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Abstract

Many geological materials, such as shale, mudstone, carbonate rock, limestone and rock salt are multi-porosity porous media
in which pores of different scales may co-exist in the host matrix. When fractures propagate in these multi-porosity materials,
these pores may enlarge and coalesce and therefore change the magnitude and the principal directions of the effective permeability
tensors. The pore-fluid inside the cracks and the pores of host matrix may interact and exchange fluid mass, but the difference
in hydraulic properties of these pores often means that a single homogenized effective permeability tensor field is insufficient
to characterize the evolving hydraulic properties of these materials at smaller time scale. Furthermore, the complexity of the
hydro-mechanical coupling process and the induced mechanical and hydraulic anisotropy originated from the micro-fracture and
plasticity at grain scale also makes it difficult to propose, implement and validate separated macroscopic constitutive laws for
numerical simulations. This article presents a hybrid data-driven method designed to capture the multiscale hydro-mechanical
coupling effect of porous media with pores of various different sizes. At each scale, data-driven models generated from supervised
machine learning are hybridized with classical constitutive laws in a directed graph that represents the numerical models. By using
sub-scale simulations to generate database to train material models, an offline homogenization procedure is used to replace the
up-scaling procedure to generate cohesive laws for localized physical discontinuities at both grain and specimen scales. Through a
proper homogenization procedure that preserves spatial length scales, the proposed method enables field-scale simulations to gather
insights from meso-scale and grain-scale micro-structural attributes. This method is proven to be much more computationally
efficient than the classical DEM–FEM or FEM2 approach while at the same time more robust and flexible than the classical
surrogate modeling approach. Due to the usage of bridging-scale technique, the proposed model may provide multiple opportunities
to incorporate different types of simulations and experimental data across different length scales for machine learning. Numerical
issues will also be discussed.
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1. Introduction

Many geological materials are porous media with a pore size distribution that spans several orders in magnitude.
For instance, a crystalline rock may contain micro-pores filled with brine inclusion inside each crystal grain, while
precipitation may exist in between grain boundaries. However, the initiation, propagation and coalescence of flaws,
defects and cracks may also produce larger pores that become flow conduits. Natural geological process or human
activities such as CO2 storage or hydraulic fractures may also induce changes in micro-structural attributes and pore
size distribution [1–3]. Since the hydro-mechanical coupling effects may vary across multiple temporal and spatial
scales due to the large spectrum of the pore size distribution, the interaction of the pore fluid in micro- and macro-pores
and that of the solid skeleton may lead to highly complex path-dependent behaviors. While it is possible to propose
multiporosity and multipermeability models for deformable porous media, these models often require a large set of
material parameters to calibrate the constitutive laws that characterize (1) the hydro-mechanical responses of the solid
skeleton, (2) the porosity-permeability relations of the macro- and micro-pores, and (3) the fluid mass exchanges
across the dual pore spaces [4–7].

This large amount of material parameters makes material parameter identification difficult and imposes high
demand on experimental data that are not always available in practice [8]. Meanwhile, the apparently good fits
between experiments and simulations may easily be attributed to the wrong reasons — excess curve-fitting and
high dimensionality of the material parameter set [9]. This so-called curse of high dimensionality (cf. Friedman
[10]) is further complicated by the new set of information afforded by recent X-ray tomographic imaging and digital
image correlation techniques. While these techniques are important for gaining new insight of porous media at the
microscopic origins, creating a consistent phenomenological interpretation for the relations between macroscopic
stress–strain curve and micro-scale grain-scale data with phenomenological model is also understandably more
challenging. For instance, the experimental data can be used in the numerical modeling process in a number of
different ways. The most trivial case is perhaps the parameter identification procedure, which can be regarded as
an optimization or constrained optimization problem where an objective function is defined as a metric to measure the
discrepancy between the benchmark (often the experimental data) and the simulation results. The optimized material
parameters are determined via a misfit function of optimization problem subjected to a number of equality or inequality
constraints (e.g. the valid range of Poisson ratio) [8,11]. The calibration process, therefore, produces the optimal set
of material parameters that minimizes the errors measured by the objective function [9].

One possible extension of this approach is to use data-driven method to replace the constitutive law itself. The
idea of using data-driven model obtained from supervised learning to replace constitutive laws for single-physics
solid mechanics problem can at least be traced back to the 90s. For instance, Ghaboussi et al. [12] discovered that
artificial feed-forward neural network can be trained to replace constitutive laws. By utilizing the self-organization
capabilities to adjust weight or strength of connections among neurons or processing units, a machine can “learn”
to reduce the error of predictions made by the network of processing units via a procedure called back propagation.
As a result, the neural network that completes the training against the training data set can be used to replace the
constitutive laws for materials, including those exhibiting rate- and history-dependent behaviors [13,14]. Another
different approach has recently been proposed in [15] where the supervised learning process typically required for
the artificial neural network and the neural network itself is completely by-passed. Instead, the authors propose a new
constrained optimization problem that minimizes the discrepancy between measured and predicted responses, while
the knowledge that is of great certainty or of high degree of belief, such as the compatibility equation and balance
principles are used as the constraints. Consequently, by finding the saddle point of the constrained optimization
problem, local data sets that are closest to the satisfaction of compatibility and equilibrium can be located to
generate incremental updates of elasticity problems. However, this method has not yet been expanded for history-
dependent (e.g. plasticity, damage) behaviors and the proper way to incorporate it without internal variables is not
clear at this point. In all the cases mentioned above, the data-driven technology is typically applied for one single
purpose — replacing conventional constitutive laws with data-driven models either through supervised machine
learning (cf. Ghaboussi et al. [12], Lefik et al. [16]) or recently variational principles (cf. Kirchdoerfer and Ortiz
[15]). In both cases, the hierarchy of the single-physics solid mechanics problems is simply a sequence as illustrated
in Fig. 1.

In the single-physics solid mechanics problem, the relationships between strain and displacement, and between
the balance of linear momentum and stress are considered “definitions”, while the relationship between the stress and
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Fig. 1. Hierarchy of single-physics solid mechanics problem. Black arrow represents a definition or a “universal principle”; red arrow represents
either a phenomenological relation or an operator that is defined not based on first principles. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 2. Hierarchy of a multi-physics poromechanics problem for fluid-infiltrating dual-porosity media. Black arrow represents a definition or a
“universal principle”; red arrow represents either a phenomenological relation or an operator that is defined not based on first principles. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

strain is clearly the only phenomenological component and therefore it is justified to be replaced by a data-driven
constitutive law [12,15,16].

This black-and-white classification between phenomenological laws and universal principles is, nevertheless, not
effective for multi-physical problems where physical quantities are linked by much complicated hierarchical relations,
such as the example poromechanics problem shown in Fig. 2.

This complexity leads to issues that are often neglected but could have important implications on the quality
of simulations. One key issue is the consistency. In particular, computational models for multiscale poromechanics
problems often rely on multiple constitutive laws to replicate the corresponding hydraulic and mechanical processes.
For example, in a reservoir simulator, one may employ a cap-plasticity model such as those in [17], [18], to model
the path-dependent behavior of porous rock, while use a retention model to predict the relations between degree of
saturation and suction, and another hydraulic model to relate suction with the relative permeability [6]. However, as
pointed out previously in a number of works, such as Zhu and Wong [19] and Nuth and Laloui [20], deformation of
the solid skeleton may inevitably change the microstructural attributes, such as pore size distribution and tortuosity
of the pore space and these changes may in return affect the pore pressure and hence the effective stress history. As a
result, the assumption that the permeability, solid constitutive law and poroelasticity material parameters such as Biot’s
modulus and Biot’s coefficient can be calibrated separately in a de-coupled manner may lack physical underpinning,
especially when the microstructure of the solid skeleton is expected to undergo significant changes such as cracks,
strain localization, and phase transition, that affect both the coupling mechanism and induce anisotropy in both the
mechanical and hydraulic responses [9,21–25].

One possible way to improve the consistency of the computational model is to directly incorporate the micro-
mechanical data and direct numerical simulations on the microstructure to improve the consistency of the hydro-
mechanical coupling model. For instance, one may replace constitutive law with a calibrated micro-mechanical
simulations for field scale problems as demonstrated in [26–29] or they can be concurrently coupled with the
macroscopic model via a handshake transition domain [24,30,31]. In both cases, the major technical challenge is the
prohibitively high computational cost to run micro-mechanical simulations for field scale problems and the difficulty
to store, post-process and analyze the large amount of data generated from numerical simulations.

The objective of this paper is to present a modeling framework in which a data-driven model is used as a mean to
link information across multiple scales via offline training. This approach has two distinct advantages. First, unlike
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the classical hierarchical coupling methods such as Feyel and Chaboche [32], Miehe and Bayreuther [33] and Geers
et al. [34] where incremental constitutive updates of each integration point in the macroscopic model are driven
by imposing increment changes on the boundary conditions of the RVE simulations, the data-driven approach only
requires the generation of data sets, which can take place offline and not during the numerical simulations. In other
words, once the machine learning processes are completed, the users of the multiscale model may run multiscale
simulations without running the RVE simulations again. As a result, the computational cost of the data-driven
multiscale model can be so significantly reduced such that it becomes possible to link simulations of more than two
scales together for field applications. Second, unlike the other offline approach in which the accuracy, robustness and
sophistication of the multiscale simulations are all limited by the quality of the macroscopic surrogate models such
as the phenomenological models for interface element (e.g. Zhou et al. [35]) or bulk element (e.g. Liu et al. [8]), the
data-driven neural network models can be adaptive and the level of complexity of the data-driven model can be easily
changed by adding more nodes and layers into the neural networks. Thirdly, since both the mechanical and hydraulic
properties are both updated directly from the same micro-mechanical simulations, the consistency and compatibility of
the data-driven mechanical and hydraulic material laws are guaranteed. Finally, the data-driven approach also allows
data from experiments and micro-mechanical simulations both to be directly incorporated into the machine learning
procedure to generate and verify the data-driven models.

The organization of the paper is as follows. First, we review the field theory and the mathematical formulation of
the dual-porosity dual-permeability poromechanics problem in the infinitesimal regime. Then we will describe the
various supervised machine learning techniques we used to replace phenomenological constitutive laws with data-
driven models that are trained by a combination of experimental data and RVE simulations. Following this step, we
will introduce further details on the training procedures and the selection of the right machine learning method. In
particular, we will provide detailed account on the usage of both the classical artificial neural network and recently
developed recurrent neural network architectures to generate data-driven models as surrogates for linking multiple
scales. The potential of deep learning for computational poromechanics modeling will also be discussed. As for
notations and symbols, bold-faced letters denote tensors; the symbol ‘·’ denotes a single contraction of adjacent
indices of two tensors (e.g. a · b = ai bi or c · d = ci j d jk); the symbol ‘:’ denotes a double contraction of adjacent
indices of tensor of rank two or higher ( e.g. C : ✏e = Ci jkl✏

e
kl); the symbol ‘⌦’ denotes a juxtaposition of two vectors

(e.g. a ⌦ b = ai b j ) or two symmetric second order tensors (e.g. (↵ ⌦ �) = ↵i j�kl). As for sign conventions, unless
specified otherwise, we consider the direction of the tensile stress and dilative pressure as positive.

2. Problem statements

To test the applicability of the graph-based machine learning model, we select the simulations of hydro-mechanical
coupling effect of deformable multi-permeability porous media, a sufficiently complex multiphysical problem that has
great demand and common in engineering applications, as the test bed. Multi-porosity/multi-permeability porous
media are materials consisting of more than one co-existing pore systems. These pore systems can be isolated
pores or interconnected, as shown in Fig. 3 [2,6,36–38]. In a multi-permeability model, one does not seek to
obtain a single effective permeability for the entire pore space. Instead, the entire pore space is partitioned into
two or more sub-systems based on the distinctive pore space sizes (e.g. limestone, carbonate rock) or geometrical
features (e.g. permeable host matrix with cracks and joints). These co-existing pore systems may exchange fluid
mass, depending on the pore connectivity. Multi-porosity/multi-permeability models are important for characterizing
reservoirs, containment transport, re-activation of faults and geological disposal of CO2 and nuclear waste.

While multi-porosity and multi-permeability models are powerful approaches to incorporate micro-structural
information for macroscopic modeling, the identification of material parameter and validation of the model is more
difficult [39–41]. This issue becomes even more profound when the deformation of the solid skeleton becomes
non-negligible due to plastic deformation, crack growths or other changes of microstructures that might lead to
complex anisotropic evolutions of the effective permeability in multiple porous systems inside the porous media.
While multiscale modeling has found to be able to provide insight on the evolving microstructural attributes for
single-porosity system as shown in [21,42–46], the hierarchical multi-scale computation is often too expensive to link
simulations across more than one scales and hence not suitable for more complex problems in which information
across multiple scales is important for the macroscopic outcome. In this work, the aforementioned issues are resolved
by introducing deep learning as an offline scale-bridging tool for multi-porosity system. For completeness, we will
provide a brief overview of the mathematical framework of the multiscale modeling framework, which is extended
from the single-porosity counterpart documented in [45].
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Fig. 3. Backscattered SEM images of an intact sample of Majella limestone where pores of multiple sizes are clearly observed.
Source: Figure adapted from Ji et al. [37].

