both T Regulatory and CD8+
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effector T cells. The best attempt so far may be the use of anti-CD25 antibodies, which prefer-

entially deplete T Regulatory cells, at least following short-term therapy, and may help increase

the efficacy of active immunization (Golovina and Vonderheide, 2010).

These problems have driven researchers to investigate the use of drugs for targeting spe-

cific molecular mechanisms underlying immune suppression and activation. Like with vaccines,

there have been efforts to characterize immune checkpoints at each stage of the adaptive im-

mune response. Motivated by mouse research showing that CTLA-4 knockouts induced lethal

auto-immune reactions, it was theorized that a weaker, temporary blockade of CTLA-4 signaling

may be effective in unleashing T cell responses in patients for which the main barrier is T cell

activation. Thus, a drug was developed targeting the CTLA4 pathway, aiming to increase the

effectiveness of Dendritic-cell based activation of CD8+ T cells. This was attempted first in mice

and then in a series of trials for Melanoma (approved), prostate, lung, and bladder cancer. These

trials have succeeded not because of a high response rate—relatively few patients respond—but

rather because those patients that do respond appear to obtain durable and long-lasting recov-

eries (Robert et al., 2011; Hodi et al., 2010). However, because of significant on- and off-target

inflammatory toxicities, anti CTLA-4 drugs are primarily targeted to late-stage patients who do

not respond to front line therapies.

Similar to vaccines, drugs targeting later-acting immune checkpoints appear to have superior

specificity. Mirroring the result in rodents, anti-PD-1 drugs seem safer than Ipilimumab (Brahmer

et al., 2010) and consistently show durable responses in subsets of patients (Hamid et al., 2013;

McDermott et al., 2014). These clinical results suggest that anti-tumor immunity is functional up

to but not including T cell mediated cell killing in some patients.

In addition to these two pathways, there are numerous other co-stimulatory or co-inhibitory
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pathways that are believed to be involved in modulation of the anti-tumor responses. Stimula-

tory pathways that might be activated include CD28, OX40, GITR, CD137, CD27, and HVEM,

and inhibitory pathways that could be blocked include TIM-3, BTLA, VISTA, and LAG-3. It is

hoped that part of the reason for the limited patient response to PD-1 and CTLA-4 drugs is that

aberrations in these other pathways are responsible for immunosuppression in those patients. By

better characterizing and personalizing treatment, it is hoped that the response rate of patients

to immune-based treatments may be improved. Initial investigation into this with combination

therapies has been promising: Ipilimumab (CTLA-4) + Nivolumab (PD-1) appear to enhance im-

mune activity over either therapy alone (Wolchok et al., 2013).

The results of this research and the clinical trials that followed have revealed an extremely

complexweb of overlappingmechanisms governing immune-cancer interactions. Each identified

immunosuppressionmechanism has been shown to have a critical role in preventing autoimmune

disease, outlining the need for rational therapy designs, and where possible, targeted delivery.

However, later checkpoints unleash increasingly specific responses. If it were possible to iden-

tify the particular pathway that is primarily responsible for inhibition of an immune mechanism,

this would minimize the off-target autoimmune effects. Similarly, improvements allowing ther-

apies to be delivered directly to the tumor, at least for T cell homing and T cell mediated cell

killing, should in theory also serve to minimize off-target effects. Taken in combination, these

improvements may allow greater doses of drugs to be brought to bear, in cases where patient

toxicity would otherwise prevent a dose that facilitates complete penetrance. However, this re-

search does not benefit individuals whose immune system is suppressed by checkpoint pathways

outside the regime of existing drugs, or patients who are given a drug that opens thewrong check-

point. Thus, there is a significant and pressing clinical need to better characterize the immune
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phenotypes present in cancer patients at the level of individuals. Only recently have tools capa-

ble of probing these complex questions been invented. This dissertation deals, in part, with the

methodological and computational development of one such technology and its application to

characterize complex immune phenotypes.

1.4 Single-Cell Technologies

Invention of new genomics technologies have triggered rapid change in biological research

by allowing researchers to ask new categories of questions. For example, sequencing the human

genome provided biologists with the complete blueprint of human cells. This provided a context

in which to place the previously haphazard identification of individual expressed genes. The

combination of that knowledge with targeted approaches to identify RNA molecules—expressed

sequence tagging—has taught us how the genome is functionally expressed. This informationwas

combined to start the transcriptomics revolution with the creation of DNA microarrays, which

for the first time provided a relatively unbiased functional readout of the genes expressed by cells

isolated from a tissue.

Microarrays increased the amount of data generated in a single assay by 1000-fold and enabled

scientists to make predictions about responses to treatment in breast and prostate cancer that

previously required much more laborious investigation (Glinsky et al., 2004; Van’t Veer et al.,

2002). Theywere also used to predict response to early immune therapies inmelanoma (Monsurrò

et al., 2004) and identify pan-cancer signatures of immune infiltration (Chifman et al., 2016).

RNA-sequencing (RNA-seq) expanded on these capabilities by eliminating bias inherent in

microarray technology, reducing the required amount of RNA input, and for the first time al-

lowed an absolute measurement of the number of each RNA in a sample isolate. RNA-seq was
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effectively applied to generate, among other projects, The Cancer Genome Atlas (McLendon et

al., 2008; Network, 2011). This Atlas has been extensively mined and has contributed prognostic

signatures of immune therapy success (Şenbabaoğlu et al., 2016). RNA-seq has since been utilized

to interrogate the binding patterns of transcription factors (CHIP-seq, Johnson et al., 2007), deter-

mine nucleosome occupancy (DNAse-seq, Boyle et al., 2008), refine transcription factor binding

preferences (SELEX-seq, Riley et al., 2014), map the 3D spatial organization of DNA in the nu-

cleus (Hi-C, Belton et al., 2012), and create many more experimental paradigms. RNA-seq has

spawned large studies on the functionality of the genome, such as the ENCODE (Consortium,

2012) and ROADMAP epigenomics projects (Kundaje et al., 2015), which revealed that a large

portion of the genome is responsible for functional differences in gene expression, even if it is

not itself transcribed.

However, the utility of RNA-sequencing is limited because it requires a large number of input

cells to achieve the concentration of DNA necessary to run the sequencer. Because millions of

cells were needed to provide the required microgram of DNA input (Wilhelm and Landry, 2009),

RNA-sequencing cannot tell the difference between 50% of the cells expressing two copies of

an RNA and 100% of cells expressing one copy. Yet, this distinction is critical to understanding

population level immune variance, and also cancer antigen variation.

Single cell approaches, in contrast, can answer these types of questions. Flow cytometry is a

two step procedure wherein cells are first exposed to antibodies that are bound to fluorophores,

and then shot through a fluorescence detector at high speed. This approach is able to characterize

8-17 proteins, limited by the overlap of fluorophore emission and excitation spectra. (Perfetto,

Chattopadhyay, and Roederer, 2004).

Advances in cytometry by time-of-flight (Cytof) replaces fluorophores with metal ions, in-

15



creasing the number of measurable proteins in a single cell to 35-50. This is still typically limited

to surface proteins, and has a large experimental lead time as high-quality, specific antibodies

must be developed for each protein target. Despite these drawbacks, Cytof’s antibody basedmea-

surements produce relative but reliable continuous estimates of protein abundance and measure

individual cells. In addition, it is one of the highest throughput technologies available for assay-

ing single cells, capable of easily measuring millions of cells per sample, although these numbers

are rarely necessary. Finally, the individual cell measurements made by Cytof are typically quite

reliable; antibodies have good binding affinities and as a result, there is high confidence that if

cell surface markers are present, Cytof will detect them.

As a result, Cytof has been very effectively applied to better characterize immune cell states in

cases where the marker combinations are already known: Cytof identified previously unknown

signaling mechanisms in the otherwise well-understood hematopoiesis system (Bendall et al.,

2011), helped decompose CD8+ T cells states and display combinatorial cytokine producing sub-

types (Newell et al., 2012), enabled by trajectory-finding approaches, found novel early human

B-cell populations (Bendall et al., 2014), stratified Macrophage and T cell phenotypes in renal

cell carcinoma (Chevrier et al., 2017), and characterized t- and myeloid-cell dysfunction in lung

cancer (Lavin et al., 2017).

Unfortunately, Cytof (and FACS) requires prior knowledge or guesswork to identify cell sur-

face proteins that define cell types before experimention begins. In addition, it has a limited

ability to resolve intracellular states because cells must be permeabilized to allow antibody en-

trance, and therefore targeting intracellular proteins does not always produce effective staining.

As a result, it is a powerful tool for teasing apart cell populations based on previously identified

surface markers, but is not a capable tool for characterization of unknown phenotypes.
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1.5 Single-Cell RNA-Sequencing (scRNA-seq)

scRNA-seq is the first opportunity to make an unbiased measure of more than a few pro-

teins or transcripts, allowing populations of seemingly homogeneous cells to be deconvolved into

their component parts. As early as 2009, transcriptomes of the largest single cells—oocytes—and

multi-cell blastomeres had been amplified and measured singly in tubes by adapting a protocol

originally designed for microarrays (Tang et al., 2009). Multiplexing of this method for multiple

cells was accomplished shortly thereafter with a cell barcoding strategy called CEL-seq wherein

the poly-A capture primers were modified to contain short designed nucleotide sequences (“cell

barcodes”) that differed between cells and uniquely marked them (Islam et al., 2011).

Developed contemporaneously and released shortly following CEL-seq, SMART template-

switching chemistry was introduced to allow isolation of full-length transcripts (Ramsköld et al.,

2012). It accomplished this by leveraging the Nextera transposase reagent from bulk sequencing

assays, which incorporates itself randomly into the captured RNA fragments, carrying an Illu-

mina index. Each cell is incubated with Nextera using different index pairs, the combination of

which uniquely tag each cell. Therefore, when the indices were read off the sequencer, it allowed

reads from up to 96 cells to be sorted according to the cell that generated them per sequencing

lane. This technological innovation was important because it allowed splicing events to be ob-

served in single cells for the first time. scRNA-seq, applied in this fashion, can measure any cell

of any size that can pass through a FACS sorter

CEL- and SMART-seq enabled reading of an estimated 7-10 thousand molecules of RNA in

each cell. However, these data are not without problems. While 10,000 molecules is many more

than proteomics approaches allow, it is a relatively small fraction of the mRNA available in a
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eukaryotic cells. Because many of the features of interest, such as intracellular transcription

factors, are present at low copy number, capture-based stochasticity may drive their expression

as much or more than biological state.

Second, because cells contain so little starting material, and sequencing devices are designed

for bulk genomes, large amounts of PCR (15+ cycles) or linear amplification (overnight) is nec-

essary to generate enough material to run a sequencer. Thus, both CEL- and SMART-seq utilize

amplification, and this interacts with the capture rate to produce odd mixture distributions over

captured RNA molecules.

The Central Limit Theorem describes how the mean values of a series of samples extracted

independently from a population tend towards a Normal or Gaussian distribution. Because of the

tendency for Gaussian distributions to naturally arise, there has been abundant work to analyze

data that follow these distributions, and as such it is a desirable property. In bulk sequencing, this

is approximately achieved, as each technical or biological replicate samples many cells, each of

which contains many mRNA. After correcting for amplification by taking the log of the observed

counts, the expression of most genes across replicates can usually be fit to Gaussian distributions.

Single cell data is not so well behaved. The shallow sampling of the transcriptomes causes

some cells to miss particular genes, which ”drop out” of analysis. Thus, when the gene’s ex-

pression is examined across cells, data is shared between a zero category or “drop-out” and a

Log-Normal component which represents amplification over the captured molecules. Because

capture is so sparse, biases in amplification and other steps in library construction can contribute

as significantly to the ratio of cells in the ”drop-out” and ”continuous” components as do the

numbers of molecules originally present in cells (Zheng, Chung, and Zhao, 2011; Dohm et al.,

2008). Indeed, capture in these technologies can be so variable that popular analysis visualiza-
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tions such as ”Dot plots” treat the fraction of cells that detect a transcript as carefully as they

do the magnitude of expression in a detected gene (Shekhar et al., 2016). As a result, only large

effects in molecule number are reliably detectable.

To overcome these technical biases, additional experimental controls were necessary to make

the data more interpretable. The most significant advance was the inclusion of Unique Molecular

Barcodes (UMIs). Like cell barcodes, these are added to capture primers. Unlike cell barcodes,

molecular barcodes contain random sequences. When the barcodes are long enough, they prob-

abilistically provide a unique marker for each molecule. This allows a computational scientist

to resolve the reads obtained in an experiment at molecular resolution. Inclusion of molecu-

lar barcodes allows computational scientists to exchange the complex mixture distributions for

well characterized Poisson statistics—the statistics that describe the rate of rare sampling events

(Shiroguchi et al., 2012). The effectiveness of this molecular barcoding is demonstrated with ex-

ogenous spike-in control reagents. RNA of known concentration are added, and the accuracy of

population estimates were improved with inclusion of UMIs (Grün, Kester, and Van Oudenaar-

den, 2014).

Amplification methods have an interaction with cell and molecular barcodes. Traditional

polymerase chain-reaction (PCR) amplification has a relatively small error rate, but the output of

PCR is also valid input. Each round of PCR adds new substrate to the pool to be amplified. There-

fore, any errors introduced into the cell barcode are propagated into the reaction, producing error

trees wherein branches inherit errors from their trunks. In contrast, linear amplification through

in-vitro transcription (Eberwine et al., 1992), as used in CEL-seq, takes cDNA as input and gen-

erates RNA output. Thus, unlike PCR, the product of the reaction cannot act as substrate, and

any errors that occur do not propagate or compound. In addition, CEL-seq2/C1 and MARS-seq
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have a steeper slope at low sequencing depths than both Drop-seq and SMART-seq, potentially

due to a less biased amplification by in vitro transcription (Ziegenhain et al., 2017).

These technological advances—capture primers, amplification improvements, cell and molec-

ular barcoding—form the basis of modern single-cell sequencing. The small cell counts of initial

experiments were adequate to ask very specific questions of well controlled systems. Often, the

cell type had already been isolated by FACS and studies were limited to determining if the isolated

cell population displayed a single phenotype with variation, or if there were modes hidden in the

population that represented distinct states (Shalek et al., 2013). To scale beyond these experi-

ments, robotics was used to optimize plate loading for both SMART-seq (Shalek et al., 2014) and

CEL-seq (Jaitin et al., 2014) chemistries, allowing 96 cells to be processed at a time with reduced

hands-on time. More recently, droplet-based microfluidics approaches to CEL-seq (Klein et al.,

2015) and SMART-seq (Macosko et al., 2015) were developed which enabled thousands of cells to

be generated at once¹.

These scRNA-seq approaches have revealed several interesting characteristics of the tech-

niques used in sequencing library preparation. First, the capture primers used to extract the

mRNA from the cell have quite low efficiency—early methods had as low as 5% capture rate,

and cutting edge approaches have 30-35% capture rates. As a result, it can be difficult to measure

low-expression transcripts such as transcription factors, which are often present at very low copy

number in cells. Second, because some gene sequences are better substrates for PCR amplifica-

tion than others, the (much larger) amplification necessary to create libraries for scRNA-seq with

¹Near the end of this dissertation, 10x Genomics (Zheng et al., 2017b) provided a commercial application that
pulls from both approaches and by focusing on tight control of the bead construction process. It is thought to
currently produce the highest quality data, albeit at significantly increased cost relative to non-commercial droplet
technologies.
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adequate concentration to load the sequencer produces significant variation in gene abundances.

Together, these combine to produce very sparse libraries – bulk RNA-seq could be expected to

identify over 20,000 genes in a sample. In contrast, scRNA-seq captures between 1000 and 5000,

depending on the size of the cells, abundance of their RNA, and lack of cellular stress. In spite of

these disadvantages, the capability of sequencing individual cells has taught us much about the

development and function of immune cells.

1.6 Single-Cell Approaches to Characterize Immune Popula-
tions

Studies predating scRNA-seq had long identified that cellular variation in expression of im-

mune marker genes can have a functional influence on clinical outcomes. For example, a 2010

study using FACS discovered variable expression of the IL-2R in a population of T cells during

an immune response correlates with T Effector and T Regulatory cell survival (Feinerman et al.,

2010).

scRNA-seq has been applied to great effect to improve our understanding of how immune cells

develop, and the triggers that are necessary to induce the differentiation of precursors into ma-

ture cell types. Jaitin et al., 2014 classified splenic cells into known immune cell types (B, Natural

Killer, Macrophages, Monocytes, and Plasmacytoid Dendritic cells), and characterized variation

in Dendritic cell responses to lipopolysaccharide, a bacterial protein, identifying universal IFN re-

sponse genes, and transcriptionally separating them into sub-populations. Björklund et al., 2016

profiled CD127+ innate lymphoid cells in tonsil and small intestine. They identified previously

characterized Innate Lymphoid cell 1, 2, 3, and NK cells based on surface marker expression, but

also identified novel transcriptional signatures suggestive of possible subpopulations within the
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identified groups. Gury-BenAri et al., 2016 examined helper-like Innate Lymphoid cells in the

small-intestine, finding new populations defined by expression of NKp46, retinoic acid receptor

related orphan receptor-γ-t, and IFNγ or IL-2 and CCL22. Schlitzer et al., 2015 examined lineage

commitment in conventional Dendritic cells, while Drissen et al., 2016 improved the resolution

of early myeloid lineage branching. Lönnberg et al., 2017 and Paul et al., 2015 helped map out

how surface marker based cell states map to transcriptional changes in early bone marrow dif-

ferentiation, and Nestorowa et al., 2016 carried out a similar study on hematopoietic stem cells.

Finally, Villani et al., 2017 demonstrates the power of deeply sequencing a relatively homoge-

neous population by examining 2400 HLA-DR+ cells, revealing 6 Dendritic cell sub-populations.

Similarly, scRNA-seq has been effective at teasing apart how immune cell activation functions

in well controlled model systems. The first major application of SMART-seq examined bone-

marrow derived Dendritic cells subjected to a bacterial lipopolysaccharide activation signal to

study variation in gene expression and splicing patterns among Dendritic cells in response to

infection (Shalek et al., 2013). This system was selected in part because it presents an interesting

biological question, but also because Dendritic cell activation is known to induce temporal phas-

ing, and because activated Dendritic cells are post-mitotic, therefore the majority of variation

was expected to be biological. The study revealed a correlated component of gene expression in-

cluding Stat2 and Irf7, that drive the antiviral response. Lönnberg et al., 2017 examined variation

in t-helper differentiation states in response to malaria. A series of knockout experiments tar-

geting the IFN-R pathway (Gaublomme et al., 2015) were able to identify heterogeneity of TH-17

cells in CNS and lymph node at peak of autoimmune encephalomyelitis. Finally, recent stud-

ies demonstrated how tumor-associated cells can recruit Macrophages that suppress immunity

by sequencing individual Macrophage cells and identifying hippo pathway Yes-associate protein
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(YAP) as the critical checkpoint for Macrophage recruitment (Guo et al., 2017)

These studies demonstrate how profiling single cells enables functional characterization of

immune populations, both in natural states and when stimulated by foreign pathogens. Yet, at

the time this research began, the study of immune infiltration of cancer had not been broached

by large scRNA-seq experiments. The following chapter will describe how a technology was

selected from the set of approaches reviewed above, adapted to sequencing immune cells, and

benchmarked for sources of variation It will then introduce a statistical toolkit that was developed

to correct the technical problems introduced by the process of transforming individual cells into

a library which, after sequencing, describes the phenotypes of thousands of immune cells per

tumor.

1.7 Towards an Atlas of Tumor Immune Phenotypes

Recent scRNA-seq studies highlight several critical questions in cancer immuno-biology:

namely, how do individual immune cells react to cancer, and what can we learn about population-

level differences between patients? How do the expression of individual marker genes, or pairs

of marker genes, that are used to defined cell states correlate with cellular phenotypes? What do

these transcriptional states imply about individual patient’s amenability to drug treatments?

To answer these questions, we would need to sequence a very large number of cells. We rea-

soned that cancer exists as a natural perturbation, and that the unique nature of each patient’s

tumors should provoke significant variation between patients. However, recent demonstrations

have shown that tissue residence alone exerts a significant effect on immune phenotypes. There-

fore, we rationalized that it would be critical to first characterize the cellular states within the

healthy tissue, thus we will hierarchically characterize blood, tissue, and tumor-infiltrating im-
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mune cells. Previous studies and retrospectively, ones that were carried out in parallel, have

demonstrated that small numbers of cells from large numbers of patients are not capable of cap-

turing meaningful heterogeneity across immune cell types; they simply recover common cell

states (Chung et al., 2017). Thus, shallow sampling of TILs cannot determine which cells are

present across tumors at variable levels, versus the states that are patient-specific.

Therefore a successful study would deeply sample multiple patients, but also multiple tis-

sues within each patient. This introduces a second problem: early studies focused on technical

demonstrations, often within model organisms or cell lines, and eschewed statistical approaches

that are necessary to examine variances across multiple samples of variable sources. Very few

studies had dealt with human patient effects in immune data–most studies used mouse models

with intentionally limited genetic variation. As a result, limited work had been done to address

statistical problems like normalization and adjustment for patient-patient differences, and the

ability to ask large-scale questions in humans was therefore limited. Yet, the ability to generalize

across patients is crucial to interpret the relative importance of any states that are discovered.

Thus, before any attempts could be made to describe immune phenotypes, several techno-

logical and computational challenges needed to be addressed. The approaches for solving these

challenges will be detailed in the next two chapters. Chapter 2 will discuss the selection of the

appropriate technology to assay immune cells at a scale that was at the time unprecedented, and

the computational tools that were developed to ensure that the resulting data highlighted biolog-

ical variation and minimized technical effects introduced by the construction of the sequencing

library. Chapter 3 will then discuss the statistical models and tools that were developed to reason

about the relationships between cells from different patients whose different tumors introduced

huge biological variation that was not always cleanly separable from technical variation. Finally,
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Chapter 4 will describe an experiment made possible by these tools, wherein a broad range of

immune cell states are uncovered and characterized, highlighting how breast tumors dramati-

cally expand the range of observed immune cell phenotypes relative to those observed in healthy

tissue.
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Chapter 2

Constructing a Flexible Framwork to

Maximize scRNA-seq DataQuality

2.1 Droplet-based Sequencing Enables Deep Profiling of Im-
mune Cells

Expanding our knowledge of the functionality of tumor infiltrating immune cells requires ex-

amination of multiple tissues. Because peripheral blood is the most accessible source of immune

data, most knowledge of human immune phenotypes comes from experiments done on circu-

lating immune cells from blood. Therefore, without measuring circulating blood, new findings

in tumor immune cells could be difficult to compare with prior experiments. In addition, it is

established that when immune cells transition from circulation into tissues, they are subjected

to different stimuli that cause shifts in gene expression (Fan and Rudensky, 2016). As a result,

without also measuring immune cells in healthy tissue, it would not be possible to distinguish

between tumor infiltrating immune phenotypes that result from cancer from those caused by

tissue residence. Therefore, we reasoned that to effectively study tumor infiltrating immune cells
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we would also need to characterize immune cells in healthy tissue and blood.

These requirements, combined with the complexities of single-cell sequencing, lead to com-

plex experimental designs that requiremany cells. For example, It is important to separate pheno-

types that are commonly observed across patients from those that result from specific microen-

vironments of individual tumors. Thus, multiple patients must be sequenced to determine the

relative frequency and generalizability of observed phenotypic states. Additionally, scRNA-seq is

a new technology with significant uncharacterized technical variability. To verify that observed

cell states result from biological differences and not technical changes induced by the experi-

mental protocol, it is critical to measure each sample multiple times to identify what fraction of

observed variability is technical. Each of these variances increase the number of observable cell

states, and consequently, we expected to need approximately 1000 cells per replicate to measure

each sample.

To sequence, in triplicate, immune cells from blood, healthy tissue, and tumor, would require

9,000 cells. Using the Smart-seq 2 on the Fluidigm C1 and devoting 1 million sequencing reads

per cell would cost approximately $12 per cell, for a total cost of $108,000. Such an experiment

would nearly double the largest Smart-seq 2 experiment to current date for just a single patient

(Zheng et al., 2017a). Fortunately, InDrop and Drop-seq, microfluidics approaches capable of

sequencing tens of thousands of cells at low cost were announced shortly after this experiment

was conceived (Klein et al., 2015; Macosko et al., 2015).

By exchanging plates for microfluidic encapsulation flow cells, both platforms were capable

of preparing tens of thousands of cells in hours, a feat that would have required either expen-

sive mechanization or nearly two week’s work for a trained technician using existing plate ap-

proaches. This advancement enables the scale of sequencing necessary to deeply profile large
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numbers of immune cells from the multiple tissues of multiple patients. The next section will

discuss how droplet-based sequencing makes this possible.

