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Abstract 
 

Synaptic Elasticity 
 

Ju Yang 

 
Synapses play a critical role in neural circuits, and their highly specialized structures and 

biochemical characteristics have been widely studied in learning and memory. Along with their role in 

signal transmission, synapses also serve as adhesion structures, yet their mechanical characteristics 

have not received much attention. Given the important role of mechanics in cell adhesion, mechanical 

studies of synapses could offer insights into synaptic development, maintenance, and function. Here, 

I investigated synaptic elasticity in cultured rat hippocampal neurons and suggest that mechanical 

elasticity may be related to synaptic plasticity. I used torsional harmonic atomic force microscopy (TH-

AFM) to measure the nanomechanical properties of functional mature excitatory synapses, whose 

identity and activity was verified by fluorescence microscopy. I combined TH-AFM with transmission 

electron microscopy and found that high stiffness of synapses originated from postsynaptic spines, 

not presynaptic boutons. I observed that spines at functional mature excitatory synapses were on 

average 10 times stiffer than dendritic shafts and that the distribution of spine stiffness exhibited a 

lognormal-like pattern. Importantly, I found that spine stiffness was correlated with spine size, and it 

is well established that spine size is correlated with synaptic strength. Based on the stiffness 

measurements and theoretical modelling of cell adhesion stability, I suggest that stiffness not only 

helps maintain spine morphology in the presence of synapse adhesion, but also helps stabilize synaptic 

adhesion. I propose a mechanical synaptic plasticity model. According to this model, mechanical 

strength leads to functional strength, which could provide a potential causal link between structural 

plasticity and functional plasticity of synapses. 
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Chapter 1 Introduction 

In our brain, there are 100 billion (1011) neurons, similar to the number of estimated stars in the Milky Way. 

Each neuron communicates with many other neurons through highly specialized cellular structures called synapses, 

forming 100 trillion (1014) synapses overall. Synapses not only transmit signals between neurons, but also change their 

structure and function upon stimulation, referred to as synaptic plasticity, which is believed to play a central role in 

learning and memory. Along with their role in signal transmission, synapses also serve as adhesion structures, yet their 

mechanical characteristics have not received much attention.  

In this Chapter, I will introduce the mechanics of synapses and provide an overview of this dissertation.  
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About 130 years ago, a famous Spanish neuroscientist Santiago Ramón y Cajal first 

demonstrated that the nervous system was not continuous as a whole, but was made up of discrete 

individual nerve cells, named as “neurons” later by H. Waldeyer-Hartz. This theory, known as the 

neuron doctrine, is now widely considered as the foundation of modern neuroscience (Figure 1-1 A). 

Neurons communicate with each other via a microscopic gap named as the “synapse” by Charles 

Sherrington (Finger, 2000).   

 

Figure 1-1 Neurons communicate through synapses. 
(A) Individual neurons in the mice hippocampus revealed by Brainbow with stochastic expression of multiple 
fluorescent proteins. Scale bar: 20 μm. Reprinted and adapted with permission from (Livet et al., 2007), © 
2007 Nature Publishing Group. (B) A schematic diagram of a typical synapse with a presynaptic axon 
terminal and a postsynaptic dendritic spine connected by synaptic adhesion molecules (yellow). The 
presynaptic terminal releases synaptic vesicles (light blue) containing neurotransmitters, which bind to 
receptors (green and magenta) on the postsynaptic membrane.  

Modern neuroscience has shown that synapses are highly specialized intercellular junctions 

comprised of pre- and postsynaptic structures that are tightly connected by synaptic adhesion 

molecules (Figure 1-1 B). Synapses play a central role in learning and memory through the “Hebbian 

theory”: neurons that fire together wire together (Hebb, 1949). The basic mechanism is called synaptic 

plasticity in which synapses are strengthened from stimulated synaptic transmission and activity. 

Because synaptic plasticity is critical for learning and memory, biochemical and morphological 

characteristics of synapses and electrophysiological properties of neurons have been widely 

investigated.  
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Along with their role in biochemical signal transmission, synapses also serve as adhesion 

structures, yet their mechanical characteristics have not received much attention.  

Synapses are indeed mechanically interesting structures (Figure 1-2) (Tyler, 2012). Mechanics 

could regulate neuronal development and function. Substrate stiffness modulates neuronal growth 

and network activity (Q. Y. Zhang et al., 2014), likely through integrin-mediated cell adhesion (Chavis 

& Westbrook, 2001). The specification and function of axons may require cyto-mechanical signals 

either from interaction with a target postsynaptic structure or an artificial towing force. Pioneering 

studies by Lamoureux et al. showed the induction and elongation of axons by applying tension to 

neurites of hippocampal neurons in the early stage using a glass needle (Lamoureux, Ruthel, Buxbaum, 

& Heidemann, 2002). Studies by Siechen et al. (Siechen, Yang, Chiba, & Saif, 2009) and Ahmed et al. 

(Ahmed et al., 2012) using embryonic Drosophila nervous system showed that axons are under rest 

tension at nano-Newton scale and that vesicle clustering at the presynaptic terminal depends on 

mechanical tension within axons. Action potential is accompanied by mechanical changes in axons 

such as volume change (Chereau, Saraceno, Angibaud, Cattaert, & Nagerl, 2017; El Hady & Machta, 

2015; B. C. Hill, Schubert, Nokes, & Michelson, 1977; D. K. Hill, 1950) and shortening of axons 

(Tasaki & Byrne, 1982). In postsynaptic dendritic spines, three-dimensional actin networks are present 

and undergo fast dynamic changes (Hotulainen & Hoogenraad, 2010; Korobova & Svitkina, 2010; 

Nagerl, Willig, Hein, Hell, & Bonhoeffer, 2008), referred to as “spine twitching” by Francis Crick 

(Crick, 1982). Cross-linked actin networks exhibit unique viscoelasticity and stiffen with increased 

cross-linking density and tension (Gardel et al., 2004). Synapses exert accurate regulation on actin 

dynamics through actin binding proteins such as Arp2/3 (Hotulainen & Hoogenraad, 2010) to 

maintain their plasticity and stability. Several actin binding proteins are mechanosensitive, such as 

vinculin and talin (Jiang, Giannone, Critchley, Fukumoto, & Sheetz, 2003; Lee, Kamm, & Mofrad, 

2007), whose binding affinity and structures can be affected by mechanical load. In addition, the 
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emerging role of mechanosensitive ion channels in mammalian cells including neurons (Arnadottir & 

Chalfie, 2010; Ranade et al., 2014) raises the possibility of regulating neuronal activity and plasticity 

through mechanical force.  

 

Figure 1-2 Synapses are mechanically interesting structures. 
A schematic diagram of a synapse with pre- and postsynaptic structures connected by synaptic adhesion 
molecules (yellow) is shown in the center. (A) A neurite towed by a glass needle (top) developed into a long 
axon and continued elongating after needle removal (bottom) in DIV 1-2 neurons. (B) Action potential is 
accompanied by an electromechanical pulse travelling along the axon and a membrane displacement. 
Membrane (orange + and -) is depolarized as the action potential passes. This leads to changes in the 
electrostatic forces acting on the membrane (grey tube), resulting in a membrane displacement (green). (C) 
An axon at its normal resting state (left) or being stretched under force (right). Microtubules (green) extend 
along the axon. Vesicles (light green) are transported long the microtubules and some accumulate in the actin 
scaffolding (red) at the presynaptic termal. Force leads to increased vesicle clustering at the presynaptic termal 
due to tension induced actin polymerization creating more vesicle binding sites. (D) Branched actin filaments 
(cyan) in a spine head. The inset shows the nonpseudocolored region outlined by the yellow box. The 
dynamic changes of actin networks can drive changes in the spine structure such as spine twitching (indicated 
by the grey dash lines in the center diagram). (E) Mechanosensitivity at cell adhesion. On the extracellular 
side, cadherin (yellow) dimers form catch bonds which are strengthened in the presence of high force. On 
the intracellular side, cadherin interacts with F-actin (red) through α-catenin (blue) and β-catenin (grey). The 
interaction between cadherin/catenin and F-actin is tension sensitive and exhibits catch bond features. Under 
high force, vinculin (brown) is extended, recruiting actin-modulator VASP (magenta) and regulating actin 
polymerization. In addition, cadherin also helps recruit Arp2/3 (green) and enhance actin cross-linking. 
Images are reprinted and adapted with permission from: A, (Lamoureux et al., 2002), © 2002 Lamoureux et 
al.; B, (El Hady & Machta, 2015), © 2015 El Hady et al.; C, (Ahmed et al., 2012), © 2012 Biomedical 
Engineering Society; D, (Korobova & Svitkina, 2010), © 2010 Korobova et al.; E, (Han & de Rooij, 2017), 
© 2017 Macmillan Publishers Limited. 
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Pre- and postsynaptic compartments are connected physically by synaptic adhesion molecules, 

and are structurally and functionally coupled with each other (Okabe, Miwa, & Okado, 2001; Umeda, 

Ebihara, & Okabe, 2005). It is well accepted that mechanics plays an important role in cell adhesion. 

One type of well-characterized adhesion structures is focal adhesion between cells and extracellular 

matrix mediated by integrin (Geiger, Bershadsky, Pankov, & Yamada, 2001). Integrin lacks enzymatic 

activity, and it is now well known that it can trigger downstream signaling cascades via 

mechanosensation (Geiger, Spatz, & Bershadsky, 2009). At cell-cell interface such as synapses, the 

classical cadherin family plays an important role (Gumbiner, 2005). Cadherin interacts with actin 

networks on the intracellular side, recruiting actin binding proteins in a mechanosensitive manner 

similar to integrin (Maitre & Heisenberg, 2013). Cadherin-catenin complex binds to F-actin in a 

tension-sensitive process and forms catch bonds (Buckley et al., 2014). Force could induce 

conformational change of -catenin and lead to the binding of vinculin to -catenin through 

unmasking of the vinculin binding region (Yonemura, Wada, Watanabe, Nagafuchi, & Shibata, 2010). 

On the extracellular side, cadherin dimers can form catch bonds, which strengthen dimer interaction 

in the presence of mechanical force and further stabilize cell-cell adhesion (Manibog, Li, Rakshit, & 

Sivasankar, 2014; Rakshit, Zhang, Manibog, Shafraz, & Sivasankar, 2012). Therefore, mechanics may 

regulate synaptic adhesion via mechanosensation.  

Another aspect where mechanics could potentially be relevant comes from the unique 

morphological specialization of synapses, in particular the morphology of dendritic spines (hereafter 

referred to as spines). Spines were first described by Santiago Ramón y Cajal, yet it still remains unclear 

what they do. A spine consists of an enlarged head (1-2 μm in diameter) and is connected by a thin 

neck (200 nm in diameter, and 0.5 to several μm in length) to the dendritic shaft (Figure 1-1 B). There 

are many proposals explaining the potential functions of spines (Rafael Yuste, 2010). A well-accepted 

explanation is that spines are essential for biochemical compartmentalization (Yasuda et al., 2006) and 
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electrical compartmentalization (Tsay & Yuste, 2004), creating input-specific plasticity and 

specification of synapses (Hebb, 1949). While spine morphology is functionally critical, generating and 

maintaining such a highly curved subcellular structure is by nature thermodynamically disfavored. 

Mechanical features such as membrane tension (Diz-Munoz, Fletcher, & Weiner, 2013; Gauthier, 

Masters, & Sheetz, 2012) and cell stiffness (Stroka & Aranda-Espinoza, 2011; Tseng et al., 2005) have 

been shown to help organize specialized cell morphology.   

In order to understand how mechanics may play a role in synaptic structure and function, it is 

important to first characterize and quantify the baseline mechanical properties of synapses, and 

understand their features. Several experimental approaches have been developed for the study of cell 

mechanics (Diz-Munoz et al., 2013), including compression of cells with two plates and micropipette 

aspiration (Cole, 1932; Hochmuth, Mohandas, & Blackshear, 1973), optical tweezers and magnetic 

tweezers (H. Zhang & Liu, 2008), and atomic force microscopy (Spedden, White, Naumova, Kaplan, 

& Staii, 2012).  

Here, I combined atomic force microscopy (AFM), fluorescence microscopy, and 

transmission electron microscopy (TEM) to characterize synaptic elasticity. First introduced in 1986 

(Binnig, Quate, & Gerber, 1986), AFM has been widely used in material engineering, physics, and 

nanotechnology to acquire nanoscale topographical images and probe surface elasticity by measuring 

stiffness. AFM has unique capabilities to provide high resolution topographical images of live cells 

under physiologically-relevant conditions (Shibata, Uchihashi, Ando, & Yasuda, 2015). However, the 

application of AFM in neuroscience is still in its infancy (Tyler, 2012). To my knowledge, so far there 

is only one study related to the mechanical properties of synapses (Smith, Roy, De Koninck, Grutter, 

& De Koninck, 2007). Smith et al. studied the viscoelasticity of visually-identified spine-like structures 

using force-volume and indentation-modulation AFM, and found that the stiffness of spine-like 

structures observed in close proximity to axon-like structures was on average 2 times that of the 
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dendritic shafts. The authors suggested that mechanics may have a role in spine remodeling, protein 

trafficking, and structural stability. However, without the aid of additional methods, AFM lacks the 

capacity to identify synaptic markers, monitor synaptic activity, and visualize intracellular structures 

such as synaptic vesicles. Compounded with the low throughput of conventional force-volume AFM, 

these limitations hinder detailed assessment of synaptic mechanics, making it difficult to gain 

mechanistic insights into the role of mechanics in synaptic function.  

In this work, I used torsional harmonic AFM (TH-AFM), which offers high-throughput 

stiffness mapping of compliant materials (Dong, Husale, & Sahin, 2009; Sahin, Magonov, Su, Quate, 

& Solgaard, 2007). TH-AFM uses a specially designed T-shaped cantilever which allows a large 

number of synapses to be imaged and quantified in a short amount of time with small indentation. In 

Chapter 2, I will describe TH-AFM principles and its application in biological research. In Chapter 3, 

I measured the nanomechanical properties of live neurons with TH-AFM and observed stiff synapse-

like structures.  

In order to understand the biological processes related to high stiffness, I combined TH-AFM 

with fluorescence microscopy in Chapter 4 and with TEM in Chapter 5. Immunofluorescence staining 

of synaptic markers and functional imaging of activity dyes allow us to identify mature synapses and 

monitor synaptic activity, and TEM provides reliable assessment of synaptic ultrastructure at high 

resolution. Combination of AFM and fluorescence microscopy has been used to reveal the mechanical 

structures of cytoskeleton in cells (Chacko, Zanacchi, & Diaspro, 2013; Curry, Ghezali, Kaminski 

Schierle, Rouach, & Kaminski, 2017), and combination of TEM and fluorescence microscopy has 

been used to study the ultrastructure of cellular components such as synaptic vesicles (Darcy, Staras, 

Collinson, & Goda, 2006). To my knowledge, no correlative AFM stiffness mapping and TEM 

imaging in neurons has been reported. The combination of multiple independent imaging methods 

allows us to assess mechanical characteristics of synapses in detail and correlate them with synaptic 
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structure and synaptic activity. I measured the elastic modulus of hundreds of live mature excitatory 

synapses whose identity and activity was confirmed by fluorescence microscopy. Correlative TH-

AFM/TEM analysis showed that high stiffness originated from postsynaptic spines, but not 

presynaptic boutons.  

In Chapter 6, I performed detailed data analysis and reported that spines were on average 10 

times stiffer than dendritic shafts. Observations of such high stiffness localized to a submicron 

structure indicate that stiffness of spines might have an important role in synaptic function. 

Interestingly, the distribution of spine stiffness exhibited the characteristics of a lognormal distribution 

that is also observed in synaptic strength measurements (Buzsaki & Mizuseki, 2014). Importantly, I 

found that spine stiffness was positively correlated with spine size, and it is well-established that spine 

size is correlated with synaptic strength (Matsuzaki et al., 2001). In addition, I observed that shaft 

synapses and immature filopodia did not display high stiffness.  

To understand what could be the source of spine stiffness, in Chapter 7, I studied how spine 

stiffness was related to actin networks. Interestingly, although enriched with F-actin, these stiff spines 

were not affected by actin polymerization inhibitor Latrunculin A or Myosin II inhibitor Blebbistatin, 

suggesting that neither high level F-actin elongation nor actomyosin contractility contributes to high 

spine stiffness. Given the presence of densely branched actin networks in spine heads, spine stiffness 

may come from cross-linked actin architecture mediated by Arp2/3. 

Based on the stiffness measurements and theoretical modelling of cell adhesion stability (Qian 

& Gao, 2010), I propose a mechanical synaptic plasticity model in Chapter 8. According to this model, 

mechanical strength leads to functional strength, which could provide a potential causal link between 

structural plasticity and functional plasticity of synapses.  

In Chapter 9, I will draw conclusions from these results and discuss future research directions.   
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Chapter 2 TH-AFM: a tool to study cell mechanics  

In a macroscopic world, we can easily tell the relative stiffness of different materials: diamond is stiff, rubber is 

soft, and gold is somewhere in between. How do we know this? The simplest way is to place our fingers on a surface and 

press it. In a microscopic world, if we want to “feel” the stiffness of tiny structures such as cells and synapses, human 

fingers are clearly out of the scale considering that cells are 10,000 times smaller than human fingers. Fortunately, the 

basic principles of physics remain the same. All we need is a nanoscale finger that can indent the material and accurately 

measure interaction forces and indentation distance.  

In this Chapter, I will introduce atomic force microscopy (AFM) and its applications in biological samples. I 

will also discuss current challenges in cell mechanics imaging and introduce our approach.   
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2.1 AFM principles 

Atomic force microscopy (AFM) belongs to a family of techniques called scanning probe 

microscopy (SPM). SPM in general uses a probe to scan the surface and measures the interaction 

between the tip and the sample at each interaction position. Prior to AFM, another type of SPM, 

scanning tunneling microscope (STM) was developed by Binnig and Rohrer in 1981, who later 

received the Nobel Prize in Physics for this invention. STM, however, can only be used on electrically 

conductive surfaces (Binnig, Rohrer, Gerber, & Weibel, 1982), limiting its application in other fields. 

In 1986, Binnig et al. developed AFM, which can be used on any surfaces regardless of their electrical 

conductivity (Binnig et al., 1986). Such versatility makes AFM a popular tool to profile surface 

topography and mechanics.  

 

Figure 2-1 AFM principles. 
The sharp AFM tip at the end of a cantilever interacts with the sample surface, causing the cantilever to 
deflect. The cantilever deflection is monitored by the position of a laser spot (solid and dashed red lines) on 
a photodetector, and is used to track surface topographical and mechanical features. In the contact-mode 
AFM, the tip stays in contact with the sample surface with a feedback circuit to keep the cantilever deflection 
constant. In the tapping-mode AFM, the cantilever is oscillated at its resonance frequency (blue sinusoidal 
curve) with a feedback circuit to keep the oscillation amplitude constant. The sample is mounted on a 
piezoelectric scanner which provides accurate three-dimensional positioning.  

AFM measures ultra-small forces (picoNewton scale) between a sharp AFM tip (less than 100 

nm in diameter) and a sample surface (Figure 2-1). The interaction force between the atoms at the end 

of the tip and the sample surface causes the cantilever deflection, which is monitored by a 
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photodetector that quantifies the position of a laser spot reflecting from the back side of the cantilever. 

The deflection signal is used to track surface topographical and mechanical features. The sample is 

mounted on a piezoelectric scanner which provides accurate three-dimensional positioning. AFM 

imaging generates very high force sensitivity as small as picoNewton and high spatial resolution at 

sub-nanometer scale (Bhushan, 2008). 

