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ABSTRACT

Muon Spin Relaxation Study of MnGe and
Development of Pair Distribution Function

Methods

Zizhou Gong

The first half of the thesis presents our experimental study of a helical magnet MnGe. In a

non-centrosymmetric magnetic structure, a type of magnetic exchange interaction, usually

called the Dzyaloshinskii-Moriya interaction, was allowed to exist in addition to ferromag-

netic interaction. Unlike the ferromagnetic interaction which tends to align the spin along

the same direction, the Dzyaloshinskii-Moriya interaction tends to align the neighboring

spins to be perpendicular to each other. Therefore in a magnetic structure where the ferro-

magnetic and the Dzyaloshinskii-Moriya interaction coexist, the ordered phase could acquire

a helical spin order which. Within specific temperature and magnetic field range, the helical

order could evolve into a lattice of vortex-like, topologically nontrivial spin structures called

Skyrmion. Among these materials, MnSi and MnGe have been shown experimentally to

exhibit spin fluctuation and dynamic critical behaviors. This makes them suitable for muon

spin relaxation (µSR) study. As a sensitive probe to local magnetism, the µSR technique

gives information about the temporal correlation of the dynamic local field through track-

ing the rotation and relaxation of the muon spin under the influence of the local magnetic

environment.



In this study, we apply µSR technique to study the dynamic as well as the static magnetism

in MnGe. Our key findings are as follows. From the muon dynamic relaxation 1/T1 results,

no apparent critical behavior or anomaly was observed at the boundary between param-

agnetic and the induced-ferromagnetic regions. Our study revealed linear relation between

the transverse field relaxation rate and the static magnetization. Furthermore, their ratio,

which can be regarded a form of hyperfine coupling constant, is very similar in the induced

ferromagnetic region and the paramagnetic region. This suggest that the Z component of

the Mn moment is static in both regions. On the other hand, the single relaxation rate in

the transverse spectra suggest that the internal field is highly homogeneous in the induced

ferromagnetic region. We therefore speculate that the induced ferromagnetic region and

the paramagnetic region are not separate phases, but rather a single phase with different

tendencies as temperature decrease. With decreasing temperature, the paramagnetic region

is marked with the winning of the tendency towards ferromagnetic ordering over random

ordering, and the induced ferromagnetic region is marked with the winning of the tendency

towards the helical order over ferromagnetic order.

At lower temperature, we observed dynamic critical behavior in the boundary between the

induced ferromagnetic region and the Skyrmion region. Specifically, in low fields, the 1/T1

relaxation rate behaves qualitatively different from the prediction of SCR theory for itinerant

ferromagnet for large temperature regime above Tc. In high fields, on the other hand, the

system recovers the SCR itinerant ferromagnetic behavior. Through analyzing field effect

on spin fluctuation and phase transition in the low and high field regimes, we speculate

that this could be due to the suppression of helical fluctuation into ferromagnetic-like fluc-

tuation by large magnetic fields. Our µSR results, which show 2nd order signature for the

transition between the induced ferromagnetic region into the Skyrmion region, is consistent

with considerations based on the topology of the magnetic structure in each phase. At low



temperatures within the Skyrmion region of MnGe, our analysis of the transverse field data

shows that all the three components of the Mn moment is frozen. The quadratic tempera-

ture dependence of 1/T1 at low temperatures suggest the two-magnon spin wave to be the

dominant spin excitation in the Skyrmion region. This is similar to those seen in local-

ized moment magnets and is qualitatively different from the linear temperature dependence

predicted from SCR theory for itinerant ferromagnets.

The second half of the thesis present our derivation of the structure function and the pair

distribution function (PDF) for textured materials. We also derive the analytical form of

the PDF for a few special cases of texture. The PDF is derived from Fourier transforming

the scattering structure function, and it reveals the local atomic arrangement within the

material. The theory of the pair distribution function has been well established under the

assumption that the sample is isotropic, meaning that the crystallites within the sample has

equal probability to be along each and every orientation. While the isotropic PDF has been

applied to a variety of samples and have successfully unveiled their local structure, in reality

there’re many cases where the sample itself has strongly preferred orientation, or samples

with texture. In such cases the isotropic PDF might become less accurate for these textured

samples. In this study, we start from the general form of a 3D structure function and

derive the general and orientationally averaged form of the structure function and PDF for

textured samples. In particular for a thin film sample with fibre texture, our formalism gives

the result known as the 2 dimensional PDF. We developed open-software that calculates the

2 dimensional PDF for a textured thin film, and showed that the experimental PDF was

well fitted using the model.

On the other hand, the PDF method could be extended to an energy-dependent form, which

could reveal explicitly the effect of lattice dynamics on the local arrangement of the atoms.



This is usually called the dynamic PDF method. In this thesis we derive the analytical

form of the dynamic PDF for a simple molecule that contains two identical atoms. And we

interpret the mathematical results with physical consideration of the lattice dynamics. In

addition, we also propose a new definition for the dynamic PDF which can be shown to reduce

to the atomic PDF by integrating over energy. This new definition of the dynamic PDF

incorporates the contribution from multi-phonon scattering effects, and can be computed

conveniently from inelastic neutron scattering.
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CHAPTER 1. INTRODUCTION TO THE SKYRMION MATERIALS

Chapter 1

Introduction to the Skyrmion

Materials

1.1 Generic aspects of Skyrmion systems

1.1.1 Magnetic phases in Skyrmion system

Here we introduce the generic phases in 2-dimensional Skyrmion system. The presence of

the energy scales in various Skyrmion materials has resulted in a rather universal phase

diagram, as shown in Figure 1.1. Very similar phase diagram was observed in Skyrmion

materials that are metal, semiconductor, and insulator, with MnGe being perhaps the single

known exception which will be discussed in detail in a separate section Seidel [2016].
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1.1.1.1 The induced magnetic phase

In the temperature regime above the Skyrmion transition, an induced magnetic phase can

be achieved under large external magnetic field. In MnSi, this state is believed to be purely

ferromagnetic and thus can be continuously tuned into the conical state by decreasing the

magnetic field at fixed temperature. The induced (ferro-) magnetic state is characterized

by the saturation of the Mn magnetic moment at around 0.4 µB as the system enters the

induced magnetic state from the conical state Stishov and Petrova [2011]. The crossover from

the paramagnetic state to the induced magnetic state at high temperature is identified from

susceptibility and magnetization measurements Bauer and Pfleiderer [2012]; Bauer et al.

[2013]; DiTusa et al. [2014]. For example in MnGe and FeGe, the large low field contribution

to magnetization is characteristic of a ferromagnetic phase with little hysteresis DiTusa et

al. [2014]. To our knowledge, detailed experimental study of the induced magnetic phase is

still lacking. In this thesis, this will be presented through a study of MnGe.

1.1.1.2 The Skyrmion phase

The Skyrmion phase, as marked by the small pocket region right below the transition tem-

perature in the phase diagrams, consisting of a locally spiral spin state that is topologically

inequivalent to either the conical, helical or the ferromagnetic state. Regarded as being sta-

bilized by its unique spin topology, the Skyrmion phase is first established experimentally

via small angle neutron scattering on single crystal MnSi Mühlbauer et al. [2009], where the

6-fold symmetric scattering pattern was observed in the Skyrmion phase, indicating the for-

mation of the hexagonal Skyrmion lattice. This study also shows, with computer simulation,

that the stabilization of the Skyrmion phase against the conical phase can be assisted by the

large thermal fluctuations near the phase transition. This point has been corroborated via
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a subsequent simulation study, which uses classical Monte Carlo (MC) method and incor-

porates the thermal fluctuation effect with a non-perturbative approach Buhrandt and Fritz

[2013]. In fact the energy of the 2D Skyrmion state is close to the conical state even without

thermal fluctuations Mühlbauer et al. [2009], and thus the interplay between thermal agi-

tation and topological stability becomes significant in some Skyrmion materials. The mean

lifetime, energy landscape and stability of the Skyrmion phase against the external magnetic

field has been studied numerically in Hagemeister et al. [2015]; Sampaio et al. [2013], and

experimentally in Oike et al. [2016]. It is found from the experimental study that through

rapid cooling the system enters the metastable Skyrmion state inside the conical phase, and

have a typical lifetime of 104 seconds at a temperature of 23 K with external field of 0.22 T

in MnSi Oike et al. [2016].

1.1.1.3 Evolution of the magnetic phases in external field

At high temperature the Skyrmion system exhibit paramagnetic behavior with a large fluc-

tuating moment enhanced by strong ferromagnetic exchange interaction, as revealed by the

µSR experiment Ishikawa et al. [1985]. At low temperature and low field, a helical, or stripe-

like, phase has been observed in various materials Zhao et al. [2016]; Romming et al. [2015];

Milde et al. [2013]. In the helical phase the spin rotates along the magnetic propagation

vector, which at low field is fixed to the easy axis of the material determined by the crystal

magnetic anisotropy. Within the helical phase, if we fix the temperature and increase the

field until it is comparable to the strength of the magnetic anisotropy in the system, then

the field would decouple the spin helix from the magnetic anisotropy axis and align the

magnetic propagation vector along the direction of the field. Up to this point the external

field competes with and has overcome the magnetic anisotropy. For convenience of notation
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Figure 1.1: Generic magnetic phases diagram in Skyrmion systems. Also shown are the spin

configurations of different phases, including the helical, conical, paramagnetic, field-polarized

and the Skyrmion phase. The y and x axes were normalized using the upper critical field

and the critical temperature, respectively. Figure reproduced from Seidel [2016].

we refer to this field as Hc1. We see that Hc1 is the critical value beyond which the magnetic

propagation decouples from the crystal axis, and the helical phase transforms into a lower

symmetry state. Furthermore, as the field continues to increase beyond Hc1, it starts to

compete with the next stronger interactions in the system, the DM interaction, and starts to

tilt the spins in the spiral towards the field direction. This tilted spin spiral state is referred

to as the conical state. As the field continues to increase beyond a certain critical value,

Hc2, the spin becomes fully aligned with the field, and the system enters the field-polarized

(ferromagnetic) state. Therefore we see that Hc2 is the field value beyond which the external

field completely win over the DM interaction. The influence of external field on the stability

of the various phases is studied in both experiments and calculations with a focus on the

field-dependent size of the (2D) Skyrmion Romming et al. [2015]. Intuitively, in the 2D
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Skyrmion state the ferromagnetic exchange energy is minimized in the background region,

where spins are totally aligned with the field, and the DM exchange energy is minimized

within the Skyrmion region, where the period of the spin spiral is shorter than in the conical

phase in the nearby region of the phase diagram (namely the consecutive spins are aligned

more perpendicularly) and therefore further reduces the DM interaction. Figure 1.2 gives

an illustration of the evolution of the Skyrmion under magnetic field. As the external field

increases, the ’background’ ferromagnetic region expand, and the edge of the Skyrmion cor-

respondingly shrinks towards the center. Since the spins on the outer edge of the Skyrmion

are more aligned with the FM background, it is clear that increasing the external field along

the polarization direction the background spin would shrink the Skyrmion by aligning more

of its edge spins along the field. From a theoretical perspective (see Ch.2 in Seidel [2016]),

the tilt angle of the spin within a Skyrmion follows:

θ(ρ) ≈


π − c1κρ for ρ→ 0

c2√
κρ
e−κρ for ρ→∞.

(1.1)

where κ2 ∼ H/J , thus as the field increase, the size of the Skyrmion shrinks in order to reduce

the magnetic energy Seidel [2016]. On the other hand, theory requires that Skyrmion takes

a minimal size (the critical size of Skyrmion) against external field at certain temperature,

beyond which the Skyrmion will become unstable and collapse into the ferromagnetic phase

Siemens et al. [2016].

1.1.1.4 Real space observations

Various real space observation has been applied in the observation of the helical and Skyrmion

state in different compounds. Figure 1.3 (a) shows the direct observation of Skyrmion via

magnetic field microscopy Milde et al. [2013], in which the dot-like objects are Skrymions
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Figure 1.2: Simulation on the field dependence of the size of Skyrmion. The field is applied

along the spins in the background outside the Skyrmion region. As the field increases, the

background ferromagnetic region expands due to more spins being aligned by the field, while

the Skyrmion region shrinks from the edge. Figure reproduced from Romming et al. [2015].

and the stripe-like order is the helical phase. This study shows that the Skyrmions break

and merge with each other to form local stripe-like magnetic object, which then further

connect with each other and establish the long-range helical phase. Evolution of the helical

phase across the Skyrmion phase into the ferromagnetic phase is also demonstrated in similar

studies using Lorentz transmission electron microscopy (LTEM) and other techniques Yu et

al. [2012, 2010]; Zhao et al. [2016]; Heinze et al. [2011]; Park et al. [2014], where the spin

textures within the observed phases were mapped out. The decrease of the Skyrmion size

under increasing external field, as discussed above, has been clearly observed from the LTEM

image, see Figure 1.3 (b). In a separate study using LTEM Nagao et al. [2015], helical phases

with multiple wave vectors were observed in the vicinity of the field-driven Skyrmion phase

transition (see Figure 1.5). By monitoring the temporal evolution of this multi-Q vector

state this study demonstrates that Skyrmions annihilate with a time scale of 30 seconds.
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(a) Magnetic force microscopy (b) Lorentz TEM

Figure 1.3: (a) Magnetic force microscopy images of Skyrmion material Fe0.5Co0.5Si un-

der different external fields. As the field decreases from 20 mT to -20 mT, the system

changes gradually from the Skyrmion phase into the helical phase. The pair-annihilation of

Skyrmion and the creation of stripe-like helical order can be clearly seen from the interme-

diate fields B3, B4. Figure reproduced from Milde et al. [2013]. (b) Lorentz TEM image of

BaFe12−x−0.05ScxMg0.05O19, x = 0.16. As the field increases, the stripe-like helical phase first

evolves into the Skyrmion phase, which were then stabilized and subsequently shrink and

disappears into the ferromagnetic phase. Figure reproduced from Yu et al. [2012].
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Figure 1.4: Lorentz TEM image of Fe0.5Co0.5Si. As the field increases, the stripe-like helical

phase evolves into the Skyrmion phase. The experimental data (lower panels) were fitted

and interpreted well with the theoretical calculation (corresponding upper panels). Figure

reproduced from Yu et al. [2010].

1.1.2 Energy scales in Skyrmion system

The formation of the helical and Skyrmion state originates from the competition of 3 dis-

tinct energy scales. The largest energy scale, corresponding to the strongest interaction, in

Skyrmion system is the ferromagnetic exchange (FM) interaction which favors parallel spin

alignment. At the presence of other interactions in the Skyrmion system, the FM interaction

still forcibly aligns the spin on short spatial scales. The second largest energy scale comes

from the isotropic Dzyaloshinskii- Moriya (DM) spin-orbit interaction. The DM interaction

is a result of the lack of inversion symmetry in the crystal structure, and takes the following

8



CHAPTER 1. INTRODUCTION TO THE SKYRMION MATERIALS

Figure 1.5: Fresnel image series of FeGe at 200 K, with field decreasing from 100 mT to 0

mT. As the field decreases, stripe-like helical order with different orientations grows longer,

and finally intersect at the Skyrmion regions. Figure reproduced from Nagao et al. [2015].

form

−D
∫
drM · (∇×M) . (1.2)

Intuitively the DM interaction favors perpendicular spin alignment. Thus within certain

temperature and magnetic field condition, the competition of the FM and DM interaction

stabilizes a spin configuration with spiraling spins. This can be a helical, conical or even

a topologically-nontrivial spin structure called the Skyrmion. The wave vector Q of such

helical spin order can be estimated as Q ∼ D/J , where D and J stands for the strength of

the ferromagnetic and DM interactions. Finally, the smallest energy scale comes from the

higher order spin-orbit interactions in the system. These interactions are usually referred to

as either the crystal electric field effect or cubic anisotropy, and determines the direction of

propagation of the helical modulation Seidel [2016].

The above energy hierarchy is closely related to the nature of the critical thermal fluctuation

in the above mentioned Skyrmion system. At above Tc, decreasing the temperature reduces

the thermal disruption to the system, which subsequently develops stronger magnetic corre-

lations. In a system with multiple levels of spin interaction, this implies that as temperature

decreases the spin interactions become dominant according to their relative strength, and
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Figure 1.6: Energy scale and correlation lengths in the Skyrmion system. Figure reproduced

from Janoschek et al. [2013].

forming dynamic spin correlations on the scale of the correlation length ξ determined by the

temperature of the system. Thus it is convenient to associate each energy scale (interaction)

in the system with a corresponding spatial correlation length ξE, with the intuition that it

is only when the temperature is low enough and the thermal correlation length ξ is equal or

larger than ξE that the interaction with energy scale of E becomes effective and dominant.

In other words, the stronger the interaction, the larger its energy scale, and the smaller the

associated length scale, and thus the easier for it to be effective at a certain temperature and

correlation length ξ. We conveniently use ξcub, ξDM and ξFM as the correlation length for the

cubic, DM and the ferromagnetic interaction, as illustrated in 1.6. Since the FM interaction

is much stronger than the other two, ξFM is usually smaller than the other two length scales

and thus its effect is constantly present around the phase transition. We therefore consider

the effective onset of the other interactions as temperature decreases towards Tc.

Specifically, at T � Tc the fluctuation is essentially ferromagnetic-like since the correlation

length ξ is relatively short compared with the helical/Skyrmion period (ξ ∼ J/D). Further-

more, as temperature decrease and the correlation length becomes comparable to the helical

period, the magnetic fluctuation tends to form spin spirals with a wave vector of Q ∼ D/J .

At this stage fluctuation of these spin spirals are highly isotropic and tends to occupy a
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spherical area in the reciprocal space Mühlbauer et al. [2009]. As the temperature further

decreases, the cubic anisotropy interaction finally sets in. These anisotropy interaction tends

to fix the magnetic fluctuations to the (energetically preferred) easy axis of the crystal.

Beyond the above 3 energy scales that are responsible for the formation of the helical/Skyrmion

phase, the 4th energy scale of the system is set by the interaction between the fluctuating

helical modes. The length scale for this interaction is the Ginzburg length Chaikin [1995],

ξGi. The strength of the interaction can be measured by comparing the thermal correlation

length with ξGi, and can be treated differently in each case. For example the system is con-

sidered strongly interacting if ξ & ξGi, and can be treated as weakly interacting if ξ � ξGi.

The relative strength of the interaction of helical fluctuations with respect to that of the

other interactions in the Skyrmion system sets the nature of the phase transition, e.g. its

order (1st or 2nd). The specific case where

ξcub � ξGi � ξDM (1.3)

corresponds to the case considered by Brazovskii Brazovskǐı [1975]. In this case the helical

fluctuations becomes strongly interacting when they’re still fluctuating isotropically, and the

phase transition, which a mean-field theory predicts to be 2nd order, driven by the tendency

to reduce the strong interaction energy, turns out to be 1st order.

1.1.3 Models of magnetic fluctuations

1.1.3.1 Localized electron model of magnetism

Historically, magnetism was explained first by regarding a magnetic material as composed

of small local magnetic moment with a fixed size. Under external field, a set of atoms with
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fixed magnetic moment would, with statistical averaging, align with the field and gives rise

to the Curie law of magnetic susceptibility Moriya [1985]

χCurie =
C

T
, (1.4)

where C is the Curie constant and T is temperature. After introducing the concept of an

interaction between atomic magnetic moment, using mean molecular field as an approxima-

tion Moriya [1985], Weiss has successfully explained the existence of ferromagnetic phase,

with the susceptibility behaving like

χCurie-Weiss =
C

T − Tc
, (1.5)

with Tc being the ferromagnetic transition temperature. Equation 1.5 is usually called the

Curie-Weiss law of magnetic susceptibility, and is commonly observed in nearly all ferromag-

nets.

Despite its success in many aspects, the classical theory of magnetism has several intrin-

sic difficulties that remains to be resolved Moriya [1985]. For example it assumed without

concrete proof the existence of atomic magnetic moment with constant magnitude. Further-

more, the magnitude of the molecular field required to reproduce the observed Tc is about

three orders larger than the estimation based on magnetic dipole-dipole interaction. These

mysteries were resolved by the quantum theory of magnetism.

According to quantum mechanical laws, electrons in the atom goes into their eigenstate

and thus have quantized orbital and spin-angular momentum. The quantized unit for elec-

tron magnetic moment is known as the Bohr magneton, which equals to µb = e~/2mc.

On the other hand, the existence of the Weiss molecular field was clarified by introducing

the quantum-mechanical exchange interaction between adjacent atoms. In particular, as a

phenomenological model, the Heisenberg model has proved to be a very important model
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in explaining a variety of properties of magnetic materials. By specifying the sign of the

exchange constant, antiferromagnetism, ferrimagnetism and even helical magnetism has all

been successfully derived. It also provides valuable insights into the elementary excitations

in magnetic material and introduced the concept of spin wave.

1.1.3.2 Itinerant electron model of magnetism

Alongside the localized moment picture is the itinerant electron theory of ferromagnetism.

The basic idea is that the exchange interaction between the up and down electrons within

the same energy band turns out to shift the two spin-subbands by an energy difference of

the order of the exchange interaction. The occupation number in each spin sub-band thus

becomes unequal, effectively introducing ferromagnetism into the material. The predictions

of the itinerant electron model of ferromagnetism turns out to be consistent with the ob-

served magnetization in transition metals with non-integer Bohr magneton, although it does

experience some difficulty in explaining the Curie-Weiss law of magnetic susceptibility and

some other observed trends in many ferromagnets.

From a wholistic point of view, the localized and the itinerant electron model of magnetism

starts with opposing states of the electron. And since most real cases tend to fill out the

full spectrum instead of the extreme limiting cases, controversies has arisen for a long time

about using the two models Moriya [1985]. By far it become clear that the d electrons, a

primary contribution to magnetic moment in material, should be regarded as more localized

in magnetic insulators, and behaves more like itinerant electrons in transition metals.
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1.1.3.3 Random-Phase Approximation theory of spin fluctuation

Random-phase approximation, or RPA, was among the efforts to unify the above mentioned

opposing pictures of magnetism. In his seminal work on spin waves, Slater Slater [1937]

emphasized the importance of the interaction between the excited electrons and holes. Sub-

sequently, Herring and Kittle Herring and Kittel [1951]; Herring [1952] developed the micro-

scopic spin wave theory of ferromagnetic metals. Finally, the random-phase approximation

was introduced by Izuyama in his attempt to solve the general spin fluctuation problem,

including paramagnetic and critical fluctuations Izuyama et al. [1963]. The RPA theory,

however, turns out to be inconsistent with some of the experimental observations. And this

is expected since it didn’t include the effect of spin fluctuation on the calculated thermal

equilibrium state of the system. In other words, a theory is needed, which accounts for the

spin fluctuation effects in a self-consistent fashion. One attempt at this, which is proved to

be quite successful, is the self-consistent renormalization, or SCR, theory of itinerant electron

magnetism.

1.1.3.4 Self-Consistent Renormalization theory of spin fluctuation

As mentioned in the previous section, the SCR theory calculates at the same time the thermal

equilibrium state and the spin fluctuations in a self-consistent fashion Moriya [1985]. In other

words, the interacting modes of the spin fluctuation was accounted for self-consistently.

Along this line of thought, Murata and Doniach Murata and Doniach [1972] developed the

phenomenological mode-mode coupling theory of spin fluctuations for a weak ferromagnetic

metal, and the quantum mechanical treatment of the self-consistent renormalization of spin

fluctuation was finally proposed by Moriya Moriya and Kawabata [1973].
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Figure 1.7: Temperature dependence of the inverse magnetic susceptibility calculated from

the SCR theory (solid line) and from the Stoner model (dash line). Figure reproduced

from Moriya [1985].

Experimental results has since then supported the SCR theory in many aspect and properties

of the material, as well as the temperature and field dependence of the spin fluctuation

condition Moriya [1985]. Among the many successful predictions of the SCR theory, the

most important one is considered to be the new mechanism proposed for the Curie-Weiss

law of susceptibility.

For detailed development of the theory, we direct the readers to Moriya [1985, 1982] and

references therein. Here we briefly introduce and discuss the results of the theory, with a

focus on the Curie temperature and magnetic susceptibility above Tc. As a self-consistent

treatment of spin fluctuation, the SCR theory calculates the dynamic susceptibility and

the free energy at the same time Moriya [1985]. The calculated magnetic susceptibility is

plotted in Figure 1.7. From Figure 1.7 it is clear that the SCR susceptibility follows an

approximate Curie-Weiss law, in stark contrast with the result calculated from the Stoner

model. This indicates that the Curie-Weiss law of magnetic susceptibility of ferromagnetic
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metals should be explained as primarily due to the self-renormalization effects from the

strong spin fluctuation in the system, and is thus different from the local moment. The

Curie constant of the CW law turns out to be determined by the band structure at the

Fermi surface. Meanwhile, SCR theory predicts that the CW behavior should hold even

when the paramagnetic metal is close to the ferromagnetic phase boundary.

In particular, SCR theory predicts that at a very small region near Tc, the inverse suscep-

tibility becomes quadratic in (T − Tc) for weakly ferromagnet metals. The theory for this

special behavior was presented on page 57 in Moriya [1985]. Such important deviation from

the CW law around Tc is observed in MnSi only recently, owing to the enhanced tempera-

ture resolution and stability of the µSR experimental facility Gat-Malureanu et al. [2003].

This deviation is later found to be related to the 1st order nature of the topological phase

transition at zero field Janoschek et al. [2013].

According to SCR theory, the mean square local amplitude of the fluctuating spin decreases

linearly with temperature above the transition temperature, and this results in the Curie-

Weiss behavior of the susceptibility Moriya [1985]. Furthermore, in weak ferromagnetic

metals, the Curie-Weiss law holds only for very small q values for χq. This is in contrast

with the local moment picture, which predicts that χq obeys the Curie-Weiss law for all

q values. After all, in weak ferromagnetic metals the dominant spin fluctuations are of

long-wave length character, and thus the spatial spin correlation is also expected to be long-

ranged Moriya [1985].

1.1.3.5 SCR theory of weakly ferromagnetic metals and spin relaxation

As revealed by SCR theory, the nature of the spin fluctuations in ferromagnetic metals is

different from materials with local moment Moriya [1985]. The spin fluctuation in local
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moment system consists of randomly flipping local moment as a form of thermal excitation,

and can be regarded as a short-range correlation between nearby moments. On the other

hand, the spin fluctuation in weak ferromagnetic metals are long-range (long-wavelength)

spin fluctuations which cannot be properly accounted for in the local moment picture Moriya

[1985]. This is evidenced by the fact that the local spin amplitude in weakly ferromagnetic

metals varies (linearly) with temperature.

As has been introduced before, the random phase approximation is able to provide a good

enough description of the ground state excitations since the interaction effect between the

excited modes are weak at low temperatures. As the spin excitation becomes increasingly

populated at higher temperatures, the coupling effect between the fluctuating spin modes

becomes significant and gives rise to renormalization effects that needs to be accounted for

in order to have a reasonable theory. The nature of the mode mode interaction in weakly

ferromagnetic metals is the increased kinetic energy due to the spatial overlapping of the

fluctuating modes Moriya [1985].

Ueda and Moriya calculated the muon spin dynamic relaxation rate, 1/T1 using the SCR

result for the dynamical susceptibility Moriya [1963]; Moriya and Ueda [1974]; Ueda and

Moriya [1975]. It is found that the relaxation rate at low temperatures is linear in T . At

temperatures close yet still below Tc, the relaxation rate diverges quickly as T → Tc. At

above Tc, 1/T1 and the susceptibility is related by

1/T1 ∼ Tχ ∼ T

T − Tc
(1.6)

Since χ essentially follows the Curie-Weiss law for temperatures above and not too close

to Tc, 1/T1 tends to remain constant for temperatures much higher above Tc. In a seminal

study by Hayano et al. [1978], the T/(T − Tc) behavior of 1/T1 was clearly observed in the

itinerant ferromagnet MnSi via µSR as shown in Figure 1.9.
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Figure 1.8: Nuclear 1/T1 dynamic relaxation rate for weakly ferromagnetic metals with

electron-gas band, calculated using SCR theory. Figure reproduced from Moriya and Ueda

[1974].

These results have also been observed in a wide variety of itinerant ferromagnetic metals

(e.g. Masuda et al. [1977]; Masuda [1983]; Mochizuki [2012]; Alloul and Mihaly [1982]; Takagi

et al. [1981]; Kitaoka and Yasuoka [1980]; Katayama et al. [1977]; Akimoto et al. [1975]),

further demonstrating the power of SCR theory.

1.1.4 Technical applications of Skyrmion materials

In recent years Skyrmionic materials have received increasing attention from researchers due

to potential applications for data storage and information transportation Jiang et al. [2015];

Iwasaki et al. [2013]; Woo et al. [2016]; Büttner et al. [2015]; Boulle et al. [2016]; Koshibae

et al. [2015]; Li et al. [2014b]; Shibata et al. [2013]. Excellent reviews on this topic is readily

available Kang et al. [2016]; Wiesendanger [2016]; Koshibae et al. [2015], and therefore here
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Figure 1.9: Muon 1/T1 dynamic relaxation rate and NMR data for weakly ferromagnetic

metal MnSi, plotted as a function of (T −Tc). Results from theoretical calculations based on

localized and itinerant ferromagnet and itinerant anti-ferromagnet model with SCR theory

were plotted comparison. It is clear that the experimental µSR and NMR data agrees well

with the SCR theory for itinerant ferromagnet. Figure reproduced from Hayano et al. [1978].

we only give a brief survey of the present works, and encourage the reader to refer to these

works to further explore this topic.

It is well known that the properties of the nano magnetic particles widely used in traditional

magnetic hard disk suffer from loss of stability after being decreased below a critical size. This

single factor has severely limited the storage volume of the magnetic storage from further in-

creasing, given the sizes of the device Krause and Wiesendanger [2016]. Magnetic Skyrmions

are considered, among many other candidates, as one of the promising solution for solving

this problem. Owing to their stable topological protection for the spin configuration, some

of the species remain stable even at room temperature. Stable, isolate Skyrmion as small as
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50 nm has been successfully realized at room temperature in laboratory Woo et al. [2016]. In

another recent experiment, Skyrmions are found to be expanding or shrinking under differ-

ent external currents. Furthermore, the demonstrate of current-driven transformation from

magnetic stripes to Skyrmions indicates new potential for Skyrmion spintronics Jiang et al.

[2015].

Skyrmions has also been realized at room temperature in ultra-thin nano materials, without

even the stabling force of an external magnetic field. The extreme thinness as well as the

high sensitivity of the Skyrmion to the nano structure configuration opens up new paths for

designing devices of exotic property and extreme geometry Boulle et al. [2016]. Furthermore,

through applying external current/fields, Skyrmions can be controlled in a variety of ways.

For example, by applying transient electric current pulses, individual Skyrmions can be

efficiently driven along a magnetic track Woo et al. [2016]. By careful manipulation of the

central vortex through external field, Skyrmion can be controlled to switch between different

topological states, or between the on and off state Li et al. [2014b]. The tunability of the

Skyrmionic state further expands the potential of Skymions in the application of logic circuits

and memory devices.

1.2 Phase transitions and topology in Skyrmion sys-

tems

1.2.1 Helical fluctuation-driven phase transition

Recent studies have shown that the magnetic transition in MnSi behaves weakly 1st order

in zero field due to the strong and interacting spin fluctuations, and becomes 2nd order as
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the spin fluctuations is suppressed under external magnetic field Janoschek et al. [2013];

Bauer et al. [2013]. Theories of magnetic phase transitions driven by spin fluctuation has

been proposed by Brazovskii and other researchers Brazovskǐı [1975]; Murata and Doniach

[1972]; Schmalian and Turlakov [2004], and have been successfully applied to explain the

experimental data on MnSi.

It is first shown by Brazovskii Brazovskǐı [1975] that a classical 2nd order magnetic phase

transition becomes 1st order if the magnetic soft modes, which proliferates at temperatures

close to Tc, has a non-zero wave vector. For systems with Dzyaloshinskii-Moriya interaction,

due to the competition between the DM interaction and the Ferromagnetic interaction, the

magnetic soft modes takes the form of short-ranged helical spin order, and acquires a finite

wave vector. As has been studied in Schmalian and Turlakov [2004], such large wave vector

and thus phase space of the magnetic fluctuation results in singularity in the density of state

for the fluctuating modes. Thus the interaction energy (self-energy) of these fluctuating

modes becomes enormous as the system approaches the phase transition. Intuitively, the

large self-energy can be understood as due to the large Ferromagnetic interaction in the

system. The wave vectors of these fluctuating modes occupy a spherical phase space and

therefore the spin configuration largely deviates from Ferromagnetic configuration, and thus

may induce large energy gain compared with Ferromagnetic spin configuration. Furthermore,

it turns out that in this case the free energy of the ordered phase, due to the reduction of

the fluctuating mode and thus their interaction energy, becomes lower than that of the

paramagnetic phase. Therefore as the temperature approaches Tc, driven by energy and

entropy gain, the system circumvents the large interaction energy between the proliferate

fluctuating modes by avoiding the 2nd order transition and enters the ordered state via a 1st

order transition. As a result, the correlation length of the system does not diverge, and the

order parameter varies discontinuously. Furthermore, close to the theory of the fluctuation-
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Figure 1.10: Magnetic fluctuations from neutron scattering, measured for a single crystal

MnSi sample at different rocking angles ω up to ±35 degrees for T = 29.6 K. This shows

that right above the transition temperature the critical fluctuation is highly isotropic. Figure

reproduced from Ref. Janoschek et al. [2013].

drive 1st order transition, the wave vectors of the fluctuating modes above the transition

should occupy the entire spherical phase space, and thus the fluctuation is largely isotropic.

In MnSi, such isotropic magnetic fluctuation has been identified through neutron scattering

experiment on a single crystal sample of MnSi Janoschek et al. [2013]. In this experiment,

neutron diffraction patterns has been obtained at 3 different rocking angles at a tempera-

ture above but very close to Tc of MnSi. As shown from plot 1.10, the magnetic intensity

distribution at these different angles are all consists of a homogeneously distributed ring

with the same radius. This demonstrates that the wave vectors of the fluctuating magnetic

modes around the phase transition is indeed homogeneously distributed on a sphere in phase

space, and thus provide strong evidence for the presence of a fluctuation-drive 1st order phase

transition. The 1st order nature of the magnetic transition in MnSi has been demonstrated

unambiguously through specific heat and magnetic susceptibility measurements Bauer et

al. [2013]; Stishov et al. [2007, 2008]. It is clear from Figure 1.11 that the magnetic phase

transition is associated with a very sharp peak in specific heat. Moreover, the peak is seen

to be suppressed as we increase the magnetic field, indicating that the transition shifts from
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Figure 1.11: Specific heat of MnSi as a function of temperature for magnetic fields up to

0.7 T. The sharp peak which indicates a 1st order transition is seen from fields up to 280

mT, and is essentially suppressed for fields beyond 430 mT, where the fluctuation phase was

suppressed by the field Bauer et al. [2013]. Figure reproduced from Ref. Bauer et al. [2013].

1st order to 2nd order. Therefore we see that in weak itinerant ferromagnet MnSi, due to

the presence of strong spin fluctuations, the continuous 2nd order magnetic phase transition

becomes 1st order at low fields.

This evolution of the phase transition can be better understood by studying the effect of the

external field on the spin fluctuations in MnSi, which will be discussed in detail in the spin

fluctuations section.
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1.2.2 Topological descriptions of Skyrmion

1.2.2.1 topology and winding number

Mathematically, objects with certain geometric shape cannot be transformed continuously to

those with different topological sectors without breaking. Conversely, objects of the sample

topological sector are always able to be transformed to each other via continuous variation.

Those topological objects that are able to deform continuously into each other are referred

to as belonging to the same homotopy class. For each homotopy class, or the collection of

topologically equivalent objects, a ’fingerprint’ can be defined that characterizes uniquely

the configuration belong to one and the same homotopy class. The general expression of

winding number can be found in Braun [2012]. Intuitively, the winding number of a smooth

curve is the number of complete turns the tangent vector to the curve makes as it passes

around the curve once Mcintyre and Cairns [1993].

Next we introduce the concept of critical points as examples of topological objects in different

homotopy classes, and consider the winding number for some of them. For a vector field, if

each point of the surface is equipped with a vector tangent to the surface at that point, and

depend continuously on the points where their tails are attached, it is usually referred to as

a (continuous) tangent vector field on the surface. In such a vector field there exist different

types of critical points that corresponds to singular field distribution at certain location (see

for example Effenberger and Weiskopf [2010]). Figure 1.12 shows the field configuration of

different types of critical points. Spin configurations that well resembles these critical points

has been observed in various Skyrmionic materials. For example, periodic lattice consisting of

the saddle-point-like object in Figure1.12 (a), also known as the meron-antimeron lattice Lee

and Han [2015], has been predicted in Park and Han [2011] and observed in Heinze et al.

24



CHAPTER 1. INTRODUCTION TO THE SKYRMION MATERIALS

Figure 1.12: Types of local singularities in a vector field. (a) saddle point. (b) attracting

node. (c) attracting focus. (d) center. (e) repelling node. (f) repelling focus. The 3D

Hedgehog and Anti-Hedgehog structure as speculated to exist in MnGe corresponds to the

attracting and the repelling node, respectively. Figure reproduced from Effenberger and

Weiskopf [2010].

[2011]. The 3D version of this saddle point, known as the Hedgehog lattice, was recently

observed in MnGe Tanigaki et al. [2015]. As we will see below, the Skyrmion line and

Hedgehog structures found in real materials can be regarded (mathematically) as critical

points in a smooth vector field, and thus can be classified with their winding number. For

such vector field we know the theorem that, consider a surface and a vector field having

no critical points on the surface, the winding number of the surface equals the sum of the

indices of the critical points lying inside the domain bounded by the surface. As we will see

below, this theorem requires that the Hedgehog and Antihedgehog must appear with equal

number in order to exist in a ferromagnetic background.

For a vortex-type configuration in 2 dimensions, the winding number along a closed loop

enclosing such vortex structure is expressed as:

w =
1

2π

∫ 2π

0

dτ∂τφ (1.7)
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Here m(τ) = (cosφ(τ), sinφ(τ)) is the vector field on the loop, and φ(τ) specifies the orien-

tation of the spin at each angle τ (0 < τ < 2π). The various configurations in Figure 1.14

can be easily calculated using this formula. More generally, for the vector field in a 2D

Skyrmions, we have Nagaosa and Tokura [2013]:

w =
1

4π

∫ ∫
dxdym · (∂xm× ∂ym) (1.8)

For a Hedgehog as a 3D topological object, the winding number is given by

w =
1

4π

∫
b · dS (1.9)

b =
1

|M |3
[m · ∂ym× ∂xm,m · ∂zm× ∂xm,m · ∂xm× ∂ym] , (1.10)

Intuitively, the winding number counts how many times the unit vector n, representing the

orientation of the spin in the Skyrmion, wraps the circle. It has been proven mathematically

that the winding number is always an integer if |m| = 1, namely the vector m lying on the

unit sphere (see Chapter 3 in Rajaraman [1982]).

More generally, the winding number of a critical point can be calculated by counting the

number of different type of sectors in it. An illustration of different types of sectors are shown

in Figure 1.13 de Floriani and Spagnuolo [2008]. It turns out that, since different sectors are

topologically separate objects, the number of each of these sectors can be counted separately.

The winding number of a critical point can be calculated using the following equation de

Floriani and Spagnuolo [2008]:

w = 1 +
ne − nh

2
. (1.11)

Here in Eq. 1.11, ne stands for the number of elliptic sector, and nh the number of hyperbolic

sector. As mentioned before, intuitively the index can be understood as the number of

counterclockwise turns made by the vectors while traveling counterclockwise on a closed

curve around the critical point.
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Figure 1.13: Different types of sectors of a critical point. (a) parabolic sector; (b) hyperbolic

sector; (c) elliptic sector. Figure reproduced from de Floriani and Spagnuolo [2008].

1.2.2.2 Skyrmion as topological object

Here we briefly introduce the description of Skyrmionic spin configuration as a topological

object. The discussion in this section closely follows that from Braun [2012]. The magnetic

field in a Skyrmion can be reasonably approximated by a tangent vector field if considered

at scales larger than the size of the helix. Under this assumption the Skyrmion itself can be

described mathematically as a continuous geometric object with non-zero topological wind-

ing number. Furthermore, the magnitude of the magnetization is temperature-dependent,

and can be assumed to be fixed for considerations on the topological structure Braun [2012].

Furthermore, within the ordered phase, it would be very energy-costly to suppress the lo-

cal magnetic field to zero Mühlbauer et al. [2009], and thus the transformation between

topologically inequivalent magnetic configurations remains physically unrealizable when the

system is far enough from the phase boundary. Therefore at steady state, the local spin

configuration of a topological spin state will be oriented specifically to minimized the energy,

namely to stay at the ground state. At the presence of small perturbations, although its

local configuration might undergo moderate reorientations, the topology of the overall spin

state will not change due to this high energy barrier to break the topology. Thus after the

perturbation has vanished, the same topological spin state will again reorganize and go back
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to its ground state configuration. In other words, although the state itself may vary upon

external perturbation, the topological structure of the state is firmly protected by a large

energy barrier and is thus a stable feature of the system.