2.2 Technical Characteristics of Droplet-based Sequencing

Droplet-based sequencing allows thousands of cells to be sequenced using the same number

of sequencing reads previously used to characterize 96 cells using plates, or 3-5 bulk samples.

This is accomplished adding barcodes to each sequencing read which allows them to be matched

back to the cell and molecule they originated from (Klein et al., 2015; Macosko et al., 2015). By

barcoding molecules, only a single read is necessary to identify a captured mRNA. This allows

the output of a sequencing experiment to be transformed from read abundances into a ”count”

matrix populated by molecules, and confers an added benefit of collapsing PCR outliers that

amplify well into single observations, yielding more accurate counts (Grun and Oudenaarden,

2016). As as result, fewer reads must be spent to characterize each molecule.

Second, the addition of cell barcodes allowed the number of cells included in each reaction

to be increased from 1 per well to many thousands. This had several practical benefits. First, the

RNA in each cell serves as the substrate for the initial amplification round, and with 50x more

cells than plate-based approaches, the enzymes are exposed tomore substrate in a smaller volume,

which makes them more efficient Second, the increase in initial substrate allows the number of

PCR cycles to be decreased by 5-6 without decreasing the output cDNA concentration. This

reduced cellular ”jackpotting”, where one read or gene accrues additional copies relative to its

cellular abundance due to favorable amplification. Reducing jackpotting therefore leads to more

uniform sequencing coverage across cells, and increases their average molecule count. Together,

these advancements reduced the per-cell cost to approximately $0.4.
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However, these improvements did not fully offset the decrease in sequencing depth. Instead

of spending 250,000 to 4million ormore reads per cell (Shalek et al., 2013; Shalek et al., 2014; Jaitin

et al., 2014), droplet technologies measure phenotypes using 1
40
th of the sequencing reads, as few

as 20-50,000 per cell (Klein et al., 2015; Macosko et al., 2015). This meant sparser cell data; instead

of 5-8,000 genes per cell, InDrop and Drop-seq observe 1-3,000 genes, implying that more than

half of the low expression genes that were captured by already-sparse SMART-seq 2 technologies

are missed by droplet approaches. The dramatic decrease in information that is attributed to each

cell and the critical role played by DNA barcodes both lead to technical challenges that must be

addressed to maximize the utility of droplet-based sequencing.

First, the addition of molecular barcodes revealed that the molecular capture rate of these

technologies is actually starkly lower than expected, in the 5-20% range (Shah et al., 2016). Com-

bined with the reduced numbers of reads associated with each cell, this leads to a phenomenon

called ”drop out” wherein the read-out for a cell may fail to capture any of themolecules of a given

gene, causing it to incorrectly masquerade as unexpressed. This produces a significant problem,

as many canonical genes used to mark cell types code for stable proteins with low resting tran-

scription. Thus, many of these important genes have low capture rates, and may drop out, which

eliminates the historically most effective mechanism of identifying cell types. This phenomena

is also computationally damaging, as the random drop-out effect causes cell-cell distances to

improperly increase, making it more difficult to group cells into classes based on similarity.

Second, while barcodes enable increased multiplexing, they are susceptible to errors, which

add substantial noise to the sequencing experiments. Compared to bulk sequencing, scRNA-seq

requires a much greater number of enzymatic reactions to create a sequencing library. Addi-

tional amplification requires more polymerase reactions, while adding barcodes and sequencing
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adapters requires additional ligation. Each of these reactions introduce error into the sequences,

which occur in the cell and molecule barcodes at a rate of approximately 1%¹. Errors in these

barcodes make cellular data appear to do perplexing things: errors in molecule barcodes make

cells appear to express two molecules instead of one, and errors in cell barcodes make cells ap-

pear to express molecules that they do not. This last characteristic is particularly confounding:

while drop-out makes us question the meaning of zeros, cell barcode errors make the values we

do observe less reliable.

The third and most critical error source in scRNA-seq experiments is ambient contamination.

Cells dislike being dissociated and sorted, two protocols that are often necessary to transform

tissues into the single cell solution necessary for droplet sequencing. As a result of these stressful

protocols, some cells will respond by lysing, dumping their mRNA loads into solution. These

mRNA then find their way into emulsion droplets, sometimes with other cells, and sometimes

in droplets containing only a barcoding bead. The result of this effect is that despite loading no

more than 5-6000 cells, it is extremely unusual to observe fewer than 200,000 cell barcodes with

associated sequencing reads.

Compounding this problem are amplification biases that can cause barcodes that were paired

with real cells to amplify badly, or empty droplets paired only with contamination to amplify

well. This blurs the line between the two types of data, making classification of cells a difficult

problem, and decreasing the yield of sequencing experiments by allowing higher amplification

of contamination. These technical effects, in combination, make the design of data processing

methods a critical part of scRNA-seq analysis.

¹details discussed in 2.12
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Figure 2.1: Demonstrative of major differences between InDrop and Drop-seq. (A) InDrop uses
linear amplification while Drop-seq uses PCR. Linear amplification introduces more errors, but
rarely has more than one error per barcode. Drop-seq can introduce chains of errors through
PCR. (B) Summary of InDrop and Drop-seq primer and sequencing structure. InDrop uses a 54bp
forward read containing two 8-11bp and 8bp cell barcode fragments, an 8bp UMI, and 5 bases of
the poly-T capture primer. Drop-seq has a 26 bp forward read containing a 16bp cell barcode
and a 10bp UMI. (C) empirical cumulative density function over molecules in an experiment.
Each step upwards increments by the number of molecules in a cell (largest first) and each step
right increments by a cell. Intuitively, faster movement upwards indicates larger concentration
of molecules within individual cells, while movement right indicates relatively few molecules
spread over very many cells.

2.3 Selecting a Droplet Sequencing Assay

When we began designing single-cell sequencing experiments, there were no computational

analysis methods applicable to either InDrop or Drop-seq. In addition, while it was obvious

that plate-based sequencing would be economically infeasible, choosing between droplet-based

approaches was more difficult. While both technologies leveraged droplet-based encapsulation
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approaches, an examination of the technologies’ chemistries reveal extensive differences.

Drop-seq used the SMART-seq approach leveraged in the Fluidigm C1 and plate-seq tech-

nologies, which typically captures more genes than than the CEL-seq approach used by InDrop

(Ziegenhain et al., 2017). However, Drop-seq also had a higher relative difference between its

cell and bead flow rates, causing it to capture only about 1% of cells, compared to InDrop’s 25%

capture rate. Thus, while drop-seq might enjoy a better capture rate, it had the disadvantage of

requiring a much larger number of input cells, one that we thought could be difficult to obtain

from tumor samples with variable immune infiltrate.

Another critical difference was that while InDrop’s beads have designed cell barcodes with

known sequences, Drop-seq’s cell barcodes are randomly generated using synthetic combinato-

rial chemistry. These random barcodes have over 100x the number of possibilities, which allows

Drop-seq to enjoy a lower theoretical doublet rate, but aren’t designed with error correcting

codes. Therefore, drop-seq has no guarantee that errors in their barcodes will be detectable.

This problem is exacerbated by the use of PCR, which propagates errors from early sequencing

rounds, since the product of PCR also serves as substrate (Figure 2.1 A). InDrop, in contrast, uses

a linear amplification approach based on in-vitro transcription (IVT). IVT has a higher error rate

than PCR, but errors don’t propagate, this results in the majority of reads containing at most 1

error, a state that is easy to correct through the use of error correcting codes.

Unfortunately, there were no controlled experiments which would allow these two technolo-

gies to be quantitatively benchmarked. In addition, the technologies were demonstrated on very

different biological systems: Drop-seq was run on a human-mouse cell line mixture and retinal

neurons, whereas InDropwas demonstrated on cultured induced-pluripotent stem-cells. Because

these cells have different sizes and stress responses, it made direct comparison of their results
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impossible.

Therefore, to differentiate between Drop-seq and InDrop, we carried out an in-house com-

parison of using an acute myeloid leukemia cancer model, reasoning that this system would be

closer to the eventual tumor infiltrating immune cells that we would measure in our experiments

than the published technologies (Figure 2.1 C). We then examined the resulting data for the ex-

perimental yield of molecules and cells, the extent of cell contamination, and the feasibility of

differentiating cells from non-cellular contamination.

In our hands, InDrop produced data wherein the larger-count cell barcodes were more clearly

separable than Drop-seq, and the overall yield of the InDrop experiment was higher. In addition,

the fraction of data concentrated in large-count cell barcodes was much higher in InDrop (Fig-

ure 2.1 C, second panels). This is an important observation, as it suggests that the overall ambient

contamination was lower in the InDrop system, and therefore that the observed molecule counts

in InDrop cells had a higher signal to noise ratio. Combined with InDrop’s better internal tech-

nical controls like error correcting cell barcodes and it’s ability to capture more cells from rare

samples, we were steered to utilize the InDrop assay for our lab’s single-cell sequencing experi-

ments.

2.4 Improvements to InDrop Barcodes IncreaseMolecular Yield
and Error Correction Capacity

Whenwe began working with InDrop, it had only been applied to well-behaved cell lines, and

displayed worse performance on our clinical samples. Therefore, before exploring computational

solutions to the error patters described above, we wondered if there were experimental changes

that would improve the baseline performance of the InDrop assay.
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One reason we favored InDrop over Drop-seq was that it had a clearer separation of cells

from non-cellular contamination, at least partially due to a lower ambient RNA contamination

level. However, we reasoned that common asystematic biases might also blur the boundaries

between cell-bead and contamination-bead distributions. If those biases could be removed, we

might further separate signal from noise, and make cell detection more feasible.

We began bymeasuring the “GC content” of the capture primers. GC content is the percentage

of nucleotides in a DNA or RNA polymer that are guanine or cytosine, and it is established

that sequences with 50-55% GC content are the best substrates for enzymatic reactions like PCR

(Mamedov et al., 2008). Therefore, we reasoned that imbalances in GC content could cause some

contamination-barcode pairs to amplify well, and cell-barcode pairs to amplify poorly, blurring

the boundary between them.

When we measured the GC constant across cell barcodes, we observed that it was highly

variable, with extreme high and low values of 20 and 70%. When we compared the number

of molecules associated with barcodes of different GC contents, we observed that cell barcodes

with “balanced” GC content of 50% were paired with more molecules in pilot experiments (Fig-

ure 2.2 A), and in published InDrop data (Klein et al., 2015)². To quantify this phenomena, we

correlated the deviance d from balanced GC content (50%) for each barcode d = 1− |GC − 0.5|,

and calculated the correlation of this statistic with the number of detected molecules for each

barcode. We observed a small but very significant effect of r2 = 0.23, p < 10−45 suggesting that

barcodes with 50% GC content obtained higher molecule count than those with higher or lower

GC fraction.

²This phenomena was also observed in Drop-seq, but because their barcodes are not designed, it cannot be
addressed for that platform
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Since cells and barcodes were randomly assigned, these results implied that cells receiving

GC-balanced beads were optimally amplified, and the presence of variable GC content was in-

troducing a sampling variance over our sequencing libraries. Because there are a fixed number

of reads to assign to each sample, increasing the variance of the number of molecules detected in

each cell increases the molecule count of the largest cells, but decreases the average molecule

count (see Figure 2.2 C). Since the eventual statistical analyses expect cells to be identically

distributed—or be transformed to be identically distributed—extra sampling of a small number

of cells does not provide any experimental benefit. Therefore, balancing GC content across our

barcodes would decrease variance across our libraries, reducing the size of high molecule-count

cells, and improving data quality.

Next, we thought about ways to improve the error correction capability of InDrop. Com-

pared to Drop-seq, InDrop libraries have a high probability of containing sequencing errors. On

average, we observe that one in 50 cell barcodes contains a single-base substitution error³.

Because InDrop sequences a very large number of cells, it needs an even larger number of cell

barcodes. However, it must pack those barcodes into DNA sequences of limited length, each base

of which must be one of A, C, G, and T. As a result, there is a trade-off between the number of

barcodes of a given length and the number of substitution errors needed to convert one barcode

into another, also called the barcode’s Hamming distance.

If the cell barcodes are too similar, substitution errors that convert one barcode into another

can result in a molecule being mistakenly associated with the wrong cell. This is a critical prob-

lem as miss-assignment of marker genes can disrupt type identification, since they are used by

biologists to label the type or lineage of each cell. It also frustrates detection of cell doublets, the

³This is likely because the T7 polymerase used to amplify InDrop libraries does not have proofreading capability.
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rare events where two cells are encapsulated with the same barcode, as gene miss-assignment

can cause cells to masquerade as doublets by associating two markers of different lineages with

the same barcode. We observed that the originally published barcode sequences had a minimum

Hamming distance of 2, which is adequate to identify but not to correct single-base errors (see

Figure 2.2 B). Because single base errors are common in In-drop, we reasoned that this introduced

unnecessary data loss.

Finally, a careful examination of cell barcode error rates showed that the most common error

was that the first base of the second cell barcode would be converted to A at high rate ( 10%) from

any other nucleotide. We reasoned that this substitution was the result of an extension process

that occurred during barcode construction.

To address these shortfalls, we redesigned a cell barcode set so that all barcodes had balanced

GC content, with Hamming distance of≥ 3 (meanDh = 13.3), excluding the first base of the sec-

ond cell barcode, which was made a constant A to eliminate the observed error profile. This was

done by performing a constrained optimization over barcodes of the variable lengths required by

InDrop, obtained from Edittag (Faircloth and Glenn, 2012). Comparing libraries from before and

after the redesign of our barcoding beads, showed that scRNA-Seq libraries generated with new

DNA barcoding hydrogel beads obtained 5.3% improved yield as measured by molecules/million

sequencing reads.

2.5 Improvements to the InDrop Assay Reduce Non-cellular
RNA Contamination

A second problem that was observed during pilot experiments on patient samples is that long

encapsulation time can allow cells to execute cell-stress or cell-death programs. Because sample
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Figure 2.2: (A) Visualization of cell barcode GC content (percentage, x-axis) versus cell barcode
read coverage (y) displaying higher coverage at 50% GC content. Color scale represents density of
cell barcodes. Yellow is high, purple is low. (B) Two example barcode pairs where top and bottom
represent expected barcodes and the middle, with possible errors highlighted in red, represents
an observed cell barcode sequence. For the case of Hamming distance of 2 (left), the observed
barcode may have been generated from a single T->A mutation in either the fourth position (true
barcode is top) or fifth position (true barcode is bottom). If instead a hamming 3 set is used,
every single base substitute error can be corrected—the only single-base error that could convert
an expected barcode to the observed is a T->A mutation in the fourth position. (C) Toy data
displaying the effect of increasing the variance while holding constant the mean and number of
drawn samples from a standard Gaussian distribution truncated at zero, where values below zero
indicate capture failures and are redrawn.
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preservation techniques that ”freeze” cell phenotypes during transport or storage of cells have not

yet been adapted to single-cell, it is critically important to rapidly prepare cells for sequencing.

This implies that experiments should proceed within minutes but not hours, in the same city, or

ideally, in the same institute. Unfortunately, InDrop has a single flow channel per device, and

therefore multiple technical samples per patient must be run sequentially. Unlike the cell lines

used to demonstrate InDrop’s capabilities which can be dissociated and sorted between each

run of the InDrop device, patient samples are dissociated contemporaneously, and have different

time-lags until cell lysis, at which point apoptosis and RNA degradation are halted.

For one sample where we had abundant cells, we ran 7 sequential technical replicates in

series and measured, for each cell, the fraction of molecules that came frommitochondria against

the total number of observed molecules (Figure 2.3). We observed that time from extraction

correlated with mitochondrial RNA content (r2 = 0.98, p < 1e − 4), implying that MT-RNA

made up increasing fractions of the cells as time progressed. This suggested that equalizing time

from sample extraction to processing is an important technical consideration, and that increasing

the speed of in-drop encapsulationwould allow us tomeasuremore cells at highermolecule count

with smaller MT-RNA-related stress responses.

Given that sample extraction, dissociation and sorting was expected to take approximately 3-

4h, we reasoned that if we could increase the speed of encapsulation, we couldminimize data vari-

ance attributable to differences in encapsulation latency. To increase the cell isolation through-

put, we developed a new cell barcoding chip (V2; Droplet Genomics) and adjusted the flow rates

for cell suspension at 250 μl/hr, for RT/lysis mix at 250 μl/hr, and for barcoded hydrogel beads

at 75 μl/hr. The flow rate for droplet stabilization oil was 550 μl/hr. These flow speeds generated

approximately 40,000 droplets an hour, a 250% increase, which allowed us to barcode each sample
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Figure 2.3: Mitochondrial content (y axis) vs library size (x axis) of seven technical replicates for
an early InDrop experiment. Color scale represents cell density (yellow is high, blue is low).

in as little as 30 minutes. Thus, if we sequenced each sample in triplicate, and we assumed a fast

transport and sample preparation time of 3h, the last sample would take at most 28% longer to

process than the first, a 100% improvement⁴.

Together, the improvements to the InDrop chip, redesign of the library, and troubleshooting

and optimization of cell to reagent ratios transformed InDrop into a sequencing platform well

suited to comparing immune phenotypes within and between multiple patients and tissues.

⁴10x Genomics now provides a device that can encapsulate 8 samples in parallel. This can be a superior approach
for samples that are significantly perturbed by temporal effects.
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2.6 Data Preprocessing: SEQC

Despite improvements to both the microfluidics and barcodes, InDrop data retains many of

the fundamental problems described in Section 2.2 that demand computational solutions: Correc-

tion of barcoding errors, removal of non-cellular contamination, and discrimination of cells from

ambient contamination. Unfortunately, at the time of data collection, published data process-

ing pipelines were specifically tailored to the library construction methods they were designed

to process. In addition, the rapid pace of technology development has induced computational

approaches to be constructed with similar haste; most novel computational methods were bash

scripts (Shalek et al., 2013; Shalek et al., 2014), unpublished R scripts (Jaitin et al., 2014), tools

published without source code (Macosko et al., 2015) or written descriptions without software

(Klein et al., 2015).

Given the fast rate of technological evolution, we believed that we and others would benefit

from amodular data processing package capable of rapid adaptation to changes in data generation

from multiple technologies. To address this deficiency, we developed SEquence Quality Control

(SEQC), a general purpose python package to build a count matrix from single cell sequencing

reads which is able to process data from InDrop, Drop-seq, 10X, and Mars-Seq2 technologies,

but more critically, a package that incorporates cutting edge analysis methods to maximize sig-

nal:noise in scRNA-seq data. The SEQC package, which takes Illumina Fastq or BCL files, the

standard sequencing data formats, and generates a count matrix that is carefully filtered for er-

rors and biases; the SEQC package is outlined in Figure S2.4.

Briefly, SEQC begins by extracting the cell barcode andUMI from the forward read and storing

these data in the header of the reverse read. This produces a single fastq file containing alignable
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Figure 2.4: Schematic of the SEQC package. Data analysis proceeds from right to left through
modules, following the directed arrows.

sequence and all relevant metadata. Merged fastq files are aligned against the genome with

STAR (Dobin et al., 2013), a high performance and community-standard aligner. After alignment,

minimal representations of sequencing reads are translated into anHdf5 ReadArray object, where

cell barcodes and UMIs are represented in reduced 3-bit coding. Reads are annotated with a

reduced set of exon and gene ids representing gene features—only the ones that are possible

to detect with poly-A capture based droplet RNA sequencing—and SEQC attempts to resolve

reads with multiple equal-scoring alignments. The Hdf5 ReadArray object is efficiently indexed

and is an ideal data structure for in-memory filtering of cell barcode substitution errors, broken

barcodes, and low-complexity polymers to flag errors early in the pipeline, saving analysis cost

(Alted and Vilata, 2002–).

In cases where genomic and transcriptomic alignments are present, the transcriptomic align-
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ments are retained. Unique alignments from the previous step are corrected for errors using an

enhancement of the method designed in Jaitin et al., 2014, with an additional probability model

to constrain the false positive rate. The error-reduced, uniquely-aligned data are grouped by cell,

molecule, and gene annotation, and compressed into count matrices containing (1) reads and (2)

molecules.

This matrix is thresholded in a similar manner to what has been previously described (Ma-

cosko et al., 2015; Zheng et al., 2017b). These data matrices contain cells as rows and genes as

columns, where the entries in the matrix represent the number of molecules of a given gene ob-

served in a cell. Consequently, row vectors represent the observed frequencies of each gene in

a cell, similar to the read-out of a bulk sequencing experiment, while column vectors summa-

rize the distribution of gene observation frequencies across the experiment. These count matrix

data structures serve as the basis for most analyses of single-cell RNA-seq, and are the major

deliverable of any data processing pipeline.

Finally, SEQC outputs a series of QC metrics in an HTML archive that can be used to evaluate

the quality of the library and the success of the run. SEQC is fully modular, which facilitated easy

adaptation to use with drop-seq, 10x, and mars-seq data. In addition, it can be configured either

to run on a local high-performance cluster, or can automatically initiate runs on Amazon Web

Services compute platforms, for those without access to local compute servers. The SEQC code

is free and open-source, and can be found at https://github.com/ambrosejcarr/seqc.git, licensed

under the MIT license. A public Amazon machine image with SEQC pre-installed is available

at AMI id: ami-8927f1f3 and a docker image of SEQC that can be used to launch experiments

against a user’s AWS account is available at ambrosejcarr/seqc:1.0.0 The following sections

describe each SEQC module in detail.

42

https://github.com/ambrosejcarr/seqc.git


2.7 Data Complexity Requires Flexible Optimization Strategies

To solve the classification problems that plague scRNA-seq data, like discrimination of cells

from ambient contamination, one would usually design an experiment that would allows an ex-

perimenter to label the cells. Given this labeled data, one would search for data features that

differentiate the two conditions (cell and contaminant). However, the experiments that generate

this type labeled data for droplet-based sequencing were too easy, and didn’t generalize to use

on human tissue.

For example, both InDrop and Drop-seq technologies carried out experiments to show very

low contamination when human and mouse cell lines are mixed, measured by the number of cells

that had both human and mouse DNA. Unfortunately, this experiment is both favorable to the

assays, since cultured cells don’t lyse as frequently as clinical samples, and underpowered, since

human and mouse genomes are similar enough that a large number of potentially-contaminating

fragments can’t be specifically assigned. As a result, when we attempted to extrapolate from this

cell line experiment to a more complex human tissue sample, the features we learned from the

cell lines co-varied in much more complex ways in the tissue sample, and failed to accurately

predict doublets or contaminated cells. Thus, this type of control experiment failed to generalize

to clinical data.

As a result, as the individual algorithms of SEQC are described, they will primarily be evalu-

ated based on their ability to optimize data characteristics like the removal of barcoding errors or

recovery of additional molecules. Assumptions, when made, will be stated clearly. However, the

Chapter will conclude by examining the aggregate impact of the SEQC methods, showing that

taken together, these methods were critical to uncovering the biological structure of the data,
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and that without SEQC, the high inherent noise in scRNA-seq data made it impossible to group

cells of similar types or states.

2.8 Fastq Demultiplexing

The file formats for sequence data were designed for bulk sequencing data, wherein all se-

quences are expected to contain genomic information, not barcodes. As a result, there is no

standard approach for storing the non-genomic barcodes with the genomic sequence in a way

that is compatible with alignment algorithms. This has produced numerous different, and in-

compatible, methods, that either involve format conversion (Macosko et al., 2015) or inclusion

of unicode text tags in the fastq name field (Jaitin et al., 2014). Both approaches incur signifi-

cant computation or storage cost. However, 3’ scRNA-seq approaches all share characteristics

that facilitates a common specification: each technology uses one or more barcode to define a

cell, and contains a UMI. Even complex cases such as Mars-seq, which has an additional ”pool”

barcode that defines the plate of origin, can have the cell and pool barcodes concatenated to de-

fine a unique cell in a multi-plate experiment. Thus, if there were a standard abstraction for cell

barcodes and UMIs, it would facilitate rapid analysis of diverse scRNA-seq data types.

The first stage of SEQC addresses this shortcoming by taking input fastq files containing

genomic information and barcoding metadata spread arbitrarily across multiple sequencing files,

and merges that information into a single fastq file. Sequence data is stored prepended to the

first read name, delimited by a colon, and separated from the original read name with a semi-

colon. For InDrop, which contains cell andmolecule barcodes, plus a number of T nucleotides, the

name field of a record in the merged fastq appears as follows: @<CELLBARCODE>:<UMI>:<#T>;R2

READ NAME. No additional tag information is stored, and the sequence found in the name field is
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Figure 2.5: Schematic of capture primer displaying amplification machinery, cell barcodes, UMIs,
and poly-T capture site.

efficiently compressed by the zlib compression library (Gailly and Adler, 2004).

