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Abstract

Cortical thinning is a potentially important biomarker, but the pathophysiology in cerebrovas-

cular disease is unknown. We investigated the association between regional cortical blood

flow and regional cortical thickness in patients with asymptomatic unilateral high-grade inter-

nal carotid artery disease without stroke. Twenty-nine patients underwent high resolution

anatomical and single-delay, pseudocontinuous arterial spin labeling magnetic resonance

imaging with partial volume correction to assess gray matter baseline flow. Cortical thick-

ness was estimated using Freesurfer software, followed by co-registration onto each

patient’s cerebral blood flow image space. Paired t-tests assessed regional cerebral blood

flow in motor cortex (supplied by the carotid artery) and visual cortex (indirectly supplied by

the carotid) on the occluded and unoccluded side. Pearson correlations were calculated

between cortical thickness and regional cerebral blood flow, along with age, hypertension,

diabetes and white matter hyperintensity volume. Multiple regression and generalized esti-

mating equation were used to predict cortical thickness bilaterally and in each hemisphere

separately. Cortical blood flow correlated with thickness in motor cortex bilaterally (p =

0.0002), and in the occluded and unoccluded sides individually; age (p = 0.002) was also a

predictor of cortical thickness in the motor cortex. None of the variables predicted cortical

thickness in visual cortex. Blood flow was significantly lower on the occluded versus unoc-

cluded side in the motor cortex (p<0.0001) and in the visual cortex (p = 0.018). On average,

cortex was thinner on the side of occlusion in motor but not in visual cortex. The association

between cortical blood flow and cortical thickness in carotid arterial territory with greater thin-

ning on the side of the carotid occlusion suggests that altered cerebral hemodynamics is a

factor in cortical thinning.
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Introduction

Thinning of the cortex in the brain has been linked to cognitive impairment in neurodegenera-

tive dementias[1–4] and vascular disease[5–7], making the radiographic assessment of cortical

thickness a potentially valuable biomarker for cognitive decline.[8] It has been difficult to

determine the underlying causal mechanisms of cortical thinning, however, which is likely to

differ by disease type. In patients with cardiovascular disease, it has been reported that chronic

hypertension[9], diabetes[10, 11] and heart failure[12] confer risk for generalized cortical thin-

ning. In addition, cortical thinning has been associated with clinically and radiographically

apparent cerebral ischemic injury, both in small-vessel and large-vessel infarction, and in asso-

ciation with white matter hyperintensity volumes (WMHV).[13, 14] Yet despite correlative

studies in these populations there has not been an adequate way to investigate the hemody-

namic variables that contribute to cortical thinning. Asymptomatic, unilateral high grade

internal carotid artery (ICA) stenosis may provide a model for one potential factor—altered

cerebral blood flow—because intra-subject assessments can be made, comparing blood flow in

the occluded vs non-occluded side, and carotid vs non-carotid territory.

We recently reported asymmetry in cortical thickness between the cortex supplied by a uni-

laterally occluded carotid artery and the cortex in the opposite hemisphere.[15] This finding

prompted us to examine blood flow differences as a potential causal factor in cortical thinning.

In the present study, using the same cohort, we investigated the relationship between cortical

thinning and regional cortical blood flow (rCBF). We hypothesized that such a relationship in

the setting of severe carotid atherosclerotic disease, with a known cause for compromised

blood flow but without frank cerebral infarction, would provide new mechanistic support for a

link between altered cerebral hemodynamics and loss of cortical thickness.

Materials and methods

Study participants

Twenty-nine patients, age 50–93, 20 male, 27 right-handed, with unilateral 80–100% ICA

occlusion but no stroke were included in the study. Inclusion criteria were:� 80% carotid ste-

nosis (n = 15) or complete occlusion (n = 14), with < 40% stenosis in the contralateral ICA.

Other inclusion criteria were: asymptomatic status or TIA-only, fluent in English, and able to

give informed consent. Exclusion criteria included prior clinical stroke, diagnosis of dementia,

history of head trauma with loss of consciousness, current substance abuse, major psychiatric

disease, NYHA Stage 3/4 congestive heart disease, or contraindication to MRI. Presence of

hypertension and diabetes were defined as the patient being on medications for that condition.