2.1. Balance principle

For completeness, we briefly outline the initial boundary value problem that simulates the deformation–diffusion
coupling mechanism in deformable multi-porosity media. Here we consider a saturated porous medium occupying a
spatial domain B ⇢ Rnsd where nsd = 1, 2, or 3 stands for the number of spatial dimensions. The boundary of the
body is denoted as @B ⇢ Rnsd�1. The porous solid is treated as a double-porosity mixture and the two dominant pore
scales are the macropores M (the pores in fissures, dilatant shear bands, cracks, . . . ) and the micropores m (the solid
matrix pores). The elementary volumes of the total mixture, solid, macropores, micropores and void are therefore
denoted as dV , dVs , dVM , dVm , dVv = dV � dVs = dVM + dVm , respectively. The pore fractions for macropores
( M ) and micropores ( m) are defined as,

 M
=  =

dVM

dVv

,  m
= 1 �  =

dVm

dVv

. (1)

Meanwhile, the volume fractions for solid, macropores and micropores can be expressed as a function of porosity
� =

dVv
dV and pore fractions, i.e.,

�s
=

dVs

dV
= 1 � �, �M

=
dVM

dV
= � , �m

=
dVm

dV
= �(1 �  ). (2)

The partial densities of each constituent can be determined using the volume fractions and the intrinsic mass
densities of solid ⇢s and fluid ⇢ f :

⇢s
= (1 � �)⇢s, ⇢M

= � ⇢ f , ⇢m
= �(1 �  )⇢ f . (3)

Then the total mass density of the mixture is given by

⇢ = ⇢s
+ ⇢M

+ ⇢m . (4)

Assume that the solid skeleton deformation is infinitesimal, hence the difference between the reference and spatial
configuration is neglected and the Jacobian of the deformation gradient det F = J ⇡ 1. In this case, we may denote
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the material time derivative following the solid velocity v =
@u
@t as ˙(•) =

@(•)
@t + r(•) · v. Assuming incompressible

solid and fluid constituents, negligible inertial terms and no mass exchange between the solid and fluid constituents,
and following the formulation of Choo and Borja [47], the strong form of the problem reads: find the displacement
u : B ! Rnsd , the Cauchy macropore pressure pM : B ! R and the Cauchy micropore pressure pm : B ! R such
that the balance of linear momentum, the balance of fluid mass in macropores, the balance of fluid mass in micropores
and the corresponding boundary conditions are satisfied:

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

r · � + ⇢g = c0(evm �evM ) on B,

⇢ f r · v + r · qM = �c0 on B,

⇢ f (1 �  )r · v + r · qm = c0 on B,

u = u on @Bu

� · n = t on @Bt,

pM = pM on @BpM ,

qM · n = �q M on @BqM ,

pm = pm on @Bpm ,

qm · n = �qm on @Bqm .

(5)

� denotes the total Cauchy stress tensor and the effective Cauchy stress tensor is given by,

� 0
= � + p1 = � + [ pM + (1 �  )pm]1. (6)

c0 is the fluid mass transfer coefficient between the macropores and micropores.evM = vM � v,evm = vm � v are the
relative fluid velocities in macropores and micropores, respectively. A semi-empirical constitutive equation is adopted
for c0:

c0 =
↵

µ f
(pM � pm), (7)

where ↵ is a parameter characterizing the interface permeability between the macropores and micropores. µ f is the
dynamic viscosity of the fluid.

The relative fluid mass fluxes qM , qm are related to Cauchy pore pressures via Darcy’s law:

qM = ⇢ f � evM = �⇢ f
kM

µ f
· (r pM � ⇢ f g),

qm = ⇢ f �(1 �  )evm = �⇢ f
km

µ f
· (r pm � ⇢ f g)

(8)

where kM and km are intrinsic permeability tensors at macro-scale pore and micro-scale pore. g is the gravity
acceleration vector.

The boundary @B having unit normal n at x 2 @B admits the decomposition
(
@B = @Bu [ @Bt = @BpM [ @BqM = @Bpm [ @Bqm

; = @Bu \ @Bt = @BpM \ @Bqm = @BpM \ @Bqm ,
(9)

where @Bu , @BpM and @Bpm are Dirichlet boundaries with solid displacement u, macropore pressure pM and
micropore pressure pm prescribed. @Bt , @BqM and @Bqm are Neumann boundaries with tractions t, macropore flux
q M and micropore flux qm prescribed.

Meanwhile, the initial conditions are imposed as

u(x, t = to) = u0(x), pM (x, t = to) = pM0 (x), pm(x, t = to) = pm0 (x) for all x 2 B at t = t0. (10)

2.2. Embedded strong discontinuities for displacement and pore-fluid flux jump

In this work, the supervised machine learning procedure is used to generate constitutive laws for the strong
discontinuities. As a result, we briefly review the kinematics and constitutive responses of dual-permeability porous
media with embedded strong discontinuity.
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Consider a given material point X 2 B and an associated local neighborhood BX ⇢ B crossed by a strong
discontinuity (fracture, shear band, fault, etc.). Denote the surface of the discontinuity as � . The local domain BX
is thus divided by � into subdomain pairs BX = B+

X
S

B�

X . The motion of the particles within BX is described by
local displacement field uµ = xµ � X = 'µ(X) � X. Assume the following relation to the large-scale (or conformal)
displacement field u,

uµ = u + [[u]](H� � f� ), (11)

where [[u]] is the displacement jump across the interface � , H� is the Heaviside step function across � and f� is a
smooth ramp function in BX specified in [48]. It is also useful to define the continuous part ū of motion uµ as

u = u � [[u]] f� . (12)

The large-scale (or conformal) and continuous infinitesimal strains can be defined as,

✏ = r
su =

1
2

(ru + (ru)T ), ✏ = r
su. (13)

The local infinitesimal strain is given by assuming relative uniformity of [[u]] along � such that rX[[u]] ! 0

in BX ,

✏µ = r
suµ

= ✏ + ([[u]] ⌦ n)s��

= ✏ � ([[u]] ⌦ r f� )s
+ ([[u]] ⌦ n)s�� ,

(14)

where the equation r H� = ��n is employed. �� is the Dirac delta function across � and n is the unit normal of �
pointing from B�

X to B+

X .
The porous media in the vicinity of strong discontinuity � is composed of macro-scale voids generated by cracking,

shear band formation and micro-scale voids inside the underlying solid matrix. In other words, we assume that the
strong discontinuities are only captured by the macropores and the micropores remain continuous. The motion of
the fluid flow in the local neighborhood BX in both pore systems is characterized by macropore fluid flow qMµ and
micropore fluid flow qmµ [49]:

qMµ = qM + [[qM ]](H� � f� ),
qmµ = qm + 0(H� � f� )

(15)

where qM and qm are regular flow in the macropores and micropores, respectively. We assume that the macro fluid
flow field exhibits a jump [[qM ]] across � , while the micro fluid flow does not. For convenience, the ramp function f�
used to embed the strong discontinuity of the displacement field is also used to reproduce the jump of the fluid flux.
Assuming that the pore fluid is incompressible, the local balance equations of the macro-fluid content MMµ and local
micro-fluid content Mmµ (fluid mass increment per unit reference volume of porous solid) read,

ṀMµ = �r · qMµ = �r · qM + [[qM ]] · r f� � ([[qM ]] · n)��
Ṁmµ = �r · qmµ = �r · qm

(16)

with the assumption that r · [[qM ]] ! 0 in BX .
The solution of the local displacement jump field [[u]] requires a local equilibrium equation relating the total stress

field in BX \ � and the total traction across � driving the mechanical inelastic effects inside the strong discontinuity.
The weak form is written, for all variations �[[u]], [49]

�
1

VBX

Z

BX

�[[u]] · �n dV +
1

L�

Z

�
�[[u]] · T� d� = 0 (17)

where VBX = measure(BX ) and L� = measure(� ). Under the assumption that the macropore fluid flux is
discontinuous, then the pressure is continuous while the pressure gradient is discontinuous across the strong
discontinuity. The local equilibrium equation can be written in terms of effective stress and effective traction, i.e.,

�
1

VBX

Z

BX

�[[u]] · � 0n dV +
1

L�

Z

�
�[[u]] · T0

� d� = 0. (18)
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In the limit
VBX
L�i

! 0:

T0

� ([[u]]) = (� 0(✏) · n)|� . (19)

The constitutive relation for the effective traction across the discontinuity comes from the data-driven model trained
with data from sub-scale simulations, as shown in Section 5. Meanwhile, the rate form of the constitutive relation for
the stress in the continuum is written as:

� 0(✏) = Ce
: ✏ = Ce

: ✏ � Ce
: ([[u]] ⌦ r f� )s, (20)

where Ce is the rank-four elastic moduli tensor.
Following the treatment of Borja [48], static condensation can be performed on Eq. (19) and the balance of linear

momentum in Eq. (5) for constant triangle elements is used in this work. Thus, within each iteration step for the
solution of the global equations (5), (19) can be solved locally to get [[u]] at each Gauss point, assuming constant ✏.
Moreover, following the derivations in [49], which has the same assumption of fluid flux discontinuity as in this work,
the balance of fluid mass in macropores and micropores in Eq. (5) remains unmodified.

Here, we define the displacement, macropore pressure and micropore pressure trial spaces as

Vu = {u : B ! Rnsd | u 2 H 1, u|@Bu = u}

VpM = {pM : B ! R| pM 2 H 1, pM |@BpM
= pM}

Vpm = {pm : B ! R| pm 2 H 1, pm |@Bpm
= pm}

(21)

and the corresponding admissible spaces of variations as

V⌘ = {⌘ : B ! Rnsd | ⌘ 2 H 1, ⌘|@Bu = 0}

V⇣M = {⇣M : B ! R| ⇣M 2 H 1, ⇣M |@BpM
= 0}

V⇣m = {⇣m : B ! R| ⇣m 2 H 1, ⇣m |@Bpm
= 0}

(22)

where H 1 denotes the Sobolev space of functions of degree one. Using the backward Euler implicit scheme of step
size �t = tn+1 � tn , the time-integrated variational form of the large-scale problem is constructed as: find u 2 Vu ,
pM 2 VpM and pm 2 Vpm such that for all ⌘ 2 V⌘, ⇣M 2 V⇣M and ⇣m 2 V⇣m

G :Vu ⇥ VpM ⇥ Vpm ⇥ V⌘ ! R

G(u, pM , pm, ⌘) =

Z

B
r

s⌘ : � 0 dV
| {z }

g1

�

Z

B
r · ⌘ p dV

| {z }
g2

�

Z

B
⌘ · ⇢g dV

| {z }
g3

+

Z

B
⌘ · c0(evm �evM ) dV

| {z }
g4

�

Z

@Bt

⌘ · t̄ d A
| {z }

gext

= 0

(23)

H�t
pM

:Vu ⇥ VpM ⇥ Vpm ⇥ V⇣M ! R

H�t
pM

(u, pM , pm, ⇣M ) =

Z

B
⇣M ⇢ f r · (u � un) dV

| {z }
hM

1

+�t ⇢ f

Z

B
r⇣M ·

kM

µ f
· (r pM � ⇢ f g) dV

| {z }
hM

2

+�t
Z

B
⇣M c0 dV

| {z }
hM

3

��t
Z

@BqM

⇣M q M d A

| {z }
hM

ext

= 0

(24)
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H�t
pm :Vu ⇥ VpM ⇥ Vpm ⇥ V⇣m ! R

H�t
pm (u, pM , pm, ⇣m) =

Z

B
⇣m ⇢ f (1 �  )r · (u � un) dV

| {z }
hm

1

+�t ⇢ f

Z

B
r⇣m ·

km

µ f
· (r pm � ⇢ f g) dV

| {z }
hm

2

��t
Z

B
⇣m c0 dV

| {z }
hm

3

��t
Z

@Bqm

⇣m qm d A
| {z }

hm ext

= 0.

(25)

To the best knowledge of the authors, this work is the first recorded implementation of assumed strain hydro-
mechanical model for dual-permeability dual-porosity system with embedded strong discontinuities in both the
displacement and flux fields. Nevertheless, due to the main focus of this work is on the incorporation of the machine
learning method for scale bridging, we decided to omit the details of the implementation of the assumed strain dual-
permeability model. Interested readers may refer to a number of related works on assumed strain formulation such
as Callari and Armero [49], Borja [48], Mosler and Meschke [50] and Callari et al. [51] for details. Furthermore, as
we employ equal-order discretization for the solid displacement and the pore pressure in the macro- and micro-pores,
the lack of two-fold inf–sup condition must be circumvented. For brevity, the discussion of the stabilization procedure
is not included but can be found in earlier works such as White and Borja [52], Sun et al. [53], Sun [54], Choo and
Borja [47] and Krischok and Linder [55].