To remain general, SEQC implements a platform class comprising the locations of the cell

barcodes andUMIs, the type of barcode andUMI correction to be run, the number of T-nucleotides

that are expected to be read from the capture primer, and a merge function that indicates how

to extract barcodes and construct the standardized merge fastq file. Thus, the platform contains

the complete information required to specify where to find the barcodes that define a read’s

provenance, but also the algorithms that must be run on a particular library construction method

to generate optimal scientific data. This allows us to produce a single file format, a merged fastq

file, that losslessly represents all known types of 3’ RNA-seq data.

The merged fastq file contains genomic, alignable sequence in the sequence field, and has

read metadata prepended to the name field, separated by colons. This step can be adjusted for

novel sequencing approaches by adding a new platform class, often with only 10 lines of code⁵.

This allows the complete SEQC pipeline to be rapidly tested on iterations of InDrop, or novel

technologies.

InDrop has a more complex library construction process that required us to devise a custom

fastq merging solution. InDrop constructs its cell barcodes from two pools of 384 cell barcode

fragments which hybridize in a constant ”spacer” sequence (see Figure 2.5). Illumina sequencers

⁵see Figure 1 for the 10-line platform that allowed us to adapt SEQC to 10x v2 chemistry when it was released
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cannot read constant sequences, as observing the same base simultaneously at all points on the

chip saturates the fluorescence sensor and prevents localization of base calls to individual read

”spots” (see Metzker, 2010 for a review of sequencing technology chemistry and limitations). To

prevent this, InDrop’s first cell barcode fragment has 4 lengths, which causes the spacer to have

4 different offsets, produced a library that is easy to sequence.

However, this organization required us to localize the spacer sequence on the fly for each se-

quencing read. The original InDrop publication accomplished this with exact pattern matching,

however this is computationally expensive An alternative that can identify errors in the spacer

sequence is fuzzy-matching, but this approach extended the run time of SEQC by several hours,

and thus is computationally prohibitive. The latter problem was significant, as we would occa-

sionally see sequencing experiments with a single failed ”N” cycle in the middle of the fastq file.

In these cases, the data was 100% viable, as there were no failures in the barcodes or genomic

sequence, but the existing approach would fail all reads.

SEQC addresses this problem by identifying a 4-base windowwithin the spacer that is unique

at all four spacer offsets, and hashing the observed windows to the cell barcode fragment lengths

that they correspond to:

GAGTGATTGCTTGTGA|CGCC|TT---
-GAGTGATTGCTTGTG|ACGC|CTT--
--GAGTGATTGCTTGT|GACG|CCTT-
---GAGTGATTGCTTG|TGAC|GCCTT

If the sequence fails to match, then a fuzzy pattern match defined in a fast C-extension is run

against the failing read, identifying spacers with up to 3 substitution errors. Once the spacer is

identified, the cell barcodes, UMI, and the number of sequenced T-nucleotides from the capture

primer’s tail are all stored for downstream processing in the fastq name field. The generated fastq
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file has the following format, where R2 refers to the read carrying the genomic sequence, while

the barcode sequences come from R1⁶:

@<CELLBARCODE>:<UMI>:<#T>;R2 READ NAME
R2 SEQUENCE
+
R2 QUALITY

2.9 Alignment

Data collected from the sequencer consists of mRNA fragments. To draw biological conclu-

sions about a dataset, fragments must be matched to the part of the genome the mRNA were

transcribed from. This process is carried out by assembly algorithms when the genome is un-

known (Haas et al., 2013), and alignment algorithms when there is a reference genome that can

be compared with. Most model systems examined with scRNA-seq have known genomes, so

SEQC was built against aligners by default. However, because SEQC does not utilize any custom

tags generated by the aligners or assemblers, it is compatible with any method that takes data

from multiple cells in fastq format and outputs a BAM file⁷. We selected STAR as the default

aligner because it is a fast, highly parallel, cloud-scalable aligner that benchmarks well against

existing aligners⁸ (Ilicic et al., 2016). We note that STAR automatically trims bases as necessary to

find alignments, and as such no pre-trimming of reads based on quality is carried out. Alignment

parameters used are as follows:

⁶Extraction of barcodes is parameterized, and supports chemistries where genomic sequence lies on R1 such as
Mars-seq. Additionally, conversationswith the author of STAR have prompted them to add support for the alignment
of reads in BAM format, a significantly more flexible format with better support for the inclusion of cell barcode and
UMI tags. Future iterations of SEQC will move towards a merged format that utilizes BAM instead of Fastq format
files.

⁷Kallisto requires the user to determine cell assignment before alignment. Support for Kallisto is in-process.

⁸Since the design of SEQC, Hisat2 (Kim, Langmead, and Salzberg, 2015), an algorithm based on the Bowtie2
burrows-wheeler strategy (Langmead and Salzberg, 2012), was released which promises higher speed and lower
memory usage. We are benchmarking this aligner for possible replacement of STAR.
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–outFilterType BySJout,
–outFilterMultimapNmax 100,
–limitOutSJcollapsed 2000000,
–alignSJDBoverhangMin 8,
–outFilterMismatchNoverLmax 0.04,
–alignIntronMin 20,
–alignIntronMax 1000000,
–readFilesIn fastqrecords,
–outSAMprimaryFlag AllBestScore,
–outSAMtype BAM Unsorted

This module thus takes as input a fastq file and produces a BAM file containing up to 20 multiple

alignments per input fastq record and with all unaligned reads contained in the same file.

2.10 Annotation Construction

Aligners identify the best match of each sequencing fragment to the genome, finding the

chromosome, and the position on that chromosome, for each fragment. A critical step after the

alignment of reads is to determine the gene that overlaps the chromosome coordinates the aligner

assigned to the fragment. Gene location information is summarized by a genome annotation, a

set of metadata including exons, introns, transcripts, genes, and untranslated regions, that are

matched to genomic coordinates. Bulk sequence alignment recommends the use of the complete

genome annotation, and this recommendation has been applied to scRNA-seq data without mod-

ification (Shalek et al., 2014; Jaitin et al., 2014; Klein et al., 2015; Macosko et al., 2015). However,

because the genome annotation is designed to be a comprehensive compendium of information

about an organism, it contains many features that are theoretically undetectable by InDrop and

other 3’ sequencing technologies.

Two characteristics of InDrop limit its ability to capture certain gene biotypes. First, it em-
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ploys poly-A capture, and thus will not detect non-polyadenylated transcripts. Second, it uses

SPRIselect beads at several stages to deplete primers from reaction media. These beads carry

out size selection, preferentially depleting primers but also small RNA species such as snoRNA,

miRNA, and snRNA. Thus, libraries are expected to contain only transcribed, polyadenylated

RNA of length > ~200 nt. Examining gene biotypes, this meant retaining protein coding and

lncRNA biotypes, and excluding others. We hypothesized that the reduction in reference fea-

tures would result in a concentration of alignments in biologically relevant genes by depleting

non-specific features, and that there would be many drop-out events where genes would be de-

tected in the complete reference, but not the subset. Two methods exist to address this problem,

but we find that neither method is appropriate for 3’ sequencing data.

Cell Ranger, the most commonly used pipeline to process 10x Genomics data, carries out an

extreme version of this redesign: it removes any gene that is not protein coding. We believe

that this is too harsh: it excludes numerous transcribed pseudogenes and lncRNA which have

been previously shown to be expressed, have biological functionality, and to be detectable in

scRNA-seq.

Alternatively, alignment can be restricted exclusively to transcriptomic features. Several

methods implement this approach, including Kallisto (Bray et al., 2016) and Tophat2 (Kim et al.,

2013). However, 3’ scRNA-seq data typically contains between 10-30% genomic contamination,

as identified by reads aligning intergenic alignments. When we aligned directly against the tran-

scriptome using TopHat2, we found that approximately 1% of intergenic reads were mistakenly

aligned to exonic locations despite having higher alignment scores to genetic regions (data not

shown). Without knowledge of the genome, these reads would be mistakenly counted as gene

alignments, introducing significant error into the count matrix.

49



Figure 2.6: Not-to-scale schematic of the major components of the GENCODE genome annota-
tion. Transcripts from categories in red should not be observed by SEQC, either due to beads
which remove small molecules, or a lack of poly-a tails, which are used by SEQC to capture RNA.

To address this, we constructed a custom annotation by starting with the current GENCODE

genome and GTF file and removing all feature annotations that are not theoretically detectable

by InDrop (Figure 2.6). We then align to the full genome, but prefer transcriptomic alignments

in cases where there are equivalent genomic and transcriptomic alignments.

To determine the impact of this change of reference on our data, we aligned the same single-

cell immune dataset against the full reference and the reduced reference described above. We

constructed a “pseudo-bulk” dataset for each reference by summing the molecules of each gene

across all cells, producing an expression vector that contained the total number of molecules of

each gene detected by each annotation. We then examined the correlation, and discrepancies,

between the two references. (Figure 2.7).

The overall r2 value between the references is 0.94, with 93% of genes holding the exact same

values in both reference alignments. In addition, information is concentrated in 35% fewer fea-

tures, despite losing only 8% of the total molecules. There is also a large drop-out contingent

50



Figure 2.7: Comparison of complete GENCODE annotation against a reduced annotation con-
taining only GENCODE-annotated lncRNA and protein coding RNA. Displaying drop-out events
occurring on x-axis as well as masking events on y-axis.

present only when aligned against the complete reference. Gene ontology enrichment against

this reference revealed high-level biologically agnostic enrichments, such as “protein coding,”

“translation,” and other enrichments, which suggest a random sampling of high-expression genes.

Surprisingly, there was also a contingent of genes present only in the reduced alignment.

These genes were highly enriched for immunological pathways, including JAK/STAT signaling,

cytokine production, cytokine receptors, and immune growth factors, and further included criti-

cal immune genes such as IL3RA, a plasmacytoid dendritic cell marker (Figure 2.7). This suggests

that they are likely to represent true annotations for genes in this dataset, and that reducing the

annotation produces a gain in specificity. We reasoned that these genes were uncovered in the

reduced annotation because there are features in the complete set, such as pseudogenes, which

have high homology to transcribed genes.

Including these annotations, which should not be detectable, produces illogical multi-

alignment to multiple genetic locations. When such multi-alignment cannot be resolved, most
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pipelines (including this one) exclude those multi-aligned reads, losing valuable signal. Given

these results, we believe that the 8% reduction in molecules cited above that occurs from switch-

ing to the reduced reference is the result of correctly discarding low-complexity alignments that

were spuriously assigned a low-quality transcriptomic feature. Thus, this change allows 3’ se-

quencing to detect more genes than strategies that do not utilize this approach.

2.11 An In-Memory Hdf5 Read Store Allows Efficient Compu-
tation over Single-Cell Sequencing Data

Sequencing data formats, Fastq (Cock et al., 2009) and BAM (Li et al., 2009), were designed

with bulk sequence data in mind. Each file is designed to house a single sample, and is efficiently

indexed for random access by genomic coordinate. This is a critical capability for genome se-

quencing, where the full dataset is far too large to fit in memory, and tasks commonly center

around detecting genomic variants which exist at defined chromosome positions (McKenna et

al., 2010) It is much less useful for scRNA-seq data, where most computational methods require

random access to the data associated with a given cell or molecule.

To address this problem, we designed a ReadArray data structure that summarizes the infor-

mation in an aligned BAMfile that is critical to scRNA-seq analysis. The ReadArray is built on top

of the Hdf5 platform (The HDF Group, 1997-2018) using the pytables package, which confers

three advantages: First, Hdf5 is a columnar data format that supports arbitrary multi-column in-

dices. This allows indexes to be built for both cells and molecules. Second, it is a numeric format

that can be efficiently compressed (Alted, 2010) to have a smaller disk footprint than the BAM

format. Finally, since most scRNA-seq experiments devote at most two lanes of sequencing to

each set of cells, and replicates are processed independently, the complete data format fits into
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10Gb memory, which allows for rapid querying with decreased computational cost.

Several changes to the data representation were made to shrink the in-memory footprint of

the ReadArray. First, sequence information for the cell barcode and UMI are stored in a 3-bit

encoding⁹ and the nucleotides are concatenated to fit into a 64bit integer (cell barcode) and 32 bit

integer (UMI). Second, information that is summarized multiple times in the BAM format, like

the genomic sequence information and chromosome and alignment position, are summarized by

the minimal representation that confers adequate knowledge. In this case, the chromosome and

position are retained. Third, the results of each filter are stored as binary status flags, storing

analysis results concisely in a way that is extremely fast to filter over. Finally, information that

is extraneous to scRNA-seq analysis, such as custom BAM tags and sequence quality scores, are

excluded completely.

The resulting ReadArray specification is broken up into two parts, a core of status, cell, rmt,

and n_poly_t which have a fixed disk representation, and gene, position, chromosome, and

strand, which are initially represented on disk as JaggedArrays, a flexible representation where

each array index may support multiple alignments. Once Alignments have been disambiguated,

they are converted to columns to reduce memory usage. Regardless of the stage of processing,

the interface to access the fields remains constant. The complete specification is as follows:

_dtype = [
(’status’, int16), # if > 16 tests, use int32
(’cell’, int64),
(’rmt’, int32),
(’n_poly_t’, int8)
(’gene’, int32), # initially empty
(’position’ uint32), # variable on-disk implementation

⁹It is possible to encode A, C, G, and T in 2-bits to further compress the representation, but we elected to use
3-bits to support N-nucleotides, as otherwise N nucleotides must be randomized to one of A, C, G, or T

53



(’chromosome’ int8), # variable on-disk implementation
(’strand’, int8)]

Thus, a single record fits in 25 bytes, and 400M sequencing reads, the equivalent of two illu-

mina lanes, will fit into 10Gb memory. Adjustments to the ReadArray format are relatively

simple to make for Fixed or Variable representation fields. The need only add a field name

and numerical type to the above specification, and define an extraction method in the ReadAr-

ray.from_samfile() constructor

One field that is conspicuously absent from the ReadArray specification are the sequencer

quality scores. Some pipelines, such as 10x Genomics’ Cell Ranger, posit that sequencing error

is the major source of substitution mutations in 3’ sequencing data (not enzymatic error during

library construction), and thus is predicted by barcode quality scores. If this were true, quality

scores could be used to help correct barcode errors.

Our InDrop data does not support this view¹⁰. In InDrop, each read contains a 16-19 bp

cell barcode selected from a whitelist of known barcodes. By examining barcodes for single

base mutations, we estimated a positional, nucleotide-specific error rate for each sample (Table

S1). E.g. to calculate the probability of a conversion from adenosine to cytosine, where A → C

denotes this nucleotide conversion: PA→C = 1
n·m {1 if xij : A→C else 0 } where xjis a barcode,

j ∈ {1, . . . ,m} and each barcode has nbases. The average observed per-barcode error rates are

4%, a number far in excess of the abundance reported by the Illumina sequencer, which can be

reliably calculated from errors in phiX included in sequencing runs (mean error rate 0.2% ∓ 0.1%)

(Manley, Ma, and Levine, 2016); a 4% error rate is more in line with aggregate error rates of the

¹⁰An analysis of 10x data found similar results to those described for InDrop.
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enzymes used in the preparation of sequencing libraries (Zilionis et al., 2017).

To verify that quality scores do not predict error rates, we tested the correlation between

the error state of the cell barcode (1 if the base contains an error and 0 otherwise) with Illumina

quality scores. If quality were predictive of substitution errors, wewould expect to observe strong

negative correlations, suggesting that low quality implies high error probability. However, we

observed no relationship (mean r²=0.04, max r²=0.06; ‘C’ errors) on either InDrop or 10x data. In

contrast, mutations to N bases produce the expected relationship, with base quality negatively

correlating with → N substitutions (r²=-0.87). However, N base errors made up less than 1 /

100,000 of the observed errors in our experiment, and we conclude (1) that base quality is not

meaningfully predictive of error rates, and (2) that most sequenced error is derived from upstream

library construction steps.

2.12 Barcode Sequencing Errors Arise In Library Construction
and Are Correctable

Proper assignments of reads to the molecule and cell they were captured in is a critical step

in scRNA-seq analysis. Under ideal circumstances, the combination of the UMI and cell describe

the cell of origin. However, there are two major sources of error that are introduced during

library construction: primer fracturing and barcode substitution errors. These errors confuse

this association by disrupting the matching of observed barcodes with the barcodes that were

present on primers during mRNA capture.

Cell barcode errors in InDrop (Figure 2.8 C) are easy to detect by design: we have a whitelist

of 147,456 barcodes, each with Hamming distance >= 3. Thus, any single base substitution error

is resolved by creating a lookup table for all barcodes and all single substitutions. If found in the
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table, the barcode is corrected. If not, it is discarded. As estimated above, the probability of a

cell barcode containing an error is ~2%, and thus the expected rate of barcodes accruing 2 errors

in a barcode is 1 / 2500. A 2-error lookup table has a very large memory footprint and would

significantly increase computational cost of processing each experiment. Alternative algorithms

have greater complexity and would increase run time. Thus, we accept this low rate of loss

and proceed to correct single base errors, recovering approximately 2% additional data for each

sample.

This error rate, while high, is easy to correct and results in minimal data loss. Although a

4% barcode error rate is higher than the error rate observed by other technologies, it directly

results from the use of linear amplification. If errors are independent, then the probability of

obtaining 2 or more errors, which would produce an uncorrectable barcode, is 1 - cdf beginning

at 2 for a Poisson distribution with λ = 0.04. Given the observed error rate, we estimated that

only 0.035% of barcodes would be uncorrectable. This allows SEQC to correct errors using a fast

hash-based strategy. This is in contrast to PCR-based amplification approaches which propagate

errors that occur in early cycles, requiring more complex, graph-based correction methods, and

larger Hamming buffers (see https://github.com/vals/umis).

In contrast to cell barcodes, UMIs are random, and correction cannot proceed by the same

strategy, so we devote a section later in the pipeline to the detection of UMI errors after the gene

and mapping position of a fragment are identified.

Another source of error in scRNA-seq experiments, including InDrop, cel-seq, mars-seq, and

likely drop-seq and 10x genomics, is the fracturing and random-priming of capture primers (Fig-

ure 2.8 A, B) (Jaitin et al., 2014). We often observe cell-barcode prefixes followed by randomers.

When fragmentation occurs at the cell barcode level, we can remove the fragments using the
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Figure 2.8: This figure displays a schematic that describes the types of barcoding errors that can
occur in InDrop data, but also other approaches that utilize 3’ or 5’ capture by poly-A primers.
These error sources are: (A) the barcode fragments within the UMI sequence; these barcodes may
randomly prime, if broken before encapsulation, or produce incorrect UMIs or fragment-fragment
hybridization events, if this occurs during library preparation. (B) A barcode that breaks within
the cell barcode. Because InDrop has a set of valid barcodes, these errors are easily excluded,
but the process that produces these errors is the same as in (A). In (C) we display barcode sub-
stitution errors, which may cause barcodes to aberrantly manifest as separate cells or molecules,
depending on which barcode they occur in.

whitelist approach above. To remove barcodes that break in the UMI, we determined that we

would sequence 5 bases into the poly-T tail of the primer, which we expect to be all T-nucleotides.

By excluding reads with more than 1 non-T nucleotide, we are able to exclude most broken UMIs.

The second source of error are barcode fractures, observed in both CEL- and SMART-seq

chemistry. A barcode fracture occurs wherein some prefix of the Cell, and UMI, and in the case of

InDrop, also the spacer and poly-T tail, is observed, but the remainder of the read corresponds to

non-barcode information. Barcodes that break in cell barcode sequences will be excluded by cell
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barcode correction, as described above. However, UMIs are not a priori known; if an aligned read

breaks inside the UMI sequence during amplification, it will manifest as a new molecule despite

having a proper, full-length UMI that it should be associated to. This will result in inflation of

UMI counts for the matched gene.

To test for the presence of these types of errors, we used a trie data structure to efficiently

count the largest hamming-corrected cell barcode prefix observed in each of our aligned sequenc-

ing reads. We used the hamming-corrected barcodes becausewe reasoned that substitution errors

would be the most common error type, and wanted to exclude those from analysis, as they are

corrected through other methods, described above. The largest cell barcode prefix is most often

a complete cell barcode, owing to the high quality of InDrop data. However, for 4.7% of our

sequencing reads, the prefix is a partial barcode.

These partial barcodes could arise from multiple sources. One option is an insertion or dele-

tion in the barcode. Errors of this type would produce a frame shift in the barcode. A second

option is that the barcode has broken, and the broken end acted as a randomer, an alternative

capture strategy to poly-A capture. To differentiate between these cases, we calculated, based

on the list of known InDrop barcodes, which suffixes match single base insertions or deletions

(indels). We then determined whether there was an existing barcode that explained each broken

primer.

Cases where an indel explains the observed barcode prefix were very rare (approximately

1/4000), and most prefixes did not contain the expected poly-A tail at any offset. Thus the more

likely explanation is random priming. As a result, we assume that reads missing the poly-A tail

may have fractured within the UMI, and those reads are flagged for filtering. In aggregate, the

filters in this section remove an average of 36% of reads (sd = 9.3%), depleting the count matrix of
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Figure 2.9: Amock-up of the error correction query for a singlemolecule (red, top) using the Jaitin
method (left) and the SEQC approach (right). Each table displays all of the molecules with a cell
barcode that matches the top sequence that have a molecular barcode (1st column) within 1 edit
distance of the query barcode (red) and their abundances (second column). The Jaitin approach
(A) will discard any molecule when another molecule is observed to align against the same gene
in the same cell. In this example, each of the bolded barcodes (0, 2, 4) would be discarded. The
SEQC approach (B) Builds a probability model to estimate the expected rate that each barcode
would convert into the query barcode.

spurious molecules (see Table S1 for detailed values). These values are consistent with the results

of running SEQC on drop-seq or MARS-seq datasets (data not shown).

2.13 Molecular Identifier Correction

Errors in molecular identifiers are well-known to introduce noise in sequencing experiments

(Jaitin et al., 2014), since undetected errors induce spurious increases in molecule counts. SEQC

utilizes information in the ReadArray to identify errors in UMIs, and replace them with their

corrected value. The most common approach, published in (Jaitin et al., 2014) for MARS-seq,
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does a very good job of detecting and removing molecule errors in InDrop (due to the similar

CEL-seq protocol used in both technologies). This approach deletes any UMI for which a higher-

abundance donor UMIs can be identified that (1) lie within a single base error (2) have higher

count (3) and contain all observed alignment positions of the recipient RNA. This results in

removal of approximately 20% of observed UMIs. However, we observed that this model can be

overly stringent, correcting UMIs when the donor molecule has as few as one read count higher

than the recipient (Figure 2.9 A).

We apply a modified version of the (Jaitin et al., 2014) approach, where we replace errors

with corrected barcodes instead of deleting them, and where we only eliminate errors when we

have adequate statistical evidence (Figure 2.9 B). To accomplish this, we utilize the spacer and

cell-barcode whitelist to empirically estimate a per-base error UMI error rate of approximately

0.2% per base. E.g. to calculate the probability of a conversion from adenosine to cytosine, where

A → C denotes this nucleotide conversion:

PA→C =
1

n ·m
{1 if xij : A→C else 0 }

where xjis a barcode, j ∈ {1, . . . ,m} and each barcode has n bases. To calculate the probability

that a target readwas generated in error from a specific donormolecule, we calculated the product

of the errors that could potentially convert a donor into the observed molecule. To convert, for

example, ACGTACGT into TTGTACGT, having one A → Tand one C → T conversion: e =

{PA→T , PC→T} Because there are multiple potential donors for each molecule, we calculated

the conversion probability for each molecule. Assuming errors are randomly distributed, they

can be modeled by a Poisson process, and Poisson rate term can be estimated from the data:
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λ = ndonor×Pconversion where ndonor is the number of observations (reads) attributed to the donor

molecule in the data. Since the sum of multiple independent Poisson processes is itself Poisson,

the rate of conversion from each donor could be combined into a single rate λagg for each target

molecule. The set of conversions s that we consider for each target molecule were all conversions

that could occur with two or fewer nucleotide substitutions, in other words, all molecules within

a Hamming distance Dh ≤ 2, where Dhis a matrix of pairwise Hamming distances between

barcodes. s = {λj→i if Dh, (i,j) ≤ 2} λagg = λi Finally, given the probability of a molecule being

observed via the substitution errors that are corrected by the Jaitin method, we could calculate

the probability that nobservations of a specific molecule xwere generated via the Poisson process

with rate λagg: P =
λaggxe

−λagg

x!

Only cases with a probability p > 0.05were corrected. For InDrop experiments, this resulted

in a recovery of an additional 3-5% of molecules in the data that were otherwise error-corrected

without adequate evidence. We note that this model is not applicable to all data; It was useful

in this instance because we had relatively high coverage (10 reads / molecule) that allowed us

to evaluate our confidence in molecule observations. For lower-coverage data containing fewer

than 3 observations permolecule, it may be difficult to accurately estimate the Poisson error rates,

For such data, it may be appropriate to err towards removingmolecules instead of retaining them.