All participants signed the consent form approved by the Institutional Review Board of

Columbia University Medical Center. This institutional review board specifically approved

this study.

Carotid artery stenosis. Carotid artery occlusive disease was assessed by carotid Doppler

ultrasound in our IAC-accredited Neurovascular Ultrasound Laboratory at Columbia Univer-

sity Medical Center, and some individuals additionally underwent magnetic resonance angiog-

raphy, or computed tomographic angiography. Degree of stenosis by Doppler was determined

by flow velocities in the internal carotid artery (ICA) at the carotid bifurcation. Peak systolic

velocities (PSV) >250cm/sec were classified as “high grade stenosis;” total occlusion was deter-

mined by visualization of the obstruction with B-mode Doppler, and quantification of lack of

flow in the distal ICA bifurcation segment. Sixteen (55%) of the patients underwent additional

testing by structural imaging, and all were concordant with the Doppler findings. The extra-

cranial vertebral arteries were insonated as well. All patients also underwent transcranial
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Doppler ultrasound using a 2MHz probe at the temporal window to determine if there was

blunting of the middle cerebral artery (MCA), as an indication that the proximal obstruction

from the ICA stenosis/occlusion was hemodynamically significant. The posterior circulation

was also insonated via the suboccipital window.

Magnetic image acquisition and processing. Imaging was performed on a 3T Philips

Achieva scanner at Columbia University Medical Center. The following sequences were

obtained on each participant: 1) A high-resolution 3D T1-weighted magnetization-prepared

rapid gradient echo (MPRAGE) image was acquired with the following parameters: TE/

TR = 3ms/6.7ms, voxel size = 0.9 x 0.9 x 0.9 mm3, 120 axial slices. This image was used to com-

pute both the regional cortical thickness (rCT)[15] and to extract tissue volume data for partial

volume effect correction (PVEc) of the arterial spin labeling (ASL) images.[[16, 17]] 2) Fluid-

attenuated inversion recovery (FLAIR) images were acquired in the Multi-Slice Turbo Spin

Echo (MS-TSE) mode with FOV = 250 mm, acquisition matrix of 192x133 resampled to

256x256 in reconstruction, slice thickness = 3 mm, TE/TR = 144 ms/5500 ms, inversion recov-

ery delay = 1900 ms, and flip angle = 90 deg. An automated segmentation method was used

to quantify total white matter hyperintensity volume for each hemisphere using the T1-

weighted and FLAIR scans, applying random forests and support vector machines.[18] 3) a

single-delay, background-suppressed pseudocontinuous arterial spin labeling (pCASL) images

were acquired with the following parameters: TE/TR = 14ms/4500ms, flip angle = 90deg, label-

ing duration, LD = 1950 ms, initial post-labeling delay, PLD0 = 1200ms, slice-timing = 75ms,

number of slices = 12, slice thickness = 8mm, in plane resolution = 3.5mm x 3.5 mm. The

imaging volume was positioned such that the primary cortex was covered by slices 10 and 11,

with effective PLD 2.0s and 2.1s, respectively. A 2D gradient echo EPI readout was used with

background suppression pulses applied at 1680ms and 2760ms. For each patient, an average

ASL CBF image was computed from a total of 60 control/label pairs as described below. The

LD and PLD parameters were chosen based on arterial transit times (ATT) estimates in an

aging population[19], as well as pilot data from the same population from our group.

For PVEc ASL preprocessing and gray matter CBF extraction, we used SPM12 software and

in-house written MatLab codes as detailed in our previous work [20, 21]. Briefly, for each sub-

ject: (1) all EPI images were realigned to the first acquired images; (2) Gray matter (GM),

white matter (WM), and cerebrospinal fluid (CSF) posterior probability images representing

voxel tissue content (in %) were obtained from subject’s MPRAGE using SPM12’s segmenta-

tion algorithm (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/); (3) The tissue probability

masks were summed and thresholded (at total tissue volume sum of 30%) to compute a “brain

tissue mask” that was subsequently applied to the MPRAGE image to exclude any non-brain

tissue voxels. We refer to this image as “deskulled”; and (4) The deskulled MPRAGE and the

posterior probability maps were co-registered to the average control EPI. This allowed uniform

coregistration in M1 and V1.