3. Architecture of directed graph for data-driven poromechanics problems

In the classical hierarchical multiscale framework, such as FEM2 (cf. Frankenreiter et al. [56] and Fish [57]) and
DEM–FEM ([43,45,46]), the multiscale simulations are conducted by replacing constitutive laws with representative
elementary volume (REV) simulations that provide the incremental constitutive updates at each integration point. This
method is typically much more cost efficient than the direct numerical simulation, as the micro-mechanical simulations
are confined in the REV domain rather than conducted in the entire physical domain. However, the computational cost
is typically much higher than the conventional constitutive law driven method [29,43].

This computational cost is perhaps feasible for two-scale coupling simulations, but it may become a severe
computational barrier if one attempts to link simulations across more than one scale. The remedy to this issue can
be classified into two approaches — the usage of surrogate model [8,58] and the usage of reduced-order modeling
[59]. In the former case where a surrogate model is used, the smaller scale simulations will often be used to generate a
database aimed to record the homogenized responses of the representative elementary volume. This database can also
be experimental data or a combination of both “real” experimental data and the “virtual” simulation data. This database
is then split into two mutually exclusive subsets — one used to calibrate and identify material parameters via inverse
problems; another one used for validation and performance assessment of the numerical models [8]. Nevertheless,
the primary drawback of the surrogate-based approach, in particular when phenomenological models are used as
surrogate models, is that the accuracy and efficiency are highly dependent on the quality of the surrogate models
that replace the direct numerical simulations (DNS). Furthermore, this approach often requires multiple surrogate
models for multiphysics problems that might not be consistent with each other. This issue is particularly common for
poromechanics problems (e.g. Shahir et al. [60]) where the usage of kinematic hardening plasticity model coupling
with isotropic permeability model often leads to the discrepancy that is hard to detect. Even worse, the introduction of
multiple material parameters may make it easier to complete curve-fitting for a model that lacks prediction capacity
otherwise.

Here we limit our focus on a hierarchical multiscale coupling approach in which recurrent neural network trained by
a supervised deep learning is used as surrogate model to deliver constitutive responses, from solution database [61,62].
Our major point of departure is the use of a graph-based concept previously presented in [63], [54], [64] to design the
information flow from smaller to larger scales and the use of recurrent neural network to automatically generate one

surrogate model that provides the updates for both the effective stress and permeability tensors in the macroscopic
and microscopic pore space.
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Fig. 4. Directed graph representing the information flow of the multi-scale multi-physics dual-permeability poromechanics problem for fluid-
infiltrating media. Red arrow represents either a phenomenological relation or an operator that is defined not by definition, universal law or first
principle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

This directed graph represents the hierarchy of information processed in a computational model that utilizes
a combination of classical and data-driven models. In the directed graph representation, physical quantities are
viewed as vertices, while the relations among physical quantities are considered as edges that link those building
blocks together to form a computational model. In the case where the directed graph represents the hierarchy of
information of the initial boundary value problem, the most upstream vertices (also called the root in graph theory
literature) would be the governing equations (e.g. balance principles, phase field evolution equations, etc.), while the
downstream vertices (also called the leaves in graph theory literature) are the unknown variables (e.g. displacement,
pore pressure, temperature). Close examination of the information flow may help us distinguish the edges into 1.
definitions (e.g. relation between deformation gradient and displacement field, relation between Biot’s coefficient and
bulk moduli) 2. universal principles (e.g. effective stress principle — relationship among total stress, effective stress
and the pore pressure of the macro- and micro-pores, balance principles) and 3. material laws, phenomenological
relations or empirical rules (e.g. Darcy’s law, water retention curve, stress–strain relation), as shown in Fig. 4.

Unlike the model-free approach in which the entire computational model is replaced by neural network (cf. the
model-free approach e.g. Graf et al. [13]), our approach is to keep the edges identified either as definitions or
universal principles, but replace the edges that are commonly linked together by phenomenological models with
data-driven model trained from deep learning. To do so, we first identify the subgraph (the graph formed by a subset
of the vertices and edges of the graph that presents the computer model) in which the vertices are only connected by
material laws. In this subgraph, we again identify the leaves and roots. For instance, in the elasticity problem example
illustrated in 1, there will be only one leaf (strain) and one root (stress).

This information in return gives us an idea about what we should “learn” and what should be in the input and output
in the supervised machine learning setting. In the dual-permeability poromechanics problem, which we selected as
test bed, we assume that the effective stress principle is valid for the dual-permeability system [5,65–67]. Furthermore,
since we use a recurrent neural network for the supervised training, the time history of strain is not explicitly expressed
as an additional vertex in the directed graph, as previously done in Lefik and Schrefler [68] where feed-forward
neural network is used. Rather, they are taken into account as internal state by default such that the path-dependent
behavior of the dual-permeability porous material can be replicated. In the dual-permeability problem, we identify that
macroscopic strain, ✏macro is the root and the effective stress � 0

macro, permeability of the macroscopic and microscope
pores, kM

macro, km
macro, the mass exchange rate cmacro, and the bulk modulus of solid skeleton Kskeleton, as shown in

Fig. 5. Once the input and output are determined, the rest of the task is to determine the appropriate model that
gives us the output prediction when a specific input is given. Notice that it is also possible that the “material laws”
of a multiphysical problem may also lead to multiple sub-graphs that share no vertex. In such sense, the procedure
described above still applies, but the machine learning for each sub-graph will be independent to each other.

Another important observation is that it is not necessary to completely replace the subgraph with data-driven model.
For instance, one may use the conventional material law to connect the strain and strain history with stress but use
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Fig. 5. Sub-graph of the multi-scale multi-physics poromechanics problem for fluid-infiltrating media. Red arrow represents either a
phenomenological relation or an operator that is defined not based on first principles. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

experimental data to generate a data-driven model that predicts the permeability from strain history. The optimization
of the choice of the edges for the hybrid approach, especially when it is subjected to noisy data is an important topic
but is out of the scope of this study.

3.1. Preparation of databases for offline hierarchical supervised machine learning

In the previous section, we discuss the anatomy of the mathematical model represented in a directed graph, and the
method to identify the components to insert data-driven model properly in a multi-physical problem without altering
the hierarchy and connectivity of the physical quantities. In this section, our goal is to focus on how to use sub-
scale data to enhance the predictions via an offline hierarchical bridging scale method. In particular, we will review
the difference of online and offline hierarchical multiscale approaches and procedure of generating pre-computation
databases for fast or real-time multiscale simulations.

In an online hierarchical coupling approach in which simulations of different scales are linked, we might define
macroscopic problems and microscopic problems and consider different technique to link the two problems in
a hierarchical manner. For instance, the mechanical and hydro-mechanical responses of granular materials can
be replicated by a DEM–FEM coupled model in which the macroscopic material laws are homogenized from
discrete element simulations. By associating each integration point with an RVE, the coupling of the micro-problem
(DEM) and macro-problem (FEM) is established by replacing macroscopic phenomenological relations with DEM
simulations for each incremental time step [27,33,43,45,46,69]. This approach is nevertheless very expensive, as each
constitutive update at each integration point would require an individual sub-scale DEM simulation performed on a
different RVE at each incremental step. While parallel implementation is efficient for the hierarchical DEM–FEM
coupling approach (as the DEM simulations can be embarrassingly parallel), the total number of required DEM
simulations still grows proportionally with the mesh size used in the macroscopic problems. This cost becomes more
profound when information across more than two scales become important, as shown in the dual-porosity, dual-
permeability poromechanics problem illustrated in Fig. 6.

On the other hand, the offline hierarchical coupling method does not directly use the DEM simulations during the
macroscopic simulations. Rather, it involves an additional step in which the sub-scale simulations are used to generate
a database. This database is then used to calibrate a surrogate model that is sufficiently efficient for macroscopic
boundary value problems. The surrogate model can be simply a phenomenological model [8,58], a reduced-order
sub-scale model [57,70,71] or a data-driven model [15]. The offline hierarchical technique, if conducted properly, has
at least two advantages. First, it costs less as the offline techniques as it does not need on-the-fly sub-scale simulations.
Second, the offline treatment provides an opportunity for one to combine real and virtual data together to improve the
accuracy of numerical simulations.

As shown in Fig. 6, we will leverage these advantages to conduct a simulation that links the hydro-mechanical
simulations of fractured porous media across three scales. In particular, our objective is to introduce a recursive
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Fig. 6. Comparison between off-line pre-trained multiscale ANN-FEM simulations and online hierarchical multiscale simulations.

Fig. 7. Hierarchy of a multi-scale multi-physics poromechanics problem for fluid-infiltrating media. Black arrow represents a definition or a
“universal principle”; red arrow represents either a phenomenological relation or an operator that is defined not based on first principles. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

training procedure where the database generated from small-scale simulations would be used to train a meso-scale
RNN data-driven model, while the meso-scale RNN-FEM model will be used to generate another database to train
the macroscopic data-driven model used for field scale simulations, as shown in Fig. 7. Here we first assume that the
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principle of separation of scale is valid such that,

lmicro  lmeso  lmacro. (26)

Previously, Wang and Sun [45] have established a finite strain DEM–FEM coupling model to simulate two-phase
poromechanics problem. Here we extend this work and focus on the case where intense localization due to damage
or fractures occurs across the micro-, meso- and macroscopic scales. As a result, we require two sets of numerical
simulations to generate the appropriate database to first link micro-mechanical DEM simulations to the meso-scale
RVE, then again link the meso-scale DEM–FEM simulation to a macroscopic scale field problem.

The first micro-mechanical simulation database consists of simulation results obtained from a DEM-network model
in which DEM assemblies are subjected to different loading paths. The constitutive laws (traction-separation law and
anisotropic permeability of macroscopic pore space) obtained from homogenizing the DEM responses are used as the
data set for training and validating the neural network models. Here we assume that the mesoscale model employs
a finite element discretization with displacement, pore pressure and their corresponding jumps as unknown in each
incremental time step. Applying the effective stress principle, we postulate that there exists an effective stress such
that it solely depends on the deformation and deformation history of the solid skeleton [65,66].

In the infinitesimal regime, the Hill–Mandel micro-heterogeneity condition requires the volume average of the
virtual power in the RVE to equal the virtual power done by the volume averages of power-conjugate stress and
deformation measures. In terms of stress � 0 and infinitesimal strain ✏:

h� 0
i : h✏̇i = h� 0

: ✏̇i (27)

The traction hT0

� i averaged in the RVE representing the interface is given by,

hT0

� i = h� 0
i · n, (28)

where n is a unit vector normal to the interface and m is a unit vector tangential to the interface. The average
infinitesimal strain is defined in terms of [[u]] and the initial height of the RVE h0:

h✏i = sym(
1
h0

[[u]] ⌦ n). (29)

Thus, the Hill–Mandel lemma in the interface in terms of hT0

� i and [[u]] is given by:

h0h�
0
: ✏̇i = hT0

� i · ˙[[u]]. (30)

In the infinitesimal regime, the time derivative of displacement jump reads,

˙[[u]] = ˙[[u]]nn + ˙[[u]]mm. (31)

The Hill–Mandel lemma for the interface therefore can be rewritten as,

h0h�
0
: ✏̇i = hTni[[u̇]]n + hTmi[[u̇]]m . (32)

According to Eq. (28), effective traction in the normal and tangential direction can be written as,

hTni = h� 0
i · n · n

hTmi = h� 0
i · n · m

(33)

where the overall effective stress is given by,

h� 0
i =

1
V0

NcX

c

f c
⌦ lc (34)

where V0 is the initial volume of the RVE. f c is the contact force at the grain contact x+yc 2 R3. lc is the branch vector,
the vector that connects the centroids of two grains forming the contact. Nc is the total number of particles in the RVE.
Among the admissible boundary conditions fulfilling the Hill–Mandel micro-heterogeneity condition, we adopt the
periodic boundary conditions [72], where the motion of a particle on the boundary of the RVE is characterized by,
assuming rigid particles,

x(X) = hFi · Xc + wc + R · (X � Xc) (35)
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where Xc is the initial position of particle center, wc is the displacement fluctuation and R describes the particle
rotation. For a pair of particles on opposite boundaries @V+ and @V�, the periodicity enforces the periodicity of
fluctuations and rotations

w�

c = w+

c , R�
= R+, (36)

and the anti-periodicity of support forces and couples

a�

c = �a+

c , m�

c = �m+

c , (37)

where ac is the opposite of the resultant force on the boundary particle exerted by other particles, mc is the opposite
of the resultant couple about the center Xc on the boundary particle.