We emphasize the different nature of the 2D Skyrmion and the 3D Hedgehog. The 2 dimen-

sional Skyrmion can be regarded as a continuous classical spin field and can be described

mathematically by a continuous vector field. It is a continuous topological object existing

in a 2D continuous field. The Hedgehog is a singular object embedded in a 3D discrete

lattice. It requires the suppression of local magnetic moment and is thus not contained in a

continuum theory. In other words, the creation and existence of Hedgehog structure have to

resort to the discreteness of the lattice model. Although as a topological object in a contin-

uous field Skyrmion is not allowed to dissociate (via continuous reorientation of the field),

the Hedgehog itself is defined via the discreteness of the lattice and readily dissipate at the

presence of a small hole punched at its very center Abanov and Pokrovsky [1998]; Tretiakov

and Tchernyshyov [2007]; Yang et al. [2016], possibly through strong thermal fluctuation or

pinning to defects in the sample Milde et al. [2013].

If we regard the sample itself as a topological object, then it is the Skyrmion within it that

contribute to the total topological winding number of the system. If the system has non-

zero winding number, then since the ferromagnetic state has a zero winding number, the

magnetic configuration of the system cannot be transformed continuously to ferromagnetic

configuration without breaking the Skyrmion, or equivalently, overcame large energy barrier

and suppress the local magnetic moment, or resort to lattice discreteness Braun [2012] or the

thermal instability of the state near phase transition. Therefore in a Skyrmionic state away

from the phase boundary, the Skyrmions remain stable due to the its topologically non-trivial

magnetization field distribution and the robustness of the local magnetization within it. In
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Figure 1.14: Spin vortex configurations with different topological winding number. Figure

reproduced from Braun [2012].

other words, the Skyrmions are protected by the vector field topology of its magnetization

configuration. This turns out to have significant implications on the properties of the system,

in particular its phase transitions as will be discussed in detail in a separate section.

We take the 2-dimensional spin vortex state as an example to illustrate the concept of

winding number and topological equivalence. Here the winding number w is calculated to be

how many times that the spin rotates around 360 degrees around the circular configuration

of the vortex. From Figure 1.14 we see that for w = 0 the spin first rotates clockwise from

9 to 12 position on the circle, and then rotates counter-clockwise from 12 to 3 position, and

then repeat this from 3 to 9. Therefore around the circle the spin has rotated by a total

degree of 0, and thus having a winding number of zero. It is apparent that this state can

be transformed to the ferromagnetic state by continuously varying the spins within it, and

thus verified that the latter also has zero winding number. For w = 1, the spins rotates

consistently clockwise around the circle and complete a full rotate as it recovers its starting

location. It is clear that in this case there’s no way to transform the spin configuration
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(a) Helical and (b) Skyrmion (c) Hedgehog and Anti-Hedgehog

Figure 1.15: Illustration of the local moment distribution in (a) the helical state with winding

number 0, (b) the Skyrmion state with winding number 0, and (c) the Hedgehog and Anti-

Hedgehog state with winding number 1 and -1, respectively. Figure reproduced from Robler

et al. [2006] and Kanazawa et al. [2016].

continuously to that in the w = 0 case without locally breaking the spin chain. Similar

argument applies to the case of w = 2.

Figure 1.15 (a) and (b) shows the spin configuration of the helical state and the 2D Skyrmion.

As seen from the illustration the helical state can be formed by rotating each layer of spin

in a ferromagnetic state by a slight degree relative to its neighbor on one side, and therefore

is topologically equivalent to the ferromagnetic state. On the other hand, the Skyrmion has

its center spin opposite to that of the ferromagnetic background, and thus is topologically

inequivalent to the latter. Flipping the spin in a Skyrmion by 180 degrees produces the Anti-

Skyrmion, whose spin at the center and the edge might have the same orientation as that in

a Skyrmion, but is topologically inequivalent to the latter. Furthermore, since the Skyrmion

has all its edge spins aligned along the same direction, it can exist alone without the paring

of an Antiskyrmion in a ferromagnetic background, and the same for Antiskrymion. As will

be discussed below, for the case of Hedgehog, it is not allowed by topology to exist alone in

a ferromagnetic background, unless paired with an Antihedgehog.
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Figure 1.15 (c) show the Hedgehog and Anti-hedgehog as examples of 3D topological objects.

As shown from the figure in a Hedgehog the spin orients towards left and right on the left

and right side (outwardly) , and points down and up on the up and down side (inwardly),

respectively. By extending the spin configuration as plotted on the edge towards the center,

we can see that the center magnetization of the Hedgehog must be zero due to symmetry

reasons. In other words there’s a magnetic singularity inside each Hedgehog (and also Anti-

Hedgehog). Meanwhile, we note that while a strict magnetic singularities would be very

energy-costly to realize in a physical system, the spins in the material may, instead, remain

reasonably ’soft’ and thus absorbing some of the neighboring spins Robler et al. [2006]; Park

and Han [2011]. In such case forming a Hedgehog would cost much less energy and can

thus be physically realizable. The Anti-hedgehog configuration can be realized by simply

reversing the orientation of the spins in a Hedgehog. Therefore from Eq. 1.8 we see that the

Skyrmion number of the Hedgehog and the Anti-Hedgehog must be opposite. In fact from

calculation they equal to +1 and −1, respectively.

1.2.3 Topological phase transition in Skyrmion systems

1.2.3.1 Concepts of topological phase transiton

Topological phase transition refers to a phase transition between two topological spins states

of a system. Here we consider the details of a topological phase transition between 2 spin

ordered state, including how the spin configuration transforms microscopically around such

transition. Thus these topological transitions involving stable phases consisting of long-

range ordered topological structures are different in nature from those in which disordered
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topological object participates as the topological excitations assisting the phase transition

(see e.g. Kosterlitz and Thouless [1973]; Haldane [1988]).

Furthermore, since thermal topological transitions at low field usually involve strong spin

fluctuation and interaction effect Brazovskǐı [1975], we focus on the field-induced topolog-

ical transition at relative high field, where spin fluctuations are largely suppressed and so

that the transition is dominated by topological consideration. Meanwhile, we take the vor-

tex (antivortex) structure Hertel and Schneider [2006], which has been observed in many

materials including MnSi, as the example to illustrate the evolution of continuous (node-

less) topological objects, and take the Hedgehog structure as example of nodal topological

structure.

From the discussion about topology we know that topologically inequivalent states cannot

transform to each other via continuous variation without breaking or resorting to discreteness

of the lattice, and vice versa. It is well established that the collapsing of 2 Skyrmion in to 1

Skyrmion corresponds to a change in the total topological number, which has to be assisted

by the emergent magnetic Hedgehog. As has been studied in detail in the seminal work of

Haldane Haldane [1988] and following studies Senthil et al. [2004]; Thiaville et al. [2003];

Tretiakov and Tchernyshyov [2007]; Milde et al. [2013], due to the continuous nature of the

topological object, any change in the topological sector requires the presence of a singular

point in space where the magnetic field vanishes to zero, namely a Hedgehog or Antihedgehog.

From the parameter space point of view, if we map each topological object onto a sphere, then

the sphere of a continuous topological object would also be continuous, whereas the sphere

of an actual spin field defined on discrete lattice will be discretized into an elastic mesh. The

change in topological sector, for example the merging of 2 Skyrmions, corresponds to the

dilation of a single mesh through which a topological charge (the Hedgehog in parameter
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space) enters the sphere Haldane [1988]. Thus we see that this mesh discretization of the

order-parameter sphere, as an reflection of the discreteness of the lattice, is essential for the

merging of Skyrmions to occur.

Therefore, the phase transition between two topologically inequivalent spin states cannot be

2nd order (or, have to be 1st order) since it cannot be accomplished via continuous variation

of the spins. By definition a phase transition is 1st/2nd order if the order parameter varies

discontinuously/continuously. This is reflected in the case in MnSi, where the (field-induced)

phase transition between the topologically equivalent states, namely the helical, conical and

the ferromagnetic state, are shown to be 2nd order, whereas that between them and the

topologically inequivalent (2D) Skyrmion state is 1st order (see for example Bauer et al.

[2013]). On the other hand, for MnGe, it has equal amount of Hedgehog and Anti-Hedgehog

in the Skyrmion state and thus having a total of zero winding number. This means that

the Skyrmion state in MnGe is topologically equivalent to the ferromagnetic state, and thus

a 2nd order transition is allowed between the two states. Meanwhile, experiment has also

shown evidence for such 2nd order topological transition in MnGe Kanazawa et al. [2016].

At the presence of Antiskrymion, the winding number should also account for the orientation

of the center spin Skyrmion, which determines the sign of the topological number Tretiakov

and Tchernyshyov [2007]. This has been observed in a recent simulation on Skyrmion-

Antiskyrmion annihilation Hertel and Schneider [2006]. Furthermore, because of the con-

tinuity of the annihilation process of Skyrmion-Antiskyrmion pair, to define a strict point

at which the transition occur would be conceptually invalid. In this sense the continuous

topological phase transition (between topologically inequivalent phases) is different in na-

ture from the regular second order phase transition, although signatures of the later has been

observed from experiments. As will be discussed below, the second order signature of such
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topological transition might come from the self-annihilation of the Hedgehog as by product

of the annihilation process.

1.2.3.2 Evolution of the spin configuration in Skyrmion transition

In the following we discuss the microscopic picture of the evolution of the spin configuration

as the system cross the phase boundary with increasing magnetic field. We first consider

the case of 2D Skyrmion and analyze the prototypical system of MnSi. As shown from Fig-

ure 1.16, for the topological transition between the helical and the 2D Skyrmion state, the

Skyrmion lines first meet and merges with each other at a local spot, where the spin configu-

ration then constitutes a Hedgehog. And then the edges of the two 2D Skyrmions continuous

to merge into each other, which is accompanied and accomplished by the movement of the

Hedgehog along the edge of the 2D Skyrmion. Finally, as the Hedgehog reaches either end

of the Skyrmion line and become separated and eventually disappear due to instability, the

two Skyrmions are totally merged. The merging of many such 2D Skyrmions form stripe-like

spin order which eventually becomes the helical spin state.

If we zoom into the region where the two Skyrmions merge, we realize that the spins at

the edge of the two 2D Skyrmions are always along the opposite direction, and so were the

spin in the ferromagnetic background and at the middle of a 2D Skyrmion. This intuitive

implies that since the local spin structure has been superimposed onto each other at where

the 2D Skyrmions meet and merge, the local spin structure at this meeting point must

contain a singular point where the magnetization vanishes. In other words, the creation

of a Hedgehog at where the two Skyrmion lines merge is required by the conservation of

topological winding number of the system, and that the winding number of a Skyrmion can

vary only at singular points where magnetization vanishes. Specifically, since the merging
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Figure 1.16: Illustration of the merging and unwinding process of two 2D Skyrmions. At the

beginning stage, one Hedgehog structure was segregated from the contacting region of two

Skyrmions, where the spins starts to align smoothly. Subsequently, more spins from the edge

of the two Skyrmions start to align and merge with each other as the Hedgehog structure

moves along the edge region. Eventually the two Skrymions completely merges into one,

with the Hedgehog structure being isolated into the background (and then annihilated due

to instability). Figure reproduced from Milde et al. [2013].

of the two 2D Skyrmions coincides with the creation of 1 Hedgehog, and that the winding

number of a Skyrmion and a Hedgehog are the same, we see that during the merging of the

2D Skyrmions the total winding number of the system remains the same. In fact we note

that the winding number for the two 2D Skyrmions that are partially merged (not including

the Hedgehog) equals that of a single Skyrmion. It is apparent that the two objects can be

transformed into each other (except the Hedgehog part). It is at the final stage where the

Hedgehogs as by-products of such merging process disappear due to thermal instability that

the winding number of the system as a whole is diminished (and finally suppressed to 0 as

the system fully enters the helical state).
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The annihilation of a single 2D Skyrmion line has also been studied via simulation in Schütte

and Rosch [2014]; Lin and Saxena [2016]. In such case the Skyrmion breaks up in the middle

and by creating a Hedgehog and Anti-hedgehog pair, which has zero winding number in total.

And the left two parts of the Skyrmion diminishes in their length as the Hedgehog/Anti-

Hedgehog moves along it, and finally disappears as the Hedgehogs reach the surface of the

sample and annihilate due to thermal instability. Physically this corresponds to the encroach-

ing of the Skyrmion region by the ferromagnetic background, driven by the thermal creation

and fluctuation of the Hedgehog-Antihedgehog pair Schütte and Rosch [2014]. In specific, the

motion of the Hedgehog corresponds to the reduction of the topologically nontrivial region

in the material. Furthermore, it is also shown from simulation that the annihilation of an

Skyrmion-Anti-Skyrmion pair in 2 dimension also involves the creation of Hedgehog/Bloch

points at where the two object merge Hertel and Schneider [2006].

For a 2D Skyrmion line that is, instead of extending to the real surface of a ferromagnetic

system, enclosed inside a ferromagnetic background of spins, then at its very ends there

must exist Hedgehog or Anti-Hedgehog. This is due to the topological inequivalence of

the spin structure inside the Skyrmion and that of the ferromagnetic state. For such an

’enclosed’ Skyrmion line, it’s inherent topological winding number cannot be nonzero without

introducing additional magnetic singular points inside it. In other words, at the two ends

of such Skyrmion there much be one Hedgehog and one Anti-Hedgehog. Following this line,

we know that during the self-annihilation process of such Skyrmion, after breaking up into

2 segments from the middle due to the creation of the Hedgehog-Anti-Hedgehog pair, the

part that has one end with an Hedgehog (Anti-Hedgehog) must be associated with an Anti-

Hedgehog (Hedgehog) at the broken end, so that (after the original Skyrmion break up) the

winding number for each Skyrmion segment also has zero winding number and thus can be

created without introducing more singularities within each segment.
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1.2.3.3 Order of the Skyrmion transition

Regarding the phase transition, we argue that it is the abrupt annihilation of the Hedgehogs

(Anti-Hedgehogs) at the end of the merging process of two Skyrmions that accounts for

the 1st order nature of the Skyrmion transition. First of all, the creation of the Hedgehogs

corresponds to the superposition of the local spin textures at where the two Skyrmions meet.

Since as analyzed above this process conserves the total winding number, it can be realized

via smooth reorganization of the local spin and thus does not contribute to the discontinuity

of the transition. Furthermore, at the end of the merging process, the Hedgehog reach

the end of each Skyrmion line while the latter has merged with each other and formed the

stripe-like helical phase. The current state is thus a helical state decorated with individual

Hedgehogs, and therefore the Hedgehogs will have to disappear in order to realize the real

helical state. This annihilation of the Hedgehog, since no Anti-Hedgehog is present and thus

no smooth pair-annihilation process available, has to occur via the abrupt self-annihilation

of each Hedgehog, which we argue is the physical origin of the 1st order nature of this

topological transition. According to the above reasoning, the creation of Hedgehogs and the

merging of the Skyrmions should happen during the immense thermal fluctuation before the

phase boundary is reached, and the real transition happens at when the Hedgehog undergoes

annihilation. After the transition there should be only helical spin state, and no Hedgehog

should be left, according to the nature of the phase transition. This in principle can be

checked via imaging experiments around the phase transition.

Similar argument applies to the case of the self-annihilation of a single 2D Skyrmion Schütte

and Rosch [2014]. This corresponds to a transition between Skyrmion state and the fer-

romagnetic state. This case differ from the merging case in that it is accompanied by the

creation and separation of Hedgehog-Antihedgehog pairs. In such case the Hedgehog (Anti-
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Figure 1.17: Simulation result of the creation of the Hedgehog-Antihedgehog pair during the

annihilation of a single Skyrmion. The Hedgehog-Antihedgehog structure has a total winding

number of zero, and thus the total topological number of the system is conserved during the

process breaking of a Skyrmion line into two. The disappearance of each Skyrmion is marked

with the encounter and annihilation of the Hedgehogs at the end of the contraction of each

Skyrmion line. Figure reproduced from Schütte and Rosch [2014].

hedgehog) annihilate as they reach the either end of the Skyrmion line. And since there’s no

cancelling topology for a 2D Skyrmion and a 3D Skyrmion, the annihilation must correspond

to an abrupt annihilation of the topological configurations in the system, and thus gives a

1st order transition. Again the underlying reason of the 1st order nature is the topological

inequivalence of the Skyrmion state and the ferromagnetic state. We can also think about

this process in reverse and consider the formation of the Skyrmion state out of the helical

state. An illustration of the microscopic picture can be found in Figure 1.18. This process is

also assisted by the formation of Hedgehog at where the stripe spin order in the helical phase
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bifurcates. Skyrmion state becomes more energetically favorable over the helical state as the

magnetic field increases Park and Han [2011]. Intuitively, (e.g. in MnSi) as the external

field increases, the ferromagnetic background tends to encroach the stripe spin order and

approach to its center. Energetically, this is likely realized first at a point location on the

stripe (instead of encroaching the whole stripe altogether). This process cuts a spin stripe

into large segments, and a Hedgehog was thus created at where the spin stripe was bro-

ken. These extended spin stripe segments in fact have the same topological number as the

Skyrmion. They can be seen as an enlarged and extended Skyrmion within the x-y plane,

and are therefore topologically protected. Then after the long spin stripes in the helical state

are broken up into segments, each segment as a deformed Skyrmion, although protected by

topology, may deform continuously and finally, minimizing the energy of the system, forms

the circular Skyrmion with proper size.

1.2.3.4 Evolution of spin configuration in Hedgehog transtion

Below we analyze the topological transition involving only Hedgehog and Antihedgehog in

3 dimensions. As an example, MnGe is known to host a 3 dimensional periodic magnetic

structure consisting of alternating Hedgehog and Antihedgehogs Kanazawa et al. [2011, 2012];

Tanigaki et al. [2015]; Kanazawa et al. [2016]. Recent experimental results have suggested

that at temperatures below 170 K, MnGe undergoes a 2nd order transition from the Hedgehog

(3D Skyrmion) state to the ferromagnetic state with increasing field Kanazawa et al. [2016].

Here by summarizing existing results, we attempt to clarify the microscopic evolution of the

spin configuration crossing the phase boundary.

It can be seen from the simple geometric analysis that a ferromagnetic background cannot

exist with only 1 Hedgehog/Antihedgehog in it. In order for the ferromagnetic background to
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Figure 1.18: Illustration of the effect of external field on the spin configuration in a Skyrmion

system. It is clear that the stable phase in higher external fields has larger ferromagnetic

region. Figure reproduced from Romming et al. [2013].

exist, the number of Hedgehog and Antihedgehog must be equal. In case a field is applied in

the direction of the ferromagnetic direction, the Hedgehog and Antihedgehog will be pushed

towards each other to form a configuration with lower energy under the field. Eventually the

Hedgehog and Antihedgehog undergo the merging process, leaving behind a pure ferromag-

netic state with a winding number of zero. This is guaranteed by the theorem mentioned

before, which requires that the winding number on a closed smooth surface equals the sum

of winding number of the critical points it encloses. In other words a Hedgehog configuration

is realizable in a ferromagnetic background only if there exist an Antihedgehog within the

ferromagnetic domain. Thus the topological structure of MnGe suggested in Kanazawa et al.

[2016], consisting of equal number of Hedgehog and Antihedgehog, is consistent with its inter-

pretation of the field-induced polarization process involving a ferromagnetic background. If
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this is the case, then the modeling of any 3D Skyrmionic structure using superposition of he-

lical order is assuming a state that is topologically equivalent to the ferromagnetic state, and

thus the field induced evolution and transition would necessarily consists of and be achieved

through the motion and annihilation of the Hedgehog-Antihedgehog pairs. Meanwhile, the

co-existence of Hedgehog and Antihedgehog is also more energetically favorable compared

to the isolated Hedgehog (Antihedgehog) Yang et al. [2016]. In other words the existence

of Hedgehog-Antihedgehog pair in a ferromagnetic background can be a requirement from

both energetic and topological consideration.

A closely related question is whether a superposition of any 3 helical structure will still give

a spin configuration that is topologically equivalent to the ferromagnetic state. It is clear

that any helical order individually is topologically equivalent to a ferromagnetic state.

With the above preparation the topological transition in MnGe can be readily understood.

For MnGe, the spin state in one unit cell is composed of a nearly ferromagnetic background

decorated with 4 Hedgehog-Antihedgehog pairs, and is thus topologically equivalent to the

ferromagnetic state Kanazawa et al. [2012, 2016]. This is not surprising considering that

the spin state is a superposition of 3 helical configurations, each of which separately is topo-

logically equivalent to the ferromagnetic state. While these Hedgehogs minimizes the DM

interaction energy, the background region minimizes the ferromagnetic interaction energy.

As has been shown from simulation Kanazawa et al. [2016], as the field increases below the

critical field, the total total magnetization of the system increase steadily while the Hedge-

hogs remain intact. Considering that the Hedgehogs does not contribute to any macroscopic

moment if remained intact by the field, the increasing magnetic moment of the system implies

that the background spins outside the Hedgehogs are gradually polarized by the field as the

it increases in magnitude. As the background polarizes, the Hedgehogs and Antihedgehogs
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move along certain paths within the system to minimize the total magnetic energy. The

critical field corresponds to the situation in which the Hedgehog and Antihedgehog meet

and annihilation with each other in space, and subsequently forms the ferromagnetic state.

Since the total winding number of a pair of Hedgehog and Antihedgehog equals to that of

the ferromagnetic state (0), a smooth transition or crossover between the Hedgehog and the

ferromagnetic state is allowed by topological consideration.

1.2.3.5 Order of the Hedgehog transtion

As has been discussed already, a fundamental difference between the 2D Skyrmion state in

MnGi and the 3D Skyrmion state in MnGe is that, while the former is composed of solely

Skyrmion and therefore non-zero winding number, the latter consists of equal number of

Skyrmion and Anti-Skyrmion and thus a total winding number of 0 (for calculation see

supplementary information in Kanazawa et al. [2016]). Therefore the 3D Hedgehog state in

MnGe is topologically equivalent to the ferromagnetic state, and thus a smooth transition

is allowed from topological analysis.

However, we note that neither the microscopic picture nor the knowledge and evidence about

its physical mechanism of the annihilation of Hedgehog-Antihedgehog pair, or more generally

the 2D Skyrmion with in-plane nodes Heinze et al. [2011]; Lee and Han [2015], is known at

the moment, and the nature of the dissipation process of the nodal points in a spin texture

remains to be studied.
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Chapter 2

The Muon Spin Relaxation (µSR)

Technique

Muon spin relaxation (µSR) has been one of the most sensitive probe of the magnetic field

distribution within condensed matter materials. µSR experiment detects the relaxation of

spin in time domain, and can be effectively performed in zero and tiny external fields Uemura

et al. [1999]. The large magnetic moment of the muon makes it capable of detecting magnetic

fields as small as 10−5 T Blundell [1999]; Frandsen [2016]. Meanwhile, as a sensitive local

probe for magnetism, µSR is also very useful in studying materials with short-range or

even random magnetic order. It also yields important information about the dynamics of

the local field. These unique features of µSR stands it aside the existing techniques of

nuclear magnetic resonance (NMR) or electron spin resonance (ESR), and make it a highly

efficient and unique experimental tool for probing the magnetism inside materials Uemura

et al. [1999]. This chapter introduces the µSR technique and its application to magnetic

materials, in particular MnSi and MnGe in the Skyrmion systems.
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2.1 Muon: a local probe of the magnetic field

After being implanted into the specimen, a positive muon with prescribed polarization di-

rection quickly looses its kinetic energy (usually within 1 ns) during its interaction with the

sample. The muon then stop moving and, usually, rests at an interstitial site without further

displacement. During the muon stopping process the magnetic interaction between the muon

and the material is known to be negligible. Therefore the precession of the muon due to

interaction with the magnetic field within the material starts effectively as it arrives at one of

the interstitial sites in the material. After the muon implantation, the average polarization

of the muon spin at time t is defined as the muon spin relaxation function, G(t) Uemura et

al. [1999]. Since the muon precession is chiefly determined by the distribution of the internal

field of the material, detecting and modeling the muon spin relaxation spectra, G(t), allows

us to study the details of the magnetism within it. The local magnetic field that the muon

experiences arises predominantly from the dipolar magnetic interaction of the muon spin

with the nuclear spin, the electronic spin, the contact hyperfine field or a combination of

them Uemura et al. [1999].

For a local magnetic field, B the muon spin, Sµ, undergoes the Larmor precession around

the field, following the temporal evolution determined by the equation of motion

dSµ
dt

= γµSµ ×B, (2.1)

where γµ is the gyromagnetic ratio of the muon (γµ = 851.6 rad µs−1T−1). By solving the

above equation of motion of the muon spin, it turns out that the projection initial muon

spin polarization that is initially parallel to the external field remains unchanged, while

the projection that is perpendicular precesses with time around the field with an angular

frequency of ω = γµB, where B is the magnitude of the field. In other words, it is the
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projection of the precession of the entire muon spin on to different axes that gives the

projected asymmetry, which is being detected in an µSR experiment.

From a more realistic perspective, the nuclear dipolar moment within the material usually

composes of several static nuclear moments with random orientations, located around the

muon. Given the fact that the number of muons that were implanted into the sample is

usually large, and that in principle the signal detected comes from all the muons within the

sample, the distribution of the average internal field experienced by the muon can usually

be well approximated by a Gaussian distribution and/or a Lorentzian distribution Uemura

et al. [1999].

2.2 µSR experimental geometry and relaxation func-

tions

2.2.1 Local field geometry and the muon precession

In an actual µSR experiment the initial polarization of the muon, meaning the polarization

of the muon as it was injected into the sample at time t = 0, can be tuned to rotate by

90 degrees by a spin rotator located in the upstream of the beam. As discussed below,

this would allow us to perform experiment in the longitudinal and transverse configuration

and to probe the static components as well as the dynamic fluctuation of the local field.

Figure 2.1 presents the relation between the local field geometry and the precession of the

muon polarization. For the case where the muon initial polarization is along the direction

of the (static) local field, as shown in Figure 2.1 (a) (left), the muon polarization does not

have transverse component with respect to the field and therefore does not rotate or relax at
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(a) Longitudinal field only

(b) Transverse and longitudinal field

Figure 2.1: Muon spin precession in (a) field with only only longitudinal component and

(b) field with both longitudinal and transverse component. The inset in Figure (a) shows

spectra for the corresponding geometry.
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all if the local field is purely static. In this case the muon polarization could, however, relax

under the influence of the fluctuating local field. The fluctuating part of the local field does

not change the average direction of the field over long time, but it does change the direction

of the local field at each time segment. If the fluctuation of the local field is fast enough,

this will cause the muon spins to flip it direction defined by the static (Zeeman) levels. This

process corresponds to the dynamic relaxation of the muon, and is often referred to as the

T1 process. Meanwhile, if in an experiment the muon polarization was along the external

field, which gives a total field highly aligned with the external field and therefore the muon

polarization, the relaxation rate of the muon polarization contains information about the

time scale of the fluctuation of the local field.

On the other hand, if the muon initial polarization was perpendicular to the local field, as

shown in Figure 2.1 (a) (right), then the muon would feel the full strength of the static local

field and start to precess around it. In this case, the frequency and relaxation rate of the

muon precession would give information about the strength and width of the static internal

field, as determined by Equation 2.1. In reality, the relaxation of the muon in a transverse

field is influenced by both the inhomogeneity of the static field and the dynamic relaxation

(T1 process). The relative magnitude of these contribution need to be analyzed specifically

for different cases.

In real cases, the local field and the muon polarization is usually neither 0 or 90 degree,

but something in between. In such case, as shown in Figure 2.1 (b), the muon dynamic

would contain finite longitudinal and transverse (oscillating) fraction in both geometries.

Specifically, the longitudinal and transverse (oscillating) fraction of the polarization for one

muon initial polarization would become the transverse and longitudinal fractions of the muon

polarization if the muon initial polarization is rotated by 90 degrees. This problem, however,

47



CHAPTER 2. THE MUON SPIN RELAXATION (µSR) TECHNIQUE

Figure 2.2: Evolution of the muon initial polarization and the corresponding local field

direction.

can be partially resolved by applying an external field along one of the muon polarization

directions. The external field would gives a totally field that is approximately aligned or

perpendicular to the two muon polarization, and thus allows the muons with different initial

polarization to detect separate (dynamic or static) properties of the local field.

Following the above analysis, we now give an example of the evolution of the muon po-

larization in different internal field conditions determined by temperature. For a magnetic

material with increasing static internal field as temperature goes down, the evolution of the

muon asymmetry usually looks like Figure 2.2. The initial polarization of the muon was

chosen to be along the external field direction. At high temperature, the internal moment

is very small compared with the applied external field. In this case the total field will be

approximately aligned with the external field, and therefore the dynamic (or longitudinal)

fraction of the muon polarization, which were experimentally detected, would equal to the
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muon initial polarization. As the temperature goes down, the internal field becomes stronger

and thus contribute to the transverse component of the total field. In this case the dynamic

fraction of the muon asymmetry would becomes smaller than the muon initial polariza-

tion. At even lower temperature, the local field is further deviated from the muon initial

polarization direction, and thus results in a even smaller asymmetry of the muon.

2.2.2 Zero field µSR experiment

As discussed above, µSR experiments can be conducted in zero or an applied external mag-

netic field. In the latter case, the external field is usually applied either in the longitudinal

direction (longitudinal field, or LF), parallel with with the muon spin polarization at t = 0,

or in the transverse direction (transverse field, or TF) perpendicular to the muon polariza-

tion direction. As will be explained in detail below, both the orientation and the strength

of the external field has a unique influence on the internal field of the material and thus also

the precession of the muon spin. And the choice for the external field is usually determined

by the experimental question of interest.

In zero field experiment, the local field at the muon sites consists of only the internal field

within the sample. Suppose that the local field is random at different sites of the muon

but has a fixed magnitude B =
√
B2
x +B2

y +B2
z , then the z component of the muon spin

polarization, σz(t), can be written as

σz(t) =
B2
z

B2
+
B2
x +B2

y

B2
cos(γµBt) = cos2 θ + sin2 θ cos(γµBt). (2.2)

In the above expression, θ stands for the tilting angle of the internal magnetic field with

respect to the z axis (the muon polarization direction). The first term, cos2 θ, represents the

time averaged z projection of the initial muon polarization along the field. The second term,
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sin2 θ cos(γµBt), represents the time-dependent part of the z component of the muon spin.

This term comes from the projection of the periodic precession of the muon spin around the

local field onto plane perpendicular to the field.

As mentioned above, instead of a single value, in real materials the magnetic field at different

muon sites is usually described by the distribution function of a vector field. In such case

the muon spin relaxation function, G(t), can be calculated by averaging σz(t) over the distri-

bution function Uemura et al. [1999]. For a field distribution that has the same magnitude

but different orientations (Ω) at different muon sites, if we assume that the field has equal

probability (namely, 1/4π) to be along each spatial orientation, then the muon relaxation

function can be calculated to be

Gz(t) =

∫
σz(t)

dΩ

4π
=

1

3
+

2

3
cos(γµBt). (2.3)

Here in Equation 2.3 the constant component (1/3) comes from the average of the longitu-

dinal component cos(θ). In specific, for a vector field with isotropic orientation distribution

and uniform magnitude, the average projection of the field along any particular direction

would be one-third of its magnitude. Similarly, for a Gaussian field with distribution

P (Hi) =
γµ

(2π)1/2∆
exp

(
−γ

2B2
i

2∆2

)
, i = x, y, z, (2.4)

the relaxation function turns out to be Uemura et al. [1999]

G(t) =
1

3
+

2

3

(
1−∆2t2

)
exp

(
−1

2
∆2t2

)
. (2.5)

This is known as the Kubo-Toyabe function, which is derived first by Kubo and Toyabe in

1967 Blinc [1967]. By fitting the experimental muon relaxation spectra with Equation 2.5

we can obtain an estimation of the width of the internal field from parameter ∆.
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2.2.3 Weak transverse field µSR experiment

According to Equation 2.2, in circumstances where the magnitude of the local field changes

drastically from site to site, the temporal dynamics (e.g. frequency) of the muon at different

locations can be very different. Although the detected signal is the superposition of the signal

from every muon within the sample, area/phases with very different field distributions could

produce visibly different signal containing, e.g. significantly different oscillating frequencies

and relaxation rates. These distinct signals can usually be distinguished by fitting the data

with known muon relaxation functions. From such fitting knowledge about the magnitude

and distribution of the local field can usualy be derived. Furthermore, since the muons

are approximately uniformly distributed within the sample volume, the weight of different

signals in G(t) is roughly proportional to the volume of the phases in the sample under the

experimental condition if the system is spontaneously decomposed into multiple phases.

Since the muon relaxation function within the paramagnetic phase turns out to be slowly

relaxing and cannot be accurately distinguished with the signal from an ordered phase with

large local field (except for the difference in the relaxing asymmetry), in actual µSR exper-

iments a weak magnetic field is usually applied to the sample in a direction perpendicular

to the muon polarization (i.e. the transverse direction) to induce visibly oscillatory signal

from the paramagnetic fraction of the sample. In case the internal field is much stronger

than and therefore not affected by the applied external field, the muon relaxation function

can be approximated by

G(t) = f ·
(

1

3
+

2

3
cos(γµBintt)

)
+ (1− f) · cos(γµBextt), (2.6)

where f stands for the fraction of the volume of the ordered phase, Bint and Bext are the

magnitude of the internal field (in the ordered phase) and the external field, respectively.
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Intuitively, Equation 2.6 describes the case where the muon within the ordered phase ex-

periences field with uniform magnitude and isotropic distribution, and muons within the

paramagnetic phase experiences the external field. Through refinement of the f factor, a

good estimation of the volume fraction of different phases within the sample can be obtained.

In reality, due to the finite width of the distribution and the fluctuation of the local field,

the signal from the paramagnetic phase usually turns out to be a damped oscillation. On

the other hand, since with the same field width the rate of damping is faster for a larger field

magnitude, the fast-oscillating signal from the ordered phase also damps out much faster

than that from the paramagnetic phase.

This technique of applying a weak transverse field (wTF) is thus very useful, especially in

the study of phase transition, where the evolution of the relative volumes of the competing

phases is closely connect with the order of the transition Uemura et al. [2007]; Frandsen et

al. [2016]. As is different from a 2nd order transition where one phase is completely replaced

with another after crossing the transition temperature, a 1st order phase transitions can be

associated with the separation of the two phases within a finite temperature regime below

the transition temperature. Therefore information about the temperature evolution of the

volume fraction of the phases from the µSR wTF measurement can provide information

related to the order of the phase transition.

2.2.4 Transverse field µSR experiment

The difference between a wTF and a TF µSR experiment is that the field strength in a

typical TF experiment can be comparable to or larger than the internal field of the material.

In the case the local field is dominated by the transverse field, the muon will precess with a

frequency set by the external field, and the finite spread of the local field, due to the presence
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of the internal field, will only introduce damping to the signal. On the other hand, if the

applied transverse field is comparable to the internal field, then as the material enters the

ordered phase, the local field at the muon site undergoes significant change, and a shift of

the muon precession frequency is expected.

2.2.5 Longitudinal field µSR experiment

Since the local field is a vector sum of the internal and the external magnetic field, applying

a longitudinal field parallel with the initial muon polarization (i.e. along the z axis) tends

to align the (total) local field to the muon polarization direction. Moreover, applying a

longitudinal field would decrease the ratio of the width and the magnitude of the local field.

Therefore since only the perpendicular projection of the muon polarization will precesses

around the local field, applying a longitudinal field would effectively reduce the magnitude

of the precession, which is then reflected in the reduced damping rate in the measured

relaxation spectra.

From Equation 2.2 it is clear that decreasing the angle between the directions of the muon

spin and the local field would result in the reduction of the magnitude of the precessing

component of the relaxation spectra. For an isotropic gaussian internal field, the static

relaxation function becomes Uemura et al. [1999]

G(t) = 1− 2∆2

ω2
0

[
1− exp

(
−1

2
∆2t2

)
cosω0t

]
+

2∆4

ω3
0

∫ t

0

exp

(
−1

2
∆2τ 2

)
sinω0τdτ (2.7)

where ω0 = γµBext is the typical precession frequency, determined by the magnitude of the

external field. In this case, the magnitude of the relaxation is closely related to the ratio

of the longitudinal and the transverse component of the local field. For a large external

field, the value of ∆/ω0 can be very small. This means that the transverse component of
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the muon polarization, which in this case is responsible for the oscillation and relaxation

of the muon spin, is very small. Therefore intuitively, the fraction of the muon spin which

undergoes oscillation would be small. This can be an intuitive explanation for Equation 2.7.

In case the external field is vanishingly small, it is easily verified that Equation 2.7 reduces

to Equation 2.5.

In the discussion above, the internal field is assumed to remain unchanged, i.e. static, during

the precession of the muon. Now we consider the case in which the internal field is dynamic

in nature. The fluctuating local field comes from the electron spin, which undergoes constant

fluctuation and therefore induce fluctuating fields. The relaxation caused by the transition

between Zeeman levels assisted by spin-lattice interaction is commonly referred to as the T1

process, with the corresponding relaxation rate being 1/T1 Uemura et al. [1999]. A finite-

width distribution of the local field (and thus multiple precession frequencies) introduces

damping in the muon precession, and the fluctuation of the field gives rise to dephasing

process during the precession. The observed muon spin relaxation is a consequence of both

(static) damping and (dynamic) dephasing process. Mathematically, this gives rise to the

Kubo-Toyabe type of relaxation function, with an exponential envelope function signifying

the effect of field fluctuation.

In the case of fluctuating field, the precession and thus relaxation process of the muon will

depend on the relation of 2 time scales. The first time scale is the oscillation frequency,

ω0, determined by the strength of the static local field, and the second is the fluctuation

rate 1/τ . Intuitively, if the oscillation frequency is much larger than the hopping rate, it

means that the muon would effectively have sufficient time to precess under a stable local

field environment at a fixed site, and this would result in similar oscillation and relaxation

behavior of the muon as if in a static field environment.
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At the other limit, where the hoping rate of the muon is much larger than its precession

frequency, what happens is that there won’t be sufficient time for the muon to precess around

the field at one site before it jumps to another location. In other words, the local field that

the muon experiences within a give time window has been constantly changing frequently

in both magnitude and orientation. Thus in this case the muon spin can be seen as doing

a nearly random walk around its initial polarization, with the step size proportional to the

ratio of the precession frequency and the hopping rate. Intuitively, the more often the muon

jumps between different sites (and therefore less time it spends at each site), the slower the

muon precess around the local field, the smaller will be the change of the muon polarization

during its stay at each site. Since the field distribution at each site is assumed to be random,

the direction of the change in the muon orientation is also random, resulting in a random-

walk like evolution of the muon polarization. A detailed analysis of this behavior based on

the strong collision approximation (SCA) can be found in Uemura et al. [1999].

Meanwhile, we analyze the interplay between the width (distribution) and the temporal

fluctuation of the local field. The random (temporal) fluctuation of the random (spatial)

field tend to homogenize the field as the muon precesses. The theory of brownian motion

says that with a constant speed, less frequent but larger step tends to reach further compared

with frequent but smaller step motion within fixed time period. Mathematically, this is seen

through the square-root dependence on the step number of the expectation value of the

distance in a brownian motion. Physically, this reflects the inefficiency in the accumulation

of total displacement in the random Brownian motion. In our case this means that, assuming

a constant rate of change (product of step size and rate), the local field appears to be more

stable with smaller step size (and larger fluctuating frequency). In other words, muon tends

to relax faster in fields with less-frequent but large fluctuations than in fast-changing but

small temporal fluctuations.
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Following this analysis, we see that more frequent temporal fluctuation gives less cumulative

change in the local field, and thus suppresses the effect of dephasing on muon spin relaxation.

In fact, a more randomized field tends to have narrower width (e.g. from Lorentzian to

Gaussian), and thus the relaxation becomes slower due to the narrowed frequency spectrum

(according to the static field relaxation formula, Equation 2.5).

Therefore considering only the field distribution/with and the hopping, it turns out that

faster temporal fluctuation of the field would (instead of stagnating as from the analysis

with field strength and hopping rate) accelerates the relaxation of the muon. The seem-

ingly contradictory conclusions from the above analyses can be resolved by realizing that (a)

the damping due to finite width of the static field and that (b) the dephasing due to field

fluctuation are both mechanisms that causes the relaxation of the muon spin. These mecha-

nisms all act coincidentally upon the same local field and their effect need to be considered

simultaneously rather than separately.

In general, we know that

• the dephasing process describes the effect of temporal fluctuation (due to thermal/quantum

and/or other physical origins) of the local field on the relaxation of an individual muon

spin.

• the damping process is due to the spatially/frequency averaging of the relaxation of

all the muons within the sample.