For each patient, the PVEc algorithm estimates: 1) the magnetization values, mGM, mWM,

mCSF using subject’s mean control SE-EPI image; and 2) the ASL difference values, dmGM

and dmWM, using the (control-label) difference image. The PVEc algorithm was performed in

each patient’s native space using a regression kernel of 7x7x1 voxels, following the procedure

described in prior work. [20, 22].

CBF was computed following the recommendation of the consensus paper[23], using the

following parameters using adjusted PLD to account for the inter-slice acquisition time, PLDs
= (slice-number –1)�(70 ms) + 1200 ms; labeling efficiency = 0.70. [24] For the motor cortex

(M1; Brodmann area 4)) in the frontal lobe, resulting in an average PLD ~1830ms. The CBF

formula was applied to the dmGM/mGM and dmWM/mWM, separately, and provided a uniform

distribution of flow within gray matter ROIs. While a net CBF was computed for each patient,
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only the GM CBF data averaged over the M1 region and the visual cortex (V1; Brodmann area

17) was used for the statistical analysis.

Cortical Thickness measurement was performed on the Freesurfer platform[25], using vol-

umetric tissue segmentation and inference of cortical structure from each patient’s MPRAGE

image as described in our previous work.[15] Skull stripping was performed using the in-

house thresholding method described above.

ROI’s for an anterior circulation region—the primary motor cortex (M1: Brodmann Area

4)—, and a posterior circulation region—visual cortex (V1: Brodmann Area 17)—were

extracted using the parcellation results. Once the ROIs were extracted from the Freesurfer

space, the inverse coregistration matrix was used to bring the ROI-images back to the patient’s

native space, i.e., co-registered with the pCASL CBF images. Specifically, the ASL images were

upsampled and coregistered to the “deskulled” T1w image space. The co-registration of ASL

to the cortical rim was done first manually and then using a newly developed SPM algorithm

(CAT12) to ensure good quality co-registration. There was no significant difference in the

number of voxels (volume of ROI) between the occluded and unoccluded side. An example of

the left and right motor cortex ROIs co-registered to the motor cortex on the patient’s PCASL

images is shown in Fig 1.

Statistical analyses. Paired t-tests were run to compare the GM CBF between the occluded

and unoccluded sides in M1 and V1. Bonferroni adjustment was made for two comparisons

(M1 and V1) for each measurement for the t-tests so that a two-sided P< 0.025 was required

to declare statistical significance. Univariate Pearson correlation coefficients were calculated

between cortical thickness in the two anatomical territories (M1, V1) and variables that were

hypothesized to contribute to cortical thinning: age, resting gray matter CBF in M1 and V1

(M1 GM CBF, V1 GM CBF), hypertension, diabetes, and white matter hyperintensity volume

Fig 1. Cortical thickness-rCBF coregistration. A sample patient’s left (red) and right (yellow) motor cortex

ROI, coregistered on the patient’s own GM CBF pCASL images. Images are shown in coronal, sagittal, and

axial orientation.

https://doi.org/10.1371/journal.pone.0189727.g001
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(WMH). Univariate relationships were calculated for each hemisphere individually (occluded

vs unoccluded). Variables with P-values�0.05 in the univariate analysis were entered into a

multiple linear regression, using cortical thickness as the dependent variable. Occlusion versus

high grade stenosis and circle of Willis collateral were also tested as independent variables in

the regression. A generalized estimating equation (GEE) was also run with cortical thickness as

the dependent variable with occluded vs unoccluded hemiepheral side as a covariate. Statistics

were carried out using IBM SPSS Statistics version 23, and R version 3.1.2. Raw data are pro-

vided as supporting information (S1 Table).