This dynamic suggests a corollary: while spending more reads on each molecule reduces an

experiments theoretical yield, since the maximum yield is 1 read : 1 molecule, higher molecular

coverage may yield data that more accurately reflects the cellular phenotypes. Thus, datasets that

capture more fragments of each molecule
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2.14 Disambiguation of Multiply-Aligned Reads Recovers Sub-
stantial Sequencing Data

Alignment algorithms like STAR aim to identify the unique portion of the genome that was

transcribed to generate the read that is being aligned. In some cases, this unique source cannot be

identified, and in these cases multiple possible sources are reported. These are commonly termed

“multi-alignments”, and because 3’ ends of genes have higher homology than other parts of the

genome, multi-alignments are more common in 3’ sequencing data than in approaches that cover

the full-transcriptome, such as Smart-seq2. Despite the increased frequency, most 3’ pipelines

discard multi-alignments and deal exclusively with unique genes. SEQC is designed to resolve

all multiple alignments, producing an output that contains resolved (now unique) alignments, or

alignments that are flagged for exclusion because a unique source could not be determined.

There are two main preexisting approaches to resolving multi-alignments. The most com-

mon approaches are transcriptomic pseudo-alignment, wherein a sequencing read is broken up

into smaller pieces and the pieces are aligned to the transcriptome (Patro et al., 2017; Bray et al.,

2016), and expectation-maximization approaches where information that could arise from multi-

ple transcripts is shared across each of the possible sources (Li and Dewey, 2011). However, both

methods are too lenient, and propagate errors from InDrop sequencing data into the final count

matrix.

Low-coverage 3’ sequencing data contains too much uncertainty for expectation-

maximization to function properly. RSEM, which was designed for full-length bulk data, passes

this uncertainty directly into the count matrix, because it expects the data, in aggregate, to con-

tain enough coverage of each gene for errors to average out. This uncertainty is normally re-

moved by UMI-aware count based methods, and analyses have shown that the inclusion of UMIs
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significantly improves data accuracy (Grun and Oudenaarden, 2016). As such, RSEM is not an

appropriate approach for 3’ data.

A second problem is that due to memory constraints, both expectation-maximization and

transcriptome pseudo-alignment only consider matches to the transcriptome. This causes a small

but significant fraction of reads from genomic sources to bemiss-aligned transcriptomic positions

(approximately 1%), producing inflated and spurious alignments for low-homology genes.

Of the high-throughput droplet-based approaches, InDrop is unique in combining linear am-

plification and UMIs, which produces high fragment coverage per UMI. Although individual

reads are often ambiguously aligned to more than one location, it is often possible to examine

the set of fragments assigned to an UMI and to identify a unique gene that is compatible with all

the observed fragments. Here we implement an efficient method to find the unique genes that

generate each fragment set. When a fragment set cannot be attributed to a specific gene, it is

discarded.

Starting with all reads attributed to a cell, we begin by grouping reads according to their UMI,

producing “fragment sets” S. Typically, these fragment sets represent trivial problems, such as

s1 = {A, A, AB}, a set with two unique alignments to gene A and a third ambiguous alignment

to genes A and B. In this case all three observations support the gene A model, while only one

observation supports the gene B model.

In cases of UMI collisions, where two mRNA molecules were captured by different primers

that happen to share the same UMI sequence, this can lead to problems wherein reads from

these merged fragment sets are mistakenly discarded as multi-aligning. However, because the

probability of two genes sharing significant homology is low, it is usually possible to recover

these molecules by first separating fragment sets into disjoint sets. For example, if a fragment set
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s2 is observed to be associated with an UMI in a single cell, it can be resolved into two disjoint

sets, and the second set s4 can be uniquely assigned to gene E:

s2 = {A, AB, B, B, C, CD, ABC, E, EF, EF}

s2 = s3 ∪ s4; s3 ∩ s4 = ∅, where :

s3 = {A, AB, B, B, C, CD, ABC} and

s4 = {E, EF, EF}

This is biologically reasonable, as molecule collisions are the only way to reasonably obtain a

group of molecules that covers two non-overlapping gene annotations. To calculate disjoint sets

efficiently, we utilize a Union-Find data structure (Aho and Ullman, 1983), which finds disjoint

sets in O(log(n)) time. Pseudo-code is as follows:

# cell and umi are sequences stored 2-bit encoded in long int

def int count, cell, umi, gene

alignments <- Map[(cell, umi): list[list[gene], count]

alignments <- sorted(alignments, reverse=True) # inverse numerical sort

for c in cell:

for u in umi:

disjoint_sets <- UnionFind(alignments[(c, u)])

for s in disjoint_sets:

s <- sort(s, key=len(s))

alignment[s] = 0
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Figure 2.10: A cartoon displaying two examples in which a molecule, comprised of alignments
to multiple genes, can be resolved (left) or is ambiguous (right). This figure displays a set of
13 alignments against genes A, B, and C, and an additional 15 against genes D, E, and F. All
alignments share the same cell and molecular barcodes. The alignments can first be split, since
no alignment bridges A, B, C, and D, E, F (e.g. there is no alignment, for example, to A and D
which links the groups). The alignments to A, B, C are then uniquely explained by A and can
be resolved, whereas the alignments to D, E, and F are jointly explained by E and F, and are
ambiguous.

for g in s:

if g in all s:

alignment[s] = 1 # mark alignment resolved

This algorithm is summarized by Figure 2.10.

By resolving multialignments, we can more accurately identify the alignment rates for each

gene, build better error models for barcode correction, and recover cases where reads align mul-

tiply to the same gene. More critically, it confers the ability to recover fragments that would

otherwise not be resolvable due to sequence homology, and these improved fragment counts per

molecules act as significant predictors of molecule likelihood and UMI quality. We note that a

similar strategy has since been published (Klein et al., 2015) and a comparable logic underlies
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the concept of transcript compatibility in Kallisto (Bray et al., 2016). Multi-alignment resolution

typically resolves approximately 1M reads per hiseq lane¹¹. The result of this module is a BAM

or h5 file containing only unique alignments to gene features.

2.15 Cell Selection and Filtering

The preceding sections focus, to the extent possible, on cleaning the data of rational sources

of error that have been detected in 3’ sequencing data. Once errors have been depleted, the next

task is to identify which cell barcodes represent real, high quality cells that warrant biological

investigation. There are several potential sources of technical and biological variation that exist

in scRNA-seq data that might motivate a researcher to exclude a barcode from analysis.

The most prominent technical source of variation is ambient RNA. Because barcoding beads

are loaded into InDrop at higher rates than cells in order to ensure that a high fraction of cells

are encapsulated with exactly one bead. As a result, the raw count matrix contains a mixture

of barcoded beads that were encapsulated with cells and barcoded beads that were encapsulated

alone, but may nevertheless capture some ambient mRNA molecules that float in solution due to

premature lysis or cell death in the cell solution. We want to retain barcodes that contain a large

number of specific RNA molecules but deplete for cells that are dominated by Ambient RNA.

SEQC accomplishes this by finding the saddle point in the distribution of totalmolecule counts

per barcode and excluding the mode with lower mean. In practice, we accomplish this by con-

structing the empirical cumulative distribution of cell sizes and finding the minimum of the sec-

¹¹We had previously created a model wherein disjoint sets with more than 1 common gene could also be disam-
biguated by calculating the probability of gene-gene multi-alignments from their homology. This was accomplished
by comparing gene sequences using a Suffix Array built from the final 1000 bases of each gene. With this strategy,
we could estimate the relative probability that genes were generated from each potential candidate molecule shared
across all reads in the fragment set. However, the relative rarity of such events (< 1% of data) combined with the
additional run-time complexity of this method caused us to omit it from the production version of SEQC.
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Figure 2.11: (A) Example cell filtering plot showing the empirical cumulative density of molecules
(y- axis) per cell barcode (x-axis). Note that a small number of cell barcodes contain most of
the molecules in the experiment. Dashed black lines represent cut-off points after which cell
barcodes are considered to consist of contamination. Red barcodes are excluded. (B) Coverage
plot comparing the total molecules in each cell (x axis) against the average coverage in each cell
(y axis). Densities of cells with aberrantly low coverage such as those with lower than 5 reads
/ molecule are considered likely errors and are discarded. (C) Mitochondrial (MT) RNA fraction
plot displaying the total number of molecules in each cell vs the fraction of those molecules
that come from mitochondrial sources. Cells in red consist of more than 20% MT-RNA and are
considered to be likely dying cells. These cells (red) are discarded. (D) Cell complexity plot. Each
point is a cell, and the x axis measures the number of molecules and the y measures the number
of genes. Cells with unexpectedly low numbers of genes relative to their molecule count are
marked in red and filtered out.
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ond derivative (Figure 2.11 A) of the distribution¹². For typical InDrop runs, this results in the

elimination of over 95% of the cell barcodes, but retains as many as 95% of the molecules.

Molecule size alone is not adequate to remove all barcodes that were not paired with real cells.

Some barcodes appear to aggregate higher numbers of errors, and as such we often see a bimodal

distribution of molecule coverage: a higher mode that represents real cells, and a smaller mode

that represents aggregated errors (Figure 2.11 B). We remove the low-count density by fitting 2-

component and 1-component Gaussian mixture models to each axis and comparing their relative

fits using the Bayesian information criterion. When the 2-component model’s log-likelihood is

at least 5% larger than the 1-component model, we exclude the density with the smaller mean

(Figure 2.11 B).

We score cells for mitochondrial RNA content, which is widely used as a proxy for cell death

in scRNA-seq. We observe that a small fraction of cells contain a higher abundance of molecules

annotated by this signature, as much as 20−95% of their RNA. Since InDrop does not lyse mito-

chondria, we reason that these are likely to be cells dying due to stress imposed on them by the

InDrop procedure or prior sorting, and remove them from further analysis. This filter may be

turned off for studies where apoptosis is a relevant phenotype (Figure 2.11 C).

Finally, we regress the number of genes detected per cell on the number of molecules con-

tained in that cell. We observe that there are sometimes cells whose residuals are significantly

negative, indicating a cell which detects many fewer genes thanwould be expected given its num-

ber of molecules. We exclude these cells whose residual genes per cell are more than 3 standard

deviations below the mean (Figure 2.11 D).

¹²Recent advances may improve upon this approach by leveraging additional features to build a cell/non-cell
classifier that integrates additional information (Petukhov et al., 2017).
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To create a digital expression matrix, the uniquely-aligned, error-corrected Hdf5 read store is

made non-redundant by counting unique groups of reads with the same UMI, cell barcode, and

gene annotation. A single molecule then replaces each set, and those molecules are summed to

create a cells x genes matrix. scRNA-seq count matrices are often over 95% sparse, and thus are

stored in matrix market format and operated on as coordinate sparse or compressed sparse row

matrices. We call these count matrices “raw” count matrices because they contain all barcodes

observed in an experiment.

2.16 Information Storage & Run Time

While the scientific quality of data generated by an analysis pipeline is its most important

characteristic, the cost and speed of an approach are also important. Faster analysis means faster

technological iteration, while lower cost allows for additional data production, which may in-

crease experimental power to answer biological hypotheses. SEQC is optimized with cost and

time in mind. scRNA-seq generates large volumes of data whose storage can be costly and oner-

ous, thus we store only aligned, barcode-tagged BAM files which losslessly retain all information

from the original multiplex fastq files in small storage space. SEQC supports reprocessing of

these files, and backwards conversion into fastq files, if users desire the ability to process their

data on other platforms or reprocess with updated versions of SEQC. Additional metadata files

take up nominal space, and generated count matrices are stored in matrix market sparse format

in light of the sparsity of the data.

SEQC requires approximately 8 hours to run on a standard 32 GB / 16 core Amazon c4.4xlarge,

and costs $5.84 on on-demand or $0.88 on pre-emptible (spot) instances to process an InDrop,

Drop-seq or 10x genomics experiment. The lowermemory usage of 32GB supported by SEQC also
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makes it much cheaper, easier and more flexible to run on local and remote compute clusters than

10x Cell Ranger, which recommends 128GB RAM and costs twenty times as much on Amazon,

given the difficulty of procuring spot instances for high-memory virtual machines¹³. Finally,

SEQC is programmed to run on a local machine, on a high performance compute cluster, or on

AWS.

2.17 SEQC compares favorably with other pipelines

Near the end of SEQCs development, we ran a head-to-head comparison with a

pipeline that had just been open-sourced by the original InDrop computational author

https://github.com/AllonKleinLab/SPRING. We ran two samples of sorted mouse T-

regulatory cells on both pipelines, using a standard index provided by the Klein lab. We were

shocked to discover that the Klein pipeline recovered nearly double the number of molecules,

suggesting a much higher sensitivity than SEQC (Figure 2.12 A). However, when compared each

pipeline to a bulk control sample, we discovered that the Klein pipeline detected many genes in

the single-cell data that were not detected in the bulk dataset (Figure 2.12 B, C).

Bulk data has a much larger number of input cells, and as a result, is theorized to proceed

with higher efficiency. In addition, because bulk data is full-length instead of 3’ localized, it has

a greater chance of detecting a larger number of genes. For these reasons, it is unlikely that the

genes observed in the single-cell data were true positives. If the single-cell specific observations

are removed, the total number of detected molecules is reduced to a comparable, although still

higher number.

¹³Replacement of STAR with Kallisto or Hisat2, both methods that are currently being benchmarked, would
further reduce the cost of analysis and increase SEQC’s speed.
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Figure 2.12: (A) Stacked histogram of molecules per cell for two biological samples: CD4+ and T
Reg cells, processed using SEQC (blue, green) and the Klein pipeline (red, purple). Comparison
of SEQC (B) or Klein pipeline (C) ”pseudo-bulk” sum of gene expression across cells vs. bulk
Truseq sequencing of a second aliquot of the same T Reg cells processed from the same biological
specimen.

We eventually tracked down the problem in the Klein pipeline, which derived from the anal-

ysis of multiply-aligned reads. In cases where a unique alignment could not be identified, the

alignment was randomized to any of the “best-match” genes, producing a large increase in spu-

rious molecule and gene observations. As a result of this analysis, this problem in the Klein

pipeline was rectified. However, it demonstrates the importance of attention to detail in single

cell analysis and the impact that small computational changes can have on data quality. Finally, it

demonstrates that in scRNA-seq experiments, it is more important to identify the right molecules,

than simply the largest number.

2.18 SEQC Identifies Biological Structure by Removing Noise
from scRNA-seq Data

Each algorithm discussed above improves the quality of the data, either by removing erro-

neous reads, correcting errors, removing ambiguity from alignments, restricting alignments to

observable features, or removing low complexity aggregations of ambient contamination. How-
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Figure 2.13: All panels display features on tSNE projections constructed from the top 10 princi-
ple components from the same set of cells processed with a pipeline constructed from publicly
available tools (left) and SEQC (right). Each point represents a cell. Panel A displays a density
projection where yellow is higher and blue is lower. Panel B displays the expression of CD68, a
marker for macrophage cells. Panel C displays the sum of CD19 and CD79A expression which
marks B-cells.
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ever, I have not yet demonstrated how critical these methods were to enabling biological reason-

ing over complex input data from clinical samples.

To display the impact of these methods, I compare a single pilot tumor sample analyzed with

SEQC with a pipeline constructed from publicly available components. This pipeline does not

contain SEQC’s filters, uses the STAR aligner with a standard GENCODE annotation, applies

the Jaitin error correction method, requires unique alignments, and selects cells using SEQC

approach, so that the same cells could be compared.

These data were then median-normalized, dimensionality reduced with PCA, and projected

with tSNE. Examination of the density projections reveals that the comparison pipeline identifies

a single high-density region and two smaller densities (Figure 2.13 A, left). In contrast, SEQC

recovers a much more structured data projection, consistent with expectations that multiple cell

types would be discovered in a clinical immune sample (Figure 2.13 A, right).

To avoid conflating the output of SEQC with clever algorithms for visualizing or clustering

data, I will simply display marker genes that are known to identify specific populations to test

each pipeline’s ability to resolve cell types. Examining the expression of CD68, a macrophage

marker, and CD19 and CD79A, B cell markers, reveals that the locations of B-cells somewhat

disordered by the comparison pipeline, with the largest densities for both populations found in

the middle right. This cell type co-localization suggests that given the comparison pipeline’s data,

standard analysis algorithms like PCA and tSNE are unable to differentiate between these very

different cell types. This implies that non-biological signal may be dominating the expression

matrices of the comparison pipeline.

In contrast, SEQC identifies exactly what we would wish to see: three well circumscribed

and separated populations: one macrophage and two B cell (Figure 2.13 B, C). This highlights
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the importance of rational algorithm design to remove errors from data prior to exploratory data

analysis, and highlights the importance of good data processing approaches. Without SEQC, it

would not have been possible to analyze patient data from human tissue.

2.19 Conclusion

SEQC addresses the most critical data quality problems with single-cell sequencing. It cor-

rects errors introduced by enzymes during library construction, by filtering fractured barcodes

and correcting barcode substitution errors. It provides high-quality alignment by limiting read

annotation to gene features that are detectable by scRNA-seq, and resolves multi-alignments by

aggregating data at the molecule level. However, when aligning, SEQC uses the genome to fil-

ter out contamination from genomic sources, an approach overlooked by other pipelines. SEQC

then aggregates the cleaned sequencing reads, producing a count matrix of genes x cells which

is carefully examined and depleted of cells that display biological or technical hallmarks of low

quality. With these approaches, SEQC provides high-quality data faster, or at lower cost, than

contemporaneously developed, data-specific pipelines, and compares favorably with them scien-

tifically.

SEQC also provides the first data-type agnostic platform for the analysis of single-cell se-

quencing data. SEQC is fully open source, and completely modular, allowing us to rapidly test

methods from other laboratories that may improve upon our initial computational approaches.

As a result, we expect to be able to maintain SEQC as a high-quality analysis tool for scRNA-seq

data for some time.

To encourage user adoption, we constructed ready-to-run docker and AWS installations of

SEQC, allowing it to be used, without requiring configuration or installation, on any operating
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system or cloud provider. These characteristics, combined with its low cost and high reliability,

make it an important addition to the field of single-cell sequencing. Additionally, these charac-

teristics caused SEQC to be selected for use as the 3’ sequencing prototype for the Human Cell

Atlas, a recently launched project that aims to process what will likely amount to more than 1

billion human cells.

This chapter began by stating that the critical event that enabled the tumor atlas project was

the publication of new droplet-based sequencing methods. As such, an important characteristic

of SEQC or any analysis pipeline is that it enable and encourage technological development.

SEQC has enabled our group to rapidly iterate on the InDrop and other technologies.

We are able to return fully analyzed sequencing experiments including a complete clustering

and QC analysis of a sample to the biologist on the same day that the sample is submitted for

sequencing (MiSeq) or within 8 hours of the completion of fastq generation (HiSeq). This rapid

turn-around has enabled us to produce 4 versions of the InDrop chemistry, each improving upon

the previous method by reducing the number of unnecessary bases that are sequenced, thus

saving on cost, improving the barcode libraries, thus increasing data quality, and experiment

with contemporaneous enrichment of target genes with paired full-transcriptome sequencing in

the same cells, improving scRNA-seq’s power to detect rare but important transcripts.

SEQC has allowed us to compare and contrast InDrop with other technologies. It has

been used to compare over 10 different chemistries, including, most recently, the processing of

nucleus-sequencing data. In addition, when technical disparities between single-cell approaches

take up less dominant fractions of data variation, it may enable us to compare or pool data across

experiments done by other labs using other chemistries—a feat not yet attempted, to our knowl-

edge. SEQC is currently the data analysis platform used in Memorial Sloan Kettering Institute’s
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Figure 2.14: Summary of samples obtained and patient metadata. Tumor, Normal, Blood and
Lymph describe whether or not tissue of each type was extracted from each patient. ER, PR, and
Her2 summarize the fraction of a tumor that stained positive for the ER and PR, and whether or
not the Her2 gene was amplified.

single-cell data processing platform, and to date has processed over 250 individual sequencing

experiments, resulting in 6 publications.

Finally, SEQC enabled us to build a high-quality atlas of the cellular phenotypes of tumor in-

filtrating breast leukocytes. We chose breast over other cancer models because patients suffering

from breast cancer often elect to undergo bilateral mastectomies. This confers a rare opportunity

to sequence truly matched healthy tissue, devoid of inflammation effects or pre-neoplastic aber-

rations which are often found in tumor-adjacent healthy tissue, the standard for tissue matching

in other cancer types. To ensure that we recovered a variety of immune cell states responding to

variable microenvironments, we included patients with breast tumors of varying type and grade,

and devoted the majority of our sequencing to TILs (8 patients). In order to determine what

phenotypic differences could be accounted for by tissue residence, we took matching normal

(3) and peripheral blood mononuclear cells (PBMCs) (2) samples from the same patients when

those patients elected to undergo prophylactic mastectomies (Figure 2.14). We also extracted one
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involved lymph node to determine how TILs might act in a metastatic context.

These samples were profiled by 61 sequencing experiments with at least two technical repli-

cates per sample and produced over 100,000 cells, each of which was covered by an average of

22,000 reads. Cells contained on average 15 reads per molecule, and cell saturation was 91%

across all samples and replicates. After running SEQC on each sample, filtering for complexity,

stress responses, apoptosis, low transcript abundance, low gene detection, and non-leukocyte

cell types, we retained over 47,000 high quality cells which can be interrogated about the tissue

or environmental stimuli that shape their expression profiles. When aggregated by replicates,

each group displayed high within-sample correlations (minr2 = 0.92, µ = 0.97, σ = 0.02) and

significant between-sample variability (µ = 0.72) (Figure 2.15).

These results suggest that SEQC recovers high quality, low-noise data, and also that there is

significant variability between our samples, most of which is biological. The next chapter will

discuss how samples from diverse patients, cleaned of technical noise by SEQC, was integrated

into a single, cohesive atlas that we used to form biological hypotheses about tumor immunology.
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Figure 2.15: Heatmap of pairwise pseudo-bulk sample-sample correlations (r2) across all samples
and replicates in the experiment.
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Chapter 3

Algorithms for Analysis of Multi-Patient

scRNA-seq Experiments

3.1 Introduction

The previous chapter describes an effort to generate a deep transcriptional map of immune

cell states in human breast cancer. Using fluorescence-assisted cell-sorting and single-cell se-

quencing, we constructed an atlas of the tumor immune ecosystem microenvironment compris-

ing 47,016 CD45⁺ cells collected from 8 primary breast carcinomas from treatment naive patients.

The extracted tumors had multiple types, including estrogen receptor (ER⁺) and progesterone

receptor (PR⁺) positive, human epidermal growth factor receptor 2 amplified (Her2⁺), and triple

negative (TNBC) cancers. Through careful modeling of error sources and extensive data filter-

ing, we confirmed that variation in the observed cells stems primarily from biological, and not

technical, factors.

At the time, this dataset was the largest that had been generated using InDrop, and the only
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InDrop dataset generated from multiple human patients. Our experimental design was substan-

tially more ambitious than the datasets preceding it, which had assayed well characterized model

systems such as induced pluripotent stem cell differentiation (Klein et al., 2015) or retinal cells

(Macosko et al., 2015) from mice with identical genetic backgrounds and growth conditions¹.

Our experiment also included multiple genetic backgrounds, tumor types, tissues, and cell types.

Consequently, the analysis of scRNA-seq data subject to numerous and varying stimuli was a

significant and unanswered challenge.

This chapter describes efforts to address this challenge. While the last chapter demonstrated

approaches to verify the technical quality of the data, this chapter begins by verifying its biologi-

cal quality by performing some sanity checks on the data using established statistical approaches.

Specifically, it will analyze each tumor sample independently to confirm that each of the cell types

that are expected to be present in TIL isolates are recovered in each patient in the proportions

indicated by FACS. The second part of this chapter describes an approach to merge data from

different patients through iterative normalization and clustering.

3.2 Individual Tumor Samples Capture Complete Human Im-
mune Systems

To characterize the immune cells extracted from patients, we began by analyzing samples

independently to identify their cellular composition and cell type abundances (Figure 3.1,S3.3).

We reasoned that there would be fewer technical effects that influence cells within a sample than

across large numbers of samples. Thus, we limited our initial analyses to characterize the cell

types within individual tumors.