The theoretical basis and the calculation of homogenized permeability have been previously studied in [73], [74],
[42]. Assuming that the DEM assembly is used to model the strong discontinuity which often becomes flow conduit
or flow barrier, we may again use a Hill–Mandel lemma corresponding to the Darcy’s law to determine the effective
permeability of the assembly, i.e., [73],

hr p · qi = hr pi · hqi (38)

Eq. (38) can be satisfied by the Dirichlet boundary condition in which the pore pressure difference across two opposite
faces is prescribed and Darcy’s velocity is determined. As a result, the effective permeability tensor of a RVE can be
determined via numerical flow experiment on the RVE. The fluid flux vector q within the RVE is computed when
subjected to pressure gradient r p, and the permeability kRVE is determined by Darcy’s law

q = �
1
µ

kRVEr p. (39)

Among the solution strategies, the numerical solution of Stokes equations using finite element or Lattice–Boltzmann
method yields accurate results but requires large computational resources. This work resorts to the pore network flow
model which simplifies the pores as nodes interconnected by edges allowing fluid flow [75,76]. The first step of the
homogenization procedure of permeability is the domain decomposition of the DEM sphere packing. This is achieved
by well developed Delaunay triangulation and dual Voronoi graph algorithms [76,77]. Using the particle centers as the
triangulation nodes, the deformed micro-scale domain ⌦µ is decomposed into cells ⌦µ =

SNt
i=1⌦

i
µ. ⌦ i

µ is triangle in
2D analysis and tetrahedron in 3D analysis. The 2D concepts are adopted in the following descriptions. Each triangular
cell ⌦ i

µ encloses a pore space of volume V i
v between three particles. The remaining solid space is the intersection of

⌦ i
µ with the three particles and has the volume V i

s . The dual domain decomposition of ⌦µ into Voronoi cells generates
the pore network in the DEM assembly. Each node is regarded as the center of the pore space in a triangular cell ⌦ i

µ

and each edge serves as the flow pipe connecting two pore space centers.
The next step is to define the local conductance of each edge (“pipe”) in the flow network. Consider an edge

connecting the pores i and j of cells⌦ i
µ and⌦ j

µ, respectively. Suppose that the flux in this pipe is qi j when i at position
xi has the pressure pi and j at position ji has the pressure p j , and that the length of the pipe is Li j = kxi � x jk2, the
local conductance gi j relates these quantities by,

qi j
· (xi

� x j ) = qi j
=

gi j

µ

pi � p j

Li j . (40)

Extensive studies have been conducted on defining gi j in pore network models [78,79]. This work adopts the
definition in [76], in which a new method of determining hydraulic radius H Ri j of a cross-section of complex
geometry is proposed. The local conductance admits the expression

gi j
= ↵ Ai j (H Ri j )2 (41)

where ↵ is a non-dimensional factor reflecting the pore throat shape (↵ = 0.5 in this work), Ai j is the cross-sectional
area of the throat. A domain ⇥ i j around the throat between two pore spaces is defined based on the triangular cells
and the dual Voronoi cells. Its volume is �i j and the total area of its boundaries is � i j . The hydraulic radius is given
by

H Ri j
=
�i j

� i j . (42)
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Fig. 8. The generation of database for macroscopic data-driven model using hybrid neural-network/finite element model. In the meso-scale
simulations, we consider the localized damage zone as a dual-porosity material in which the data-driven model provides the traction-separation law
and the flow prediction normal and orthogonal to the interface while the responses of the host matrix are captured by a simple elastic material. The
meso-scale RVEs are then subjected to various loadings, and the responses are recorded and used to train and validate the macroscopic data-driven
model. In this figure, displacement field is scaled by a factor of 50.

In the numerical example of this work, we adopt the micro-scale DEM assembly as the hydro-mechanical
constitutive model for the sealing fault, which has an intrinsic permeability in the order of 10�14 m2. This low level
of permeability is observed in porous media that often has a porosity of 0.1–0.2. However, in the DEM numerical
assembly, where mono-disperse spheres are adopted to represent the particles, this porosity is not possible to achieve
under confining stress in the order of Mega Pascals. The lowest porosity of the RVE is still higher than 0.3. This
discrepancy comes from the poor representation of the actual shape of grains in real soils by the idealized spheres.
Realistic and accurate porosity will be reached by using numerical particles with complex shapes, yet this requires
more powerful DEM simulation tools and is out of the scope of this study. Hence the permeability obtained from the
flow network simulation on the micro-scale DEM assembly is artificially scaled to the order of 10�14 m2. Our focus
lies on the path-dependent changes in permeabilities in the normal and tangential directions of the strong discontinuity,
following the displacement jumps applied to the interface.

Once the DEM assembly generates a sufficiently large database, the database can be used to train the data-driven
model. Typically one would like to test a large variety of different loading paths such that different responses (torsion,
shear, stretch, compression, loading & unloading) can be anticipated. The exact content of the database is often
determined after a trial-and-error procedure. The size of database strongly depends on the exact configuration, type
and the training process used for the neural network. Understandably, it could be counterproductive to generate a large
database for a small neural network. On the other hand, it also does not make sense to have a very deep and complex
neural network design while the data available for the supervised training and validation are limited. The detailed
description on the design of the neural network will be presented in the next section.

One may think of the trained meso-scale data-driven model as a representation of the data or as a surrogate model.
However, the advantage of the neural network as surrogate model is that one may easily adjust the neural network
configuration, whereas changing from one surrogate model to another often requires a substantial amount of work to
identify material parameters.

After the completion of the training of the meso-scale data-driven model used to represent the strong discontinuity
at the meso-scale, we then generate another set of RVE that uses the data-driven model as a replacement of the DEM
model to capture the traction-separation law of the localized damage zones at the meso-scale. We then subject the
meso-scale RVE to various loading paths and obtain the simulated responses from the hybrid neural network/finite
element model as shown in Fig. 8. If there is no comparable experimental data available, then the simulated responses
of the dual-porosity material constitute the database for the data-driven model used in field-scale problems.
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4. Offline bridging scales via recurrent neural network

In a nutshell, machine learning refers to the ability of a computer to learn without being explicitly programmed. In
the field of computational mechanics, machine learning has been widely used for finding the bases of the reduced
dimensional space for reduced order modeling, and for replacing constitutive laws with trained artificial neural
network. The latter tasks have found varying degrees of success in previous work such as Ghaboussi et al. [12]
and [68]. One key aspect that is critical for the application of the solid mechanics applications is that the machine
learning process must be able to generate path dependent responses such that the strain, strain rate and strain
history may all affect the resultant stress responses. The ability of replicating history dependent behavior is equally
important for capturing the hydraulic responses. For instance, the effective permeability of a porous rock may be
influenced by the damage of the host matrix. Furthermore, water retention curve, the relation between degree of
saturation and suction, is known to be dependent on the wetting and drying history of the pores. In the poromechanics
literature [80,81], the hydro-mechanical path-dependent behavior has been enforced by additional input in a feed-
forward neural network or support vector machine.

In this work, we propose a number of new innovations for the neural network models built specifically for path-
dependent materials with potential failures. First, we use a specific type of recurrent neural network called Long Short-
Term Memory (LSTM) neural network to create the effect of internal states or memory to capture the path-dependent
behavior (Section 4.2), while overcoming the gradient vanishing or exploding issues commonly encountered in
training RNN with deep hidden layers (Section 4.3). Meanwhile, we also introduce a new technique in which micro-
structural attributes, such as fabric tensors, higher-order deformation measures are used to improve the accuracy of
the constitutive responses. To avoid overfitting and dealing with noisy data, the introduction of a dropout layer for the
RNN network model is discussed (Section 4.4). Finally, we also analyze the lack of objectivity in the previous neural
network model and propose the usages of spectral form and Lie algebra to address this without extending the database
(Section 4.5). Finally, the implementation of the algorithms that construct, train and validate the data-driven model
will be discussed (Section 4.6). Throughout this section, we will provide a number of numerical experiments within
each sub-section to demonstrate the rationale of these concepts and the execution of these ideas.

4.1. Overview of supervised machine learning with artificial neural network

For completeness, we provide a brief summary of the artificial neural network and the applications to computational
mechanics problems. More comprehensive descriptions can be found in multiple sources across disciplines, ranging
from weather forecasting (cf. Gardner and Dorling [82], signal processing (cf. Cochocki and Unbehauen [83]),
renewable energy applications (cf. Kalogirou [84]), to support decision for cancer treatment (cf. Lisboa and
Taktak [85]). Here our focus is on the application of computational mechanics problems. The classical modeling
of poromechanics problems and more generally computational machine problems often involves the following steps:

1. First, one derives the field theory which is often derived from first principles (e.g. balance of linear and angular
momentum, mass, energy and thermodynamic laws).

2. Then, proper constitutive laws are chosen to replicate the responses of a particular type of materials or
microstructures [86].

3. Experimental data are then used to calibrate the computational models. The identification of material parameters
is sometimes conducted manually, but generally speaking the material parameter identification procedure can
be recast as optimization problems [8].

4. Finally, the proposed model is verified against benchmarks and validated with experiment data that are not used

for calibrations such that the forward prediction ability can be measured [45,46].

In the previous work that applies neural network and supervised learning for computational mechanics problems,
Steps 2 and 3 are often bypassed. Instead, data set obtained from experiments are first split into two mutually
exclusively subsets, i.e. (1) the training set, which is used for machine learning and (2) the validation set, which
is used for validation. Following this step, an artificial neural network is generated. The design of an artificial neural
network and many of the evolution roles are inspired by the biological counterpart. Basically an artificial neural
network consists of at least three types of layers, the input layer, in which the neuron carries the information of the
input, the hidden layers, which are the components that carry out the neural computations and the output layer, which
stores the output results, as shown in Fig. 9.
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Fig. 9. An example of artificial neural network with 4 inputs, 5 hidden layers with different number of neurons and 3 outputs.
Source: Figure adopted from Open Neural Networks Library.

In the hidden layers, each artificial neuron or vertex is assigned an initial weight. A forward prediction can be made
by propagating signals through the neuron network from the input layer. Depending on the input signals coming from
the connected neurons, each neuron may activate, de-activate or change. This change may in return affect the weight
or signal of the connected neuron. This propagation of information can be hierarchical in which case the artificial
neural network itself is a directed acyclic graph. In this case, the neural computation can be regarded as a propagation
of information from the upstream to the downstream. At the very end of the neural computation, the output layer
will contain the output data. In the case where supervised learning is used, the training data set will be used as the
benchmark of the neural network.

The supervised learning is a procedure in which one attempts to adjust the weight of the neural network such that
the discrepancy between the benchmark and prediction is minimized. It should be noticed that the discrepancy is
measured by the cost (or objective) function. When the forward prediction for a given input signal is computed, the
prediction stored in the output layer will be compared with the benchmark and the cost or error is updated. Following
this step, the error values of each vertex in the output layer will be backward propagated such that each vertex in the
hidden layer will receive an error value. This error value is then used to compute the gradient of the cost function with
respect to the weight corresponding to each vertex. This gradient term is then used to update the weights such that the
cost function is minimized.

For instance, if we replace the constitutive law with neural network for elastic materials, then the input will
be a strain measure and the output can be stress measure. However, this input and output is not the only feasible
choice. For instance, one may use both the strain and strain rate as input and output the stress for a rate-dependent
material [87]. For material that exhibits history dependent behaviors, Lefik and Schrefler [68] have demonstrated
that an incremental form, which contains the strain components, the stress components and the incremental of strain
expressed in a Cartesian coordinate system can be used as input to enforce “memory” such that the history-dependent
behavior can be replicated. In this work, we will instead use a recurrent neural network to capture this memory effect
exhibited in path-dependent porous media.

4.2. Deep learning with recurrent neural network

The recurrent neural network (RNN) is an umbrella term for artificial neural networks with connection topology
that possesses cycles [88]. In other words, the recurrent neural network considers data existing as sequences and the
output of a layer in the previous step is added back as additional input and fed back into the same layer to produce the
output (hence the name recurrent neural network).

The existence of the cycles leads to a profound difference, as it resembles how a history-dependent process evolves
in time with cause-and-effect relationship (e.g. translating paragraphs of content between different languages, analysis
of video surveillance). While classical artificial neural network can be regarded as a mathematical function, the
recurrent neural is a dynamical system model of the biological neural networks that possess memory and is able
to process arbitrary sequences of input and generate arbitrary sequences of output. These important features have
made RNN versatile among many applications that require learning from temporal data such as speech recognition,
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Fig. 10. A Long Short-Term Memory (LSTM) neuron with input, output, and forget gate to process sequence with memory effect.

machine translation, quick-type for smartphones and driver-less car technology. In structural engineering, RNN has
been used to perform model-free structural analysis in which the structural behavior is predicted without any physical
model [13]. Similar approach has been applied in geotechnical engineering in which an RNN is used to replicate
stress–strain relation of sand subjected to monotonic triaxial compression loading [89].

In all the applications mentioned above, the RNN machine learning procedure is often used to produce data-driven
model that completely replaces the constitutive models based on human interpreted knowledge. In this work, we take
a different approach in which the machine learning is not used to generate model-free prediction but to be used for
generating links for bridging simulations across scales in an offline fashion. Furthermore, we also retain the usage of
the mechanics principles whenever possible in the multiphysical model conceptualized as a directed graph. Ultimately,
the resultant model represents a hybridization of human- and machine-interpreted knowledge that can be used to
generate predictions and as forecast engine. In the following subsections, we will describe the specific techniques
we used to build the recurrent neural network and how it can be trained using a combination of data generated from
experiments and micro-mechanical simulations.