Results

All 29 patients tolerated the MRI scanning protocol. One subject had ASL data that were unin-

terpretable, and this subject’s values were omitted from the analysis. Of the remaining 28, 14

had their occlusion on the left side, 14 had complete occlusion, 21 had hypertension, 6 had dia-

betes. There was no evidence for significant posterior circulation atherosclerosis, although

there was mild basilar artery acceleration on transcranial Doppler in one patient, and in an

extracranial vertebral artery in 4 patients by extracranial Doppler. Fifteen had evidence of

cross-filling across the anterior circle of Willis, 6 had evidence of no cross filling, and in 7, the

circle of Willis status was unknown. GM CBF was significantly lower on the occluded versus

unoccluded side in the motor cortex (115.2 ml�100g-1�min1 vs. 105.5 ml�100g-1�min-1,

P<0.0001) and in the visual cortex (112.8 vs. 106.4 P = 0.018). CBF asymmetry in the expected

direction (lower on the occluded/stenotic side) was seen in 24 patients (86%), consistent

with our previously published work.[26] In the GEE analysis, controlling for side of occlusion,

circle of Willis collateral status, and occlusion vs stenosis, two variables—regional blood flow

(0.0002) and age (p = .0020)—predicted cortical thickness in M1, but not in V1. Fig 2 shows a

scatterplot of rCBF vs cortical thickness for M1 and V1, depicting the linear correlation

between rCBF and rCT in M1, but not in V1.

Evaluating each hemisphere separately in the univariate analysis, we found that both age

and regional blood flow correlated with cortical thickness for motor cortex in each hemi-

sphere, respectively. None of the variables correlated with cortical thickness in the visual

cortex. Table 1 shows univariate correlations with cortical thinning for the occluded and unoc-

cluded side for motor and visual cortex. In the multiple linear regression analysis, regional

blood flow predicted cortical thickness in M1 on both sides, age remained a predictor on the

unoccluded side in M1, and there were no predictors of cortical thickness for V1 (Table 2). As

reported previously[15], cortical thickness was significantly lower in the primary motor cortex

on the side of carotid occlusion compared with the unoccluded side (2.07mm vs. 2.15mm,

paired t-test, P<0.001), and no significant hemispheral asymmetry was present in the visual

cortex (1.78mm on ipsilateral side vs. 1.80mm on contralateral side, paired t-test P>0.2).

Discussion

In our cohort of patients with asymptomatic high-grade carotid atherosclerotic disease without

stroke, regional gray matter cerebral blood flow measured with pCASL correlated with cortical

thickness in the motor cortex, bilaterally, but not in the visual cortex. In the anterior circula-

tion, the motor cortex was thinner on the side of the occluded carotid artery where the blood

flow was significantly lower, whereas no such asymmetry in cortical thickness was found in

the visual cortex, despite a similar asymmetry in blood flow. Although not assessed directly, a

fetal origin PCA, present in 15–30% of the population[27], could account for some of the flow

asymmetry in the visual cortex. The degree and distribution of cortical thinning in the anterior

circulation was, in fact, comparable to thinning that has been reported with unilateral chronic
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cerebral infarction,[28] in which motor cortex thickness in patients with a single underlying

subcortical stroke was 2.07mm, identical to our M1 thickness on the side of carotid occlusion

in the absence of stroke. On the contralateral side, their motor cortex measurement was

2.27mm, comparable to our average of 2.15mm on the side contralateral to the high-grade

carotid stenosis. In that study, age-matched control subjects with no ischemic disease had an

average M1 thickness of 2.40mm. In contrast to the motor cortex in the anterior circulation,

our cohort’s average V1 thickness was 1.79 mm, similar to age-adjusted normal thickness in

V1 of 1.81mm.[29] No patients in our cohort had frank stroke, and WMH volumes and silent

subcortical infarcts did not correlate with cortical thinning. Taken together, our results extend

our prior findings that cortical thickness differed by side of occlusion,[15] and suggest that

Fig 2. Scatterplots of cortical thickness versus CBF in primary motor cortex (M1, panel A) and in

visual cortex (V1, panel B).

https://doi.org/10.1371/journal.pone.0189727.g002
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there is a differential susceptibility to cortical thinning in the anterior circulation that was not

present in the posterior circulation. Moreover, this susceptibility had both a generalized effect

across both hemispheres in the carotid territories, as well as a hemispheral effect, based on

presence of the unilateral high grade obstruction that produced hemispheral hypoperfusion.

The thickness of the visual cortex, by contrast, does not appear to have been affected by blood

flow, either in a generalized way, nor hemispherally.