AFM can be operated in either the contact mode or the tapping mode. In the contact-mode 

AFM, the sharp tip at the end of the cantilever is brought in contact with the sample surface and stays 

in contact with the surface during imaging. The surface contours are measured by a feedback signal 

required to keep the cantilever deflection constant (Binnig et al., 1986). In the tapping-mode AFM, 

also referred to as the dynamic-mode AFM, the cantilever is oscillated at its resonance frequency 

(shown as the sinusoidal curve in Figure 2-1) by a piezo. The oscillating tip slightly taps the surface at 

high frequency (kHz) with a feedback circuit to keep the oscillation amplitude constant (Barlow, 1991; 

Radmacher, Tillamnn, Fritz, & Gaub, 1992). The oscillation amplitude is kept large enough in cell 

imaging (50-100 nm) to prevent the tip from getting stuck on adhesive surfaces. The tapping-mode 

AFM have several advantages over the contact-mode AFM (Garcia & Herruzo, 2012). First, it 

minimizes the effect of friction and other lateral forces during scanning. Second, in the tapping mode, 

the tip only interacts with the sample surface for a very short period of time compared with the 

constant interaction in the contact mode, and thus very small forces can be applied to soft samples. 

Large sample deformation by the tapping force is also minimized. Third, other parameters such as 

amplitude, phase, and frequency, are also available from the cantilever oscillation in the tapping mode, 

and can be used to extract mechanical properties.  

2.2 AFM applications in biological samples 

The invention of AFM is a milestone in the history of nanotechnology and opens the doors 

to the nanoworld in material engineering, physics, chemistry, and biology (Gerber & Lang, 2006). In 
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particular, the possibility of operating AFM in buffer solution and at ambient temperature draws a lot 

of attention and interest in biological samples under physiologically-relevant conditions (Santos & 

Castanho, 2004). Shortly after AFM was invented, pioneering applications of AFM in biological 

samples (Figure 2-2) include cell membrane and proteins (Hoh, Lal, John, Revel, & Arnsdorf, 1991; 

Schabert, Henn, & Engel, 1995), DNA (Hansma et al., 1992), lipid bilayer (Zasadzinski, Viswanathan, 

Madsen, Garnaes, & Schwartz, 1994), cytoskeleton (Henderson, Haydon, & Sakaguchi, 1992), and live 

cells (Henderson et al., 1992; Hoh & Schoenenberger, 1994). Recent development of high speed AFM 

(Ando et al., 2001) provides new opportunities to monitor fast dynamic biological behaviors such as 

Myosin V walking on actin filament (Kodera, Yamamoto, Ishikawa, & Ando, 2010) and 

morphogenesis of filopodia in neurons (Shibata et al., 2015).  

 

Figure 2-2 AFM applications in biological samples. 
(A) Topographical image of DNA. (B) Topographical image of purple membrane. (C) Topographical image 
of Myosin V bound to adjacent actin filaments. (D) Three-dimensional reconstruction of the topography of 
live Aplysia growth cones. (E) Optical image and corresponding elasticity map of a live cortical neuron. (F) 
High resolution three-dimensional overlay of topography and elastic modulus of a live mouse fibroblast. 
Scale bar: A, 100 nm; B, 5 nm, 2 nm; C, 30 nm; D, 15 μm; E, 2 μm ; F, 5 μm. Images are reprinted and 
adapted with permission from: A, (Ido et al., 2013), © 2013 American Chemical Society; B, (Muller & Engel, 
2007), © 2007 Nature Publishing Group; C, (Kodera et al., 2010), © 2010 Macmillan Publishers Limited; D, 
(Xiong, Lee, Suter, & Lee, 2009), © 2009 the Biophysical Socienty; E, (Spedden & Staii, 2013), © 2013 
Spedden et al.; F, (Mandriota, 2016), © 2016 Mandriota.  

In addition to topographical imaging, AFM has evolved into a multifunctional imaging toolkit 

(Muller & Dufrene, 2011). AFM force spectroscopy mode directly measures interaction forces 
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between the cantilever tip and the sample. The tip is usually functionalized with specific biomolecules 

or a living cell in order to study interactions between single molecules or between cells. Popular 

applications in this mode include single-molecule force spectroscopy (Dong & Sahin, 2011; Florin, 

Moy, & Gaub, 1994), molecular recognition mapping (Gad, Itoh, & Ikai, 1997; Hinterdorfer & 

Dufrene, 2006) , and single-cell force spectroscopy (Benoit, Gabriel, Gerisch, & Gaub, 2000; Helenius, 

Heisenberg, Gaub, & Muller, 2008). AFM force spectroscopy mode is also used to measure the 

mechanical properties of cells at nanometer resolution. Unlike other force spectroscopy applications, 

in cell mechanical imaging, the AFM tip is usually not specially functionalized. Instead, a cantilever 

with a large tip diameter or a microbead attached to the end (Lulevich, Zink, Chen, Liu, & Liu, 2006) 

is used in order to increase the contact area between the tip and the cell surface during indentation, 

preventing the tip from penetrating and damaging delicate cell surfaces. Therefore, the same cantilever 

can potentially be used on different types of samples without much modification. The spatial 

resolution of AFM force spectroscopy on cell surfaces is approximately 50-100 nm due to compliant 

surface nature of cells. Still, it is well below the resolution limit of conventional optical microscopy 

(200 nm).  

Using AFM force spectroscopy, researchers have investigated cell mechanics in various living 

cells and reported interesting discoveries (Muller & Dufrene, 2011). First, force spectroscopy can be 

used to characterize cell stiffness and track dynamic changes of cells. Matzke et al. measured changes 

in the stiffness of the cortex of adherent cultured cells during M phase, from metaphase to cytokinesis, 

showing that cortical stiffening occurs before any furrow appears and stiffening increases as the furrow 

starts (Matzke, Jacobson, & Radmacher, 2001). Smith et al. probed the biomechanics in living neurons 

and reported the viscoelasticity and soft-glassy nature of spine-like structures (Smith et al., 2007). 

Spedden et al. characterized how stiffness of somata changes during neurite outgrowth in different 

types of neurons and showed the increase in local elastic modulus is primarily due to the formation of 
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microtubules (Spedden et al., 2012). Second, force spectroscopy can be used to study how cell stiffness 

responds to drugs and other intervention. Rotsch and Radmacher investigated drug-induced changes 

in elasticity of fibroblasts combining AFM height images, elasticity images, and fluorescence images 

(Rotsch & Radmacher, 2000). Third, cell mechanics provides potential applications in the study and 

detection of diseases. For example, Cross et al. measured cell stiffness of cancer cells obtained from 

patients and reported that metastatic cancer cells are substantially softer than the benign cells (Cross, 

Jin, Rao, & Gimzewski, 2007).  

2.3 AFM in the study of cell mechanics 

Cell mechanical properties, such as Young’s elastic modulus, are traditionally measured using 

AFM by approaching the tip to and retracting it from the sample surface, generating a single force-

distance (FD) curve (Figure 2-3 A)(Butt et al., 2005). Force on the tip is calculated from the cantilever 

deflection and cantilever spring constant using Hooke’s law. FD curves provide information about 

 

Figure 2-3 Force-distance curves and force-volume imaging with AFM. 
(A) A single force distance (FD) curve records the interaction force on the tip as it approaches and retracts 
from the sample surface. Force on the tip is calculated from the cantilever deflection and the cantilever 
spring constant using Hooke’s law. There are 4 regions of interest in a typical FD curve. In the beginning 
(1), the tip is far from the sample surface, and thus there is no interaction or cantilever deflection. As the tip 
approaches the surface (2), tip-sample interaction causes the cantilever to deflect. When the tip contacts and 
indents the surface, the cantilever continues to deflect until reaching the maximal deflection (3). Then the 
cantilever starts to retract. Owing to various tip-sample interactions, such as adhesive forces, the retraction 
curve can display hysteresis (4). At the end of the curve, the tip completely separates from the sample and 
the cantilever returns to zero deflection. (B) Force-volume imaging collects arrays of FD curves for each 
coordinate, which are used to map the mechanical features on the sample surface. Images are reprinted and 
adapted with permission from: A, (Butt, Cappella, & Kappl, 2005), © 2005 Elsevier; B, (Heinz & Hoh, 1999), 
© 1999 Elsevier Science. 
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sample height, indentation distance, and interaction forces, which can be used to derive the elastic 

modulus and other mechanical properties (Heinz & Hoh, 1999).  

Conventional FD-based AFM uses the contact mode, also referred to as force-volume imaging 

(Figure 2-3 B), and combines topographical and force data into the same dataset, thus allowing for 

correlation between topographical and mechanical features. It associates each coordinate with a FD 

curve. From this array of FD curves, a spatial map of mechanical features on the sample surface can 

be acquired. The time required for recording a single FD curve is approximately 0.1 to 10 seconds 

(Heinz & Hoh, 1999). It thus would take minutes to hours to acquire a high resolution stiffness image. 

Such poor temporal resolution largely limits the application of FD-based AFM force spectroscopy in 

cell mechanics. In addition, the huge amount of force-volume data is usually processed offline to 

extract mechanical features, making it difficult to visualize the results during AFM imaging. Most 

discoveries mentioned in 2.2 used this slow version FD-based AFM, which performs well in measuring 

whole cell stiffness, but at the sub-cellular level, can be very time-consuming to achieve high resolution 

images and may not capture fast cellular changes.  

Recently, the introduction of faster hardware elements, data acquisition systems, and specially 

designed cantilevers, allows for simultaneous topographical and mechanical imaging at high speed and 

high resolution using multi-frequency tapping-mode AFM (Dufrene, Martinez-Martin, Medalsy, 

Alsteens, & Muller, 2013). Conventional tapping-mode AFM excites and detects a single frequency of 

the tip motion, providing time-averaged values of the tip-sample interactions. By contrast, multi-

frequency AFM takes advantage of the non-linearity of cantilever dynamics, and uses excitation 

and/or detection of several frequencies during the cantilever oscillation. These frequencies are 

associated with either higher oscillation harmonics or the eigenmodes of the cantilever (Garcia & 

Herruzo, 2012). Time-resolved tip-sample interaction forces can then be derived from higher 

harmonics, allowing for the measurement of forces at microsecond scale (M. Stark, Stark, Heckl, & 
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Guckenberger, 2002). Several multi-frequency AFM techniques have been developed and used in the 

high speed mechanical imaging of biological samples, such as the multiharmonic AFM imaging 

developed by Raman et al. (Raman et al., 2011) and the torsional harmonic AFM developed by Sahin 

et al. in our lab (Dong et al., 2009; Sahin et al., 2007). 

2.4 Torsional harmonic AFM 

Multi-frequency AFM using higher harmonics presents several challenges in cell mechanics 

imaging. First, the amplitudes of higher harmonics components are several orders of magnitude 

smaller than the fundamental frequency component (Rodriguez & Garcia, 2002). Thus the signal-to-

noise ratios of higher harmonics are not sufficient for practical measurements. Second, time-resolved 

force measurement requires a relatively large number of harmonics (~15) in order to get accurate 

estimation of the force, which requires special cantilever designs. Third, the frequency spectra of the 

cantilever used for time-resolved force measurements depend on the shape the cantilever eigenmodes 

and laser spot position, which are difficult to measure accurately (R. W. Stark, 2004). In addition, in 

soft biological samples, it is crucial to adjust and monitor the tapping force in real time accurately to 

prevent cells from large deformation and damage. Therefore, a fast online data processing and time-

resolved force measurement is preferred.   

To tackle these challenges in the multi-frequency AFM, Sahin et al. introduced a new type of 

multi-frequency AFM: torsional harmonic AFM (TH-AFM) (Sahin et al., 2007). TH-AFM uses a 

specially designed T-shaped cantilever where the tip is offset from the long axis of the cantilever, and 

generates higher harmonics from the torsional signal (Sahin & Erina, 2008; Sahin et al., 2007), as 

shown in Figure 2-4. During TH-AFM imaging, the interaction forces generate a torque around the 

long axis of the cantilever and excite the torsional mode. Similar to the conventional tapping-mode 

AFM, the flexural deflection of the cantilever is monitored by the vertical position of the laser spot 

on the photodetector, which is used as the amplitude feedback for topographical imaging. 
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Simultaneously, the torsional deflection is monitored by the horizontal position of the laser spot, 

which is used to calculate the time-resolved tip-sample interaction forces in real time (Sahin et al., 

2007).   

Thanks to its high signal-to-noise ratio, high force sensitivity, and high spatiotemporal 

resolution, TH-AFM has been used to map Young’s modulus on purple membranes (Dong et al., 

2009) and living fibroblasts (Mandriota, 2016), detect DNA molecules (Husale, Persson, & Sahin, 

2009), and recognize single molecule interactions (Dong & Sahin, 2011).  

Next in Chapter 3, I will describe how to use TH-AFM to measure the nanomechanical 

properties of live hippocampal neurons.   

 

Figure 2-4 Torsional harmonic AFM. 
(A) A scanning electron micrograph image of a torsional harmonic T-shaped cantilever. The tip is offset 
from the center of the cantilever. (B) A schematic diagram of the T-shaped cantilever interacting with the 
surface. The offset position of the tip results in a torque around the long axis of the cantilever. (C) Periodic 
flexural (blue) and torsional (orange) vibration signals from a quadrant photodetector when the cantilever is 
oscillated at its flexural resonance frequency. (D) Time-resolved tip-sample force measurements from the 
torsional harmonic signals. Images are reprinted and adapted with permission from (Sahin et al., 2007), © 
2007 Nature Publishing Group.  
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Chapter 3 Live nanomechanical imaging with TH-

AFM reveals stiff synapse-like structures 

Synapses are deeply buried in the brain under a protective skull, whiles AFM is designed specifically for surface 

profiling. How can we then bring the AFM tip to a single synapse and measure its mechanical properties? To study cells 

outside their original biological context which is referred to as “in vivo”, biologists have long been doing “test-tube 

experiments” which is referred to as “in vitro”. In vitro studies isolate cells from their often inapproachable in vivo 

environment, and enable a more convenient and detailed analysis. By isolating neurons from the brain and culturing 

them in a petri dish, we can approach live synapses with AFM.  

In this Chapter, I will describe the experimental set up and results from live nanomechanical imaging of in vitro 

neuron cultures with TH-AFM.  
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3.1 Materials and Methods 

3.1.1 Hippocampal neuron culture preparation 

Animal work was approved by the Columbia University Institutional Animal Care and Use 

Committee. Hippocampal neuron cultures were prepared following a modified version of the 

previously described Brewer method (Brewer, Torricelli, Evege, & Price, 1993). Fetuses at embryonic 

day 18 (E18) from timed pregnant Sprague-Dawley rats (Taconic Farms; Hudson, NY) were sacrificed 

and the hippocampi removed and collected in room temperature Hank’s balanced salt solution (HBSS-; 

Thermo Fisher Scientific 14025076), supplemented with 0.6% (w/v) glucose (HBSS+). The 

hippocampi were then incubated in 0.05% trypsin (Thermo Fisher Scientific 25300054) for 15 minutes 

at 37°C and washed with HBSS+ three times for 10 minutes each. Finally, the neurons were 

dissociated in Neurobasal medium (Thermo Fisher Scientific 21103-049) supplemented with B27 

supplements (Thermo Fisher Scientific 17504-044) and 0.5 mM L-Glutamine (Thermo Fisher 

Scientific 25030). Neurons were plated at a density of 100,000 cell/mL in glass bottom dishes coated 

with 1 mg/mL poly-L-lysine (Sigma-Aldrich P2636) and 10 μg/mL mouse protein laminin (Thermo 

Fisher Scientific 23017-015). 50 mm glass bottom dishes (WillCo GWSt-5040) were used in most 

experiments unless otherwise specified. The resulting neuronal cultures consisted of a population 

enriched in large pyramidal neurons. Cultures were maintained in 5% CO2 humidified incubator at 

37°C and used after 14-25 days in vitro (DIV) to image mature synapses, and DIV 5-7 to image 

immature protrusions. Before imaging, culture medium was replaced with Tyrode’s buffer (125 mM 

NaCl, 2 mM KCl, 3 mM CaCl2, 1 mM MgCl2-6H2O, 10 mM HEPES, 30 mM D-glucose, adjusted to 

300 mOsm with sucrose, pH adjusted to 7.4 with NaOH) (Kralj, Douglass, Hochbaum, Maclaurin, & 

Cohen, 2012) at room temperature. Neuronal activities were verified with calcium indicator Oregon 

Green (Thermo Fisher Scientific O6807) showing neuron firing.  
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3.1.2 Torsional harmonic cantilevers 

 

Figure 3-1 T-shaped cantilever. 
Scanning electron micrograph images of a T-shaped cantilever with a pyramidal tip. Scale bar: 10 μm, 1 μm. 

T-shaped cantilevers were custom made by Bruker-Nano, Inc (Figure 3-1)(Sahin et al., 2007) 

with the following specifications: the cantilever bodies were made of silicon nitride and the tip was 

made of silicon. The length, width, and thickness of the cantilevers were nominally 85 μm, 9 μm, and 

650 nm. The width at the free end was 60 μm, and the tip offset 25 μm, tip height 5 μm or 6.5 μm. 

Cantilevers were coated with silicon nitride via plasma-enhanced chemical vapor deposition to a radius 

of 75nm or 100 nm. Flexural and torsional deflection sensitivities of cantilevers were determined from 

ramp plots, assuming flexural and torsional motions to be described by springs in series. The spring 

constants of flexural (approximately 0.2 N/m) and torsional (approximately 1.0 N/m) deflections 

were determined from the respective thermal noise spectra. The drive frequency (9 - 23 kHz) used 

during cantilever oscillation was determined from thermal tune.  

3.1.3 Atomic force microscopy imaging 

Glass bottom dishes were mounted on the stage of an inverted fluorescence microscope Axio 

Observer Z1 (Zeiss) and neurons were perfused with Tyrode’s buffer during imaging (Figure 3-2). 

TH-AFM experiments were performed with BioScope Catalyst (Bruker) and imaging was carried out 

in fluid tapping mode. T-shaped cantilevers were analyzed in real time to create topographical and 

mechanical maps as previously described (Sahin et al., 2007). The set point amplitude was 

approximately 45 nm and the tip-sample interaction force was approximately 300 pN. Elastic modulus 

was calculated by fitting the force-distance curves with a Derjaguin-Muller-Toporov (DMT) model 
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(Derjaguin, Muller, & Toporov, 1994) with a hemispherical indenter (see 6.1.2 and 6.1.3 for additional 

discussion about elastic modulus calculation). All AFM images were recorded with 512 pixel × 256 

pixel, 256 pixel × 256 pixel, or 256 pixel × 128 pixel over areas of 5 μm × 5 μm to 25 μm × 25 μm 

with a scan rate 0.5 to 1.5 Hz.  

3.1.4 Atomic force microscopy data analysis 

AFM data were processed and analyzed with NanoScope Analysis 1.70 (Bruker), SPIP 5.0 

(Image Metrology), Gwyddion, and ImageJ. For quantitative measurement, in order to reduce noise, 

a 3×3 median filter was applied to stiffness images. Due to edge effect, AFM measurement is more 

reliable on top of a structure close to the center, and less so close to the edge. Thus, I selected areas 

of interest (AOI) of at least 10 pixel × 10 pixel close to the center on a spine structure identified by 

the topographical image, and used the maximum value in the AOI to represent the elastic modulus of 

 

Figure 3-2 Nanomechanical imaging platform. 
A schematic diagram illustrating the set-up of the nanomechanical imaging platform. Neurons (green) were 
cultured in a glass bottom dish. TH-AFM imaging was performed by scanning a sharp tip across the sample 
surface while the interaction force between the tip and the sample was monitored. A microfabricated T-
shaped cantilever was vibrated at its resonance frequency and was able to detect both vertical and torsional 
deflection signals of the cantilever during scanning of the sample in three dimensions x, y, and z. The vertical 
signal is used for the height feedback to generate the topographical image and the torsional signal provides 
instantaneous force to calculate mechanical properties during the imaging process. 
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a spine. I noticed that the stiffness of a dendritic shaft and an immature protrusion did not vary 

substantially along its length. I thus drew a section line of at least 10 pixels along the length of a shaft 

structure or an immature protrusion close to its centerline, and used the average value along the section 

to represent the elastic modulus of a shaft and a filopodium, respectively. For intensity profile in 

Figure 4-5 B and Figure 6-8 C, raw elastic modulus data were used. For visualization purpose only, a 

low pass filter was applied to height images; spike removal with vertical interpolation and local mean 

equalization were applied to stiffness images.   