4.3. Overcoming gradient vanishing or exploding issues with long short-term memory architecture

Despite the exceptional prediction power of RNN as forecast engine, RNN is known to be relatively vulnerable to
the vanishing and exploding gradient problems. While a vanishing gradient may lead to the change of weight of the
nodes in the recurrent neural network that has no significant changes on the error measured by the objective function
or cost function. By contrast, an exploding gradient may lead to the error very sensitive to any small change of weights
in the nodes. Both issues can be resolved for mechanics data-driven model produced by very small architecture with
limited number of hidden layers [68,87]. However, since (1) the usage of RNN leads to a larger number of nodes
in the input layers, (2) the multiscale coupling scheme uses additional microstructural attributes as input, and more
importantly (3) we intend to study the usage of deep learning which requires a sizable number of hidden layers, the
vanishing or exploding gradients could be a significant issue.

Here we take advantage of a technique commonly used in computational linguistics called Long Short-Term
Memory (LSTM). First introduced by Hochreiter and Schmidhuber [90], the LSTM’s major departure is the use
of memory blocks, instead of the classical artificial neurons as nodes for RNN. Within a memory block, a new entity
called “gate” is introduced to control the flow of information and the state of the block, as shown in Fig. 10.

A LSTM neuron possesses a state of the memory cells at time t Ct . Define xt as the value of the input sequence at
time t , and ht as the value of the output sequence at time t . The signal through the forget gate is given by

ft = � (W f · xt + U f · ht�1 + b f ), (43)

where � is the sigmoid function � (x) =
1

1+exp(�x) , W f and U f are weight matrices, b f is bias vector for the forget
gate.

The new information to be stored in the cell state is given by the signal it through the input gate
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it = � (Wi · xt + Ui · ht�1 + bi ), (44)

where Wi and Ui are weight matrices, bi is bias vector for the input gate.
The new candidate value cell state is given by a tanh layer

eCt = tanh(WC · xt + UC · ht�1 + bC ), (45)

where tanh is the hyperbolic tangent function tanh(x) =
exp(x)�exp(�x)
exp(x)+exp(�x) , WC and UC are weight matrices, bC is bias

vector.
The old cell state Ct�1 is updated by the above forget and input information, i.e.,

Ct = ft Ct�1 + it eCt . (46)

Finally, for the output signal

ht = ot tanh(Ct ) (47)

where ot is the signal through the output gate

ot = � (Wo · xt + Uo · ht�1 + bo), (48)

where Wo and Uo are weight matrices, bo is bias vector for the output gate.
To showcase the advantage of using LSTM with micro-structure information as a part of input features, we

examine the forward prediction capability of (1) the classical neural network “ANN”, (2) LSTM neural network
which is specially designed for memorizing sequences “LSTM” and (3) LSTM neural network that also memorizes
micro-structure attributes “LSTM Microstructure Data”. Numerical simple shear tests with loading–unloading under
different confining pressure (� = 50, 60, 70, 90 and 100 MPa) are conducted on a discrete element assembly and serve
as the training data to the three neural network models (Fig. 11(a)). The “ANN” model design is similar to Ghaboussi
et al. [12], where the inputs are the confining pressure � , the shear strains �n�1, �n , �n+1 and the shear stresses ⌧n�2,
⌧n�1, ⌧n . The subscripts indicate the time steps tn�2, tn�1, tn , tn+1. The output is the shear stress ⌧n+1 at the next time
step tn+1.

Different from the classical ANN model, LSTM neural network accepts sequences of history values of the physical
parameters as inputs. Thus the input features now consist of the confining pressure � , the sequence of history values
of shear strains [�n�1, �n , �n+1], and the sequence of history values of shear stresses [⌧n�2, ⌧n�1, ⌧n]. The output
features are again the shear stress ⌧n+1. In addition to the strain and stress history, one key innovation we attempted in
this paper is to incorporate the evolution of microstructural attributes as additional input for the neural network. The
micro-structure data adopted in this example are the porosity � of the DEM assembly, the coordination number C N
and the fabric tensor AF. AF =

1
Nc

P
cnc ⌦ nc, where nc is the normal of contact c. Here our goal is to check whether

the incorporation of any of these additional data as input in the RNN network improves the prediction quality. If the
answer is positive, it is likely that a human-derived phenomenological model could benefit from the inclusion of these
physical quantities.

In a supervised machine learning setting, the LSTM neural network will be adjusted based on the portion of the
data set used for calibration. After the training or back propagation is completed, the relationship between these
averaged micro-scale attributes and the predicted stress state can be determined. For phenomenological models where
history-dependent behavior is encoded in the evolution of internal variables, the influence of micro-structural attributes
is often implicitly incorporated (except a few exception such as [91,92]), this could be a difficult task.

All three neural network models have two hidden layers of 80 nodes, and dropout layers of rate 0.2 are placed after
each LSTM layer. The function of the dropout layer will be discussed in detail in Section 4.4. The sigmoid activation
function is chosen for the output layer. We also set the same mean squared error as the training goal of all three models
such that the errors are supposed to reduce to the same level (around 1e�5).

Fig. 11(b) compares their forward predictions of the loading–unloading behavior under confining pressure of
� = 80 Mpa (not included in the training set). It is shown that the LSTM model performs better than the ANN
model, in regard to the peak stress, softening and unloading–reloading cycles. Also, with micro-scale information,
LSTM can yield closer prediction to the test data than LSTM that only processes macroscopic strain and stress data.

Furthermore, determining how much and what types of micro-structure data to be incorporated into machine
learning model are a challenging task. As an example, we compare three designs of LSTM network (1) LSTM with
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(a) Training data for different confining
pressure � .

(b) Forward prediction of ANN, LSTM
and LSTM with micro-scale data.

(c) Forward prediction of LSTM with dif-
ferent types of micro-scale data included.

(d) Forward prediction of monolithic
loading.

(e) Forward prediction of unloading.

Fig. 11. Comparison of forward prediction capacity between different configurations of neural network models.

�, (2) LSTM with �, C N and (3) LSTM with �, C N , AF (Fig. 11(e)). For (1) and (2), the additional information
on average number of interactions per particle does not improve the generalization capability of the LSTM model.
The model with the fabric tensor, which describes the matrix of the porous media, gives significantly more accurate
results. This is due to the deformation mode of the DEM sample. The micro-structure is heavily distorted during the
shearing. This leads to the change of principal values and rotation of principal directions of the fabric tensor. The
porosity � and the coordination number C N , however, provide little information on this induced anisotropy in the
micro-structure because they are scalars. Thus, in this example, the evolution history of the fabric tensor is crucial to
the forward prediction capacity of the LSTM network.

Lastly, we study the performance of different LSTM architectures to determine the neural network parameters
adopted in this work. Table 1 lists 5 neural network configurations that differ in the number of hidden layers, the
number of neurons per hidden layer and the activation function for the output layer. The training data and testing
data are the previous data set from the numerical simple shear tests including the micro-scale attributes: porosity,
coordination number and fabric tensor. The training data consists of 500 samples and the testing data contains 100
samples. The training phase consists of 5000 epochs and the batch size is 100. The loss function is the standard
mean squared error. The values of loss on both training and testing data are recorded during the training epochs and
are presented in Fig. 12. The performance curves show that all architectures can drive the training error down to
the 10�5 level and the testing error down to the 10�4 level. Configurations 4 and 5 perform better in the training
data and Configuration 5 is more accurate in predictions. The discrepancy is not significant. Thus for the neural
network architecture used in this work, we choose the second configuration in Table 1, which gives good training and
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(a) Loss on training data. (b) Loss on testing data.

Fig. 12. Comparison of training performance of different ANN architectures in Table 1.

Table 1

Different ANN architectures for evaluation of training performance.

ANN Configuration Number of hidden
layers

Number of LSTM neurons
per hidden layer

Activation function
for output layer

1 2 50 Sigmoid
2 2 80 Sigmoid
3 2 100 Sigmoid
4 3 80 Sigmoid
5 2 80 ReLU

prediction performances. The number of LSTM neurons in the network is small so that it will speed up the training
and the calculation in the triple-scale online simulations.

4.4. Performance of LSTM neural network on noisy data

In recent work such as Kirchdoerfer and Ortiz [15] and Versino et al. [93], the authors have presented ways to either
use variational principles or symbolic regression to build data-driven model for elastic and plastic material models
with various amount of human knowledge. In particular, Kirchdoerfer and Ortiz [15] have provided a systematic
study on how reduction on data points in stress–strain curve affects the robustness and accuracy of data-driven model
for hyperelastic problems and assesses the effect of under-fitting. However, since most of the data-driven models are
generated from optimization procedure, the data-driven models may also generate over-fitting predictions.

A neural network with LSTM layers and dropout layers is trained with the load–deformation curves obtained from
experiments performed on Arkose sandstone at various deformation rates (Fig. 13(a) [94]). This experimental data set
contains four displacement rates (0.08, 0.16, 0.32, 0.64 mm/s). 0.08, 0.32, 0.64 mm/s as the training set and 0.16 mm/s
as the test set. Random noise in force is added in a point-wise manner to the original data. The random noise follows
a normal distribution with zero mean and standard deviation in inverse proportion to the square root of the data size,
following Kirchdoerfer and Ortiz [95]. It should be noted that since LSTM networks are designed for memorizing
sequences, learning the rate-dependent behavior does not require any specific change and therefore is more convenient
than the feed-forward neural network counterpart. The input is composed of the next displacement dt+�t , the history
of displacement dt , dt��t , dt�2�t and the history of force ft , ft��t , ft�2�t , ft�3�t . The output is the force ft+�t
at the displacement dt+�t based on these input sequences. Note that the components in the sequences are separated
by the real time increment �t , then the information of deformation rate is directly presented to the LSTM neural
network by the input sequences. Thus using the deformation rate as an additional input to the neural networks is not
necessary. Fig. 13(b) shows that the LSTM network has successfully acquired the rate-dependence behavior from
the training data and returns accurate forward prediction on the testing data. Fig. 13(c) shows the effect of dropout
layers on the forward predictions of the LSTM model, where different dropout rates of 0.2, 0.4 and 0.6 are compared.
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(a) Experimental data. (b) Training and forward prediction. (c) Forward prediction on displacement rate
0.16 mm/s.

Fig. 13. Training of LSTM model with rate-dependent experimental data of Arkose sandstone with artificial noise (after [94]). The models with
dropout layers of different dropout rates deliver similar forward predictions on the testing data in this example.

In this example, the models are capable of suppressing the over-fitting on noisy training data and provide accurate
predictions. The effect of the dropout layer is minor. Interestingly, the recurrent neural network is able to deliver a very
accurate forward prediction in a cross-validation study, even though the data available are quite limited, as shown in
Fig. 13. The in-depth study of dropout layers effect and the techniques to deal with noise for data-driven constitutive
models is important, but is out of the scope of this paper. These studies will be conducted in a future dedicated work.

4.5. Enforcing objectivity and spectral decomposition

The data-driven constitutive law must preserve the principle of objectivity, i.e., the rotation and translation of the
observer frame should not affect the material responses. This requirement is not automatically satisfied if we only
train a neural network with the components of strain tensors expressed in terms of a particular coordinate system as
input and components of stress tensors in the same coordinate system as output. In the 1990s, early works attempting
to train artificial neural network to generate data-driven constitutive laws did not address this issue, as the goal of this
material model is often used only to test whether the constitutive laws can generate stress–strain curve for selected
experimental settings (e.g. uniaxial, biaxial and triaxial loadings) [12]. This is reasonable as the frame indifference
problem is not apparent (although it can be easily checked) in infinitesimal material point simulation.

This situation changes when Lefik and Schrefler [68] attempt to put data-driven model into finite element code and
discover that superposing rigid body rotation with the deformation may lead to changes of the stress prediction. They
then propose a feasible solution where one simply generates extra stress–strain curves from the same experimental
data by rotating the material coordinate system multiple times such that the neural network can learn the objectivity
requirement from the data. This remedy understandably enlarges the size of the training data set and potentially
requires more neurons due to the additional rules needed to be learned from data. Furthermore, rather than enforcing
the objectivity in a strict sense, the artificial network may only recognize the rules approximately, and hence objectivity
can only be satisfied within a reasonable but not negligible tolerance.

In this paper, we propose an alternative new approach to enforce the objectivity in the infinitesimal regime, which
could be advantageous over the previous attempts in the sense that (1) it does not require extension of the training sets
through imposing rotation on the coordinate system and (2) the resultant data-driven model will enforce objectivity in
a strict sense.