Cortical thinning has been reported in cerebrovascular disease, but to date has only been

associated with stroke risk factors such as hypertension and diabetes, or has been demon-

strated in the setting of clinical or image-identified infarction. Three of the variables we mea-

sured have been previously reported to contribute to cortical thinning: age, diabetes, and

hypertension. Hypertension was highly prevalent in our cohort, occurring in 75%, and diabe-

tes was present in 21%, but neither was a significant predictor of cortical thickness in our anal-

ysis. Chronic hypertension in the general population has been reported to be associated with

cortical thinning in the frontal and temporal lobes.[30, 31] Elevated blood glucose among

patients with diabetes has been shown to be associated with cortical thinning,[10, 32, 33] and

may additionally interact with hypertension.[11] Age, a widely reported correlate of cortical

thickness[34–36], was associated with thinning in the motor cortex in our cohort, but not in

the visual cortex, consistent with some reports suggesting that frontal, parietal, and temporal

thinning are more closely associated with the aging process.[29, 37]. In patients with frank

ischemic lesions, cortical thinning has been shown to be associated with subcortical stroke,

silent microinfarcts and white matter hyperintensity burden[13, 14, 28]

Cortical thinning has been associated with reduced cerebral blood flow in a number of con-

ditions, including Alzheimer’s disease. Lower CBF in the temporal and parietal regions of

Table 1. Univariate correlations with cortical thickness by side of occlusion.

M1 Occl M1 Unoccl V1 Occl V1 Unoccl

Age -.351 (0.045) -.363 (0.038) -.011(0.950) -.149(0.408)

HTN -.325 (0.065) -.278(0.117) .068(0.708) .036(0.844)

DM -.131 (0.486) .007(0.971) -.012(0.949) -.192(0.284)

hCBF .359 (0.110) .287 (0.208) .135(0.521) .076(0.720)

rCBF .494 (0.007) .447(0.017) .093(0.689) .218(0.343)

hWMH .005 (0.980) .080(0.697) -.109(0.595) -.299(0.138)

Numbers are Pearson correlation coefficient with univariate P-values in parentheses. M1 Occl = primary motor cortex on side of carotid occlusion, M1

Unoccl = primary motor cortex on side of normal carotid, V1 Occl = primary visual cortex on side of carotid occlusion, V1 Unoccl = primary visual cortex on

side of normal carotid, HTN = HTN (0 = absent, 1 = present, on meds), DM = type 2 diabetes mellitus (0 = absent, 1 = present, on meds),

hCBF = hemispheral cerebral blood flow (cortical gray matter by arterial spin labeling), rCBF = regional cerebral blood flow (cortical gray matter in cortical

region listed), hWMH = white matter hyperintensity volume by hemisphere

https://doi.org/10.1371/journal.pone.0189727.t001

Table 2. Multivariable regression by side of occlusion.

M1 Occl M1 Unoccl

Age -.328(0.067) -.368 (0.039)

rCBF .390(0.032) .360(0.043)

Numbers are Beta standardized coefficients with adjusted P-values in parentheses. M1 Occl = primary

motor cortex on side of carotid occlusion, M1 Unoccl = primary motor cortex on side of normal carotid, V1

Occl = primary visual cortex on side of carotid occlusion, HTN = HTN (0 = absent, 1 = present, on meds),

rCBF = regional cerebral blood flow (cortical gray matter in cortical region listed),

https://doi.org/10.1371/journal.pone.0189727.t002
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Alzheimer patients has been reported, but was thought to be reflective of reduced metabolism

from tissue loss rather than being a causal factor, and low blood flow in frontal regions was

postulated to be an effect of diaschisis.[38] In cerebrovascular and cardiovascular disease,

hypoperfusion has been more commonly considered as a predictor variable for cortical thick-

ness. It has been reported that among patients with hypertension and other cardiovascular risk

factors, total brain perfusion predicted total brain volume and total brain cortical thickness,

occurring predominantly in the frontal, temporal and parietal lobes bilaterally.[9, 39] In

another study, cortical thickness was assessed in 35 patients with NYHA Functional Class II

heart failure and low left ventricular ejection fraction, with cortical thinning found in the fron-

tal, parietal, temporal, and occipital lobes bilaterally.[12] In our cohort, the choice of motor

cortex as a target to examine the association between cortical thickness and blood flow allowed

us to take advantage of the concept of the distal field or “watershed” territory of the occluded

carotid artery, where carotid flow is most affected by high grade blockages.[40] This human

disease model provided the unique opportunity to study an effect of unilateral hypoperfusion

on cortical thickness, which appears to have been supported by our results.