3.2 Results and Discussion 

AFM imaging requires a direct contact between the AFM tip and the sample, and relies on 

piezoelectric elements to control the three-dimensional positioning and force feedback. As a result, 

AFM is suitable to image a relatively small and flat surface area, and live cell imaging with AFM is 

mostly done on sparsely cultured cells in vitro (Cross et al., 2007; Matzke et al., 2001; Muller & Dufrene, 

2011; Rotsch & Radmacher, 2000; Smith et al., 2007; Spedden et al., 2012). In some cases, AFM is 

used to measure the stiffness of tissue slices which preserve local cellular context. For example, AFM 

stiffness images showed distinct stiffness profiles of human breast biopsies (Plodinec et al., 2013). 

AFM indentation on thin slices of brain tissue revealed different stiffness between white and gray 

matter at micrometer resolution (Christ et al., 2010). However, the resolution of tissue-based AFM is 

limited to at best single cells (Plodinec et al., 2013), not sufficient for subcellular structures such as 

synapses. In order to probe synapses which are tiny structures and are usually surrounded by other 

cellular components in vivo, we need to dissect primary neurons from the brain and culture dissociated 

neurons in vitro (Brewer et al., 1993), creating a relatively flat layer of neurons with synapses exposed 

to the surface and accessible to the AFM tip.   

The in vitro neuron culture, as an important neuroscience technique, has its pros and cons 

(Humpel, 2015). On one hand, it allows a single homogeneous cell population to be studied in an 
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isolated environment, making it convenient to perform well-controlled experiments and studies of cell 

morphology, function, survival, and toxicity. It also largely reduces the number of experiment animals 

and their suffering. In vitro rat primary hippocampal neuron cultures have been widely used to study 

spine development (Papa, Bundman, Greenberger, & Segal, 1995), synaptic activity (Kay, Humphreys, 

Eickholt, & Burrone, 2011), synaptic plasticity (Molnar, 2011), and disease models (Pozueta, Lefort, 

& Shelanski, 2013). On the other hand, due to a lack of contact with other cells and original local 

cellular architecture, the reconstructed dissociated cells do not fully represent their in vivo nature. For 

example, neurons in cultures have lower spine density and more shaft synapses than those in the brain 

(Boyer, Schikorski, & Stevens, 1998). Therefore, it is important to note that the results reported here 

may not be readily applicable to in vivo neurons given the limitations of in vitro culture.  

I characterized the nanomechanical properties of live hippocampal neurons on 14-25 days in 

vitro (DIV) using torsional harmonic atomic force microscopy (TH-AFM) (Figure 3-3 A). TH-AFM 

uses a T-shaped cantilever with an offset tip and detects both vertical and torsional deflection signals 

of the cantilever during scanning of the sample. The vertical signal is used for the height feedback to 

generate the topographical image and the torsional signal provides instantaneous force to calculate 

 

Figure 3-3 Nanomechanical imaging of live cultured neurons. 
(A) A schematic diagram illustrating live nanomechanical imaging of cultured neurons. TH-AFM imaging 
was performed by scanning a T-shaped cantilever with a sharp tip across the sample surface while the 
interaction force between the tip and the sample was monitored. The zoomed-in inset shows the AFM tip 
over a synapse. (B) Optical image of a T-shaped cantilever over a neuron culture. The tip was facing towards 
the culture dish, and was placed on the left side of the cantilever (indicated by the dashed circle). Scale bar: 
40 μm. 
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mechanical properties during the imaging process with a customized LabView program (Sahin et al., 

2007).  

Rat hippocampal neurons were cultured in glass bottom dishes and live neurons were imaged 

in Tyrode’s buffer at room temperature. To capture the corresponding optical images, the TH-AFM 

apparatus was placed above an inverted optical microscope (see 3.1.2, 3.1.3, Figure 3-2 for experiment 

set-up). Hippocampal neurons were characterized as large pyramidal cell bodies with long axons and 

branched dendritic shafts, forming complex neurite networks (Figure 3-3 B).  

Neuron density in the culture is critical because AFM imaging requires a direct contact 

between the tip and the sample, thus low-density neuron cultures with synapses exposed to the surface 

are preferred. Meanwhile, neuron density largely affects neuron viability(Brewer et al., 1993), dendrite 

morphology, synaptic density, and neuron network activity (Biffi, Regalia, Menegon, Ferrigno, & 

Pedrocchi, 2013; Cullen, Gilroy, Irons, & LaPlaca, 2010; Ivenshitz & Segal, 2010; Previtera, 

Langhammer, & Firestein, 2010). Thus, high-density neuron cultures with complex neurite networks 

are preferred in the long-term culture. I optimized neuron density with a tradeoff between AFM 

accessibility and neuron activity, and used a density of 100,000 neurons/mL, resulting in a surface 

density of approximately 240 neurons/mm2 in the glass bottom dish. I verified the activity of the 

cultured neuron with calcium indicator Oregon Green (Grienberger & Konnerth, 2012) and observed 

neuron firing. In this work, hippocampal neuron cultures were prepared following a modified version 

of the previously described Brewer method (see 3.1.1 for the culture preparation method). An 

alternative method for neuron cultures is to add a glial feeder layer, which could help neuron survival 

at even lower density (Banker, 1980; Ivenshitz & Segal, 2010). However, the existence of the glial cells 

may complicate AFM imaging and increase background noise. Therefore, I did not use the glial feeder 

layer in neuron cultures.  

To minimize forces acting on delicate neuronal structures, I used low peak tapping forces 
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(around 300 pN) and small indentation depth (around 30 nm) during scanning (Figure 3-4 A).  

 

Figure 3-4 Force-distance curves during TH-AFM imaging. 
(A) Representative force-distance curves on a synapse-like structure (black) and a dendritic shaft (grey) during 
tip approach. (B) TH-AFM height and stiffness images of the stiff synapse-like structure in A. The color in 
AFM images represents height (linear scale) and elastic modulus (log scale) respectively. The elastic modulus 
values of the stiff structure and the shaft are 509.0 kPa and 42.9 kPa, respectively. Scale bar: 1 μm.  

Our imaging technique generates topographical and mechanical images of neuronal structures 

simultaneously during live imaging at nanometer resolution as shown in Figure 3-4 B. See 3.1.4 for 

quantitative stiffness measurement of areas of interest such as synapse-like structures and shafts. In 

short, after reducing the noise in AFM raw images, I used the maximum value to represent the elastic 

modulus of a synapse-like structure and the average value along the centerline to represent the elastic 

modulus of a shaft. 

A three-dimensional topographical rendering of a synapse-like structure with the color 

 

Figure 3-5 Three-dimensional AFM image of a stiff synapse-like structure in live neurons. 
Three-dimensional topographical rendering of a synapse-like structure with the color indicating elastic 
modulus in log scale. The elastic modulus values of the stiff structure and the shaft are 626.8 kPa and 38.6 
kPa, respectively.  
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indicating elastic modulus is shown in Figure 3-5. Within the network of processes, I observed 

surprisingly stiff synapse-like structures near compliant neurites. I used the following criteria for 

visually-identified synapse-like structures under TH-AFM: (i) distinct structures with stiffness over 20 

kPa in the mechanical image, (ii) height below 1.5 μm and (iii) in close proximity (within 2 μm) to a 

nearby neurite in the topographical image. Based on these criteria, I acquired AFM images of hundreds 

of synapse-like structures and nearby shafts (see 3.1.4 for quantitative stiffness measurement of areas 

of interest), and found that 77.8% of synapse-like structures had a stiffness over 100 kPa (see Chapter 

6 for detailed quantitative analysis). Based on their morphology and proximity to neurites, I 

hypothesized that these stiff structures could be synapses.  

Interestingly, time-lapse TH-AFM imaging showed that these stiff synapse-like structures 

revealed by TH-AFM were very stable. Their stiffness did not vary significantly during imaging (Figure 

3-6). This observation of stable synapse-like structures is consistent with previous reports that spine 

morphology is largely stable over periods of an hour (Tonnesen, Katona, Rozsa, & Nagerl, 2014). 

In AFM imaging, the tapping force was kept at around 300 pN and indentation depth was 

around 30 nm to prevent the sample from being irreversibly deformed and damaged. Compared with 

the typical spine diameter of 1 μm, the AFM indentation depth is relatively small and thus would not 

disrupt spine structures. It is worth mentioning that applying force during measurement may activate 

mechanosensitive ion channels in neurons, thus affecting neuron function and synaptic activity. 

Although I did not study how mechanical stimulation changes neuron function, it would be interesting 

in the future to use different force values and indentation depths and understand whether and how 

neurons can be activated mechanically.  

It has been shown that the elastic moduli of hydrogels and spine-like structures in neurons 

display a frequency dependence at low frequency (Smith et al., 2007; Yang, Wong, de Bruyn, & Hutter, 

2009). In my measurement, I used a fixed drive frequency as described in 3.1.2 with the resonance 
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frequency at the kHz level. The resonance frequency of cantilevers is influenced by many factors, such 

as the geometry of the cantilever and the thickness of the silicon nitride coating. I used cantilevers 

with slightly different frequencies assuming the measurement of elastic moduli was not significantly 

affected by such difference.  

 

Figure 3-6 Stiffness of a synapse-like structure does not vary significantly during imaging. 
(A) Time-lapse TH-AFM height and stiffness images of a synapse-like structure. The same area was scanned 
with TH-AFM at 0, 5, 10, 20, 30 min. Scale bar: 2 μm. (B) Stiffness of the synapse-like structure (black solid 
line) and shaft (grey dashed line) did not change drastically over 30 minutes. The stiffness of the synapse-
like structure dropped to 287.7 kPa from 332.1 kPa at 5 min (13.4% decrease compared to 0 min) and 
increased to 354.0 kPa at 10 min (6.6% increase compared to 0 min). These variations were small and could 
probably be due to measurement uncertainty. 

Next in Chapter 4, I will combine TH-AFM with fluorescence microscopy and verify the 

identity and activity of synapse-like structures.   
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Chapter 4 Correlative TH-AFM/fluorescence 

imaging reveals stiff and functional mature excitatory 

synapses 

AFM is a label-free imaging technique. Think of it as X-ray imaging: while the same X-ray can be used on 

different people, it cannot identify who a person really is. That’s why you may not want to use your recent X-ray photo 

taken from a radiologist’s office on a passport. Instead, a portrait photo is probably a better idea. Similarly, the label-

free property of AFM provides versatility. The same AFM cantilever can potentially be used for different samples without 

much modification. However, this also brings in ambiguity, because topographical and mechanical features do not well 

specify cellular identity. In order to take a portrait photo of cells, we could label them with special biochemical markers 

and rely on fluorescence imaging.  

In this Chapter, I will describe correlative TH-AFM/fluorescence imaging to verify the identity and activity of 

stiff synapse-like structures. 
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4.1 Materials and Methods 

4.1.1 Immunocytochemistry 

The primary antibodies used were PSD-95 (1:1,000, mouse; Abcam ab99009) and Synapsin-1 

(1:1,000, rabbit; Cell Signaling 5297). The secondary antibodies used were Alexa Fluor® 488 Goat 

Anti-Mouse (1:5000, Thermo Fisher Scientific A-11029), Alexa Fluor® 488 Goat Anti-Rabbit (1:5000, 

Thermo Fisher Scientific A-11034), Alexa Fluor® 546 Goat Anti-Mouse (1:5000, Thermo Fisher 

Scientific A-11030), Alexa Fluor® 546 Goat Anti-Rabbit (1:5000, Thermo Fisher Scientific A-11035), 

Cy5® Goat Anti-Mouse (1:5000, Thermo Fisher Scientific A10524), Cy5® Goat Anti-Mouse (1:5000, 

Thermo Fisher Scientific A10523). After TH-AFM imaging, neurons were fixed with 4% (w/v) 

paraformaldehyde (Thermo Fisher Scientific 28908), permeabilized with 0.3% (v/v) Triton X-100 

(Sigma-Aldrich 93443) in phosphate-buffered saline (PBS), and incubated with primary antibodies 

diluted in SuperBlock Blocking Buffer (Thermo Fisher Scientific 37515) overnight at 4°C. Neurons 

were then incubated with secondary antibodies at room temperature for 30 minutes to 2 hours.  

4.1.2 Epifluorescence microscopy 

Optical images were taken before and after TH-AFM imaging using an inverted microscope 

(Axio Observer Z1; Zeiss) at different magnifications (10X, 20X, 100X EC Plan-Neofluar, Zeiss). I 

used phase contrast at 10X and 20X and brightfield at 100X in optical imaging. After live imaging, the 

location of neurons of interest was marked by labeling the relative position of the perfusor (Bruker) 

to the dish, and the relative position of perfusor to the objective to ensure the same regions could be 

captured after immunocytochemistry. Fluorescence images were taken using the same epifluorescence 

microscope (Axio Observer Z1; Zeiss) with proper filter sets (Zeiss and Chrome) at 100X 

magnification (1.3 NA). All images were captured with a standard CCD camera (Hamamatsu) at 1344 

pixel × 1024 pixel resolution. For F-actin imaging in Figure 7-4, same settings such as light power and 

exposure time were used in both DMSO and drug treated neuron cultures. 
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4.1.3 Functional labeling of presynaptic boutons with FM 4–64 

At the end of the AFM experiment, neurons were incubated in high KCl Tyrode’s buffer (77 

mM NaCl, KCl 50 mM, 3 mM CaCl2, 1 mM MgCl2-6H2O, 10 mM HEPES, 30 mM D-glucose, adjusted 

to 300 mOsm with sucrose, pH adjusted to 7.4 with NaOH) with 10 μM FM 4-64 for 45 seconds 

(Gaffield & Betz, 2006; Kay et al., 2011) and then washed with calcium-free Tyrode’s buffer (125 mM 

NaCl, 2 Mm KCl, 1 mM MgCl2-6H2O, 10 Mm HEPES, 30 mM D-glucose, adjusted to 300 mOsm 

with sucrose, pH adjusted to 7.4 with NaOH) for 15 minutes to remove non-specific membrane 

bound FM 4-64. After FM 4-64 imaging, cells were washed with normal Tyrode’s buffer for 30 

minutes to remove trapped FM dyes, before being proceeded to immunocytochemistry.  

4.1.4 Image processing 

Optical images were processed and quantified with ImageJ and Caltracer 2 (available through: 

http://blogs.cuit.columbia.edu/rmy5/methods/). Background signal was measured by selecting dark 

regions in an image and plotting a Gaussian distribution histogram showing mean 𝜇 and standard 

deviation 𝜎 . The intensity of the whole image was then subtracted by 𝜇 + 3𝜎  to remove noise. 

Subtraction processed images were then analyzed using Caltracer to identify colocalization. Puncta 

contours of each marker were detected using an automated algorithm based on fluorescence intensity, 

puncta size, and shape, and were adjusted by visual inspection. Contours of different markers (PSD-

95 and Synapsin-1) were overlaid and a threshold of 5% overlap was used for all potential 

colocalization detection. Colocalized contours were counted and overlaid with stiffness images. 

Optical images and AFM images of the same area were aligned in Adobe Photoshop and visually 

inspected. For visualization purpose only, brightness and contrast was adjusted, median filter was 

applied, and pixel number was increased to smoothen the pixelated images in Adobe Photoshop. For 

quantitative analysis including fluorescence intensity profiles in Figure 4-5 B and Figure 6-6 C, raw 

fluorescence data were used unless otherwise specified. 

http://blogs.cuit.columbia.edu/rmy5/methods/
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4.2 Results and Discussion 

In Chapter 3, I performed nanomechanical imaging of synapse-like structures with TH-AFM 

in live neurons. Aligned optical and AFM images of a large area (Figure 4-1) showed several highly 

stiff synapse-like structures (yellow arrows). These structures also displayed dark contrast in the optical 

image. Based on their morphology and proximity to neurites, I hypothesized they could be synapses.  

 

Figure 4-1 Optical and TH-AFM imaging reveals stiff synapse-like structures. 
Aligned brightfield, AFM height, and AFM stiffness images of the same area in live neuron cultures. The 
color in AFM images represents height (linear scale) and elastic modulus (log scale) respectively. Scale bar: 3 
μm. Yellow arrows point to representative stiff synapse-like structures. White boxed area in the stiffness 
image is highlighted in Figure 4-5. 

To verify the identity of stiff structures revealed by TH-AFM, I performed immunostaining 

against various synaptic markers after TH-AFM imaging and correlated immunofluorescence images 

with AFM images. Combination of AFM and fluorescence microscopy has been used to reveal the 

mechanical structures of cytoskeleton in cells (Chacko et al., 2013; Curry et al., 2017). So far, to my 

knowledge, no correlative AFM stiffness mapping and fluorescence imaging of synapses has been 

reported. I used antibodies against presynaptic marker Synapsin-1 and postsynaptic marker PSD-95 

to identify mature excitatory synapses. 
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Figure 4-2 Μolecular organization at synapse. 
Synapsin-1 (green) and Synaptophysin (yellow) bind to synaptic vesicles at the presynaptic terminal and can 
be used as presynaptic markers. PSD-95 (red) is the major scaffolding protein in the postsynaptic density 
and can be used as a postsynaptic marker. It has multiple PDZ domains that bind to various synaptic proteins 
including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) and N-methyl-D-
aspartate receptors (NMDAR). The postsynaptic density is comprised of membrane receptors and ion 
channels, scaffolding and adaptor proteins, signaling proteins, synaptic adhesion molecules, and cytoskeleton 
(predominately F-actin). The pre- and postsynaptic terminals are connected by synaptic adhesion molecules. 
The image is reprinted and adapted with permission from (Feng & Zhang, 2009), © 2009 Macmillan 
Publishers Limited. 

Synapsin-1 (Figure 4-2, green) is a protein that reversibly binds to the cytoplasmic side of 

synaptic vesicles with high affinity and is enriched in presynaptic axon terminals at mature synapses 

(De Camilli, Harris, Huttner, & Greengard, 1983; T. L. Fletcher, Cameron, De Camilli, & Banker, 

1991). Synapsin-1 also binds to cytoskeleton such as microtubule (Baines & Bennett, 1986) and F-

actin (Bahler & Greengard, 1987). The phosphorylation state of Synapsin-1 regulates the clustering 

and release of synaptic vesicles and synaptic function (Greengard, Valtorta, Czernik, & Benfenati, 

1993). PSD-95 (postsynaptic density protein 95, Figure 4-2, red), a membrane-associated guanylate 
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kinase, is the major scaffolding protein in the postsynaptic density at glutamatergic excitatory synapses 

(Cheng et al., 2006; Cho, Hunt, & Kennedy, 1992; Rao, Kim, Sheng, & Craig, 1998). It contains 

multiple PDZ domains (Feng & Zhang, 2009) that have been reported to bind to various postsynaptic 

proteins such as N-methyl-D-aspartate receptors (NMDAR) (Kornau, Schenker, Kennedy, & Seeburg, 

1995) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) (Nicoll, 

Tomita, & Bredt, 2006), and adhesion molecules (Irie et al., 1997)(Figure 4-2). PSD-95 provides a 

structural basis in the molecular organization of postsynaptic density (X. B. Chen et al., 2011) and 

plays a critical role in synaptic development and function (El-Husseini, Schnell, Chetkovich, Nicoll, & 

Bredt, 2000; Keith & El-Husseini, 2008). Given the characteristic sub-cellular localization of Synapsin-

1 and PSD-95, antibodies against these two proteins have been widely used to label presynaptic 

vesicles and postsynaptic density in hippocampal neurons. Colocalization of these two synaptic 

markers thus provides highly reliable identification of mature excitatory synapses (see 4.1.4 for 

methods used to quantify colocalized puncta).  

 

Figure 4-3 Functional labeling of synaptic terminals with FM dyes. 
(A) Synaptic vesicles reside near the plasma membrane in the presynaptic terminal. (B) FM dyes are added, 
inserts into the plasma membrane and become fluorescent (orange), while they are virtually nonfluorescent 
(grey) in the aqueous solution. (C) After stimulation, a synaptic vesicle fuses with the plasma membrane to 
release neurotransmitter through exocytosis, exposing the luminal side to FM dyes. (D) The vesicle is 
endocytosed with FM dyes loaded on the inner leaflet of the vesicle membrane. (E) Washing out FM dyes 
in the extracellular solution allows only the stained vesicles inside neurons to be labeled and visualized under 
fluorescence microscopy.  