¹Other clinical datasets were generated in parallel which examined data from multiple patients(Tirosh et al.,
2016), however we are aware of no study that sequenced samples at equivalent depth.
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To discover cell types in single cell data, a standard approach is to group cells by similarity

into ”clusters” before comparing the average expression profile of each cluster to a previously

identified type. The best matching type for each cluster can then be considered a good candidate

for the type of the cluster. There are numerous ways of accomplishing clustering, and there is

no clear best approach. However, PhenoGraph (Levine et al., 2015), a method that was originally

developed to cluster Cytof data, has been adapted to scRNA-seq and appears to have gained

community support as the best-practice for clustering cells in a single sample Shekhar et al.,

2016; Butler and Satija, 2017.

For a distance between two cells to be accurately quantified, cells must first be transformed

to approximate “independent and identitically distributed” data, meaning, practically, that each

observed cell expression profile has an equal chance of observing a molecule if it were present in

the physical cell. This is manifestly untrue for our data, as the vastly different molecule counts

achieved for different cells (and different cell types!) obliterate the “identically distributed” re-

quirement.

The standard approach to address this problem is median library size normalization², an ap-

proach inspired by bulk RNA-seq approaches (Robinson and Oshlack, 2010). Median library size

normalization is a linear scaling approach that sets the total number of molecules in a library to

median molecule sum across all observed cells. Since the earlier pseudo-bulk analysis of tech-

nical replicates showed that the replicates were highly correlated (r̄2 = 0.96,Figure 2.15), we

combined the replicates and normalized them together. If each replicate Xi ∈ X1, X2, . . . Xm is

²In the case of droplet-based single-cell data “normalization” is a misnomer, as the data, when independently
sampled, is better approximated by a negative binomial distribution. However, transformation to the same scale is
the important part, rather than the distribution of the data, and so this “normalization” method is an appropriate
one to this task.
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composed of N cells, and all replicates measure the same set of P genes, then samples Ni can be

scaled according to the median ”library size” or median of the total number of molecules in each

cell, m, by:

m = median∑P
p=1 Xi,p

Ni = m ∗ Xi∑P
p=1 Xi,p

This transformation allows samples which receive different depths of sequencing (different num-

bers of molecules), to be examined as if they lie on the same scale. If the observed differences

in distribution resulted only from differences in sampling rates between cells, then this transfor-

mation is adequate to produce data that are approximately identically distributed³.

The transformed data, while statistically suitable for distance calculations, contains over

20,000 genes (described computationally as “features” or “dimensions”), which produces a signifi-

cant computational burden, as many algorithms scale slowly with increases in features. However,

transcription is controlled through the binding of transcription factors to DNA, each of which

control many genes. As a result, cells responses’ to stimuli tend to simultaneously modify or

“co-regulate” the expression of modules of genes.

The modularity of transcription implies that high-order correlation structures exist in the

gene features of our cells, and as a result, that the data actually lie on relatively low-dimension

manifolds within the space of observed features. As a result, it is possible to reduce the dimen-

sionality of biological data by collapsing it into correlated components without significant loss

of information (Segal et al., 2004; Hartwell et al., 1999).

To identify a low dimensional representation of the data, we apply Randomized Principal

³Median library size normalization does not, however, provide a solution for normalizing heterogeneous data
from multiple cell types, or enabling comparisons between cells with extremely different sampling rates(Anders and
Huber, 2010)
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Component Analysis (rPCA) (Halko, Martinsson, and Tropp, 2009; Rokhlin, Szlam, and Tygert,

2009) prior to carrying out subsequent algorithmic steps. The normal PCA method uses singular

value decomposition of the data covariance matrix to identify a number of orthogonal compo-

nents of variation equal to the number of genes in the data. A user then examines the fraction

of the original variance explained by each component, and selects some number of components

K , to retain. This is typically done either by selecting components until a certain fraction of

the total variation is retained (often 75, 95, or 99%) or by searching for a “knee point”, beyond

which each components explained variation drops off precipitously. Randomized PCA differs

accelerates the PCA method bootstrapping over several decompositions of low-rank approxima-

tions (with dimensionM ) of the full data covariance matrix, which has dimension P , the number

of gene features with non-zero observations in at least one cell (M << P ) (Halko, Martinsson,

and Tropp, 2009). Randomization can introduce error into low-variation component estimates

(Mi, i > 1000), however, in scRNA-seq data, most variation is compressed into fewer than 30

components, which rPCA estimates with high accuracy⁴. Thus, use of this algorithm produces a

large improvement in speed in what is typically the slowest step of single-sample analysis.

A second, and less appreciated, benefit of using PCA to reduce data dimensionality is that it

depletes random variation from the data. By grouping coherent variation into the largest princi-

pal components (ki, i <= K), a large proportion of discordant or random variation is pushed into

components kj, j > K , which are excluded from analysis. Thus, pre-processing with PCA serves

both a practical purpose of reducing computation time but also improves data quality. Because

biological data is sparse, and sparse data naturally lie on or close to a low-dimensional manifold,

⁴In practice, M is set equal to approximately 2K , the number of components that are expected to be retained.
For contemporary 3’ scRNA-seq data, approximately 25 components are retained, and thus M can be safely set to
50.
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this transformation can be achieved without a significant loss of information.

Therefore, for each replicate, we applied rPCA to the normalized dataN and selectedK using

the “knee point” method (Valle, Li, and Joe Qin, 1999), as described above. Because our data

was derived from different biological conditions and had different sampling rates, the knee point

varied across our samples. We observed that retention of K = 6− 11 Principal components per

sample produced optimal results, but some iteration over the subsequent clustering and analysis

steps was required to determine the correct value. The final number of retained PCs in each

sample correlated with the pre-normalization library size of the samples, as expected (r2 = 0.82).

The dimension-reduced PCA projection was used as the input to PhenoGraph (Levine

et al., 2015), which was applied with default parameters (k=30 nearest neighbors). The

same principal components were used to generate tSNE projections (Maaten and Hinton,

2008), which were generated with barnes-hut tSNE, implemented in the bhtsne package

https://github.com/lvdmaaten/bhtsne (Figure 3.1,S3.3).

3.3 Gross Cell Type Annotation

Although our immune atlas consists of considerable variability due to the genetic background

of the patient, type of tumor, and the tumor microenvironment, it is nevertheless reasonable

to expect that high-quality cell profiles should correlate better with cells of their own lineage

than those of other immune lineages. Therefore, we collected, to our knowledge, all previously

generated bulk gene expression profiles of sorted immune cells in humans (Novershtern et al.,

2011; Jeffrey et al., 2006). These two studies comprised 37 and 32 microarray experiments taken

from sorted normal human immune cells and the same cell populations stimulated by bacterial

antigens to provoke immune activation.
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Consistent with our hypothesis that lineage is a stronger source of variance than immune ac-

tivation or microenvironment, cells of the same lineage clustered together within the microarray

experiments regardless of activation state. Because the bulk data was generated with microar-

rays, the data is a complex function of library preparation, but also probe capture efficiency. The

magnitude of variation in probe capture efficiency is such that microarray analyses are typically

limited to making assertions about the relative abundance of genes across samples, rather than

measuring the absolute abundance of a gene in a sample (Tusher, Tibshirani, and Chu, 2001). As

such, in addition to normalizing by library size, microarray data is additionally translated into

units of variance by “Z-scoring” to remove the effect of abundance on downstream computation.

This presents a problem for comparison with single-cell sequencing data, as scale is an im-

portant predictor of sample quality. As discussed in the previous section, the ambient RNA con-

tamination in single cell experiments means that low-abundance genes are often the result of

non-specific RNA diffusion, whereas high-abundance genes are likely specifically expressed in

the cells they are detected in. As a result, Z-scoring scRNA-seq data prior to analysis significantly

degrades the quality of the results.

To address this problem, genes were stringently filtered such that they must be expressed at

an average of at least 1 count in at least one cluster in order to be considered for comparison with

the bulk data. However, for clusters with low RNA expression or capture, such as naive T-cells,

a floor of no fewer than 1000 genes was set to guarantee robust comparisons.

While a 1-count threshold may sound lenient, it implies that that on average, each cell in a

cluster detected the gene. Thresholding by cluster was important to avoid biasing the compar-

isons towards genes that were only present in large cell clusters, which would reduce our power

to determine the types of rare populations. Both the scRNA-seq and microarray data was then
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Figure 3.1: t-SNE projection of complete immune systems from two example breast cancer tu-
mors. scRNA-seq data for each tumor is processed with pipeline described in Chapter 2, library
size-normalized, PCA-reduced, and clustered with PhenoGraph. Each dot represents a single-cell
colored by its cluster label, and clusters are labeled by cell types, inferred through similarity with
bulk profiles. Additional tumors are presented in Figure S2

normalized and Z-scored, and the PhenoGraph cluster centroids were correlated with the mi-

croarray profiles. The correlations were then averaged across lineages and the highest scoring

lineage was used to assign each cluster a type. The types are displayed in (Figure 3.1), and a

heatmap of the correlations is demonstrated in Figure 3.11.

Our first attempts to annotate clusters with cell types revealed several clusters with low cor-

relations with all bulk immune datasets. We reasoned that low correlation was most likely due

to one of two possibilities. First, low-correlation clusters could be composed of low-quality cells

dominated by ribosomal, mitochondrial, or other housekeeping transcripts, which would imply

that a cell that should have been filtered out had improperly been retained by SEQC, or it could

result because the clusters were not composed of immune cells,. Alternatively, low-correlation

clusters could be composed of stromal or tumor cell contamination in our samples, allowed to

pass through the sort due to cell autofluorescence or low αCD45 antibody specificity.

To differentiate between these possibilities we examined library sizes of each cluster, rea-
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Figure 3.2: Pie charts showing cell type fractions in each patient tumor.

soning that low-quality cells should have smaller libraries than high-quality counterparts. We

found no association between library size and quality of immune cell correlation. We next re-

ran the annotation after including several cell lines from epithelial and mesenchymal lineages

as negative controls, reasoning that if the cell types were indeed stromal or cancer cells, they

should appear closer in phenotype to these populations. This allowed us to identify several pop-

ulations of fibroblasts, epithelial populations. Post-hoc analyses of the epithelial populations

by our surgeon allowed us to further differentiate the epithelial populations into malignant and

non-malignant clusters, providing additional support for their separate clustering. Because these

populations came primarily from only two patient samples, statistical power would be too low to

derive meaningful conclusions about them, and they were excluded from downstream analyses.

3.4 Variation Between Individual Tumor Immune Microenvi-
ronments

Having filtered out non-immune types and positively identified immune cells in each patient,

we next examined the relative frequency of immune types across tumors. In agreement with the

mass cytometry analyses introduced in Chapter 1 (Chevrier et al., 2017; Lavin et al., 2017) and
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Figure 3.3: Regression of flow cytometry cell type percentages in each patient against RNA-seq
cell type percentages for B cells (blue), Monocytic cells (orange), and T cells (green).

prior clinical observations, we found a large degree of variation in the immune cell composition

of each tumor (Figure 3.2). For example, the fraction of T cells varied between 21%-96% and the

fraction of myeloid cells varied between 4-55%. To determine the reliability of InDrop’s sampling

of these heterogeneous populations of immune cells, we compared the proportions of cell types

as measured by flow cytometry and InDrop scRNA-seq. Although a comparison of the relative

representation of major immune cell types identified by scRNA-seq to those measured by FACS

revealed a significant bias towardsMonocytic lineage cell subsets relative to expected input ratios,

we observed high correlation between cell type frequencies across all patient samples (r2 > 0.8,

Figure S3.3). The observed bias, likely due to the larger cytoplasmic volume and higher RNA yield

of Monocytic/myeloid cells vs. T cells, was systemic and did not adversely affect our analyses. As

a result, we concluded that we were able to identify the majority of immune cell types expected

to be present in human tumors, including Monocytes, Macrophages, Dendritic cells, T cells, B

cells, Mast cells, and Neutrophils (Figure 3.1,S3.3) (Jeffrey et al., 2006; Novershtern et al., 2011).

Thus, we were able to capture a comprehensive representation of the immune ecosystem from

each individual tumor.
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3.5 Integration of Data Across Multiple Tumors

To enable an unbiased systematic comparison across patients, we attempted to merge the data

from all tumors to create a map of tumor-infiltrating immune cells. However, we observed that

the normalization approaches applied to individual tumors were not adequate for data derived

from multiple patients. Cells from the same patient, of different types, were often more similar

than cells of the same lineage from another patient (Figure 3.6). Figure 3.6 (left) shows scRNA-seq

data from 9K immune cells from 4 breast cancer patients after normalization of cells to median

library size, suggesting large differences between patients. Moreover, the tSNE projection did not

suggest a diversity of subpopulations beyond two main lymphoid and myeloid lineages. Since bi-

ological lineage should, in most cases, produce larger differences in transcript abundances than

external signaling from the microenvironment, and we had already confirmed the presence of

finer structure within individual patients, we believed that this phenomena was most likely due

to technical effects acting across the different InDrop runs. However, we also observed that acti-

vated immune cells contained higher numbers of mRNAmolecules, a phenomena which has been

previously reported (Blackinton and Keene, 2016; Cheadle et al., 2005; Marrack et al., 2000; Singer

et al., 2016). Specifically, our analyses showed a gradient of activation of CD8 T cells in tumors

as compared to normal- or blood-resident T-cells, where the most pronounced T-cell activation

occurred in a TNBC tumor (BC3), which agrees with reports from clinical trials suggesting that

TNBC tumors are the most immunogenic (Figure 3.4) (Dushyanthen et al., 2015; García-Teijido

et al., 2016). Thus, our data displays technical and biological factors that both influence molecule

abundance in individual samples.

The tendency of samples to co-cluster highlights the complexity of analyzing scRNA-seq data

89



Figure 3.4: Left: Boxplots showing expression of CD8 T cell activation signature (defined as
the normalized mean expression of genes in the activation signature listed in Table S4) across
immune cells from each patient. Right: heatmap displaying z-scored mean expression of genes
in activation signature. Top: Bar plot showing total expression of each gene indicated in the
heatmap across all patients. Expression of T cell activation signature shows variability across
patients and increased expression in patients BC6 and BC3.

frommultiple patients. There are various reasons, both technical and biologically stochastic, that

result in co-clustering of samples. First, because the observed data is only one small sample set

from the transcriptome of the cell (the full range of mRNAs that the cell expresses to support

its phenotype) there is a high chance of missing low-expression genes. In addition, the depth

of sampling strongly correlates with the number of features that are observed in each cell, and

the sampling depth varies significantly across cells and across samples. The sparsity of scRNA-

seq measurements mean that, in our data, the average gene is detected with only a single count.

As a result, drop-out is very common, and drop-out is not recoverable by median library size

normalization, as any number multiplied by zero remains zero. Thus, in small cells, detected

genes are scaled up far more than they should be, producing spurious differential expression
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Figure 3.5: Toy example showing the impact of normalizing across cells of different sizes. Large
cells, e.g. macrophages, have a larger number of input RNA, and therefore sampling from them
produces the most representative single-cell libraries, with minimal drop-out. Smaller cells, such
as neutrophils and lymphocytes, are subject to more stochasticity as it is possible that mRNA
molecules of a gene are present, but will not be captured. As a result, the disparity between
capture/non-capture can produce misleading differential expression results at the single-cell
level.

relative to better sampled cells of the same state (Figure 3.5).

Technical factors include differences in sequencing machine, enzyme activity, lysis efficiency

or experimental protocol. These samples were also subject to operational variation during the

clinical resection, transport, and handling. These factors all impact cell viability, which in turn

affects the single cell RNA-seq library preparation, in particular molecular capture rate and sam-

pling. Because molecular capture is a binary event, and the capture rates are very low, these

technical variations often determine whether a given gene feature is observed in the data for a

given cell.

These more technical artifacts, particularly in capture rate, are confounded with biological

differences. This is particularly challenging in the case of immune cells, where activated cells
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have substantially heightened transcription rates, and therefore if sampling efficiency is constant,

we expect to capture more molecules (Blackinton and Keene, 2016; Cheadle et al., 2005; Singer

et al., 2016). Therefore, the sampling rate is affected by biological as well as technical processes.

Indeed, we see large differences in the number of activated T-cells across patients (Figure 3.4),

with more activated T-cells in the Triple Negative subtype as expected (Dushyanthen et al., 2015).

Hence, normalizing by library size will likely remove these biological variations.

Both the technical and biological effects tend to average out at the population level, but dis-

tance metrics do not share information across cells, as bulk approaches were able to.. As a result,

distance metrics tend to be very sensitive to differences in sampling, which can lead to spurious

differential expression or removal of biological stochasticity specific to each cell type, both of

which induce improper clustering and characterization of latent cell types. Therefore, cell type-

specific normalization is especially crucial in experiments involving vast subtype diversity, such

as immune cells ranging from large Macrophages to much smaller lymphocytes (Lun, Marioni,

and Bach, 2016; Vallejos et al., 2017), wherein the sampling rate contains biological information.

Unfortunately, cell’s types are defined by the clusters they fall in, and thus cannot be not

determined a priori. Thus, the transformation and clustering of scRNA-seq is a chicken-and-egg

problem wherein it is illogical to start from either step.

3.6 Biscuit Clustering andNormalizationCorrects for Technical
Effects Across Samples

To solve address the convolution of biological and technical effects, we developed and applied

the method “Biscuit” (short for Bayesian Inference for Single-cell ClUstering and ImpuTing) to

simultaneously cluster cells and normalize according to their assigned clusters (Prabhakaran et
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Figure 3.6: T-SNE projection of tumor-infiltrating immune cells from 4 breast cancer patients after
library-size normalization (left panel) and Biscuit normalization and imputation (right panel).
Cells are colored by tumor (patient). Less mixing of tumors indicates either batch effects or
patient-specific cell states.

al., 2016) (Figure 3.7). This is accomplished through incorporating parameters denoting cell-

specific technical variation into a Hierarchical Dirichlet ProcessMixtureModel (HDPMM) (Görür

and Rasmussen, 2010) (Figure 3.7 A). This allows for inference of cell clusters based on similarity

in gene expression as well as in co-expression patterns, while identifying and accounting for

technical variation per cell (Figure 3.7 B, C). Two key ideas that power Biscuit are the use of gene

co-expression as a more robust means to identify cell types, and the normalization of each cell

type separately to better account for cell type-specific effects on technical variation. The main

idea behind the use of co-expression is that cell types not only share similar mean expression, but

also share similar co-expression patterns (covariance) between genes. Whilemean expression can

be more sensitive to capture efficiency, covariation is more robust to such effects. This similarity

in co-variation can be used to improve normalization and in turn improve the clustering, through
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the learning of cluster specific parameters.

By jointly performing normalization and clustering, we retain biological heterogeneity and

avoid biases that result from independent clustering and normalization, and instead are able to

match cells to clusters of the same cell type from different patients which may have very different

sampling rates. Figure 3.6(right) shows the same data from 4 tumors after normalization with

Biscuit. Note that Biscuit does not use any information on sample IDs in the normalization, and

normalization is only driven by cluster assignments. The Biscuit-normalized data shows that

the differences in library-size normalized data were largely artifacts of normalization and batch

effects. We therefore applied Biscuit to data from all 8 tumors to infer the full diversity of immune

cell types in the breast tumors, which identified 67 clusters indicating significant diversity in both

lymphoid and myeloid cell types (Figure 3.8).

This transformation also imputes dropouts in each cell by sampling dropped-out genes from

the posterior distributions for the cluster that a cell is assigned to. The use of covariance param-

eter in the model ensures that intra-cluster heterogeneity is preserved after imputing. We show

a systematic evaluation of the algorithm performance (on synthetic and real single cell data), its

robustness, as well as the ability of this method to impute dropouts in (Prabhakaran et al., 2016).

To formalize and quantify Biscuit’s ability to correct batch effects across data from all eight

tumors (Figure 3.8) and match immune subtypes across the tumors, we devised an entropy-based

metric that quantifies the “mixing” of the normalized data across samples. The entropy-based

metric is computed as follows: We constructed a k-NN graph (k=30) on the normalized data

using Euclidean distance and computed the distribution of patients (tumors) m = 1, . . . , 8 in

the neighborhood of each cell j, denoted as qjm. Then we computed Shannon entropy Hj =

−qj
m log qjm as a measure of mixing between patients, resulting in one entropy valueHjper cell
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Figure 3.7: (A) Stochastic data generative process for Biscuit illustrated with a toy example. Top
panel: Left: shows 3 multivariate Gaussian densities with no technical variation. Middle: An
ideal cell (yj) is simulated as a random draw from any of these 3 Gaussians. Right: The covariance
matrix across 10 such randomly-drawn cells showing 3 block covariances across the diagonal cor-
responding to three clusters. Bottom panel: Left: shows 3 multivariate Gaussian densities with
means and covariances scaled using (j, j) to handle cell-specific variations. Middle: A cell (lj) is
simulated as a random draw from any of these 3 scaled Gaussians. Right: The covariance matrix
across 10 such randomly-drawn cells showing loss of signal in the 3 block diagonal covariances.
We assume the model for lj captures real single-cell measurements and the goal is to normalize
data by converting it to follow the model for yj . (B). Finite state automata for Biscuit. The shaded
circle denotes lj , which is observed gene expression for cell j, white circles show latent variables
of interest, rectangles depict the number of replications at the bottom right corner, diamonds are
hyper-parameters, and double diamonds are hyper-priors obtained empirically. Inference equa-
tions are obtained by inverting the date generative process. (C) Left panel: Input count matrix to
Biscuit. Middle panel: Inference algorithm with Gibbs iterations are depicted where cell-specific
(j, j) and cluster-specific (k, k) parameters are iteratively inferred leading to cell assignments to
clusters. Right panel: Output from Biscuit, which is the normalized and imputed count matrix.

95



Figure 3.8: T-SNE map of breast tumor-infiltrating immune cells from all 8 patients after Biscuit
normalization and imputation showing rich structure and diverse cell types. Cells colored by
Biscuit clusters and labeled with inferred cell types.

j. High entropy indicates that the most similar cells come from a well mixed set of additional

tumors, whereas low entropy indicates that the most similar cells largely come from the same

tumor. Prior to Biscuit, most cells in the data had low entropy values, with 40% of the cells

residing in a neighborhood of cells purely from the same tumor. We compare the distribution

of entropies across all cells from all 8 tumors, before and after Biscuit, which reveals that the

median of entropy shifts significantly towards higher mixing of samples after processing with
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Figure 3.9: Histogram depicting entropy of the patient distribution as a measure of sample mix-
ing. Entropy is computed per cell, based on the distribution of patients in (30-NN) local cell
neighborhoods after library-size normalization (left panel) as compared to Biscuit (right panel).

Biscuit (Mann-Whitney U-test: U=1.7721e+09, p=0; Figure 3.9). Thus, we conclude that Biscuit

substantially corrected batch effects in this data.

To generate a global atlas of immune cell types, we combined samples from all patients and

tissues by applying Biscuit to the full set of n = 62024 cells and d = 14875 genes, resulting in a

global atlas of K = 95 clusters (Table S2) in which n = 57143 cells had statistically significant

cluster assignments. The remainder of cells had low library size and were hence removed from

further analysis. A subset of these clusters were identified as probable cancer or stromal popula-

tions through correlation with bulk gene expression datasets and marker gene expression. While

these non-immune clusters may be of significant interest in their own right, they were beyond

the scope of this paper and were therefore excluded from downstream analysis, leaving 47,016

cells in 83 clusters (Table S2).

While biscuit improved mixing across patients overall, We observed that individual clusters

displayed differing amounts of mixing between samples (Figure S6). To further quantify the

exact degree of mixing (between patients) in each cluster, we defined an entropy-based metric.

We used bootstrapping to correct for cluster size (which ranged from over 8900 cells to just over
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30 cells), such that we uniformly sampled 100 cells with replacement from each cluster, computed

the distribution of patients across these cells, and then computed the Shannon entropy for this

distribution. We repeated this procedure 100 times for each cluster, to achieve a range of entropy

values per cluster. Figure S9 shows box plots for entropy values for each cluster, with the order of

clusters based on their mean entropy. Clusters with entropy of 0 denote entirely patient-specific

clusters. Figure S9 shows that there is a continuous range of entropies, and thus a full range

of sample specificity versus mixing, across clusters. These results suggest that our experiment

succeeded in observing both general immune cell states, and also tumor-specific states that may

result from specific microenvironments.

3.7 Cluster Robustness

To evaluate cluster robustness, we performed 10-fold cross-validation, independently cluster-

ing and normalizing on random subsets of data. For each of 10 subsets, we ran Biscuit to obtain

a set of clusters. To compare the results across the 10 subsets, we computed the confusion ma-

trix, which indicates the probability of each pair of cells j, j′ being assigned to the same cluster:

P (zj = zj′), where zj is the jth cell. Figure S7 illustrates box plots for the probabilities of co-

clustering (across 10 subsets) for every pair of cells that are assigned to the same cluster in the

analysis of the full dataset. The average co-clustering probability in each cluster ranges between

92%-100%, showing remarkable robustness of clusters.