Random fluctuation will, in addition to contributing to the dephasing process, randomizes

the field distribution as the system evolves. As randomization means narrowing the width

while yielding a more Gaussian distribution of the local field, which yields slower relaxation,

the temporal fluctuation thus slows down the relaxation (via changing the field distribu-
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tion). Thus for field distribution the temporal fluctuation process can be seen as a kind of

thermalization of the initial distribution towards a gaussian distribution, with the tempera-

ture/thermalization rate being the rate of local field fluctuation.

Furthermore we notice that faster fluctuation, while rendering the dephaing process less

efficient (as discussed previously), implies faster randomization of the field distribution.

Thus for an initial field distribution,

• if it is close to the equilibrium gaussian distribution, then the effect of fluctuation will

mostly be dephasing the spin dynamics, and

• if it is far away from the equilibrium distribution, then the temporal fluctuation af-

fects the relaxation via both the dephasing process and affecting the damping process

(through change the field distribution).

In reality since the system is always assumed to be in thermal equilibrium condition, the

effect of temporal fluctuation on the field distribution can be minimal. This is somewhat

different from the conclusions in Section 4.1 in Uemura et al. [1999]. Dephasing is usually

much more efficient than damping (e.g. in MnSi Uemura et al. [1999]) and turn out to be

the dominant contribution to the muon spin relaxation in dynamic field systems.

The muon relaxation function is the superposition of all muon dynamics. Since dephasing

causes each individual muon to lose its phase in the dynamics, and that the damping of

the integrated µSR signal depends critically on the coherence of the dynamics of all the

muons (i.e. having approximately the same phase), dephasing will thus hamper the coherent

damping process and slow down the muon relaxation. Following this analysis the reason

that temporal fluctuation results in slower relaxation is randomizing, instead of the field, the
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phase of the dynamite muon, or equivalently, hampering the coherence of the precession of

the muons inside the sample.

The actual relaxation rate in the fast fluctuation limit turns out to be the ratio of the field

width (damping efficiency) over the dephasing rate (dephasing efficiency), (see Equation 17

in Uemura et al. [1999]), which reflects the fact that the actual relaxation is a result of the

competition of the damping and dephasing process. This is clearly reflected in the smear

out of the characteristic behavior of the Kubo-Toyabe function in Figure 14 in Uemura et

al. [1999], which is replaced by the exponential decay exemplifying the decoherence caused

by fast fluctuation. In the slow fluctuation limit, the fluctuation of the longitudinal field,

which produces the persistent 1/3 signal, causes the 1/3 signal to decay, and the decay rate is

determined by the dephasing rate. Furthermore, since in the slow fluctuation case dephasing

occurs essentially after the damping has saturated to its 1/3 limit, the initial characteristic

behavior of the Kubo-Toyabe function is preserved.

When static and fluctuating local fields coexist, the relaxation function turns out to be the

product of the relaxation functions at the presence of each field individually. As we assume

that the static field and the fluctuating fields are highly decoupled from each other and

respond to external field independently, the behavior of the total signal can be interpreted

by analyzing the muon relaxation under each of these fields separately. A good example is

the MnSi data discussed in Uemura et al. [1999].

Above we considered the interplay of the field strength and the field width, of the field

strength (precession frequency) and the hopping rate, and of the field width and the hopping

rate, respectively. A more detailed analysis is required to consider the interplay of all 3 factors

and its effect on the muon relaxation.
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According to the above discussion, the longitudinal field (LF) µSR measurement can be

applied to address unique physical questions.

First of all, it can help to distinguish between static and dynamic internal field. Since the

precession induced by the longitudinal field is usually orders of magnitude slower than the

rate of the spin fluctuation, the muon dephasing process caused by spin fluctuation can re-

main unaffected by the LF. In contrast, in the case of static field where muon relaxation

is caused by frequency superposition, a longitudinal field shifts the center of the field dis-

tribution to non-zero value and thus induces oscillatory behavior in the relaxation process.

Thus in this case the muon spin relaxation can be quite sensitive to the LF. As mentioned

in Uemura et al. [1999], the characteristics of the LF-dependence of the muon relaxation

spectra can be used to distinguish between static and dynamic spin system.

Secondly, LF can be used to decouple the static and dynamic relaxations. It is known that

the static internal field usually consists of the nuclear dipolar field, while the dynamic field

is mainly contributed by the fluctuating electron spins. Since the static field can be aligned

by a strong enough longitudinal field, and that the dynamic fluctuation of the field is largely

independent of the LF, we can in principle suppress the relaxation due to static field by

applying a large enough LF, and thus monitor the relaxation due solely to the fluctuating

field caused by electrons. MnSi as an example is discussed in detail in Uemura et al. [1999].

Thirdly, LF µSR measurements are frequently used to characterize the field fluctuation

around phase transition. In an itinerant magnetic system like MnSi, the ferromagnetic

exchange interaction propagates within the sample via the itinerant electrons. As a result,

the fluctuation of the local field is mainly a result of the thermal fluctuation of the electrons.

Namely in this case the magnetic fluctuation is thermal fluctuation in nature, and thus can

exhibit exotic behavior as the temperature across thermal phase transition Tc. In fact as
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the system reach its transition point, the fluctuation of the itinerant electron slows down

significantly (critical slowing down) due to the diverging electron-electron correlation length,

namely the fluctuation of the local field is suppressed near thermal phase transition. This is

manifested as the divergence of the muon spin relaxation rate for the case of MnSi, which

implies spin freezing across the transition Uemura et al. [1999].

In contrast, in localized moment systems the magnetic field fluctuation is in nature the

quantum fluctuation of the spins, and thus in principle should not depend on temperature

for the general cases.

2.3 µSR studies of helical magnets

2.3.1 µSR studies of MnSi

As an itinerant weak-ferromagnet, MnSi has, since 1980s’, been studies extensively in the

µSR community for the study of itinerant ferromagnetism and spin fluctuation phenomena.

As temperature drops below 30 K, MnSi enters a helimagnetic state with long and incom-

mensurate helical modulation to the spins. As shown in Figure 2.3(a), µSR experiments

at zero field detects the emergence of internal field at below the transition temperature.

Figure 2.3(b) shows the 1/T1 as a function of temperature for MnSi. According to room

temperature µSR results Hayano et al. [1980, 1978] the electron spin fluctuation remains

very fast at room temperature, and the µSR 1/T1 relaxation process of the muon has a

period longer than the detection capacity of the instrument. As the temperature goes down,

the fluctuation of the spin and thus the local field begin to slow down, allowing for a more

stable local field for the muon. The 1/T1 relaxation of the muon thus becomes more visi-
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Figure 2.3: (a) (Left) Temperature dependence of the magnitude of the local magnetic field.

(b) (Right) Observed µSR 1/T1 relaxation rate as a function of temperature. The solid curve

is the best fit to the SCR theory. Figure taken from Takigawa et al. [1980]; Hayano et al.

[1980].

ble. At temperatures around (and above) the magnetic phase transition, due to the critical

slowing down of the spin fluctuation the internal field also slows down significantly, and thus

the 1/T1 relaxation of the muon is much enhanced near the transition. Below the transi-

tion temperature, the 1/T1 relaxation rate drops quickly as temperature decreases. This is

understood as due to the quick increase and stabilization of the local moment within the

ordered phase.

From Figure 2.3 it is seen that the behavior of 1/T1 as a function of temperature can be

well described by the self-consistent renormalization (SCR) theory Moriya [1985]. For weak

ferromagnets, the SCR theory predicts that the 1/T1 follows

1

T1

∝ T

T − Tc
(2.8)
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for temperatures above and close to the transition Moriya [1985]. For low temperatures deep

inside the ordered phase, the SCR theory predicts that

1

T1

∝ T. (2.9)

These predicted behaviors of 1/T1 over different temperature regimes has been observed

from several independent µSR studies on MnSi Takigawa et al. [1980]; Hayano et al. [1978,

1980]; Kadono et al. [1990], and have thus established MnSi as an weak itinerant ferromagnet

sufficiently described by the SCR theory.

Despite these consistent results from the earlier measurements, with much higher instrument

resolution for µSR since 2000, exciting new physics has been revealed for the magnetic phase

transitions in MnSi Gat-Malureanu et al. [2003]; Yaouanc et al. [2005]; Uemura et al. [2007].

Figures taken from Gat-Malureanu et al. [2003]. In a recent µSR study on MnSi Gat-

Malureanu et al. [2003], with the aid of improved temperature resolution (± 0.02 K), it is

found that, although 1/T1 follows the predicted behavior of SCR theory up at temperatures

well above and below the transition, for temperatures close to Tc it is found that 1/T1 follows

1

T1T
∝ 1

(T − Tc)2
, (2.10)

which cannot be explained by the formal SCR theory. In fact it is found that as long as

the enhanced interactions between the fluctuating helical modes at around the transition

is properly taken into account Moriya [1985], the SCR theory is able to reproduce the

1/(T − Tc)
2 behavior of 1/(T1T ) as observed from µSR experiment. These findings are

corroborated by following independent µSR studies (see e.g Yaouanc et al. [2005]). shed light

upon the role of mode-mode interaction in such weak ferromagnets with helical modulation,

which has been further established in subsequent studies using neutron scattering and other

techniques Brazovskǐı [1975]; Janoschek et al. [2013]; Bauer et al. [2013]; Schmalian and

Turlakov [2004].
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Figure 2.4: (a) Temperature dependence of 1/T1 relaxation rate in MnSi for longitudinal

field BL = 0 − 6000 G. (b) Plot of T1 versus 1/T1 for MnSi at ambient pressure and under

p = 8.3 kbar (star symbol). (c) T1 versus 1/T1 at around Tc = 29.5 K, together with fits to

TT1 ∝ (T − Tc)2.

Recently there has been several µSR studies focusing on determining the details of the spin

configuration and the local field in the ordered phase of MnSi Amato et al. [2014]; Lian and

Uemura [2017]; Dalmas de Réotier et al. [2016, 2017].

2.3.2 µSR studies of MnGe

Due to practical difficulties in for example high pressure sample synthesis, µSR studies

of MnGe started only in recent years Martin et al. [2016]; Yaouanc et al. [2017]. From
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Figure 2.5: (a) Fluctuating phase fraction derived from a fit to the µSR spectra, in compari-

son with paramagnetic fraction from Mossbauer spectroscopy. (b) Relaxation rates obtained

from the same fitting using fast and slowing relaxing components. Figure taken from Martin

et al. [2016].

an experimental study by Martin et al. [2016], the 1/T1 relaxation rate in MnGe displays

a seemingly sharp divergence at the magnetic phase transition in zero field as shown in

Figure 2.5. Meanwhile, the large fluctuating fraction in the material quickly stablize below

the Skyrmion transition Tc. The divergent behavior of 1/T1 is reminiscent of that observed

in MnSi, and calls for further study and analysis using e.g. the SCR theory. The effect

of external field on spin fluctuation and the 1/T1 relaxation rate is yet to be studied. On

the other hand, there isn’t enough data at the temperature range where crossover from the

paramagnetic to ferromagnetic region occur. In this study the static local field distribution

deep inside the Skyrmion phase was approximated by a shifted Overhauser Function Amato
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(a) µSR spectra in zero field (b) Internal field versus moment

Figure 2.6: (a) Time-dependent µSR spectra of MnGe, measured at 10K in zero external

field. The solid curve is a fit to the data based on a Overhauser field distribution. Bav and

∆B refers to the center and width of the field distribution. (b) Internal field versus Mn

moment from neutron scattering. Figures taken from Martin et al. [2016].

et al. [2014] with sharp frequency cutoffs. Using lattice constant, Mn ion site and the helical

wavelength obtained from neutron experiment, the shifted Overhauser field distribution was

successfully reproduced by assuming a random phase factor associated with the position of

the muon. The magnetic structure in the Skyrmion phase was studied in more detail in a

separate µSR study Yaouanc et al. [2017], where the canonical helimagnetic structure was

identified.

Alongside the existing µSR results, MnGe appear to be very different from MnSi in many

aspects. These differences also serves as motivation to further the study of MnGe. For

example, Figure 2.7 is a table that compares the basic properties of MnGe and MnSi. It

is clear from the table that the helical pitch, static moment and transition temperature of

MnGe is about 5 times larger than that of MnSi. If we assume that Tc is roughly proportional

to the ferromagnetic interaction, J , then JMnGe would also be 5 times larger than JMnSi. As

will be introduced later, the small angle neutron scattering result also shows possibility of
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Figure 2.7: Table with experimental parameters for MnGe and MnSi from various studies.

Data taken from Martin et al. [2016]; Kanazawa et al. [2012]; Makarova et al. [2012]; Gat-

Malureanu et al. [2003]; Seki and Mochizuki [2016]; Bauer et al. [2013]

a Hedgehog-like magnetic structure within the ordered phase Kanazawa et al. [2012], which

is topologically distinct from the 2 dimensional Skyrmion in MnSi. These properties make

MnGe attractive for investigations using various techniques including µSR.
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Chapter 3

Muon Spin Relaxation Study of

MnGe

Muon spin dynamic relaxation rate 1/T1 has been measured in longitudinal magnetic field up

to 5 T for the Skyrmion material MnGe. We discovered strong dependence of 1/T1 on the ap-

plied longitudinal field, and the non-SCR behavior of the spin fluctuation (TT1 ∝ (T − Tc)2)

over large temperature range above Tc. The results were analyzed using the self-consistent

renormalization (SCR) theory. Except for the low field regime, the behavior of MnGe gener-

ally agrees with SCR theory and is similar to that of MnSi. With increasing magnetic field,

the Skyrmion transition possibly experiences a crossover from helical fluctuation-induced

transition to a ferromagnetic fluctuation driven transition, with the ferromagnetic critical

fluctuation being first enhanced and then suppressed by the field. Within the Skyrmion

region, the relaxation rate follows 1/T1 ∝ T 2, which suggests the two-magnon spin wave

from localized moment as the dominant spin excitation at low temperature. On the other

hand, no apparent critical behavior was observed in the boundary bewteen the paramagnetic
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and the induced ferromagnetic regions. By combining our transverse field and longitudinal

field µSR data, we found that the Z component of Mn to be static and the in-plane (X and

Y) components of the moment to be fluctuating both in the paramagnetic and the induced

ferromagnetic regions. The static Z moment in the induced ferromagnetic region is found to

be homogeneous.

3.1 Introduction

Spin fluctuation effects in itinerant magnetic systems are usually associated with interesting

physical phenomena. As one example, Manganese Silicide (MnSi) as an itinerant ferromagnet

with strong spin fluctuations displays a rich phase diagram and has been extensively studied

over decades with various technique. MnSi is known for hosting the 2-dimensional magnetic

Skyrmion within a finite field-temperature pocket on the phase diagram Skyrme [1962];

Tonomura et al. [2012]; Mühlbauer et al. [2009]; Robler et al. [2006]; Bauer and Pfleiderer

[2012]; Nagaosa and Tokura [2013]. In zero magnetic field, MnSi enters a helical magnetic

state below the magnetic transition temperature Tc = 29.5K, with a helical pitch of 18 nm

and static Mn moment of 0.4µB at T = 0K Ishikawa et al. [1976]; Mühlbauer et al. [2009].

In particular, several studies show that this magnetic transition behaves weakly 1st order in

zero field, possibly due to the strong interaction of the helical spin fluctuations, and becomes

2nd order as the helical fluctuations is suppressed by external magnetic field Schmalian and

Turlakov [2004]; Janoschek et al. [2013]; Bauer et al. [2013]; Zhang et al. [2015].

The presence of strong spin fluctuations in MnSi and its sensitivity to external field have

also been identified from muon spin relaxation (µSR) studies Kadono et al. [1990]; Hayano

et al. [1980]; Gat-Malureanu et al. [2003]; Uemura et al. [2007]; Takigawa et al. [1980]. The
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muon spin dynamic relaxation rate (1/T1) is known as an effective measure of the electronic

spin fluctuations Uemura et al. [1999]. In the paramagnetic phase above Tc, as a result

of the Curie-Weiss behavior of susceptibility, the 1/T1 relaxation rate follows T/(T − Tc),

which is in good agreement with the prediction of the self-consistent renormalization (SCR)

theory Moriya [1985]. On the other hand, behavior of 1/T1 is shown to be strongly modified

by spin fluctuations within a small temperature range (the so-called fluctuating regime) above

Tc, which exhibits signature of a fluctuation-driven 1st order transition, first introduced by

Brazovskii in 1975 Brazovskǐı [1975]. The temperature regime for this helical fluctuation

regime is about 2K above Tc in zero field, which continuously reduces to zero with increasing

external field up to 0.4 T Bauer et al. [2013].

More recently, another B20-type magnet, Manganese Germanium (MnGe), has gained pop-

ularity due to evidence of hosting a stable 3-dimensional Skyrmion phase with high Tc and

Skyrmion density Tanigaki et al. [2015]; Kanazawa et al. [2016, 2012, 2011]; Deutsch et

al. [2014]; Makarova et al. [2012]. At temperatures below 170 K in zero field, a magnetic

lattice composed of alternating magnetic monopole and anti-monopoles has been identified

in MnGe from transmission electron microscopy and topological hall effect Tanigaki et al.

[2015]; Kanazawa et al. [2011]. Compared with the 2D Skyrmion in MnSi, the much smaller

pitch (3nm vs 18 nm) and higher Tc (170 K vs 30 K) of the 3D monopole lattice indicate

a much stronger ferromagnetic exchange interaction, Dzyaloshinskii-Moriya (DM) as well as

spin-orbit interactions in MnGe Makarova et al. [2012]. In particular, recent neutron scatter-

ing Altynbaev et al. [2014], µSR Martin et al. [2016] and magnetization DiTusa et al. [2014]

studies on MnGe have shown signatures of strong spin fluctuations over extended temper-

ature range well above Tc, reminiscent of that in MnSi. Although the experimental results

on MnGe are relatively limited (possibly due to difficulty in sample synthesis), the existing

results suggest intimate correlation as well as fundamental differences between MnGe and
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MnSi, and thus necessitates further study to understand the peculiarity of MnGe. In parallel

with a previous µSR study on MnSi Gat-Malureanu et al. [2003], here we report the study

of how external field influences the spin fluctuations and the static magnetism in MnGe.

We present the results of the muon spin dynamic relaxation rate 1/T1 in longitudinal mag-

netic fields up to 5 T and additional transverse field measurement on a polycrystalline sample

of MnGe. Our key discoveries are as follows (a) strong dependence of 1/T1 on applied lon-

gitudinal field, (b) crossover from non-SCR to SCR behavior of 1/T1 over large temperature

range above Tc as BL increases, (c) T 2 dependence of 1/T1 at low temperature, indicating

two-magnon spin-wave excitations of local moment, and that (d) in the induced ferromag-

netic region, only the polarized Z component of the Mn moment is homogeneous and static

under applied field, and the in-plane X-Y moment remains fluctuating. Our analysis also

suggest similar nature of the induced ferromagnetic region and the paramagnetic region. The

ZF and LF data were compared with the predictions from the SCR theory along with exist-

ing results on MnGe, and were discussed in parallel with existing results on MnSi. The 1/T1

and the transverse field results were combined in the discussion on the induced ferromagnetic

region.

3.2 Experimental details

The polycrystalline samples of MnGe were synthesized under high pressure using methods

introduced in Ref. Kanazawa et al. [2011], and were shaped into rectangles with a size of

about 4 by 4 mm2, suitable for µSR measurements. The µSR experiments were carried

out at the M15 and M20 Channels of TRIUMF, Canada using the HiTime, Helios and

the LAMPF spectrometers, together with the Pandora dilution refrigerator. A gas-flow
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cryostat was used for all measurements, providing access to temperatures from 2K to 320 K

with excellent stability (≤0.03K). The µSR time spectra were analyzed using the software

package µSRFIT Suter and Wojek [2012]. More details on the µSR time spectra and the

fitting functions are to be presented along with the analysis.

3.3 Muon 1/T1 relaxation and dynamic magnetism

3.3.1 Temperature evolution of the 1/T1 relaxation in zero field

Figure 3.1 (b) shows the µSR spectra at five different temperatures in zero field (ZF). Pro-

nounced 1/T1 dynamics was observed consistently for the measured temperature and field

values. After time-binning, the fast oscillation, due to the large static Mn moment in the

Skyrmion region, becomes a sharp dip and accounts for the loss of initial asymmetry in the

early times. It is clear that as temperature goes down, the 1/T1 rate experience a maximum

at around the Skyrmion transition temperature Tc. This peaking behavior of the muon 1/T1

relaxation rate is a result of the critical spin fluctuation in the system, and is observed for

all the field values measured.

Figure 3.2 and Figure 3.3 (b) shows the asymmetry, 1/T1 relaxation rate and the internal

magnetic field µ0H from the fitting of the above ZF µSR spectra. In specific, the zero field

µSR spectra were analyzed using an exponential function with a single damping rate. In

the Skyrmion region, the spectra were analyzed using the relaxation function corresponding

to an incommensurate magnetic field distribution, similar to previous works Amato et al.

[2014]; Martin et al. [2016]:

P (t) =
2

3
J0(γµ∆Bt) cos (γµBavt+ φ) e−λat +

1

3
e−λbt, (3.1)
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(a) Phase diagram

(b) Spectra

Figure 3.1: (a) Field-temperature phase diagram of MnGe up to 6T, derived from dc mag-

netization measurement by Dr. Kanazawa from the University of Tokyo. The dashed lines

indicate the field values measured in this study. (b) Zero field muon spin relaxation spectra

at different temperatures plotted in separate time range of 0 - 0.1µS and 0.1 - 4µS.
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Figure 3.2: Temperature dependence of the 1/T1 relaxation rate and the internal magnetic

field µ0H for MnGe, determined from the zero-field µSR experiments. The dashed arrow

(green) marks the transition temperature Tc to the helical state. The solid lines are the guides

to the eyes. The size of the error bars for most temperature points are either comparable or

smaller than that of the dots, and therefore is not obviously seen in the plot.

where J0 is a Bessel function of the first kind, φ is a phase term. ∆B and Bav are the average

and the width of the internal magnetic field at the muon site. They are defined through the

upper and lower cutoffs of the field distribution, Bmax and Bmin: Bav = (Bmax + Bmin)/2,

∆B = (Bmax − Bmin)/2. γµ is the muon gyromagnetic ratio. The finite width of the field

comes from the incommensurability of the helical spin order with the lattice period. As has

been analyzed in previous studies Amato et al. [2014]; Martin et al. [2016], the distribution

of the internal field in the Skyrmion region can be approximated by a shifted Overhauser

funtion:

D(B) =
1

π

1√
(Bmax −B) (B −Bmin)

. (3.2)
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Figure 3.3: Temperature dependence of the initial asymmetry for MnGe, determined from

the zero-field µSR experiments. The data were plotted in parallel with the result from a

published study by DiTusa et al. [2014].

As shown from the plot, the asymmetry in our data displays a sharp dip across the Skyrmion

phase transition. The drop of the initial asymmetry as temperature goes down below the

Skyrmion transition temperature turns out to be much sharper than that from the other

µSR study of MnGe by Martin et al. [2016]. Our result thus demonstrates higher Tc and the

quality of our sample as compared with that used in Martin et al. [2016]. The temperature

dependence of the internal field is similar to that found in MnSi Takigawa et al. [1980];

Kadono et al. [1990], with a sharp rise at Tc ≈ 170K. 1/T1 exhibits a sharp reduction coinci-

dental with the rise in the internal field. The Tc identified here is in good agreement with the

Skyrmion transition temperature measured from dc susceptibility on MnGe. Furthermore,

the value of Tc is either close to or higher than those reported from previous studies Martin

et al. [2016]; Altynbaev et al. [2014]; DiTusa et al. [2014], again pointing to the high qual-
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ity of our sample. The increase of 1/T1 relaxation rate as temperature approach Tc from

above is due to the critical slowing-down of the spin fluctuations and the development of

longer spatial correlation of such fluctuation. The decrease in 1/T1 below Tc indicate the

transformation of the dynamic spin correlations into static long-range order. In particular,

no apparent critical behavior was seen around 270K, where the dynamic magnetization data

from exhibit a sharp jump DiTusa et al. [2014]. The absence of critical behavior around this

temperature is also confirmed from the 1/T1 data in small and big longitudinal fields, as will

be presented below. At temperatures above but very close to Tc, the peaking behavior of

1/T1 slows down and shows a saturated plateau behavior instead of a sharp peaking. Over

large temperature range above Tc, the 1/T1 data in zero field results in a (T − Tc)2 behavior

of T1T , which is different from the prediction of SCR theory (T1T ∼ (T − Tc)). This will be

analyzed and discussed with longitudinal field data.

The observed deviation from ferromagnetic SCR theory for T . Tc might be understood

from similar µSR studies on MnSi. As analyzed in Ref. Takigawa et al. [1980], according to

SCR theory the helical spin fluctuations within a small region around the magnetic vector Q

becomes the dominant spin fluctuation near Tc. In particular, these helical fluctuations are

more anti-ferromagnetic-like when the correlation length is larger than a few helical pitch,

which is realized at T ∼ Tc. Therefore, at temperatures close to Tc, MnSi is expected to

be described better with SCR theory for antiferromagnet (instead of ferromagnet) Moriya

[1985]; Moriya and Kawabata [1973].

For the case of MnGe, due to stronger DM exchange interaction, the helical spin fluctuations

are expected to have shorter spatial period compared with MnSi, and is therefore more

antiferromagnetic-like rather than ferromagnetic. This could render the system at T ∼ Tc

to behave as an itinerant antiferromagnet instead of ferromagnet. Meanwhile, magnetic

75



CHAPTER 3. MUON SPIN RELAXATION STUDY OF MNGE

susceptibility measurements show that MnGe displays a broad antiferromagnetic peak at

the Skyrmion transition Kanazawa et al. [2011]; Viennois et al. [2015]. Thus the effect of

the strong helical spin fluctuations observed in MnSi at T / Tc, which is considered to be

responsible for the deviation from the ferromagnetic SCR behavior Takigawa et al. [1980],

could also be expected in MnGe. This could be one possibly explanation for the observed

deviation between T/H2 and 1/T1 around Tc.

On the other hand, we note that the systematic deviation of 1/T1 at lower temperature

(T � Tc) from SCR theory is present in all the field values we measured. The quadratic

temperature dependence of T1 observed here is qualitatively different from the SCR behav-

ior of either ferromagnet or antiferromagnet, and requires understanding beyond the SCR

scheme. These low temperature 1/T1 data will be presented later in Figure 3.9 (a) and dis-

cussed in detail. Meanwhile, from Figure 3.2 it is seen that 1/T1 exhibit a smooth plateau,

instead of a sharp peak, at temperatures immediately around Tc. This smooth hump in 1/T1

suggests the suppression of ferromagnetic critical behavior. This behavior of 1/T1 is also

accompanied by the sharp rise in the internal field at Tc, as seen in Figure 3.2, and will be

analyzed in the following with finite field data in Figure 3.4.

3.3.2 1/T1 relaxation in longitudinal fields

To study how external magnetic field influences the spin fluctuations in MnGe, we measured

the temperature dependence of 1/T1 in external longitudinal fields up to BL=5T. The results

are presented in Figure 3.4. Here the sharp drop of the initial asymmetry as the system enters

the Skyrmion region from the induced ferromagnetic region is due to the transformation of

the fluctuating longitudinal moment into the static transverse moment in the ordered phase.

As the longitudinal field increases, the static longitudinal moment is enhanced and the static
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(a) Initial asymmetry

(b) Relaxation rate

Figure 3.4: (a) Temperature dependence of the initial asymmetry for MnGe in different

longitudinal fields BL up to 5 T. (b) Temperature dependence of the 1/T1 dynamic relaxation

rate in different longitudinal fields BL up to 5 T.
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transverse moment reduced, therefore the difference of the initial asymmetry before and after

the Skyrmion transition becomes smaller and smaller. The rise of 1/T1 as temperature ap-

proach Tc from above reflects the emergence of correlation between the randomly fluctuating

spins which then becomes dynamic correlations with increasing correlation length near the

Skyrmion phase transition. This is associated with the critical slowing-down of the fluctu-

ation. Meanwhile, the shape of the peak in both 1/T1 and susceptibility transforms from

right-skewed to left-skewed as BL increases above 1T. The presence of a sharp peak at Tc is

an indication of divergence of magnetic correlation time. As the applied field increases from

zero to 5T, except for a board hump with 1/T1 values generally much smaller than the value

near Tc, no apparent signature was observed at the boundary between the paramagnetic

and the ferromagnetic region. These observations are consistent with the phase diagram as

shown in Figure 3.1, as well as with our transverse field data as will be presented below.

For all the eight fields we measured, the magnetic transition is marked with a clear peaking in

1/T1, and Tc as a function of field, and the result is in good agreement with the dynamic sus-

ceptibility data measured by DiTusa et al. [2014]. In particular, the temperature dependence

of 1/T1 from our µSR measurement and that of the susceptibility χ measured in DiTusa et

al. [2014]show very similar trend over the measured temperature and field range, especially

around Tc. For example, both 1/T1 and χ displays a smooth hump in 0 T but a sharp,

asymmetric peak in 1T. According to SCR theory, the relaxation rate 1/T1 and magnetic

susceptibility χ are expected to follow the relation of Moriya [1963, 1985]:

1

T1T
∝ χ. (3.3)

The agreement of 1/T1 with the susceptibility data measured from DiTusa et al. [2014] implies

good consistency of our results with existing measurements. This point will be revisited in

more detail in a later section.

78



CHAPTER 3. MUON SPIN RELAXATION STUDY OF MNGE

We noticed that the 1/T1 rate is significantly enhanced at around Tc as the field increases

from 0T to 0.1T, and then starts to decrease as the field further increases beyond 0.1T up to

5T. This is seen clearly from Figure 3.6, where we plot Tc and the value of 1/T1 rate at Tc as a

function of external field. The x axis was plotted on log scale to display the low field regime.

The suppression of 1/T1 by strong applied fields (above 0.1T) is reminiscent of that observed

in MnSi, and is probably due to the suppression of the long wave (q = 0) component of the

spin fluctuations along the external field Gat-Malureanu et al. [2003]; Takigawa et al. [1980].

On the other hand, Tc starts to drop as the field increases above 0.1T. This could be due to the

fact that at fixed temperature, in higher magnetic field the helical fluctuation becomes more

less favorable than ferromagnetic fluctuation, and therefore lower temperature is required

for the proliferation of helical fluctuation and thus the transition into the Skyrmion phase.

On the other hand, the smooth peaking in 1/T1 in zero field evolves into a sharp peak as the

field increases to 0.1T. Such peaking remains sharp for fields up to 5T. This divergent behav-

ior at the Skyrmion phase transition is also identified from ultrasound and magnetoresistance

measurements on MnGe Kanazawa et al. [2011, 2016]. As will be discussed further below,

this enhancement of critical behavior in low field might be related to the evolution from a

(helical) fluctuation-driven Brazovskii transition to an ordinary phase transition driven by

critical fluctuation. It is worth noting that although the Brazovskii phase transition is shown

to be weakly 1st order, the temperature range above Tc where strong interactions between

the helical fluctuations occur remains small, and therefore at temperatures not too close to

Tc, regular critical behavior was also expected from the Brazovskii. Therefore it is expected

that the peaking critical behavior of µSR 1/T1 data alone would be insufficient to determine

the order of the phase transition (e.g. 1st or 2nd). On the other hand, the possible different

nature was revealed in an later analysis of the behavior of T1T , as will be shown in a later

section.
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The helical fluctuation-driven phase transition from the paramagnetic region to the helical

region has been identified in MnSi from multiple neutron scattering Janoschek et al. [2013];

Pappas et al. [2016, 2017] and specific heat measurements Bauer et al. [2013]. It is understood

as the result of the strong spin fluctuation in low fields Janoschek et al. [2013]; Schmalian

and Turlakov [2004]. Without strong enough alignment from the external magnetic field,

the fluctuating helical modes above Tc has no preference for orientation and thus occupies

a large spherical area in the phase space. Furthermore, the interaction energy between

these degenerate modes become huge as they populate at T ∼ Tc. Thus a weakly 1st order

transition becomes energetically more favorable as it avoids the large critical fluctuation and

the associated energy increase. Applying a magnetic field is expected to fix the orientation of

the helical fluctuations and thus brings the transition back to a 2nd order transition driven

by ferromagnetic fluctuation Schmalian and Turlakov [2004].

3.3.2.1 Effect of high longitudinal field on 1/T1 dynamics

To further understand the effect of large longitudinal field (B > 1T) on the spin fluctua-

tion, we plot the 1/T1 relaxation rate as a function of longitudinal field square for different

normalized temperatures T/Tc in Figure 3.5. Here we choose the normalized temperature

T/Tc in consideration of the different transition temperatures for different fields. With the

same normalized temperature, it is expected that the level of thermal critical fluctuation,

in some sense the effective temperature to the phase transition, is similar, and therefore the

difference in the 1/T1 rate can be treated as due to external field.

It is clear from Figure 3.5 that the 1/T1 rate decreases linearly with increasing external field

squared. This behavior, as mentioned above, has also been observed in MnSi, and therefore

suggest that the behavior of 1/T1 might be explained by essentially the same model as
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Figure 3.5: 1/T1 as function of longitudinal field square at different normalized temperatures

T/Tc for high fields up to 5T. The normalized temperatures are chosen to be above but close

to the helical transition (where T/Tc = 1).

proposed by Gat-Malureanu et al. [2003]. In specific, the muon dynamic relaxation comes

from the fluctuating local field that is perpendicular to the muon initial polarization (the

transverse component). Under an external field along the initial polarization of the muon,

the fluctuating local moment and thus the fluctuating local field will be gradually stabilized

and aligned with the field. The reduction of the fluctuating transverse field will thus slow

down the 1/T1 relaxation as the field increases up to a threshold of Bmax. The transverse

fluctuating component is nearly fully suppressed for B > Bmax.

In MnSi and MnGe, this perpendicular, or transverse, component of the fluctuating local

moment comes from the strong helical fluctuation. Thus the the larger value of Bmax also

suggest stronger DM interaction in MnGe as compared with that of MnSi. This is consistent

with other measurements on MnGe.
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Figure 3.6: Skyrmion transition temperature Tc and the 1/T1 rate at Tc as a function of

applied longitudinal field BL. The x-axis (BL) is plotted in logarithmic scale to display the

variation in the low field regime.

3.3.2.2 Peculiarity of the low field regime

To further investigate the distinctiveness of the field regimes above and below 0.1T, we plot

the transition temperature Tc and the 1/T1 relaxation rate at Tc as a function of external

longitudinal field in Figure 3.6. It is clear that while Tc remains essentially unchanged for

fields under 0.1T, the peaking value of 1/T1 first rises to a maximum at 0.1T, and then starts

to drop at higher fields. Figure 3.6 clearly marks 0.1T as the boundary that separates the

low field and high field regime in the phase diagram of MnGe. Meanwhile we noticed that

from a magnetization measurement by DiTusa et al. [2014], the magnetization within the

ordered phase is abruptly suppressed as the external field becomes greater than 0.1T. It is

interesting to note that in MnSi, Tc also remained unchanged in the low field regime where

the transition was shown to be 1st order, and then start to decrease at higher fields where the
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transition becomes 2nd order Bauer et al. [2013]. On the other hand, to our knowledge the

enhancement of 1/T1 in the low field regime as seen from Figure 3.4 and Figure 3.6 has not

been observed in other Skyrmion materials like MnSi or Cu2OSeO3, where 1/T1 is found to

be monotonically suppressed by external field Gat-Malureanu et al. [2003]; Lian and Uemura

[2017]. In the following discussion we propose an understanding to the distinct behavior of

MnGe in these two field regimes.

3.3.3 Analysis of the field dependence of the 1/T1 relaxation rate

The crossover from smooth plateau to sharp peaking in the temperature dependence of 1/T1

relaxation rate revealed the influence of the external magnetic field on spin fluctuations.

Previous studies on MnSi suggest that magnetic field influences both the orientation and

the magnitude of the helical spin fluctuation Grigoriev et al. [2006b,a]; Gat-Malureanu et

al. [2003]; Janoschek et al. [2013]; Bauer et al. [2017]. Under relatively small magnetic field

(e.g. 0.1T for MnGe, 0.13T for MnSi), while the magnitude of the fluctuation remains

largely unaffected, the orientation of the fluctuating short-range helical magnetic correlation

is much more sensitive to magnetic anisotropy and start to align with the field Schmalian

and Turlakov [2004]. Thus a transition assisted by ferromagnetic fluctuation becomes more

favorable compared with helical phase transition at the presence of magnetic field. This

explains the rise of the sharp peaking of 1/T1 at Tc, as a signature of ferromagnetic SCR

critical behavior, from the smooth hump in zero field as the field increases up to 0.1T. This

picture is also supported by the temperature dependence of T1T as presented in Figure 3.7,

and will be explained in the following section. As the field increases beyond 0.1T, while

the orientation of the fluctuating helical correlation remains fixed, the magnitude of the

fluctuation will be gradually suppressed Gat-Malureanu et al. [2003]. Thus the value of 1/T1
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around Tc decreases monotonically as the field further increases beyond 0.1T. The monotonic

decrease of 1/T1 in high field is also expected from SCR theory Moriya [1985]; Kontani et

al. [1976]: due to the suppression of the spin fluctuation by the applied magnetic field, the

magnetic susceptibility χ follows χ ∝ 1/ (h/H +H2), with h being the external field and H

the internal field, and thus 1/T1 follows 1/T1 ∝ T/ (h/H +H2) and is reduced monotonically

with increasing field h. Similarly, below the Skyrmion transition Tc, the suppression of M(T )

for H ≥0.1T might be due to the stabilization of the fluctuating spin into antiferromagnetic-

like helical order at higher fields.

For an itinerant ferromagnet, SCR theory concludes that at T � Tc, the uniform susceptibil-

ity follows the Curie-Weiss behavior χ ∝ 1/(T −Tc), which results in T1T ∝ 1/χ ∝ (T −Tc).

In the critical regime around Tc, due to the proliferation of the interacting helical spin fluc-

tuations, the behavior of the susceptibility starts to deviate from the Curie-Weiss law and

behaves as χ ∝ 1/(T −Tc)2, and T1T in this case behaves as T1T ∝ (T −Tc)2 (for details, see

page 57 in Moriya [1985]). The non-Curie-Weiss behavior of the susceptibility comes from the

Brazovskii renormalization of the Curie-Weiss susceptibility due to the interactions among

the fluctuating helical modes, which becomes significant along with the proliferation of the

magnetic fluctuation around Tc Moriya [1985]; Brazovskǐı [1975]; Janoschek et al. [2013];

Yaouanc et al. [2005]. Thus the quadratic temperature dependence of T1T indicates the

presence of strong helical spin fluctuations and deviation from the mean field/SCR behavior.

Correspondingly, this deviation also marks the crossover of a ferromagnetic fluctuation-

assisted phase transition with diverging correlation length, to a helical fluctuation-assisted

transition.

To further understand the effect of external field on the spin fluctuations in MnGe, we per-

formed fitting to T1T and analyze its temperature dependences in different fields. Figure 3.7
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Figure 3.7: Temperature dependence of T1T for different longitudinal fields. The dotted

and the dashed lines are fits using quadratic (y = ax2 + bx + c) and linear (y = kx + b)

functions to show the corresponding temperature dependences of T1T in the temperature

range of T ≥ Tc in each fields.

shows the temperature dependence of T1T in longitudinal magnetic fields. The dotted lines

are fits to the quadratic regime of the data, and the dashed line for linear regime of the

data. It is clear from the fits that for all measured field values, T1T display quadratic be-

havior near Tc. In particular, while in high (0.5T to 5T) fields T1T is quadratic in T only

for temperature up to 20K above Tc, in low (0T to 0.5T) field T1T remains quadratic for

temperature extending to 150 K above Tc (nearly 300K). Thus in low field the behavior of

T1T in MnGe is in stark contrast with that of MnSi, where T1T remains quadratic up to

only 10 K above Tc Gat-Malureanu et al. [2003]; Kadono et al. [1990]; Yaouanc et al. [2005].

Interestingly, in a magnetic field of 1T, we see the evolution of the temperature dependence
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of T1T from quadratic to linear behavior as temperature cools down from room temperature

to Tc.

The presence of strong magnetic spin fluctuation over extended temperature regime in MnGe

is also identified from neutron scattering Altynbaev et al. [2014]; Deutsch et al. [2014] and

ultrasound Kanazawa et al. [2016] experiment on MnGe. In other words, while MnSi deviates

from SCR behavior only at T ∼ Tc due to critical helical fluctuation Takigawa et al. [1980];

Kadono et al. [1990], the effects of the helical fluctuations in MnGe can be much stronger

and results in deviation of the system from SCR behavior even for temperatures well above

Tc especially in fields below 1T.

One possible origin for the enhanced effect of helical spin fluctuations in MnGe is the stronger

DM interaction with much shorter helical pitch in MnGe (3 nm) compared with that of MnSi

(18 nm). First of all, the phase space and therefore density of state for the helical fluctuations

is much larger with a larger Q vector, which comes from a shorter pitch length of the helix.