To further characterize these stiff synapses and monitor their activity, I incubated live neurons 

with FM 4-64 dyes after TH-AFM imaging (see 4.1.3 for the functional labeling method). FM dyes 

were originally synthesized by Fei Mao (therefore the name, FM) to image synaptic vesicles in living 
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preparations (Betz, Mao, & Bewick, 1992) and have been used to study the kinetics of synaptic vesicle 

recycling and synaptic activity in cultured hippocampal neurons (Gaffield & Betz, 2006; Ryan et al., 

1993). FM dyes are water-soluble and non-toxic to cells. The excited-state charge transfer of FM dyes 

is solvent polarity-dependent. In polar aqueous solvents such as culture medium and imaging buffer, 

FM dyes are virtually nonfluorescent, while in hydrophobic environments such as membranes they 

become intensely fluorescent (Gaffield & Betz, 2006). This unique property of FM dyes creates a high 

contrast membrane labeling that can be visualized by fluorescence microscopy. As shown in Figure 

4-3, FM dyes insert into the outer leaflet of the plasma membrane and become intensely fluorescent. 

In neurons, stimulation evokes exocytosis and the release of neurotransmitters at the presynaptic 

terminal, followed by a compensatory endocytosis to retrieve synaptic vesicle membranes (Heuser & 

Reese, 1973). FM dyes get internalized within the recycled synaptic vesicles and thus only label 

functional presynaptic terminals with neurotransmitter release (Gaffield & Betz, 2006; Kay et al., 2011). 

Presence of synaptic vesicles at presynaptic terminals does not guarantee that synapses are functional. 

Approximately half of synaptophysin (a synaptic vesicle protein, marked in yellow in Figure 4-2)-

labeled presynaptic terminals have FM puncta (Korkotian & Segal, 2001), suggesting that a substantial 

proportion of synapses are not functional. Therefore, functional labeling with FM dyes provides 

information about synaptic activity complementary to synaptic marker antibodies.  

Figure 4-4 shows the fluorescence images of the same area as in Figure 4-1 after TH-AFM 

imaging. Images from different imaging methods were aligned based on neurite morphology using 

Adobe Photoshop. TH-AFM imaging, FM labeling, and immunocytochemistry preparation did not 

perturb the structures of neurites and synapses. 
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Figure 4-5 A shows representative AFM height and stiffness images and the corresponding 

fluorescence imaging results of a synapse from the boxed area in the stiffness image in Figure 4-1. For 

visualization, a threshold was applied to the stiffness image and recolored the stiffness image in blue. 

Overlaid stiffness and fluorescence images showed that stiff structures were co-labeled with both 

PSD-95 and Synapsin-1. I acquired aligned AFM/immunofluorescence images of 263 synapse-like 

structures and found that all these stiff structures were co-labeled with both Synapsin-1 and PSD-95 

(Figure 4-6 A1, A2), suggesting that stiff synapse-like structures were indeed mature excitatory 

synapses. Aligned AFM/FM images showed that stiff structures were colocalized with FM puncta as 

well (Figure 4-5 A and Figure 4-6 B1, B2), indicating that these synapses were also functional. 

Fluorescence intensity and elastic modulus profiles showed that high stiffness overlapped with 

synaptic markers and the FM dye (Figure 4-5 B).  

 

 

Figure 4-4 Fluorescence imaging of neurons after TH-AFM. 
Fluorescence imaging of synaptic markers PSD-95 (red), Synapsin-1(green), and FM 4-64 (yellow) of the 
same area in Figure 4-1 after TH-AFM imaging. Scale bar: 3 μm. 
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Although fluorescence imaging with synaptic markers allows us to identify mature synapses, 

conventional optical microscopy has a resolution limit of 200 nm due to diffraction, making it difficult 

to localize target proteins and cellular structures with high resolution, or to distinguish pre- and 

postsynaptic components. Indeed, as shown in Figure 4-5 B, fluorescence signals have wider peaks 

than AFM measurements. Recently, the development of super-resolution fluorescence microscopy 

surpasses the resolution limit and provides more accurate localization of synaptic proteins (Dani, 

 

Figure 4-5 Correlative TH-AFM/fluorescence imaging shows stiff synapse-like structures are 
functional mature excitatory synapses. 
(A) Aligned brightfield, AFM height, AFM stiffness and fluorescence images of a representative stiff synapse 
from the boxed area shown in the stiffness image in Figure 4-1. After TH-AFM imaging, neurons were fixed 
and stained with postsynaptic marker PSD-95 (red) and presynaptic marker Synapsin-1 (green). 
Colocalization of these two markers identified mature synapses. Threshold was applied to the stiffness image 
colored in blue. An overlay image of stiffness, PSD-95 and Synapsin-1 showed the stiff structure was a 
mature synapse. In addition, neurons were stained with FM 4-64 (yellow) after TH-AFM imaging to label 
functional synapses. Scale bar: 500 nm. (B) Fluorescence intensity and elastic modulus profiles along the 
dashed lines over the synapse in (A) showed that high stiffness (blue) overlaps with synaptic markers, PSD-
95 (red), Synapsin-1 (green), and FM 4-64 (yellow). Note elastic modulus has a narrower peak than 
fluorescence signals.  
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Huang, Bergan, Dulac, & Zhuang, 2010). It is interesting to combine AFM with super-resolution 

microscopy in the future to investigate how spine stiffness correlates with different synaptic proteins 

both qualitatively and quantitatively.  

 

Figure 4-6 Stiff synapse-like structures are labeled with synaptic markers. 
(A1)(A2) Aligned brightfield, AFM height, AFM stiffness, and immunofluorescence images of two 
representative stiff synapses labeled with both synaptic markers. 263 synapses from 20 neuron cultures were 
imaged with TH-AFM and aligned with immunofluorescence images. Threshold was applied to the stiffness 
image colored in blue. The elastic modulus values of 2 synapses are 271.3 kPa and 363.5 kPa, and the elastic 
modulus values of shafts are 37.3 kPa and 30.9 kPa. (B1)(B2) Aligned brightfield, AFM height, AFM stiffness, 
and fluorescence images of two representative stiff synapses labeled with FM 4-64. 97 synapses from 7 
neuron cultures were imaged with TH-AFM and aligned with FM images. The elastic modulus values of 2 
synapses are 310.8 kPa and 190.7 kPa, and the elastic modulus values of shafts are 24.6 kPa and 26.6 kPa. 
Scale bar: 500 nm. 
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Taken together, the data confirm that stiff structures identified under TH-AFM in cultured 

neurons were functional and mature excitatory synapses.  

Next in Chapter 5, in order to further understand the characteristics of stiff synapses, I will 

combine TH-AFM with another nanoresolution imaging technique: transmission electron microcopy. 
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Chapter 5 Correlative TH-AFM/TEM imaging 

reveals ultrastructure of stiff synapses 

Resolution describes the ability of an imaging system to resolve details in the object being imaged. Higher 

resolution means more image detail. Due to diffraction, optical microscopy has a resolution limit of 200 nm, which is 

not sufficient to visualize complex synaptic nanostructures such as synaptic cleft (20 nm in width), synaptic vesicles (40 

nm in diameter), and postsynaptic density (40 nm in thickness). In contrast, electron microscopy uses a beam of electrons 

instead of photons and achieves a much higher resolution, allowing for the high resolution imaging of synaptic 

ultrastructure.  

In order to understand how surface mechanics is related to synaptic ultrastructure, in this Chapter, I will 

combine TH-AFM with transmission electron microscopy.  
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5.1 Materials and Methods 

 

Figure 5-1 Workflow of correlative TH-AFM/TEM imaging. 
To correlate TH-AFM, TEM, and optical images of the same synapses, neurons (green) were cultured in a 
homemade glass bottom dish with a gridded coverslip. After TH-AFM imaging, neurons were fixed, stained, 
and embedded in resin (orange). The sample block was detached from the coverslip, trimmed to 70 nm serial 
ultrathin sections, and collected on formvar coated slot grids.  

5.1.1 Sample preparation for TEM 

To acquire the ultrastructure of synapses, neurons were cultured in homemade glass bottom 

dishes (Corning® 60mm TC-Treated Culture Dish 430166) on gridded coverslips (Electron 

Microscopy Sciences 72264-18 and 72265-50) (Figure 5-1). A coverslip was glued to the bottom of a 

petri dish with a hole of 1 cm in diameter using Dow Corning Sylgard 184 Silicone Elastomer Clear 

(Ellsworth Adhesives 4019862). After live optical and TH-AFM imaging, neurons were fixed in the 

dish with 2.5% (w/v) glutaraldehyde in 0.15 M sodium cacodylate buffer (pH 7.4) at room temperature 

for 1 hour and then at 4C overnight. Neurons were then rinsed 3 times in 0.1 M cacodylate buffer at 

4C and post-fixed with 1% OsO4 in 0.1 M cacodylate buffer at 4C for 1 hour. After block staining 

with 1% uranyl acetate at 4C for 1 hour, neurons were rinsed 3 times with ddH2O at 4C and 

dehydrated in a gradient of ethanol: 30%, 50%, 70% at 4C for 5 minutes each, 85%, 95% at room 

temperature for 5 minutes each, and 100% four times for 5 minutes each. Neurons were infiltrated in 

100% ethanol/Araldite 502 (Electron Microscopy Sciences 13900) at room temperature: 1:1 twice for 

10 minutes each, 1:2 for 10 minutes, and 100% Araldite three times for 10 minutes each, then 100% 

Araldite overnight. The sample was flat embedded and polymerized at 60C for 48 hours.  
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5.1.2 Serial section TEM 

The sample block was detached from the coverslip by immersing the whole dish in liquid 

nitrogen, and then trimmed under stereoscope. The grid pattern imprinted in the resin served as 

landmarks. 70 nm serial ultrathin sections were cut using Leica UC6 ultramicrotome (Leica 

Microsystems Inc., Buffalo Grove, IL), collected on formvar coated slot grids, and stained with uranyl 

acetate and lead citrate. The top few sections containing the marker grid pattern were recognized 

under transmission electron microscope (Philips CM-12, FEI, Eindhoven, The Netherland) at lower 

magnification (170X), and were used to locate the regions of interest based on the comparison of 

neurites morphology from optical images. To identify regions of interest in deeper sections, the 

relative location of regions of interest on TEM sections was marked on the captured images (Gatan 

4k×2.7k digital camera, Gatan Inc., Pleasanton, CA) and used as reference. Serial sections of neurites 

and synapses were then imaged at 170X - 66000X magnification.  

5.1.3 Image processing 

TEM images were processed with the FIJI plugin Enhance Local Contrast (CLAHE) (available 

through: http://imagej.net/Enhance_Local_Contrast_(CLAHE)) to enhance local contrast for 

visualization, with histogram bins 50. Optical images, AFM images, and TEM images of different 

magnifications and sections of the same area were aligned in Adobe Photoshop and visually inspected. 

In particular, due to the non-linear lens distortions induced by the electromagnetic lenses of TEM, 

serial section TEM images were usually distorted. In order to align TEM images with optical images 

and AFM images, I skewed the TEM images with shear transformation in Adobe Photoshop. For 

visualization purpose only, brightness and contrast was adjusted, median filter was applied, and pixel 

number was increased to smoothen the pixelated images in Adobe Photoshop.  

http://imagej.net/Enhance_Local_Contrast_(CLAHE)
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5.2 Results and Discussion 

In Chapter 4, I used fluorescence microscopy and synaptic markers to identify synapses. In 

particular, Synapsin-1 labels presynaptic vesicles, FM 4-64 labels endocytosed vesicles at functional 

axon terminals, and PSD-95 labels postsynaptic density. However, conventional optical microscopy 

does not provide high resolution imaging of complex synaptic structure or the localization of target 

proteins, making it difficult to distinguish between pre- and postsynaptic terminals.  

In order to distinguish between pre- and postsynapses at high resolution and to investigate 

whether they are mechanically distinct, I performed transmission electron microscopy (TEM) imaging 

after TH-AFM.  

TEM was invented in 1931 by Max Knoll and Ernst Ruska who was awarded the Nobel Prize 

in physics in 1986 for this development (Ruska, 1987). TEM uses a beam of electrons transmitted 

 

Figure 5-2 Applications of TEM in the study of synaptic ultrastructure. 
TEM images in primary hippocampal neuron cultures. (A) A TEM image of 3-4-week-old neurons. The 
dendritic shafts are filled with microtubules, while the spines contain no microtubules and are filled with a 
fluffy and flocculent material. A mushroom-shaped spine with a thin neck forms a synapse with an axon 
terminal (t). (B) High magnification TEM image shows a large asymmetric synapse (open arrow) with a 
mushroom-shaped spine (sp). (C) Distribution of immuno-golds against PDZ1 domain of PSD-95 in 3-week 
hippocampal culture. (D1) Brightfield and FM dye fluorescence (green) overlay and (D2) TEM and FM dye 
fluorescence (green) overlay of the same region. (D3) High magnification TEM image of the synapse pointed 
by the arrow in D2. FM dye labeled vesicles appear with a dark lumen arising from photoconversion. Scale 
bar: A, 1 μm; B, 0.5 μm; C, 0.1 μm; D, E, 1 μm; F, 0.2 μm. Images are reprinted and adapted with permission 
from: A, B, (Papa et al., 1995), © 1995 Society for Neuroscience; C, (X. B. Chen et al., 2011), © 2011 Society 
for Neuroscience; D1, D2, D3, (Darcy et al., 2006), © 2006 Nature Publishing Group.  
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through a specimen which is usually an ultrathin (50 - 100 nm) cross-section of samples on a grid. An 

image is formed from the interaction between the electron and the sample. TEM is capable of 

visualizing samples at much higher resolution (at Angstrom level) than optical microscopy thanks to 

the smaller wavelength of electrons.  

Such high resolution enables TEM to be used in the detailed characterization of synaptic 

ultrastructure (Bartlett & Banker, 1984; Boyer et al., 1998; Papa et al., 1995). To visualize cellular 

structures, in TEM sample preparation (see 5.1.1 for the sample preparation method), osmium is used 

to stain membranes by embedding its heavy metal directly into cell membranes and creating a high 

electron scattering rate. Membranes are thus sharply revealed in negative contrast and protein-rich 

compartments are densely stained. Glutamatergic excitatory synapses with their highly specialized 

synaptic membranes are clearly recognizable with their asymmetric structures (Figure 5-2 A, B). The 

postsynaptic membrane with postsynaptic density is thickening and appears denser than the 

presynaptic side. The presynaptic terminal contains round and electron-lucent synaptic vesicles. 

Dendrites are usually thicker and have a more electron-lucent cytoplasm, while axons are long and 

thin structures with microtubules as their principal constituent. Some synapses consist of spine heads 

that receive from one or more presynaptic terminals, while others are formed between presynaptic 

terminals and dendritic shafts without spine structures. 

Combination of fluorescence imaging and TEM has been used to understand the complex 

neuronal and synaptic structure and function (Figure 5-2 D1, D2, D3) (Begemann & Galic, 2016). 

Darcy et al. combined FM dye labeling and TEM to study vesicle release at synapse in cultured neurons 

(Darcy et al., 2006). Bock et al. combined in vivo fluorescence imaging and TEM to study the network 

anatomy and physiology in the visual cortex (Bock et al., 2011). To my knowledge, no correlative AFM 

stiffness mapping and TEM imaging in neurons has been reported.  

To locate the same synapses under TEM after TH-AFM imaging, neurons were cultured in 
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homemade glass bottom dishes with photoetched gridded coverslips (Figure 5-3). The pattern was 

recognizable under optical microscope (Figure 5-4 A) and was imprinted in the resin block during 

TEM sample preparation. The imprinted pattern was recognizable under stereoscope and low 

magnification TEM, and was used to find the grid of interest.  

 

 

Figure 5-3 A homemade glass bottom dish with a gridded coverslip. 
A 60 mm petri dish with a gridded coverslip attached to the bottom was used for neuron cultures. Schematic 
diagrams of two types of gridded coverslips used in the experiment: numeric and alphanumeric pattern. 
Phase contrast images of pattern “29” and “5X" are shown here as examples. Scale bar: 2 cm. 

 

Figure 5-4 Correlative TH-AFM/TEM imaging. 
(A) Alphanumeric pattern “6Q” was recognized under optical microscope in neuron cultures. TH-AFM 
stiffness image of the boxed area in the high magnification optical image is shown. Scale bar: phase contrast 
100 μm, brightfield 10 μm, AFM stiffness 2 μm. (B) The grid pattern observed in the phase contrast image 
and later imprinted in the resin served as landmarks. Marked dashed lines show the pattern “6Q”. The marker 
grid pattern was recognized in the top TEM section at lower magnification, and was used to locate the 
regions of interest based on the comparison of neurites morphology from optical images. Note that only 
part of “Q” was visible in the TEM image possibly due to the cutting angle in serial section TEM sample 
preparation.  
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Sections were collected on formvar coated slot grids. The top few sections usually contained 

the numeric pattern (Figure 5-4 B). I used the pattern as landmarks to locate areas of interest and 

relied on neurites morphology to align TEM images with optical and AFM images (Reddick & Alto, 

2012).  

Aligned TEM/AFM images showed that stiff structures were featured with presynaptic 

vesicles, postsynaptic density, and synaptic cleft (Figure 5-5 and Figure 5-6). In particular, spines, 

rather than boutons, overlapped with high stiffness pixels. These results conclude that the high 

stiffness observed under TH-AFM originated from postsynaptic spines and that postsynaptic spines 

 

Figure 5-5 Correlative TH-AFM/TEM imaging of stiff synapses. 
(A) Aligned TEM, AFM stiffness, brightfield, and AFM height images of the same synapse. I used the 
numeric pattern on photoetched coverslips as landmarks to align TEM images with optical and AFM images. 
In the TEM image, the bouton is shaded in green and the spine is shaded in red. High stiffness in the AFM 
stiffness image overlapped mostly with the spine head (209 kPa), while the bouton and dendritic shaft 
showed lower stiffness. The stiff spine displayed distinct contrast in the brightfield image and topographical 
feature in the AFM height image. Scale bar: 500 nm. (B) Zoomed-in TEM and AFM stiffness image of the 
boxed area shown in the TEM image in (A) illustrates the synaptic cleft.  Scale bar: 200 nm. White arrowheads 
point to the postsynaptic density. White carets point to presynaptic vesicles. 



46 
 

were mechanically different from presynaptic boutons.  

 

Figure 5-6 Examples of correlative TH-AFM/TEM images of synapses. 
(A) Aligned brightfield, AFM height, AFM stiffness, and serial section TEM images of the same synapse. 
The bouton containing vesicles appeared in TEM section 1, and the spine head with postsynaptic density 
appeared in TEM section 2. (B) Zoomed-in TEM image and stiffness image from the boxed areas in the 
TEM section 2 and AFM stiffness images in (A). Elastic modulus values of the spine and shaft are 53 kPa 
and 11 kPa, respectively. Note high stiffness overlaid with the bottom half of the spine head, while the top 
half of the spine head did not show topographical features and was likely covered by compliant structures. 
(C) A bouton containing vesicles formed a synapse with a spine head. Elastic modulus values of the spine 
and shaft are 26 kPa and 8 kPa, respectively. (D) Zoomed-in TEM image and stiffness image from the boxed 
areas in the TEM section 1 and AFM stiffness images in (C). White arrowheads point to the postsynaptic 
density. White carets point to presynaptic vesicles. Scale bar A, C: 500 nm, B, D: 100 nm. 
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So far, I have used correlative TH-AFM/fluorescence imaging and correlative TH-

AFM/TEM imaging to characterize stiff synapses in cultured hippocampal neurons. It would be ideal 

if we can combine all three imaging methods (AFM-fluorescence-TEM) to visualize the same synapse. 

However, it is technically difficult to combine immunofluorescence with TEM. During 

immunocytochemistry, cells are fixed and permeabilized so that antibodies can get into cells and bind 

to intracellular target proteins (4.1.1). To recognize synapses under TEM, we need to rely on 

presynaptic membranous vesicles and postsynaptic density. Fixation via protein cross-linking and 

membrane permeabilization during immunocytochemistry could cause structural artifacts and sample 

disruption (A. Burette, Collman, Micheva, Smith, & Weinberg, 2015; A. C. Burette et al., 2012), making 

it difficult to visualize synapses under TEM.  