3.8 Distances Between Clusters

The distances between BISCUIT clusters can be directly computed from the posterior prob-

ability distributions of each cluster. While Euclidean distances are defined for vectorial objects
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Figure 3.10: T-SNE projection of complete atlas of immune cells, post-Biscuit normalization, from
all patients and all tissues including tumor, blood, lymph, and contra-lateral normal tissue,labeled
by inferred cell type (left panel) and normalized expression of 8 immune cell markers (right panel).
Figure S2 presents further details on inferred clusters with complete annotations in Table S2.

99



and operate under a Cartesian coordinate system, Euclidean distance with non-vectorial objects

such as probability distributions requires embedding them in Euclidean space. Such embeddings

are non-unique and lead to loss of information. It is therefore advisable to use the non-vectorial

objects as is and to work with the objects’ pairwise similarities or distances instead. One such

distance metric, which is effective at comparing pairwise probability distributions, is the Bhat-

tacharyya distance (BD) (Bhattacharyya, 1990).

We defined distances between each pair of clusters k, k′ with distributions pk and pk′asBD =

−log(BC(pk , pk′ )) where BC is the Bhattacharyya coefficient measuring similarity (overlap)

of the distributions. We use the BD to compute distances between pairs of inferred clusters’

moments to create the Bhattacharyya kernel. The Bhattacharyya kernel has closed forms for any

exponential distribution including the (multivariate) Gaussian distribution (Jebara, T., Kondor,

R., & Howard, A., 2004), which is Biscuit’s underlying data-generation distribution. For the case

of multivariate normal distributions: pk ∼ N(−→µk,Σk)and pk′ ∼ N(−→µk′ ,Σk′):

DB = 1
8
(−→µk −−→µk′)

T Σ−1(−→µk −−→µk′) + 1
2
log(det Σ) where Σ = (Σk + Σk′)/2.

Figure S10 shows the heatmap of pairwise distances between all pairs of clusters.

A geometric interpretation of BD is that, via its cosine formulation, the distance subsumes a

full hypersphere and the centre of the hypersphere is the centroid (mean) of the cluster, whereas

the Euclidean distance only covers a quarter of the hypersphere with the center at the origin.

3.9 Contribution of Covariance in Defining Clusters

We used the above Bhattacharyya distance (BD) metric to study the contribution of Biscuit’s

covariance parameters to characterizing clusters of different cell types. First, we computed the

BD between pairs of clusters of the same type (T, Monocytic, NK, B) and compared these to
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distances between pairs of clusters of different cell types (e.g. a T cell cluster and a Monocytic

cluster). Figure S2E shows violin plots for distances between pairs of clusters with dots (overlaid

on violins) representing cluster pairs; violins are sorted based on median distance. As reference,

we also split each cluster into two halves and computed the empirical BD between two splits

(shown at the left end in Figure S11). We observe that, overall, pairs of clusters of different types

are more distant than pairs of clusters from the same type, as expected.

We then computed these same pairwise distances while removing the contribution of mean

parameters for each cluster, via setting −→µk − −→µk′ = 0 and computing the distance only based on

covariance parameters of the pair of clusters Σk,Σk′ (Figure S11, right). We observed that pairs

of T cell clusters or Monocytic clusters still show prominent distances, and therefore covariance

parameters have a crucial role in defining these clusters.

In the case of Biscuit clusters (Figure 3.11), mean parameters for each cluster were correlated

with bulk profiles. Each of the bulk profiles was marked as having derived from one of several

major cell types: b-cells; T-cells (naive, central memory, cytotoxic, T-regulatory); Monocytic

cells (monocytes, dendritic cells, macrophages); Mast cells; Neutrophils; or NK-cells. The highest

scoring bulk profile for each centroid was used to categorize each cluster by its type, and types

were split for downstream analysis.

Cells were also typed by examining expression of known marker genes. In this analysis, cells

were scored as detecting a marker gene if the cell contained a non-zero molecule count for that

gene. Each cell was corrected for its detection rate (the fraction of total genes detected in that

cell) and the marker detection rate was then averaged across cells of a cluster. Markers used

to assign classical types cells included NCAM1, NCR1, NKG2 (NK-cells), GNLY, PFN1, GZMA,

GZMB, GMZM, GZMH (cytotoxic T-cell, NK), FOXP3, CTLA4, TIGIT, TNFRSF4, LAG3, PDCD1
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Figure 3.11: Pearson correlations of cluster expression centroids to bulk RNA-seq data from pu-
rified immune populations (from Jeffrey 2006 and Novershtern 2011). Scale bar displays r-values.
(G) Histogram of frequency of patients contributing to each cluster showing that 19 clusters (out
of 95) are present in all 8 patients and 10 clusters are patient-specific.

(exhausted T-cell, T-regulatory cell), CD8, CD3, CD4 (T-cells), IL7R (naive T-cells), CD19 (b-cells),

ENPP3, KIT (Mast cells), IL3RA, LILRA4 (Plasmacytoid Dendritic cells), HLA-DR, FCGR3A, CD68,

ANPEP, ITGAX, CD14, ITGAM, CD33 (Monocytic lineage). For all retained clusters, the two

typing methods agreed (Figure 3.12).

3.10 Gene Signature Summarization

To interpret the observed cell states we made extensive use of gene signature enrichment.

However, in addition to testing for heightened expression of genes in the signature across cells

in the cluster, we also examined signatures in terms of their variation. Specifically, we examine
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Figure 3.12: Expression of canonical and cell type markers across clusters, z-score normalized
across clusters. T-exhausted denotes the mean expression of terminal differentiation signature
listed in Table S4.

the marginal distribution of cell loadings across the signature and the relative contribution of

each gene.

Therefore, when examining signature expression across patients we began by constructing a

bar plot of the counts for each gene in the signature, corrected for cellular observation rate (the

total number of genes observed with molecule count > 1). This displays the contribution of each

gene to the signature (top panel in Figure 3.13,S3). The normalized values for each signature,

per cell, are then summarized as a box plot to display the variation of cells in each patient (left

panels). Finally, the cluster median of each gene is taken per patient, and the cluster medians

are z-scored across patients. The z-scored values are plotted as a heatmap (center-right panel in

Figure 3.13,S3), facilitating a comparison of signatures across patients⁵.

⁵To create these lists we broadly surveyed the literature and manually curated consensus lists of genes to be
included. The relevant literature that these signatures were derived from includes:
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The genome-wide view allowed us to assess system-level differences between immune cell

consortia in individual patients in, for example, metabolic signatures, including hypoxia (Fig-

ure 3.13). It is interesting to note that while all tumors expressed a similar average degree of a

hypoxia signature, patients differed considerably in expression at the level of individual genes

included in the signature. Similar variation was observed in fatty acid metabolism, glycolysis,

and phosphorylation (Figure S3).

3.11 Breast Tumor Immune Cell Atlas Reveals Substantial Di-
versity of Cell States

Together, these analyses produce a tumor immune atlas that can be interrogated to under-

stand tumor, tissue, and patient dependent differences in immune phenotypes. A complete map

of the experimental procedure described in this chapter and the one preceding it, from sample

extraction to the end of BISCUIT clustering, is displayed in Figure 3.14. After applying Biscuit to

the data from all tumors (Figure 3.4), we found 67 clusters covering various T cell, macrophage,

monocyte, B cell, and NK cell clusters. We first asked whether individual cells tended to be most

similar to cells from their own samples or if the resulting cell profiles were well mixed using an

entropy measure (STAR Methods). For each cell, this measure considers the neighborhood of

For the M1 and M2 macrophage polarization signatures we merged gene lists from (Sica and Mantovani, 2012);
(Biswas and Mantovani, 2010); (Bronte et al., 2016) (Ugel et al., 2015) (Gabrilovich, 2017). For other myeloid-
specific signatures we used (Villani et al., 2017) (pDCs, AXL/SIGLEC6 DCs, CD141/CLEC9A DCs, CD11C_A DCs,
CD1C-/CD141- DCs, CD1C_B DCs, New Monocytes 1, New Monocytes 2, CD14+CD16- Classical Monocytes, and
CD14+CD16+ Non-Classical Monocytes); and (Gesta, Tseng, and Ronald Kahn, 2007), (Perera et al., 2006), (Farmer,
2006; Lefterova and Lazar, 2009) (Lipid Mediators).

For T-cell-specific signatures we used (Wherry and Kurachi, 2015), (Wherry, 2011), (Schietinger et al., 2012) (Ex-
haustion and Anergy); (Glimcher et al., 2004) (Cytolytic Effector Pathway); and (Smith-Garvin, Koretzky, and Jordan,
2009), (Chtanova et al., 2005), and (Adam Best et al., 2013) (T-cell Activation).

For gene signatures used across cell types we used (Mantovani et al., 2008), and (Grivennikov, Greten, and Karin,
2010) (Pro and Anti-Inflammatory); (Platanias, 2005) (Type I and II Interferon Responses); (Ho et al., 2015) (glucose
deprivation); (Benita et al., 2009; Makino et al., 2003) (Hypoxia/HIF Regulated); (Moreno-Sánchez et al., 2009), (Caton
et al., 2010; Funes et al., 2007; Mues et al., 2009), (Beale, Harvey, and Forest, 2007) (Glycolysis, Gluconeogenesis, TCA
Cycle, Pentose Phosphate Pathway, and Glycogen Metabolism), and (Whitfield et al., 2002) (G1/S).
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Figure 3.13: Left: Boxplots showing expression of Hypoxia signature (defined as the mean nor-
malized expression of genes in the hypoxia signature listed in Table S4) across immune cells from
each patient. Right: Heatmap displaying z-scored mean expression of genes in hypoxia signa-
ture. Top: Barplot showing total expression of each gene indicated in the heatmap, across all
patients. See Figure S3 for additional signatures.

Figure 3.14: Flow chart displaying experimental design and analysis strategy.
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its most similar cells and evaluates the entropy of the sample distribution in each such neigh-

borhood. Low entropy indicates that most neighbors come from the same sample, whereas high

entropy indicates that the neighbors (most similar cells) are well distributed across the different

samples. Indeed, while cells were most similar within individual samples before normalization,

this was corrected after Biscuit normalization with significantly improved mixing of cells across

patients when compared against standard normalizationmethods (Figure 3.6,3.9). (U=1.7721e+09,

p=0). Using this approach, we successfully retained information on immune cell activation while

stabilizing differences in library size, and uncovered a rich and robust structure in imputed data,

suggesting diversity in immune cell subtypes (Figure 3.6,3.8).

To construct a global atlas of immune cells, enabling characterization of the impact of envi-

ronment on immune cell states, we merged data from 47,016 cells across all tissues and patients

revealing a diverse set of 83 clusters, each identifying a cell type or state (Figure 3.10,3.11). This

unexpectedly large number of clusters prompted us to test their robustness using cross-validation

on subsets of the data (STAR Methods), finding assignments of cells to clusters were robust for

most clusters (Figure S7). Most clusters were shared across multiple patients, indicating similar

immune states across patients, with only 10 being patient-specific (Figure S6). We used entropy

as a more stringent metric for patient mixing within clusters and found that the clusters span a

range of different mixing levels (Figure S6).

We assigned each cluster to its associated cell type by comparing cluster mean expression

to bulk RNA-seq as described above (Figure 3.10,3.11) and found 38 T cell clusters, 27 myeloid

lineage clusters, 9 B cell clusters, and 9 NK cell clusters (Table S2). By examining the expression

of canonical markers in immune cell clusters, we were able to confirm and build upon predictions

made by the preceding analysis (Figure 3.12). Of the T cell clusters, we identified 15 CD8+ T cell
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clusters and 21 CD4+ T cell clusters, which were together split into 9 naive, 7 central memory,

15 effector memory, and 5 Treg clusters. We were additionally able to divide the myeloid lineage

clusters into 3 macrophage, 3 mast cell, 4 neutrophil, 3 dendritic cell, 1 plasmacytoid dendritic

cell, and 13 Monocytic clusters. Finally, we identified 9 B cell clusters, 3 CD56⁻⁻ NK cell clusters,

and 6 CD56⁺⁺ NK cell clusters, of which 2 of which are likely NKT cells. These clusters can be

distinguished by their differential expression patterns (Figure 3.15).

Since our characterization identified multiple clusters with the same cell type “label” based

on surface markers and prior characterization of the corresponding peripheral blood cell phe-

notypes, e.g. 15 effector memory T-cell clusters (Figure 3.11), we wanted to confirm that all

these clusters were indeed distinct. The distributions defined by the Biscuit parameters iden-

tified differentially expressed genes between clusters, including canonical immune genes, and

defined multiple subpopulations within each major cell type (Table S3). Moreover, we observed

a prominent effect of covariance in defining the T cell clusters by comparing similarity of pairs of

clusters with and without the effect of mean expression (Figure S11); large differences between

most clusters remained even after mean gene expression was equalized. Thus, our approach ro-

bustly identified cell states that were distinct from one another and shared across multiple tumor

microenvironments. As T-cell and myeloid cells represent the most abundant and diverse, and

arguably most biologically significant, immune cell subsets in the tumor microenvironment, we

focused our subsequent in-depth analyses on these two major cell types. This investigation is

detailed in the next, final chapter of the dissertation.
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Figure 3.15: Differentially expressed genes in b-cells (top) and NK-cells (bottom) standardized
by z-scores within cell type. As an example, the expression of CD19 is standardized across all B
cell clusters to highlight clusters with higher or lower expression of the marker compared to the
average B cell cluster, but is highly expressed in nearly all B cell clusters (refer to Table S3 for all
DEGs in these and other clusters).
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Chapter 4

Quantifying Tissue- and

Microenvironment-Induced Immune Cell

Variation

4.1 Tissue Residence has a Strong Effect on the Diversity of Im-
mune Phenotypic States

A key goal of this study was to quantify the extent to which variation in immune cell pheno-

types is driven by their tissue of residence, i.e. cancerous vs. normal breast tissue, using peripheral

blood or the lymph node cells as references. To gain a qualitative understanding of phenotypic

overlap between tissues, we carried out tSNE co-embedding (Maaten and Hinton, 2008) of the

merged dataset annotated by clusters. This analysis showed that T cells in blood and lymph

node were dramatically dissimilar to cancerous or normal breast tissue resident T cells, which in

contrast, displayed many shared phenotypes (Figure 4.1). We observed that gene expression of
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Figure 4.1: Breast immune cell atlas inferred from combining all patient samples and tissues, pre-
sented after Biscuit and projected with t-SNE. Each dot represents a cell and is colored by cluster
label; major cell types are marked according to Figure 2F, H. Right: Subsets of immune atlas t-
SNE projection in showing cells from each tissue presented separately on the same coordinates
as right to highlight the differences between tissues compartments.

Figure 4.2: Proportions of cell types across tissue types in pie charts.

T cells dramatically differed between blood and tissue resident cells, with a large blood-derived

cluster of cells being phenotypically distinct from T cells in normal and tumor tissue (shown in

blue). In contrast, Both T cells and myeloid lineage cells exhibited considerable phenotypic over-

lap between tumor and normal tissue samples. Of the two classes of tissue resident cells, tumor

cells displayed greater phenotypic heterogeneity, appearing to expand populations observed in

the normal breast (Figures 4.1, 4.2 summarize distributions of cell types across tissues.)

Next, we quantifed the above observation that immune cells from tumor and normal tissue
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are more similar to one another than to other tissues. To accomplish this, we constructed a

10-nearest neighbor graph over 15 PCA components summarizing a uniformly selected subset of

n=3000 cells from each tissue. We reasoned that a cell’s closest neighbors in this low-dimensional

embedding are the cells with the closest phenotypes. We then examined the overlap between each

pair of tissues u and v: ou,v = 1
n
{1 if ωi = u and ωj = v else 0}, where n is the number of

cells in the subset, k is the number of neighbors, and u, v ∈ {tumor, normal, lymph node, blood}.

with ωi denoting the tissue for cell i and j = 1, . . . , k denotes the neighbors of cell i. Examining

all the pairwise shared-neighbor relationships, we confirmed that tumor and normal have the

highest frequency of being co-identified as neighbors.

To determine if this enrichment was significant, we built a null distribution from all overlaps

between all pairs of tissues, and we calculated the z-score of otumor, normal compared to the dis-

tribution of all pairwise overlaps (z=2.68), for which a z-test confers a p-value of p=1.4e-4. This

suggests that similarity between tissue resident cells is a positive outlier, compared with similar-

ities between other pairs of tissues. Consequently, this result highlights that tissue of residence

is a significant determinant of phenotypes of human cells of hematopoietic origin, and that states

or biomarkers identified from blood immune cells may not necessarily extend to tissue embedded

immune populations.

Finally, we confirmed that the cell types and states observed in these data comport with our

prior understanding of the structure and function of the immune system using χ2 enrichment

testing between cell types and tissues. We began by transforming the data for each tissue to have

equal cell count and created a 2-factor contingency table of cell types versus tissues. We then

calculated χ2 enrichments for each tissue type. We confirmed that naive T cells were strongly

enriched in three blood-specific clusters (χ2=361.4, df=1, p=3e-80), while B cells were most preva-
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lent in the lymph node than in other tissues (χ2=1737.1, df=1, p=0.0). A subset of T cell clusters

were present in both tumor and normal tissue, but the cytotoxic T cell clusters (χ2=93.7, df=1,

p=3e-25) and T reg cells (χ2=336.0, df=1, p=5e-91) were more abundant in tumor, as expected,

given that tumor should be the target for the immune response. Similarly, some myeloid clusters

were shared between normal and tumor tissue, whereas clusters of more activatedmonocytes and

tumor-associated Macrophages (TAMs) were specific to tumor (χ2=2420.6, df=1, p=0.0). Overall,

these observations confirm that our atlas is composed of rationally generated data, consistent

with expectations of normal immune functionality.

4.2 Tumor Microenvironment Drives an Expansion of Immune
Cell Phenotypic Space

BISCUIT uncovered a large number of normal breast tissue resident cell states, manifested by

13 myeloid and 19 T cell clusters that were not observed in circulating blood or in the secondary

lymphoid tissue. Furthermore, our data showed that the set of clusters found in normal breast

tissue cells represented a subset of those observed in the tumors; 14 myeloid and 17 T cell clusters

were only found in the tumor, doubling the number of observed clusters of these cell types relative

to normal tissue, and there were no clusters specific to normal tissue. This increased diversity

of cell states correlates with a significant increase in the variance of gene expression in tumor

compared to normal tissue (Figure 4.3),

To better understand whether the increase in variance of gene expressions in tumor tissue

is due to activation or additional phenotypes that are independent from those found in normal

tissue, we sought to define a metric for the “phenotypic volume” occupied by cells. Given that

the volume of an N-dimensional matrix can be expressed as the absolute value of the determinant
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Figure 4.3: Distribution of variance of normalized expression computed for each gene across all
immune cells (all patients) from tumor tissue compared to that in normal breast tissue.

of the matrix, we reasoned that we could leverage this relationship to calculate the phenotypic

volume of our data matrices.

We therefore defined “phenotypic volume” (V ) for a subpopulation of cells as the determi-

nant of the gene expression covariance matrix in that subpopulation, which considers covariance

between all gene pairs in addition to their variance. The (symmetric) covariance matrix can be

written as Σ = [−→s1, . . . , −→sd ] where −→si for i = 1, . . . , d is a vector containing covariance between

gene i and all other genes. Its determinant det (Σ) is equal to the volume of a parallelepiped

spanned by vectors of the covariance matrix (Tao and Vu, 2005).

For example, if the covariance values between a gene i and other genes is very similar to the

covariance of another gene i′ and other genes, such that −→si , −→si′ are dependent, gene i′ does not

add to the volume. Extending this to all genes, we sought to evaluate whether the increase in

expression variances (Figure 4.3) are associated with phenotypes activated in tumor that are in-

dependent from those in normal tissue, i.e. are novel independent phenotypes observed in tumor
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that suggest additional mechanisms and pathways being activated in tumor.

Applied to a simplified case with only two phenotypes, the determinant, which is equal to the

area of the parallelogram spanned by two vectors representing the phenotypes, is larger if the

phenotypes are independent, but would be equal to zero if they are dependent. With more than

two phenotypes, we are then interested inmeasuring the volume of the parallelepiped spanned by

these phenotypes. The (pseudo-)determinant can also be more rapidly computed as the product

of nonzero eigenvalues of the covariance matrix:

V = det(Σ) = λe = λ1λ2 … λE

To quantify the change in phenotypic volume from normal to tumor, we computed this vol-

ume metric for each major cell type of T, monocytic, and NK cells. To correct for the effect

of differences in the number of cells across cell types and tissues, we uniformly sampled 1000

cells with replacement from each cell type per tissue and computed the empirical covariance be-

tween genes based on imputed expression values for that subset of cells. This was followed by

singular-value decomposition (SVD) of each empirical covariance matrix and computation of the

product of nonzero eigenvalues as stated in the equation above. B cells were not included in this

comparison due to the very small number of B cells in normal tissue.

Given the high number of dimensions (genes), the volumes were normalized by the total

number of genes (d). For robustness, this process was repeated 20 times to achieve a range of

computed volumes for each cluster in each tissue, which are summarized with box plots (Fig-

ure 4.4,S12) showing statistically significant expansions of volume in tumor compared to normal

in all three cell types. The fold change in volume was 7.39e4 in T cells, 1.18e14 in myeloid cells

and 6.08e4 in NK cells (Mann-Whitney U, p=0.0, for all three tests), indicating a massive increase

in phenotypic volume in tumor compared to normal tissue. These data confirm that we observe
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Figure 4.4: Phenotypic volume in log-scale (defined as determinant of gene expression covariance
matrix, detailed in STAR methods) of T cells, monocytic cells, and NK cells, comparing tumor
immune cells and normal breast immune cells after correcting for differences in number of cells.
Massive expansion of volume spanned by independent phenotypes active in tumor compared to
normal tissue is shown for all three major cell types.

an expansion of cell states in the tumor in comparison to the normal tissue. The volume analysis

also alleviated concerns that technical factors may drive the increased diversity of immune cell

phenotypes in tumor that were highlighted in the previous section.

We were motivated to undertake volume analysis in part because we observed higher vari-

ance in tumor cells, as quantified by both by greater variance explained by the top 10 PCs, and

larger, more disperse clusters in tSNE. However, as highlighted earlier, immune cells increase
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their mRNA expression when activated, a signal that BISCUIT does not explicitly remove. Thus

we would expect to see additional signal within tumor immune cells. In addition, because our

experiment focused on tumor infiltrating lymphocytes, we observed many more of them than

their tissue-resident cognates.

None of our previous approaches explicitly control for the total number of input observa-

tions. However, the volume analysis downsampled each tumor and normal tissue both in terms

of molecules and cells, confirming our observations with a much stricter normalization method.

Thus, volume analysis allowed us to confirm that the heightened variation observed in tumor was

the result of a richer complement of biological stimuli, rather than variation induced by sampling

effects stemming from the higher coverage of tumor.

To determine possible sources of the observed increase in phenotypic volume, we performed

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) on the genes with the largest

differences in variance between tumor and normal immune cells. This revealed heightened vari-

ation in targets of key immune signaling molecules, including type I (IFNα) and II interferons

(IFNγ), TNFα, TGFβ, and IL6/JAK/STAT signaling (Figure 4.5, S12). These results suggest that

the heightened variation observed in tumor immune cells is likely due at least in part to variation

in the local concentrations of signaling factors designed to elicit immune reactivity against cancer

and other foreign pathogens, consistent with previous findings that tumor microenvironments

differ significantly in their extent of inflammation, hypoxia, expression of ligands for activating

and inhibitory receptors, and nutrient supply (Finger and Giaccia, 2010; Jiménez-Sánchez et al.,

2017).
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Figure 4.5: Hallmark GSEA enrichment results on genes with highest difference in variance in
tumor T cells vs normal tissue T cells. See Figure S3 for enrichment in monocytic and NK-cells.
Most significant results are shown; full lists of enrichments are presented in Table S5.

4.3 Intra-tumoral T cells Display Continuous Phenotype Gra-
dients

To explore further explore the most significant sources of variation in T-cell immune states,

we carried out unbiased analyses by decomposing the gene expression using diffusionmaps (Coif-

man et al., 2005; Haghverdi, Buettner, and Theis, 2015; Haghverdi et al., 2016; Moignard et al.,

2015; Setty et al., 2016). Diffusion maps is a nonlinear dimensionality reduction technique to find

the major non-linear components of variation across cells. It can be thought of at a high level as

a non-linear analogue of PCA, and is often applied as such.

We computed diffusion components in each cell type separately using the Charlotte Python

package, which implements diffusion maps as described in (Coifman et al., 2005). To account

for differences in cell density and cluster size, we used a fixed perplexity Gaussian kernel with

perplexity 30, with symmetric Markov normalization and t = 1 diffusion steps. We selected t = 1

because, in our data, this approximates diffusion of information for each cell through its 20 nearest
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neighbors. Put another way, when t is low, diffusion maps function more to identify components

of non-linear variation. When t is high, diffusion maps function to spread information, which

can be useful for imputing missing values, by filling in missing information from other similar

cells.