This allows larger number of fluctuating helical modes to exist and interact with each other.

On the other hand, with a smaller pitch the fluctuating helical modes can be formed with

a shorter correlation length of the system, and thus can be realized at higher temperature.

Thirdly, a shorter pitch can be attributed to stronger DM interaction, which also makes

these fluctuating short range order more robust and difficult to align by field. According

to these considerations, a much stronger helical fluctuations and interaction, extending to

higher temperatures can be expected in a system with shorter helical pitch length. This

is exactly what has been observed from our 1/T1 results of MnGe as compared with that

of MnSi Gat-Malureanu et al. [2003]; Yaouanc et al. [2005]. Therefore, the presence of the

interaction of strong helical spin fluctuations could be responsible for both (1) the deviation

of the behavior of spin fluctuations from SCR theory at T > Tc, (2) the evolution of the
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dominant spin fluctuation from helical to ferromagnetic as with increasing external field, and

(3) the possible deviation from ferromagnetic SCR to anti-ferromagnetic SCR behavior at

T / Tc. This argument applies to both MnGe and MnSi.

On the other hand, applying a strong magnetic field can significantly alter the nature of the

spin fluctuation and the behavior of the system. A strong enough magnetic field (e.g. 1T

for MnGe) can significantly suppress the transverse component of the spin fluctuations Gat-

Malureanu et al. [2003]. As it is shown above that Bmax in MnGe is about 15 times larger

than that in MnS. If we assume that the field needed to generally suppress the transverse

(helical) magnetic fluctuation in MnGe is also about 15 times that of MnSi Gat-Malureanu

et al. [2003], which gives 0.07 × 15 ≈ 1T . This value agrees with the analysis of 1/T1 as

shown below.

A strong field could also change the helical fluctuation to a ferromagnetic-like spin fluctuation

by fixing the direction of the spins. Meanwhile, it is known from SCR theory that the q = 0

ferromagnetic spin fluctuations play an important role at temperature above Tc, while at

T ∼ Tc the helical fluctuations become dominant Takigawa et al. [1980]. With these, one

can expect that under strong enough magnetic field the system recovers from a transition

driven by helical fluctuation (weakly 1st order, non-SCR behavior), to a transition driven by

ferromagnetic fluctuation both around and above at Tc (SCR behavior). Together with the

field evolution of the temperature dependence of 1/T1 as shown in Figure 3.4, it becomes clear

that the recovery of the ferromagnetic SCR behavior above Tc, i.e. the linear temperature

dependence of T1T , coincides with the sharp critical behavior of 1/T1 at Tc. To further

verify this, we notice that according to the SCR theory, the dynamic susceptibility should

be proportional to the 1/T1 relaxation rate Moriya [1985]. We therefore compared our 1/T1

data with a known study of MnGe using dynamic susceptibility DiTusa et al. [2014]. It is
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(a) Zero field (b) 0.5T

(c) 1T (d) 2T

Figure 3.8: Comparison of 1/T1 relaxation rate with dynamic susceptibility data in (a) zero

(b) 0.5T (c) 1T and (d) 2T longitudinal magnetic fields. The upper and lower limits of

the dynamic susceptibility data were chosen to show its overlapping with the 1/T1 data.

The temperature axis is the same for all data sets. The dynamic susceptibility data were

reproduced from a published study on MnGe by DiTusa et al. [2014].
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clearly seen from Figure 3.8 in low fields (e.g. 0T and 0.5T) the 1/T1 rate deviates from

the dynamic susceptibility around Tc, whereas in high fields they generally agree with each

other. This is another strong evidence that the system deviates from SCR behavior in low

fields, and recovers SCR behavior in high fields. It is noteworthy that in low fields, although

don’t follow closely with each other, the 1/T1 and dynamic susceptibility do exhibit similar

temperature variation especially around Tc. For example in zero field, both 1/T1 and dynamic

susceptibility exhibit smooth plateau around Tc, which could imply the missing of critical

divergence.

The above analysis of 1/T1 shows clearly that in low fields the spin fluctuation in MnGe

is dominated by strong helical fluctuations for temperatures above and around Tc, which

likely results in a helical fluctuation-driven phase transition. Furthermore, as the helical spin

fluctuations align and stabilize in high magnetic field, the system (although still dominated by

helical, antiferromagnetic-like spin fluctuations at T ∼ Tc) largely recovers the ferromagnetic

SCR behavior and undergoes a transition with sharp critical fluctuation.

3.3.4 1/T1 relaxation at low temperature

The temperature dependence of the muon spin 1/T1 relaxation rate at low temperatures

(T � Tc) offers insight into the dominant type of spin excitations in the Skyrmion region.

Figure 3.9 (a) shows 1/T1 as a function of T 2 down to 2 K. Clearly, 1/T1 exhibit T 2 behavior

at T � Tc for all the field values we measured. This is in sharp contrast with MnSi, where

1/T1 depends linearly on T in zero field, as confirmed from several µSR experiments Kadono

et al. [1990]; Lian and Uemura [2017]; Yaouanc et al. [2005]; Takigawa et al. [1980].

From SCR theory of itinerant ferromagnet, one possible mechanism for the linear T depen-

dence of 1/T1 below Tc is the spin flip excitations of an electron-hole pair near the Fermi
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(a) MnGe

(b) MnSi

Figure 3.9: (a) 1/T1 dynamic relaxation rate of MnGe versus temperature square at low

temperature (T � Tc) for different longitudinal fields up to 5T. The quadratic temperature

dependence of 1/T1 is clearly seen in all the measured fields. (b) 1/T1 dynamic relaxation

rate of MnSi versus temperature for different longitudinal fields. The inset shows 1/T1T

versus temperature.
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surface Lian and Uemura [2017]. In this case SCR theory predicts 1/T1 to be proportional to

T/H2, and thus 1/T1 ∝ T/H(T )2 ∝ T as the internal magnetization H(T ) saturates at low

temperature, as is the case for MnSi Lian and Uemura [2017]; Yaouanc et al. [2005]; Moriya

[1985]; Moriya and Ueda [1974]. On the other hand, under strong magnetic field the spin

fluctuations are largely suppressed and the system becomes dominated by localized spins,

entering a ferromagnetic-like state with static Mn moment Demishev et al. [2012]. Corre-

spondingly, the spin-hole excitation reduces to spin wave excitation from local moments,

which is well understood from the Heisenberg model Ishikawa et al. [1977]. Furthermore, in

the ordered state of a Heisenberg ferromagnet, due to the presence of magnetic anisotropy

which gaps out the spin-wave spectrum, the single-magnon excitation energy turns out much

larger than the muon spin Zeeman energy associated with the muon spin flip process Lian

and Uemura [2017]. In such case the two-magnon (Raman) process becomes the dominant

contribution to the muon spin dynamic relaxation process, which gives the quadratic tem-

perature dependence of the relaxation rate Dalmas de Réotier and Yaouanc [1995]; Beeman

and Pincus [1968]; Yaouanc and Reotier [1991]; Mitchell [1957].

In addition, the strength of the magnetic anisotropy in MnGe can be estimated to be much

larger than that in MnSi, which is in favor of the two-magnon excitation in the Skyrmion

region. Here we use J for the ferromagnetic interaction, and D for the DM interaction. For

both MnGe and MnSi, the magnetic anisotropy is mainly induced by the DM interaction,

with spatial scale being the size of the Skyrmion, proportional to J/D. Considering that

the saturation moment (1.9 µB) Altynbaev et al. [2014] and Tc (170K) of MnGe is approxi-

mately 5 times larger than that of MnSi (0.4 µB, Tc=29K), the strength of the ferromagnetic

exchange J in MnGe is likely about 5 times stronger than that of MnSi. Meanwhile, since

the size of the Skyrmion in MnGe (3 nm) is about 6 times larger than that of MnSi (18

nm), the DM interaction D in MnGe is estimated to be about 30 times stronger than that
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of MnSi. Thus the magnetic anisotropy energy in MnGe, approximately D/J2, can be of

180 times larger than that of MnSi. Appropriate were the above estimations, the low energy

spin excitations, including 1 magnon processes, would be more severely suppressed in MnGe

compared with MnSi. This is in favor of the 2-magnon process as the dominant contribution

to spin excitation in the Skyrmion region in MnGe.

Therefore, our results suggest that in MnGe the spins freeze into localized moments at

T � Tc and the system behave as a Heisenberg ferromagnet in the Skyrmion region. This

behavior is qualitatively different from that of MnSi, in which electron-hole pair excitation

from the strong spin fluctuations remains dominant in zero field even at low temperature.

These findings are also supported by recent experimental results. A neutron scattering

experiments on MnGe Deutsch et al. [2014] shows that the magnetic state become nearly

100 percent magnetic at temperature below 100 K within the Skyrmion phase, indicating

the stabilization of spin fluctuations into static local moments. Another experiment shows

that the saturation moment of MnGe is much larger than that of MnSi Altynbaev et al.

[2014]. Together, Figure 3.4 and Figure 3.9 (a) explains the evolution of the shape of the

1/T1 peak with increasing field, as seen in Figure 3.2: the reduction of the weight on the

high temperature side of the peak reflects the evolution of T1T from quadratic to linear

(or, non-SCR to SCR) behavior, and the gain of the weight on the low temperature side is

because of the T 2 behavior of 1/T1 in the Skyrmion region begins to dominate as Tc moves to

lower temperature and the critical fluctuation further suppressed by the increasing magnetic

field.
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3.4 Muon transverse relaxation and static magnetism

3.4.1 Transverse field (TF) µSR spectra

Figure 3.10 shows the transverse field µSR spectra for 0.5 Tesla and 3 Tesla. The time

axes were set differently for different fields to show the evolution of the initial dynamics

with changing temperature in each fields, respectively. Above Tc, the relaxation rate is

expected to increase with decreasing temperature due to the formation of field-induced static

Z component of the Mn moment and the increase of the width of the static internal field at

the muon site generated by these Mn moments. For example in both 0.5 T and 3 T, as the

system enters the induced ferromagnetic phase from high temperature paramagnetic phase,

the time spectra exhibit significant change in both relaxation rate and oscillation frequency.

Meanwhile, we noticed that in the Skyrmion region the 0.5 T spectra exhibit an abrupt shift

of frequency as well as an increase in the relaxation rate as temperature decreases below the

Skyrmion transition, whereas in 3 T both the relaxation rate and oscillation frequency of

the spectra changes smoothly. As analyzed below, the different behaviors in the spectra in

0.5 T and 3 T are due to their difference in the ratio of the width of the static internal field

from Mn and the magnitude of the external field.

First of all, we define θ to be the angle between the static internal field and the applied field

direction. In MnGe, due to the small but finite (static) internal field, the total static field,

which equals the vector sum of the internal and the external field, is not completely parallel

to the external field. With a relatively homogeneous external field, the total static field itself

will also acquire the width equal to that of the internal field.
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(a) 0.5T (b) 3T early time (c) 3T longer time

Figure 3.10: Transverse field µSR spectra in different temperatures, plotted for 0.5 T and

3 T. The spectra in the paramagnetic, induced ferromagnetic, and the Skyrmion phase are

plotted with triangle, rhombus and square shape, respectively. The early time (0 - 0.03µS)

and long time (0.02 - 0.2µS) dynamics were plotted separately with different binning of time

in Figure (b) and (c).
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In the ordered Skyrmion phase, especially in low external fields, since that the internal field

distribution will largely remain unchanged by the external field and that the external field

is small compared with the internal field, the internal field will remain dominant in the

material. Considering the helical nature of the internal moment, the direction of the static

moment from Mn as seen by the muons can be regarded as random. In such case, θ would be

equal to 90 degrees. From the analysis of the zero field µSR data, the internal field strength

in MnGe is about 0.5 Tesla (about 4 times that in MnSi Gat-Malureanu et al. [2003]). Thus

as a rough estimation, the width of the internal field would also be on the order of 3-5

kilo Gauss (kG). For an external field of 5 kG, such width of the internal field is almost

comparable with the magnitude of the averaged field. If we measure the uniformity of the

field by the ratio of its width and magnitude, then the small uniformity of the field in the

0.5T case would cause the spectra to damp without apparent initial oscillation (which only

comes from the precession of the muon in a relatively uniform internal field). Furthermore,

with a width of 3 kG, we expect relaxation rate to be around 300 inverse microsecond, which

will depolarize the transverse field signal within about 20-30 nano second.

Therefore since the 0.5 T transverse field spectra were fitted with a single component of

damped oscillation with fitting time range up to 200 nano second, it is expected that the

fast damping in the spectra cannot be picked up by the fit. In fact, the fit for the TF

spectra in the Skyrmion region in 0.5 T only catches the small long-live component with the

frequency set by the applied field, which possibly comes from the small fluctuating volume

deep inside the Skyrmion region. In other words, the 0.5 T spectra shows almost no initial

asymmetry in the Skyrmion region due to the large width of the total internal field compared

with the field strength.
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On the other hand, for the 3 T transverse field spectra, the external field of 3 T is significantly

larger than the width of the internal field in the Skyrmion region (about 3-5 kG). Thus in

the 3 T case the center frequency of the muon precession is much larger than the width of the

frequency. This would result in a more uniformed precession of the muon around the center

frequency of 3 T. Therefore we would expect clear oscillation to be seen in the 3 T spectra

even in the Skyrmion region. In other words, the 3 T spectra exhibits clear oscillation due

to the fact that the internal field in the Skyrmion region was heavily polarized by a much

stronger external field and is thus more uniform.

3.4.2 Analysis of the TF µSR spectra

To get more insights into the field induced ferromagnetic phase of MnGe, in Figure 3.11

we present the analysis result for the relaxation rate and internal field shift in different

transverse fields. The relaxation rate of the 0.5 T data drops down sharply as the system

enters the Skyrmion region. As has been discussed above, this is due to the fact that the

early time signal is not resolved because of fast depolarization of the muon spin induced by

the strong inhomogeneous internal field. The relaxation rate of the 3 T data continues to

rise as temperature decreases. Considering that the early time oscillation in the 3T data was

well-fitted, this implies that the width of the internal field has been rising continuously as

temperature goes down. On the other hand, for all the field values we measured, the field shift

experiences a generally smooth transition as the system enters the induced ferromagnetic

region from the paramagnetic region. This suggest that the induced ferromagnetic region and

the paramagnetic state are potentially very similar in property, and is connected more likely

via a smooth crossover rather than a sharp phase transition. This is further consolidated in

the following analysis.
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(a) Relaxation rate

(b) Field shift

Figure 3.11: Temperature evolution of the relaxation rate (a) and internal field shift (b) of

the transverse field µSR spectra in fields up to 3 T. The internal field shift is defined as the

external field minus the detected field.
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Figure 3.12: Temperature evolution of the initial asymmetry of the TF µSR spectra in

different transverse fields up to 3 T. For the early time data (plotted in open circle) the

upper limit of 0.22 were used in the fitting to avoid artifacts in data processing.

To further understand the difference between the induced ferromagnetic region and the

paramagnetic state, we plot the temperature dependence of the initial asymmetry in different

transverse fields in Figure 3.12. As has been analyzed in the discussion of the TF time

spectra, the sharp drop of the asymmetry after the Skyrmion transition in 0.5T is a natural

result of our choice for the fitting function. To show the difference, we plotted the fitting

of the 3T data using only the early time (0 - 0.03 µS) spectra in open circle in Figure 3.12,

which shows nearly constant initial asymmetry as plotted in the spectra. It is clear from

Figure 3.12 that, especially in low fields of 0.1T and 0.25T, the asymmetry nearly remains

constant in the paramagnetic phase, and starts to drop steadily as the system enters the

induced ferromagnetic phase. This is possibly due to the build-up of the internal field in the

induced ferromagnetic phase, as discussed below.
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Figure 3.13: Temperature evolution of the magnetization in different transverse fields up to

3 T. The data was normalized to show average Mn moment per formula unit. Figure from

Dr. Naoya Kanazawa (the Tokura lab) of Tokyo University.

The static field at the muon site is a vector sum of the internal field and the external

(applied) field. In an absolutely non-magnetic state, the local field will be equivalent to the

external field and is therefore perpendicular to the muon spin direction in a transverse field

µSR experiment. In this case the muon precession would give the largest (full) asymmetry.

On the other hand, as the system becomes magnetic, the local field will start to deviate

from the external field, and that the angle between the muon spin and the local field is no

longer 90 degrees. And this would result in the reduction of the muon precession asymmetry,

which could be calculated using the angle between the muon polarization and the local field

and with simple trigonometric relations. Therefore the reduction of the asymmetry in the

induced phase could come from the build-up of the static magnetic field as the system enters

the induced ferromagnetic phase.
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In fact, as the magnetization data in Figure 3.13 show, under the same field, the magneti-

zation (susceptibility) is significantly larger in the induced ferromagnetic phase than in the

paramagnetic phase. The behavior of the magnetization could be understood as follows. As

the temperature decrease and the system enters the induced ferromagnetic region from the

paramagnetic region, the magnetic correlation length ξ of the system remains much smaller

than the helical correlation length ξDM. Therefore the dominant correlation remains ferro-

magnetic within the paramagnetic region and the higher temperature part of the induced

ferromagnetic region. Under the same external field the moment from ferromagnetic region is

larger than that from the paramagnetic region due to larger correlation length in the latter.

Within the induced ferromagnetic region, as the temperature decreases the correlation length

gradually becomes comparable with the helical correlation length ξDM. As noted in Janoschek

et al. [2013], in such case the helical correlation come into existence and starts to compete

with the ferromagnetic correlation. This possibly corresponds to the slowing-down in the

increase of the magnetization as temperature decreases within the ferromagnetic region. The

1st derivative of the field shift shows peaking at the paramagnetic to induced ferromagnetic

region transition, which also indicates the slowing-down of the increase of magnetization as

temperature decreases. With further decreasing temperature the helical correlation gradually

becomes comparable with the ferromagnetic correlation, and this could correspond to the

saturation of the magnetization at temperatures close to the helical transition Tc. Eventually,

the helical correlation wins over the ferromagnetic correlation and induces the transition from

the induced ferromagnetic order into the helical order.

It is noteworthy that, as seen from Figure 3.13, the boundary of the paramagnetic and

the induced ferromagnetic region remains nearly unchanged for fields below 1T, and starts

to shift to higher temperature as the field increases beyond that. Meanwhile, as analyzed
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previously, 1T is also the field value beyond which the transverse (helical) fluctuation of

the system is suppressed. Therefore we suspect that in low field the helical fluctuation is

preventing the formation of ferromagnetic moment in the induced ferromagnetic region. In

high fields, the helical fluctuation was suppressed and thus the transition of the paramagnetic

order into ferromagnet order becomes realizable at higher temperature as the field increases.

3.4.3 Magnetism in the induced ferromagnetic region

By comparing Figure 3.4.3 and Figure 3.4 it is apparent that in the induced ferromagnetic

region the TF rate is much larger than the LF rate. This means that the muon spin transverse

relaxation is mostly caused by the static field. As a consequence, the relaxation rate of the

transverse field µSR spectra can be used as an estimation for the width of the static field.

The fact that the TF relaxation rate is proportional to the static field width is discussed in

detail in Appendix C.

The static field width is composed of the Z component along the external field direction

and the X-Y component perpendicular to the field. On the other hand, magnetization gives

a measure of the Z component of the static Mn moment. Meanwhile, we know that the

width of the static field distribution is roughly proportional to the size of the static Mn

moment. Therefore the relation between the TF relaxation rate and the magnetization

could reveal important information about whether each component of the Mn moment is

static or dynamic. In Figure 3.14 we plot the TF relaxation rate as a function of the Mn

magnetization for different temperatures. The magnetization data were reproduced with

permission from the Tokura lab in the University of Tokyo. It is clear that for the the selected

temperatures, the relaxation rate is roughly proportional to the Z moment size measured

from magnetization. In other words, the static internal field width goes up linearly with
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Figure 3.14: Transverse field µSR relaxation rate as a function of Mn moment measured from

magnetization for different temperatures. Linear behavior is seen in both the paramagnetic

and the induced ferromagnetic phase, suggesting that the static internal field is mainly

contributed by the Z moment. Similar values for the slope suggest that the hyperfine coupling

constant is similar in the two phases.

the static Z moment of Mn. The ratio between the moment and the relaxation rate (and

thus the static field width) defines a form of hyperfine coupling constant. Meanwhile, it is

obvious that in the paramagnetic phase, only the Z component is being polarized by the

external field and is thus the only component that contributes to the internal field width. It

is clear that the hyperfine coupling constant derived from Figure 3.14 is essentially the same

for the induced ferromagnetic phase and the paramagnetic phase. This suggests that in the

induced ferromagnetic phase, only the Z component of the Mn moment is being polarized

by the external field, just as in the paramagnetic phase.
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Correspondingly, we know that in the induced ferromagnetic phase the X-Y component of the

Mn moment remain unpolarized and do not contribute to the static field width. Meanwhile,

we recall that in our 1/T1 dynamic relaxation results the induced ferromagnetic region exhibit

large spin fluctuation. These evidences suggest that while the Z moment is static, the X-Y

component of the Mn moment is highly dynamic in the induced ferromagnetic phase, and is

thus responsible for the muon 1/T1 dynamic relaxation.

To further verify this, we plot the TF rate versus moment at 50K within the Skyrmion

phase. It is clear that the point has 3-4 times larger relaxation rate compared with the

para or induced state with the same moment. This is because in the ordered Skyrmion

phase, not only the Z component of the Mn moment but also the X-Y component of the

Mn moment has become static and is all contributing to the muon TF relaxation. If we

plot the same relaxation rate versus the full size (including X,Y and Z component) of the

Mn moment obtained from a neutron scattering study Makarova et al. [2012], then the data

point share the same slope as the high temperature phases. This further confirms that the

X-Y components of the Mn moment in the induced ferromagnetic region is dynamically

fluctuating and not contributing to the static field. The fact that the full moment data

point also obeys on the linear relation with the same slope simply means that the coupling

between the static internal field and the static Mn moment is similar for all the phases of the

material, which is what we expected. With the above analysis, our data from Figure 3.14

shows clearly that the coupling strength (and possibly coupling mechanism) between the

Mn moment and the local field could be similar for the induced ferromagnetic phase and the

paramagnetic phase.

Meanwhile, the fact that the transverse relaxation spectra in the induced and the paramag-

netic phase can be fitted with a single exponentially damped cosine function, as shown in
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Figure 3.10, suggest that the internal field is highly uniform in the induced ferromagnetic

phase, just as the paramagnetic phase (otherwise, the drastically different internal fields

would cause the TF spectra to have 2 or more relaxation rates that can be seen in different

time ranges). Therefore we see that the induced ferromagnetic phase and the paramagnetic

phase could both have highly homogeneous and disordered internal field distribution, with

similar coupling to the external field. This suggest that the two states have similar micro-

scopic interaction between the spins. In this sense, they have very similar nature, with only

the quantitative difference in that the Mn moment is larger in the induced ferromagnetic

region, and therefore the same external field would result in larger moment polarization

and internal field shift, as shown in the transverse data in Figure and in the magnetization

data in Figure 3.13. Due to the similar nature of the two states, it is reasonable that the

transition between the paramagnetic state and the induced state could be more of a smooth

crossover than a sharp phase transition, as have been shown in the transverse relaxation rate

and field shift data. This is further corroborated by the the temperature evolution of the

asymmetry data in Figure 3.12. A continuous crossover/transition between the two regions

is also allowed from a topological point of view since the two regions have the same winding

number 0.

As a short remark, we note that the difference between a ’real’ ferromagnetic state and

the induced ferromagnetic magnetic state lies in several aspects. First of all, the regular

ferromagnetic phase originates from the strong exchange coupling between the neighboring

spins, and its formation was a result of the competition between the exchange coupling and

the thermal fluctuation. The ferromagnetic state is thus a quantum state in which the wave

functions of the neighboring spins are highly coherent with each other. Furthermore, the

direction of the spins in the ferromagnetic state is largely determined by the configuration

of the exchange interaction. The induced ferromagnetic region, on the other hand, can be
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regarded as a ’polarized paramagnetic state’ in which the fluctuating moment along the field

direction was stabilized and aligned by the external field instead of the exchange interaction

between them. Consequently, these stabilized component of the spins in the induced ferro-

magnetic region, although aligned with each other and appearing as a ferromagnetic state,

remains (quantum-mechanically) incoherent. In other words, while the ferromagnetic state

is characterized by long-range ferromagnetic order, the induced ferromagnetic state only

contains short range ferromagnetic order. Therefore, while the paramagnetic state could be

connected with the ferromagnetic state only through a statistical phase transition, it could

evolve into the induced ferromagnetic region via a smooth crossover.

3.5 Comparison of MnGe and MnSi

In this chapter we compare the published results on MnSi and MnGe with our MnGe results.

Specifically, the comparison of the published µSR result on MnSi with our result on MnGe

shows striking similarity between the two materials.

3.5.1 Neutron scattering

Figure 3.15 shows the small angle neutron scattering results for MnSi and MnGe. The plotted

momentum range is much smaller for MnSi compared with MnGe, and this indicate a longer

helical pitch in MnSi. It is clear that critical helical fluctuation, as demonstrated by the

scattering intensity at the Skyrmion pitch q vector, was present in both MnSi and MnGe.

We note that since MnGe have much shorter helical pitch and thus much larger helical

momentum vector, the scattering intensities around the center beam at temperatures above

the transition is not necessarily ferromagnetic but helical-like fluctuations. These fluctuation
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(a) MnSi

(b) MnGe

Figure 3.15: Temperature evolution of the small angle neutron scattering patterns of (a) sin-

gle crystalline MnSi and (b) polycrystalline MnGe in zero magnetic field. Figures reproduced

from Janoschek et al. [2013] and Kanazawa et al. [2012]. The q vectors for the scattering

patterns of MnSi and MnGe were plotted on different scale.
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above the helical transition is more ferromagnetic-like in MnSi as they have much smaller

moment vector and thus much larger spatial scale.

3.5.2 Muon spin relaxation

Figure 3.16 compares the 1/T1 relaxation rate at low temperatures for MnGe and MnSi.

While for MnSi the 1/T1 rate is generally linear in low temperatures and thus agrees with

the prediction of the SCR theory, the 1/T1 rate of MnGe displays quadratic behavior in low

temperatures.

Figure 3.17 plots T1 versus inverse temperatures in different longitudinal fields for MnSi and

MnGe. At temperatures close to the helical transition, T1 in both MnSi and MnGe displays

quadratic behavior T1 ∼ 1/(T − Tc)
2 and therefore deviates from the prediction of SCR

theory which predicts that T1 ∼ 1/(T − Tc). At temperatures much higher than the helical

transition Tc, T1 of MnSi recovers the SCR behavior of T1 ∼ 1/(T − Tc). This indicates that

in MnSi the helical fluctuation is dominant only as the critical fluctuation around the helical

transition, and gives its place to ferromagnetic fluctuation at higher temperatures. On the

other hand, at high temperatures, the non-SCR behavior of MnGe persists well above the

helical transition up to 300K in low fields (<1T). It only recovers SCR behavior in high

fields (>1T). This may be due to the stronger helical tendency induced by the stronger DM

interaction in MnGe. Overall, these results agree with our analysis in the text.

Figure 3.18 plots 1/T1 rate versus Tc-normalized temperature (T − Tc)/Tc for MnSi and

MnGe. While SCR theory predicts the behavior of 1/T1 ∼ (T − Tc)/Tc for T ≥ Tc, both

MnGe and MnSi exhibit non-SCR behavior around the helical transition. At temperatures

further above the helical transition Tc, MnSi starts to display SCR behavior as shown in
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(a) MnSi (b) MnSi

(c) MnGe

Figure 3.16: (a)1/T1 rate of MnSi as function of temperature in different longitudinal fields.

The inset shows linear behavior of 1/T1 rate as function of temperature at low temperatures

within the Skyrmion phase. (b)1/T1 rate of MnSi as function of temperature in longitudinal

field of 5 mT. (c) 1/T1 rate of MnGe as function of temperature at low temperatures in

different longitudinal fields. Figure (a) and (b) reproduced from Lian and Uemura [2017]

and Yaouanc et al. [2005].
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(a) MnSi

(b) MnGe

Figure 3.17: T1 as function of inverse temperature 1/T in different longitudinal fields for (a)

MnSi and (b) MnGe. Figure (a) reproduced from Gat-Malureanu et al. [2003].

109



CHAPTER 3. MUON SPIN RELAXATION STUDY OF MNGE

(a) MnSi

(b) MnGe

Figure 3.18: (a) 1/T1 as function of normalized temperature (T −Tc)/Tc for MnSi in longitu-

dinal fields of 5 mT and 20 mT. (b) 1/T1 as function of normalized temperature (T −Tc)/Tc

for MnGe in different longitudinal fields. Figure (a) reproduced from Yaouanc et al. [2005].
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Figure 3.18 (a). For MnGe, in low fields the non-SCR behavior of 1/T1 persists up to 300K,

in high fields the SCR behavior was recovered. This is consistent with our previous analysis.

Figure 3.19 shows 1/T1 as function longitudinal field square for MnSi and MnGe. The exter-

nal field is expected to promote the Z component and thus reduce the X and Y component

of the spin fluctuation. This explains the decrease of 1/T1 with increasing field. From the

figure we derived the Bmax of MnGe to be around 3.3T, which is about 15 time larger than

that of MnSi. As analyzed before, this suggest stronger helical spin fluctuation in MnGe.

The linear behavior of 1/T1 ∼ BL is similar to that of MnSi. This suggest that the behavior

of 1/T1 in MnGe in high fields might be explained by the same model for MnSi as proposed

in Gat-Malureanu et al. [2003].

3.5.3 Summary of comparison

Critical behavior at the boundary between the Skyrmion phase and the induced ferromag-

netic region was seen in both MnSi and MnGe. By comparing the µSR results, it appears

that MnGe is in fact similar to MnSi at least from µSR point of view. On the other hand,

critical behavior in MnSi has been studied extensively by neutron scattering in MnSi, which,

together with specific heat results, gives the evidence of a 1st order phase transition for the

helical transition. Such measurements are yet to be carried out for MnGe.

3.6 Potential connections with topology

In this section we discuss the possible connections of our µSR results on MnGe with the con-

cept of topological phase transition. As has been introduced in Chapter 1, a continuous static

magnetic structure can be modeled mathematically as a continuous vector field, about which
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(a) MnSi

(b) MnGe

Figure 3.19: (a) 1/T1 of MnSi as function longitudinal field square at temperatures close to

the helical phase transtion. (b) 1/T1 of MnGe as function longitudinal field square at different

normalized temperatures T/Tc for high fields up to 5T. The normalized temperatures are

chosen to be above but close to the helical transition. Figure (a) reproduced from Gat-

Malureanu et al. [2003].
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Figure 3.20: Different magnetic phases in MnSi and MnGe and their topological winding

number. Here a partial magnetic ordering was shown as illustration for each phase. The

winding numbers were calculated for the magnetic phase as a whole.

a topological winding number w can be calculated to characterize its topological property.

The large energy required to suppress the local moment of a continuous magnetic structure

with finite moment guarantees the robustness of these physically-realized topological objects

against external perturbation.

Under the assumption that the local magnetic order within these magnetic phases are robust

everywhere within the phase, the transformation between these topological objects will be

dominate by the mathematical rule that determines the deformation of topological objects,

that is, topological objects with different winding numbers cannot deform continuously into

each other without breaking. Meanwhile, in physical term, the transformation between two

magnetic state is usually realized via a phase transition, and continuous/discontinuous phase
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transitions are marked with distinct critical behaviors that can be detected via experiment.

Therefore we see that the topology of two magnetic state can have crucial influence on the

continuity of the phase transition between them. For example, from topological consider-

ations, two magnetic states with different topological winding numbers cannot transform

into each other via a continuous 2nd order phase transition. On the other hand, if the two

magnetic states have the same winding number, then they are simply ’allowed’ to transform

into each other continuously via a 2nd order transition. As a reminder, these topological con-

siderations are based on the assumption that the magnetic state can be very well modeled

by a continuous vector field. This, for example, could require static and finite moment of

the structure.

Next we apply the above arguments to the case of MnSi and MnGe, and show that the above

topological considerations on the phase transition is consistent with published data and also

our 1/T1 data on MnSi and MnGe. Figure 3.20 displays the magnetic phases that exists in

MnSi and/or MnGe, and its corresponding topological winding number:

According to the above analysis, magnetic states with different winding numbers, as listed

in Figure 3.20, have to transform into each other via 1st order transition. For MnSi this

is well confirmed from various experimental results, especially from high precision specific

heat measurement Bauer et al. [2013]. The transition between the topologically equivalent

states, for example from helical state to conical state, from conical state to ferromagnetic

state, are of 2nd order. Meanwhile, the transitions bewteen topologically inequivalent states,

for example from conical or helical states to the Skyrmion state, are of 1st order.

In the mean time, existing results, including our result on MnSi film and MnGe, show that

topological considerations might also apply for these materials. For the case of MnGe film,

as is shown from its phase diagram in Figure 3.21 (a), the Skyrmion region spreads out the
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higher field region of the order phase. From µSR 1/T1 measurement as shown in Figure 3.21

(b), it is clear that critical behavior was missing at the transition between the paramagnetic

phase (winding number 0) and the Skyrmion phase (winding number 1). Thus the µSR

result suggest absence of critical behavior at such transition, and thus indicate the presence

of a 1st order transition. Considering that these two states have different winding number

and are thus topologically inequivalent, this result is consistent with the above topological

considerations.

For MnGe, it is noteworthy that, although individually the 3D Skyrmion (the Hedgehog) or

Anti-Skyrmion has non zero winding number, the Hedgehog phase, as has been identified

in MnGe, has a topological number of 0 due to the cancellation of the winding number

from Hedgehogs and Anti-Hedgehogs. In other words, the 3D Skyrmion state in MnGe is

topologically equivalent to the ferromagnetic state, and thus a 2nd order phase transition is

allowed between them. Figure 3.21 (c) and (d) shows the phase diagram and 1/T1 results in

high fields. As analyzed in previous sections, in larger field the phase transition will not be

dominated by the strong helical fluctuation via the Brazovskii mechanism. From the figure

and the analysis presented previous, the transition from the induced ferromagnetic region

into the Hedgehog region is characterized by clear dynamic critical behavior. This suggest

that the transition between the induced ferromagnetic phase and the Hedgehog phase could

be 2nd order. Considering that the two states has the same winding number of 0, these

results implies that topological considerations could also work well for the helical magnets

of MnSi film and the 3D helical magnet MnGe.
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3.7 Conclusion

In summary, we studied the temperature and magnetic-field dependence of the spin fluctua-

tion in MnGe with muon spin 1/T1 dynamic relaxation and muon transverse field relaxation

measurement.

From 1/T1 data we did not observe apparent critical behavior or anomaly at the boundary

between paramagnetic and the induced-ferromagnetic regions. Our study showed linear

relation between transverse field relaxation rate and the magnetization, and that their ratio

(a form of hyperfine coupling constant) is very similar in the induced ferromagnetic region

and the paramagnetic region. This suggest that the Z component of the Mn moment is static

in both regions. The single relaxation rate in the transverse spectra suggest that the internal

field is highly homogeneous in the induced ferromagnetic region.

We therefore suspect that these two regions are not separate phases. Instead, they could be a

single phase with different tendencies as temperature decrease: with decreasing temperature,

the paramagnetic region is marked with the winning of the tendency towards ferromagnetic

order, and the induced ferromagnetic region is marked with the winning of the tendency

towards the helical order over ferromagnetic order.

In lower temperature, we observed dynamic critical behavior in the boundary between the

induced ferromagnetic region and the Skyrmion region. In low fields, the 1/T1 relaxation rate

behaves qualitatively different from the prediction of SCR theory for itinerant ferromagnet

for large temperature regime above Tc. We understood this by analyzing field effect on spin

fluctuation and phase transition in the low and high field regimes, respectively.
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Within the Skyrmion region, all the three components of the Mn moment is frozen. The

quadratic temperature dependence of 1/T1 at low temperatures suggest the two-magnon spin

wave to be the dominant spin excitation in the Skyrmion region. This is similar to those

seen in localized moment magnets and is qualitatively different from the linear temperature

dependence predicted from SCR theory for itinerant ferromagnets.
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Figure 3.21: (a) Phase diagrams of MBE-grown MnSi film with thickness of 50 nm. Figure

reproduced from Seki and Mochizuki [2016]. (b) Color plot of 1/T1 relaxation rate of MnSi

film. No apparent critical behavior was observed at the boundary of the Skyrmion region

and the paramagnetic region. Figure reproduced from Lian and Uemura [2017]. (c) Phase

diagram of MnGe. Figure from Naoya Kanazawa (Tokura Group). (d) 1/T1 of MnGe in

high magnetic fields B > 1T.
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Chapter 4

The Pair Distribution Function

Technique

4.1 Overview of the pair distribution function (PDF)

To understand the uniqueness of the PDF method for structural analysis, some knowledge

about the short, long range of structural correlation and the difference between them would

be helpful. Especially in recent years, the number of synthetic materials with complex

structures (e.g. nano material, polymer, etc) has been increasing fast. Such materials differ

from the classic crystalline model fundamentally as they’re typically marked with a lack

of long-range periodicity. For example polymers can have millions of atoms constituting

chains of molecules assembled in a irregular way, and are thus having complex structures.

It therefore deserves the time and effort to speculate about the origin of the complexity of

the structure, or more precisely, the origin of the apparent complexity of applying present

structural analysis methods to these novel structures.
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The key to the problem, as pointed out in Egami and Billinge [2012], lies in how we define

and perceive structural orders in these materials. In terms of classic crystalline materials,

structural order usually indicates some kind of periodicity in the structure which extends

over tens of thousands of unit cells. In such a case, periodicity dramatically reduces the

degree of freedom in describing the material, and therefore this type of structural order is

most conveniently described in reciprocal space. For complex materials like many nano-

materials, on the other hand, periodicity is no longer the powerful description of structural

order it was for crystalline material: long-range structural orders are absent. Instead, many

of them consist of large numbers of similar structural units that are distributed irregularly

within the material. In such cases, the structural order shifts from long-range periodicity in

structure to similarities of these small structural units; in other words, the commonalities

in the local atomic arrangement at different locations within the material is a more suitable

description of structural order in the complex materials mentioned above.

In the absence of long-range periodicity, Bragg’s law of crystallographic reflection is no longer

satisfactorily fulfilled. Structural periodicity is the crucial prerequisite for Bragg’s law, and

a material has to have such property in order to be properly analyzed by the traditional

x-ray crystallographic methods. The absence of periodicity in nanomaterials gives rise to

the nanostructure problem Billinge and Levin [2007]. The pair distribution function (PDF)

method is one powerful method that yields structural information at a local scale and has

been an active area of research. Consistent with the analysis above, the power of PDF

towards nano materials comes from the fact that it is defined in real space and is sensitive

to structural order and commonalities on a local scale. For example, commonalities of

local structures in a material are reflected in the PDF as shifts of structural peaks. As

an volume-integrated probe, the shift of a single peak in the PDF indicates that similar

structural distortion between pairs of atom happens throughout the sample, a structural
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distortion that happens systematically within the local structures everywhere in the sample.

Comparing with other observational technique such as various microscopies, the PDF method

is able to reflect the local structural features that prevails, instead of only within a small

window of observation, throughout hundreds of thousands of unit cells in the material; this

unique advantage comes in with many scattering techniques.