The key is to modify the way data are represented in the input and output layers such that the desired properties of
a physical quantity (e.g. deformation gradient, rotation) in a specific Lie group (e.g. special orthogonal group, general
linear group, symplectic group) can be retained while the incremental update is sought. In the proposed framework,
we will first express all the tensor qualities in spectral form. For instance, the effective stress, the infinitesimal strain,
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and permeability tensors are expressed in terms of their corresponding principal values and directions, i.e.,
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where � 0

A and n(A)
� , ✏A and n(A)

✏ , and kA and n(A)
k are the eigenvalues and corresponding normalized eigenvectors

of effective stress, infinitesimal strain, and permeability tensors respectively. Similarly, the fourth-order tangential
operator can be written in spectral form, i.e.,
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where m(A) = n(A) ⌦ n(A), m(AB) = n(A) ⌦ n(B). Note that the tangent is composed of two terms, one corresponding to
the derivative of the principal stress with respect to principal strain at a fixed principal direction; another corresponding
to the spin of the principal axes [96]. In the special case where strain and stress are coaxial and the permeabilities are
isotropic, one may simply design a recurrent neural network with the principal strain time history as input and output
the principal stresses. However, the co-axial assumption may be not appropriate for more complex situations. Here we
consider the general case in which the strain, stress and permeability tensors are not necessarily coaxial. In this case,
we must consider how to represent the rotation of the principal directions at each incremental time step.

Recall that a rigid body rotation can be viewed as a mapping where x = '(X, t) = R(X, t) · X where the rotation
tensor R belongs to the special orthogonal group SO(3), i.e.,

SO(3) = {A 2 GL(3)| det A = 1, AAT
= I} (51)

where GL(3) is the general linear group of 3 dimensions. As explained in previous work such as Lefik and Schrefler
[68] and Lefik et al. [16], directly using the components of the stress and strain with respect to a particular Cartesian
coordinate system will make the predicted responses of the data-driven model lacking objectivity. The key underlying
reason is that the neural network computation contains addition (and minus) operations, but the special orthogonal
group SO(3) does not belong to the additive abelian groups. In other words, adding the components of two rotation
tensors together may lead to a tensor that does not belong to the SO(3) group (e.g. the tensor resulted from adding
two identity tensors together where I 2 SO(3)). As explained in previous work such as Mota et al. [97], one way to
resolve this issue is to perform the machine learning using the infinitesimal version of the corresponding Lie group,
i.e., the Lie algebra, i.e.,

so(3) = {B 2 M(3)|B = �BT
} (52)

where M(3) denotes the space of the 3-by-3 tensors. Note that there is more than one way to parametrize the rotation
tensor and hence relates a mapping of Lie group with the Lie Algebra counterpart. For instance, the finite rotation
tensors and the infinitesimal spin tensor can be related via exponential and logarithm mapping, i.e., [97–99]:

R = exp[ ̃ ] =

1X

k=0

 ̃ k

k!
;  = log R =

1X

k=0

(�1)n�1

n
(R � I)n (53)

where  ̃ is a skew-symmetric infinitesimal spin tensor that can be defined by three off-diagonal components  ̃23,
 ̃13,  ̃12 whereas the diagonal components are zero. In the incremental form, the rotation matrix at time tn is updated
by

Rn = Rn�1 exp[� ̃n]. (54)

Therefore, the input for a data-driven constitutive model trained by the recurrent neural network can be the history of
the principal strains ✏1, ✏2, ✏3 and the history of the incremental rotation parameters of strain directions � ̃ ✏

23, � ̃ ✏
13,

� ̃ ✏
12. The outputs are the principal stresses �1, �2, �3 and the incremental rotation parameters of stress directions

� ̃�
23, � ̃�

13, � ̃�
12. It should be noted that for anisotropic materials such as single crystals, the supervised machine



360 K. Wang, W. Sun / Comput. Methods Appl. Mech. Engrg. 334 (2018) 337–380

learning still requires data generated from multiple stress path in different orientations, regardless of whether the
spectral form is used or not.

Here, we present a simple numerical test to check whether the data-driven model provides objective predictions.
The idea is to simply run the same tests multiple time, each with a different reference frame. If all these numerical
simulations provide the same tensorial output (e.g. stress, permeability) and yield the same amount of strain energy
then the data-driven model passes the verification test, which is a necessary but not sufficient condition for frame
invariance. The test to check the objectivity consists of testing whether the strain energy density is invariant upon
rotation of the observer frame and if the stress measured in rotated frame follows the tensor rotation transformation
rule. The procedure is presented in Algorithm 1.

Algorithm 1 Objectivity test
1: Generate random Strain ✏.
2: Compute Strain Energy W (✏), Cauchy stress � (✏).
3: Generate random Rotation R 2 SO(3).
4: Compute ✏⇤ = R · ✏ · RT , Strain Energy W (✏⇤), Cauchy stress � ⇤(✏⇤).
5: if W (✏⇤) = W (✏) and � ⇤ = R · � · RT

then

6: The material model is considered objective.
7: Exit.

We perform numerical experiments to test the objectivity of (1) a recurrent neural network only fed with stress
and strain components (“Direct RNN model”), (2) a recurrent neural network with extra data of material responses
observed in rotated coordinate system (“Objectivity enhanced RNN model”) and (3) the proposed model which
employs spectral decomposition (“Spectral RNN model”). As described in the procedure of the test, a random strain
✏ is imposed on the three RNN material models. 500 groups of Euler angles {�, ✓, } (“x-convention”, � 2 [0, 2⇡ ],
✓ 2 [0,⇡], 2 [0, 2⇡ ]) are randomly generated for the rotation of observer frame via corresponding rotation matrices
R. 20 of them are randomly picked and presented to the “Objectivity enhanced RNN model” to provide the knowledge
of frame indifference, i.e., ✏⇤ = R · ✏ · RT serves as additional input samples and R · � · RT as outputs. The relative
error on the stress and strain energy read,

e� =
k� ⇤(✏⇤) � R · � · RT k

kR · � · RT k
; eW =

|W (✏⇤) � W (✏)|
|W (✏)|

(55)

for all 500 rotation cases in Fig. 14.
The “Direct ANN model” is shown not to be objective. The maximum errors in stress tensor and strain energy both

exceed 100%, which are unacceptable for material constitutive models. With material responses in several rotated
observer frames included in training data, the maximum errors are largely reduced to about 10%. However, the training
data are enlarged twenty times in this numerical test and the rigorous objectivity is yet not achieved. The proposed
spectral RNN model is demonstrated to be objective, since the inputs and outputs are independent of the choice of
coordinate systems.

4.6. Highlights of implementation

As for the implementation, we have leveraged Keras (cf. Chollet et al. [100]), a high-level Python deep learning
library, to build the LSTM neural networks and complete the training procedure. This model-level library allows
for easy and fast prototyping of machine learning models. The low-level operations (such as tensor calculus) for
machine learning are handled by Tensorflow, an open-source symbolic tensor manipulation library developed by
Google, Inc [101], serving as the “backend engine” of Keras. One upshot of Tensorflow is that it has a flexible
architecture based on data flow graphs that enable easy GPU accelerated training of various types of neural networks.

The building and training of the LSTM data-driven model in this paper contains four steps. Firstly, the data acquired
from lower-scale numerical simulations are preprocessed and converted to specific data structure compatible with the
LSTM training and validation algorithms. The data of numerical simulations are stored in comma-separated values
(CSV) file and are imported by an open-source Python data analysis library Pandas [102]. The data are split into input
features and outputs. These data are of different scales: 106 for traction, 10�2 for jump, 10�1 for porosity and 10�14
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(a) Direct RNN. (b) Objectivity enhanced RNN. (c) Spectral RNN.

(d) Direct RNN. (e) Objectivity enhanced RNN. (f) Spectral RNN.

Fig. 14. Material frame indifference test for “Direct RNN model”, “Objectivity enhanced RNN model” and “Spectral RNN model”. A random
strain ✏ is imposed on the three RNN material models. 500 randomly generated cases of rotation of observer frame are illustrated by the rotation
vectors of the Euler’s rotation theorem. The Euler angles {�, ✓, } are converted to Euler parameters {e0, [e1, e2, e3]} and then to the rotation
vector. In each case, the vector direction n̂ represents the axis of rotation, while the vector length l represents the angle of rotation l 2 [0, 2⇡ ]
(counterclockwise). The sphere of radius 2⇡ is drawn for guidance. The color of the vectors illustrates the relative errors for the norm of stress
tensor (a–c) and the strain energy (d–f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

for permeabilities. Thus, each sequence of input and output is re-scaled to be within [0, 1] using the MinMaxScaler
class in sklearn.preprocessing toolkit [103]. The input data structure that can be processed by the LSTM model must
be an array of dimension 3, where the entries for the first dimension are the samples, the second dimension are the
time history steps and the last dimension are the input features.

Secondly, the multi-layered neural network is constructed with a few and easy-to-modify lines of codes. Keras
offers a simple way to establish neural networks that incorporate input, LSTM, dropout, output layers. Adding or
deleting a layer, modifying the number of nodes, changing the activation functions are very convenient in Keras.

After the neural network is built, we then launch the training epochs. We feed the LSTM model with the
preprocessed input and output data. The back propagation algorithm will modify the weights of the neural network
iteratively and the loss will be reduced to a small number (about 2e�6 in this work). The learning rate can be reduced
when the convergence becomes slow. Finally, the performance of the fully-trained LSTM material model is assessed
on a set of test data that has not been provided to the model in the training phase.

5. Numerical experiments

In this section, we present a triple-scale simulation which links the grain-scale simulations, the meso-scale assumed
strain simulations and the macroscopic fault simulator together, as shown in Fig. 15.

Instead of directly replacing phenomenological laws with sub-scale simulations to generate constitutive responses
as done in [45], we introduce a data-driven offline coupling method in which numerical results from sub-
scale simulations first constitute material databases. These databases are then used to train the recurrent neural
network models. Once the training and validation are completed, the neural network is then used to replace the
phenomenological traction-separation law and the interface conductivity models of the dual-porosity systems. This
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Fig. 15. Triple-scale data-driven fault reactivation simulations. {X, Y } constitutes the coordinate system of the macro-scale problem. {M, N }

constitutes the local coordinate system of the strong discontinuity in macro-scale. For meso-scale problem, the coordinate system is {x, y} (co-axial
to {M, N }), and the internal structure distinguishes two coordinate systems of interface: {m1, n1} and {m2, n2}. The corresponding coordinate
systems for micro-scale RVEs are {x 0

1, y0

1} and {x 0

2, y0

2}.

process is applied recursively across length scales twice such that the responses of the fault are predicted by a data-
driven model trained and validated by data set generated with another set of data-driven models at smaller scale.

As emphasized in [104], macroscopic responses of a material system are often dominated by the evolution
of microstructural attributes, especially after the material bifurcation occurs. Yet, the traction-separation law and
the conductivity law are often highly simplistic due to the difficulty to propose a proper model that captures the
phenomenology. By incorporating the micro-structural information via deep learning, more realistic and complex
constitutive laws can be generated automatically such that more accurate simulations of the localized responses can
lead to more reliable macroscopic predictions.

In the following simulations, we assume that embedded strong discontinuities are pre-existing and do not propagate.
In total, we construct two material databases. One contains the material responses of the DEM-network simulations
that replicate the grain-scale interface between two bulk materials. In the second material database, the data are
obtained via running RNN-FEM simulations where the neural network trained by the DEM-network database is re-
used to model strong discontinuities, while the bulk material is idealized as isotropic elastic material. This recursive
training strategy allows one to use machine learning as a means to incorporate sub-scales information in an offline
material. As a result, the triple-scale simulation only requires grain-scale material parameters for the DEM and flow
network simulations as well as the material parameters used to model the bulk responses. All the path-dependent
behaviors are therefore originated from the meso-scale interfaces and the macroscopic fault. The material parameters
used in the numerical example are summarized in Table 2.

The initial and boundary conditions of the macroscopic 2D fault reactivation problem are shown in Fig. 15. Note
that this initial boundary value problem is a highly simplified model used for demonstration and testing purpose. A
more dedicated case study intended to capture the actual complex operations of fluid injection in an actual field will
be conducted in the future but is out of the scope of this study. The size of the macroscopic domain is 1 km ⇥ 1 km
and it is assumed that the field is under plane strain condition. To simulate an anisotropic stress condition, the traction
applied on the two opposite faces of the square domain is 10 MPa and 6 MPa accordingly. These values are held
constant during the simulations. Meanwhile, we prescribe the Darcy’s velocity of the macropores at the injection
well about 250 m from the fault line. To test the capacity of the data-driven model and to generate path-dependent
responses at the field-scale level, this Darcy’s velocity is not held constant but allowed to change over time, with the
initial Darcy’s velocity equal to 50 m/s.

5.1. Training and validation of material laws for meso-scale interface

To train the recurrent neural network such that it can replicate the meso-scale hydro-mechanical responses of
the embedded strong discontinuities, we first conduct 21 grain-scale simulations. The time history of the traction,
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Table 2

Material parameters for the grain-, meso- and macro-scale poromechanics problem with embedded strong discontinuities across three length scales.