We selected a conservative value becausewewanted to ensure that information did not diffuse

beyond the borders of our smallest cluster (30 cells). Equally important, we wanted to ensure

that claims made about continuity of phenotypic space could not be driven by Diffusion Maps

themselves. Given that we observe over 25,000 T-cells of various types, and that diffusion does

not exceed each cells 20-nearest neighbors, we can confidently claim that the global manifold is

unaffected by these changes.

When we examined the components produced by diffusion maps, we observed that while

some components distinguished discrete clusters, the majority of components defined gradual

trends of variation across T cell clusters (Figure 4.6 left,S13). However, the first two diffusion

components identified two isolated clusters, owing to their strong dissimilarity (Figure 4.1). The

first was cluster 9, which is the most distinct T cell cluster as measured by Bhattacharyya distance

(Figure S10) and shows characteristics similar to NKT cells (Table S3) and the second was cluster

20, which is a blood-specific naive T cell cluster predominantly from one patient (Table S2).

Since these two clusters were very distant from other T cell clusters according to a variety of

comparison metrics, the two components corresponding to them function more like classifiers,

and so were ignored as we wished to focus on studying “continuous” components that quantify

heterogeneity across multiple clusters. The top 3 continuous components correlate, respectively,

with signatures for immune cell activation, terminal differentiation, and hypoxia.

The most informative component of variation, labeled as “activation”, was highly corre-
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lated with gene signatures of T cell activation and progressive differentiation (p=0.0), along

with IFNγ signaling (p=0.0). The mean expression of the activation signature steadily increases

along the component (Figure 4.6, top right), with a concomitant gradual increase in expression

of activation-related genes (Figure 4.6, bottom right). The next components were labeled as T

cell activation, Terminal Exhaustion, and Hypoxia (Figure 4.6), respectively as they were most

highly correlated with the corresponding gene signatures. The subsequent component is labeled

as Tissue Specificity, as it separates cells primarily on the basis of their tissue of origin and helps

explain heterogeneity in T cells across tissues.

When we examined the localization of different cell types along the activation component,

we found that intra-tumoral T cell populations are enriched at the positive end of the component

relative to T cells found in healthy tissue (t-test p=0.0, Figure 4.6,4.7). Specifically, tumor-resident

effector memory T cells and T reg cells compose the most activated end, while naïve T cells from

peripheral blood congregate at the inactive terminus, consistent with their quiescent cell state (t-

test p=0.0, Figure 4.7). However, while themean expression levels of clusters vary gradually along

the component, there is also a wide range of activation states within each cluster (Figure 4.7).

Examining the individual genes most correlated with the component reveals a diverse set of

genes whose expression is well documented to increase upon T cell activation and progressive

differentiation. These included genes encoding cytolytic effector molecules granzymes A and

K (GZMA and GZMK), pro-inflammatory cytokines (IL-32), cytokine receptor subunits (IL2RB),

chemokines (CCL4, CCL5), and their receptors (CXCR4, CCR5) (Figure 4.6, bottom right).

The next most informative component of variation was labeled terminal differentiation (Fig-

ure 4.8). The genes most correlated with it include co-stimulatory molecules (CD2, GITR, OX40,

and 4-1BB) as well as co-inhibitory receptors (CTLA-4 and TIGIT) (Figure S14). This set also
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Figure 4.6: (left) Visualization of all cells from T Cell clusters using first, second, and third infor-
mative diffusion components (two uninformative components denoting isolated NKT and blood-
specific clusters were removed from further analysis). Each dot represents a cell colored by clus-
ter, and by tissue type in insert. The main trajectories are indicated with arrows and annotated
using the signature most correlated with each component. See Figure S15 for additional com-
ponents. (top right) Traceplot of CD8 T cell activation signature (defined as mean expression
across genes in signature listed in Table S4) for all T cells along first informative diffusion com-
ponent. Cells are sorted based on their projection along the diffusion component (x-axis), and
the blue line indicates moving average over normalized and imputed expression, using a sliding
window of length equal to 5% of total number of T cells; shaded area displays standard error
(y-axis). (bottom right) Heatmap showing expression of immune-related genes with the largest
positive correlations with activation component, averaged per cluster and z-score standardized
across clusters; columns (clusters) are ordered by mean projection along the component.
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Figure 4.7: Violin plot showing the projection of T-cells along activation component aggregated
by total density (left), tissue type (middle), and cluster (right). See Figure S4 for violin plots for
additional components. Number of dots inside each violin are proportional to number of cells.

Figure 4.8: Trace-plots (as in B) of (left) terminal differentiation signature along second infor-
mative component and (right) hypoxia signature along third informative component, labeled
respectively as terminal differentiation and hypoxia components. List of genes associated with
signatures are presented in Table S4.
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included Foxp3, IL2RA, and Entpd1 (CD39), genes whose high expression is characteristic of T

reg cells (Josefowicz, Lu, and Rudensky, 2012). The same primarily T reg clusters reside at the

very terminal end of both the activation and terminal differentiation components, and there is

a moderate degree of overlap in the genes most correlated with the two (Figure 4.6 left, bottom

right; S14). However, there are also important exceptions—including the markers of exhaustion

listed above—and crucially, the two trajectories traverse different paths through the remaining

clusters (Figure 4.9). Indeed, some clusters—notably T cells from the lymph node (e.g. cluster

16)—express higher levels of activation than terminal differentiation (t-test p=0.0; Figure 4.6,4.7),

consistent with the idea that T cell exhaustion and terminal differentiation largely occurs in non-

lymphoid tissues and not in the draining lymph node.

Interestingly, visualizing the T cell activation and terminal differentiation components to-

gether revealed remarkable continuity, in essence representing a single continuous trajectory of

T cells towards a terminal state (Figure 4.6 left,S13). Thus, our observations suggest that T cells

reside along a broad continuum of activation, and that their conventional classification into rela-

tively few discrete activation or differentiation subtypes may grossly oversimplify the phenotypic

complexity of T cell populations resident in tissues.

4.4 Response to Diverse Environmental Stimuli Define Intra-
Tumoral T-Cell States

Noting that only a few of the clusters were well delineated by the strongest components of

variation, we sought to understand the variation driving the observed clustering. We examined

the expression of gene signatures for response to environmental stimuli in each T cell cluster

and found that while most clusters were arranged in a continuous fashion along the activation
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Figure 4.9: Heatmap of cells projected on each diffusion component (rows) averaged by cluster
(columns).
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component, each cluster appeared unique when looking across multiple components and signa-

tures in a combinatorial fashion. We were interested to know whether cells show continuity as

opposed to defined cell states along various diffusion components. For example, we wanted to

know whether T cells exhibit defined states with different activation levels. For this, we com-

puted the distribution of cells projected on each diffusion component and then used Hartigan’s

Dip Test (Hartigan and Hartigan, 1985) to test whether the distribution of cells is unimodal (broad

continuum of cells) or alternatively multimodal (representative of multiple defined states) with

p < 0.01.

In Supp. Figure S13, we observe that in the case of the T Cell Activation component, the

null hypothesis of unimodality is not rejected, indicating that the distribution of cells is similar

to a broad unimodal distribution as opposed to a multimodal distribution with defined states.

In contrast, other components (such as the Tissue Specificity Component) exhibit multimodal

distributions with distinct modes implying distinct states (in this case corresponding to various

tissues)¹.

Our data show that CD4 effector and central memory clusters (Figure 4.10) exhibit variable

levels of expression of genes contributing to signatures for Type I and II interferon response

(F-test, p=1e-54 and 0.008 respectively), Hypoxia (F-test, p=4e-64), and Anergy anergy (F-test

p=4e-69). Moreover, different CD8 effector and central memory clusters (Figure 4.10) have dif-

ferent expression levels of activation (F-test p=2e-114), pro-inflammatory (F-test p=1e-39), and

cytolytic effector pathways related genes (F-test p=6e-32). These examples suggest that in a het-

erogeneous tumor microenvironment, differing in degree of inflammation, hypoxia and nutrient

¹In the case of myeloid cells, the null hypothesis of unimodality is rejected in all diffusion components, indicating
thatmyeloid cells lie in distinct states along all major components explaining variation across cells thatwere analyzed
(Supp. Figure S19).

124



Figure 4.10: Heatmaps showing normalized and imputed mean expression levels for a curated set
of transcriptomic signatures (rows) important to T Cells (listed in Table S4) for (A) CD4 memory
clusters, (B) CD8 memory clusters, and (C) T Regulatory clusters. Only signatures with high ex-
pression in at least one T cell cluster are shown. Signature expression values are z-scored relative
to all T cell clusters but only shown for clusters of the same cell type for ease of visualization.

availability, subpopulations of T cells either sense different environmental stimuli or respond

differently to these stimuli. While many of these responses (e.g. activation or hypoxia) create

phenotypic continuums, their different combinations can result in more discrete behaviors.

In contrast to effector T cells, T reg clusters displayed less variation in expression across

these gene signatures: the majority of these clusters featured comparable patterns for anti-

inflammatory activity, exhaustion, hypoxia, and metabolism gene sets (Figure 4.10). To identify

features distinguishing the T reg clusters, we examined the Biscuit parameters that differ between

them. We found that beyond mean expression levels, covariance parameters varied significantly

between clusters, and drove the observed differences. Specifically, two marker genes may exhibit

similar mean expression in two different clusters (e.g. highly expressed in both), while the clus-

ters show opposite sign in covariances in these genes. This occurs due to the genes typically being

co-expressed in the same cells in one cluster (i.e. positive covariance), while being expressed in

the other cluster in a mutually exclusive manner (i.e. negative covariance) (Fig 4.11). It is note-
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Figure 4.11: Cartoon illustration of two clusters of cells showing similar mean expression for two
example marker genes but opposite covariance between the same two genes.

worthy that clusters were inferred based on the expression of over 14,000 genes; hence, negative

covariance between two specific genes does not necessarily imply the existence of sub-clusters.

As an example, our analysis showed that the CTLA-4 gene, which encodes a prototypical

inhibitory checkpoint receptor that is highly expressed in T regs and activated T cells, exhib-

ited rich covariance patterns with other mechanistically related genes (Figure 4.12,4.13; S16,S17).

CTLA-4 co-varied strongly with TIGIT and co-stimulatory receptor GITR in T reg clusters 46, 56,

and 87; with CD27 in clusters 46 and 80; and with co-stimulatory receptor ICOS only in cluster

80 (Figure 4.12,4.13); We observed considerable differences in covariance patterns between nu-

merous pairs of other checkpoint genes across T reg clusters. Additionally, covariance between

other key immune genes in T reg clusters exhibited modular structures, with groups of genes
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Figure 4.12: Scatter plot showing mean expression of GITR vs. CTLA-4 for each T cell cluster
(represented by a dot). T reg clusters, labeled in red, have high mean expression levels of both
genes. Distribution of covariance between GITR and CTLA-4 across all T cell clusters (purple),
with values for T reg clusters labeled in red. Note that T reg cluster covariance values are present
as both positive (46, 56, 87) and negative (80) outliers, exhibiting differences in covariance despite
sharing high mean expression levels. See Figure S16 for similar computation on the raw, un-
normalized, and un-imputed data, verifying the result.

co-expressed together, suggesting co-regulation and potential involvement in similar functional

modalities (Figure 4.13).

Since varied proportions of T reg clusters were observed in individual patient samples, the

differences in gene co-expression were present across patients as well as clusters within a given

patient (Figure 4.14). We observed that the majority of patients did not have all 5 subtypes of T

reg cells, and in fact most were dominated by only one subtype (cluster). It must be noted that

we also observed similar differences in co-variation patterns across activated T cell clusters, even

if not playing as essential a role in their delineation (Figure S18). Thus, co-variation of genes has

a role in defining T cell clusters, in particular T reg clusters (Figure 4.12)
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Figure 4.13: Heatmaps showing covariance between immune genes in T reg clusters 56 (left
panel), and 87 (right panel). Note different modules of covarying genes.

4.5 Significance of Differences in Covariances of Raw Data
Drive Biscuit Clustering

To verify that the differing covariance patterns in Figures 5 and 7 were not the result of

computational modeling decisions, we tested the difference in covariance in raw median library

size normalized data, categorizing the raw data using the BISCUIT cluster labels. As the raw

data involves significant amount of dropouts, co-expression patterns and their signs cannot be

easily visualized or inferred. Hence, we performed hypothesis testing accounting for the level of

dropouts by comparing the observed empirical covariance between a pair of genes i, i′ to a null

distribution for the gene pair in which co-expression patterns are removed. We assume the null

hypothesis to be the case where covariance between a specific gene pair for a given cluster is the

same across all clusters.

Specifically, to test whether cov(−→xi ,
−→xi′) in a cluster k, with−→xi ,

−→xi′ being expressions of genes
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Figure 4.14: Pie charts showing proportion of the five T reg clusters in each patient, indicating
that differences in covariance patterns between clusters also translate to patients.
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i, i′ across cells assigned to cluster k, is significantly different from that in all other clusters, we

used bootstrapping and permutation testing as follows: We started by generating a null distribu-

tion for the covariance between a pair of genes by first uniformly sampling a subset of cells from

all clusters, with the subset being the same size as cluster k. Then, to further remove existing

structures of co-expression in cells, we permuted the cell labels for gene i′ (while retaining labels

for gene i) and computed empirical covariance between the two genes in this subset of “scram-

bled” cells. We repeated this on 10,000 subsets to achieve a null distribution of cov(−→wi,
−→wi′)

where wi, wi′ are the expressions of gene i, i′ in the sets of scrambled cells. We then compared

the observed cov(−→xi ,
−→xi′) (marked with a star in Figure S5A, S7A) to the null distribution, which

was rejected for that pair of genes if p-value<0.05 indicating that the covariance is significantly

different in cluster k compared to all other clusters.

We concluded that the signal is also apparent in raw un-normalized data for all the afore-

mentioned clusters and we observe a range of covariance values with different signs between

GITR and CTLA4 across T reg clusters (Figure S16), and similarly different values in covariance

between MARCO and CD276 in TAM clusters (Figure S22).

4.6 Components of Variation of Intra-tumoral Myeloid Cells

Although myeloid lineage cells are commonly thought to be highly diverse and able to

markedly influence the state of the tumor microenvironment and, thereby, impact clinical out-

comes, the heterogeneity of intra-tumoral monocytes and Macrophages remains insufficiently

characterized (Campbell et al., 2011; De Henau et al., 2016; Engblom, Pfirschke, and Pittet, 2016;

Eppert et al., 2011; Gholamin et al., 2017; Pyonteck et al., 2013). A broad survey of the ma-

jor monocytic subsets suggests the existence of both gradual and abrupt phenotypic shifts (Fig-
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Figure 4.15: t-SNE map projecting only myeloid
cells across all tissues and patients. Cells are col-
ored by Biscuit cluster and cell types are circled
and labeled based on bulk RNA-seq correlation-
based annotations.

Figure 4.16: Projection of cells in myeloid clus-
ters on Macrophage activation, pDC, and mono-
cyte activation (first, second, and fourth) diffu-
sion components. Cells are colored by cluster

ure 4.15).

As with the T cells above, we employed diffusion maps to assess heterogeneity in and across

these monocytic populations, excluding neutrophils and mast cells, which formed separated clus-

ters and were therefore better assessed through other techniques (Figure 4.16). This analysis re-

vealed four major branches that displayed clearer segregation of cell states, and moderately less

continuity, than the analogous T cell maps (Figure S19).

The first branch almost entirely comprises intra-tumoral Macrophages from three clusters (23,

25, and 28) (Figure4.17). Among the top genes correlated with the branch were are Macrophage

activation-associated genes APOE, CD68, TREM2, and CHIT1 (Figure S20); the branch, thus,

likely reflects progression towards a distinct state resulting from the differentiation and activation

of either recruited or tissue-resident Macrophages in the tumor microenvironment (TME) (4.18.
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Figure 4.17: Projection of cells in myeloid clusters onMacrophage activation, pDC, andmonocyte
activation (first, second, and fourth) diffusion components. Cells are colored by (B) cluster, (C)
tissue type, (D) cell type (as explained in STAR Methods), and (E) expression of example lineage
demarcating genes. The main trajectories are indicated with arrows and labeled in (B).

Additionally, expression of genes typically implicated in a polarization model of tissue-

reparative and immunosuppressive M2 Macrophage activation, including scavenger receptor

MARCO, extracellular matrix component FN1, pro-angiogenic receptor NRP2, SPP1 (osteopon-

tin), and inhibitory molecule B7-H3 (CD276), increased along this branch (Figure S20). Concomi-

tantly, pro-inflammatory and immunostimulatory genes, including chemokine CCL3 (MIP-1a),

typically associated with M1 Macrophages likewise increased along the branch.

Quite strikingly, we found that M1 and M2 gene signatures were positively correlated in the

myeloid populations (Figure 4.19). These findings support the idea that Macrophage activation

is markedly impacted by the tumor microenvironment in a manner that does not comport with
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Figure 4.18: Violin plots showing the density of cells along Macrophage activation component
and organized by overall density (left panel), tissue type (middle panel), and cluster (right panel).
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Figure 4.19: Scatter plot of normalized mean expression of M1 and M2 signatures per cell (dark
blue); cells assigned to 3 TAM clusters have been highlighted by cluster (light blue, pink, yellow);
each dot represents a cell and cells are plotted in randomized order.

the polarization model, either as discrete states or along a spectrum of alternative polarization

trajectories.

The second and third branches together captured a more gradual trajectory from blood mono-

cytes (mainly cluster 42, 97.5% present in blood) to intra-tumoral monocytes (clusters 67, 91, 68

and 94) (Figure 4.17). The “blood terminus” of the trajectory correlated with expression of co-

stimulatory gene ITGAL, but also with several tumor growth-promoting genes, i.e. fibroblast and

epidermal growth factors, as well as IL-4 (Figure S20). The latter has been proposed to support

the M2 type of Macrophage activation (Mantovani and Locati, 2013; Mills et al., 2000; Murray
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et al., 2014). The other end of the trajectory, populated by intra-tumoral monocytes, was charac-

terized by high expression of activation and antigen presentation-related genes encoding CD74

and HLA-DRA, but also an IFN-inducible gene encoding ISG15, which has been described to be

secreted by TAMs and enhance stem-like phenotypes in pancreatic tumor cells (Figure S20) (Sainz

et al., 2014).

The fourth branch correlated with canonical plasmacytoid dendritic cell (pDC) markers such

as LILRA4, CLEC4C (CD303), and IL3RA. The most discrete of the myeloid components, this

branch separated the lone pDC cluster (41) from the other myeloid-monocytic cell clusters (Fig-

ure 4.16,4.17,4.18,S21) This subset was also the only monocytic cluster common between the tu-

mor and the lymph node; it featured high levels of granzyme B (GZMB) (Figure S20), which has

been proposed to be a means, by which pDCs may suppress T cell proliferation in cancer (Jahrs-

dörfer et al., 2010; Swiecki and Colonna, 2015). These results highlight how diffusion maps can

be used to uncover major sources of variance in heterogeneous data, and how analysis of those

components can inform us of the biological signals of greatest importance.

4.7 Covariance Patterns Help Distinguish TAM Subpopulations

While the TAM clusters projected to a distinct region in the diffusion component, separating

them from other monocytic cells, they appeared very similar to one another (Figure 4.20, S19).

This similarity was supported at the genomic scale by shared pattern of differentially expressed

genes (Table S3) and short pairwise distances (Figure S10). However, similarly to the intra-

tumoral T reg cells, co-variation patterns defined distinctions between intra-tumoral myeloid cell

subsets. Specifically, co-variation of canonical genes for M1 or M2 Macrophages distinguished

the TAM clusters. All three of the TAM populations, particularly clusters 23 and 28, were among
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Figure 4.20: Heatmap showing imputed mean expression levels in myeloid clusters for a curated
set of transcriptomic signatures important to myeloid cells (listed in Table S4), z-score normalized
per signature. See also Figure S6 for additional violin plots and Heatmaps representing the other
components.

the monocytic lineage clusters that exhibited the most similarity to the canonical M2 signature

(Figure4.19). However, both of these clusters also expressed high levels of theM1 signature genes,

and significant expression of the two signatures was often coincident (Figure 4.19, 4.20).

We observed pronounced inter-cluster differences in co-expression patterns in TAM clusters.

One example among many was co-expression of two M2-type markers, MARCO and B7-H3. In

an unexpected manner, while TAM clusters 23, 25, and 28 all expressed high levels of both genes,

they co-varied positively in clusters 23 and 25, but negatively in 28 (p = 0, p = 5e − 06, p = 0,

respectively; (Figure 4.21, 4.22;S22). The differing covariance patterns were not an artifact of
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Figure 4.21: Scatterplot of mean expression of MARCO and CD276 in each myeloid cluster; each
dot represents a cluster. Average expression levels for the three TAM clusters (23, 25, and 28) are
marked in red, indicating high expression of both markers in Macrophage clusters. Distribution
of covariance between MARCO and CD276 across all myeloid clusters. TAM clusters(23, 25, and
28) are marked in red and present substantial outliers. See Figure S7A for similar computation
on the raw, un-normalized, and un-imputed data, verifying the result.

modeling as they were also significant in raw un-normalized data (Figure S22).

The degree of co-expression of genes associatedwithM1 andM2 signatures also varied widely

within clusters in a manner not fitting the functional M1/M2 annotation. For example, in clus-

ter 23 expression of CD64 exhibited varying degrees of positive co-variance with FN1, MMP14,

MSR1, cathepsins, MARCO, and VEGFB, but co-varied slightly negatively with chemokine CCL18

(Figure 4.22). Taken together, these findings demonstrate that co-variation patterns define TAM

clusters, and further highlight the lack of mutual exclusivity between the proposed prototypical

M1 and M2 states.
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Figure 4.22: Heatmaps showing covariance patterns of M1 and M2 Macrophage polarization
marker genes (including many current or potential drug targets) in 3 TAM clusters (23, 25, and
28).
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Chapter 5

Discussion and Perspectives

5.1 Implications of the Breast Tumor Immune Atlas

Despite major clinical advances in cancer immunotherapy, our ability to understand its mech-

anisms of action or predict its efficacy is confounded by the complex, heterogeneous, and poorly

understood composition of immune cells within tumors. Since cancer is generally a disease that

affects older, post-reproductive individuals, with the exception of inherited genetic predisposi-

tion, it is unlikely that specialized mechanisms of the adaptive or innate immunity evolved to

facilitate tumor immune surveillance. It seems reasonable to suggest that immune mechanisms

affecting tumor progression must also operate in non-cancerous tissues to maintain organismal

integrity and tissue function in the face of infection, stress, inflammation, and injury. A corollary

to this notion is that features of immune cells in tumors must, by and large, resemble features of

cells in non-cancerous tissues. A recent population-level RNA-seq analysis of T Reg cells and ef-

fector CD4 T cells in breast cancer and normal breast tissue identified a high level of phenotypic

similarity between tissue and tumor-resident T cells, thus providing experimental support for
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this idea (Plitas et al., 2016). A similar RNA-seq study focusing primarily on T Reg cell analysis

in colorectal and lung cancer suggested that cancer-resident T Reg cells differ considerably from

those found in the normal tissue (De Simone et al., 2016). Despite seeming differences in conclu-

sions, distinguishing features of intra-tumoral T Reg cells as compared to normal tissue-resident

ones detected in these two reports were associated with their heightened activation and thus can

not distinguish between differences in immune states themselves or differences in immune state

proportions. Thus, the averaging of gene expression features in the bulk cell population analyses

and the lack of the assessment of a broad spectrum of immune cell subsets do not allow for a

definitive investigation of specific effects of the tumor environment on immune cells.

To address this question, we characterized the available single-cell approaches and selected

and adapted InDrop, the best-suited single-cell method to assaying rare populations of immune

cells. With InDrop, we undertook an unbiased comparative single-cell RNA-seq analysis of all

tumor versus normal tissue-resident immune cell subsets and constructed an comprehensive im-

mune atlas in breast carcinomas, combining immune cells isolated from normal and cancerous

breast tissue, as well as peripheral blood and the lymph node. Our analysis was empowered

by a suite of novel computational tools for single-cell RNA-seq data, including a data process-

ing pipeline more sensitive in its ability to detect immune molecules, a powerful clustering and

normalization algorithm, and new metrics for volume of the phenotypic space. These secondary

analysis methods allowed us to overcome significant technical artifacts, correct for amplification

biases, eliminate spurious molecules generated by library construction, recover molecules that

would otherwise be hidden by multiple alignment, and select and eliminate problematic cells that

were undergoing apoptosis, expressing transcripts consistent with technical stressors, or whose

profiles represented undesirable cell types that had escaped flow sorting. Our novel tertiary
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methods facilitated clustering and normalization in the face of the strong batch effects typical

of clinical samples that would have otherwise dominated the signal and obscured the identifica-

tion of shared cell states across tumors. Additionally, the BISCUIT model facilitated an in-depth

characterization of variance within and between identified cell states, a goal that had been at best

partially realized in single-cell analysis.