4.2 Definition and equations of different PDF method

4.2.1 The atomic PDF

4.2.1.1 Definitions of the scattering functions

Before deriving the equations for the PDF, we first formulate the theory for the scattering

intensity in reciprocal space. The scattering amplitude, which contains all necessary infor-

mation about atomic arrangement and thus reflects the full Bragg scattering conditions, can

be expressed as Egami and Billinge [2012]

Ψ(Q) =
1

〈b〉
∑
i

bie
iQ·Ri . (4.1)

Here bi is the scattering amplitude of the atom i, and it measures the scattering power of an

atom. The angle brackets stands for average over all atoms. With the scattering amplitude

Ψ(Q), other scattering quantities such as the scattering cross section, dσC(Q)
dΩ

, the scattering
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intensity, I(Q), and the structure function, S(Q), can be found easily

dσC(Q)

dΩ
=
〈b〉2

N
|Ψ(Q)|2 =

1

N

∑
i,j

b∗jbie
iQ·rij , (4.2)

I(Q) =
dσC(Q)

dΩ
〈b〉2 − 〈b〉2, (4.3)

S(Q)− 1 =
I(Q)

〈b〉2
=

1

N〈b〉2
∑
i 6=j

b∗jbie
iQ·rij . (4.4)

Here the contribution of the self-scattering, namely the arithmetic sum of the scattering

intensities from each individual atom, was subtracted from the scattering quantities so that

in the present form they represent the coherent scattering that comes from the interference of

the light scattered from the atoms. Equation 4.4 gives the most general expression for I(Q)

and S(Q) and applies to any material with known atomic arrangement. For real scattering

experiments, many samples are powdered with crystallites oriented along each direction with

uniform probability. In such case the equations can be greatly simplified. The orientation

averaging implies that, provided the large number of crystallites, each of the atomic distance

vectors rij within each crystallite has an equal probability to appear in every direction in

space. Therefore for a specific pair, rij, the averaged complex exponential factor is found to

be

exp (iQ · rij) =
1

4π

∫ 2π

0

∫ π

0

exp (iQrij cos θ) sin θdθ =
sinQrij
Qrij

. (4.5)

Substituting the complex exponential factor in Equation 4.4 with the averaged expression,

we derived the structure function for an ideal isotropic powder sample

S(Q)− 1 =
I(Q)

〈b〉2
=

1

N〈b〉2
∑
i 6=j

b∗jbi
sinQrij
Qrij

. (4.6)

As we will see, using Equation 4.6 we can derive the atomic PDF that we use for structural

refinement of many materials. As will be further explained in the 2D PDF section, rigorously

speaking, the summation in Equation 4.6 is carried out within one particular crystallite,
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where as the summation in Equation 4.4 is over all the atoms within the sample. This

happens because by doing the orientation averaging we simply dropped the contribution

from the coherent scattering between different crystallites, and assumed that the scattering

signal from different crystallites are incoherent with each other. Intuitively, this means that

in calculating the total structure function of the sample all the crystallites are assumed to

be identical and are translated to the same spatial position, so that their only difference is

orientation.

In many real cases Equation 4.6 provides an excellent approximation to the actual structure

function of the powdered sample. This implies that its underlying assumptions are justified

and that the scattering between the (nano) crystallites can be regarded as incoherent. On

the other hand, the assumption that the crystallites have random orientation distribution,

which justifies the orientation averaging in Equation 4.5, can be inaccurate for samples with

preferred orientations. This will be explored further in the 2D PDF section of this thesis.

Finally, for completeness, following the formalism in Farrow and Billinge [2009]; Egami and

Billinge [2012], we define the quantity F (Q) as

F (Q) = Q · I(Q)

〈b〉2
= Q [S(Q)− 1] =

1

N〈b〉2
∑
i 6=j

b∗jbi
sinQrij
rij

. (4.7)

4.2.1.2 Derivation of the PDF equations

Fourier transform of F (Q) gives a quantity closely related to the radial distribution function

(RDF), R(r), Egami and Billinge [2012]. Note that since F (Q) is an odd function by defi-

nition, its Fourier transform reduces to the sine transform over the positive axis. Thus we
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have

f̂(r) =
2

π

∫ ∞
0

F (Q) sin(Qr)dQ (4.8)

=
2

πN〈b〉2
∑
i 6=j

b∗jbi

∫ ∞
0

sinQrij
rij

sin(Qr)dQ (4.9)

=
2

N〈b〉2
∑
i 6=j

b∗jbi

rij
[δ(r − rij)− δ(r + rij)] (4.10)

=
2

rN〈b〉2
∑
i 6=j

b∗jbi [δ(r − rij)− δ(r + rij)] , (4.11)

which, if we restrict ourself to the physically meaningful positive axis, equals to

f̂(r) =
2

rN〈b〉2
∑
i 6=j

b∗jbiδ(r − rij). (4.12)

Therefore we see that f̂(r) displays peaks only at distances that corresponds to the separation

between two atoms within the material, and therefore establishes a direct relation between

the measured x-ray spectrum and the actual atomic arrangement of the sample.

f̂(r) is related to the RDF and the atomic density, ρ(r), via

f̂(r) =
R(r)

r
= 4πrρ(r). (4.13)

The physics of the RDF can also be appreciated from the following integral Egami and

Billinge [2012]; Frandsen [2016]∫ b

a

R(r)dr =

∫ b

a

r
1

rNb2

∑
i 6=j

b2δ (r − rij) dr (4.14)

=
1

N

∫ b

a

∑
i 6=j

δ (r − rij) dr (4.15)

=
1

N

∑
i

∑
j⊂shell i

1 (4.16)

=
NNab

N
(4.17)

= Nab. (4.18)

124



CHAPTER 4. THE PAIR DISTRIBUTION FUNCTION TECHNIQUE

Here Nab stands for the number of atomic pairs per atom with pair distance equal to or

shorter than the range [a,b]. Equation 4.14 shows that integrating the RDF over any given

positive range of [a, b] gives the total number of atomic pairs within the shell-shaped volume

around the center, with inner radius of a and outer radius of b.

Above we derived the expression for f̂(r) by assuming that the integral over Q reaches its

lower limit of 0 and an upper limit of ∞. In reality, however, the scattering intensity is

measured down to some finite value, Qmin, instead of 0. Namely the low-Q signal is lost due

to the inaccessibility of small angle scattering. Considering this situation, an expression for

the experimentally measured PDF can be written as

f̂(r)exp =
2

π

∫ ∞
Qmin

F (Q) sin(Qr)dQ (4.19)

=
2

π

∫ ∞
0

F (Q) sin(Qr)dQ− 2

π

∫ Qmin

0

F (Q) sin(Qr)dQ (4.20)

= 4πrρ(r)− 2

π

∫ Qmin

0

F (Q) sin(Qr)dQ. (4.21)

The integral in Equation 4.21 represents the small angle forward scattering signal that is

not detected during an experiment. As shown in Farrow and Billinge [2009], this integral

evaluates to

2

π

∫ Qmin

0

F (Q) sin(Qr)dQ = 4πrρ0γ0(r), (4.22)

where γ0(r) is the angular-averaged autocorrelation function, γ0(r), of the shape function,

s(r) Farrow and Billinge [2009]

γ0(r) =
1

V

∫
s
(
r
′
)
s
(
r
′
+ r
)
dr
′
, (4.23)

γ0(r) = γ0(r). (4.24)
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When the crystallite size is large enough so that the approximation γ0(r) ' 1 is a good one,

we get the simplified expression of f̂(r)exp and name is as G(r)

G(r) = 4πr (ρ(r)− ρ0) . (4.25)

Replacing ρ0 with ρ0γ0(r) in Equation 4.25 gives the general expression of the experimental

PDF. As has been studied in Farrow and Billinge [2009]; Gilbert [2008], the above derivation

assumed that the particles have no preferred orientation in space. The analytical expression

of the shape function for many nano materials can be calculated exactly Guinier [1956];

Warren [1969]; James [1962]; Korsunskiy and Neder [2005] which facilitates the modeling of

the measured PDF. This funtionality has been modified and implemented in PDFgui Farrow

et al. [2007] and is used successfully in modeling the PDF from CdSe nanocrystals Farrow

et al. [2010]

Alongside the lower limit of accessible momentum, there is also an upper limit, Qmax, due to

finite size of the detector. This upper limit results in artificial wavy features (usually called

the ’termination ripples’) in all r ranges of the converted PDF, and thus limits the real space

resolution to π/Qmax. The experimental limit on the maximum momentum transfer, Qmax, is

usually around 25 Å−1 for synchrotron x-ray measurements, and around 35 Å−1 for neutron

measurements at a spallation source Frandsen [2016]. For more discussion on this, we refer

the reader to Egami and Billinge [2012].

4.2.2 The dynamic PDF

4.2.2.1 From atomic PDF to dynamic PDF

The atomic PDF provides an excellent view of the local atomic arrangement of the sample.

Moreover, since in an x-ray PDF experiments the time scale of the light-matter interaction
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process turns out to be much shorter than the time scale of the dynamics of the lattice, the

atomic structure during the light-matter interaction process can be regarded as effectively

unaltered. Therefore, the atomic PDF data extracted from such x-ray scattering intensity

reflects the average of instantaneous snapshots of the atomic structure. Thus the atomic

PDF is also referred to as the ’instantaneous PDF’ Egami and Billinge [2012].

The instantaneous atomic PDF is a special case of a form of time dependent PDF, G(r, t),

with time variable set to origin, t = 0. The concept and expression for G(r, t) is first worked

out by Van Hone in 1954, and was since then referred to as the Van Hove function Van Hove

[1954]. As a generalized form of the PDF, the Van Hove function G(r, t) describes the

temporal evolution of the pair-wise correlations of the atomic density, and is thus a reflection

of the underlying lattice dynamics of the material. If watched as a movie, G(r, t) should reveal

the evolution of the average atomic structure, with certain range and resolution in time.

On the other hand, as a time domain function, the Van Hove function itself can be very

intuitive, but also only for rather simple circumstances. In the situation in which there’s

one lattice/local phonon in the material, then in principle the Van Hone function would

appear sinusoidal-like, revealing the simple harmonic vibration of the atoms. It can appear

intuitive even at the presence of two or three phonons. In most real cases, however, there are

usually an abundance of active phonon modes present at the same time, and the dynamics

of individual atoms can be highly irregular. In such cases, tracing the atomic arrangement

in real time would give us very little usable information.

For such complex motion of the atoms, it is natural to switch off from time to frequency

space and characterize the motion with its frequency composition. This naturally brings us

to the concept of dynamic pair distribution function (dynamic PDF), which is computed by

Fourier transforming over the time/frequency axis of the Van Hove function. It is thus often
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expressed as G(r, ω), in which ω is the frequency variable. As will be discussed in detail in a

separate chapter below, the dynamic PDF in principle allows us to specify the contribution

to the atomic PDF from the lattice dynamics with different frequencies.

4.2.2.2 Inelastic scattering experiment and dynamic PDF

As the atomic PDF is measured from the elastic scattering experiments, the dynamic PDF is

associated with the energy-resolved inelastic scattering experiments, at either a synchrotron

or a neutron source. Here we briefly introduce the principle and setups of the inelastic

experiment. The relation between the measured scattering quantity with the dynamic PDF

is explained explicitly in the subsequent section.

An inelastic scattering experiment is able to measure the scattering intensity while tracing the

energy loss during the scattering process. The inelastic scattering experiment is most natural

at a neutron source, as the energy of the incoming neutron turns out to have comparable

range as that of the lattice excitations (i.e. phonons) in solids. With the help of a triple-axis

spectrometer, which contains a monochromator, the sample and an analyzer placed on a

goniometer, the experimental condition can be readily tuned, for example the energy and

direction of the incident and scattered beam, as well as the orientation of the sample Egami

and Billinge [2012].

A mechanical chopper is used to create monochromatic beam at a pulsed neutron source.

Specifically, the chopper works by changing the time of opening to select the neutron with

certain incident energy, and by changing its speed of rotation to allow only neutrons with

energy within certain energy band (and thus within certain range in speed) to pass through

it Egami and Billinge [2012]. Therefore, the energy resolution is fundamentally limited by

the speed of the chopper, and is directly proportional to the ratio of the rotation speed and
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the speed of the incident neutron. For an illustration of the principle of the chopper, see

e.g.Ch.9 in Bacon [1975].

In a scattering experiment, the energy and momentum transfer is expressed as

~ω = ~ωinitial − ~ωfinal, (4.26)

Q = kinitial − kfinal, (4.27)

where ω and k is the energy and momentum transfer, ωinitial/final and kinitial/final are the energy

and momentum of the incoming/scattered particle. If the particle is a neutron, the we have,

according to the kinetic energy-momentum relation of the particles,

~ω =
~2

2m

(
k2

initial − k2
final

)
. (4.28)

Here m is the mass of neutron. For x-rays, the energy-momentum relation is given by the

dispersion relation of electromagnetic wave in vacuum, which then gives

~ω = ~c (kinitial − kfinal) . (4.29)

The energy loss of the incoming particle during its interaction with the sample is used

to create various excitations in the sample, including lattice/local phonons or spin waves.

Furthermore, the quantity that is being measured in an inelastic scattering experiment is

the inelastic scattering intensity, I(Q, ω), which can be transformed to obtain the inelas-

tic structure function, S(Q, ω). I(Q, ω) and S(Q, ω) has their direct correspondence with

I(Q) and S(Q) discussed in the previous section: the latter can be obtained by a simple

energy-integration of the former. In other words, I(Q, ω) and S(Q, ω) reveals information

about the scattering process contributed by different excitation conditions in the material.

Furthermore, as can be measured directly from experiment, S(Q, ω) is related to the time-

dependent scattering function (usually called the intermediate scattering function Egami and
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Billinge [2012]), S(Q, t), via Fourier transform, and that for S(Q, t) a direct generalization

from S(Q) is readily available.

The concept and foundations of the dynamic pair distribution function (dynamic PDF) was

formulated in the seminal papers by Carpenter and Pelizzari Carpenter [1967]; Carpenter and

Pelizzari [1975b,a], in which the mathematical expressions of the orientation-averaged struc-

ture function was evaluated explicitly. The dynamic PDF was first computed from inelastic

neutron scattering data of amorphous Boron and SiO2 by Arai and Hannon Arai et al. [1994,

1992, 1995]; Hannon et al. [1992, 1995], and was used to analyze the dynamic lattice distor-

tions in the high temperature superconductors by Egami et al. [1995, 1996a,b]. Following

earlier works of Debye [1912]; Beni and Platzman [1976]; Bohmer and Rabe [1979]; Sevil-

lano et al. [1979], Jeong et al. [2003] wrote down the expression of the (energy-integrated)

mean-square atomic pair displacement in the atomic PDF due to correlated thermal mo-

tion. The dynamic PDF method was used to analyze the local structural distortions of

relaxor ferroelectric material suggesting the dynamic nature of the structural distortion ob-

served by other techniques Dmowski et al. [2008]. In a theoretical study by McQueeney, the

mathematical expression of the dynamic PDF based on the orientationally-averaged form

of the structure functions have been worked out, in the single-phonon approximation, and

analyzed in great detail McQueeney [1998]. The effects of the transverse and longitudinal

phonon on the lattice distortion and the dynamic PDF was fully examined using this ap-

proximate model. The proposed dynamic PDF was then calculated in comparison with the

experimentally measured data on polycrystalline Nickel with good agreement.

Since the lattice dynamic displacement is directly related to the width of the atomic PDF Jeong

et al. [1999], efforts have been made to extract the dynamic properties of the lattice from

the atomic PDF. For example, it was shown that the phonon dispersion of Nickel can be
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extracted by fitting the atomic PDF with a model that explicitly includes the dynamic prop-

erties of the lattice Dimitrov et al. [1999]. Meanwhile, in a separate study by Reichardt and

Pintschovius [2001], drastically different phonon dispersions were used in the refinement of

the computed PDFs of Nb and CaF2. And the results shows that the atomic PDF can be

rather insensitive to the details of the phonon dispersion. Thus the dynamic PDF could be

essential for the analysis of local dynamic distortions of the lattice.

Below we follow the derivations from Egami and Billinge [2012]; Lovesey [1986] and lay down

the relation between the scattering quantity and the dynamic PDF.

4.2.2.3 Derivation of the dynamic PDF equations

To derive the equation for the dynamic PDF, we first introduce the time-dependent form of

the structure function, following the notations in Egami and Billinge [2012],

S(Q, t) =
1

N〈f〉2
∑
i,j

f ∗j fi

〈〈
eiQ·(ri(0)−rj(t))

〉〉
. (4.30)

The brackets stands for ensemble average. Since we’re taking into account the lattice dy-

namics explicitly, the atomic position vectors, ri, are now time-dependent. It is apparent

that, if we fix the time variable t in Equation 4.30 to t = 0, it recovers the expression for

the regular structure function S(Q) of the atomic PDF. Both the structure function and the

intermediate scattering function contains information about the atomic arrangement of the

system at a particular time t. The relation between the intermediate function and the struc-

ture function can be clarified by introducing the scattering amplitude Egami and Billinge

[2012]. If we define the scattering amplitude at a given time t, ψ(t), as in Equation 4.31,

then the structure function at time t and the intermediate scattering function can be written

as a function of ψ as in Equation 4.32 and Equation 4.33, respectively Egami and Billinge
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[2012]:

ψ(Q) =
1

〈f〉
∑
i

fie
iQ·Ri(t), (4.31)

S(t) = ψ∗(t)ψ(t) = ψ2(t), (4.32)

S(Q, t) = ψ∗(t)ψ(0). (4.33)

In other words, the scattering function S(t) is the autocorrelation of the atomic locations at

time T = t, and the intermediate function S(Q, t) is the correlation function between the

atomic location at time T = 0 and at T = t.

To simplify the expression of S(Q, t), we write ri(t) as ri(t) = 〈〈ri〉〉+ ui(t). Replacing this

in Equation 4.30 and expand the complex exponential, S(Q, ω) can be expressed as

S(Q, ω) = S0(Q, ω) + S1(Q, ω), (4.34)

with

S0(Q, ω) =
1

N〈f〉2
∑
i,j

f ∗j fie
iQ·(〈〈ri〉〉−〈〈rj〉〉)δ(ω). (4.35)

Here the dirac delta function δ(ω) has spectral weight only at ω = 0, and this means that

S0(Q, ω) is the elastic (and also leading) component of the total structure function. The

other terms in the expansion can be evaluated in a similar fashion.

From a physics perspective, an elastic scattering process means that there’s no net energy

transfer between the incoming particle and the sample, and thus no lattice phonon is excited

during the particle-matter interaction. Since the phonons excited by the incoming particle

are the only ones that produces atomic motion that is coherent with the scattering particle,

lack of these phonon means in the view of the incoming particle the atoms in the sample only

exhibit incoherent thermal motion (uncorrelated motion). Correspondingly, the measured

elastic scattering function S(Q,ω = 0) is a reflection of the atomic arrangement under
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such uncorrelated motion. It is also worth emphasizing the important difference between

correlation and coherence: here correlation is used to describe the correlated collective motion

of the atoms (i.e. lattice/local phonons), which exists even without the material being excited

by the incoming particle. On the other hand, coherence describe the correlation between the

phase of the motion of the atoms and of the particle. On the other hand, for S(Q,ω 6= 0,

it represents the result of the scattering of a particle by an atomic lattice with a correlated

motion that is coherent with the motion of the particle. It thus reveals information about the

correlated atomic motion through the corresponding atomic distribution in such condition.

This and other related topics will be discussed in greater detail in the dynamic PDF chapter.

The intermediate scattering function S(Q, t) is related to the dynamic structure factor

S(Q, ω) and the atomic structure function S(Q) via Fourier transform:

S(Q, ω) =

∫
S(Q, t)eiωtdt, (4.36)

S(Q) = S(Q, t = 0) =

∫
S(Q, ω)eiω·0dω =

∫
S(Q, ω)dω. (4.37)

Notably, since in the above formalism the time dependence only exist in the atomic coordi-

nate ri(t), it means that here we focus on the contribution of the lattice excitations to the

scattering process and ignore other such as electronic excitations. Moreover, it is clear from

Equation 4.36 that the instantaneous structure function S(Q, t = 0) is simply an energy-

integrated S(Q, ω), meaning that it contains contribution from lattice vibrations at each

frequency acting at the same time (no phase delay in time).

With the expression of the dynamic structure function, the dynamic PDF can be readily

evaluated by Fourier transforming it over space Egami and Billinge [2012]; Dmowski et al.
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[2008]; Egami and Dmowski [2012]

ρ0g(r, ω) =

∫
S(Q, ω)eiQ·rdQ (4.38)

=
1

N〈f〉2
∑
i,j

f ∗j fi

〈〈∫
δ (r− [ri(0)− rj(t)]) e

iωtdt

〉〉
. (4.39)

As a direct Fourier transform of the dynamic structure function, the dynamic PDF g(r, ω)

describes the density distribution of the atoms at a particular energy transfer ω and a distance

r Egami and Billinge [2012].

If the results can be validated, the dynamic PDF is particularly sensitive to local dynamics

of the atoms, and has been applied to various materials like Ni and relaxor ferroelectric

materials Dmowski et al. [2008]; Egami and Dmowski [2012]. For example for polycrystalline

Nickel, the dynamic PDF revealed the local phonon mode right at the energy where the

phonon dispersion becomes flat, namely at the Van Hone singularity of the material observed

from Raman spectroscopy. In the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3, a strong peak

shows up at 2.4 Å while another peak at 3.4 Å disappears, both at around 15 meV. These

changes are found to be originating from the same atomic displacement, which is the off-

centering of the Pb atom against the Mg/Bn sublattice Dmowski et al. [2008]. This will be

studied in greater detail in the later chapter on dynamic PDF.

4.2.3 The two-dimensional PDF

The problem of 2 dimension pair distribution function (2D PDF) has been gradually sketched

out since the 90s, through a series of analytical and experimental work Yan et al. [1992]; He

et al. [1993]; Yan and Egami [1993]. As one of the subjects of this thesis is to re-discover

the formalism of 2D PDF in greater detail, and to explore it in a broader context of the
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long-standing texture problem, we leave these progressive works for a separate chapter, and

only briefly introduce the subject in this section.

4.2.3.1 Overview of the 2D PDF method for textured material

Polycrystalline thin films have a variety of applications in catalysis and electric, magnetic,

photonic, and chemical devices. For example, polycrystalline and amorphous semiconductor

films are key elements in many state of the art thin film transistors Sze [2013]; Nomura et al.

[2004, 2006]; Fortunato et al. [2012]; Dimitrakopoulos and Mascaro [2001] and highly-efficient

solar cells Wu [2004]; Contreras et al. [1999]; Chopra et al. [2004]; O’Regan and Grätzel

[1991]; Chopra and Das [1983]. Polycrystalline films are also used as media for magnetic

storage as well as for thermal sensors Sze [1994], and are critical catalysts for achieving high

performance in polymer electrolyte fuel cells Wilson and Gottesfeld [1992b,a].

Knowledge about the atomic-scale structures of these films is critical for understanding their

properties. There are a number of powerful methods for solving the structure of single

crystalline and epitaxial thin films, for example atomic force microscopy (AFM) Morita

[2015], transmission electron microscopy (TEM) Reimer [2008]; Williams [2009]; Bravman

and Sinclair [1984], coherent Bragg rod analysis (COBRA) Yacoby et al. [2002]; Eom et al.

[1992] and x-ray standing wave analysis Cowan et al. [1980]. However, the options are fewer

when the films are polycrystalline or nanocrystalline and we need novel techniques.

As discussed above, the atomic pair distribution function (PDF) analysis has been shown

to be an important technique for determining the local atomic arrangement of nanomateri-

als Egami and Billinge [2012]. PDF studies have led to a breakthrough in our understanding

of materials structure and reactions in materials chemistry Billinge and Levin [2007]. As a

recent development, the PDF analysis has been successfully applied to both amorphous and
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polycrystalline thin films Jensen et al. [2015]; Shyam et al. [2016]; Nakamura et al. [2017];

Wood et al. [2017], and have illustrated how nanoparticle structure can help to understand

the film crystallization process.

However, this thin-film PDF (tfPDF) technique requires the sample to be isotropic, and

thus is not suitable for the analysis of highly textured films. Meanwhile, directed by the

growth process Thompson [1990], in many cases these films have a sharp texture with one

zone axis perpendicular to the film but the other axes randomly distributed in the plane of

the film Thompson [2000]; Brezesinski et al. [2010]. The texture of polycrystalline films can

have a significant effect on their properties Dimos et al. [1988]; Thompson [2000]; Kulkarni

et al. [1999]; Takenaka and Sakata [1980], and understanding their local structure can be a

crucial step to demystify these properties.

4.2.3.2 The 2D PDF equation

The 2D PDF equations is first derived in an earlier work He et al. [1993]. Here we summarize

their results and write down the expression for the 2D PDF. We start with the general

expression of 3D PDF

g(r) = ρ0 +
1

2π3

∫
[S(Q)− 1]eiQ·r, (4.40)

which after spherical averaging gives the regular atomic PDF introduced in previous sections.

On the other hand, in case the sample is composed of crystallites with orientations that are,

instead of spherically homogeneously, aligned with a known axis but are randomly oriented

around the axis, then the averaging over crystallite orientation gives, instead of atomic PDF,

the 2D PDF. Specifically, we have

g(R, z) = ρ0 +
1

(2π)2

∫ ∞
0

∫ ∞
−∞

QR[S(QR, Qz)− 1]J0(QRR)eiQzzdQzdQR, (4.41)
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where J0(x) is the zeroth order cylindrical Bessel function. R and is the in-plane (xy)

component of r and QR is the corresponding reciprocal vector. Qz is the out of plane

(z axis) component of Q. S(QR, Qz) is simply the structure function of the cylindrically

symmetric material, with two independent variables. Fourier transforming Equation 4.41

along the z axis, we have

g(R,Qz) =

∫
g(R, z)e−iQzzdz (4.42)

= ρ0 +
1

2π

∫ ∞
0

QR[S(QR, Qz)− 1]J0(QRR)dQR. (4.43)

Equation 4.43 gives the general expression for the 2D PDF.

Intuitively, the PDF in 2 dimensions, g(R, z), describes the atomic pair distribution within

the atomic plane located at z. The difference between the g(r) and g(R, z) is that while

g(r) gives the atomic pair distribution between the origin and the atoms within the spherical

shell of radius r around the origin, g(R, z) gives the pair distribution within the atomic plane

located at z along the cylinder (z) axis. Thus g(R, z) offers a direct and convenient view of

the in-plane atomic pair distribution, and is particularly informative when applied to layered

material.

On the other hand, the 2D PDF g(R,Qz) is given by Fourier transforming g(R, z) along

the z axis. Thus g(R,Qz) is more useful in describing the fluctuation of the in-plane pair

distribution along the z axis (of e.g. layered material). As a special case, g(R,Qz = 0) give

the PDF that is a linear superposition of the in-plane PDFs. Set Qz = 0 in Equation 5.61,

we have

g(R,Qz = 0) =

∫
g(R, z)e−i0·zdz =

∫
g(R, z)dz. (4.44)
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4.2.3.3 Applications of the 2D PDF

The unique combination of variables from both real and reciprocal space in the 2D PDF is

reminiscent of that of the dynamic PDF, where the real space variable r and the reciprocal

space variable ω coexists in the function. This special quality of the 2D PDF makes it an ideal

probe for materials whose in-plane structural features are highly local and aperiodic while

the out-of-plane structure is highly periodic (just as the dynamic PDF, where it describes

the highly periodic temporal dynamics in its reciprocal, a.k.a. frequency space, and focus

on the local structure by preserving the real space spatial variable r). The 2D PDF is also

suitable for layered structure, where the in-plane atomic arrangement tends to be densely

packed while the atomic layers are well-separated.

The 2D PDF method has been proposed and applied successfully to the Al-Cu-Co decagonal

quasicrystal He et al. [1993]. The 2D PDF refinement using a proposed lattice model agrees

well with the experimental data with different Qz values. Meanwhile, despite these promising

efforts, the formalism as well as the experimental measurement of the 2D PDF still require

further effort, which is one subject of this thesis and will be presented in a separate chapter.

4.3 Aspects of a PDF experiment

4.3.1 X-ray/PDF experiment at Synchrotron

Synchrotron has been one of the ideal sources of x-rays used for PDF studies of complex

materials. Synchtron x-rays are usually obtained at large scale user facilities such as particle

accelerators, and can be accessed by researchers by writing proposals for their measurements.

A synchrotron is able to produce intense x-ray beams with all colors that can be used in white-
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beam measurements or, using a monochromator, as a sources for monochromatic x-rays. On

the other hand, the flux of the x-rays at certain energies is another factor that influences its

potential application. This depends on multiple factors, including the characteristic energy

of operation of the synchrotron as well as other details of the source and optics at the

beamline. High flux of the synchrotron x-rays also allows quick build up of count number,

thus enabling rapid collection of high quality PDF data. For example, for a moderately

strong scatterer, a diffraction pattern good enough for Fourier transform and PDF analysis

can be obtained within a few seconds Frandsen [2016]. Books and monographs are available

for a more comprehensive survey of the background information and latest development of

the synchrotron sources for scientific research Willmott [2011]; Duke [2009]; Als-Nielsen and

McMorrow [2011]

A large number of synchrotron x-ray sources have been established around the world. Among

these sources, only those with an electron energy of the order or greater than 2.5 GeV are

suitable for PDF measurements on crystalline materials. A number of third generation syn-

chrotron sources such as the NSLS-II (Brookhaven National Laboratory) and the Advanced

Photon Source (APS, Argonne National Laboratory), feature x-rays with very high luminos-

ity and intensity at high x-ray energies. With the aid of the highly penetrating x-ray beams

at these advanced sources, many scattering and PDF experiments that have been considered

impossible have been successfully carried out.

For historical and practical reasons, PDF experiments used to be a rather time-consuming

and difficult process to carry out. The data processing and analysis also require efforts and

practices. Fortunately, the development of the new RAPDF measurement method Chupas et

al. [2003] has greatly simplified and accelerated the PDF measurement and thus promoting

its application in various aspects of research, for example in materials science and physics.
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In a typical RAPDF measurement, a monochromator is used to select a wavelength that

is in general optimal for the present experiment. On the other hand, since for the same

scattering peak, the Bragg scattering angle is smaller if the wavelength of the incoming

x-ray is smaller (or its frequency higher), the detector would be able to collect scattering

from a larger momentum range (i.e. Qmax) if the x-ray wavelength is smaller. Since the

PDF technique relies on large enough Qmax value to obtain reasonable data after the Fourier

transform, hard x-rays with wavelengths as short as 0.2 Å are usually used. A squared 2D

area detector is often used to collect the scattered x-rays. It is usually placed perpendicular

to the beam, with a distance to the sample being optimized for different type of experiments.

For example, some might prefer to have a better resolution in the momentum space, and

this can be realized by moving the detector further away from the sample and thus having

the scattering peaks fall on a larger area on the detector. On the other hand, the detector is

placed closer to the sample in order to cover a larger solid angle and thus collect scattered

light with a larger momentum (and thus larger scattering angle) Egami and Billinge [2012].

In a PDF experiment, the sample is usually pill-shaped, or mounted in a capillary. The

pill-shaped sample usually involves nano particles and/or polycrystalline thin films, and

capillary can be used to sustain samples in a powder form. The use of capillary makes some

samples easier to handle during the experiment, and it also produces high quality data that

are indistinguishable from one produced without the capillary. Furthermore, if the axis along

which the capillary was mounted can spin, via for example a mechanical motor, during the

measurement, then this would help to increase the effective homogeneity of the sample being

measured. Specifically, if the collection time is much longer than the spinning period, then

the data would be an integration of the scattering pattern from the sample measured at

every rotation angle with nearly equal exposure time for each angle. Spinning with capillary

has proved to have a larger effect on the powder homogeneity and is ideal to apply if the
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data from the un-spinning sample is decorated with spots from single-crystalline domains

with preferred orientations (so-called texture) Egami and Billinge [2012]. Before or after the

sample measurement, x-ray spectrum of an empty capillary was measured separately and

properly subtracted from the sample signal.

4.3.2 PDF data analysis

The analysis procedure of the PDF data involves three steps. The first step is data reduc-

tion, in which the raw scattering data collected from the detector, usually in the form of a

.tiff image file, is processed by standard image processing protocols and then azimuthally

integrated to obtain the x-ray spectrum as a function of momentum transfer, namely I(Q).

The second step is data conversion, in which the scattering intensity I(Q) undergoes proper

background subtraction and is converted to the atomic PDF via compute the intermediate

quantities such as the structure function S(Q) and F (Q) step by step. The third and ulti-

mate step in PDF data analysis is to extract information from the experimental PDF. This

is done by doing fitting to the experimental PDF using proper established structural models.

Excellent software tools, for example the xPDFsuite, have been developed and extended to

cover every step in the data analysis Farrow et al. [2007]; Qiu et al. [2004]; Peterson et al.

[2000]; Juhás et al. [2013]; Yang et al. [2015].

Some details in the data analysis deserves a bit more discussion here. For example, the

Fourier transform from S(Q) to G(r) by definition involves an integral with infinity as upper

limit. This is never the case in reality, in which the data measured is bound in a finite

Q range, leaving behind errors such as the termination ripples in the PDF. Due to relative

smoothness of the small Q component of S(Q), the lower momentum cutoff usually have little

influence on the essential structural features revealed by the converted PDF. The effects of
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the high-Q cutoff, the presence of the termination ripple, can be reduced by various artificial

protocol. From the mathematical perspective, the termination ripple comes in primarily

because the sharpness of the S(Q) spectrum at the upper cutoff momentum. This, after

Fourier transform, results in a distinct signal with exactly the cutoff frequency. In the

computation of PDF from the structure function, the upper limit of the scattering vector Q

in S(Q), usually called Qmax, is usually chosen at the value beyond which the signal-to-noise

ratio becomes unacceptable. The spiky noises in the high-Q regime need to be excluded to

avoid any spurious small features in the converted PDF Egami and Billinge [2012].

The modeling of the PDF data includes choosing a proper structural model, a set of physical

parameters as initial parameter, and a set of conditions as constraints to the parameters

during the refinement. These aspects have all been developed and implemented in the

PDF analysis software PDFgui Farrow et al. [2007], a multi-functional graphic user interface

(GUI) for PDF data analysis. In PDFgui the user can create an atomic structure by either

specifying the atomic positions manually, or by importing a crystallographic information

file (cif) file of the material available, for example, from online databases. After specifying

the fixed and variable parameters, a PDF is computed from the structural model, which

is fitted to the experimental PDF by refining the variable parameters with least-squares

minimization. Typical parameters include atomic positions, atomic displacements due to

thermal motion, etc. The set of structural parameters which gives a PDF that is close

enough to the experimental PDF give an estimation of the real structure of the measured

sample. In addition to the PDFgui, the SrFit program from the Diffpy-CMI suite Juhás et al.

[2015] offers extended functionality in defining the structure and performing the refinement.
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Chapter 5

Texture analysis in the PDF and the

2-dimensional pair distribution

function method

The 2-dimensional pair distribution function (PDF) is introduced as a convenient approxi-

mate approach for extracting quantitative structural information from PDFs measured from

fiber textured thin films using the thin-film PDF method at normal incidence. We formulate

the 2D PDF theory explicitly and show the approximation, demonstrating the approach on

data from a platinum nanoparticle thin film on a fused silica substrate. The simulated 2D

PDF fits well to the dominant peaks in the experimental PDF. We describe open-software

that is available for carrying out this procedure.
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5.1 Introduction

Here we explore a straightforward extension of the tfPDF approach with the hope that it

yields accurate quantitative structural information from highly mono-axis textured thin films.

The approach is based on the previously established 2 dimensional pair distribution function

(2D PDF) method He et al. [1993]. First in Sec. ?? we rederive the 2D PDF theory, since

we are not aware of a full derivation anywhere in the literature. In Sec. 5.4 We show that for

the case of a mono-axis textured thin polycrystalline film measured in normal incidence, the

signal approximates closely to the 2D PDF signal with Qz = 0. In Sec. 5.5, we test how well

this approximation works in practice by applying it to a polycrystalline platinum thin film

on a fused-silica substrate, and show that the 2D PDF well explains the observed diffraction

data. Finally, we describe software that implements this method in Sec. 5.6.

5.2 Texture, the orientation distribution function (ODF),

and the total scattering structure function

Here we develop the total scattering structure function, S(Q) for the case of a textured

powder.

As a start we write down the full 3D structure function Egami and Billinge [2012], S(Q),

which may be obtained from measured scattering intensities,

S(Q) = 1 +
1

N〈f〉2
∑
i

∑
j>i

f ∗i (Q)fj(Q)eiQ·rij (5.1)

= 1 +
1

N〈f〉2
∑
i 6=j

f ∗i (Q)fj(Q)eiQ·rij , (5.2)
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where N is the number of atoms in the (illuminated part of the) sample and fj(Q) is the

atomic form factor of the ith atom. The sums over i and j run over every atom in the sample

in a way that avoids double-counting, where Eq. 5.2 serves to define
∑

i 6=j. Finally,

rij = rj − ri, (5.3)

where ri is the vector from the origin of the sample reference frame to the ith atom.

This familiar function is called the structure function because it depends on the structure

of the sample. It is also accessible in a scattering experiment as it is related to the coherent

scattered intensity of x-rays, neutrons or electrons from the sample Egami and Billinge [2012].

It depends on Q but not on the orientation of the sample. It is interesting to investigate how

this can be possible since the scattered intensity does depend on the sample orientation in a

real experiment. The easiest way to think about this is that we assume a reference frame on

the sample (for a crystal this will likely be defined by the crystallographic unit cell) and we

vary Q in terms of magnitude and direction to go from the origin of this frame to every voxel

in turn in the sample-reference frame, and we measure the normalized scattered intensity

at each point. In a real experiment it is not possible to place Q into every voxel in the

sample space without reorienting the sample, so from a practical point of view the scattered

intensity is measured for the sample at different orientations in the laboratory reference

frame, but each measurement is mapped back to the sample reference frame to yield S(Q).

To sample the full reciprocal space in an experiment with a 2D detector it is possible to

rotate the sample around two mutually perpendicular axes that are both perpendicular to

the incident beam direction. For brevity we will refer to this as the orthogonal axes rotation

(OAR) approach. For quantitatively accurate intensities it is also necessary to normalize

each measured point by the incident counts. In this way, the structure function, S(Q) may

be obtained from any sample with any degree of anisotropy. Finally, if desired, Eq. 5.1
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may be Fourier transformed to obtain a real-space 3D PDF according to Egami and Billinge

[2012]

G(r) =
1

(2π)3

∫
[S(Q)− 1] eiQ·rdQ. (5.4)

We are interested in the particular case where we have a sample that is polycrystalline but

has some texture, i.e., preferred orientations of crystallites, and we seek to understand how

scattered intensities from such a sample may be propagated through the Fourier transform

to obtain a scientifically relevant real-space pair correlation function, and in principle, how

to model that function to obtain information about the texture.

We first consider a number of special cases. If the sample is a single crystal where the aver-

age crystal structure solution is desired, two simplifications can speed up data acquisition.

Firstly, the crystallinity results in scattering being confined to small volumes of recipro-

cal space in the vicinity of reciprocal lattice points. Once the unit cell is determined, and

the UB matrix giving the orientation of the crystal on the goniometer, it is possible for

the single crystal diffractometer to reorient the crystal and detector in such a way as to

visit only the volumes of reciprocal space in the vicinity of the reciprocal lattice points and

integrate the intensity in those regions, neglecting the large regions of reciprocal space in

between. Furthermore, if the symmetry of the unit cell is known it may be possible to collect

a complete dataset by exploring only a subset of the full reciprocal-space volume, although

measuring equivalent peaks in different regions of reciprocal-space can help with corrections

for experimental artifacts such as sample self-absorption. If, as is increasingly the case, we

are interested also in diffuse scattering in the crystal, then the full reciprocal space volume

must be collected, for example, using the OAR approach. This is becoming highly feasible

these days with the use of high-energy x-rays at synchtrotron sources coupled with large area

photon counting detectors Schaub et al. [2007, 2011]; Osborn and Welberry [1990]; Welberry
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et al. [1998]; Welberry and Proffen [1998]; Proffen and Welberry [1997]and with neutron

diffraction instruments designed for this purpose Rosenkranz and Osborn [2008]; Keen et al.

[2006]; Frost et al. [2010]; Tamura et al. [2012].

If the sample is an isotropic powder with a large number of grains equally sampling all orien-

tations (a good powder average), then there is no need to rotate the sample as the scattering

from the powder itself is isotropic. In practice, samples often are spun about an axis per-

pendicular to the incident beam, especially in synchrotron experiments with small, highly

parallel, beams to improve the powder statistics and the isotropy of the measured scattering.

In powder measurements, orientational information is lost because the images taken with

the sample at different orientations are summed without storing their orientations, and a

1D function, S(Q), is measured. This results in the regular 1D PDF, G(r), when Fourier

transformed. It is assumed in such a case that there is no structural coherence between

grains and so the measured structure function is a superposition of structure functions of

identical crystallites taking all possible orientations. Mathematically and experimentally,

powder-like data can be obtained from a single crystal by rotating it about an axis parallel

to the incident beam at each orientation of the perpendicular rotation. If a 2D detector

is being used, integrating around the Debye-Scherrer rings on the detector is equivalent to

rotating the sample about the beam axis, making it somewhat straightforward to obtain a

1D PDF from a 3D PDF dataset for comparison with (or to replace) powder measurements.

Let us now consider the case where the sample is made up of two identical crystallites of

the same material that are misoriented with respect to each other, and far enough apart

that they are both in the incident beam but beyond the coherence volume of the beam.