We interpret our findings to suggest a differential impact of cerebral hemodynamics in the

anterior circulation, which may be related to a predominance of atherosclerosis in the carotid

arteries. Our patients had severe atherosclerosis in the carotid arteries and minimal atheroscle-

rosis in the vertebrobasilar system. It is known that carotid atherosclerosis is associated with

increased arterial stiffness[41], and has been associated with increased stroke risk[42], greater

WMH volumes[43], larger diameters of intracranial vessels[44], and cognitive impairment

[45]. It is postulated that pulsatile blood flow entering the cranium is less dampened through

atherosclerotic carotid arteries, and thus will transmit pulse wave forces more directly to the

intracranial vasculature including the capillary bed that perfuses the cortex. The impact of this

blood flow on cortical thickness is a possible manifestation of this effect, and is consistent with

reports of mostly anterior circulation territory cortical thinning in cerebrovascular disease

populations, as cited above. The posterior circulation in our cohort would have had less pulsa-

tility effect with lesser atherosclerosis in the vertebral arteries. As a second potential bio-

mechanical effect, the “T-intersection” at the top of the basilar artery is thought to act as a

physical baffle, taking the brunt of the pulsatile flow[46], and thus provide additional dampen-

ing of hemodynamic effects to the distal posterior vasculature, reducing the negative impact of

pulsatile flow to the posterior cortex.

In addition to the hypothesized anterior-posterior pulse flow differential, there was a hemi-

spheral effect that resulted in greater cortical thinning on the side of the high-grade carotid ste-

nosis where the resting cortical blood flow was significantly lower. Our hypothesis that altered

hemodynamics is a contributor to cortical thinning would require that there exist a sufficient

state of chronic or intermittent ischemia in the cortex, producing tissue loss in the absence of

frank infarction. Although the pCASL rCBF measurements recorded in the M1 gray matter

ranged from low into the high normal range, intermittent dipping into a hypoperfusion range

may occur with sleep,[47] orthostatic hypotension[48, 49] or loss of autoregulation[50], exac-

erbating the impact of the abnormal hemodynamics. Cellular loss in chronic ischemic disease

without infarction has been shown in a 3-vessel occlusion rat model in which CA1 neurons

became damaged if the occlusion were left permanent, but remained functional if a reversal of

the occlusion was performed within 2 weeks.[51] Histopathological findings in that study

included reduced dendritic arborization and lower spine density that may change cortical

architecture.[52] In humans, hemiatrophy has been shown in some patients with unilateral

chronic ICA disease.[53] More recently, Positron Emission Tomography imaging with a ben-

zodiazepine receptor ligand as a marker of neuronal integrity was used to identify selective

neuronal loss (SNL) in 105 patients with high grade carotid stenosis but no cortical infarction
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on MRI. There was co-localization between SNL and increased oxygen extraction fraction,

suggesting that areas of severe hypoperfusion may lead to tissue loss.[54] Overall, our findings

of rCBF correlation with cortical thickness in both hemispheres in the anterior circulation,

combined with the hemispheral asymmetry anteriorly, suggest that a two-factor hemodynamic

effect may be contributing to cortical thinning—a generalized atherosclerotic effect, and a

hemispheral effect due to hypoperfusion caused by the high grade unilateral stenosis. The two-

factor conceptual model is illustrated in Fig 3.