Other approaches might provide a potential combination of all three imaging methods. First, 

alternative fluorescence approach using genetically encoded fluorescence tags such as GFP labeled 

PSD-95 allows the visualization of synaptic markers directly without immunocytochemistry. However, 

overexpression of exogenous synaptic proteins such as PSD-95 could affect synaptic development 

and function (El-Husseini et al., 2000), making the observed results hard to interpret. Compounded 

with the difficulty and low efficiency in transfecting primary neuron cultures (Karra & Dahm, 2010), 

I did not use this approach. Second, alternative TEM approach using immuno-gold labeling to 

recognize target proteins allows direct identification of synaptic markers without fluorescence imaging. 

Chen et al. used immuno-gold labeling to visualize the location of PSD-95 (Figure 5-2 C)(X. B. Chen 

et al., 2011). However, the resolution is affected by the size the gold particles in the range of 10 - 20 

nm (Griffiths et al., 1993), which may mask the ultrastructure environment of the target. In addition, 

immuno-gold also requires membrane permeabilization similar to immunofluorescence imaging, 

which could affect the image quality of membrane ultrastructure. Since the current approach already 

confirmed that high stiffness came from spines, I did not use immuno-gold TEM. Third, although 
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serial section TEM reveals ultrastructure of synapses, the aligning and reconstruction is extremely 

time-consuming and technically demanding. Another electron microscopy technique, focused ion 

beam/scanning electron microscopy (FIB-SEM), allows efficient and automatic 3D reconstruction of 

identified dendrites and synapses in hippocampal slices (C. Bosch et al., 2015). I have tried to image 

the samples with FIB-SEM and found that the high electron scattering from the bright blank 

background in sparse neuron cultures made the image quality of synapses not sufficient to reveal 

synaptic ultrastructure. Therefore, I did not rely on FIB-SEM to visualize synapses.  

Next in Chapter 6, I will perform detailed quantitative analysis of spine stiffness.   
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Chapter 6 Spines are substantially stiffer than shafts 

Not all spines are created equal. Spines vary in their morphology, molecular organization, calcium 

compartmentalization, and strength, creating a broad spectrum of input-specific structural and functional plasticity. Does 

spine stiffness also display such heterogeneity? How is spine stiffness related to spine morphology? Would spine stiffness 

give us some insights into synaptic function?  

In this Chapter, I will delve deeper into the data and analyze spine stiffness quantitatively.  
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6.1 Methods 

6.1.1 Data analysis 

For apparent spine size measurement, a median filter was applied to the AFM stiffness image. 

Substrate signal was measured by selecting a substrate region in the image and plotting a Gaussian 

distribution histogram showing mean 𝜇 and standard deviation 𝜎. The threshold was then set as 𝜇 +

3𝜎 to identify areas of interest for area measurement.  

Error bars in all figures represented standard error of mean. Statistic comparisons were done 

using two-tailed t tests. Sample size (n), p value, and Pearson correlation coefficient (r) were given in 

figure legends when applicable. Each neuron culture represented an independent experiment. A 

significance level of 0.01 was used in hypothesis tests and p < 0.01 was considered significant.  

To fit the transformed data to a normal distribution, the maximum likelihood estimation 

method was used. Goodness of fit tests of the transformed data in a normal distribution were 

performed using two-tailed Kolmogorov-Smirnov tests with the null hypothesis that the transformed 

data is normally distributed. I tested goodness of fit for different transformations including logarithm, 

square root, and cubic root, as well as for non-transformed data (Table 6-1). Given that for spine 

stiffness (kPa), shaft stiffness (kPa), spine size (μm2), logarithm transformation has the highest p value 

(the probability of the null hypothesis being true), the data is likely to follow a lognormal-like 

distribution.  

All data were analyzed using Python. 

 spine stiffness (kPa) shaft stiffness (kPa) spine size (μm2) 

non-transformed 2.01E-05 2.45E-05 0.0001 

logarithm  0.3192 0.2446 0.9486 

square root  0.0231 0.0061 0.0941 

cubic root  0.1609 0.0233 0.4158 

Table 6-1 p values for two-tailed Kolmogorov-Smirnov tests of transformed data. 
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6.1.2 Contact mechanics model used in stiffness calculation 

 Elastic modulus was calculated by fitting the AFM force-distance curves using a Derjaguin-

Muller-Toporov (DMT) model (Derjaguin et al., 1994) with a hemispherical indenter as previous 

described (Sahin & Erina, 2008) (Figure 6-1 A). The interaction force during AFM indentation is 

written as the following: 

𝐹 = 𝐹𝑎𝑑ℎ + 
4

3
𝐸∗√𝑅∗𝑑

3

2     (1) 

𝐹 denotes the tip-sample interaction force. 𝐹𝑎𝑑ℎ denotes a constant adhesion force measured 

by the peak negative force during AFM retraction. 𝐸∗ denotes the effective elastic modulus. 𝑑 denotes 

the indentation depth. 𝑅∗ denotes the effective radius: 

 
1

𝑅∗
= 

1

𝑅𝑡𝑖𝑝
+ 

1

𝑅𝑠𝑎𝑚𝑝𝑙𝑒
             (2) 

𝑅𝑡𝑖𝑝  is the tip radius, and 𝑅𝑠𝑎𝑚𝑝𝑙𝑒  is the sample radius. Because 𝑅𝑠𝑎𝑚𝑝𝑙𝑒  (spine and shaft 

radius) is relatively large compared to 𝑅𝑡𝑖𝑝, 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 was neglected in the stiffness calculation in Figure 

6-3 for 409 spines and shafts.  

6.1.3 Sensitivity of spine stiffness/spine size correlation to contact mechanics models 

The results in Figure 6-5 showed spine stiffness was correlated with spine size. It is important 

to consider whether such correlation is introduced because the calculation of 𝐸∗ depends on spine 

radius 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 (Equation (1), (2)). In order to analyze the correlation between spine stiffness 𝐸∗and 

spine size 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 , I first took into consideration 𝑅𝑠𝑎𝑚𝑝𝑙𝑒  to calculate 𝐸∗ in the DMT model 

(Equation (1), (2)). To estimate 𝑅𝑠𝑎𝑚𝑝𝑙𝑒, I first measured the apparent spine size from AFM stiffness 

images by thresholding the stiffness signal to identify region of interest for area measurement. I used 

area, 𝑆, to represent the apparent spine size in Figure 6-4 and Figure 6-5. Assuming the measured area 

is a round flat surface, I estimated sample radius from 𝑆 =  𝜋𝑅𝑠𝑎𝑚𝑝𝑙𝑒
2. I used the DMT model with 
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𝑅𝑠𝑎𝑚𝑝𝑙𝑒 in the stiffness calculation in Figure 6-5. Inclusion of 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 in the DMT model slightly 

increases measured spine stiffness, suggesting that the stiffness calculation in Figure 6-3 may be an 

underestimate of sample stiffness.  

When the AFM tip exerts force onto the spine head, the forces are transmitted to the spine 

head – substrate interface. Deformations of the spine head at this interface during interactions with 

AFM tip could also affect stiffness measurements. Because spine diameters are large compared to the 

AFM tip, neglecting the spine-substrate interface in the DMT model is a plausible assumption. 

Furthermore, presence of adhesive forces between the substrate and the spine head would increase 

the apparent stiffness of this interface. However, it is still possible to make a worst-case estimate of 

the contributions from the spine-substrate interface by assuming that there are no adhesive forces at 

this interface and the spine head is making a sphere-plane contact with the substrate.  

 

Figure 6-1 Contact mechanics models. 
Schematic diagrams illustrate models when indentation (d) only occurs at the top surface between the AFM 
tip with radius Rtip and the sample with radius Rsample (A) or at both the top surface and the bottom surface 
between the sample and the substrate (B).  

I carried out this worst-case analysis by considering indentations on both surfaces: 𝑑 =

 𝑑𝑡𝑜𝑝 + 𝑑𝑏𝑜𝑡𝑡𝑜𝑚. 𝑑𝑡𝑜𝑝 is the indentation depth on the top surface of the sample, and 𝑑𝑏𝑜𝑡𝑡𝑜𝑚 is the 

indentation depth on the bottom of the sample close to the substrate (Figure 6-1 B). In the DMT 

model used in Figure 6-3, I assumed the indentation between the bottom of the sample (spine head) 

and the substrate is trivial and thus used 𝑑 =  𝑑𝑡𝑜𝑝. Here, to account for both 𝑑𝑡𝑜𝑝 and 𝑑𝑏𝑜𝑡𝑡𝑜𝑚 to 
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make an worst-case estimate of elastic modulus considering sample geometry, I adapted the “sphere 

between two parallel planes” model (Puttock & Thwaite, 1969). Given 𝐹 is the same on both surfaces, 

we could write 𝐹 =  
4

3
𝐸∗√𝑅𝑡𝑜𝑝

∗ 𝑑𝑡𝑜𝑝
3

2, and 𝐹 = 
4

3
𝐸∗√𝑅𝑏𝑜𝑡𝑡𝑜𝑚

∗  𝑑𝑏𝑜𝑡𝑡𝑜𝑚
3

2, thus  

 𝑑𝑏𝑜𝑡𝑡𝑜𝑚

𝑑𝑡𝑜𝑝
= √

 𝑅𝑡𝑜𝑝
∗

𝑅𝑏𝑜𝑡𝑡𝑜𝑚
∗  

3
         (3) 

From Equation (2), we could get 𝑅𝑏𝑜𝑡𝑡𝑜𝑚
∗ = 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 , and 𝑅𝑡𝑜𝑝

∗ = 
𝑅𝑡𝑖𝑝 × 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 

𝑅𝑡𝑖𝑝+ 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 
. Thus  

Equation (3) can be written as: 

 𝑑𝑏𝑜𝑡𝑡𝑜𝑚

𝑑𝑡𝑜𝑝
= 

 1

√1+ 
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑡𝑖𝑝
 

3
       (4) 

From Equation (1), the worst-case elastic modulus 𝐸2
∗ can be written as 𝐹 =

4

3
𝐸2
∗ √𝑅𝑡𝑜𝑝

∗ 𝑑𝑡𝑜𝑝
3

2 

while the DMT model 𝐸∗is written as 𝐹 =  
4

3
𝐸∗√𝑅𝑡𝑜𝑝

∗ (𝑑𝑡𝑜𝑝 + 𝑑𝑏𝑜𝑡𝑡𝑜𝑚)
3

2. We could then derive 𝐸2
∗ 

as following:  

𝐸2
∗ = 𝐸∗ ×
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𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑡𝑖𝑝
 

3

)

 
 

3

2

     (5) 

Using this worst-case 𝐸2
∗ which accounts for sample geometry 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 and sample-substrate 

interaction, I performed correlation analysis, and revealed that the worst-case 𝐸2
∗ is still correlated with 

spine size with r = 0.2595 and p = 2.461E-03. In the DMT model with 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 (spine radius) taken 

into account, 𝐸∗ is correlated with spine size with r = 0.3837 and p = 4.719E-06 (model in Figure 6-4 

and Figure 6-5). In the DMT model without 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 (spine radius) taken into account (i.e. assuming 

𝑅𝑠𝑎𝑚𝑝𝑙𝑒 ≫ 𝑅𝑡𝑖𝑝), 𝐸∗ is correlated with spine size with r = 0.4384 and p = 1.174E-07 (model in Figure 

6-3). In all three models, spine stiffness is correlated with spine size.  
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6.2 Results and Discussion 

Spines form the postsynaptic components of most excitatory synapses (Boyer et al., 1998; 

Niesmann et al., 2011), and their structural and functional plasticity is critical for learning and memory 

(A. Holtmaat & Svoboda, 2009). A spine usually consists of an enlarged head (1-2 μm in diameter) 

and is connected to the dendritic shaft by a thin neck (200 nm in diameter, and 0.5 to several μm in 

length) (Figure 6-2). The unique morphology of spines is thought to play a role in synaptic function, 

allowing for the biochemical compartmentalization (Yasuda et al., 2006) and electrical 

compartmentalization (Tsay & Yuste, 2004). Spine morphological features including spine head size, 

neck width, and neck length, fall into a wide range (Peters & Kaiserman-Abramof, 1970), and can be 

largely stable over hours (Tonnesen et al., 2014). During synaptic plasticity, spine heads become larger 

(Honkura, Matsuzaki, Noguchi, Ellis-Davies, & Kasai, 2008; Matsuzaki, Honkura, Ellis-Davies, & 

Kasai, 2004; Okamoto, Nagai, Miyawaki, & Hayashi, 2004; Zhou, Homma, & Poo, 2004), and spine 

necks become wider and shorter revealed by super-resolution microscopy (Tonnesen et al., 2014). 

Such morphological heterogeneity provides functional diversity for synapses, enabling input-specific 

plasticity and maximizing neuron connectivity (Rafael Yuste, 2010).  

 

Figure 6-2 Spine morphological heterogeneity. 
A schematic diagram of morphologies of spines and filopodia. Note that some synapses are formed directly 
on the shaft without spine structures.  

In this work, I define postsynaptic protrusions with synaptic contacts as spines, and those 

without synaptic contacts as filopodia. The definition of spines I used is based on synaptic markers 
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and ultrastructure under electron microscopy, rather than spine morphology as used previously (Peters 

& Kaiserman-Abramof, 1970). This is because morphological features can be ambiguous and do not 

allow for clear distinction between filopodia and so-called immature spines. 

6.2.1 Spines are on average 10 times stiffer than shafts 

Intriguingly, the stiffness of spines fell within a wide range. The stiffness of shafts, on the 

contrary, was constantly low (Figure 6-3 Α). Spines were on average 10 times stiffer than nearby shafts. 

The minimum, maximum, median, and mean elastic modulus values of spines are 23.2 kPa, 671.9 kPa, 

166.9 kPa and 201.3 kPa, whereas the minimum, maximum, median, and mean elastic modulus values 

of shafts are 7.1 kPa, 67.4 kPa, 20.7 kPa and 23.6 kPa (see 3.1.4 for quantitative stiffness measurement 

of areas of interest). 

 

Figure 6-3 Distribution of spine stiffness and shaft stiffness. 
(A) Histogram of elastic modulus of spines (grey) and nearby shafts (black) with bins = 20. n = 409 spines 
/ 30 neuron cultures. I fitted the logarithm data with a normal distribution in (B)(C). Spine stiffness fitted 
curve (lognormal) is shown in red in (A). The mean elastic modulus values of spines and shafts from the 
fitting are 164.3 kPa and 21.4 kPa, respectively. I tested the goodness of fit using Kolmogorov-Smirnov tests 
(pspine = 0.3192, pshaft = 0.2446). 

The distributions of spine and shaft stiffness were strongly skewed with heavy tails and 

exhibited the characteristics of a lognormal distribution (Figure 6-3). The fitted mean elastic modulus 

values of log-scaled spines and shafts are 164.3 kPa and 21.4 kPa, respectively. It has been reported 

that many physiological features of the brain, such as neuronal firing rate and synaptic strength, have 

lognormal-like distributions, which may help establish reliable and unique information encoding 
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(Buzsaki & Mizuseki, 2014).  

Among the 409 spines/shafts measurements in Figure 6-3, 263 spines were confirmed with 

immunocytochemistry as described in Chapter 4. In my experiment, I first confirmed that all 263 stiff 

spines revealed by TH-AFM were co-labeled with both synaptic markers. Then in the subsequent 

AFM experiment, I did not stain neurons anymore because the conclusion that stiff synapse-like 

structures are spines is already validated. See for the comparison in Table 6-2 and Table 6-3 between 

263 spines that have been confirmed with immunocytochemistry and the remaining 146 spines 

without immunocytochemistry. The stiffness of spines without immunocytochemistry is on the similar 

range and scale as spines with immunocytochemistry.  

 all spines 
with 

immunocytochemistry 
without 

immunocytochemistry 

count 409 263 146 

mean (kPa) 201.35 176.65 245.84 

std (kPa) 127.01 113.85 137.38 

min (kPa) 23.21 23.21 34.96 

25% (kPa) 105.70 94.88 141.35 

50% (kPa) 166.90 141.80 202.62 

75% (kPa) 273.97 243.04 355.93 

max (kPa) 671.95 574.72 671.95 

lognormal mean (kPa) 164.28 144.42 207.20 

Table 6-2 Spine stiffness comparison 

 all spines 
with 

immunocytochemistry 
without 

immunocytochemistry 

count 409 263 146 

mean (kPa) 23.57 24.95 21.08 

std (kPa) 10.99 10.95 10.65 

min (kPa) 7.08 10.11 7.08 

25% (kPa) 15.67 17.15 12.29 

50% (kPa) 20.67 22.05 18.39 

75% (kPa) 28.65 30.75 27.07 

max (kPa) 67.44 67.44 59.13 

lognormal mean (kPa) 21.38 22.98 18.78 

Table 6-3 Shaft stiffness comparison 

I measured the apparent spine size from AFM stiffness images by thresholding the stiffness 

signal to identify regions of interest for area measurement (see 6.1.1 for quantitative area 
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measurement). I found that the distribution of apparent spine size was also skewed with a heavy tail 

with a mean size of 0.23 μm2 (Figure 6-4). 

 

Figure 6-4 Distribution of apparent spine size. 
Histogram of the apparent spine size measured from AFM stiffness images with bins = 37. n = 134 spines / 
20 neuron cultures. I fitted the logarithm data with a normal distribution (red fitted curve with a mean spine 
size of 0.23 μm2.) and tested the goodness of fit using a Kolmogorov-Smirnov test (p = 0.9486). 

More interestingly, I found that spine stiffness measurements were positively correlated with 

the apparent spine size (Figure 6-5) (see 6.1.3 for additional discussion about correlation analysis), 

suggesting that larger spines may have underlying changes in intracellular cytoskeleton architecture (M. 

Bosch et al., 2014).  

 

Figure 6-5 Spine stiffness is correlated with spine size. 
Correlation of spine elastic modulus with apparent spine size from Figure 6-4. n = 134 spines / 20 neuron 
cultures. r: Pearson correlation coefficient. p: significance of correlation with a two-tailed t test. p = 4.719E-
06. 
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The criteria used for synapse-like structures under TH-AFM discussed in 3.2 might exclude 

spiny synapses with a stiffness below 20 kPa or without distinct height features in topographical images 

(for example, spines buried underneath neurites), and shaft synapses that are formed directly on the 

shaft without protrusive spine structures. Nevertheless, given that the measured spine stiffness had a 

lognormal-like distribution with a peak around 164 kPa, very few spines would be excluded by these 

criteria.  

In this work, I did not track the dynamic changes of spine stiffness and spine size, and did not 

investigate how a single spine changes over time. Instead, the current results were a snapshot of spines 

at the population level. It has been reported that at the population level, spine size is correlated with 

synaptic strength (Matsuzaki et al., 2001). The relationship between spine stiffness and spine size could 

be interpreted both at the population level and at the individual spine level. At the population level, 

spines are largely heterogeneous with different morphological features, sizes, functional strength, and 

dynamic motility (R. Yuste & Bonhoeffer, 2004), as well as internal actin architecture. Thus, there 

could be innate stiffness heterogeneity among different spines irrelevant to spine size, which could 

explain why only 40% of spine stiffness changes can be explained by spine size (r = 0.3837). At the 

individual spine level, spines can increase their sizes after long-term potentiation, also referred to as 

structural plasticity, and get functionally potentiated (Hering & Sheng, 2001). During such spine 

enlargement, actin undergoes remodeling and increased cross-linking (Honkura et al., 2008; Matsuzaki 

et al., 2004; Okamoto et al., 2004; Zhou et al., 2004), which would enhance spine stiffness, resulting 

in a positive correlation between spine size and spine stiffness. Therefore, the current observation is 

likely a mixture of both individual spine changes and population heterogeneity. To distinguish between 

these two, it is worth investigating how a single spine changes its size and stiffness after stimulation 

in the future.  
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6.2.2 Shaft synapses do not display high stiffness 

I have shown that high stiffness originated from spines. It is then interesting to study whether 

excitatory synapses without spines are also stiff. Previous research showed that 50% of excitatory 

synapses in hippocampal neurons are formed on the shaft without protrusive spine structures both in 

in vitro neuron cultures and in brain slices (Boyer et al., 1998; Niesmann et al., 2011). The ratio of shaft 

synapses to spiny synapses decreases in older cultures and adult animals (Fiala, Feinberg, Popov, & 

Harris, 1998). It remains unclear whether new spines grow from previously existing shaft synapses (R. 