In other words, we assume that scattering from each crystallite is incoherent and the total

observed scattering is just the linear superposition of the scattering from each crystallite
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(we will assume incoherent scattering between crystallites from hereon out). We define

Ω, as the three-vector that contains the Euler angles that define the relative orientation

of one crystallite with the other one. For convenience, and without loss of generality, we

assume the sample reference frame is the reference frame of one of the crystallites, which we

call the reference crystallite. If we measured either one of the crystallites as an individual

single crystal using the orthogonal axes rotation approach we would get the same single

crystal structure function. However, the measurement is carried out in such a way that the

signals from the two crystallites are superposed on the detector. The crystallite structure

function can be determined if we are able to separate the superposed signals from each

crystallite. For crystalline materials this separation is straightforward and this approach is

called polycrystallography and has been developed to a high level Von Dreele [2013]

This reasoning is readily extended to the case of M separable diffraction patterns from

M crystallites. In this case, as before, a unique reference frame is defined on a reference

crystallite on the sample, which we call the sample reference frame, and we define Ωm as

being the Euler angles that give the orientation of the mth crystallite with respect to this

reference frame. If Rm is the rotation matrix that rotates the sample reference frame onto

the mth crystallite reference frame, we have the following relation

Rm = R(Ωm), (5.5)

rmij = Rmrij, (5.6)

where rmij refers to the rij interatomic vector of the reference crystallite, but in the mth

crystallite at angle Ωm. We can thus write the polycrystalline sample-structure function

Sp(Q), as

Sp(Q) = 1 +
1

N〈f〉2
∑
m

∑
i 6=j

f ∗i fje
iQ·(Rmrij) (5.7)
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where for notational simplicity we have dropped the explicit Q-dependence of the atomic

form factors. The double-sum over i and j is now a sum over the interatomic vectors between

atoms in the reference crystallite. In Equation 5.6 crystallites with different orientations were

generated by rotating this reference crystallite. This is a 3D structure function, similar to

the single crystal structure function, which could be measured using the OAR method, for

example.

We now turn to a polycrystalline sample with a large number of crystallites where the

scattering from the individual crystallites are no longer separable, but the sample is still not

isotropic: a textured powder. The patterns from the individual grains strongly overlap and

multiple crystallites contribute to each region (voxel) of reciprocal space defined by the Q

resolution of our measurement. In this case we would like to convert Eq. 5.7 to a continuous

function. We define a volume element dΩ in the Euler angle space that runs from (θ, φ, ξ) to

(θ+ dθ, φ+ dφ, ξ+ dξ). We can then define the number of crystallites in the beam that have

an orientation such that their Euler angles place it in that volume element of angle-space as

D(Ω) and we call this the orientation distribution function, or ODF Bunge [1982].

Now, returning to Eq. 5.7, we would like to rewrite it in terms of a sum over all orientation

directions rather than a sum over m. If we denote the number of crystallites with orientation

Ω as n(Ω) and the total number of crystallites within the sample as n0. The total number

of atoms, N is then given by

N = N
′ · n0, (5.8)

where N
′

is the number of atoms in the reference crystallite. The sum over m then becomes∑
m

1 =
∑
Ω

n(Ω) = n0. (5.9)

Furthermore, since the crystallite with the same orientation Ω gives the same contribution

to Sp(Q), we can rewrite Sp(Q) as the summation over different crystallite orientations,
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weighted by the number of crystallites with that orientation:

Sp(Q) = 1 +
1

N〈f〉2
∑
m

∑
i 6=j

f ∗i fje
iQ·(Rmrij) (5.10)

= 1 +
1

N〈f〉2
∑
m

∑
i 6=j

fifje
iQ·(RΩmrij) (5.11)

= 1 +
1

N〈f〉2
∑
Ωd

n(Ωd)
∑
i 6=j

f ∗i fje
iQ·(RΩd

rij) (5.12)

= 1 +
1

N〈f〉2
∫
n(Ω)

∑
i 6=j

f ∗i fje
iQ·(RΩrij)dΩ. (5.13)

For crystallites oriented quasi-continuously in every orientation, n(Ω) represents the orien-

tation distribution of crystallites on a continuous orientation variable Ω. We then define

function D(Ω) = n(Ω)/n0 and rewrite Eq. 5.13 as

Sp(Q) = 1 +
1

N ′〈f〉2
∫
n(Ω)

n0

∑
i 6=j

f ∗i fje
iQ·(RΩrij)dΩ (5.14)

= 1 +
1

N ′〈f〉2
∫
D(Ω)

∑
i 6=j

f ∗i fje
iQ·(RΩrij)dΩ. (5.15)

In practice, Sp(Q) can be evaluated by exchanging the order of the summation over i and j

with the integration over Ω and evaluate the integral involving the ODF and the complex

exponential factor.

Here in Equation 5.15 the function D(Ω) has the meaning of the fraction of the crystallites

with orientation Ω among all crystallites in the sample. By definition, D(Ω) represents the

orientation distribution function of the sample. Since the number function n(Ω). It is a

sample-dependent property, not depending explicitly on sample orientation and is expressed

in the sample reference frame. Since the ODF is a probability distribution, it has the

normalization property: ∫
D(Ω)dΩ = 1 (5.16)
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In the special case that we have considered here, the sample is assumed to consist of many

identical crystallites that all have the same structure function, S
′
(Q), of the reference crys-

tallite but are oriented with respect to that crystallite by Ω. To capture this we introduce

a generalized structure function, for the “misoriented” crystallites,

S
′
(Q,Ω) = 1 +

1

N ′〈f〉2
∑
i 6=j

f ∗i fje
iQ·(RΩrij). (5.17)

We can then rewrite the polycrystalline sample structure function in terms of S
′
(Q,Ω),

taking advantage of the normalization property of the ODF in Eq. 5.33. First, we change

the order of integration and summing,

Sp(Q) = 1 +
1

N ′〈f〉2
∫
D(Ω)

∑
i 6=j

f ∗i fje
iQ·(RΩrij)dΩ (5.18)

= 1 +
1

N ′〈f〉2
∑
i 6=j

f ∗i fj

∫
D(Ω)eiQ·(RΩrij)dΩ (5.19)

= 1 +
1

N ′〈f〉2
∑
i 6=j

f ∗i fjI
D
ij (Q) (5.20)

which serves to define the integral

IDij (Q) =

∫
D(Ω)eiQ·(RΩrij)dΩ. (5.21)

Now, taking advantage of the normalization property of our ODF we can write

Sp(Q) =

∫
D(Ω)1dΩ +

∫
D(Ω)

1

N ′〈f〉2
∑
i 6=j

f ∗i fje
iQ·(RΩrij)dΩ (5.22)

=

∫
D(Ω)S

′
(Q,Ω)dΩ. (5.23)

Equation 5.23 expresses the structure function of the sample as an orientational distribution

weighted arithmetic average of the structure function of the reference crystallite.
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We note that Equation 5.23 for the case of discrete and separable crystallites may also be

rewritten in this way as

Sp(Q) = 1 +
1

N〈f〉2
∑
m

∑
i 6=j

f ∗i fje
iQ·(Rmrij) (5.24)

=
∑
m

1

n0

+
∑
m

1

N ′n0〈f〉2
∑
i 6=j

f ∗i fje
iQ·(Rmrij) (5.25)

=
1

n0

∑
m

(
1 +

1

N ′〈f〉2
∑
i 6=j

f ∗i fje
iQ·(Rmrij)

)
(5.26)

=
1

n0

∑
m

S
′
(Q,Ωm), (5.27)

Equations 5.27 and 5.23 hold when the approximation that the sample is made up of multiple

identical crystallites, or nanoparticles, that have different orientations.

We now consider how this propagates through the Fourier transform to yield a textured

polycrystalline pair correlation function, Gp(r),

Gp(r) =
1

(2π)3

∫
[Sp(Q)− 1] e−iQ·rdQ (5.28)

=

∫ [
1

(2π)3

∫
D(Ω)

(
S
′
(Q,Ω)− 1

)
dΩ

]
e−iQ·rdQ (5.29)

=

∫
D(Ω)

[
1

(2π)3

∫ (
S
′
(Q,Ω)− 1

)
e−iQ·rdQ

]
dΩ (5.30)

=

∫
D(Ω)G

′
(r,Ω)dΩ. (5.31)

Where G
′
(r,Ω) is, following the definition of PDF in Equation 5.4, the 3D PDF from of a

crystallite with orientation Ω, expressed as

G
′
(r,Ω) =

1

(2π)3

∫ (
S
′
(Q,Ω)− 1

)
e−iQ·rdQ. (5.32)

These equations serve to define the real and reciprocal-space representations of textured

polycrystalline samples. In general, Sp(Q) may be measured in the same way as we measure
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the 3D PDF of a single-crystal, for example, using the OAR method with x-rays or in a

neutron single-crystal experiment. If we know S
′
(Q, the structure function of the reference

crystallite, we can compute from it S
′
(Q,Ω) for all angles, which allows to determine D(Ω)

for our sample. We note that the derivation did not assume crystallinity of the sample, and

so it is equally applicable to polycrystalline textured nanoparticle samples and non-isotropic

amorphous samples, provided that in these samples the approximation that the local clusters

are all equivalent to each other apart from their orientation.

5.3 Reduced forms of Sp(Q) for special textures and

experiment geometries

5.3.1 Isotropic sample

In this section we consider the form of IDij (Q) =
∫
D(Ω)eiQ·(RΩrij) (Eq. 5.21) for some special

textures.

If we compute the normalization of D(Ω) in a orientation coordinate system with polar

angles, θ and φ, and the rotation angle around the polar axis, ξ, then we have∫
D(Ω)dΩ =

∫
D(Ω(θ, φ, ξ))|JΩ(θ, φ, ξ)|dθdφdξ = 1 (5.33)

where |JΩ(θ, φ, ξ)| is the determinant of the Jacobian matrix J of the orientation Ω as a

function of the angular variables. We have

|JΩ(θ, φ, ξ)| = 1

8π2
sin θ. (5.34)

For an isotropic powder sample with crystallites oriented homogeneously along every direc-

tion with equal probability, its ODF is a constant D(Ω) = D = 1/8π2, and the integral
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becomes Egami and Billinge [2012]

IDij (Q) =

∫
dΩDeiQ·(RΩrij) (5.35)

= D

∫
dΩeiQ·(RΩrij) (5.36)

=
1

8π2

∫ 2π

0

dξ

∫ 2π

0

dφ

∫ π

0

eiQrij cos θ sin θdθ (5.37)

=
sin(Qrij)

Qrij
(5.38)

It has been shown that in this case Sp(Q) reduces to the well-known Debye scattering equa-

tion for ideal powder Debye [1915]; Egami and Billinge [2012], independent of crystallite

orientation. Due to the fact that the expression ODF is independent of the crystallite orien-

tation, the calculation for this isotropic case is greatly simplified by choosing the integration

axis to be aligned with each atomic vector rij in each specific integration.

5.3.2 Single-crystalline sample

On the other hand, when all crystallites are perfectly aligned, as in a single crystal, along

Ωa, then the ODF of the sample would be a delta function at Ω = Ωa, namely D(Ω) =

δ (Ω−Ωa). The integral thus becomes

IDij (Q) =

∫
dΩδ (Ω−Ωa) e

iQ·(RΩrij) (5.39)

= eiQ·(RΩarij). (5.40)

Sp(Q) thus reduces to the structure function of a single crystal,

Sp(Q) =

∫
δ(Ω−Ωa)S

′
(Q,Ω)dΩ = S

′
(Q,Ωa). (5.41)

Note that for a single crystal sample since it only contains a single crystallite, the sample

and crystallite orientations are thus identical and can be represented by Ωa.
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Figure 5.1: Illustration of the sample orientation, Ω0 (black arrows), and crystallite orien-

tation, Ω (red arrows).

5.3.3 Thin film sample

For the thin film sample of our interest, where all the crystallites have one particular crystal

axis oriented parallel to the beam while having random orientations within the plane per-

pendicular to the beam, Ωa = (θa, φa) its ODF would consist delta functions that fix the

direction to the preferred axis, and an isotropic distribution within the plane perpendicular

to that axis. Again if we define the sample reference frame to align with the lab frame so

that (θ0, φ0) = (0, 0) is satisfied, we express the thin film ODF Dtf as:

Dtf(Ω) =

∫ 2π

0

∫ π
0

sin θdθdξ∫ 2π

0
dφ
∫ 2π

0

∫ π
0

sin θdθdξ
δ(θ − θa)δ(φ− φa) (5.42)

=
1

4π

δ(θ − θa)
sin θa

δ(φ− φa). (5.43)

Here ξ is the rotation angle within the plane. Fig. 5.1 is an illustrate of the crystallites with

random orientation.

To do a 2D PDF experiment we pick a crystallographic zone axis and place it perpendicular

to the incident x-ray beam and rotate the sample about this axis, as shown in Fig. 5.2. The

scattering is now cylindrically symmetric and, if we refer to the unique axis as the z-axis
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Figure 5.2: Geometry of the 2D PDF measurement. The sample orientation Ω0 is aligned

with the z axis.

Q can then be expressed by two scalar values, Qz and QR, where QR is the length of the

Q-vector perpendicular to the rotation axis. Without loss of generality we can pick the z-axis

to be one of the sample reference axes, and we get the 2D structure function by integrating

the sample orientation over all angles, ξ, perpendicular to the z axis.

As shown below, Sp(Q) reduces to the 2D structure function S(QR, Qz) He et al. [1993] as

we average S
′
(Q,Ω) over the ODF in Equation 5.43 :

Sp(Q) =

∫
Dtf(Ω)S

′
(Q,Ω)dΩ (5.44)

= 1 +
1

N ′〈f〉2
∑
i 6=j

f ∗i fj

∫
eiQ·(RΩrij)

1

4π2

δ(θ − θa)
sin θa

δ(φ− φa) sin θdθdφdξ (5.45)

= 1 +
1

N ′〈f〉2
∑
i 6=j

f ∗i fj

∫
eiQ·(Rθa,φa,ξrij)dξ. (5.46)
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The of the exponential factor over variable ξ reduces to the zeroth order Bessel function

J0(x): ∫
eiQ·(Rθa,φa,ξrij)dξ =

∫
ei(Qzr

z
ij+QRr

R
ij cos(ξij−ξ))dξ (5.47)

= eiQzr
z
ij

∫
eiQRr

R
ij cos ξij cos ξ+iQRr

R
ij sin ξij sin ξdξ (5.48)

= eiQzr
z
ijI0

(√(
iQRrRij

)2 (
sin2 ξij + cos2 ξij

))
(5.49)

= eiQzr
z
ijJ0

(
QRr

R
ij

)
. (5.50)

Here rzij and rRij are the parallel and perpendicular (in-plane) components of the interatomic

separation with respect to the axis of cylindrical symmetry. ξij is the angle between the

in-plane components of Q and rij Thus the integral can be written as

Sp(Q) = 1 +
1

N ′〈f〉2
∑
i 6=j

f ∗i fje
iQzrzijJ0(QRr

R
ij) (5.51)

= S(QR, Qz). (5.52)

This gives an explicitly derivation the 2D structure function S(QR, Qz) introduce in He et

al. [1993]. Furthermore, the relation between the 2D PDF, G(R,Qz) He et al. [1993], the

2D structure function, S(QR, Qz), and the 3D PDF of the sample, Gp(r), can be shown
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explicitly by calculating Gp(r) using the Sp(Q) for the textured sample:

Gp(r) =
1

(2π)3

∫
(S(Q)− 1) e−iQ·rdQ (5.53)

=
1

(2π)3

∫ (∫
S
′
(Q,Ω)Dtf(Ω)dΩ− 1

)
e−iQ·rdQ (5.54)

=
1

(2π)3

∫
(S(QR, Qz)− 1) e−iQ·rdQ (5.55)

=
1

(2π)2

∫ ∫
QR (S(QR, Qz)− 1)

(∫
e−iQ·rdξ

)
dQRdQz (5.56)

=
1

(2π)2

∫ ∫
QR (S(QR, Qz)− 1) J0(QRR)e−iQzzdQRdQz (5.57)

=
1

(2π)2

∫
G(R,Qz)e

−iQzzdQz (5.58)

= G(R, z). (5.59)

where G(R,Qz) is defined as

G(R,Qz) =

∫
QR [S(QR, Qz)− 1] J0(QRR)dQR (5.60)

=
∑
i 6=j

∫
f ∗i fj

N ′〈f〉2
QRJ0(QRr

R
ij)J0(QRR)eiQzr

z
ijdQR. (5.61)

This reproduces and gives an explicit expression to the 2D PDF G(R,Qz) introduced in He et

al. [1993]. We see thatG(R,Qz) is related to the actual PDF of the film by a fourier transform

along the z axis, the axis perpendicular to the film. The PDF of the film Gp(r,Ω0), after

azimuthal intergration, turns out to be a function of the in-plane and out-of-plane distance,

R and z, and so we can wrote it as G(R, z). For an ideal 2 dimensional film with only 1

atomic layer, G(R, z) reduces to G(r), the regular orientationally averaged PDF.
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Assuming that the atomic structure factor fj = fj(Q) was independent of Q within the range

of QR, the explicit expression for G(R,Qz) can be expressed as below:

G(R,Qz) =
∑
i 6=j

∫
f ∗i fj

N ′〈f〉2
QRJ0(QRr

R
ij)J0(QRR)eiQzr

z
ijdQR (5.62)

=
∑
i 6=j

f ∗i fje
iQzrzij

N ′〈f〉2
∫ ∞

0

QRJ0(QRr
R
ij)J0(QRR)dQR (5.63)

=
∑
i 6=j

f ∗i fje
iQzrzij

N ′R〈f〉2
δ(R− rRij). (5.64)

The above expression shows clearly that the 2D PDF G(R,Qz) will display sharp peaks at

the interactomic distance projected onto the film plane, rRij. Take the integral expression of

G(R,Qz) and set Qz = 0, it is straightforward to show that

G(R, z) =

∫ 2π

0

G(r,Ω)
1

2π

δ(θ − θa)
sin θa

δ(φ− φa)dΩ, (5.65)

G(R,Qz = 0) =

∫
G(R, z)ei0·zdz =

∫
G(R, z)dz. (5.66)

We see that G(R, z) is derived from the average of the PDF in 3 dimensions G(r) over ξ.

This also shows that G(R,Qz = 0) represents the PDF of a 2 dimensional lattice which

comes from the projection of the 3D structure along the z axis. It is shown in the next

section that the PDF experiment with normal incidence geometry for a textured thin film

sample gives a good approximated measure of G(R,Qz = 0).

Practically, G(R, z) can be experimentally sampled in the reciprocal space via the structure

function S(QR, Qz), and be partially reconstructed using the sampled reciprocal lattice vec-

tors. As is evident from an earlier work He et al. [1993], due to the highly discrete atomic

arrangement in layered material, S(QR, Qz) is only non-trivial at discrete, highly sparse

values of Qz, and it turns out that the number of experimentally accessible Qz vectors are

limited to about 3, which yields only smeared-up information after Fourier transformation

into real space. On the other hand, thanks to relatively dense atom packing within each
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layer, for each Qz, broad-ranged and continuous values of QR can be experimentally sam-

pled. Therefore to yield usable insights into the structure, only in-plane Fourier transforme

in performed on S(QR, Qz), which gives the 2D PDF G(R,Qz).

5.4 Geometry of highly textured thin film and 2D PDF

measurement

Here we demonstrate the equivalence of a completely textured film measured edge on and a

2D PDF. As will be shown below, the PDF from normal incidence experiment gives a good

approximate measurement to the 2D PDF. From scattering experiment, the 2D structure

function S(QR, Qz) is only sampled at a subset of the reciprocal lattice vector which lies

on the Ewald sphere, and this means that in GExp the Qz is no longer an independent

variable but a function of QR. Mathematically, Qz and QR should satisfy the constraint

Qz = QR tan θ, where θ is the scattering angle. The measured PDF from normal-incidence

experiment, GExp(R), can then be calculated by applying this constraint to the integral

expression for the 2D PDF:

GExp(R) = G(R,Qz = QR tan θ) (5.67)

=
∑
i 6=j

∫
f ∗i fj
N ′〈f〉

2

QRJ0(QRr
R
ij)J0(QRR)eiQR tan θrzijdQR. (5.68)

(5.69)
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Note that we’ve replaced Qz with QR tan θ. To perform the integration, tan θ need to be

expressed using QR as

θ =
1

2
arcsin

QR

K
, (5.70)

tan θ = tan

(
1

2
arcsin

QR

K

)
=

QR√
K2 −Q2

R

. (5.71)

Furthermore, for small diffraction angle θ, we could approximate tan θ and the complex

exponential factor of GExp by their Taylor series:

tan θ ≈ sin θ ≈ 1

2

QR

K
, (5.72)

eiQR tan θrzij ≈ eiQR
1
2

QR
K
rzij ≈ 1 +

1

2

iQ2
R

K
rzij −

1

8

Q4
R

K2
(rzij)

2. (5.73)

Here K = |K| is the magnitude of the momentum of the incoming x-ray. Take this approxi-

mate expression for the eQR tan(θ)rzij factor in GExp, we have

GExp(R) =
∑
i 6=j

∫
QRf

∗
i fj

N ′〈f〉2
(
eiQR tan θrzij

)
J0(QRr

R
ij)J0(QRR)dQR (5.74)

'
∑
i 6=j

∫
QRf

∗
i fj

N ′〈f〉2(2π)2

(
1 +

1

2

iQ2
R

K
rzij −

1

8

Q4
R

K2
(rzij)

2

)
J0(QRr

R
ij)J0(QRR)dQR

(5.75)

=
1

N ′〈f〉2
∑
i 6=j

∫
QRf

∗
i fjJ0(QRr

R
ij)J0(QRR)dQR + (5.76)

1

N ′〈f〉2
∫ ∑

i 6=j

f ∗i fj
1

2

iQ3
Rr

z
ij

K
J0(QRr

R
ij)J0(QRR)dQR − (5.77)

1

N ′〈f〉2
∫ ∑

i 6=j

f ∗i fj
1

8

Q5
R(rzij)

2

K2
J0(QRr

R
ij)J0(QRR)dQR (5.78)

= G(R,Qz = 0) + (5.79)

i

2KN ′〈f〉2
∑
i 6=j

rzijf
∗
i fj

∫ Qmax
R

Qmin
R

Q3
RJ0(QRr

R
ij)J0(QRR)dQR − (5.80)

1

8K2N ′〈f〉2
∑
i 6=j

(rzij)
2f ∗i fj

∫ Qmax
R

Qmin
R

Q5
RJ0(QRr

R
ij)J0(QRR)dQR. (5.81)
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In the last expression we have made explicit the upper and lower bounds of QR, Qmax
R and

Qmin
R , which are used in practice in the integration to obtain numerical value of G(R,Qz = 0).

Here the second term which is linear in rzij cancels out by properly choosing the coordi-

nate system, and therefore the dominant correction term turns out to be the even smaller

quadratic term. The cancelling out of the linear (and in fact all odd-order terms in the ex-

pansion) reflects the fact that as a measurable quantity PDF should only contain real part.

Thus we show that in principle, at least when the diffraction angle is relatively small so that

Qmax
R � K ≈ 40 Å−1, the measured 1D PDF from the textured flim, GExp(R) equals the 2D

PDF G(R,Qz = 0) of the sample up to 2nd order correction.

The behavior of the correction terms can by understood by re-arranging its form. For the

3rd term in Equation 5.81, namely the first non-zero correction term, we have the following

identity:

d4 (R · J0(QRR))

RdR4
=
d4
(

sin(QRR)
QR

)
RdR4

= Q4
RJ0(QRR). (5.82)

And the differential equation for the Bessel function

x2d
2J0

dx2
+ x

dJ0

dx
+ x2J0 = 0. (5.83)
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Thus we have

d4 (RJ0(QRR))

dR4
(5.84)

=
d3

dR3

(
d

(
J0(QRR) +R

dJ0(QRR)

dR
QR

))
(5.85)

=
d2

dR2

(
2
dJ0(QRR)

dR
+R

d2J0(QRR)

dR2

)
(5.86)

=
d2

dR2

(
dJ0(QRR)

dR
−Q4

RR
3J0(QRR)

)
(5.87)

=
d

dR

(
d2J0(QRR)

dR2
+Q4

R

[
2RJ0(QRR) +R2dJ0(QRR)

dR

])
(5.88)

=
d

dR

(
Q2
R

[
− 1

Q2
RR

dJ0(QRR)

dR
− J0(QRR)

]
+Q4

[
2RJ0(QRR) +R2dJ0(QRR)

dR

])
(5.89)

=
1

R2

dJ0(QRR)

dR
−Q2 1

R

d2J0(QRR)

d(QRR))2
+ 2Q4

RJ0(QRR) (5.90)

+ 4RQ5
R

dJ0(QRR)

dQRR
+Q6

RR
2d

2J0(QRR)

d(QRR))2
(5.91)

=
2

R2

dJ0(QRR)

dR
− 3Q4

RR
dJ0(QRR)

dR
+

(
Q2
R

R
+ 2Q4

R −Q6
RR

2

)
J0(QRR). (5.92)

Therefore in the expanded form of Equation 5.82, the first term corresponds to a differential

of the Bessel multiplied by the inverse of R, which we use to approximate the effect of the

correction term. Since the integral expression of the correction term from Equation 5.81 is
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an integration over QR, we move the differential over R out of the integration and have:

1

32K2

∑
i 6=j

(rzij)
2f ∗i fj

∫
Q5
RJ0(QRr

R
ij)J0(QRR)dQR (5.93)

=
1

32K2

∑
i 6=j

(rzij)
2f ∗i fj

∫
QRJ0(QRr

R
ij)Q

4
RJ0(QRR)dQR (5.94)

' 1

16K2

∑
i 6=j

(rzij)
2f ∗i fj

∫
QRJ0(QRr

R
ij)
dJ0(QRR)

R2dR
dQR (5.95)

=
1

16K2

∑
i 6=j

(rzij)
2

R2
f ∗i fj

d

dR

∫
QRJ0(QRr

R
ij)J0(QRR)dQR (5.96)

' 1

16K2

d

dR

∑
i 6=j

f ∗i fj

∫
QRJ0(QRr

R
ij)J0(QRR)dQR (5.97)

=
1

4K2

d

dR
G(R,Qz = 0). (5.98)

The above result shows that at each peak position in the exact 2D PDF, the effect of the

leading order correction term from Eq. 5.81 is to add a large, negative component to the low-

r side and a positive component to the high-r side of the peak. This gives an explanation

for the large, negative peak in the experimentally measured 2D PDF shown in Fig. 5.3.

Regarding the base line, from Equation 5.61 we know that the 2D PDF turns out to have

a different baseline compared with that of the 1D PDF. The experimental 1D PDF has a

baseline that is linear in r at low distance

G(R) =

∫ ∞
Qmin

Q [S(Q)− 1] sin(QR)dQ (5.99)

=
∑
i 6=j

f ∗i fj

N ′R〈f〉2
δ(R− rij)−

∫ Qmin

0

Q [S(Q)− 1] sin(QR)dQ (5.100)

'
∑
i 6=j

f ∗i fj

N ′R〈f〉2
δ(R− rij)−

[∫ Qmin

0

Q2 [S(Q)− 1] dQ

]
R. (5.101)
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On the other hand, for the experimental 2D PDF with a non-zero Qmin, we have

G(R,Qz) =

∫ ∞
Qmin

QR [S(QR, Qz)− 1] J0(QRR)dQR (5.102)

=
∑
i 6=j

f ∗i fje
iQzrzij

N ′R〈f〉2
δ(R− rRij)−

∫ Qmin

0

QR [S(QR, Qz)− 1] J0(QRR)dQR (5.103)

'
∑
i 6=j

f ∗i fje
iQzrzij

N ′R〈f〉2
δ(R− rRij)−

∫ Qmin

0

QR [S(QR, Qz)− 1] 1dQR. (5.104)

Therefore the baseline of the experimentally measured 2D PDF is expected to have a much

smaller slope compared with the atomic PDF.

In our software for calculating the 2D PDF, we have adopted a simplified form from the

exact expression. Specifically, we have

S(QR, Qz) = 1 +
1

N ′〈f〉2
∑
i 6=j

f ∗i fjJ0(QRr
R
ij)e

iQzrzij = 1 + a, (5.105)

a =
1

N ′〈f〉2
∑
i 6=j

f ∗i fjJ0(QRr
R
ij)e

iQzrzij . (5.106)

When the value of Qz is small, the imaginary part of a (and also S(QR, Qz)) is also small.

If we drop the Im(a) term, S(QR, Qz) can be simplified and approximated as

S(QR, Qz) =
√

(1 + Re(a))2 + Im(a)2 (5.107)

' 1 + Re(a) = 1 +
1

N ′〈f〉2
∑
i 6=j

f ∗i fjJ0(QRr
R
ij) cos(Qzr

z
ij), (5.108)

which has been used in our simulation of the 2D PDFs.

5.5 Application of formalism to thin film data

To solve the structure of a real sample, we applied 2D PDF analysis to textured thin film of

platinum. The results are as follows. The negative peaks in the data are from the Qz 6= 0
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Figure 5.3: Experimental PDF from a textured Platinum thin film (blue) and the 2D PDF

refinement result (red).

component, and has also been observed in a previous 2D PDF experiment He et al. [1993].

We performed least square fitting to the experimental PDF from the film, using the 2D

PDF calculator software. The results are shown in Fig. 5.4. The fit gives a lattice constant

of 3.949 Å and an Rw value of 68%. In particular, the experimental 2D PDF shows peak

structures at small distances of around 1.9 Å 3.3 Å and 4.3 Å . Comparing the simulated

1D and 2D PDF with the experimental and fitted 2D PDF, as shown in Fig. 5.3, it becomes

clear that these peaks are present only in the simulated 2D PDF with 111 direction but not

in either the simulated 1D PDF or the 2D PDF with 001 orientation, and indicates that

peaks at 1.9 Å 3.3 Å and 4.2 Å are unique to the 2D PDF. In fact the peak around 1.9 Å

represents the nearest Pt-Pt separation in the 2D lattice projected from the Platinum lattice
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Figure 5.4: Simulated 1D PDF and 2D PDFs of Platinum. The calculated 1D PDF for a

thin Platinum bulk sample (a) and calculated 2D PDF with 111 axis (b) and 001 axis (c)

and 110 (d) were presented as references for the peak position.

(FCC structure with lattice constant around 3.9 Å ) , and likewise, the peak at around

4.2 Å corresponds to the 4th neighboring distance of the same lattice. Thus the presence

of these peaks specific to 2D PDF at small distances demonstrate the effectiveness of our

proposed method of measuring the 2D PDF for textured sample. The fitting results captured

reasonably well the peaks from the measured PDF, and gives a sterographic orientation of

(0.62,0.83), which is very close to that of the 111 lattice orientation, (0.73, 0.73). While the

peaks specific to the 2D PDF are barely visible at large radial distances, the peaks common

for 1D PDF and 2D PDF are still distinguishable and is well captured in the fitting. The

fact that the position of many peaks from the 2D PDF coincides with that from the 1D PDF
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is due to alignment of the texture symmetry axis (111) to the beam direction: in this case

the 2D lattice which gives the 2D PDF comes from the projection of the 3D lattice along a

high symmetry direction of the lattice, and thus contains set of atomic separations identical

to that in the 3D lattice. This also implies the possibility that the experimental 2D PDF

may also contains considerable contribution from 1D PDF.

On the other hand, the visible deviations of the fitting from the data could be due to

the complexity of the texture, the approximation of the sample as thin film, as well as

the approximate nature of our method. For example it is reasonably to expect that the

crystallites are not perfectly aligned along the c-axis. From our x-ray measurement in Bragg-

Brentano geometry, there also exist, in addition to the strong 111 peak, a small peak at 311

direction. In addition here might be other structural inhomogeneity and agglomerations

that produces bulk-like local structure, while we’re not able to distinguish those peaks that

shows up in both 2D and 1D PDF. On the other hand, as shown in previous sections the

2D PDF itself is an approximation to the measured PDF from the textured thin film, and

this means, to a limited extent, additional deviation of the 2D PDF from refinement and the

PDF measured from experiment.

In general, these results demonstrate that the measured PDF from the textured thin film

serves as a good approximation to the 2D PDF of the sample and that our software was

able to capture the major structural features reasonably well and yields useful information

about the structure. Future improvements include using more realistic model for describing

the texture, and also incorporation multiple phase refinement in the 2D PDF software.
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5.6 Availability of software

Our software is available at diffpy.org

5.7 Conclusion and Outlook

In Summary, we developed a 2D PDF analysis method for thin films, and have applied it to

analyze the structure of textured platinum thin film. We derived the 2D PDF equations, and

have showed explicitly, by utilizing the orientation distribution function, the equivalence of

the PDF from textured thin film to the 2D PDF with Qz = 0. We showed, mathematically,

the feasibility of experimental measurement of the 2D PDF from thin film, and have demon-

strated this by a measurement on a textured Platinum thin film. The PDF from the film

has peaks that are either specific to the 2D PDF or present in both 1D and 2D PDF, and

are all well captured by our refinement software. These results demonstrate the functioning

of the 2D PDF analysis method we developed.
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Chapter 6

Development of the dynamic PDF

method

In this chapter we proposed a new definition for the dynamic pair distribution function (PDF)

that has direct connection with the atomic PDF. Under the new definition, the dynamic PDF

incorporates the contribution from multi-phonon scattering, and can be easily computed

from inelastic neutron scattering data. We discuss its relation with existing definitions of

the dynamic PDF.

In addition, as a simple example of the dynamic PDF, we derive the dynamic PDF for a

molecule containing two identical atoms.
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6.1 A new definition for the dynamic pair distribution

function

6.1.1 Motivation

Despite the progress in the experiment and theory of dynamic PDF, there are still blind

spots and conflicting issues in the formalism of the dynamic PDF method which remain to

be resolved. For example, previous definitions for the dynamic PDF (see Li et al. [2014a] for

example) tends to subtract out the multi-phonon contribution from the inelastic structure

function before doing Fourier transform. This approach retains the single phonon contribu-

tion and therefore the majority of the structural information. However, we noticed that it

subtracts the multi-phonon contribution by fitting the smooth part of the structure function

with a function with arbitrary values for the parameters and thus the asymptotic behavior

of the resulting function is not treated explicitly. On the other hand, while the dynamic

PDF itself yields gives important structural information that comes from the single phonon

scattering process, its connection with the atomic pair distribution function (atomic PDF)

has not been considered with mathematical rigor. In fact the present definitions for the

dynamic PDF, for example proposed in McQueeney [1998], has the disadvantage of unable

to reproduce the atomic PDF after integrating over energy.

Here we propose a new definition of the structure function and the dynamic PDF and explain

its connection with the atomic PDF. We first derive the equations explicitly and show that,

following the new definition, the structure function now has desirable asymptotic behavior

at different energy levels and can be Fourier transformed to give structural information at
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each energy level, namely the dynamic PDF. Moreover, we show that after integration over

energy the dynamic PDF defined here gives the atomic PDF.

6.1.2 Definition and equations of the dynamic PDF

We first introduce the modified structure function and explain its relation with the familiar

atomic structure functions. The total scattering structure function measured from an inelas-

tic scattering experiment, S(Q,E), can be divided into two parts, namely the Bragg/elastic

scattering structure function, SB(Q,E), and the diffuse/inelastic scattering structure func-

tion, SD(Q,E) Billinge and Thorpe [2002]

S(Q,E) = SB(Q,E) + SD(Q,E). (6.1)

We define the modified inelastic structure functions for Bragg scattering, S
′
B(Q,E), and for

diffuse scattering, S
′
B(Q,E), based on their respective inelastic structure function, as

S
′

B(Q,E) = SB(Q,E)− e−2W δ(E), (6.2)

S
′

D(Q,E) = SD(Q,E)− f(Q,E). (6.3)

In Equation 6.3, W = Q2〈u2〉/2 is the Debye-Waller factor and 〈u2〉 is the ensemble-averaged

atomic displacement. Following the definition in Equation 6.3, the expressions for S
′
B(Q,E)

and the energy-integrated S
′
D(Q,E) can be found easily. For example,

S
′

B(Q,E) = SB(Q, E)− e−2W δ(E) (6.4)

= δ(E)
∑
i,j

f ∗j fi

N〈f 2〉
eQ·Rije−Wi−Wj − e−2W δ(E) (6.5)

= δ(E)
∑
i 6=j

f ∗j fi

N〈f 2〉
eQ·Rije−Wi−Wj . (6.6)
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Here fi is the scattering factor of atom i, and Rij is the vector that connects the average

positions of atom i and atom j. From Equation 6.6 we see that S
′
B(Q,E) stands for the

structure function of the Bragg scattering, with the Q-independent self-scattering signal be-

ing subtracted. And S
′
D(Q,E) stands for the structure functions for the diffuse scattering

but without the smooth multi-phonon scattering contribution. In particular, in the expres-

sion for SD(Q,E), f(Q,E) is a continuous function of momentum Q and energy E which

satisfies the following condition∫
f(Q,E)dE = 1− e−2W ≈ 1. (6.7)

f(Q,E) is intended to represent the contribution to the measured structure function from

multi-phonon scattering. It is clear that f(Q,E) will not be totally fixed under under

this constraint alone, and here we fix the form of f(Q,E) by the additional requirement

that S
′
D(Q,E) goes to zero at large Q. As will be shown below, as long as the condition

in Equation 6.7 is satisfied, the energy integration of the modified structure function will

produce the atomic structure function S(Q) minus 1, and thus its transformation would give

the atomic PDF.

One simplification to Equation 6.7 is to set f(Q,E) at each energy level to be a constant

which equals the limiting value of f(Q,E) at large Q at that energy

f(E) = lim
Q→∞

SD(Q,E) (6.8)

⇒
∫
f(E)dE =

∫
lim
Q→∞

SD(Q,E)dE = 1− e−2W . (6.9)

Both Equation 6.7 and 6.9 will give the desired asymptotic behavior for the structure function

(before and after the energy integration). This simplification of f(Q,E), namely the removal

of its Q-dependence at each energy level, turns out to be important as it not only allows these

structure functions to be Fourier transformed at each distinct energy but also preserve struc-

tural information contained in both single- and multi-phonon scattering processes (occurring

173



CHAPTER 6. DEVELOPMENT OF THE DYNAMIC PDF METHOD

at that particular energy level). This will be explained further in the following discussion.

We define the modified inelastic structure function for the total scattering, S
′
(Q,E), as the

arithmetic sum of S
′
B(Q,E) and S

′
D(Q,E)

S
′
(Q,E) = S(Q,E)− e−2W δ(E)− f(Q,E) (6.10)

= S
′

B(Q,E) + S
′

D(Q,E). (6.11)

Intuitively, S
′
(Q,E) can be understood as the inelastic structure function without the smooth

background (but keeping the desired asymptotic properties, as will be shown below). Re-

garding the asymptotic behavior of these modified structure functions, it is easy to show

that

lim
Q→∞

∫
S
′
(Q,E)dE = lim

Q→∞

∫
S
′

B(Q,E)dE (6.12)

= lim
Q→∞

∫
S
′

D(Q,E)dE (6.13)

= 0. (6.14)

Equation 6.12 indicates that all the modified structure functions defined here approach the

limit of zero as momentum Q becomes large. Therefore these structure functions can be

Fourier transformed conveniently using existing numerical algorithms and yield structural

information about lattice dynamics at each energy level, i.e. the dynamic PDF. Since we’ve

chosen f(Q,E) to be Q-independent at each energy, as specified in Equation 6.9, the resulting

dynamic PDF would include the contribution from multi-phonon scattering.

Now we show that, defined in this form, the dynamic PDF is connected to the atomic PDF

with well-defined mathematical relations. To start with, we show that the integration of the

modified structure function S
′
(Q,E) gives the quantity S(Q)− 1, where S(Q) is the atomic

structure function. Since S(Q) and S(Q,E) is related by Egami and Billinge [2012]

S(Q) =

∫ ∞
−∞

S(Q,E)dE, (6.15)
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we have∫
S
′
(Q,E)dE =

[∫
SB(Q,E)− e−2W δ(E)dE

]
+

[∫
SD(Q,E)dE − f(Q,E)dE

]
(6.16)

=

[∫
SB(Q,E)dE − e−2W

]
+

[∫
SD(Q,E)dE −

(
1− e−2W

)]
(6.17)

=

∫
SB(Q,E) + SD(Q,E)dE − 1 (6.18)

= S(Q)− 1. (6.19)

Equation 6.19 shows that after energy integration the modified structure function gives the

familiar quantity of the atomic structure function minus 1, which can be Fourier transformed

to yield the atomic PDF Egami and Billinge [2012].

Accordingly, we define the dynamic PDF by replacing S(Q)− 1 in the transformation of the

atomic PDF with S
′
(Q,E)

G(r, E) =

∫
QS

′
(Q,E) sin(Qr)dQ (6.20)

= δ(E)
∑
i 6=j

f ∗j fi

rN〈f 2〉

∫
e−Wi−Wj sin(QRij) sin(Qr)dQ+

∫
QS

′

D(Q,E) sin(Qr)dQ.

(6.21)

The dynamic PDF defined above can be separated into two parts, corresponding to the

two terms in the last line of Equation 6.21. The first term is the elastic (or uncorrelated)

PDF Egami and Billinge [2012], where the integration over Q gives the broadened delta

function that represents the pair density between two atoms at their average positions. The

second term corresponds to the contribution from inelastic scattering, including the smooth

multi-phonon contribution. Under this definition, the dynamic PDF recovers the atomic
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PDF after the integration along the energy axis∫
G(r, E)dE =

∫ ∫
QS

′
(Q,E) sin(Qr)dQdE (6.22)

=

∫
Q

(∫
S(Q,E)dE −

∫
e−2W δ(E) + f(Q,E)dE

)
· sin(Qr)dQ (6.23)

=

∫
Q (S(Q)− 1) sin(Qr)dQ (6.24)

= G(r). (6.25)

Therefore under our definition, the dynamic PDF can be understood as the energy-dispersed

version of the atomic PDF, and can be directly integrated to produce the latter.