We used pCASL to identify rCBF, although it has limitations. Due to scanning time con-

straints on the patients, we did not acquire simultaneous arterial transit time measurements

on each patient. Instead, we opted for a relatively long labeling duration + post-labeling delay

to include a wide range of ATTs expected in these patients. As per Alsop et al.[55], the maxi-

mum ATT accounted for in our study was 1.950 + 1.850 = 3.9s. This is well within the longest

ATT measured by MacIntosh et al. in elderly subjects[19], as well as data acquired from a pilot

study run by our group prior to this study in which the ATT in the ipsilateral side was on aver-

age ~1s longer than in the contralateral side We reiterate that while the PLD of this study is

shorter than most ASL studies, we compensated by increasing the labeling durations to ensure

that the SNR was not affected by the long PLD. As a result, there is risk for more vascular

Fig 3. Two-factor model for the effect of altered hemodynamics on cortical thinning. We hypothesize a general susceptibility to

thinning from atherosclerosis in the anterior circulation and a hemispheral effect of cortical thinning due to restricted flow from the high

grade carotid stenosis.

https://doi.org/10.1371/journal.pone.0189727.g003
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artifacts. Thus, the ATT remains an unmeasured factor in our study and the CBF results

should be interpreted as a combined true flow plus transit time effect.

A second limitation is that with our method it is not possible to separate T1-w signal from

gray matter versus blood, since they are similar at 3T.[56] This could potentially result in either

an overestimation or an underestimation of cortical thickness. On one hand, since our patients

are likely to have increased blood volume on the side of occlusion as is expected in “stage 1”

hemodynamic failure,[57] there could be in an overestimation of cortical thickness. We dem-

onstrated thinner cortex on that side, so this confound would support our findings. Con-

versely, there was, on average, lower CBF on the side of occlusion, which could result in an

artifactual underestimation of cortical thickness. Since there was an asymmetry in cortical

thickness in the motor cortex but not in the visual cortex despite an asymmetry in flow in both

locations, however, it is unlikely that this potential confound was present. Although more

research is needed to parse out these mediating effects, the overall effect would be expected to

be less than the observed hemispheric difference in cortical thickness.

Limitations of this study also include its relatively small group size. A larger cohort might

allow variables such as hypertension and diabetes to emerge as correlates of cortical thinning

as reported in other studies. Another limitation is the lack of longitudinal data. We did not

have follow up scans or information concerning duration of hypoperfusion, since patients

entered the study with high grade carotid disease already present. The few patients who did

not show a cortical thickness asymmetry in the expected direction may have had shorter total

duration of hypoperfusion, or well-established collateral blood flow. Follow up imaging would

help validate hypoperfusion as a cause of cortical thinning and document evolution over time.

Our study was also limited by spatial resolution of the MRI scanner. Higher field scanning or

concurrent metabolic imaging might elucidate anatomical features of the cortex that could

give clues as to the nature of changes occurring in patients, such as selective neuronal loss,

reduced synaptic complexity, or gliosis.

Conclusion

We demonstrated in a cohort of patients with atherosclerotic high-grade carotid artery stenosis

but no stroke that CBF was a significant predictor of cortical thickness. In addition to a general

effect of rCBF correlating with cortical thickness in carotid territories, bilaterally, cortical

thickness and CBF were significantly lower on the side of the higher carotid stenosis. In

this patient population, we were able to take advantage of the carotid versus vertebrobasilar

differential in atherosclerosis as well as a hemispheral asymmetry in degree of carotid stenosis

to support this relationship. Because cortical thinning has been associated with cognitive

impairment in several disease states, it is possible that cognitive impairment reported in high

grade carotid artery disease[58, 59] may be driven by the hemodynamic effects of atheroscle-

rotic arterial stiffness, and by chronic low cerebral blood flow on the side of high grade carotid

stenosis, a notion which has support in animal models of chronic hypoperfusion. Further

research is needed to assess cortical thickness longitudinally, and to determine the relative con-

tributions of hypoperfusion and cortical thinning to cognitive impairment in these individuals.

Supporting information

S1 Table. Raw data. Raw data are listed in this table, each row representing a single subject.

L_STEN = left stenosis, R_STEN = right stenosis, OCCL = occluded, XFIL = cross-filling,

MFV = mean flow velocity, VMR = vasomotor reactivity, DCA = dynamic cerebral autoregula-

tion, M1 = primary motor cortex, CBF = cerebral blood flow, V1 = primary visual cortex,

thick = cortical thickness, WMH = white matter hyperintensity, HTN = hypertension,
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DM = diabetes mellitus.
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