Yuste & Bonhoeffer, 2004) or from filopodia which initiate synaptic contacts with nearby axons (Ziv 

& Smith, 1996), and it is also unclear whether shaft synapses are converted from pruned spiny synapses 

(Ovtscharoff et al., 2008) or originate with a different mechanism. In addition, it is not clear whether 

shaft synapses are functionally different from spiny synapses. Recently, Xu et al. used super-resolution 

microscopy stochastic optical reconstruction microscopy (STORM) to image receptor organization in 

cultured hippocampal neurons and showed that shaft synapses and spiny synapses consist of different 

combinations of glutamate receptors and that shaft synapses are apparently silent (C. Xu, Liu, H., Qi, 

L., Hao, G., Shen, Z., Wang, Y., Babcock, H., Lau, P., Zhuang, X, Bi, G., 2017). Given their 

morphological and potentially functional differences, shaft synapses may be mechanically distinct 

from spiny synapses.  

I first used correlative TH-AFM/fluorescence imaging to visualize potential shaft synapses. 

Colocalization of PSD-95 and Synapsin-1 puncta from immunofluorescence imaging revealed more 

mature synapses than TH-AFM. As shown in Figure 6-6 B, synapse 1 and 2 did not display high 

stiffness or distinct topographical features, nor were they recognizable in the brightfield images. These 

two synapses were very close to the dendritic shafts, and were likely to be shaft synapses. 
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To quantify the number of colocalized puncta, I used Caltracer (Figure 6-7 A) and set 

parameters such as fluorescence intensity, puncta size, and the threshold of overlapping percentage. I 

found that 32% of synapses identified by immunofluorescence displayed high stiffness under TH-

AFM (Figure 6-7 B) and all synapse-like structures detected by TH-AFM using the criteria described 

in Chapter 3 displayed higher stiffness than nearby dendrites and axons.  

 

Figure 6-6 A subgroup of synapses identified by immunofluorescence microscopy do not show high 
stiffness. 
(A) PSD-95 and stiffness image of the same area in cultured neurons. Scale bar: 3 μm. (B) Aligned brightfield, 
immunofluorescence, AFM height, and AFM stiffness images of the boxed area in (A). Synapses identified 
by the colocalization of PSD-95 and Synapsin-1 (marked as 1 and 2 in the overlaid brightfield/PSD-
95/Synapsin-1 image) did not show recognizable height and stiffness features under TH-AFM and were very 
close to the shaft. Scale bar: 1 μm. (C) Fluorescence intensity profiles along the dashed lines over two 
synapses in B showed overlapping of PSD-95 (red) and Synapsin-1 (green).  
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Figure 6-7 Colocalization detection with Caltracer. 
(A) Caltracer was used to identify colocalized puncta (see 4.1.4 for methods used to quantify colocalized 
puncta). Only those within 2 μm of neurites and with a diameter 0.2 - 2 μm were considered as synapses. I 
used these criteria to quantify total number of immunofluorescence (IF)-identified synapses. Scale bar: A: 3 
μm. (B) In 9 neuron cultures, IF identified 194 synapses of which 62 were also identified under TH-AFM.  

Such inconsistence in synapse detection between AFM and immunofluorescence may be 

explained by the following reasons. First, optical immunofluorescence microscopy has a resolution 

limit of 200 nm. Although the analysis was done in a consistent manner, the fluorescence puncta in 

the optical images are likely to be larger than the actual synaptic structures, causing false positive results 

in colocalization detection. Second, AFM imaging requires a physical contact between the cantilever 

tip and the sample. Due to the very small force (300 pN) applied, it is possible that the cantilever loses 

contact with the sample during scanning. Such small forces plus low indentation distances limit the 

reach to synapses that are embedded underneath neurites of which I did not observe any topographical 

features nor mechanical ones. With such limitation in AFM measurements, not observing high 

stiffness under AFM does not necessarily mean those synapses identified by immunofluorescence 

were not stiff. Third, a subgroup of mature excitatory synapses are indeed not stiff, as the AFM images 

revealed. The imaging results showed that those synapses without high stiffness were usually 

undistinguishable in optical images and topographical images, and their immunostaining puncta were 

very close to the shafts, likely to be shaft synapses.  
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Figure 6-8 A shaft synapse does not display high stiffness. 
(A) Aligned TEM, AFM stiffness, AFM height, and optical images of a shaft synapse. The bouton is shaded 
in green and the postsynapse is shaded in red. Scale bar: 1 μm. (B) Zoomed-in TEM image from the boxed 
area in the TEM image in (A) illustrates the synaptic cleft. White arrowheads point to the postsynaptic 
density. White carets point to presynaptic vesicles. Note there were some needle-like precipitations (white 
asterisks) from TEM sample preparation. Scale bar: 200 nm. (C) Elastic modulus profile along the dashed 
lines in the AFM stiffness image in (A) over the synapse. Note although this synapse had a low stiffness of 
35.6 kPa, it was still distinguishable from the substrate. 

In order to acquire the high resolution ultrastructure of shaft synapses and to distinguish shaft 

synapses from spiny synapses more accurately, I used TEM to visualize the ultrastructure of a synapse 

that was not stiff under TH-AFM as I did in Chapter 5. I found that the synapse that did not show 

high stiffness under TH-AFM was formed on the shaft (Figure 6-8), suggesting that shaft synapses 

could be mechanically different from protrusive synapses with spines.  
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6.2.3 Filopodia are not stiff 

 

Figure 6-9 Immature protrusions are not stiff. 
(A) Aligned brightfield, AFM height, AFM stiffness, and immunofluorescence images of neurons on DIV7. 
Note the thin protrusions were not highly stiff (14 kPa). (B1)(B2) Aligned brightfield, AFM height, and AFM 
stiffness images of neurons on DIV6. Elastic modulus values of these non-stiff protrusions are 18 kPa, 14 
kPa respectively. Scale bar: 2 μm. See 3.1.4 for quantitative stiffness measurement of areas of interest. 

In addition, I found that immature protrusions, likely filopodia, were not stiff under TH-AFM 

(Figure 6-9). Filopodia are likely to be the precursors of spines (R. Yuste & Bonhoeffer, 2004). As a 

spine matures, its morphology changes from a filopodium-like protrusion to a mushroom-shaped 
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structure with a knobby head and a thin neck, accompanied with actin remodeling (Korobova & 

Svitkina, 2010; Mattila & Lappalainen, 2008). These observations that mature spines were stiff and 

filopodia were not stiff suggest that spine stiffness may increase as spines mature. It is thus worth 

investigating in the future how a single spine changes its stiffness as it matures and how stiffness 

change is related to synaptic function and activity.  

Next in Chapter 7, I will examine the potential source for spine stiffness.   
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Chapter 7 Spine stiffness and actin networks 

Diamond is one of the stiffest materials on earth, and has high wear and chemical resistivity, which makes the 

slogan “A Diamond Is Forever” somewhat valid from a physical perspective. Valuable though a diamond can be, it is 

made of exactly the same material as soft graphite in a pencil at the atomic level: carbon. What crowns a diamond on 

an expensive engagement ring and what wraps graphite in an inexpensive pencil is the different arrangements of carbon 

atoms.  

Similarly, cytoskeleton in stiff spines and soft shafts exhibits different arrangements. One particular type of 

cytoskeleton, F-actin, is enriched in spine heads and forms densely cross-linked networks. This special arrangement of 

F-actin may contribute to high spine stiffness.  

In this Chapter, I will study how spine stiffness is related to actin networks.  
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7.1 Materials and Methods 

7.1.1 Pharmacological treatments 

Drugs used in this work were Latrunculin A (Sigma-Aldrich L5163) and (-)-Blebbistatin (EMD 

Millipore 203391). Drugs were first dissolved in DMSO (Sigma-Aldrich D2650) and used at different 

working concentrations: Latrunculin A (Lat A) 10 μM and Blebbistatin 100 μM. In time-lapse TH-

AFM imaging, drugs were added to Tyrode’s buffer at room temperature and AFM images were taken 

before and after the treatment. To compare the before and after long-term effect of Lat A, neurons 

were cultured in the same type of glass bottom dishes with gridded coverslips used in correlative TH-

AFM/TEM imaging. Neurons were first imaged in Tyrode’s buffer under TH-AFM for up to 2 hours. 

Neurons were then rinsed with sterile Tyrode’s buffer and incubated with sterile culture medium 

containing Lat A in the incubator for 12-24 hours. TH-AFM imaging was performed again on the 

same spines after treatment in Tyrode’s buffer containing Lat A. DMSO (less than 0.1 %) was used in 

randomly assigned control experiments. Neurons were fixed at the end of the experiment for 

immunocytochemistry.  

7.1.2 Immunocytochemistry  

To label F-actin, Alexa Fluor® 546 Phalloidin (1:500, Thermo Fisher Scientific A22283) was 

added to the secondary antibody solution in the standard immunocytochemistry as described in 4.1.1.  

7.1.3 Statistical analysis  

Error bars in all figures represented standard error of mean. Statistic comparisons were done 

using two-tailed t tests. Sample size (n), p value, and Pearson correlation coefficient (r) were given in 

figure legends when applicable. Each neuron culture represented an independent experiment.   
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7.2 Results and Discussion 

 

Figure 7-1 Spines contain dense actin networks regulated by actin binding proteins. 
(A) Cytoskeletal organization of a synapse. Platinum replica electron microscopy of DIV 14 cultured 
neurons. A mushroom-shaped spine (cyan) is associated with a dendritic shaft (yellow) at the bottom and an 
axon (purple) at the top. Thick fibers in the axon and dendritic shaft represent microtubules. (B) Zoomed-
in image of the yellow box in (A) shows branched actin networks (cyan) in the spine head. The inset shows 
the nonpseudocolored region outlined by yellow box. (C) Electron micrograph of quick-frozen, deep-etched, 
rotary-shadowed actin filament branches mediated by Arp2/3 complex. (D) A schematic diagram illustrating 
actin networks and actin biding proteins in a spine. G-actin (blue) polymerizes into F-actin (black lines). F-
actin forms branched networks mediated by Arp2/3 (green). Cofilin (orange) depolymerizes pointed ends 
of F-actin. Actin barbed ends (red lines) are capped by capping proteins, the function of which is not yet 
clear. Images are reprinted and adapted with permission from: A, B, (Korobova & Svitkina, 2010), © 2010 
Korobova et al; C, (Volkmann et al., 2001), © 2001 American Association for the Advancement of Science; 
D, (Hotulainen & Hoogenraad, 2010), © 2010 Hotulainen and Hoogenraad. 

Cytoskeleton provides spatial organization, supports intracellular contents, and connects cells 

to the environment (extracellular matrix or other cells) both physically and biochemically, generating 

and sustaining forces in cell dynamics (D. A. Fletcher & Mullins, 2010). Neurons with their highly 

specialized morphology have a unique cytoskeleton organization. Axons and dendrites contain 

microtubules that serve as highways for intracellular traffic. Actin filaments (F-actin) form periodic 

ringlike structures in axons of hippocampal neurons (K. Xu, Zhong, & Zhuang, 2013), providing both 

flexibility and rigidity. Spines with their small and peculiar shapes have densely cross-linked F-actin as 

their main cytoskeleton (Figure 7-1 A, B). F-actin plays an important role in synaptic structure and 

function (Cingolani & Goda, 2008; Korobova & Svitkina, 2010), and actin dynamics is involved in 

synaptic plasticity (Okamoto et al., 2004; Peng et al., 2004; Zhou et al., 2004) 
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F-actin, the polymer form of globular actin monomer (G-actin), is polar. The barbed end 

grows faster than the pointed end. F-actin is quite rigid with a persistence length of 17 μm (Gittes, 

Mickey, Nettleton, & Howard, 1993), forming semiflexible polymer networks. The nucleation, 

polymerization, and organization of actin in cells is regulated and controlled by actin concentration 

and various actin binding proteins such as Arp2/3, Myosin II, and cofilin (Hotulainen & Hoogenraad, 

2010) (Figure 7-1 C, D).  

 

Figure 7-2 Elasticity of actin networks comes from cross-linking density or tension. 
(A) A schematic diagram illustrating the elasticity of actin networks (stiffness) and cross-linking density. At 
low cross-linking density, the elasticity of actin networks exhibits no dependence on cross-linking density. 
At high cross-linking density, elasticity increases dramatically with cross-linking density. (B) Different F-actin 
(red) cross-linking architectures. Arp2/3(green)-mediated branched actin networks and filamin(purple)-
mediated cortical actin networks are shown here. (C) A schematic diagram illustrating the elasticity of cross-
linked actin networks and tension. Actin networks stiffen under an intermediate level of tension. (D) Tension 
applied on cross-linked (cross-linker shown in black) actin networks can be external strain or internal Myosin 
II (magenta)-mediated contractility. Diagrams are reprinted and adapted with permission from: A, (Gardel 
et al., 2004), © 2004 American Association for the Advancement of Science; B, (D. A. Fletcher & Mullins, 
2010), © 2010 Macmillan Publishers Limited; C, D, (Mak, Kim, Zaman, & Kamm, 2015), © 2015 The Royal 
Society of Chemistry. 

As the main cytoskeleton in spine heads, F-actin could be the primary source of spine stiffness. 

Elasticity of actin networks could come from actin cross-linking or tension applied to actin networks 

(Gardel et al., 2004). In the first case, in the presence of high concentration of cross-linkers, F-actin 
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could form complex architecture such as branched networks mediated by Arp2/3 (Mullins, Heuser, 

& Pollard, 1998) and cortical networks involving filamin (Stossel et al., 2001)(Figure 7-2 A, B). It is 

known that F-actin forms densely branched networks in spine heads (Korobova & Svitkina, 2010), 

which could be a source of high stiffness. In the second case, actin networks stiffen as they are strained 

to resist large deformation as a result of filament entanglement (Gardel et al., 2004; Storm, Pastore, 

MacKintosh, Lubensky, & Janmey, 2005). Tension could either come from external stress (Storm et 

al., 2005) or internal actomyosin contractility (Mizuno, Tardin, Schmidt, & MacKintosh, 2007)(Figure 

7-2 C, D). Due to the presence of synaptic adhesion molecules and their catch bond features (Manibog 

et al., 2014; Rakshit et al., 2012), synapses and the intracellular actin networks could be under external 

stress, causing tension-dependent actin networks stiffening. In addition, given that Myosin II is present 

in spines (Korobova & Svitkina, 2010), internal actomyosin contractility may also contribute to actin 

networks stiffening.   

In order to test how spine stiffness responds to drugs that are known to affect actin networks 

and spine morphology, neurons were treated with Latrunculin A (Lat A) and Blebbistatin (Blebb). I 

first confirmed the high level of F-actin at stiff spines with correlative TH-AFM/fluorescence imaging 

(Figure 7-3). After TH-AFM imaging, F-actin was stained with phalloidin which binds to all variants 

of actin filaments. Overlay of PSD-95, F-actin, and stiffness revealed concentrated F-actin in the spine 

head. 

 

Figure 7-3 F-actin is enriched in a stiff spine head. 
Aligned AFM height, AFM stiffness, and immunofluorescence images of the same area. Threshold was 
applied to the stiffness image colored in blue. F-actin (green) was enriched in the stiff spine (200 kPa), not 
in the dendritic shaft (19 kPa). Scale bar: 500 nm. 
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Lat A binds to actin monomers, preventing them from repolymerizing into filaments (Coue, 

Brenner, Spector, & Korn, 1987). It has been shown that Lat A disrupts F-actin in neurons and 

decreases spine density (Allison, Gelfand, Spector, & Craig, 1998). 12-24 hours of Lat A treatment 

significantly reduced global F-actin level in neurons (Figure 7-4).  

 

Figure 7-4 Latrunculin A reduces F-actin level in neurons. 
Phase contrast and fluorescence images of F-actin in neuron cultures after 12-24 hour DMSO or 10 μM Lat 
A treatment. Lat A largely reduced F-actin level in neurons. Note there were still some puncta of F-actin 
after Lat A treatment, suggesting that some F-actin may be resistant of Lat A disruption. At least 3 randomly 
selected areas in each culture were imaged. 3 neuron cultures were treated with DMSO or Lat A, respectively. 
Scale bar: 100 μm.  

Interestingly, I found that Lat A did not affect the stiffness of spines. 12-24 hours of Lat A 

treatment did not change the stiffness of spines and shafts (Figure 7-5 A, B). A representative spine 

in Figure 7-5 A still contained F-actin puncta after Lat A treatment, suggesting that F-actin in stiff 

spines could be resistant to Lat A. Time-lapse TH-AFM imaging in Figure 7-5 C and D showed that 

the stiffness of spines did not change substantially with Lat A during 4 hours.  

 



71 
 

 The observation that spine stiffness was not affected by Lat A agrees with previous reports 

that mature neurons are more resistant to Lat A than young neurons and that in mature neurons a 

very small number of F-actin puncta remain resistant to Lat A, suggesting that a small population of 

F-actin is extremely stable (W. D. Zhang & Benson, 2001). Since Lat A only inhibits actin 

repolymerization without affecting preexisting F-actin directly, its effect on actin networks with a slow 

turnover rate may be limited. The balance between actin branching and elongation determines the 

 

Figure 7-5 Spine stiffness is not affected by acute Latrunculin A treatment. 
(A) AFM height, AFM stiffness, and brightfield images of the same spine before and after 12-hour Lat A 
treatment. Note the stiff spine still contained F-actin puncta in the fluorescence image after Lat A treatment. 
Scale bar: 1 μm. (B) Quantification of stiffness of 14 spines from 3 neuron cultures before and after Lat A 
treatment showed no significant difference (two-tailed paired t tests, pspine = 0.7289, pshaft = 0.1009). Data 
are shown as mean ± SEM. (C) Time-lapse TH-AFM height and stiffness images of the same area during 4-
hour Lat A treatment. Scale bar: 1 μm. (D) Stiffness of two spines and a dendritic shaft (marked in the 0 hr 
stiffness image in (C)) did not decrease by Lat A. The change of their stiffness after 4 hours is 7%, 15% and 
6%, respectively. These variations were small and could probably be due to measurement uncertainty. 
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persistence and protrusion speed of actin networks (Figure 7-6). When branching exceeds elongation, 

which occurs in the presence of high Arp2/3 activity as in the case of spines, actin networks stiffen. 

Increased actin branching and decreased actin elongation could help maintain persistent and stable 

cellular structures (Krause & Gautreau, 2014). In addition to Arp2/3, capping proteins (shown in 

Figure 7-1 D) may also help maintain stable actin networks by protecting the barbed ends of F-actin 

and inhibiting elongation (Fan, Tang, Vitriol, Chen, & Zheng, 2011; Korobova & Svitkina, 2010). 

 

Figure 7-6 Actin branching and elongation in structural persistence. 
Increased actin branching and decreased actin elongation leads to slow but persistent cellular structures. 
Conversely, increased actin elongation and decreased actin branching leads to faster but less persistent 
protrusion. The branching of actin networks is induced by Arp2/3 while the elongation of actin networks is 
supported by formins and reduced by capping proteins. Diagrams are adapted with permission from (Krause 
& Gautreau, 2014), © 2014 Macmillan Publishers Limited. 

Since actomyosin contractility could cause stiffening of actin networks in vitro (Mizuno et al., 

2007), I then studied whether spine stiffness is dependent on Myosin II-mediated tension. I used 

Blebb to inhibit the ATPase activity of Myosin II and actomyosin contractility (Kovacs, Toth, Hetenyi, 

Malnasi-Csizmadia, & Sellers, 2004). Blebb reduces the number of mushroom spines while promoting 

the growth of filopodia, and impairs excitatory synaptic transmission in neuron cultures (Ryu et al., 

2006). In brain slices, Blebb does not change basic synaptic transmission or spine morphology, but 

reduces actin polymerization during synaptic plasticity, suggesting that Myosin II-mediated 

contractility may help organize actin structures through the tension applied to actin networks during 

learning and memory (Rex et al., 2010).  
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I reported that Blebb treatment did not affect spine stiffness in cultured neurons (Figure 7-7). 