6.2 Dynamic pair distribution function for diatomic

molecule

In this chapter we discuss the analysis of the structural dynamics of materials using the

dynamic pair distribution function (PDF) through the example of a diatomic molecule.

Section 6.2.1 list and briefly discussed a few physical quantities that are closely related

to the development and understanding of pair distribution function analysis of dynamical

system, which was propose and developed in the next few sections. These quantities will

be introduced and briefly discussed, and will be used throughout the report. Section 6.2.2

derive the dynamic PDF of a diatomic molecule, in which the vibration of the molecule is

restricted along the longitudinal direction with given characteristic frequency and amplitude.

We derive g(r, ω) from, respectively, g(r, t), S(Q,ω) and S(Q, t), with minimal but different

approximations for each derivation. Section 6.3 derive the dynamic PDF for a linear molecule

with 3 identical atoms. We showed explicitly from this example the equivalency of the
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dynamical PDF of any system with a harmonic vibration mode to a diatomic molecule, and

the increasing difficulty in solving g(r, ω) analytically for a system with more than 2 atoms.

Section 6.4 discussed some generic properties of the dynamic PDF of small atomic clusters,

and emphasizes the loss of periodicity in the atomic motion as the number of atoms increases.

6.2.1 Some important physical quantities

6.2.1.1 Spatial-temporal correlation function g(r, t)

The temporal pair distribution function, g(r, t), first introduced by Van Hove in Van Hove

[1954], describes the correlation between the presence of a particle at r′ + r at time t′ + t

and the presence of a particle in position r′ at time t′, averaged over r′. g(r, t) and S(Q, ω)

is connected via Fourier transform

g(r, t) =
~

(2π)3

∫
dQ

∫
dω exp(−iQ · r + iωt)S(Q, ω). (6.26)

6.2.1.2 Dynamic PDF g(r, ω)

The dynamic pair distribution function Egami and Billinge [2012], g(r, ω), is obtained by

Fourier transforming g(r, t) over time t. Consistent with the interpretation of g(r, ω) and

that of ω (energy), g(r, ω) can be interpreted as the correlation between the presence of a

particle in position r′ with energy ω′ and the presence of a particle in position r′ + r with

energy ω′+ω, averaged over r′. Namely g(r, ω) is the spatial density correlation function of

the excited state with atomic vibration energy ω, which in a single phonon picture means

the atomic density that oscillates with frequency ω. Here we consider only a single phonon

because multi-phonon process contributes only broad structureless signal and thus is not
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significant in the determination of small local structure using PDF (see for example Ch.7

from Egami and Billinge [2012] and Ch.2 from Billinge and Thorpe [2002]).

For a real lattice system, g(r, ω) remains essentially unchanged at low energies, meaning

that the low energy phonons merely broadens the vibration of atoms but do not induce

strong enough correlation between the motion of the atoms within local atomic paris. This

corresponds to the situation of ω/ω0 ∼ 0 for the diatomic molecule, where the atomic peak

at r = R remains unsplit. Upon the presence of strongly localized phonon at somewhat

elevated energy, the dynamics of pairs of local atoms becomes strongly enhanced, and the

behavior of such atomic pairs resemble that of a diatomic molecule. Thus with such local

phonon modes in a lattice system, the structure of the dynamic PDF at around these local

atomic peaks would start to look like that of a diatomic molecule and display bifurcation

and trifurcation as energy increases.

6.2.1.3 Phonon energy and amplitude

The inelastic structure function, S(Q, ω), describes the scattering of the incoming particle

by phonons with total momentum of Q and total energy ω. For single of multi-phonon

process, ω is measured by the energy of a single phonon, ω0, namely ω = n · ω0. In reality,

the energy associated with phonon mode with mode energy ω0 directly corresponds to the

amplitude of the atomic vibration, and can be calculated by equating the time-averaged

kinetic energy with the total mode energy ω. In specific, the volume integrated kinetic

energy of a crystal with volume V , density ρ, and displacement u2
0 equals 1

4
ρV ω2u2

0 sin2(ωt),
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and because 〈sin2(ωt)〉 = 1
2
, the time averaged kinetic energy is (Ref. Kittel [2005]Ch.3):

1

8
ρV ω2u2

0 =
1

2
(n+

1

2
)~ω (6.27)

⇒ u2
0 =

4(n+ 1
2
)~

ρV ω
(6.28)

This relates the displacement of a given mode to the occupancy n of the phonon of the

mode. This also relates the quasi-particle picture with the wave picture of the phonon (the

’wave-particle duality’ of phonons).

6.2.1.4 Single and multi-phonon process

Multi-phonon phonon process involving n phonons with energy ω0 and a single phonon

process with energy nω0 might be equivalent in an energy transfer process, but they induce

qualitatively different lattice dynamics. As will be discussed in detail below, in terms of

dynamic PDF analysis, ω = nω0 which appears in g(r, ω) is interpreted as a phonon with a

frequency of nω0 instead of n phonons with frequency ω0.

6.2.2 Derivation of the dynamic PDF for diatomic molecule

In this section we derive the dynamic PDF of a classical harmonic oscillator from the corre-

lation function g(r, t), and that of a quantum harmonic oscillator from S(Q,ω) and S(Q, t),

with minimal but different approximations for each derivation. For simplicity we only con-

sider the 1 dimensional case in which the vibration of the molecule is restricted along the

longitudinal direction (along the molecule). In both cases the harmonic oscillator has a

characteristic frequency of ω0 and amplitude of 2u0, with an equilibrium distance of R. The

results obtained are thus useful in illuminating the effect of longitudinal phonons on the

dynamic PDF.
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The resulting expressions of g(r, ω) take different forms and are not necessarily equivalent to

each other. Nevertheless, the peculiarities in the structure of these different representations

of g(r, ω) may offer insights into the real g(r, ω) of the system from different angles.

6.2.2.1 Classical harmonic molecule: derivation from g(r, t)

The explicit expression for the dynamic PDF of diatomic molecule is simulated but not

shown in Egami and Dmowski [2012]. Their temporal density correlation function g(r, t) is

easy to write down

g(r, t) = δ(r −R + 2u0 sin(ω0t)). (6.29)

The dynamic PDF g(r, ω) is the temporal Fourier transform of g(r, t)

g(r, ω) =

∫
g(r, t)eiωtdt (6.30)

=

∫
δ(r −R + 2u0 sin(ω0t))e

iωtdt. (6.31)

To simplify the δ function, we use the notationf(t) = r − R + 2u0 sin(ω0t). Thus f(t) = 0

requires

|R− r
2u0

| ≤ 1. (6.32)

and the zeros of the function, tn, are as follows

tn =



1
ω0

(
arcsin(R−r

2u0
) + 2nπ

)
1
ω0

(
− arcsin(R−r

2u0
) + (2n+ 1)π

)
n = 0,±1,±2, ....
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Then δ(f(t)) can be expanded as

δ(f(t)) =
∑
n

δ(t− tn)

|∂f
∂t

(tn)|
(6.33)

=
∑
n

δ
(
t− 1

ω0

(
arcsin(R−r

2u0
) + 2nπ

))
|2u0ω0 cosω0

1
ω0

(
arcsin(R−r

2u0
) + 2nπ

)
|

+
δ
(
t− 1

ω0

(
− arcsin(R−r

2u0
) + (2n+ 1)π

))
|2u0ω0 cosω0

1
ω0

(
− arcsin(R−r

2u0
) + (2n+ 1)π

)
|

(6.34)

=
1

2u0ω0

∑
n

δ
(
t− 1

ω0

(
arcsin(R−r

2u0
) + 2nπ

))
|cos

(
arcsin(R−r

2u0
)
)
|

+
δ
(
t− 1

ω0

(
− arcsin(R−r

2u0
) + (2n+ 1)π

))
|cos

(
arcsin(R−r

2u0
)
)
|

.

(6.35)

Plug this into the expression of the dynamic PDF, we have

g(r, ω) =

∫
δ(r −R + 2u0 sin(ω0t))e

iωtdt (6.36)

=
1

2u0ω0

∑
n

1

|cos
(

arcsin(R−r
2u0

)
)
|
·
∫
δ

(
t− 1

ω0

(
arcsin(

R− r
2u0

) + 2nπ

))
eiωtdt+

(6.37)

1

2u0ω0

∑
n

1

|cos
(

arcsin(R−r
2u0

)
)
|
·
∫
δ

(
t− 1

ω0

(
− arcsin(

R− r
2u0

) + (2n+ 1)π

))
eiωtdt

(6.38)

=
1

2u0ω0

∑
n

e
i ω
ω0

(
arcsin(R−r

2u0
)+2nπ

)
|cos

(
arcsin(R−r

2u0
)
)
|

+
1

2u0ω0

∑
n

e
i ω
ω0

(
− arcsin(R−r

2u0
)+(2n+1)π

)
|cos

(
arcsin(R−r

2u0
)
)
|

(6.39)

=
e
i ω
ω0

arcsin(R−r
2u0

)
+ e

−i ω
ω0

(
arcsin(R−r

2u0
)−π

)
2u0ω0|cos

(
arcsin(R−r

2u0
)
)
|

∑
n

e
i2nπ ω

ω0 (6.40)

= e
i ω
ω0

π
2

cos ω
ω0

(
arcsin(R−r

2u0
)− π

2

)
u0ω0|cos

(
arcsin(R−r

2u0
)
)
|

∑
n

e
i2nπ ω

ω0 (6.41)

=
∑
l

(
il
) cos l

(
arcsin(R−r

2u0
)− π

2

)
u0|cos

(
arcsin(R−r

2u0
)
)
|
δ(ω − lω0),with l = 0,±1,±2, .... (6.42)
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Figure 6.1: Simulation of the dynamic PDF of diatomic molecule with energies equal to

integer multiple of harmonic energy ω0.

The summation itself corresponds to the Fourier transform of the periodic Dirac function

(the Dirac comb), and is evaluated as follows:

∑
n

e
i2nπ ω

ω0 = 1 + 2
∞∑
n=1

cos(2π
ω

ω0

n) (6.43)

= 2πδ(2π
ω

ω0

− 2lπ) (6.44)

=
∑
l

ω0δ(ω − lω0), l = 0,±1,±2, .... (6.45)

If we ignore the complex factor
(
il
)
, the above dynamic PDF for diatomic molecule displays

similar behavior as that simulated in Egami and Dmowski [2012], at doubling the energy.

This means that here ω/ω0 = 2n corresponds to the plot at ω/ω0 = n in Ref. Egami and

Dmowski [2012]. We plot the result for ω/ω0 equals 0 to 6 in Fig. 6.1. The reason for the

doubling of energy needs to be figure out. The spatial and temporal profile in g(r, ω) is

closely coupled to each other due to the inherent dispersion relation of the system, as is clear

from the above expression.

We could also extend the expression to include the effect of uncorrelated thermal motion.

In this case, the delta function is broadened into a Gaussian peak with width equals to the
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scale of the uncorrelated thermal motion,
√
〈u2〉T . Double bracket 〈〈〉〉 stands for thermal

averaging.

〈〈g(r, t)〉〉 =

∫
〈〈S(Q, t)〉〉eiQrdQ (6.46)

=

∫
1√
〈u2〉T

e−
1
2
〈u2〉TQ2

e−iQRijeiQrdQ (6.47)

=
1√

〈u2〉T
√

2π
e
− 1

2

(
r−R+2u0 sin(ω0t)√

〈u2〉T

)2

. (6.48)

Therefore in real space the effect of uncorrelated thermal motion is to broaden the delta

function peaks in the PDF, or equivalently,

〈〈g(r, t)〉〉 = 〈〈δ(r −R + 2u0 sin(ω0t))〉〉 (6.49)

=

∫
1√

〈u2〉T
√

2π
e
− 1

2

(
r√
〈u2〉T

)2

δ(r −R + 2u0 sin(ω0t))dr (6.50)

=
1√

〈u2〉T
√

2π
e
− 1

2

(
r−R+2u0 sin(ω0t)√

〈u2〉T

)2

. (6.51)

The thermally averaged dynamic PDF can be evaluated as follows:

〈〈g(r, ω)〉〉 =

∫
〈〈g(r, t)〉〉eiωtdt (6.52)

=

∫
1√

〈u2〉T
√

2π
e
− 1

2

(
r−R+2u0 sin(ω0t)√

〈u2〉T

)2

eiωtdt (6.53)

=
e
− (r−R)2

2〈u2〉T√
〈u2〉T

√
2π

∫
e

(
2u0(r−R)

〈u2〉T
sin(ω0t)+

2(u0)
2

〈u2〉T
sin2(ω0t)

)
eiωtdt (6.54)

=
e
− (r−R)2+2(u0)

2

2〈u2〉T√
〈u2〉T

√
2π

∫
e

(
2u0(r−R)

〈u2〉T
sin(ω0t)− (u0)

2

〈u2〉T
cos(2ω0t)

)
eiωtdt. (6.55)

(6.56)

The Fourier series expansion for exp(A sinx) and exp(A cosx) can be easily worked out as

eA sinx = I0(A) + 2
∑
n≥0

(−1)nI2n+1(A) sin((2n+ 1)x) + 2
∑
n≥1

(−1)nI2n(A) cos(2nx). (6.57)
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and

eA cosx = I0(A) + 2
∑
m≥1

(−1)mIm(A) cos(mx). (6.58)

Here In is the modified Bessel function of the first kind. The dynamic PDF then can be

expressed as

g(r, ω) (6.59)

=
e
− (r−R)2+2(u0)

2

2〈u2〉T√
2π〈u2〉T

∫
e

(
2u0(r−R)

〈u2〉T
sin(ω0t)− (u0)

2

〈u2〉T
cos(2ω0t)

)
eiωtdt (6.60)

=
e
− (r−R)2+2(u0)

2

2〈u2〉T√
2π〈u2〉T

∫ [
I0

(
2u0(r −R)

〈u2〉T

)
+ 2

∑
n≥0

(−1)nI2n+1

(
2u0(r −R)

〈u2〉T

)
sin((2n+ 1)ω0t)

(6.61)

+ 2
∑
n≥1

(−1)nI2n

(
2u0(r −R)

〈u2〉T

)
cos(2nω0t)

]
× (6.62)[

I0

(
−(u0)2

〈u2〉T

)
+ 2

∑
m≥1

(−1)mIm

(
−(u0)2

〈u2〉T

)
cos(2mω0t)

]
· eiωtdt. (6.63)

The Fourier transform can be readily evaluated and yield the discrete integer energy levels

with the corresponding spatial profile.

6.2.2.2 Quantum harmonic molecule: derivation from from S(Q,ω)

For a quantum harmonic oscillator, we can express g(r, ω) using the structure function

S(Q,ω). S(Q,ω) for harmonic diatomic molecule was derive in Lovesey [1986]

S(Q,ω) = e−2W (Q)+ 1
2
~ωβ
∑
l

Il(y)δ(~ω − l~ω0), (6.64)
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with y = Q2/C and C = 2Mω0

~ sinh( 1
2~ω0β

). Here Il(x) stands for the l th spherical Bessel

function. We thus have

g(r, ω) =

∫
QS(Q,ω) sin(Qr)dQ (6.65)

=

∫
Qe−2W (Q)+ 1

2
~ωβ
∑
l

Il(y)δ(~ω − l~ω0) sin(Qr)dQ (6.66)

=
∑
l

[∫
QIl(y) sin(Qr)e−2W (Q)dQ

]
e

1
2
l~ω0βδ(~ω − l~ω0). (6.67)

We suppress the Debye-Waller factor W (Q) (see Ref. Lovesey [1986]) to simplify the calcu-

lation, and thus have

g(r, ω) =
∑
l

[∫
QIl(y) sin(Qr)dQ

]
e

1
2
l~ω0βδ(~ω − l~ω0) (6.68)

=
∑
l

− ∂

∂r

[∫
Il(y) cos(Qr)dQ

]
e

1
2
l~ω0βδ(~ω − l~ω0). (6.69)

Two useful identities are the integral representation of the Bessel function and the Fourier

cosine transform of the gaussian function e−αx
2

(see e.g. Bateman [1954]) :

Jl(x) =
1

2π

∫ π

π

ei(lτ−x sin(τ))dτ. (6.70)

e−αx
2 ⇔

√
π

2

1√
α
e−

y2

4α , with Re(α) > 0. (6.71)

After re-writing using the integral representation of the Bessel function, the above integral

over Q takes the form of a Fourier cosine transformation. Here the transform can be per-

formed by replacing i sin(τ)
C

with i sin(τ)
C

+ δ, where δ a small positive real number to be set to

zero after the integration. Explicitly, we have∫
Il(y) cos(Qr)dQ =

1

2π

∫ ∞
0

∫ π

π

ei(lτ−y sin(τ))dτ cos(Qr)dQ (6.72)

=
1

2π

∫ π

π

[∫ ∞
0

e−i
sin(τ)
C

Q2

cos(Qr)dQ

]
eilτdτ (6.73)

=

√
−iCπ
4π

∫ π

π

1√
sin(τ)

e−i(
C

4 sin τ
r2+lτ)dτ. (6.74)
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The dynamic PDF g(r, ω) can be expressed as

g(r, ω) =
∑
l

− ∂

∂r

[√
−iCπ
4π

∫ π

π

1√
sin(τ)

e−i(
C

4 sin τ
r2+lτ)dτ

]
· e

1
2
l~ω0βδ(~ω − l~ω0) (6.75)

=

√
−(iC)3π

2π

∑
l

r

[∫ π

π

1

sin3/2(τ)
e−i(

C
4 sin τ

r2+lτ)dτ

]
· e

1
2
l~ω0βδ(~ω − l~ω0). (6.76)

6.2.2.3 Quantum harmonic molecule: derivation from S(Q, t)

One way of deriving an approximate but explicit formula for g(r, ω) is to start from S(Q, t).

The expression of S(Q, t) is derived in Lovesey [1986]

S(Q, t) = e−2W (Q) exp

(
Q2 cosh

(
ω0(it+ 1

2
~β)
)

C

)
. (6.77)

First we expand S(Q, t) into Taylor series:

S(Q, t) = e−2W (Q) exp

(
Q2 cosh

(
ω0(it+ 1

2
~β)
)

C

)
(6.78)

= e−2W (Q)
∑
n

Q2n

Cnn!

(
1

2

(
eiω0te

1
2
ω0~β + e−iω0te−

1
2
ω0~β

))n
(6.79)

= e−2W (Q)
∑
n

Q2n

2nCnn!

n∑
m=0

Cm
n e
− 1

2
(n−2m)ω0~βei(n−2m)ω0t. (6.80)

Where C = 2Mω0 sinh
(

1
2
~ω0β

)
/~. With the expanded S(Q, t), S(Q,ω) can be computed

via Fourier transforming the former

S(Q,ω) =
1

2π~

∫
e−iωtS(Q, t)dt (6.81)

=
e−2W (Q)

2π~
∑
n

Q2n

2nCnn!

n∑
m=0

Cm
n e
− 1

2
(n−2m)ω0~β ·

[∫
e−iωtei(n−2m)ω0tdt

]
(6.82)

=
∑
n

n∑
m=0

e−2W (Q)Q2n

2nCnn!
Cm
n e
− 1

2
(n−2m)ω0~β · δ(ω − (n− 2m)ω0). (6.83)

With the Debye-Waller factor defined as Lovesey [1986]

W (Q) =
Q2

2D
,with D =

2Mω0 coth
(

1
2
~ω0β

)
~

. (6.84)
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Meanwhile, we have the integral identity Bateman [1954]:∫ ∞
0

x2n+1e−αx
2

sin(xy)dy =
(−1)nπ1/2

2n+3/2αn+1
e−

1
4α
y2He2n+1

(
2−1/2α−1/2y

)
. (6.85)

, where Hem(x) stands for Hermite polynomial of the mth order. g(r, ω) can thus be calcu-

lated

g(r, ω) (6.86)

=

∫
QS(Q,ω) sin(Qr)dQ (6.87)

=
∑
n

n∑
m=0

Cm
n

2nCnn!

[∫
e−

Q2

D Q2n+1 sin(Qr)dQ

]
· e−

1
2

(n−2m)ω0~βδ(ω − (n− 2m)ω0) (6.88)

=
∑
n

n∑
m=0

Cm
n

2nCnn!
e−

1
2

(n−2m)ω0~βδ(ω − (n− 2m)ω0) ·
[

(−1)nπ1/2Dn+1

2n+3/2
e−

D
4
r2He2n+1

(
(D/2)

1
2 r
)]

(6.89)

=
N∑
a

δ(ω − aω0)e−
1
2
aω0~β ·

N∑
b=a

C
1
2

(b−a)

b

2bCbb!

(−1)nπ1/2Db+1

2b+3/2
e−

D
4
r2He2b+1

(
(D/2)

1
2 r
)
. (6.90)

with N →∞. In the above expression, the thermal broadening of the peaks of g(r, ω) comes

in through the thermal factor D within the exponential exp (−Dr2/4). In the last line we

rewrite the summation of taylor series (over n) into the summation over energy level (a).

The dependence of the spatial profile of g(r, ω) on energy ω = aω0 comes in through the

dependence on a of the lower bound of the summation over b.

6.3 Dynamic PDF of a linear triatomic molecule

We consider the dynamic PDF of a linear triatomic molecule. For simplicity we restrict the

atomic vibration to be along the direction of the molecule. The frequencies of the 2 normal

mode is well known:

ω1 =

√
k

m
, ω2 =

√
3k

m
. (6.91)
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Assuming the equilibrium distance between nearest atoms equals to R, then we have

g(r, ω) =
1

3

∫
(δ(r −R− uab) + δ(r − 2R− uac) + δ(r −R− ubc))eiωtdt. (6.92)

Here the atomic displacement is the uncorrelated superposition of the two harmonic modes

µv(t) =
1√
2

∑
k

uke
i(θk+kRv−ωkt) (6.93)

=
1√
2

(
u1e

i(θ1+k1Rv−ω1t) + u2e
i(θ2+k2Rv−ω2t)

)
. (6.94)

The local displacement for each atom are as follows:

µa(t) =
1√
2

(
u1e

i(θ1−ω1t) + u2e
i(θ2−ω2t)

)
, (6.95)

µb(t) =
1√
2

(
0 + 2u2e

i(θ2−ω2t+π)
)
, (6.96)

µc(t) =
1√
2

(
u1e

i(θ1−ω1t+π) + u2e
i(θ2−ω2t)

)
. (6.97)

And their differences

µab(t) =
1√
2

(
u1e

i(θ1−ω1t) + 3u2e
i(θ2−ω2t)

)
, (6.98)

µac(t) =
1√
2

(
2u1e

i(θ1−ω1t) + 0
)
, (6.99)

µbc(t) =
1√
2

(
u1e

i(θ1−ω1t) − 3u2e
i(θ2−ω2t)

)
. (6.100)

Therefore we see that since here ω1 6= ω2, the zeros of the delta function with uij as argument

becomes very difficult to solve analytically.

However, a solution is possible for each mode alone, namely we consider the system only in

one of the normal mode of vibration. For a general case like this, the sum of the trigonometric

functions can be evaluated using the following identity:

∑
i

ai sin(x+ θi) = a sin(x+ θ). (6.101)
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with

a2 =
∑
ij

aiaj cos(θi − θj), tan θ =

∑
i ai sin θi∑
i ai cos θi

. (6.102)

With this identity the summation of the lattice coordinates can be easily evaluated as

uv =
∑
k

uk sin(ωt+ θk + kRv) = u sin(ωt+ θ). (6.103)

with

u2 =
∑
ij

uiuj cos (θi − θj + (ki − kj)Rv) , (6.104)

tan θ =

∑
k uk sin(θk + kRv)∑
k uk cos(θk + kRv)

. (6.105)

The above result shows clearly that for a lattice system in a particular phonon mode of

vibration, its dynamic PDF resulted from such vibration is equivalent to that of a harmonic

diatomic molecule, with periodical spatial profiles at distinct energy levels. Under single

phonon approximation, Ref. McQueeney [1998] showed that whenever a local longitudinal

displacement is activated by (local) phonons, the corresponding PDF peak split into two.

Here we showed that these two peaks from splitting are actually from the 1st harmonic of

the local phonon, and that the dynamic PDF of a local phonon can be mapped to that

of an diatomic molecule with an effective displacement of u defined above. Therefore, if

multi-phonon contribution has been taken into consideration in the formalism developed

in McQueeney [1998], the result should give, in addition to the double-splitting, multiple

splittings of the peak at discrete energy levels.

For a linear triatomic molecule in one of its longitudinal vibration mode, say the low fre-

quency mode, its dynamic PDF can be evaluated in a similar manner as that of a diatomic
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molecule. We have

∫
δ(r −R + u1 sin(ω0t))e

iωtdt = e
i ω
ω0

π
2

cos ω
ω0

(
arcsin(R−r

u1
)− π

2

)
u0ω0|cos

(
arcsin(R−r

u1
)
)
|
ω0δ(ω − lω0) (6.106)

=
(
il
) cos l

(
arcsin(R−r

u1
)− π

2

)
u1|cos

(
arcsin(R−r

u1
)
)
|
δ(ω − lω0). (6.107)

and

∫
δ(r − 2R + 2u1 sin(ω0t))e

iωtdt =
(
il
) cos l

(
arcsin(2R−r

2u1
)− π

2

)
2u1|cos

(
arcsin(2R−r

2u1
)
)
|
δ(ω − lω0). (6.108)

The dynamic PDF can be evaluated as, ignoring the complex prefactor
(
il
)
,

g(r, ω) =
1

3

∫
(δ(r −R− uab) + δ(r − 2R− uac) + δ(r −R− ubc))eiωtdt (6.109)

=

2 cos l
(

arcsin(R−r
u1

)− π
2

)
u1|cos

(
arcsin(R−r

u1
)
)
|

+
cos l

(
arcsin(2R−r

2u1
)− π

2

)
u1|cos

(
arcsin(2R−r

2u1
)
)
|

 · δ(ω − lω0) (6.110)

, with l = 0,±1,±2, .... (6.111)

6.4 Some generic properties of the dynamic PDF of

small molecules

For multi atomic molecule, the position of the v the atom, µv(t) can be decomposed into

vibration modes of the system Egami and Dmowski [2012]:

µv(t) =
1√
N

∑
k

uke
i(θk+k·Rv−ωkt). (6.112)

Where θk is the phase factor of the kth vibration mode of the system, and uk is its amplitude.

For example for an periodic structure, the vibration mode would be the phonon modes, and
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for a molecular system it would be the collective vibration modes (the harmonics) of the

atom cluster. For our interest the interactions between these quasiparticles from the motion

of the lattice can be reasonably ignored, and a direct consequence of this is that there’d be no

correlation between the phase factor θk of different modes. From the above general form of the

atomic displacement we see that for molecules with more than 2 atoms, analytically solving

for its zeros as has been done for the diatomic molecule case become difficult. However, by

analyzing the structure of the solution using the general form of atomic displacement could

give us hint on the generic behavior of the dynamic PDF of molecular system.

For simplicity and demonstration purpose, we assume all quantities are scalar. The structure

of the dynamic PDF g(r, ω) takes the form g(r, ω) =
∫
δ(r − f(t))eiωtdt, with f(t) being a

periodic function of time t (with period P ) and atomic separation Rij. Note that f(t)

exhibits apparent periodic behavior only for systems with a few atoms, i.e. molecules, and

as we will see below, this periodicity of dynamics is crucial in determining the structure of

the dynamic PDF. In such case the derivative of f(t), f ′(t) is also periodic with the same

period P . For large systems due to the presence of multiple frequencies. We temporarily

suppress the dependence on Rij, and make it explicit in the final expression that we’re going

to derive. Let tn be the solutions of r − f(t) = 0, we have

r − f(tn) = 0, (6.113)

tn = t0 + n · P, (6.114)

f ′(tn) = f ′(t0 + n · P ) = f ′(t0). (6.115)

Here t0 is the solution within the first period of f(t), where it is legitimate to define the

inverse function of f(t) and thus have t0 = f−1(r). Thus we have

δ(r − f(t)) =
∑
n

δ(t− tn)

|∂f
∂t

(tn)|
. (6.116)
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With the above expediencies, we have

g(r, ω) =

∫ ∑
n

δ(t− tn)

|∂f
∂t

(tn)|
eiωtdt (6.117)

=
∑
n

1

|∂f
∂t

(tn)|
eiωtn (6.118)

=
∑
n

1

|∂f
∂t

(t0)|
eiω(t0+n·P ) (6.119)

=
eiωt0

|∂f
∂t

(t0)|

∞∑
n=−∞

eiωPn (6.120)

=
eiωt0(r)

|∂f
∂t

(t0(r))|
1

P

∑
l

δ(ω − ω0l) (6.121)

with ω0 =
2π

P
, and l = ±0,±1,±2, ... (6.122)

We see that the dirac delta function prescribes the energy range to discrete integer multiples

of ω0, and is a direct consequence of the periodicity of f(t). In other words, as long as

the dynamics of the molecule is reasonably periodic, then regardless the atomic interaction

and other details of the system, the dynamic PDF g(r, ω) would condense around certain

energy levels determined by its temporal periodicity. As the period of the lattice motion

becomes longer, ω0 becomes smaller. Eventually, at P → ∞, ω0 = 2π/P → 0, g(r, ω)

at each energy level ω = lω0 come close and merge with each other, and becomes quasi-

continuous in energy along with the thermal broadening effect. Furthermore, the spatial

periodicity is closely related to the energy scale ω. For a lattice system, such periodic

motion is smeared out because of the independent superposition of incoherent motion from

large number of phonons. For such harmonic type pattern with discrete energy levels to

occur, it is necessary that there occurs a single frequency ω of motion that is dominant,

in which case the superposition of phonons with ei(θk+ωt) will remain coherent in time and

produce periodic correlation in atomic density, which ultimately lead to discrete energy of

g(r, ω).
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For a more general case where r = f(t) has multiple solutions within a single period, the

above result can be easily generalized to

g(r, ω) =
∑
l

[∑
i

eiωt
i
0(r)

|f ′(ti0(r))|

]
1

P
δ(ω − ω0l). (6.123)

Here ti0(r) is the i th zero of r− f(t) within the first period of f(t), and r varies within such

range so that ti0(r) varies within the first period. The delta function regulates that g(r, ω) is

nonzero at integer energies of ω0. Replace ω with l · ω0 in the bracket, we have

g(r, ω = lω0) =
∑
l

[∑
i

eit
i
0(r)ω0l

|f ′(ti0(r))|

]
1

P
δ(ω − ω0l). (6.124)

=
∑
l

∑
i

(
eit

i
0(r)ω0

)l
|f ′(ti0(r))|

 1

P
δ(ω − ω0l). (6.125)

Therefore we see that each zero of r = f(t) (within the first period) contributes to the spatial

profile of g(r, ω). Furthermore, noticing that the contribution at different energy level from

the same zero (say t00) follows the exponential relation
(
eit

i
0(r)ω0

)l
. Since the denominator is

the same for each l and the spatial frequency of the numerator gets increased by 1 at each

energy step, this means that the spatial period of the contribution from the same each zero

ti0 decreases by 1 at each energy level increase. Intuitively, this means that the period get

repeated 1 more time as energy level increase by ω0. This agrees with the simulated g(r, ω)

from Egami and Dmowski [2012]. On the other hand, including more atoms and therefore

more independent vibration modes would expand the period of the collective motion of

atoms. At the extreme condition where many modes were included, the period goes to

infinity and ω ⇒ 0. Namely for lattice system the dynamic PDF g(r, ω) varies continuously

with energy.
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Chapter 7

Concluding Thoughts

This thesis consists of two independent studies of different subjects of materials science.

The PDF project focuses on expanding the capacity of an experimental method that allow

determination of materials structure with high precision. On the other hand, the µSR project

focuses on applying an established experimental method to study novel magnetic materials.

These two projects are distinct in the substance involved in them, but they’re also intimately

related and highly complementary to each other on the spectrum of academic training for a

researcher.

As an experimental initiative, the µSR project involves extensive analysis and comprehen-

sion of experimental data sets. Most importantly, it encourages the discovery of tendencies

in mutually-correlated data sets with inductive reasoning and the presentation of these ten-

dencies in a simple yet clarifying fashion. The PDF projects, on the other hand, is highly

theoretical and quantitative. It is all about an simple and intuitive concept, the texture. Yet

despite the simplicity of the intuition, tremendous intellectual effort is required to actualize
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these seeding idea and to dig out every detail of a mathematically sound and physically

intuitive model from this seed.

Meanwhile, from a personal point of view, these projects are also intimately related in

that both of them encourages the researcher to have an intuitive yet detailed picture of the

microscopic physical situation within the material. This is a highly reflective and self-probing

process which I believe exists in any serious intellectual endeavor.

With these intriguing projects, the excellent mentorship from my advisors and the whole-

hearted support from every group member, my Ph.D years in the Uemura and the Billinge

groups have easily become one of the most memorable experience in my life.
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Locatelli, Tevfik Onur Menteş, Alessandro Sala, Liliana D. Buda-Prejbeanu, Olivier Klein,
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Appendix A

Creation of 2D Skyrmion during

Hedgehog annihilation

As has been shown from simulation Schütte and Rosch [2014], the annihilation of Hedgehog

and Anti-Hedgehog is accompanied by the creation of a 2D Skyrmion line. By drawing

down the Hedgehog and Anti-Hedgehog merging process on a piece of paper and perform

geometric analysis we can already have an intuitive understanding. Based on the physical

consideration we require that the the spin aligns locally with its neighbors (except at the

singular point at the center of the Hedgehog). It can be readily shown then that the smooth

merging of a Hedgehog and an Anti-Hedgehog, through connecting with each other on the

sides with the same spin alignment, leave behind a 2D Skyrmion line that closes on itself,

that is, a Skyrmion loop. In this case the generated Skyrmion loop surrounds the connected

Hedgehog-Antihedgehog pair.

In a similar manner it can be shown that the spin configuration of both Hedgehog and Anti-

Hedgehog can be connected smoothly (with a spin structure of winding number 0) with the
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spin configuration of the intersection of a 2D Skyrmion line, and thus is topologically allowed

to exist at one end of a 2D Skyrmion line. The pair annihilation of the Hedgehog and Anti-

Hedgehog in this case can be achieved smoothly via continuous re-orientation of the local

field, and connects the 2 existing Skyrmions and form a longer Skyrmion line. This case

is qualitative the same as the previous case in that both involves the merging/annihilation

process of a Hedgehog and Anti-Hedgehog pair, and results in the creation of a closed 2D

Skyrmion loop. Specifically, in both cases, this merging process corresponds to the closing of

the surface of the 2D Skyrmion loop, although the topological orientation of the Hedgehog

pair with respect to that of the Skyrmion loop to be created is different. Moreover, we argue

that the two cases are in fact equivalent to each other: it is easy to show by simple geometric

analysis that by deforming the spin continuously, the two cases can be transformed smoothly

into each other. In other words these two spin configurations are topologically equivalent,

and a logical consequence of the existence of one Hedgehog-Antihedgehog pair is the existence

of a 2D Skyrmion line with open ends.

In other words, here we are making the general argument that, for any structure that con-

tains one Hedgehog and one Antihedgehog, the pair-annihilation of the Hedgehogs will leave

behind a closed Skyrmion loop. Using the mathematical language of topology, this is to

argue that in an otherwise continuous tangent vector field, the existence of 2 saddle points

implies the existence of two center critical points in the 2 dimensional space, and 1 torus in

the 3 dimensional space. Here saddle point and center are topological critical points with

formal mathematical definition in the field of vector topology. The question here is related

to the winding number of the specific tangent vector field. This can be proved right or

wrong by explicit calculation. Intuitively, this is due to the intrinsic property of a singular

topological defect: it is able to leave a foot print in a magnetic field arbitrarily far from its
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location Braun [2012]. And in this case the existence of the Skyrmion loop can be regarded

as the foot print which the Hedgehog-Antihedgehog pair leave in the system.

If this argument is true, then at the transition between Hedgehog state and the induced

ferromagnetic state in MnGe, besides the pair annihilation of Hedgehog and Antihedgehog

suggested in Kanazawa et al. [2016], there must also occur a (self) annihilation of the 2D

Skyrmion loop that exist as the byproduct of the pair annihilation of the 3D Hedgehogs.
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Appendix B

Estimation of the static field width

from magnetization

As has been analyzed in previous sections, the relaxation of the transverse field µSR spectra

reflects the width of the static internal magnetic field. As a simple estimation, we could also

estimate the static field with a simple model that uses the static moment size measured from

the magnetization. In this model we assume that the static internal field comes from the

static magnetic moment of Mn. Meanwhile in the induced magnetic and the paramagnetic

phases, as shown by the large 1/T1 dynamics and the linear relation between relaxation rate

and z moment, the in-plane component of the Mn moment is highly dynamic while the z

component (polarized along the external field) is static. Therefore here the static internal

field in the induced magnetic phase mainly comes from the static z moment. Instead of a

single value, this field acquires a finite width due to the variation of the magnitude of the z

moment.
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As a simple model, the width of the internal field is determined by both the magnitude and

the width of the distribution of the static moment. It is easy to see that by doubling the

magnitude of the internal field, the magnitude of the width of is also doubled. On the other

hand, the distribution of the moment also affects the distribution of the field. As detailed

in Martin et al. [2016], the dipolar field in the materials is expressed as

Bdip (Rµ) =
µ0

4π
·
∑
i

[
3ri (mi · ri)
|ri|5

− mi

|ri|3

]
, (B.1)

where ri is the vector that connects the i th magnetic moment and the muon. For the

ordered Hedgehog phase, the magnetic moment m can be expressed as follows Kanazawa et

al. [2016]:

MSkX = MSkX · (sin qy + cos qz, sin qz + cos qx, sin qx+ cos qy) (B.2)

= MSkX · (nX, nY, nZ) , (B.3)

where MSkX is the magnitude of the static moment and q is the magnitude of the magnetic

propagation vector. Although for the hedgehog phase with 3D helical order the static mo-

ment cannot be determined precisely from magnetization, which only probes the moment

along the external field direction, from the asymmetry of the transverse µSR data we know

that deep in the ordered phase the fluctuating moment were mostly frozen, and thus the

static moment would approach the total Mn ion moment of 1.8 µB. Furthermore, in the

calculation of the field width, the exact distribution of the moment in equation B.3 can

be reasonably approximated by moment with random orientation considering the fact that

the magnetic structure were incommensurate with the lattice Martin et al. [2016]. For the

field-induced magnetic phase, assuming that only the z moment is static, the moment can

be expressed similarly as

MFI = MFI · (0, 0, nZ) . (B.4)
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The internal field distribution is determined by inserting the expressions of the moment m

into the dipolar field B.1.

Now we consider the influence of the moment distribution on the width of the internal field.

It is clear from equation B.1 that a single moment would contribute to the field within the

plane perpendicular to the direction of the moment. Furthermore, considering the total field

produced by all the moments within the sample, even a single component of the moment (x, y

or z) would contribute to the field in all 3 directions due to the variation of the magnitude of

this component of the moment between different atoms. Therefore as a rough approximation,

the 3 (i.e. x,y,z) components of the moment can be seen as 3 random variables contributing

independently to the internal field. Namely,

Bdip (M) = Bdip (MX + MY + MZ) (B.5)

= Bdip (MX) + Bdip (MY) + Bdip (MZ) . (B.6)

Following this approximation, the moment distribution in the induced phase can be approx-

imated as consisting of only z component, with a random variation in its magnitude around

a mean value. We assume that the variation in the magnitude of the moment are similar

between the ordered phase and the induced magnetic phase. Thus in the induced phase, the

internal field was produced by only 1 random field variable Bdip (MZ) instead of the three

in equation B.6.

According to the statistical rules, the sum of n identical random variables with standard

deviation σ would give a new random variable with standard deviation of
√
nσ. In our case,

as analyzed above, the internal field of the ordered phase equals to the sum of 3 random

(vector) field variables, and the internal field of the induced phase equals to 1 random field

variable. Therefore assuming that the magnitude of the field variables in the two phases are
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the same, then the field width of the ordered phase is expected to be
√

3 times larger than

that of the induced phase.

Therefore, considering that the field width is also proportional to the magnitude of the field,

which is proportional to the magnitude of the moment, we have

∆Bordered

∆Binduced

=
λordered

λinduced

=
Mordered

Minduced

·
√

3, (B.7)

where ∆B, λ and M stands for the width of the internal field, the relaxation rate in the

transverse field µSR spectra and the static moment size. Equation B.7 provide a simple way

to estimate the internal field width independently from µSR and from magnetization.
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Appendix C

The linear relation between moment

and field width

As mentioned from the discussion of figure 3.14, the ratio of the relaxation rate and the

moment are almost identical for the paramagnetic and the induced ferromagnetic phase.