Scale & Model Location Parameter Value

Grain-scale DEM Micro-discontinuities Particle Young’s modulus E 0.5 GPa
Grain-scale DEM Micro-discontinuities Particle Poisson’s ratio ⌫ 0.3
Grain-scale DEM Micro-discontinuities Particle Friction Angle ⇡

6
Grain-scale DEM Micro-discontinuities Particle density 2600 kg/m3

Grain-scale DEM Micro-discontinuities Particle mean diameter 5 mm

Meso-scale FEM Meso-scale host matrix Young’s modulus 0.2 GPa
Meso-scale FEM Meso-scale host matrix Poisson’s ratio ⌫ 0.2
Meso-scale FEM Meso-scale host matrix Intrinsic permeability  2e�14 m2

Meso-scale FEM Meso-scale host matrix Dynamic viscosity µ 1e�3 Pa s

Macro-scale FEM Macro-scale host matrix Young’s modulus 0.2 GPa
Macro-scale FEM Macro-scale host matrix Poisson’s ratio⌫ 0.2
Macro-scale FEM Macro-scale host matrix Porosity of macropore �M 0.1
Macro-scale FEM Macro-scale host matrix Porosity of micropore �m 0.2
Macro-scale FEM Macro-scale host matrix Intrinsic permeability of macropore kM 1e�12 m2

Macro-scale FEM Macro-scale host matrix Intrinsic permeability of micropore km 5e�17 m2

Macro-scale FEM Macro-scale host matrix Parameter of mass transfer ↵ ⇢ f ⇤ km
Macro-scale FEM Macro-scale host matrix Dynamic viscosity µ 1e�3 Pa s

Fig. 16. Micro-scale RVE. The initial configuration of the granular assembly (LEFT), the deformed configuration of the granular assembly
(MIDDLE), and the flow network generated from the deformed configuration used to predict the anisotropic effective permeability (RIGHT).

displacement jump, and permeability in the normal and tangential directions, as well as the major and minor principal
values of the fabric tensor are recorded. 16 of the simulation results are used as the training data set and the rest 5 of
them are used as the validation data set.

In each RVE simulation, the displacement boundary conditions are prescribed as shown in Fig. 16. The size of the
DEM RVE is 10 cm ⇥10 cm ⇥5 cm, while the averaged grain diameter is 0.5 cm. The micro-scale traction-separation
law and the relation between the micro-structure and the permeability tensor on the interface are homogenized from
a micro-scale RVE of discrete element particles. A set of displacement jump paths {un, us} is applied to the micro-
scale RVE, and the tractions {tn, ts} are homogenized at each incremental deformation step. Furthermore, at each
incremental step, we also construct a flow network inferred from the deformed configuration of the DEM assembly
and use an inverse problem to compute the effective permeability in the tangential and normal directions, as shown in
Fig. 16.

Before the displacement-driven grain-scale simulation begins, the DEM assembly must be in the stress state
consistent to the macroscopic boundary condition. This is achieved by subjecting the DEM assembly with the right
amount of shear and normal tractions along the boundaries.

The initial state of the micro-scale RVE is determined by the initial state of the macro-scale problem. The macro-
scale fault with the inclination angle of 80� is under a confining pressure of 6 MPa in the X direction and 10 MPa in
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the Y direction.

� Init
macro =


�6 0.

0. �10

�

XY
MPa, (56)

where the subscript XY refers to the frame depicted in Fig. 15. To introduce the proper initial stress state to the DEM
assemblies, we first express this stress tensor in the local frame of the meso-scale RVE as depicted in Fig. 15 via
coordinate transformation, i.e., � xy = RT · � XY · R such that,

� Init
meso =


�9.88 �0.68
�0.68 �6.12

�

xy
MPa, (57)

where the subscript xy refers to the rotated frame for the meso-scale RVE. Note that since the DEM assemblies are
aligned with the strong discontinuities in the meso-structures, the stress state is re-expressed in the two local coordinate
systems such that the correct traction can be applied to the DEM assemblies to generate the correct initial stress state.
Recall that the two local coordinate systems are 20 degrees apart from each other (one 10 degrees clockwise to the
meso-scale frame, one 10 degrees counterclockwise to the meso-scale frame). As a result, we have,

� Init
microRVE1 =


�9.88 �0.68
�0.68 �6.12

�

x 0
1 y0

1

MPa ; � Init
microRVE2 =


�9.88 0.68
0.68 �6.12

�

x 0
2 y0

2

MPa. (58)

Once the initial stress state of the DEM assemblies is set, we then run multiple simulations and collect the results
to form the database for supervised machine learning. The choice of loading cases to be included in the training data
set is often based on empirical knowledge. In this work, we adopt such design of proportional loading paths: in each
loading case the ratio between the normal displacement un (along the unit vector n in Fig. 16) and the tangential
displacement us (along the unit vector m in Fig. 16) remains a constant. In total the training data set contains 16
ratios: un

us
=

i⇡
8 , i = 0, 1, 2, . . . , 15. Similar proportional loading paths have also been used to train constitutive laws

for bulk materials in [68]. In order for the data-driven model to learn the path-dependent behavior of the interface,
we, for each loading ratio, prescribe the displacement such that, the norm of the displacement u =

p
u2

n + u2
s is

prescribed with the following loading–unloading sequences: u first increases to 0.2 of the maximum displacement
magnitude 0.01 m, then decreases to 0.1 of 0.01 m, and rises again to 0.4, then to 0.2, 0.6, 0.3, 0.8, 0.4, 1.0, 0.5.
Note that, this design of training data set is suitable (but not necessarily optimized) for data-driven model used in
finite element simulations in which the deformation paths of strong discontinuities are not known a priori. In many
simulation cases, the major deformation paths could be anticipated. For instance, in shear band simulations, the shear
effects predominate over the opening or closing of the interface. Thus the training data set to be constructed for these
simulations should incorporate more shear-dominate loading paths. Nevertheless, the optimization of training data set
is a challenging task and will be studied in future work. Five additional loading paths for testing are also constructed.
Some of them are monotonic loading, some have different loading–unloading sequences, and in some cases the ratio
un
us

is not constant. Fig. 17 shows a portion of the loading paths designed for machine learning. For brevity, we did not
include all the available simulations in the database in the paper. Instead, we only show the results of 3 training sets
and 3 testing sets, which are denoted as TR1, TR2 and TR3 and TE1, TE2 and TE3 respectively. Nevertheless, the
training and validation algorithms as well as the database itself will be made available in an open source repository.
The discrepancy between the data from micro-scale DEM simulation X DE M and the results predicted by LSTM neural
network X L ST M is quantified by the scaled mean squared error given by

MSE =
1
N

NX

i=1

[MinMaxScaler(X DE Mi ) � MinMaxScaler(X L ST Mi )]
2, (59)

where N is the number of data points. X DE M and X L ST M are re-scaled to be within the range [0, 1] using the
MinMaxScaler as described in the data preprocessing for machine learning in Section 4.6.

The physical parameters for the input of the LSTM neural network are the sequence of history values at time
[tn�1, tn , tn+1] of the normal and tangential components of displacement jump, the sequence of history values at
time [tn�2, tn�1, tn] of the normal and tangential components of traction, and the sequence of history values at time
[tn�2, tn�1, tn] of the maximum and minimum principal values of the fabric tensor of the DEM RVE. The outputs
of the LSTM neural network are the normal and tangential components of traction at time tn+1, the maximum and
minimum principal values of the fabric tensor at time tn+1, and the permeabilities normal and tangential to the strong
discontinuity at time tn+1.
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(a) TR1. (b) TR2. (c) TR3.

(d) TE1. (e) TE2. (f) TE3.

Fig. 17. Loading path of three selected training cases TR1, TR2, and TR3, and three selected testing cases TE1, TE2, and TE3 on the micro-scale
RVE 1. un and us are the normal and tangential displacement jumps. The coordinate system is {m1, n1} (or {x 0

1, y0

1}) depicted in Fig. 15. TR1 and
TR2 represent tensile-shear loading cases (as un is positive), and TR3 represents a compressive-shear loading case (un negative). The numbers
indicate the sequence of loading–unloading cycles.

(a) TR1, MSE = 3.73e�5. (b) TR2, MSE = 1.05e�4. (c) TR3, MSE = 1.33e�5.

(d) TE1, MSE = 2.62e�5. (e) TE2, MSE = 1.21e�3. (f) TE3, MSE = 7.11e�4.

Fig. 18. Comparison of the micro-scale DEM simulation data and the trained meso-scale data-driven model. Normal traction against normal
displacement jump for the selected training and testing cases. The numbers mark the sequence of loading–unloading cycles. MSE refers to the
scaled mean squared error defined in Eq. (59).

Since in many engineering applications, the flow injection rate is transient and changes with time, the data-
driven traction-separation laws must be able to capture the resultant combined isotropic and kinematic hardening
mechanisms. Figs. 18 and 19 show the comparisons between the DEM simulations and the simulated mechanical
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(a) TR1, MSE = 7.09e�4. (b) TR2, MSE = 8.82e�4. (c) TR3, MSE = 1.07e�4.

(d) TE1, MSE = 5.98e�4. (e) TE2, MSE = 1.49e�2. (f) TE3, MSE = 4.66e�4.

Fig. 19. Comparison of the micro-scale DEM simulation data and the trained meso-scale data-driven model. Tangential traction against tangential
displacement jump for the selected training and testing cases. The numbers mark the sequence of loading–unloading cycles. MSE refers to the
scaled mean squared error defined in Eq. (59).

responses generated from the recurrent neural network in the normal and tangential directions. Except for the testing
case TE2 in which there is notable discrepancy when the thin DEM layers are reloaded, the meso-scale data-driven
traction-separation law is able to replicate both the cyclic and monotonic loading responses with negligible errors.
Remarkably, this is achieved without using any internal variables to capture the history-dependent effect. Furthermore,
we also show that the predicted responses are able to simulate both the damage-plastic flow and the elastic unloading
in the cyclic responses. This coupled damage-plastic response is attributed to the evolution of the fabric tensors.

Figs. 20 and 21 show the maximum and minimum eigenvalues of the fabric tensors following the prescribed
displacements obtained from DEM and from the RNN predictions. The RNN generated responses are able to deliver
very accurate predictions of the fabric tensor evolution. This good match is important for predicting induced anisotropy
and may explain why the traction predictions in Figs. 18 and 19 match well with the database.

The predictions of normal and tangential permeabilities following the prescribed displacements are shown in
Figs. 22 and 23 respectively. Again, with the help of characteristic microstructure information, the match is satisfying.
To sum up, the trained data-driven model is capable of representing the micro-scale DEM-flow network model, in
terms of traction, permeability, and invariants of fabric tensor. It is ready to be used as constitutive law for the strong
discontinuity of the meso-scale RVE in the FEM–LSTM coupled simulations.

5.2. Training and validation of material laws for dual-porosity fault

The path-dependent constitutive model governing the displacement jump induced traction and permeability
changes in the macroscopic sealing fault is provided by the macro-scale data-driven LSTM model. The data used
to train and test this model are generated from multiscale simulations of the meso-scale RVE, where the interface
behavior comes from the micro-scale RVE. The multiscale model is FEM–LSTM coupled, using the data-driven
model trained in the previous section.

In each RVE simulation, the displacement boundary conditions are prescribed as shown in Fig. 24. The meso-scale
RVE is 2D, and has the size of 1 m ⇥1 m. A set of displacement jump paths {un, us} are applied to the meso-scale RVE,
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(a) TR1, MSE = 1.27e�4. (b) TR2, MSE = 2.81e�4. (c) TR3, MSE = 1.06e�3.

(d) TE1, MSE = 1.44e�3. (e) TE2, MSE = 1.26e�3. (f) TE3, MSE = 1.38e�3.

Fig. 20. Comparison of the micro-scale DEM simulation data and the trained meso-scale data-driven model. Maximum eigenvalue of fabric tensor
against normal displacement jump for the selected training and testing cases. The numbers mark the sequence of loading–unloading cycles. MSE
refers to the scaled mean squared error defined in Eq. (59).

(a) TR1, MSE = 1.16e�4. (b) TR2, MSE = 1.71e�4. (c) TR3, MSE = 1.29e�3.

(d) TE1, MSE = 1.45e�3. (e) TE2, MSE = 7.73e�4. (f) TE3, MSE = 9.61e�3.

Fig. 21. Comparison of the micro-scale DEM simulation data and the trained meso-scale data-driven model. The minimum eigenvalue of fabric
tensor against tangential displacement jump for the selected training and testing cases. The numbers mark the sequence of loading–unloading
cycles. MSE refers to the scaled mean squared error defined in Eq. (59).
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(a) TR1, MSE = 9.06e�5. (b) TR2, MSE = 1.17e�4. (c) TR3, MSE = 2.63e�5.

(d) TE1, MSE = 2.33e�3. (e) TE2, MSE = 3.10e�3. (f) TE3, MSE = 9.07e�4.

Fig. 22. Comparison of the micro-scale DEM simulation data and the trained meso-scale data-driven model. Normal permeability against normal
displacement jump for the selected training and testing cases. The numbers mark the sequence of loading–unloading cycles. MSE refers to the
scaled mean squared error defined in Eq. (59).

and the tractions {tn, ts} are homogenized at each incremental deformation step. Furthermore, at each incremental step,
we also conduct an inverse problem to compute the effective permeability in the tangential and normal directions, as
shown in Fig. 24.