I verified the Blebb protocol in fibroblasts and observed ruffles at cell edges and cell retraction as 

previously reported (Shutova, Yang, Vasiliev, & Svitkina, 2012). These results suggest that the elasticity 

of actin networks does not come from Myosin II-mediated tension applied to the actin networks.  

Synapses as cell-cell junctions mimic focal adhesion in the sense that both require adhesion 

molecules and cytoskeleton networks to maintain a tight connection. It has been reported that 

inhibition of Myosin II activity does not prevent the formation of focal adhesion (Choi et al., 2008; 

Stricker, Beckham, Davidson, & Gardel, 2013), suggesting that the assembly and maturation of focal 

 

Figure 7-7 Spine stiffness is not affected by acute Blebbistatin treatment. 
(A) AFM height and stiffness images of the same spine before and after 30-minute Blebbistatin treatment. 
Scale bar: 2 μm. (B) Quantification of stiffness of 36 spines from 6 neuron cultures before and after 
Blebbistatin treatment showed no significant difference (two-tailed paired t tests, pspine = 0.3126, pshaft = 
0.1330). Data are shown as ± SEM. (C) Aligned AFM height, AFM stiffness, brightfield, and 
immunofluorescence images of the stiff spine from the boxed area shown in the AFM height image before 
treatment in (A). Threshold was applied to the stiffness image colored in blue. Scale bar: 500 nm.  



74 
 

adhesion is Myosin II independent or is mediated by a minimal level of Myosin II. While Blebb 

decreases the stiffness of stress fibers, focal adhesion remains stiff (Mandriota, 2016), suggesting that 

the stiffness of mature cell adhesion does not rely on Myosin II activity. In addition, Myosin II exists 

mainly in spine necks (Korobova & Svitkina, 2010), while the high stiffness observed here represents 

the spine head. Therefore, although Myosin II could be critical for synaptic function, its activity is not 

involved in the high stiffness of mature spines.  

While I observed the same results consistently from several independent experiments, not 

observing a significant change in stiffness may suggest potential caveats. First, I used the conventional 

drug treatment protocols as used previously. A different drug concentration or incubation time may 

produce different results. Second, I verified drug activity at the cellular level. For Lat A, I observed a 

global reduced level of F-actin in cultured neurons. For Blebb, I observed ruffles at cell edges and cell 

retraction in fibroblasts. But I did not verify whether both drugs decrease spine density, as previously 

reported. It is possible that while these drugs are functional, they may not function well at the single 

spine level in the cultures and thus not affect spine stiffness. Third, there is a great heterogeneity in 

spines. In this work, I did not distinguish spines of different ages, motility, and functional strength. It 

may be worth investigating how different spines respond differently to drugs.  

Given the presence of highly branched actin networks in spine heads (Korobova & Svitkina, 

2010), spine stiffness is likely to originate from the cross-linked actin architecture mediated by Arp2/3. 

Arp 2/3, namely actin-related protein-2/3, is a complex of a stable assembly of seven proteins. 

Although Arp2/3 has little biochemical activity on its own, it cross-links F-actin at a y-branch junction 

in actin branching (Figure 7-1 C), referred to as dendritic nucleation (Mullins et al., 1998). Arp2/3 is 

localized to spine heads and is required for spine development and synaptic function (Wegner et al., 

2008). It is interesting to investigate how Arp2/3 density and activity is correlated with spine stiffness 

in the future. 
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Next in Chapter 8, I will discuss how high spine stiffness may be involved in synaptic function 

and plasticity.   
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Chapter 8 Mechanical synaptic plasticity model  

During learning, synapses become larger and stronger, allowing us to learn new skills and develop new memories. 

While larger synapses tend to be stronger, it remains unclear how becoming larger is mechanistically linked to becoming 

stronger.  

In this Chapter, I will discuss how spine stiffness may play a role in synaptic strength and plasticity and propose 

a mechanical plasticity model that may causally link structural plasticity to functional plasticity of synapses.  
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The observations of the substantially high stiffness contrast between spines and shafts suggest 

potential physiological roles. First, stiffness might help maintain spine morphology in the presence of 

synaptic adhesion (8.1). Second, stiffness might help stabilize synaptic adhesion (8.2). Both 

mechanisms provide an approximate estimate of spine stiffness, which agrees with the measured spine 

elastic modulus values in Figure 6-3. 

8.1 Stiffness helps maintain spine morphology in the presence of adhesion 

The unique spine morphology with an enlarged head and a thin neck enables 

compartmentalization of chemical and electrical signals, which is critical for synaptic function and 

plasticity (Yuste and Bonhoeffer, 2001, Tonnesen et al., 2014). From a mechanical perspective, 

because adhesive forces can deform contacting bodies to increase contact area (Figure 8-1), high 

stiffness could help maintain morphology in the presence of strong adhesion. Indeed, a simple 

mechanical model of synaptic adhesion suggests that spine stiffness has to be on the order of 100 kPa 

to maintain its shape, which agrees with the measured values of spine stiffness in Figure 6-3. 

To make an order of magnitude estimate of the minimal elastic modulus of a spine required 

 

Figure 8-1 Stiffness helps maintain spine morphology. 
The postsynaptic spine (orange) and the presynaptic axonal bouton (blue) are physically connected by 
synaptic adhesion molecules such as N-cadherin (yellow). Axon contains microtubules (green) and is under 
internal tension, which helps provide high stiffness. Based on a contact mechanics model, the contact area 
between the spine and the bouton is dictated by the interplay between adhesion and elastic modulus of the 
spine. Under the same adhesive energy, different spine elastic modulus values result in different shapes: while 
high elastic modulus (left) maintains the spherical morphology of the spine, low elastic modulus (right) results 
in an increased contact area and a distorted spine shape. Medium elastic modulus deforms the spine head 
into a mushroom-like shape.  
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to maintain morphology in the presence of adhesive force, I used a contact mechanics model to relate 

deformation of contacting structures to adhesive force and elastic modulus. The spine-bouton system 

was treated as a pliable ball (spine head) pressing against a relatively flat and hard surface (bouton). 

Assuming that the spine head is deformed by the adhesive force at synapse and that no significant 

adhesive interaction occurs outside of the active zone, I used the Johnson-Kendall-Roberts (JKR) 

model (Johnson, Kendall, & Roberts, 1971) to estimate the minimal elastic modulus required. I 

assumed that the shape of the spine is deformed significantly when the diameter of the contact zone 

becomes comparable to the spine radius. Therefore, I determined the required elastic modulus to 

prevent the contact diameter from becoming larger than spine radius. According to the JKR model, 

contact radius (half the diameter) 𝑎 could be written as the following:  

𝑎3 =
3𝑅

4𝐸∗
(𝑃 + 3𝛾𝜋𝑅 + √6𝛾𝜋𝑅𝑃 + (3𝛾𝜋𝑅)2 )    (6) 

Here, 𝑅 denotes the radius of curvature of a typical spine head, 𝐸∗ denotes the effective elastic 

modulus, 𝑃 denotes the applied load, and 𝛾 denotes the work of adhesion. Note that there could be 

pulling force across a synapse (Siechen et al., 2009), thus 𝑃 is likely to be negative. However, the 

adhesive force must be significantly larger than the applied load 𝑃 to hold the pre- and postsynapses 

together. Therefore, 𝑃  was neglected in this model. I further assumed that the effective elastic 

modulus 𝐸∗ primarily comes from the stiffness of the spine. This is because axon is under tension 

(Siechen et al., 2009), which could help maintain bouton’s shape. Furthermore, the adhesion molecules 

on the presynaptic side could be ultimately connected to microtubules, which are resistant to 

deformation. I thus neglected bouton’s elastic modulus, and derived the elastic modulus of the spine 

𝐸∗:    

𝐸∗ = 
9𝜋𝑅2

2𝑎3
𝛾         (7) 

I assumed that the maximal contact radius at synapse interface to maintain the structural 
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integrity of the spine is half of the spine radius, i.e. 𝑎 =
𝑅

2
, and obtained the relationship between the 

minimal elastic modulus of the spine head 𝐸∗ and the surface energy 𝛾:  

𝐸∗ = 
36𝜋

𝑅
𝛾       (8) 

To determine the minimal elastic modulus, we now needed to calculate the work of adhesion 

𝛾, which in the current model corresponds to the adhesion energy between pre- and postsynapses. 

For this, I considered the adhesion mediated by synaptic adhesion molecules. I modified the model 

developed by Chen et al. (C. P. Chen, Posy, Ben-Shaul, Shapiro, & Honig, 2005), which characterizes 

the adhesion mediated by pairs of adhesion molecules. According to Chen et al., the adhesive energy 

∆𝐺 depends on the number of adhesion molecule dimers formed between two cells and the free 

energy of the monomer-dimer reaction:  

∆𝐺(𝐼, 𝐽) = −𝑁𝑑𝑖𝑚𝑒𝑟(𝐼, 𝐽) × ∆𝑔(𝑖, 𝑗)        (9) 

Here 𝑖  and 𝑗  indicate individual adhesion molecules in pre- and postsynapses, 𝐼  and 𝐽 , 

respectively. The adhesive energy between two pre- and postsynapses is defined as ∆𝐺(𝐼, 𝐽) . 

𝑁𝑑𝑖𝑚𝑒𝑟(𝐼, 𝐽) denotes the number of trans-dimers at the interface. ∆𝑔(𝑖, 𝑗) denotes the corresponding 

free energy (J/mole). 

Assuming a local chemical equilibrium at cell-cell interface, the free energy can be calculated 

from dissociation constant 𝐾𝑑:  

∆𝑔(𝑖, 𝑗) = −𝑅𝑇𝑙𝑛(𝐾𝑑)           (10) 

I additionally assumed that adhesion molecules are enriched at synapse interface, i.e. active 

zone, and are freely diffusible at synapse surface, with surface density 𝜌. 𝑁 denotes total number of 

one type of adhesion molecules on the membrane and 𝐴  denotes total surface area where the 

molecules reside, i.e. active zone. 

𝜌 =
𝑁

𝐴
            (11) 
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The 3D concentration of adhesion molecules could be converted from the 2D surface density 

using the “interfacial shell” model purposed by Chen et al.. Interfacial shell represents volume 𝑉 

containing interacting domains of adhesion molecules. For N-cadherin, this represents the EC1 

domains. 𝐴𝑐 denotes the surface area of a single adhesion molecule, therefore 𝐴𝑐 = 
𝐴

𝑁
 . ℎ denotes the 

shell thickness, which reflects the interactive structure of molecules. I used the thickness calculated by 

Chen et al., 12 nm. For simplicity, I applied the same thickness to all types of adhesion molecules.   

𝑉 = 𝐴𝑐  ×  ℎ                 (12) 

I then converted 2D density 𝜌 to 3D effective concentration 𝐶, which represents the total 3D 

concentration of dimers 𝐶𝑖𝑗 and monomers 𝐶𝑖, 𝐶 = 𝐶𝑖𝑗 + 𝐶𝑖. 𝑁𝐴 is the Avogadro number. 

𝐶 = 
𝜌

𝑁𝐴×ℎ
               (13) 

I assumed only trans-homodimers are formed at synapse, i.e. 𝑖 = 𝑗. The equilibrium constant 

𝐾𝑑 is thus written as the following: 

𝐾𝑑 = 
𝐶𝑖×𝐶𝑗

𝐶𝑖𝑗
=
𝐶𝑖
2

𝐶𝑖𝑗
      (14) 

Therefore, we could obtain a quadratic function of 𝐶𝑖:  

𝐶𝑖
2

𝐾𝑑
+ 𝐶𝑖  =

𝑁

𝐴ℎ𝑁𝐴
      (15) 

Solving the above function, we could obtain 𝐶𝑖. The number of dimers 𝑁𝑑𝑖𝑚𝑒𝑟  is written as:  

𝑁𝑑𝑖𝑚𝑒𝑟 = 𝐶𝑖𝑗  × 𝑉 × 𝑁 × 𝑁𝐴 = 
𝐶𝑖
2

𝐾𝑑
 𝐴ℎ𝑁𝐴           (16) 

Taken together, adhesive energy ∆𝐺 at synapse can be written as the following:  

∆𝐺 = 𝐴ℎ𝑁𝐴
𝐶2

𝐾𝑑
𝑅𝑇𝑙𝑛(𝐾𝑑)           (17) 

𝐴 denotes total surface area where the adhesion molecules reside, i.e. active zone. ℎ denotes 

the shell thickness in the “interfacial shell” model. 𝑁𝐴  is the Avogadro number. 𝐶  represents the 
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concentration of monomers at synapse. ∆𝐺 has a unit of J/mole. ∆𝐺 was converted to surface energy 

𝛾 in the unit J/m2 by considering the number of molecules and the surface area at the active zone of 

the synapse: 

𝛾 =  
𝑁

𝑁𝐴
×
∆𝐺

𝐴
       (18) 

𝑁 denotes total number of one type of adhesion molecules on the membrane. In this model, 

I considered the following 2 types of adhesion molecules: N-cadherin and NCAM-140, because they 

are widely-studied synaptic adhesion molecules and their dissociation constants have been measured. 

I estimated the number of each molecule at synapse based on mass spectrometry data (Peng et al., 

2004) and used the morphological characteristics of an average synapse from electron microscopy 3D 

reconstruction data (Holderith et al., 2012; Wilhelm et al., 2014). 

I calculated the surface energy to be 3.43E-04 J/m2. From Equation (8), the minimal elastic 

modulus of the spine head could be obtained: 183 kPa. See Table 8-1, Table 8-2, Table 8-3, and Table 

8-4 for values used in this model.   

Characteristic Symbol Value 

Active zone area 𝐴 0.07 μm2 (Wilhelm et al., 2014) 

Spine volume 𝑉′ =
4

3
𝜋𝑅3 0.04 μm3 (Holderith et al., 2012) 

Spine radius 𝑅 0.212 μm 

Table 8-1 Morphological characteristics of an average synapse. 

Molecules at 
PSD 

Abundance index by mass spectrometry of 
PSD (Peng et al., 2004) 

Number of molecules 
per PSD 

PSD-95 24.2 300 

N-cadherin 2.5 31 

NCAM-140 1.1 14 

Table 8-2 Number of adhesion molecules at synapse. 

 N-cadherin NCAM-140 

dissociation constant 

𝐾𝑑 (M) 

2.58E-05 
(Katsamba et al., 2009) 

5.5E-05 
(Kiselyov et al., 1997) 

species mouse mouse 

method analytical ultracentrifugation surface plasmon resonance 

Table 8-3 Dissociation constant of synaptic adhesion molecules. 
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Parameter Symbol 
N-

cadherin 
NCAM-

140 

number per synapse 𝑁 31 14 

dissociation constant 𝐾𝑑 (M) 2.58E-05 5.5E-05 

free energy ∆𝑔(𝑖, 𝑗) (J/mole) -2.62E+04 -2.43E+04 

2D density on PSD 𝜌 (/μm2) 442.74 194.81 

interfacial shell thickness ℎ (nm) 12 12 

surface area of  
a single pair of adhesion molecules 

𝐴𝑐 (μm2) 2.26E-03 5.13E-03 

interfacial shell 𝑉 (L) 2.71E-20 6.16E-20 

3D effective concentration 𝐶 (μM) 61.27 26.96 

monomer concentration 𝐶𝑖 (μM) 28.90 19.82 

dimer concentration 𝐶𝑖𝑗 (μM) 32.37 7.14 

number of monomers 𝑁𝑖 14.62 10.03 

number of dimers 𝑁𝑖𝑗 16.37 3.61 

free energy on surface ∆𝐺(𝐼, 𝐽) (J/mole) 4.29E+05 8.78E+04 

total free energy on surface 𝑊 (J) 2.21E-17 1.99E-18 

surface energy at interface 𝛾 (J/m2) 3.15E-04 2.84E-05 

Table 8-4 Adhesive energy at synapse. 

Total surface energy at synapse interface from these 2 types of adhesion molecules is 3.43E-

04 J/m2. Given there are many other types of adhesion molecules at synapse, this theoretical value is 

likely to be an underestimate of the actual surface energy at synapse. 

8.2 Stiffness helps stabilize adhesion interaction 

Theoretical modeling of cellular adhesion structures has shown that the lifetime of adhesion 

clusters depends on the stiffness of adhering surfaces (Qian & Gao, 2010). Due to the stochastic 

nature of molecular interactions, adhesion bonds rupture and rebind continuously. When bonds are 

ruptured, the surfaces can deform due to a small but non-zero force that pulls the surfaces apart. As 

illustrated in Figure 8-2 A and B, softer surfaces would be displaced more, thus increasing the distance 

between ruptured adhesion bonds, preventing their future rebinding, and decreasing the lifetime of 

the adhesion cluster. Gao et al. showed that a typical adhesion cluster is substantially stabilized as the 

sample stiffness increases beyond 50 to 100 kPa (Figure 8-2 C). The stiffness-adhesion relationship 

found in Gao et al’s modeling could also be applicable to synaptic adhesion, because pre- and 
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postsynapses are connected together by transmembrane synaptic adhesion molecules (Missler, Sudhof, 

& Biederer, 2012). Indeed, one of these molecules, N-cadherin, has been shown to be strengthened 

on stiffer substrates in C2 mouse myogenic cells (Ladoux et al., 2010). Importantly, the measured 

spine elastic modulus values in Figure 6-3 (23.2 - 671.9 kPa with a median of 166.9 kPa, and 77.8% of 

measured spines have a stiffness over 100 kPa) correspond to the regime where the lifetime of 

adhesion would be greatly enhanced.  

8.3 Mechanical synaptic plasticity 

Strengthening of adhesion via stiffness offers a potential role of mechanics in synaptic 

function. Synaptic adhesion molecules are essential for the formation, maturation, function, and 

plasticity of synapses. It is well known that synaptic adhesion molecules can recruit specific pre- and 

postsynaptic proteins and interact with various intracellular signaling molecules (Dalva, McClelland, 

 

Figure 8-2 High stiffness stabilizes adhesion clusters. 
(A) Two elastic bodies (blue and orange) are connected by a cluster of adhesion molecules (black springs) 
and are being pulled apart with a small but non-zero force (white arrows). (B) Zoomed-in diagrams from the 
red box in (A) highlight bound and ruptured adhesion molecules. N-cadherin is depicted here in yellow as 
an example. After adhesion bonds are ruptured, stiff sample results in a smaller surface separation compared 
with soft sample, substantially increasing the probability of rebinding, and thereby stabilizing the adhesion 
cluster at the interface. (C) A schematic stiffness-lifetime curve. Cluster lifetime is normalized to the 
spontaneous dissociation rate of the adhesion bond. Lifetime of the adhesion cluster increases drastically as 
the sample stiffens. Diagrams are adapted with permission from (Qian & Gao, 2010), © 2010 Qian and Gao.  
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& Kayser, 2007). For example, N-cadherin could recruit and interact with PSD-95 (Togashi et al., 

2002) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) (Nuriya & 

Huganir, 2006; Saglietti et al., 2007), neuroligin could recruit N-methyl-D-aspartate receptors 

(NMDAR) (Chih, Engelman, & Scheiffele, 2005; Graf, Zhang, Jin, Linhoff, & Craig, 2004), and EphB 

receptors could bind and modulate NMDAR (Dalva et al., 2000) and interact with AMPAR (Kayser, 

McClelland, Hughes, & Dalva, 2006). In return, the location and interaction of synaptic adhesion 

molecules are regulated by synaptic activity. For example, N-cadherin localization and dimerization 

are regulated by NMDAR activation (Tanaka et al., 2000), and late-phase long-term potentiation (LTP) 

could lead to an increase in N-cadherin at synapses (Bozdagi, Shan, Tanaka, Benson, & Huntley, 2000). 

Given the stiffness-adhesion and adhesion-function relationships, stiffness could possibly play a role 

in regulating synaptic function via adhesion.   

