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ABSTRACT 

 

The Ordered Latent Transition Analysis Model for the Measurement of Learning 

 

Bright Nsowaa 

 

Several statistical models have been developed in educational measurement to determine and 

track the performance of students in longitudinal studies. An example of a model designed for 

such purpose is the latent transition analysis (LTA) model. The LTA model (Graham, Collins, 

Wugalter, Chung, & Hansen 1991) is a type of autoregressive model specifically designed to 

model transitions between class membership from Time t to Time t+1. The model however 

makes no assumption of ordering of the latent statuses and the transition probabilities. This 

project extends the LTA model by using the ordering technique proposed by Croon (1990) to 

introduce inequality constraints on the response probabilities of the LTA model. This new 

approach, referred to as the ordered latent transition analysis (OLTA) model, ensures ordering of 

the students' learning levels (known as statuses under LTA), and the transition probabilities. 

Simulation study was conducted in order to determine the adequacy of parameter recovery by 

OLTA as well as to evaluate the performance of the information criterion (AIC and BIC) in 

selecting the appropriate number of levels in the model. The simulation results showed good 

parameter recovery overall. Additionally, the AIC and BIC performed comparably well in 

selecting the correct transition model, but the AIC outperformed the BIC for the selection of 

optimal number of levels. An example of OLTA analysis of empirical data on reading skill 

development is presented. 
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Chapter 1 

 

 

Introduction 

 

The National Research Council (NRC) defines Learning progressions as" descriptions of 

the successively more sophisticated ways of thinking about a topic that can follow one another as 

children learn about and investigate a topic" (NRC, 2007, p.214). At the heart of learning 

progressions is the description of how students' knowledge and understanding of a topic or 

concept develop, and become more sophisticated over time. Students understandably have 

different experiences and as a result have a different understanding with different levels of 

reasoning (Battista, 2011). The concept of progression provides the ability to track students on 

the learning path, and to ensure that necessary resources are deployed to help them achieve 

higher academic goals.  

Determining abilities of students at Time t, and or tracking their development at Time t+1 

require measurement, and several statistical models have been developed in educational 

measurement to aid in this process;- specifically, models such as the item response theory (IRT) 

model (Birnbaum,1968; Rasch,1960), latent class analysis (LCA) model (Lazarsfeld & Henry, 

1968), and the ordered latent class analysis (OLCA) model (Croon, 1990) measure students' 

learning at a single time point. However, the longitudinal IRT model (Fischer, 1989), Bayesian 

Knowledge Tracing (BKT) model (Corbett &Anderson, 1995), the Latent Transition Analysis 

(LTA) model (Graham, Collins, Wugalter, Chung, & Hansen, 1991), and other related models 

measure students' learning at multiple time points.  
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The LTA model in particular is a type of autoregressive model specifically designed to 

model transitions between class membership from Time t to Time t+1. The model makes no 

assumption about ordering of the latent classes (often referred to as statuses). Under the LTA 

model, the latent statuses are not ordered at Time t, and the transitions at Time t+1 are 

considered without any ordering. This project extends the LTA model by employing the 

techniques of ordered latent class analysis model (Croon, 1990) to introduce inequality 

constraints on the response probabilities of the LTA model. 

For ease of demonstration, we will refer to this new technique as the Ordered Latent 

Transition Analysis (OLTA). The OLTA model ensures ordering of students' learning levels 

(known as statuses under LTA) at Time t, whilst providing the ability to tracking their 

development at Time t+1. Again unlike the LTA model, the transition probabilities are also 

ordered under this new approach. The OLTA model provides a practical solution to common 

measurement problems: which level do student(s) belong at the initial measurement, and how 

well have they developed over time. This new technique will enable researchers to test several 

stage-sequential models concerning human development. Second, the procedure can be used to 

assess the efficacy of an intervention program, and also estimate the differential effectiveness of 

such interventions for subjects in different levels. Also, not only is the OLTA model suitable for 

educational measurement, it can be used to model alcohol cessation or adolescent delinquent 

behavior, and so on.  