Since the relaxation rate is approximately proportional to the width of the internal field,

and that the magnetic moment is proportional to the susceptibility, this ratio give a measure

of the coupling strength between the magnetic susceptibility and the local field at the muon

site. In specific, the total (static) field at a muon site is defined as Martin et al. [2016]

Blocal = Bdipolar + Bcontact, (C.1)

where Bdipolar is the dipolar field and Bcontact is the hyperfine contact field between the muon

and the Mn moment. Equation C.1 can be rewritten in an approximate form by replacing
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the field terms with their expression:

Blocal =
µ0

4π
·
N∑
i

[
3ri (mi · ri)
|ri|5

− mi

|ri|3

]
+
Acont

N

N∑
i=1

mi

≈

(
µ0

4π
·
N∑
i

[
3ri (mi · ri)
|ri|5|mi|

− mi

|ri|3|mi|

])
·
∑N

i=1 mi

N
+ Acont

∑N
i=1 mi

N

=

[
µ0

4π
·
N∑
i

[
3ri (m̂i · ri)
|ri|5

− m̂i

|ri|3

]
+ Acont

]
·m.

(C.2)

Here ri and mi are the position and static moment of the ith Mn moment. Acont is the

hyperfine coupling constant, and m =
∑N
i=1 mi

N
is the average static moment of Mn. Since

that the dipolar field can be approximated by the product of the magnetization with a pre-

factor that depend only insensitively on the orientation distribution of the Mn moment, and

that the hyperfine constant Acont depends on the microscopic coupling mechanism of the

field and the moment, the total pre-factor is expected to be a constant for a given magnetic

phase. In such case, Equation C.2 shows that for the same magnetic phase, the local field

could be roughly proportional to the local moment.
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Appendix D

Interpretation of the dynamic PDF

This chapter discussed in detail the various features of of the dynamical PDF of a diatomic

molecule and address the physical origin of each of them. We also discuss the understanding

of g(r, ω) as spatial expansion as well as spectrum of the correlation function g(r, t) of the

system, and try to address its physical meaning for a general lattice system.

D.1 Understanding the dynamic PDF

D.1.1 Discreteness of the energy spectrum

The discretization of the energy spectrum into n · ω0 is a consequence and reflection of the

periodicity of the atomic movement. For a diatomic molecule, the only frequency of its

dynamic is the characteristic frequency ω0. For a lattice system with more complex dis-

persion relation, the discretization of energy spectrum implies the presence of a dominant

frequency, namely a dominant vibration frequency of the atoms in a highly aperiodic back-
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ground motion. Otherwise the dynamics of an atom in a lattice system can be quite aperiodic

due to involvement of many independent harmonic modes with different frequencies, and a

somewhat continuous energy spectrum in g(r, ω) can be expected.

The high spectral weight of g(r, ω) at high ω is a reflection of the sharpness of g(r, t) as

a periodic delta function (Dirac comb) of t. If we fix r and regard g(r, t) as a function of

time, then the sharpness of the temporal evolution of the atomic density at a given position

implies a broad frequency spectrum of the dynamic (in order to construct such sharp temporal

variation).

Here a molecule with 2 atoms its motion is strictly periodic in time, and consequently its

dynamic PDF is highly localized in frequency space. However, as the number of atoms

and thus the number of vibration mode increase, a linear combination of these independent

vibration mode results in decrease of the periodicity of the motion thus decreases, and the

frequency spectrum of the atomic motion starts to broaden and disperse. In such case,

more smooth and continuous functions instead of the delta function are needed for a good

description of g(r, ω): the atomic dynamics becomes more irregular/aperiodic, the temporal

pair distribution g(r, t) also becomes less periodic, and a direct consequence of this is the

more complicated form of g(r, ω) as its Fourier transform.

More generally, a dynamical lattice system is better described by Q and ω only if it’s spatial

and temporal periodicity is high. In other words, if the distribution of atoms are highly

periodic and the system is involved in only a few collective vibration modes, then S(Q,ω) is

an ideal description. Otherwise if the system is highly disordered and is involved in multiple

vibration modes, then g(r, t) is more useful. Likewise, g(r, ω) is most convenient in describing

the density fluctuation of small atomic clusters with highly regular motion. When number of

atom goes up and the atomic dynamics become more irregular, S(Q, t) and g(Q, t) becomes
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more powerful. The increasing difficulty in extracting g(r, ω) from g(r, t) as the number of

atom goes up, which amounts to solving the zeros of sum of sine functions with different

periodicity, is a reflection of the break-down of g(r, ω) as a simple description of the dynamics

of system.

In brief, the discreteness and high spectral weight of g(r, ω) at high ω are direct consequences

of the sharp, periodic temporal correlation function g(r, t) of the system.

D.1.2 ω as frequency/energy of a single phonon

Here for the case of diatomic molecule, the presence of high frequency vibration modes in

g(r, ω) comes from the expansion of a sharp and localized function (delta function) with the

set of nonlocal and smooth basis functions, i.e. Fourier series. As will be further discussed in

Sec. D.1.3, in order to construct spatial/temporal distribution function with such sharpness,

it is necessary to include components with multiple spatial frequencies. In other words the

delta function dynamic PDF for diatomic molecule implies atomic vibrations at all frequen-

cies. The multiple frequency components reflects the continuous and oscillatory component

of the density dynamics. These reflect the actual dynamics of the atoms, and should thus be

interpreted as the characteristic frequencies of the phonon instead of the amount of energy

transfer. As mentioned in Sec. 6.2.1, ω as frequency and as energy is equivalent if we consider

only single phonon process, but are different if multi-phonon process is involved.

According to the above discussion, for diatomic molecule, ω = nω0 stands for the energy

of a single normal mode with frequency nω0, instead of n normal modes with frequency

ω0. Within this single phonon picture, the frequency ω can be understood as either the

frequency of the spatial dynamics of the atoms or as the energy of the lattice dynamics.

Correspondingly, g(r, nω0) stands for the pair distribution function at the presence of one
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phonon mode with frequency nω0 instead of n phonons with frequency ω0, and S(Q,ω) comes

solely from the inelastic scattering of a single phonon.

More over, if the argument above is reasonable, then the interpretation from Egami and

Dmowski [2012] based on multi-phonon process is irrelevant. In fact, multi-phonon process

is known to give only smooth scattering and is generally not considered for the structural

analysis using dynamic PDF Egami and Billinge [2012]; Billinge and Thorpe [2002]. As an

example, a calculation of the multi-phonon contribution in fcc lattice was given in Billinge

and Thorpe [2002], Ch.2.

D.1.3 g(r, nω0) as expansion of δ spatial correlation function

The periodicity of g(r, ω) at each n · ω0 is a reflection of the spatial periodicity of the

distribution of the atoms over time. And this comes from the periodic motion of the atoms.

For a fixed time t, g(r, t) can be regarded as the spatial correlation function of atomic density

(at time t), which for a diatomic molecule is a delta function of r. Therefore since g(r, t)

depends on integer multiples of ω0, the above derived form of g(r, ω) can be viewed as a

function of r, and be interpreted as a series expansion of the spatial function g(r, t) at a

fixed time t, with ω as a label for the expansion function. By definition, we have∫
g(r, ω)dω =

∞∑
n

g(r, ω = nω0) = g(r, t = 0) = δ(r −R). (D.1)

Since g(r, t = 0) is a delta function of r with sharp spatial variation, it is expected that the

above summation over smooth functions g(r, nω0) as its series expansion contains multiple

spatial frequencies extending to very large frequency. And the increasing spatial periodicity

of g(r, nω0) as n increases is both a consequence and reflection of the increasing temporal

periodicity of the atomic vibration at frequency nω0. If we let ω0 → 0, then we see clearly
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that the summation should converge to the spatial delta function g(r) = δ(r − R). As will

be discussed in detail in the next section, g(r, ω) for a diatomic system has the general form

g(r, ω) =

∫ ∑
n

δ(t− tn)

|∂f
∂t

(tn)|
eiωtdt =

∑
n

1

|∂f
∂t

(tn(r))|
eiωtn(r). (D.2)

where tn(r) refers to the n th zero of r− f(t), and is a function of r. The exponential factor

shows that the increasing spatial frequency of g(r, ω) as a function of r is a direct consequence

of the increasing temporal frequency comes from the increase of temporal frequency ω.

It is noteworthy that for the case of diatomic molecule, each g(r, nω0) as a spatial function

is independent of the value of ω0. This reflects the fact that the shape of g(r, t) does not

depend on the value of ω0 if taken as a function of r. No matter what value ω0 takes,

the series expansion is unique if the shape of the spatial function to be expanded is given.

Meanwhile, as the frequency Fourier transform of a periodic delta function (Dirac comb),

g(r, t) does change in a nontrivial manner when viewed as a function of time t. Essentially

ω0 is separation between the delta peaks in the Dirac comb function g(r, ω).

D.1.4 g(r, ω) as spectrum δ of temporal correlation function

From the definition of Fourier transform, g(r, ω) stands for the frequency spectrum of the

motion of the atom in the entire history its dynamics (t ⊂ [0,∞]). Intuitively, the value

of g(r, ω) at each position r reflects the probability that the atom pass through position r

with frequency ω. The more regular the atom oscillates around position r with frequency ω,

the larger the value of g(r, ω). Another approximate but intuitive way to understand is, if

we look at the density of the atoms in motion (g(r, t)) with a camera with a special shutter

that open and closes at a frequency of ω, then g(r, ω) is the atomic density we see from
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the camera: it is the time-averaged distribution of the atoms that oscillates in space at a

frequency of ω.

For a diatomic molecule oscillating with frequency ω0, the fact that g(r, ω) is always enhanced

at r = ±u0, namely when the atom was furthest from the center, for all ω is because

of the zero velocity at these special positions. From the expression of g(r, ω) there is f ′ =

f ′(tn(r)) = v(tn(r)) in the denominator, which stands for the velocity of the atom at position

r and time tn(r), and thus results in singular value of g(r, ω) when the velocity is zero at

these special positions. This have been shown from simulation Egami and Dmowski [2012].

Furthermore, at the end points the atoms also appears regularly and strictly with frequency

ω0, thereby we expect peak value of the g(r, ω0) to appear at r = ±u0. Similarly, the atom

appears regularly and strictly with frequency 2ω0 at the center position, and thus we expect

peak value of g(r, 2ω0) to appear at r = 0. Likewise, the atom appears with frequency 3ω0

at positions r = ±0.5u0, and thus we expect g(r, 3ω0) to have peak value in these positions.

This can be seen clearly from Fig. D.1: the peak positions of g(r, nω0) for n = 1, 2, 3 is exactly

where both of the the two sets of zeros of r − sin(ω0t) falls on the curve of sin(nω0t + φ)

but not on sin(ω0t + φ) if n 6= 1. We note that since each individual set of zeros appears

regularly with a frequency of ω0 and thus contributes equally to each frequency component

at all positions r, it is at those positions where both sets of zeros falls onto a single frequency

component sin(nω0) that the value of g(r, nω0) is enhanced compared with other positions.

For ω = ω0, such positions are r = ±u0. For ω = 2ω0, such positions are r = ±u0 and r = 0.

For ω = 2ω0, such positions are r = ±u0 and r = ±0.5u0, etc.

From the above analysis we see that for a system of vibrating atoms, g(r, ω) can be interpreted

as the probability that a moving atom appears at position r periodically with a period of

2π/ω (or, with a frequency of ω). Or put in another way, the peaks in g(r, ω) are those
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Figure D.1: Periodic motion of diatomic molecule. The dashed lines are sine functions

plotted as guide to the eye to show the periodic distribution of the zeros of r − f(t), where

f(t) describes the temporal dynamics of the atom.

positions where the atomic density oscillates in time with frequency ω. This statement is

true if we consider only single phonon process: in this case the energy ω excites only one

phonon with the same frequency ω within the system, and thus ω as an energy transfer can

also be interpreted as the frequency of the harmonic vibration mode of the atoms.

For diatomic molecule with delta-function type atomic density, the different frequency com-

ponents of g(r, t), g(r, ω), are all consequence and reflections for the same harmonic motion

of the system. Conversely, the existence of the certain spatial profile of g(r, ω) at each en-

ergy level nω0 as a whole implies the existence of such harmonic motion at frequency ω0

between the local pair of atoms with singular density. The singular atomic density of the

system implies sharp temporal correlation function and thus broad frequency spectrum of

its dynamics. After all, a Fourier transform of g(r, t) over time means to perform a temporal

sampling of the entire history (meaning t from 0 to ∞) of the time-dependent distribution

of atoms at a given frequency ω. For zero frequency ω = 0, it gives the time-average of the
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atomic distribution. For small frequency δ ·ω0, the period for the averaging is still very long

and thus the atomic distribution would appear similar to g(r, ω = 0). For intermediate nω0,

both the slowly and the fast varying component of g(r, t) will cancel out with the ’shutter’

with frequency nω0, and only the part of the atomic density which fluctuates at a frequency

close to nω0 contributes the most to g(r, ω).

D.1.5 Effects of correlated motion: longitudinal phonon in the

weak correlation limit

Before presenting the detailed analysis of the effect of correlated motion, here we briefly

review the case of the weak correlation limit, in which the effect of correlated thermal motion

can be properly described by a peak shift plus broadening effect. The mathematics has been

worked out in Egami and Dmowski [2012], and here we discuss the physics behind them.

The thermally averaged dynamic PDF for a general lattice system can be expressed as

〈〈g(r, E)〉〉 =
1

N〈b〉2
∑
µ,ν

bµbν

∫
〈〈δ(r −Rνµ + uν(0)− uµ(t))〉〉eiωtdt, (D.3)

where

uµ =
1√
N

∑
k

uke
i(θk+kRµ−ωkt), (D.4)

and

uν(0)− uµ(t) = (uν(0)− uµ(0)) + (uµ(0)− uµ(t)) (D.5)

= (uν(0)− uµ(0)) +
1√
N

∑
k

uke
ikRµ(1− eiωkt). (D.6)

Here uµ(t) refers to the displacement induced by thermal phonon. The approximation made

in Egami and Dmowski [2012] is to assume that the second term from the above result
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equates to a random number. Explicitly, they assumed that:

eiωkt =


1, if 2nπ ≤ ωkt ≤ (2n+ 1)π

0, otherwise.

Physically, this is to assume that the thermal displacement of atom µ is random within the

period of interest. Under this assumption, the quantity uµ(0)− uµ(t) essentially becomes a

random function of time. It is then argued in Egami and Dmowski [2012] that in this case the

effect of regular phonons is to broaden the PDF peaks. However, as will be analyzed below,

this argument applies only to longitudinal phonon, corresponding to the weak-correlation

limit. A study of the general effects of regular phonons is developed in McQueeney [1998],

and will be analyzed in detail below.

D.1.6 Effects of correlated motion: longitudinal phonons

The effect of the vibration of the lattice on the PDF can be understood with a qualitative yet

intuitive physical picture. It can be categorized according to the level/degree and sign of the

correlation of the atomic displacement. The sample as a thermal dynamic system of atoms

displays random thermal motion which can be decomposed into normal modes (phonon).

The effect of random thermal motion is summarized in the Debye-Waller factor in the elastic

structure factor, and is discussed in a separate section. These random motions are especially

important in elastic scattering process, and their effect turns out to be broadening the elastic

PDF peaks into a gaussian function Chung and Thorpe [1997]. On the other hand, during

inelastic scattering process one or more phonon modes are explicitly excited by and involved

in the coherent scattering process with the incoming neutron/x-ray beam. The coherent

displacement of the atoms within these excited modes comprises the correlated motion. The

analysis of the dynamic PDF will thus manifest the influence of the (local and/or collective)
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correlated motions in the system. In fact the one-phonon inelastic structure factor depends

explicitly on the atomic configuration in the correlated motion McQueeney [1998].

Meanwhile, the atomic configuration (e.g. longitudinal or transverse) of the specific type

of thermal motion may have very different effect on the PDF, as will be discussed below.

Thus the sign (positive/negative), the degree of correlation (strong/weak), and the atomic

displacement (longitudinal/transverse) are 3 important characters of the thermal motions

when considering its effects on the PDF. To have a clear conception of the influence of

correlation, we discussed the extreme cases of correlated/uncorrelated motions, and consider

for each of them the positive/negative and longitudinal/transverse cases respectively.

Correlated motion of the lattice corresponds to well-defined phonon modes, and uncorre-

lated motion describes the random motion of the atoms as inherent to any statistical sys-

tem. Intuitively, a stronger positive correlation means, for both longitudinal and transverse

displacement, that the atoms binds more rigidly with each other at their static distance Rij

during their (transverse/longitudinal) movement. In other words the atoms tends to move

in phase under stronger positive correlation. And this, as will be discussed in detail below,

have very different effects for longitudinal and transverse correlation.

In this section we discuss in detail and show that the collective and local longitudinal

phonons, i.e. the correlated motion of the the atoms in the longitudinal direction, have

opposite effects on the PDF. We show that the local and lattice phonon induces negative

and positive density correlation, respectively, and thus results in opposite modifications to

the PDF.

As shown in Sec. 6.2.2, for both classical and quantum harmonic oscillator with longitudinal

motion, the effect of local longitudinal phonon is to split the PDF peaks into certain number

of satellite peaks, depending on the energy of the phonon. For instance, the distance between
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the two peaks of g(r, ω = ω0) reflects the amplitude of the harmonic vibration, u0, which after

thermal averaging corresponds to the range of the thermal motion of the atom, u0 ∼ 〈u2〉 12 .

The peak-splitting effect is are also clear from the simulated dynamic PDF for diatomic

molecule Egami and Dmowski [2012].

In a lattice system the longitudinal local phonon will split the PDF peak as energy in-

creases McQueeney [1998]. As shown in Fig.1 in McQueeney [1998], the lowest order effect

of a single longitudinal phonon in a lattice system is to split the uncorrelated PDF peak

into two peaks, separated roughly by the thermal vibration amplitude of the atom, 〈u2〉 12 .

Specifically, the expression of the one-phonon correction to g(r, ω), g1(r, ω) for lattice system

is McQueeney [1998]

g1(r, ω) ∼
∑
ij

Fij(ω) (K0 +K2) (r −Rij)− FL
ij (ω)K0(r −Rij), (D.7)

with

Kn(r −Rij) =
2r

π

∫ ∞
0

Q3 sin(Qr)jn(QRij)e
−Wi−WjdQ, and Wi = Q2〈u2

i 〉/2. (D.8)

Here jn(x) stands for the n th order spherical Bessel function. Here Fij(ω) is the correlation

function of the total displacement of atoms i and j. FL
ij (ω) is the correlation function of

the longitudinal displacement and represents the correction to the effects of Fij(ω). Fij(ω)

and FL
ij (ω) represents the two dominant (of lowest order in the expansion) effects of phonon

on g(r, ω). It should be noted that while only longitudinal phonon contributes to FL
ij (ω),

both longitudinal and transverse phonon contributes to Fij(ω), the total correlation between

displacements, and therefore the actual effect of longitudinal phonon is described by the

superposition of K2 and K0 + K2, as simulated in Fry-Petit [2015]. However since K2 is

much larger in magnitude than K0 +K2 (see McQueeney [1998]), here for demonstration we

take K2 as the exemplary effect of longitudinal phonon. The expressions for K2(r−Rij) and

(K0 +K2)(r −Rij) has clear physical meanings as detailed below.
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From the physical point of view, a positive displacement correlation means that the atoms

tends to move towards the same direction, and thus tends to shorten the atomic distance.

This is understood as the correlated motion of atoms (Jeong et al. [2003] has a very intuitive

illustration of this). Mathematically, since (K0+K2)(r−Rij) corresponds to a function biased

on the lower-distance side, a positive value of Fij(ω) would thus shift the peak towards lower

distance. This describes the lowest order effect of correlated motion of atoms.

Secondly, a negative correlation between the local longitudinal displacement, as has been

shown in the example of diatomic molecule, tends to broaden/split the PDF peak. Here

negative means that the motion of the atoms involved are completely out of phase (i.e. with

phase difference of π). Intuitively, the relative displacement between two atoms is enhanced

if the motion of the two were negatively correlated: the range of relative displacement were

doubled in the case where the atoms move in opposite direction, and this naturally doubles

the width of the PDF peak, which represents the range of the thermal motion.

The 1-dimensional atomic chain can again be used to illustrated the effect of negative longi-

tudinal correlation. Suppose there’s one longitudinal optical phonon present in the system

with frequency ω and amplitude ∆u, while the equilibrium/static distance between nearest

atoms is u0, the if we take a snap-shot of the vibrating lattice at time t and calculate its PDF,

it will contain two peaks at r = u0 ± sin(ωt)∆u, respectively (this can be seen by directly

plotting the atoms in the chain). This means that a negative longitudinal correlation tends

to broaden and even split the peaks in the uncorrelated PDF, as discussed in detail below.

The negative local correlation between the longitudinal displacement of atoms, reminiscent

of that in the one dimensional diatomic molecule, is realized in the local (instead of the

global) phonon mode in a lattice system, and this explains why local phonons in local and

lattice system has similar effect: they both induce local motions that are out of phase. As
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an example of a local phonon, the optical phonon modes at the zone boundaries corresponds

to a phase difference of π between neighboring atoms, and is highly local considering its zero

group velocity (see also the discussion in Egami and Dmowski [2012]). In other words, the

dynamics of an diatomic molecule exemplifies the effect of local phonon mode in a lattice

system. Mathematically, the function K2(r − Rij) has peak around Rij but a dip at Rij.

Since in local phonon mode the atoms tends to move out-of-phase, or more specifically, a

negative correlation between their longitudinal displacement, this results in a negative value

for the longitudinal correlation function FL
ij (ω) which then contribute to a split of the PDF

peak. Moreover, if FL
ij (ω) is small, then the addition of the term FL

ij (ω)K2(r − Rij) to the

original PDF peak is likely to broaden the peak. On the other hand if FL
ij (ω) is large, then

a positive PDF peak is likely to be neutralized by FL
ij (ω)K2(r−Rij) and thus become split.

Therefore we see that for a lattice system, the effect of local phonon with frequency ω can

be either peak-broadening or peak-splitting, which depends on, instead of the amplitude of

thermal motion, the correlation strength between the local displacements measured by the

function FL
ij (ω).

In a lattice system the longitudinal local phonon tends to have opposite effect compared

with the longitudinal lattice phonon. The overall effect of the lattice phonons is in general

to move the atoms in phase. In this case the PDF peaks will be sharpened compared with

the case where the thermal motion of atoms are uncorrelated. Intuitively, the displacement

of one atom is offset by that of the other atom if the motion of the two were positively

correlated, i.g. tends to move in phase, and thus the distance between the atoms tends to

remain the same as they move, which is to say that the corresponding PDF peak tends to be

sharper. Mathematically, since the positive correlation between longitudinal displacements

results in positive value for correlation function FL
ij (ω), the result is to narrow especially the

nearest-neighbor PDF peaks. In contrast, for atoms that are more distant from each other

237



APPENDIX D. INTERPRETATION OF THE DYNAMIC PDF

such correlation are more likely to induce motion that is out-of-phase: the phase difference of

the motion of different atoms involved in phonon motion increase as their distance increases.

In this case the correlation is more likely to be negative, which resembles that in a diatomic

molecule and in principle should result in a broadening/split instead of narrowing of the

PDF peak. In other words the distant PDF peaks are more likely to be broadened instead

of narrowed by the correlation induced by the lattice phonon. These remote peaks are,

however, not usually of our primary interest. Examples of correlated motion in lattice can

be found in Egami and Billinge [2012]; Reichardt and Pintschovius [2001]. Such correlation

effect induced by lattice phonon is also shown to be quite insensitive to details of the phonon

dispersion Reichardt and Pintschovius [2001]. According to the equations in McQueeney

[1998] the amount of sharpening/splitting caused by phonon is determined by the mean-

squared atomic displacement, 〈u2〉 12 , through the Debye-Waller factor, this implies on the

one hand the insensitivity of thermal motion 〈u2〉 12 to the arrangement and interaction of

the atoms (the explicit expression for 〈u2〉 12 can be found in Chung and Thorpe [1997]). On

the other hand, this also implies that the integrated displacement caused by the 1-phonon

contribution to the PDF, summing over all lattice phonon states, is quite insensitive to the

details of the dispersion and density of state, and is dominated by the contribution from

the low energy acoustic phonon: this is evident since the shape of the displacement function

K(r −Rij) is independent of the structure of the material McQueeney [1998].

We note that the dominant forms of correlated motion in large and small systems are acoustic

and optical phonons, respectively, and thus the PDF peaks of these systems tends to exhibit

opposite variation under the correlated motion in the system. In specific, it is only in

crystalline material with large periodic lattice that the acoustic phonon modes, corresponding

to highly in-phase collective motion of the atoms, are sustained. These acoustic phonons

also turns out to be the dominant form of correlated motion in these materials, and the PDF
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peaks under these vibration modes thus usually displays sharpening instead of split. This

is supported by the fact that peak-sharpening is consistently reproduced for qualitatively

different phonon dispersions in crystalline materials Reichardt and Pintschovius [2001]. On

the other hand, in molecular or cluster materials with fewer atoms, the normal modes usually

corresponds to highly out-of-phase motion of neighboring atoms, of which the extreme case

is the harmonic vibration of the diatomic molecule, and thus the dominant correlated motion

in these materials are usually optical phonons that exists on a local scale. Therefore in these

molecular systems the PDF broadening/splitting effect can be much more pronounced.

With the above argument the bifurcation of the dynamic PDF peak as energy increases can

be readily understood. At low energy the phonons are mostly acoustic corresponding mostly

to positive correlation between atoms and thus have a peak-narrowing effect. As energy

increases to that of the optical/semi-local phonons near the zone boundary, these phonons

induces negative correlations and thus tends to split the PDF peaks. Therefore the effect of

longitudinal phonons evolves from peak-narrowing to peak-splitting as energy increase, and

this is represented as the split of the dynamic PDF peak with increasing energy.

We noticed that in the formalism of Ref. McQueeney [1998] only the lowest order/dominant

effect of the longitudinal correlation is present. This is due to the approximation scheme

used in evaluating the orientational average of S(Q, ω) for isotropic powder sample. In

the approximation to the average of the complex phase factor, only the lowest order term

in the Bessel function expansion form of the complex exponential intermediate scattering

function was retained in the calculation of the spherical average (see Carpenter [1967] for

details of the approximation). Once the higher order terms in the expansion was retained,

the spherical averaging of the structure function is likely to yield the higher order terms of

spatial Bessel function, which reproduces the fast oscillating spatial profile in the g(r, ω) of
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diatomic molecule at high energy as the effect of local longitudinal oscillation in a diatomic

molecule.

Physically, the higher order terms in the Bessel function expansion of S(Q,ω) corresponds to

more orientationally-resolved displacement-displacement correlations, in addition to the 0 th

order Bessel function j0(r) which measures the correlation strength of the parallel projection

and is relatively insensitive to the absolute orientation of the displacement. In fact since

the one-phonon structure function S(Q,ω) in general can be written as a atomic sum over

function of the form Fij(ω)Iij(Q) Lovesey [1986], g(r, ω) as the spatial Fourier transform of

S(Q,ω) has the form
∑

ijK
′
ij(r)Fij(ω), and this basic form of S(Q,ω) and g(r, ω) applies to

both small clusters and periodic lattice. It is the weight function Fij(ω), which measures the

degree of atomic correlation, that depends on the specific arrangement of the atoms. The

function K
′
ij(r), which specifies the actual effect of atomic correlation on the distribution

of the density, remains the same for any structure. In other words the influence of atomic

vibration on the PDF of the system is qualitatively the same for both atomic cluster and

lattice systems.

Last we note that the superficial separability of the spatial and temporal part in the expres-

sion of S(Q,ω) implies the separability of the spatial distribution and temporal dynamics

of the density. However a closer look at the equation reveals that the two correlates closely

with each other via the delta function δ(ω−ω(q)). And this reflect the fact that in solids the

spatial distribution and the temporal dynamics of the atomic density is inherently correlated

and is all contained in the dispersion ω(q) of the material.

In brief, the influence of the correlated motion (e.g. local and lattice phonons) on the PDF

is determined and can be understood by analyzing the details of the correlation, e.g. its

sign and strength, induced by the atomic motion. In both atomic clusters and periodic
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lattice system, local longitudinal phonon tends to split (or broaden) the PDF peaks by a

spatial distance on the order of the amplitude of the atomic thermal vibration. And whether

the effect is peak-broadening or peak-splitting depends on the correlation strength of the

phonon mode, which is chiefly determined by the density of state. The difference in the

effect of local and lattice phonon can be understood as a result of negative and positive

correlation of the motion: where as the local phonon induces negative correlation and thus

peak splitting/broadening, the lattice phonon tends to bring in positive correlation and thus

result in peak narrowing. The higher order effects of the positive correlation induced by

the lattice phonon can be understood with the model of diatomic molecule with negatively

correlated motion, as the effect of correlation in the two systems differ only by a minus sign.

D.1.7 Effects of correlated motion: transverse phonons

The effect of correlation in the transverse displacement, induced by transverse phonons, is to

shift the PDF peak to lower or high distance. This can also be understood in an intuitive way.

An important difference between longitudinal displacement and transverse displacement is

that, while longitudinal displacement increase or decrease the atomic distance when it is

positive or negative, respectively, a transverse displacement, no matter positive or negative,

always increases the atomic distance (with respect to that of the static lattice). This can

be easily seen by working out the geometry. Take the case of diatomic molecule, a positive

correlation between the transverse displacement of the atoms tends to bind atoms together

in the transverse direction and thus reduces their relative transverse displacement. Since

the atomic distance is reduced when the relative transverse displacement decreases, positive

transverse correlation of atoms decreases the atomic distance and shift the PDF peak to

lower-distance side. Conversely, a negative transverse correlation tends to repel the atoms
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along the transverse direction and thus increases the (average) atomic distance. We note that

since transverse phonon only contributes to Fij, which is much smaller than FL
ij , therefore

whenever the peak-splitting becomes dominant, it implies the presence local phonon mode

exclusively (not mingled with the effect of longitudinal phonon).

This can also be understood from the distribution of atom at the presence of thermal motion.

Specifically, the distribution of one atom with respect to the other under longitudinal thermal

motion was centered at their static distance, Rij, with a variance of ±〈u2〉 12 , and a positive

correlation tends to shift the lower and higher bound of the position towards the center. On

the other hand, the distribution under transverse motion was centered around Rij + 〈u2〉 12 ,

with a lower bound of Rij and a higher bound of Rij + 2〈u2〉 12 , and a positive correlation

reduces the variation of random thermal motion 〈u2〉 12 and shifts the upper bound and the

center towards the lower bound, which corresponds to a shortening of the average distance.

From the above analysis we know that while transverse acoustic phonon gives positive trans-

verse correlation and reduces the atomic distance, the transverse optical phonons or local

modes gives negative transverse correlation and increases the distance.

D.1.8 Effect of uncorrelated thermal motion

The Debye-Waller factor is known to describe the effect of random thermal motion of the

atoms on crystallographic analysis Egami and Billinge [2012]. Since the Debye-Waller factor

damps out the Bragg peak at high Q, namely Q ≥ 2π

〈u2〉
1
2

, it is expected that the real

space peaks becomes broadened since the sharpness of a peak is critically determined by its

high frequency component. Physically, a random thermal vibration with amplitude around

〈u2〉 12 would smear out any spatial density correlation with period smaller than 〈u2〉 12 , or
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equivalently with wave vector larger than 2π

〈u2〉
1
2

, and this is precisely the effect which the

Debye-Waller factor imposes on the scattering spectra.

The thermal motion also influences the effect of local phonon on the PDF. The amount of

the peak split caused by local phonon are also on the scale of the thermal displacement of

the atoms. As a rough estimation, the spatial spread/scale of the integrand in Kn is set by

the width of the gaussian function e−Wi−Wj . Since the width of e−Wi−Wj = e−Q
2(〈u2i 〉+〈u2j 〉)/2

is approximately 2
1
2 (〈u2

i 〉 + 〈u2
j〉)−

1
2 , the spatial spread of g(r, ω) can be estimated to be

∼ π(〈u2
i 〉 + 〈u2

j〉)
1
2 2−

1
2 (see Sec.4.2-4.3 in Lovesey [1986] for more discussions on the Debye-

Waller factor W ). This estimation qualitatively agrees with the actual plot of the K2(r−Rij)

function in McQueeney [1998]. At higher temperature and thus larger thermal motion, the

K2(r−Rij) function naturally becomes more extended in space. However since the PDF peak

itself is also broadened by the same amount, the effect of the phonon will remain qualitatively

the same (either splitting or broadening the PDF peak), although now the dynamic PDF

g(r, ω) tends to appear smooth and featureless on the whole 2d parameter space.

The random thermal motion and the correlated motion of the atoms are intimately correlated

with each other. This is expected since both of them describe the effect of phonon on the

PDF, and are different in the sense that the former represents the averaged effect of many

thermally populated phonons, and the latter describes the effect of distinctly excited phonon

in a coherent scattering process. This is clearly seen from their expression (see Chung and

Thorpe [1997] for expression of 〈u2
ij〉

1
2 , and McQueeney [1998] for Fij(ω) and FL

ij (ω)): the

corresponding terms in 〈u2
ij〉

1
2 can be derived by simply summing Fij(ω) and FL

ij (ω) over

all energies. From this point of view the mean-squared atomic displacement 〈u2
ij〉

1
2 is also

a measure of the over all correlation strength between the displacements of atoms i and j,

induced by the thermally populated phonons in the system.
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D.1.9 Summary and the physics of g(r, ω)

The expansion form of g(r, ω) from the Fourier transform of g(r, t) can be understood as

the expansion of either the temporal correlation function with parameter r, or the spatial

correlation function with parameter t. Expressed in either way, it reflects the same fact of

the delta-function type atomic density, which gives a delta-function type spatial-temporal

correlation function g(r, t) for a vibrating molecule. In other words for the diatomic molecule,

the presence of both the high orders of g(r, nω0) as well as the periodic spatial profile of each

g(r, nω0) as a function of r is a result of the sharpness of the spatial distribution of the

spatial-temporal correlation function g(r, t).

Based on the above analysis we attempt to address the physical meaning of g(r, ω). If there

exist in a lattice system a local phonon vibration, namely the harmonic vibration of local

atomic pairs, with frequency ω0 in the measured sample, then as we look at the atomic

density of this system with frequencies close to nω0, we should in principle be able to see

patterns from g(r, nω0) close to that of a harmonic diatomic molecule with frequency ω0. If

we only consider single phonon process, then the energy transfer into the system is also the

frequency of the vibration of the atoms, and in this case g(r, ω) can also be interpreted as the

atomic density correlation at the presence of phonon modes with frequency ω. Considering

that g(r, ω) is one component of the regular PDF g(r, t = 0) which itself is a correction over

the uncorrelated PDF g(r, ω = 0), g(r, ω) represents the correction to the uncorrelated PDF

due to variation of atomic density by lattice vibration at frequency ω.

In general, the quantities that have apparent intuitive interpretation are the time-averaged

PDF, g(r, ω ∼ 0), and the real-time PDF, g(r, t), a special case of which is the regular PDF,

g(r, t = 0). In general g(r, ω) with non-trivial ω reflects the component of the spatial density
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correlation that oscillates with frequency ω, and the spatial variation of g(r, ω) at each

frequency ω, for example the splitting of the PDF peak at ω = nω0 for diatomic molecule, is

determined by and itself an reflection of the temporal periodicity of the motion, and does not

have an intuitive physical interpretation apparent as that of g(r, ω = 0) and g(r, t). However,

although the intuitive meaning of g(r, ω) at high ω is less apparent, g(r, ω = ω0), namely the

first order correction to the PDF due to correlated motion, has the intuitive interpretation of

peak narrowing/split as illustrated by the example of 1d atom chain and diatomic molecule.

After all g(r, t = 0) includes all the influence of the lattice dynamics on the PDF, and g(r, ω)

tells how this influence happen specifically at each energy.

D.2 Dynamic PDF and experiment

D.2.1 Understanding the dynamic PDF spectrum from experi-

ment

With the knowledge above we can explain the observed dynamic PDF from Nickel Egami

and Dmowski [2012]. We note that the elastic PDF g0(r, ω = 0) as one component of

the instantaneous PDF g(r, t = 0) exists only at zero energy, and thus the dynamic PDF

with any non-zero energy contains and should be interpreted as g1(r, ω). The presence of

strong elastic signal at non-zero energy is due to the limited resolution, which is described

as a convolution with a gaussian function. At non-zero energy, the dynamic PDF exhibits

peak that centers at and dip around the peak position of the elastic PDF. This means

that the low energy phonons are mostly long wavelength acoustic phonons which results in

positive correlation between the atoms and thus a sharpening of the elastic PDF peak. At
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certain energy level, the dynamic PDF peak at the nearest-neighbor distance split, which

corresponds to a local (zero group velocity) phonon and implies a large negative nearest-

neighbor correlation strength FL
ij (ω). The magnitude/effect of the atomic thermal motion

should in principle be the same for both local and global phonons in the same system, and

does not result in such big difference in the peak-splitting in local and global phonons.

The fact that local phonons have large correlation strength and thus results in large peak

split is due to the relation between the correlation strength FL
ij (ω) and the specific atomic

configuration in the correlated motion and the density of state at energy ω. From its ex-

pression McQueeney [1998] we know that the magnitude of FL
ij (ω) is determined by density

of state with energy ω, modulated by the correlation strength in the atomic density in-

duced by the corresponding phonon state. Therefore FL
ij (ω) is larger for states with larger

density. Meanwhile, local/non-traveling phonons usually sits around the flat region of the

dispersion and thus usually have large density of state (see e.g. the phonon DOS of Nickel

in McQueeney [1998]). Thus it is reasonable to expect that the local phonons have a large

correlation strength that splits the corresponding PDF peak, and that the fast dispersing

phonons with relatively small density of state contributes only to peak-broadening. On the

other hand, since FL
ij (ω) is enhanced by and thus peak-splitting is happening with only the

phonon mode which gives large correlation between the longitudinal displacements of the

atoms i and j, and that local/optical phonon induces large negative correlation between

nearest neighbor atoms, it is reasonable that the nearest neighbor peak in the dynamic PDF

of Nickel only start to split at the energy of the optical phonon.

The fact that the split peaks at the first harmonic energy ω0 extends to high energy, as

observed in Nickel Egami and Dmowski [2012]; Dmowski et al. [2008]and PMN Dmowski et

al. [2008] can be understood as the finite spectral weight of the local optical mode: as from
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both simulation McQueeney [1998] and experiment Birgeneau et al. [1964]. For an ideal

local mode in an ideal diatomic molecule the spectral width of the state is extremely small

(delta function). Here the finite spectral window of the peak split from the dynamic PDF

matches well with the DOS of the local mode Birgeneau et al. [1964]; McQueeney [1998],

and thus confirms the fact that the states within that energy window (30 - 40 meV) all

corresponds to highly local optical phonon modes in Nickel. This might also be attributed to

the anharmonicity of atomic vibration as well as the finite energy range for the local modes in

real materials, the effect of which is simulated for the case of anharmonic moleculeEgami and

Dmowski [2012] using a double-well potential. From this perspective the model of diatomic

molecule is particularly useful since the anharmonicity of atomic motion is not taken into

account in the common treatment based on the common treatment using the concept of

phonons.

D.2.2 Capacity of dynamic PDF in structural analysis

The dynamic PDF contains no more information than the measured structure function.

It however visualizes the effects of local and collective lattice dynamics specifically on the

atomic distribution of the systemin real space. For materials that does not exhibit significant

dynamic structural distortion, meaning that the lattice itself is not distorted beyond its usual

thermal vibration, dynamic PDF would exemplify the expected broadening and/or split of

the peaks in the instantaneous PDF as it is dispersed over energy. And example of this

in Nickel Egami and Dmowski [2012]. On the other hand for materials that does exhibit

structural distortion in the instantaneous PDF, measuring its dynamic PDF would be helpful

to identify whether such distortion is caused by lattice dynamics Dmowski et al. [2008]. In

fact since available software fits the instantaneous PDF by an elastic model, the refinement
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will not be satisfactory if there’s dominant dynamic lattice distortion which strongly shifts

the peaks of the elastic PDF, as shown in Dmowski et al. [2008]. In other words the presence

of strong dynamic local distortion can be one reason for an unsatisfactory refinement using

the elastic PDF model. On the other hand, it works better for systems without strong

dynamic local distortion since the effects of regular phonons are mostly slight variation in

the position and width of the peak, which can be accounted for by slightly varying the lattice

constance and adjusting the peak width of the elastic PDF model. It should be noted that

in this case the broadening/narrowing effect due to optical phonons are modeled by varying

the degree of random thermal motion, which gives good fit but does not reveal the real

mechanism of the peak broadening. It is only from the dynamic (energy-resolved) PDF that

the dynamic nature of the distortion is revealed.
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