Spines contain highly branched actin networks cross-linked by Arp2/3 (Korobova & Svitkina, 

2010), which serves as the branching block for actin networks and drives maturation from filopodia 

to mature spines (Spence, Kanak, Carlson, & Soderling, 2016). As spines mature, actin networks in 

spine heads undergo reorganization with increased level of branching mediated by Arp2/3 (Korobova 

& Svitkina, 2010). Because stiffness of polymer networks depends strongly on cross-linking density 

(Gardel et al., 2004), enhanced Arp2/3 activity and actin networks branching could cause spine 

stiffening. Arp2/3 activity is regulated by nucleation promoting factors such as N-WASP (neural 

Wiskott–Aldrich syndrome protein) (Wegner et al., 2008), which are activated by Rho GTPases such 

as Rac and Cac42 (Hotulainen & Hoogenraad, 2010). Rho GTPases are regulated by Ca2+/calmodulin-

dependent protein kinase II (CaMKII), which is activated by the elevated Ca2+ influx through 

NMDAR during LTP (Okamoto, Bosch, & Hayashi, 2009). Consequently, synaptic activity and 

plasticity could affect spine stiffness via Ca2+-dependent signaling cascades and Arp2/3-based actin 

remodeling.  
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Figure 8-3 Mechanical synaptic plasticity model. 
The postsynaptic spine (grey) and the presynaptic axonal bouton (blue) are physically connected by synaptic 
adhesion molecules such as N-cadherin (yellow). Spine with postsynaptic density (PSD; red) has enriched 
actin networks (orange) cross-linked by Arp2/3 (green), while axon contains microtubules (green line). 
During LTP, spine exhibits both structural plasticity and functional plasticity with spine enlargement, actin 
reorganization, PSD enlargement, and increase of synaptic transmission. I propose that mechanical plasticity 
may causally connect structural plasticity with functional plasticity. As shown by the dashed arrow, stiffness 
(indicated by the darkening grey color of the spine) strengthens synaptic adhesion, resulting in higher local 
surface density of adhesion molecules. Adhesion molecules then help recruit synaptic proteins including 
PSD-95, AMPAR, and NMDAR, resulting in PSD enlargement and functional potentiation. Upon 
subsequent stimulations, a strengthened spine with more adhesion molecules, NMDAR, and AMPAR would 
have more Ca2+ influx, causing further spine stiffening. 

The proposed role of spine stiffness fits into the previously established LTP timeline: During 

LTP, NMDAR-dependent Ca2+ signaling cascade leads to structural plasticity involving spine 

enlargement and actin remodeling (Honkura et al., 2008; Matsuzaki et al., 2004; Okamoto et al., 2004; 

Zhou et al., 2004), followed by an increase in adhesion molecules such as N-cadherin (Bozdagi et al., 

2000), followed by enlargement of the postsynaptic density (PSD) (M. Bosch et al., 2014; Meyer, 

Bonhoeffer, & Scheuss, 2014) potentially via Cortactin-Shank interaction (Cosen-Binker & Kapus, 

2006; Hering & Sheng, 2001), and later an increase in synaptic receptors and enhanced synaptic 

strength. It remains unclear how structural plasticity is mechanistically linked to functional plasticity 

(Straub & Sabatini, 2014). I have suggested that during spine enlargement, enhanced actin cross-

linking causes spine stiffening, which then facilitates the increase in synaptic adhesion molecules. 

Indeed, the data showed that spine stiffness was positively correlated with spine size, and it is well 

established that spine size is correlated with synaptic strength (Matsuzaki et al., 2001). Figure 8-2 

showed that stiffness could reinforce the interaction of adhesion molecules at synapses, increasing 
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their local surface density. These mechanical aspects could causally link the observed structural 

synaptic plasticity and functional synaptic plasticity, via stiffness-dependent synaptic adhesion 

enhancement and adhesion-dependent recruitment of synaptic proteins (Figure 8-3). We term the 

resulting model “mechanical plasticity”. This model suggests a positive feedback loop between spine 

stiffness and synaptic strength: spine stiffening causes spine strengthening, and a strengthened spine 

with more adhesion molecules, NMDAR, and AMPAR would have more Ca2+ influx upon subsequent 

stimulations, causing further stiffening of spines. The interdependence between stiffness and synaptic 

strength suggests that the increase of spine stiffness induced by stimulation is proportional to current 

spine stiffness and synaptic strength, thus spine stiffness grows exponentially, resulting in a lognormal 

distribution of spine stiffness at the population level.  

Beyond its potential role in synaptic plasticity, stiffness might also be important in the long-

term maintenance of synapses and memory storage. Previous studies have reported that a 

subpopulation of spines and axonal boutons are remarkably stable in the brain (Grutzendler, Kasthuri, 

& Gan, 2002; A. Holtmaat & Svoboda, 2009; A. J. Holtmaat et al., 2005). The highly stable stiffness 

of spines in the current observations may represent a stable structural component in the long-term 

maintenance of synapses. When spine stiffness is markedly high, synapses can be stable for a long 

time because the lifetime of synaptic adhesion is substantially enhanced. Enhanced lifetime of synaptic 

adhesion stabilizes the physical connection between pre- and postsynapses, and helps maintain 

synaptic function through recruitment and stabilization of synaptic scaffolding proteins and glutamate 

receptors. In this view, the stiffness-function feedback not only increases signal transmission at 

synapses, but also largely enhances the lifetime of synapses by activity-dependent spine stiffening and 

stiffness-dependent adhesion stabilization. 
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Chapter 9 Conclusion 

The notion of synaptic mechanics and the characterization of synaptic elasticity paves the way for understanding 

synaptic function from a mechanical perspective and suggests that mechanical strength leads to functional strength. 

In this Chapter, I will summarize my results and discuss future research directions.   
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This dissertation aims to characterize the nanomechanical properties of synapses and 

understand the potential role of synaptic mechanics in synaptic function. I found that, in cultured rat 

hippocampal neurons, postsynaptic spines at functional mature excitatory synapses were on average 

10 times stiffer than dendritic shafts and axons. This intriguing result suggests a role for mechanical 

properties of spines in synapse formation and function. As I looked further into this possibility, I 

found in the data that spine stiffness was positively correlated with spine size. Since it is well 

established that spine size is correlated with synaptic strength, I developed a mechanical model that 

can explain how synaptic elasticity plays a role in enhancing synaptic strength during synaptic plasticity. 

Importantly, this model fills a gap in the timeline of the biochemical processes during LTP induction, 

specifically by offering a mechanistic link between structural plasticity and functional plasticity. Overall, 

these findings offer new insights into synapse formation, function, and long-term maintenance. 

Mechanical behavior of cells has been studied for decades, mostly in fibroblasts and in 

connection with cell adhesion (Diz-Munoz et al., 2013; Vogel & Sheetz, 2006). However, the 

mechanical properties of synapses, the basic elements of neuronal activity in learning and memory, 

have not been studied in detail. Smith et al. have used force-volume atomic force microscopy (AFM) 

to map elasticity of spine-like structures in live neurons, and reported that the stiffness of visually-

identified spherical spine-like structures observed in close proximity to axon-like structures was on 

average 2 times that of the dendritic shafts (Smith et al., 2007). However, the data acquisition using 

force-volume AFM could take tens of minutes, making it technically challenging to acquire high-

throughput quantitative mechanical mapping in live cells at high speed, and limiting its application in 

biological studies.  

In order to characterize synaptic elasticity, I have used torsional harmonic atomic force 

microscopy (TH-AFM). TH-AFM uses a specially designed T-shaped cantilever which allows a large 

number of synapses to be imaged and quantified in a short amount of time with small indentation as 
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discussed in Chapter 2. Compared with the conventional force-volume AFM, TH-AFM is capable of 

measuring time-resolved tip-sample interaction forces at microsecond scale with high signal-to-noise 

ratio, high force sensitivity, and high spatiotemporal resolution. Using TH-AFM, I have performed 

nanomechanical imaging in live cultured hippocampal neurons in Chapter 3, and observed stiff 

synapse-like structures. While AFM can provide high resolution topography and mechanical property 

images, AFM alone does not fully confirm cellular and subcellular identity, nor can it reveal cell activity 

and intracellular ultrastructure. 

In order to reveal complex cellular structures of interest, I have successfully combined TH-

AFM with fluorescence microscopy in Chapter 4 and with serial section transmission electron 

microscopy (TEM) in Chapter 5. Correlative TH-AFM/immunostaining of synaptic markers and 

functional labeling of boutons confirms that stiff structures were indeed functional mature excitatory 

synapses. Correlative TH-AFM/TEM imaging revealed that high stiffness originated from 

postsynaptic spines, but not presynaptic boutons. To my knowledge, this is the first work that presents 

AFM-based mechanical analysis together with the TEM study of the same cellular structure. This is 

especially important for applications in neuroscience research because TEM can verify the biological 

identity of cellular substructures. Without such information, it is very difficult to interpret mechanical 

measurements.  

The present work thus addresses an important methodological necessity for mechanical 

characterization of synapses. Conventional optical (fluorescence) microscopy is capable of visualizing 

cell morphology and identifying target proteins with immunostaining in live or fixed cells, but the 

resolution limit of 200 nm hinders its capacity to provide accurate protein localization and high 

resolution cell imaging. TEM provides ultra-high resolution of intracellular structures in fixed cells, 

but sample preparation and imaging can be technically challenging and time-consuming. AFM is 

capable of acquiring high resolution topographical and mechanical imaging in live cells, thus providing 
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critical information about cell behavior and characteristics from a mechanical perspective 

complementary to optical microscopy and TEM. Combination and correlation of different 

independent imaging methods allows us to assess cell mechanics in detail and correlate them with 

biochemical processes, cellular activity and function, and intracellular structure, providing a more 

comprehensive picture of synaptic structure and mechanics. 

Not all spines are created equal. Spines vary in their morphology, molecular organization, and 

strength, creating a broad spectrum of input-specific structural and functional plasticity. I have 

performed detailed statistical analysis and showed spine stiffness also exhibited a huge heterogeneity 

in Chapter 6. I have reported a more substantial difference (10 times on average) in stiffness between 

spines and shafts than previously reported (Smith et al., 2007), which could be due to the differences 

between the two methods. Force-volume method requires larger forces and indentation depths than 

TH-AFM. With thin compliant structures like synapses and dendritic shafts, large indentation depths 

lead to probing of the underlying rigid substrate and thereby reduce stiffness contrast. Due to lower 

forces required to make stiffness measurements, TH-AFM is more sensitive to the mechanical 

properties of the compliant cellular structures. I have also shown that unlike spines, shaft synapses 

and immature filopodia did not display high stiffness, suggesting that shaft synapses could be 

mechanically distinct from spiny synapses and that spines might stiffen during maturation. The 

surprisingly high stiffness of spines may represent a unique parameter complementary to the 

traditional biochemical and electrophysiological ones, and it may be related to synaptic activity and 

function. 

Spines are essentially actin bags and have densely cross-linked actin networks. Thus actin 

networks could be the primary source of spine stiffness. In order to understand the how spine stiffness 

is related to actin networks, I have treated neurons with drugs that affect actin networks in Chapter 7 

and reported that neither Latrunculin A nor Blebbistatin affected spine stiffness. While both drugs are 
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shown to affect spine morphology and reduce spine density in general, their effect on existing mature 

and stable spines may be limited. Given that the elasticity of actin networks could come from cross-

linking density or tension applied on the actin networks and that spine heads contain highly branched 

actin networks mediated by Arp2/3, I suggest that spine stiffness is likely to originate from actin cross-

linking. 

Based on the stiffness measurements and theoretical modeling of cell adhesion, I have 

proposed the mechanical plasticity model in Chapter 8. The proposed role of synaptic elasticity fits 

into the current LTP timeline. Mechanical plasticity not only causally links the observed structural 

synaptic plasticity and functional synaptic plasticity, via stiffness-dependent synaptic adhesion 

enhancement and adhesion-dependent recruitment of synaptic proteins, but also offers a mechanism 

that can facilitate the long-term maintenance of synaptic structure and function. Therefore, this work 

could be an important addition to the current literature in both synaptic adhesion and plasticity. 

Studies in both fields primarily focus on the biochemical changes in synapses. The mechanical 

plasticity model could then provide new research directions in both fields.  

There are a few limitations in the present work. First, I have used in vitro hippocampal neuron 

cultures, which consist of a highly homogeneous cell population of pyramidal neurons. In vitro cell 

cultures may not fully represent in vivo cells, and it is always ideal if the in vitro results could be 

reproduced in vivo. Due to the limitation of AFM technique, it is incapable of imaging in vivo synapses. 

Nevertheless, the substantially high stiffness contrast (on average 10 times) between spines and shafts 

is unlikely due to artifacts of the in vitro culture condition considering that it requires a great amount 

of energy and regulation to establish highly localized and densely cross-linked actin networks in cells. 

Second, since I have used certain criteria to identify synapse-like structures under TH-AFM (stiffness 

larger than 20 kPa), I may rule out spines that are softer than 20 kPa. Nevertheless, given that the 

measured spine stiffness has a lognormal-like distribution with a peak around 164 kPa, very few spines 
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would be excluded by these criteria. Third, I have not observed a substantial stiffness change during 

the imaging, even in the presence of actin drugs, which seems inconsistent with previous reports of 

high spine dynamics and motility (Dunaevsky, Tashiro, Majewska, Mason, & Yuste, 1999). However, 

in this study, I have only looked at mature synapses, but not immature filopodia. It is likely that while 

spines (in a broader sense) may or may not form a synapse with a presynaptic terminal, the spines in 

the analysis only represent those with a presynaptic terminal, and are thus more stable and less 

susceptible to drugs. Fourth, not observing any change suggests the extremely high stability of these 

stiff spines. At the same time, it also raises a question: if these spines are so stable, how do they get 

eliminated when needed? Considering the similarity between synaptic adhesion and focal adhesion, I 

suggest that the removal of mature spines requires clathrin-mediated endocytosis of adhesion 

molecules as in focal adhesion (Ezratty, Bertaux, Marcantonio, & Gundersen, 2009), a signal that is 

actively regulated and strictly controlled. Therefore, it is interesting to see whether removal or 

inhibition of adhesion interactions would reduce spine stiffness. Fifth, in this work, I only investigated 

excitatory synapses labeled with PSD-95 and did not study inhibitory synapses which are usually 

formed on dendritic shafts and do not have spines (van Spronsen & Hoogenraad, 2010). My results 

that shaft excitatory synapses were not stiff and that dendritic shafts displayed a relatively uniform 

stiffness suggest that inhibitory synapses without spines may not be stiff. Without high stiffness, how 

is the adhesion structure at inhibitory synapses stabilized as discussed in the model in 8.2? I 

hypothesize that stiffness at inhibitory synapses may be provided by the underlying microtubules 

which can be connected to adhesion molecules through actin and gephyrin (van Spronsen & 

Hoogenraad, 2010). Microtubules have a long persistence length (Gittes et al., 1993) and thus can be 

highly stiff, but they may not be accessible by the AFM tip during indentation because the indentation 

depth used was around 30 nm, which is not deep enough to probe microtubules. As a result, AFM 

images in my experiment did not show high stiffness along dendritic shafts which contain 
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microtubules.  

Future work can begin to investigate how spine stiffness changes with synaptic strength. The 

present work focuses on the baseline characterization of synaptic elasticity at the population level. The 

correlation analysis has shown that spine stiffness was correlated with spine size, which is known to 

be correlated with synaptic strength. But I have not proved that spine stiffness is correlated with 

synaptic strength because I did not measure synaptic strength directly. Functional labeling with FM 

dyes provides a qualitative assessment of synaptic activity, but not a quantitative one. In order to study 

quantitatively how spine stiffness is correlated with synaptic strength, one possible approach is to 

combine AFM imaging with functional imaging using glutamate uncaging. Single-spine LTP could be 

induced by glutamate uncaging, causing an enlargement of the spine and an increase of synaptic 

transmission (M. Bosch et al., 2014; Matsuzaki et al., 2004). It is interesting to study how spine stiffness 

would change during this process.  

Future work can also study the correlation between spine stiffness and Arp2/3 level in cells. I 

have suggested that spine stiffness originates from Arp2/3-mediated actin cross-linking. Although it 

is well studied that the elasticity of actin networks increases drastically with cross-linking density in 

test tubes (Gardel et al., 2004), it is technically difficult to study the causal link between Arp2/3 and 

the stiffness of spines in cells. Because there are no Arp2/3 inhibitor drugs, one way to downregulate 

Arp2/3 is to use RNAi, which has been shown to reduce spine density and synaptic function (Wegner 

et al., 2008). However, RNAi only interferes new protein synthesis, but does not affect existing 

proteins. Some Arp2/3 proteins may be stably integrated in actin networks, and thus not affected by 

RNAi. RNAi also has low efficiency in mature neurons. As a result, there will always be a substantial 

amount of Arp2/3 being translated. Since the elasticity of actin networks increases greatly with Arp2/3 

level, a small amount of Arp2/3 might be sufficient to maintain high spine stiffness. Even if RNAi 

works perfectly and eliminates all Arp2/3 proteins in spines, there will not be any spines left to 
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measure given that the existence of spines requires stable and cross-linked actin networks. Another 

approach to reduce Arp2/3 level is to use neurons with Arp2/3 mutations. However, since Arp2/3 is 

essential for spine development, Arp2/3 mutants may not develop into mature synapses properly, 

thus affecting the basic structure and function of spines. Instead of studying a causal link, a correlation 

analysis between Arp2/3 level and spine stiffness in normal neurons would also provide insights into 

the role of Arp2/3 in spine stiffness. In order to study how Arp2/3 is correlated with spine stiffness, 

one possible approach is to combine AFM with immuno-gold TEM or super-resolution optical 

microscopy such as stochastic optical reconstruction microscopy (STORM) (C. Xu, Liu, H., Qi, L., 

Hao, G., Shen, Z., Wang, Y., Babcock, H., Lau, P., Zhuang, X, Bi, G., 2017) which allows accurate 

quantification of the number of proteins at synapses. Correlative TH-AFM/immuno-gold TEM or 

correlative TH-AFM/STORM could offer insights into the relationship between spine stiffness and 

cross-linking density in spines. Using this approach, it is also interesting to study how spine stiffness 

is correlated with other proteins of interest, such as N-cadherin and NMDAR. 

Furthermore, the notion of synaptic mechanics and the characterization of synaptic elasticity 

with TH-AFM in my current work paves the way for understanding brain functions from a mechanical 

perspective. Previous brain research has focused extensively on the biochemical and 

electrophysiological properties of the brains and synapses, while synaptic mechanics has not received 

much attention. This is partly due to a lack of interdisciplinary collaboration between the neuroscience 

community and the physics community, and a lack of proper tools and techniques to probe synaptic 

mechanics. However, the brain is indeed a mechanically sensitive organ and synapses are mechanically 

interesting cellular structures. The influence of mechanical energy on the brains and synapses of living 

organisms is omnipresent (Tyler, 2012), not only in normal functions such as neuronal development 

(Lamoureux et al., 2002), action potential propagation (El Hady & Machta, 2015), synaptic 

transmission (Siechen et al., 2009), but also in concussion and traumatic brain injury (Meaney & Smith, 
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2011; L. Zhang, Rzigalinski, Ellis, & Satin, 1996), and neurodegenerative diseases such as Alzheimer’s 

disease (Murphy et al., 2011). Understanding how synaptic mechanics is involved in synaptic function 

and how synaptic elasticity is related to synaptic plasticity will provide novel insights into brain 

functions and disease states, and offer unique mechanical diagnostic markers complementary to the 

traditional biochemical ones (Plodinec et al., 2013; Stolz et al., 2009) 

In summary, I characterized synaptic elasticity and observed that spines at functional mature 

excitatory synapses were on average 10 times stiffer than dendritic shafts. I propose a mechanical 

synaptic plasticity model and suggest that mechanical strength leads to functional strength. The 

mechanical synaptic plasticity model provides a potential causal link between structural plasticity and 

functional plasticity of synapses during learning, and offers a mechanism that can facilitate the long-

term maintenance of synaptic structure and function during memory. 
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