The constructed atlas revealed vast diversity in the repertoire of immune cells representative

of both the adaptive and innate immune systems. Our examination of hematopoietic nucleated

cells from treatment-naïve human breast cancer and normal breast tissue across different patients

revealed that the biggest change to the immune cells was linked to the tissue environment, re-

sulting in cell states that are substantially different than those present in the blood and lymph

node. Interestingly, immune cell subpopulations in normal tissue were observed to be a subset

of those found in tumor tissue, an observation that could not have been found with bulk gene

expression measurements. Furthermore, the diversity of cell states significantly expanded be-

tween normal tissue and tumor, as quantified by the “phenotypic volume” occupied by immune

cell states. We observed tremendous expansion of the immune phenotypic space occupied by

all major cell types in breast tumors as compared to normal breast tissue. It seems reasonable

to speculate that the majority, if not all immune cell states found in cancer can be found in

corresponding non-cancerous tissues in response to different stresses such as infection, wound

healing, or inflammation.

The observation of an expanding continuous T cell “phenotypic space” in the tumor argues

against the view of activated T cells rapidly traversing through sparse transitional cell states

towards a few predominant, discrete, and stable states, including T Reg, effector, memory, and

exhausted T cells. Three major components contributed to this phenotypic expansion in tumor
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tissue that helped explain the heterogeneity of T cells contributing to this phenotypic expansion

in tumor tissue, we identified three major components that help explain the heterogeneity of T

cells, including T cell activation, terminal differentiation, and hypoxic response. The strongest of

these components is a predominant trajectory of progressive T cell activation and differentiation

across 38 T cell clusters, including T Reg and terminally differentiated T cell clusters, found at

the extreme activation terminus. One obvious explanation for the “continuity” of intra-tumoral

T cell activation is the presence of increasingly diverse environments defined by a multitude

of gradients including growth, pro-inflammatory, and tissue repair factors, as well as oxygen,

nutrient, and metabolite gradients which exist to a lesser extent in healthy breast tissue (Buck et

al., 2017). Indeed, we found groups of genes within the corresponding signaling pathways, most

prominently immune activation (IFN/IL6/JAK/STAT) and hypoxia, to be differentially expressed

across T cell clusters.

A non-mutually exclusive possibility is that the wide range of TCR signal strengths afforded

by a diverse repertoire of T cell receptors (TCR) accounts for the continuous spectrum of T cell

activation, obscuring the transitional states. The latter may also be accounted for by asynchrony

in polyclonal T cell activation or heterogeneity in the types of antigen-presenting cells, their

activation status, and their anatomical distribution. Unlike polyclonal T cell populations, activa-

tion of a monoclonal T cell population with a “fixed” specificity for tumor “self” or neo-antigen

may yield sparse discontinuous “phenotypic” spaces reflecting discrete functional T cell states.

In support of the latter possibility, recent bulk gene expression and chromatin accessibility anal-

yses showed that cognate tumor neo-antigen recognition by TCR transgenic T cells results in an

orderly progression of activated T cells through a reversible dysfunctional intermediate state to-

wards an irreversible dysfunctional terminal state (Philip et al., 2017). Additionally, diverse TCR

142



specificities are known tocan contribute to spatial distribution of T cells and, therefore, facilitate

their exposure to the distinct environments (“mini-niches”) discussed above.

While T cells of various cell types exhibit continuous levels of activation, our inferred sub-

sets further show variable levels of responses to environmental stimuli, and the combinations of

these environmental exposures jointly define the identity of discrete CD4+/CD8+ T cell subsets.

We also identified 5 T Reg subsets that showed similar responses to environmental pressures

and shared differentially expressed genes, but exhibited drastic differences in gene covariance

patterns. Particularly noteworthy was co-expression of checkpoint receptor genes in some T

Reg subpopulations as compared to mutually exclusive expression of the same genes in other T

Reg clusters. In this regard, co-variant expression of CTLA-4, TIGIT and co-stimulatory recep-

tor GITR and other co-receptors in multiple T Reg cell clusters suggests that these T Reg cell

populations may occupy different functional niches; CTLA-4 and TIGIT co-expressing cells have

been demonstrated to selectively inhibit pro-inflammatory Th1 and Th17, but not Th2 responses

promoting tissue remodeling (Joller et al., 2014). The observed co-expression of functional cell

surface and signaling molecules by intra-tumoral T Reg cells may enable targeted modulation of

T Reg cell activity in the tumor microenvironment using combinatorial therapeutic approaches

(Mantovani and Locati, 2013). This finding has implications in the way we describe and inter-

rogate the tumor immune response. It is also noteworthy that the discrete cell states that are

commonly utilized to describe immune responses are largely defined from highly polarizing con-

ditions such as infection and tissue injury.

Our analyses appear to offer a more nuanced view of tumor and normal tissue-resident

myeloid lineage cells, in comparison to T cells, in terms of continuity vs. separation of cell states.

Unlike T cells, which primarily displayed continuous activation transitions, we observed sharper
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state delineations in myeloid populations. This difference between T cells and myeloid cells was

likely due to a markedly less appreciated developmentally established myeloid cell heterogeneity,

whose understanding has started to emerge only recently (Perdiguero and Geissmann, 2016). In-

deed, the phenotypic expansion in myeloid cells was associated with activation of macrophages

and monocytes and emergence of pDC subsets distinct from cDCs. However, our analyses also

showed common features to those in T cells, including gene expression covariance identifying

cell clusters, and an expansion of immune phenotypic space in breast tumor as compared to nor-

mal breast tissue.

Similarly to T cells, we have not observed discrete states of myeloid cell activa-

tion/differentiation such as M1 or M2 macrophages or myeloid derived suppressor cells. In con-

trast, we found both M1 and M2 associated genes frequently expressed in the same cells, posi-

tively correlated with one another and following the same activation trajectory. Furthermore, we

found that covariance patterns between genemarkers associatedwith theM1 andM2model show

rich diversity, and help distinguish the three TAM clusters. These results challenge the prevailing

model of macrophage activation, wherein M1 and M2 activation states either exist as mutually

exclusive discrete states or macrophages reside along a spectrum between the two states with a

negatively correlated expression of M1 and M2-associated genes. Our findings solidify and rein-

force previous reports from the bulk analysis of tumor-associated macrophages in mouse models

of oncogene-driven breast cancer and analysis of myeloid cells in lung and kidney cancer using

mass-cytometry (Chevrier et al., 2017; Franklin et al., 2014; Lavin et al., 2017). Notably, we ob-

served more patient-specific variation in myeloid lineage cells than in T cells, with the frequency

of the former ranging from just over 10% to over 50% in individual patients. Individual clusters

similarly exhibited ranges of patient specificity. The large patient effect in myeloid cells suggests
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that attempts at generalized targeting or reprogramming of suppressive myeloid cell populations

are not likely to yield uniform responses and personalization at the patient level may be needed.

Thus, our findings show that studying average gene expression across groups of cells fails to

characterize heterogeneity in co-expression of genes, and by extension their potential suitability

as therapeutic co-targets. Single-cell RNA-sequencing analyzed using Biscuit, as shown here,

allows for inference of accurate and meaningful covariance parameters — indeed, the algorithm

takes into consideration these covariance values when defining clusters. This makes it possible

to query in a precise manner how numerous functionally and therapeutically important immune

markers are co-expressed at the level that matters: that of individual cells. Our characteriza-

tion of the immune cell subsets inhabiting primary solid tumor and the corresponding normal

tissue, and their heterogeneity within a given patient and between different patients revealed

expansions of a continuous “phenotypic space” as a principal feature of the two main cellular

targets of cancer immunotherapy - T cells and myeloid cells. These observations, along with the

resulting extensive immune single- cell RNA-seq datasets and the comprehensive analytical plat-

form, will facilitate better knowledge understanding of potential mechanisms behind immune

cell contributions to promoting and opposing tumor progression.

5.2 Validation & Follow-up Experimentation

The logical follow-up of this atlasing project is to confirm that the results observed in our

experiments exclusively result from biological signals and not technical aspects of scRNA-seq.

Our observations at the cellular level of the correspondence of the FACS-sorted populations to

the observations in scRNA-seq are suggestive that our analyses mirror the biology represented in

the tissues, albeit with reduced representation of small-volume cells. While not all studies carry

145



out independent validations, additional confirmations of the intra-cellular covariance observa-

tions are warranted. Previous studies (Shalek et al., 2013; Shalek et al., 2014) have focused on

microsocopy-based confirmations, using either single-molecule fluorescence in-situ hybridiza-

tion (FISH), immuno-histochemistry, or immuno-fluorescence approaches to measure RNA or

protein abundances. These approaches are problematic to apply to our data. Unlike many pre-

vious studies, we are working with rare immune isolates from complex patient tissues, rather

than tumors, cell lines, or mouse models, each of which contain plentiful cells of the type under

study. Our most interesting hypotheses, about T Regulatory cell co-expression, also occur in

the rares cell types under study (Figure 3). These problems combine to make it un-economical

to detect an adequate number of cells through microscopy-based approaches. Instead, since the

majority of our findings center on surface proteins, we believe that FACS sorting of T Regula-

tory cells based upon CTLA-4, TIGIT, and GITR, the markers with differential covariance, would

be a suitable approach to confirm the functional nature of our discoveries. As such, we are in

the process of profiling several additional patients with FACS, and expect to observe patient-

specific co-expression differences: while all patients are expected to display T Regulatory cells

with CTLA-4, TIGIT, and GITR, we expect that co-variance will differ across patients.

A second question raised by this experiment is the cause of the observed T cell diversity. If

the observed diversity is indeed correlated with TCR repertoire, the phenotypic volume of T cells

should increase with TCR diversity. Within weeks of the completion of the studies described

in this dissertation, 10x genomics released a kit that allows the simultaneous profiling of the 5’

transcriptome and the TCR. We will apply this kit to the FACS-sorted cells from the above pa-

tients, and will be interested to see if the TCR diversity correlates with phenotypic volume, or if

our observations were indeed instead driven by the diversity of signaling molecules and gradi-
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ents present within the tumor microenvironment. In other experiments, we are characterizing

two TCRs with known epitope targets from a mouse cancer model using scRNA-seqṫhese exper-

iments should provide convergent evidence: if significant differences in expression are observed

between the epitope-specific TCR clones, this will support the idea that TCR functionality may

be responsible for siginficant variation in T cell mRNA expression profiles.

Taken holistically, these experiments highlight the incredible diversity of tumor microen-

vironments; tumors bombard immune cells with diverse panels of cytokines, chemokines, and

growth factors. Our observations strongly suggest that combinations of these stimuli are re-

sponsible for the diversity of observed phenotypic profiles in TILs. Thus these results suggest

that prediction of phenotypic profiles and checkpoint expression, and therefore druggability of

T Regulatory or t-effector cells, depends extensively upon characterization of T cell responses

to complex cocktails of stimuli. The diversity of cancers would require profiling of a very large

number of tumors, and may thus place this predictive goal out of reach for some time. Neverthe-

less, it may still be possible to profile target cells, and by observing their checkpoint expression,

enable immune functionality despite not understanding how the cells came to express the partic-

ular set of checkpoint markers they are presenting. Because droplet-based scRNA-seq requires

cells be dissociated to flow through the encapsulation devices, these experiments cannot directly

observe the microenvironment of the individual cells that we infer to contribute significantly to

their phenotypes. However, an advantage of scRNA-seq is that we are able to measure many

thousands of cells per experiment, and as such, if environmental characteristics of a cell could

be quantified, and cells could be stratified in terms of similar environments, it would create an

immediate and powerful method through which to quantify the effect of tissue microenviron-

ment on each cell type under study. Perhaps more critically, while we were able to confirm the
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presence of significant immune infiltrate in each of our patients using immuno-histochemistry,

we cannot distinguish cells that were directly in contact with tumor cells from those restricted to

the periphery of a tumor or those in contact only with stromal or other immune cells. If differ-

ences in the phenotypes of these different spatial contexts and the abundance of these cells could

be posed as independent variables, it would be of great interest to correlate with drug response

outcomes in clinical trials. There are emerging approaches capable of spatially profiling cells’

transcriptomes and proteomes, and I believe that large-scale application of these technologies to

patient tumors is both a logical next step, and an exciting opportunity to make rapid progress in

understanding cancer immunology after controlling for these factors.

5.3 Implications of the SEQC Framework and Future Directions

In addition to providing the basis for this immune atlas, SEQC also served as the processing

framework for several other published studies. Its filters were used to generate interpretable data

in a Fluidigm C1-based study wherein cells were cultured inside the C1 device, enabling single-

cell live imaging of NF-κB activation dynamics following LPS stimulation (Lane et al., 2017).

SEQC was also used to generate the data that was used to develop the MAGIC (Dijk et al., 2017)

BISCUIT (Prabhakaran et al., 2016; Azizi et al., 2017) andWishbone (Setty et al., 2016) algorithms.

Early iterations of the processing methods were used to analyze microplate-based single-cell se-

quencing data (Bose et al., 2015), and it is used in active production by Memorial Sloan Kettering

Cancer Center to process the institute’s droplet-based InDrop, 10x, and Nucleus-sequencing data.

In addition, it has been used in at least one instance to process Drop-seq, 4 iterations of InDrop

chemistry, and 3 versions of Mars-seq chemistry. In total, SEQC has processed over 250 datasets

from diverse chemistries, tissues and multiple organisms. Finally, SEQC’s demonstrated mod-
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ularity and flexibility provoked the Human Cell Atlas (Regev et al., 2017) to adopt the SEQC

framework as the first draft of the 3’ analysis pipeline that it will use in the secondary analysis

of droplet-based sequencing data. The Human Cell Atlas project is expected to generate data at

petabyte scale, a task made simple by SEQC’s ability to scale using the Cloud.

The development of SEQC, and its ability to deliver clean cellular phenotypes in spite of sig-

nificant experimental noise, was instrumental in enabling he constribution of the tumor atlas.

However, it is important to remember that the atlas would not have been possible at all without

droplet-based sequencing. Underlying the data generated in this dissertation were 2 major bar-

code redesigns, made possible in part by analysis metrics generated by InDrop providing clear

feedback to experimenters about what aspects of the technology required improvement. The

Pe’er lab has since iterated through 3 major changes to the InDrop chemistry, and we expect

more will follow.

Before the SEQC framework was mature, the ability to process data would often lag weeks be-

hind the development of new library construction approaches, significantly retarding our ability

to make adjustments that would facilitate analysis of primary immune cells. Initially, the tech-

nologies were changingmuchmore quickly than the computational approaches. With themature

SEQC pipeline, we are now normally able to iterate and produce appropriate computational ap-

proaches for changes in library construction within a few weeks. In cases where appropriate

algorithms exist, we can often make necessary changes in hours.

Also symptomatic of this problem, novel technologies are often published with data process-

ing tools that are inadequate, or at least sub-optimal. For example, sNuc-Seq (Habib et al., 2016)

and DroNc-seq (Habib et al., 2017) are exciting methods that sequence nuclei instead of complete

cells. This difference promises to enlarge the scope of samples that can be processed with scR-
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NAsq, since nuclear membranes are more robust than cell membranes, frozen sample or samples

with more degradation can be sequenced with these methods.

However, the data generated by these approaches were processed using tools designed for

full-cell sequencing, ignoring the fact that many RNA in nuclei are found in pre-spliced “pre-

mRNA” form andwould therefore contain intronic reads, which are discarded by full-cell analysis

pipelines. This introduces a data loss of 15-30%, and strongly indicates that the technologies are

still iteratingmuchmore rapidly than the computationalmethods. This highlights that in addition

to a pipeline for processing data, the field would benefit from a framework for rapidly mixing and

matching algorithms that consume and produce standard sequencing data types and file formats.

To improve computational iteration speed, SEQC and other frameworks like it must be made

more portable and trivial to use. Because different labs and institutions have back-end compute

server frameworks that can be idiosyncratic and utilize queueing architectures that are often

incompatible with one another, this is currently difficult to achieve. While SEQC has unprece-

dented flexibility, it is still limited to being run on single physical or virtual machines, and can

only easily be run on laptops, desktops, local compute servers or on Amazon web services. There

are technologies being developed which will solve these problems, and improve method porta-

bility not just for processing frameworks like SEQC, but also increase the portability of analysis

algorithms like BISCUIT, MAGIC, and Wishbone.

The first of these technologies are container services like Docker¹. Docker is a relatively ma-

ture scripting framework for constructing a lightweight software image that contains all of the

installed dependencies for an particular software package, including the OS layer, and the soft-

ware package itself. Docker images support versioning, meaning that a properly constructed

¹see https://github.com/docker/docker-ce
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docker image should go on working forever, regardless of what changes may happen to the

greater ecosystem of the programming language or advancements in packages it depends upon.

Docker is used extensively by companies to package software to make it more robust, reliable,

and easier to ship to customers.

However, this approach has not made much of an inroad in academia, perhaps because of a

higher focus on publication than eventual usability. SEQC was initially programmed to follow a

strategy similar to docker, but with some limitations. We first programmed an Amazon Machine

Image, which is like an Amazon-specific docker container. As a result, it only worked on Ama-

zon’s Elastic Cloud, and we needed to use separate installation instructions for local installations.

Docker, by contrast, can run on Amazon, but also on Google cloud, and on mac and PC. For

these reasons, SEQC has been made available in a docker container, which can be pulled from

the dockerhub repository at ambrosejcarr/seqc:1.0.0. As a result, SEQC can now be used on any

operating system, without needing expert knowledge of their operating system to install any

dependencies.

Because containers allow a developer to easily produce ready-to-run container, if methods

consume and produce standard data types, such as BAM and FASTQ formats, thenmultiple meth-

ods that accomplish the same task can be benchmarked and interchanged, and these pieces can

be woven together through workflow languages. Two workflow languages, Common Workflow

Language (CWL) and Workflow Design Language (WDL)² are being developed to serve this pur-

pose, and these frameworks have been adopted by the Broad Institute, University of Santa Cruz,

European Bioinformatics Institute, Chan Zuckerberg Initiative, and Human Cell Atlas, among

others, to serve as a framework for building open software that can benefit the community.

²see http://www.commonwl.org/ and https://github.com/openwdl/wdl
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A framework based upon SEQC is presently being written in WDL, and once complete, its

computational approaches will serve as a standard against which alternative algorithms may be

benchmarked. Through creative use of control datasets, I hope to discover the optimal combina-

tion of computational approaches that produce the highest quality sequencing data for, at first, 3’

droplet-based sequencing approaches. Nucleus sequencing, 10x Genomics, and other approaches

all utilize a common set of core methods, and as such, the InDrop backbone can be adapted to suit

other technologies. It is my hope that by refining this pipeline and pairing it with any number

of front-end suites of analysis tools, we can speed up the experiment, analyze, refine loop for

advances in single cell sequencing, enabling faster technological development, opening doors to

generate many more cell atlases like the one described here, each with clear clinical implications.
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Figure 1: Code for the 10x platform class. Each platform class defines the length of the primer
sequence, a merge function to combine the barcodes and the genomic fastq, and optionally, cus-
tom barcode correction and multi-alignment resolution methods. 10x uses the default multi-
alignment method, and therefore that does not require implementation in this class.
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Figure 2: t-SNE projection of complete immune systems from six breast cancer tumors. scRNA-
seq data for each tumor is processed with pipeline in Figure S1B and library size-normalized;
each dot represents a single- cell colored by PhenoGraph clustering, and clusters are labeled by
inferred cell types. Two additional tumors are presented in 3.1.
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Figure 3: Expression of metabolic signatures: fatty acid metabolism (top), phosphorylation (mid-
dle), and glycolysis (bottom), summarized as boxplots (left) showing expression of each respective
signature (defined as the mean normalized expression of genes) across immune cells from each
patient; and heatmap (right) displaying z-scored mean expression of genes in each signature;
(top) barplot showing total expression of each gene indicated in the heatmap across all patients.
See Figure 3.13 for one additional signature
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Figure 4: Posterior probability of assignment of cells to clusters in the Biscuit model in the full
immune cell atlas of combined tissues and patients presented in Figure 3.10; note broad distribu-
tions in assignment of naive T cells (bottom) as compared to other cell types.
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Figure 5: Distribution of Biscuit alpha parameters per cell vs log of library size, with cells colored
by clusters; Biscuit alpha parameters correct for differences in library size across and within
clusters.

172



Figure 6: Distribution of inferred cell-specific parameters alpha and beta in Biscuit across cells
from each patient. These differences were corrected in normalizing with alpha and beta param-
eters.
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Figure 7: Robustness analysis of clusters performed with 10-fold cross-validation; boxplots sum-
marize the probability of a pair of cells being assigned to the same final cluster across all 10
subsets.

174



Figure 8: Histogram of frequency of patients contributing to each cluster showing that 19 clusters
(out of 95) are present in all 8 patients and 10 clusters are patient-specific.
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Figure 9: Boxplots showing entropy of distribution of patients in each cluster, computed with
bootstrapping to correct for cluster size. Note that cluster labels are given by size (cluster 1 has
the most number of cells and cluster 95 has the fewest) and ordering clusters by mean entropy
in this plot indicates that entropy does not correlate with size.
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Figure 10: Bhattacharyya pairwise distances between clusters of Figure 3.12 (blue: small distance
to yellow: large distance).
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Figure 11: Left: Violin plot of pairwise Bhattacharyya distances between distribution of expres-
sion of each gene between all pairs of clusters in the same or different cell types consideringmean
and covariance of expression, averaged across all genes. Right: same as left, but after removing
the effect of cluster mean in computing similarity, thus considering only covariance.
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Figure 12: Hallmark GSEA enrichment results on genes with highest difference in variance in
tumor vs normal tissue in (A) NK and (B) monocytic cells. See Figure 4.5 for enrichment in T
cells; complete lists of enrichments are presented in Table S5.

Figure 13: Hartigan’s dip test on density of cells projected on diffusion components, showing
statistically significant continuity (lack of “dips”) in cells along T cell activation component (com-
ponent 3, third panel from left), whereas other components exhibit more defined states (multi-
modality).
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Figure 14: Violin plot of cells projected on terminal differentiation diffusion component: com-
ponent organized by tissue type (left panels) and cluster (center panel). Also, heatmap showing
expression of immune-related genes with the largest positive correlations with component, aver-
aged per cluster and z-score standardized across clusters; columns (clusters) are ordered by mean
projection along the component.

Figure 15: Violin plot of cells projected on hypoxia diffusion component: component organized
by tissue type (left panels) and cluster (center panel). Also, heatmap showing expression of
immune-related genes with the largest positive correlations with component, averaged per clus-
ter and z-score standardized across clusters; columns (clusters) are ordered by mean projection
along the component.
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Figure 16: Displaying null distributions and observed covariances between CTLA-4 and GITR
in raw, un- normalized data using hypothesis testing, subsampling, and permutation (see STAR
methods); shows that the differences in covariance shown in biscuit-normalized data are also
present in un-normalized and un-imputed data, and hence are not an artifact of computation.
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Figure 17: Bivariate plots of expression levels of GITR and CTLA-4 in Treg clusters based on
inferred mean and covariance parameters from Biscuit. Dark blue color indicates the highest
density of cells and light yellow the lowest density of cells.
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Figure 18: Network graphs showing covariance between checkpoint receptors in activated T cell
clusters. Edge width denotes absolute magnitude (strength) of covariance and color denotes sign
of covariance (red positive and blue negative). Note diversity across clusters.

Figure 19: Hartigan’s dip test on density of cells projected on diffusion components indicating
no diffusion components across myeloid cells show statistically significant continuity, implying
myeloid cells reside in defined (multimodal) states along major components explaining variation.
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Figure 20: Violin plot showing the density of cells projected along pDC component and organized
by tissue type and cluster.

Figure 21: Violin plot showing the density of cells projected along monocyte activation compo-
nent and organized by tissue type and cluster.
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Figure 22: Displaying null distributions and observed covariances between MACRO and CD276
in raw, unnormalized data using hypothesis testing, subsampling, and permutation (see STAR
methods), showing that the differences in covariance in normalized data as shown in Figure 7B are
also present in un-normalized and un-imputed data, and hence is not an artifact of computation.
Bivariate plots of expression levels ofMARCO and CD276 in Treg clusters based on inferredmean
and covariance parameters from Biscuit. Dark blue color indicates the highest density of cells
and light yellow the lowest density of cells.
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