It is important to investigate how well the FEM–LSTM coupled scheme represents the FEM–DEM multiscale
scheme, where the interface constitutive law comes from the DEM assembly described in the previous section.
An example of comparison is presented, where the meso-scale RVE is subjected to a displacement loading path
with unloading. Fig. 25 compares the tractions in the normal and tangential directions caused by the prescribed
displacement jump. The results are close to each other. Thus FEM–LSTM model could represent the FEM–DEM
model in the generation of a database. Another alternative is using hybrid database. In other words, a portion of the
data could come from FEM–LSTM model simulations, while the other portion is from FEM–DEM model.

We then run multiple meso-scale simulations and collect the results to form the database for supervised machine
learning. The design of the training and testing data set is similar to the design in the previous section. In the meso-
scale RVE, there is no definition of fabric tensor, thus the input data only consists of the displacement jumps and
tractions in normal and tangential directions. Fig. 26 shows a portion of the loading paths: TR1, TR2 and TR3 in
the training sets and TE1, TE2 and TE3 in the testing sets. The physical parameters for the input of the LSTM
neural network are the sequence of history values at time [tn�1, tn , tn+1] of the normal and tangential components of
displacement jump, and the sequence of history values at time [tn�2, tn�1, tn] of the normal and tangential components
of traction. The outputs of the LSTM neural network are the normal and tangential components of traction at time
tn+1, and the permeabilities normal and tangential to the strong discontinuity at time tn+1.

Figs. 27 and 28 show the comparison between the FEM–LSTM simulations and the simulated mechanical
responses generated from the recurrent neural network in the normal and tangential directions. The predicted responses
are able to simulate both the damage-plastic flow and the elastic unloading in the cyclic responses. The predictions of
normal and tangential permeabilities following the prescribed displacements are shown in Figs. 29 and 30 respectively.
The trained data-driven model is ready to be used as a constitutive law for the strong discontinuity of the macro-scale
problem.
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(a) TR1, MSE = 3.09e�5. (b) TR2, MSE = 5.10e�4. (c) TR3, MSE = 3.25e�5.

(d) TE1, MSE = 4.97e�4. (e) TE2, MSE = 6.57e�3. (f) TE3, MSE = 8.32e�4.

Fig. 23. Comparison of the micro-scale DEM simulation data and the trained meso-scale data-driven model. Tangential permeability against
tangential displacement jump for the selected training and testing cases. The numbers mark the sequence of loading–unloading cycles. MSE refers
to the scaled mean squared error defined in Eq. (59).

Fig. 24. Meso-scale RVE. The initial configuration of the meso-scale RVE and its pre-embedded interfaces (LEFT), the deformed configuration
and the deviatoric strain field of the meso-scale RVE (MIDDLE), and the fluid flux calculation used to predict the anisotropic effective permeability
(RIGHT).

5.3. Simulation of macro-scale fault reactivation problem

In the field-scale example, water is injected to the macro-scale field through the source S located to the right
of the sealing fault. The distance between the source S and the fault is about 250 m (Fig. 32(a)). The prescribed
Darcy velocity at the source is shown in Fig. 31(a). The injection profile is composed of three injection-pause cycles,
where water supply is provided for 40 h under constant rate of 50 m/s, followed by a pause for 10 h before the
next cycle of injection. We simulate the hydro-mechanical dual-porosity problem with the traction-separation law and
macropore permeability tensors along the sealing fault given by the meso-scale data-driven model. The pore pressure
in both scales at the source S is presented in Fig. 31(b). The fluid is injected to the macropore space. Upon injection
or pause, the macropore injection pressure jumps up or plunges immediately, while the micropore pressure at the
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(a) Normal traction. (b) Tangential traction.

Fig. 25. Comparison of FEM–LSTM coupled model and FEM–DEM coupled model for meso-scale RVE. The numbers mark the sequence of
loading–unloading cycles.

(a) TR1. (b) TR2. (c) TR3.

(d) TE1. (e) TE2. (f) TE3.

Fig. 26. Loading path of three selected training cases TR1, TR2, TR3 and three selected testing cases TE1, TE2, TE3 on the meso-scale RVE. un
and us are the normal and tangential displacement jumps. The coordinate system is {M, N } (or {x, y}) depicted in Fig. 15. It can be seen that TR2
represents a tensile-shear loading case (as un is positive), TR1 and TR3 represent compressive-shear loading cases (un negative). The numbers
mark the sequence of loading–unloading cycles.

injection point has the opposite behavior. This is caused by the low mass transfer permeability between the macropores
and micropores. Then in the transient regime, when fluid gradually diffuses into the micropores by mass transfer,
micropore pressure slowly approaches the macropore pressure. The pressure in the micropores and macropores will
eventually be identical when the diffusion between pores reaches equilibrium. To show the influence of the inter-pore
transfer, we present an additional case where the transfer parameter ↵ is ten times higher (Fig. 31(c)). The discrepancy
between the pressures is significantly reduced. The following results are from the low inter-pore transfer case.

To illustrate the hydraulic response, the macropore pressure field at time 40, 100 and 140 h is presented in Fig. 32.
The pressure plume is in the form of circle and expands with increasing amount of water injected through the source
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(a) TR1, MSE = 4.96e�5. (b) TR2, MSE = 2.46e�4. (c) TR3, MSE =2.13e�4.

(d) TE1, MSE = 8.22e�5. (e) TE2, MSE = 6.04e�3. (f) TE3, MSE = 3.57e�4.

Fig. 27. Comparison of the meso-scale FEM–LSTM simulation data and the trained macro-scale data-driven model. Normal traction against
normal displacement jump for the selected training and testing cases. The numbers mark the sequence of loading–unloading cycles. MSE refers to
the scaled mean squared error defined in Eq. (59).

(a) TR1, MSE = 1.38e�4. (b) TR2, MSE = 3.25e�3. (c) TR3, MSE = 2.25e�3.

(d) TE1, MSE = 3.41e�3. (e) TE2, MSE = 4.76e�3. (f) TE3, MSE = 8.44e�4.

Fig. 28. Comparison of the meso-scale FEM–LSTM simulation data and the trained macro-scale data-driven model. Tangential traction against
tangential displacement jump for the selected training and testing cases. The numbers mark the sequence of loading–unloading cycles. MSE refers
to the scaled mean squared error defined in Eq. (59).
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(a) TR1, MSE = 1.85e�5. (b) TR2, MSE = 9.24e�5. (c) TR3, MSE = 8.00e�5.

(d) TE1, MSE = 2.33e�4. (e) TE2, MSE = 5.48e�3. (f) TE3, MSE = 3.87e�3.

Fig. 29. Comparison of the meso-scale FEM–LSTM simulation data and the trained macro-scale data-driven model. Normal permeability against
normal displacement jump for the selected training and testing cases. The numbers mark the sequence of loading–unloading cycles. MSE refers to
the scaled mean squared error defined in Eq. (59).

(a) TR1, MSE = 2.32e�5. (b) TR2, MSE = 3.20e�4. (c) TR3, MSE = 3.56e�4.

(d) TE1, MSE = 2.11e�4. (e) TE2, MSE = 1.27e�2. (f) TE3, MSE = 3.48e�3.

Fig. 30. Comparison of the meso-scale FEM–LSTM simulation data and the trained macro-scale data-driven model. Tangential permeability
against tangential displacement jump for the selected training and testing cases. The numbers mark the sequence of loading–unloading cycles.
MSE refers to the scaled mean squared error defined in Eq. (59).
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(a). (b) Low transfer between pores. (c) High transfer between pores.

Fig. 31. Water supply in the macro-scale fault reactivation problem. (a) Time history of the prescribed injection velocity in macropores at the
source point. (b) Computed responses of injection pressure in macropore and micropore at the source point (transfer parameter ↵ = ⇢ f ⇤ km ). (c)
Computed pressures in a comparison simulation where the transfer parameter ↵ = 10⇤⇢ f ⇤ km . The numbers mark the sequence of injection-pause
cycles.

(a) 40 h. (b) 100 h. (c) 140 h.

(d) 40 h. (e) 100 h. (f) 140 h.

Fig. 32. Evolution of macropore pressure (a–c) and micropore pressure (d–f) field. S denotes the fluid source. A, B, C are three locations on the
sealing fault. 40 h is the end of the first injection, 100 h is the end of the second pause, and 140 h is the end of the third injection.

(t = 40 h). The pore pressure drops when the injection pauses, but the plume is still expanding (t = 100 h) driven
by the excess pore pressure that has not been entirely diffused. When the injection is resumed, the pore pressure
also rises again. The form of the pressure plume is disturbed when it reaches the sealing fault, which has a two-
order-lower macropore permeability (t = 140 h). As for the micropore pressure field, it has a similar but delayed
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(a) A. (b) B. (c) C.

Fig. 33. Time history of local macropore and micropore pressure at locations A, B, C (Fig. 32(a)) of the sealing fault. “Front” refers to the side of
fault that is facing the source point. “Back” is another side that is away from the source. The numbers mark the sequence of injection-pause cycles.

(a) 40 h. (b) 100 h. (c) 140 h.

Fig. 34. Evolution of the mean effective stress field in the macro-scale simulation. 40 h is the end of the first injection, 100 h is the end of the
second pause, and 140 h is the end of the third injection.

evolution behavior, due to the time required for the fluid transfer between macropores and micropores. The local
pressure responses are illustrated in Fig. 33 for three locations in the fault indicated in Fig. 32(a). The distances to
the source point dSB > dS A > dSC . It is seen that the closer a point is to the source, the faster the pressure increases
upon injection. There is also significant pressure gradient across the less-permeable fault. The difference between
macropore and micropore pressure is due to the different permeability in macropores and micropores for the fluid to
diffuse in the macro-scale field, and also the low transfer permeability between pores.

Due to the fully coupled nature of the problem, the mechanical responses of the porous solid, especially the
displacement jump and traction at the strong discontinuity, strongly depend on how pore fluid diffuses inside the
pore space. The evolution of macro-scale mean effective stress field during the fluid injection cycles is shown in
Fig. 34.

It is clear that this field has the same pattern as the pore pressure field. The increase in the mean effective stress
is due to the increase in pore pressure, in agreement to the effective stress principle. The evolution of macro-scale
differential stress field (Fig. 35) is a combined effect of the far field differential stress, fluid injection and presence of
sealing fault. The decrease in normal compression traction makes the fault surface unable to sustain the shear traction,
and the fault starts to mobilize.

The local displacement and traction responses are illustrated in Figs. 36 and 37 respectively for three locations in
the fault indicated in Fig. 32(a). The traction states that the material at A, B, C experienced during the injection-pause
cycles are depicted in Fig. 38.
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(a) 40 h. (b) 100 h. (c) 140 h.

Fig. 35. Evolution of the differential stress field in the macro-scale simulation. 40 h is the end of the first injection, 100 h is the end of the second
pause, and 140 h is the end of the third injection.

(a) A. (b) B. (c) C.

Fig. 36. Time history of normal and tangential displacement jumps at locations A, B, C (Fig. 32(a)) of the sealing fault. The coordinate system is
{M, N } (or {x, y}) depicted in Fig. 15. The numbers mark the sequence of injection-pause cycles.

These results clearly demonstrate the capacity of our data-driven model in capturing the complex and path-
dependent interface behaviors. This is a significant improvement over the phenomenological traction-separation laws
where idealized tensile and shear (linear or exponential) behavior is often adopted [105]. The data-driven model
can preserve important hydro-mechanical properties of the interface from sub-scale structures while reducing the
computational costs compared to full micro-scale models such as DEM.

6. Conclusion

We introduce a recursive multiscale framework that captures the hydro-mechanical responses of multi-permeability
porous media with embedded strong discontinuities across different length scales. Using the directed graph that
represents the hierarchy of the numerical models as the starting point, we identify the knowledge gap and the weakest
link of a multiscale multiphysics multi-permeability model and replace this portion of the computational model
with a data-driven counterpart. By creating, training and validating recurrent neural network that has the capacity
to memorize and interpret history-dependent events, we established a new recursive data-driven approach where
information from multiple sub-scales can be used sequentially to generate macroscopic prediction in a cost-efficient
manner. The triple-scale coupling simulations are validated at each sub-scale level where data set for training and
validation are mutually exclusive to each other. Finally, we also address a number of technical issues, such as lack
of objectivity, vanishing and exploding gradients and the over-fitting issues to ensure the robustness and accuracy of
the numerical simulations. This hybrid data-driven modeling approach may play a critical role for analyzing problems
where human-interpretable knowledge is sufficient to bring closure for forward predictions and for linking simulations
across more than two scales in a cost-efficient manner.
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(a) A. (b) B. (c) C.

Fig. 37. Time history of normal and tangential displacement tractions at location A, B, C (Fig. 32(a)) of the sealing fault. The coordinate system
is {M, N } (or {x, y}) depicted in Fig. 15. The numbers mark the sequence of injection-pause cycles.

(a) A. (b) B. (c) C.

Fig. 38. Traction Path at locations A, B, C (Fig. 32(a)) of the sealing fault. The coordinate system is {M, N } (or {x, y}) depicted in Fig. 15. The
numbers mark the sequence of injection-pause cycles.
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