The principle behind the ordered learning levels simply stems from the idea that students' 

categorized as belonging to level k are considered to have higher cognitive skills than those 

belonging to levels 1,...,(k -1 ). In order to ensure the potency of the OLTA model, we next 

present the results of the simulation experiment specifically designed to address issues 
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concerning the adequacy of parameter recovery. Finally, we present a real data example where 

several competing models of reading skill acquisition are tested in a sample of Pre-kindergarten 

children.   

 

1.1 The Concept of Learning Progressions 

 

It is well noted from research that children naturally follow some developmental 

progressions in terms of learning and development (Clements & Sarama, 2009). From a 

cognitive standpoint, there is a fundamental difference between learning and development. 

Pellegrino (2009) suggested that some knowledge is acquired only through purposeful /deliberate 

teaching, while others are universally acquired through natural development. For example, 

certain Mathematical concepts like algebra, and mathematical notations are acquired through 

deliberate teaching whiles fundamentals of ordinality, for instance, seem to develop naturally in 

children without instruction (Pellegrino, 2009). 

The concept of Learning progressions / Learning trajectories in Mathematics and other 

related disciplines have gained a lot of traction over the years. The growing interest in learning 

progressions have in some ways provided a shift in emphasis from existing teaching modules to 

a more coordinated sequential teaching aimed at "developing scientific and mathematical 

knowledge with accompanying cognitive and metacognitive practices"(Duschl, Maeng, & Sezen, 

2011). Pellegrino (2009) defines learning progressions (trajectories) as "empirically grounded 

and testable hypotheses about how students' understanding of, and ability to use, core concepts 

and explanations and related disciplinary practices grow and become more sophisticated over 

time with appropriate instruction". 
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One of the characteristics of learning progression is the implicit recognition that students 

follow multiple pathways in gaining mastery of concepts rather than one general sequence (NRC, 

2007, p. 220). The hypothesized pathways or the conjectured routes are tested against real 

evidence of success; if the pathways prove unproductive, they are corrected and retried (Daro, 

Mosher, & Corcoran, 2011). As a result, the iterative experimental process continues until 

researchers are able to find an "efficient sequence" (Mosher, 2011).   

 

1.2 Description of Latent Variable Models 

  

There have been several examples in the social, behavioral, and health sciences where 

researchers have been able to use statistical model to classify individuals into distinct groups or 

categories. For example, Coffman, Patrick, Palen, Rhodes, and Ventura (2007) were able to 

identify distinct groups or categories of some high school seniors in the United Sates who were 

motivated, differently, into drinking. In addition, Bulik, Sullivan, and Kendler (2000) were able 

to classify a sample of twins into six distinct categories/subgroups of disordered eating. 

 The latent variable is not measured directly, but since it describes the interdependence of 

observed variables, two or more observed variables help to measure the latent variable indirectly. 

The observed variables are measured with error, but the latent variable is error-free. In the field 

of psychology and related fields, latent variables are often known as constructs (Pedhazur & 

Schmelkin, 1991). Figure 1.1 describes a hypothetical latent variable. In this figure, latent 

variables are labeled using the oval symbol, and four observed variables (e.g., X1, X2, X3, and 

X4) are labeled with square symbols. The corresponding errors associated with measuring the 

variables are contained in the circles.    
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                        Figure 1.1 latent variable with four observed variables. 

 

 

Bartholomew (1983) grouped latent variable models into four categories: factor analysis, 

latent trait analysis, latent profile analysis, and latent class analysis. Table 1.1 depicts how latent 

variable models are organized. The classifications of the models entirely depend on the nature of 

the latent and the observed (indicator) variables. When a model has a continuous latent variable, 

and a continuous indicator variable, it is known as factor analysis. Models with continuous latent 

variables and categorical indicators are known as latent trait analyses, also known as item 

response theory (Baker & Kim, 2004; Embretson & Reise, 2000; Lord, 1980; Van der Linden & 

Hambleton, 1997).  

Further, models with categorical latent variables and continuous indicators are known as 

latent profile analysis (Vermunt & Magidson, 2002; Moustaki, 1996). For latent class analysis, 

both the latent variable and the indicators are categorical. 

Latent 

variable 

X1 

cnc

jnjv

df1

111

111

111

112

ss1

111

1 

X2 X3 X4 

e

1

1
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e

2

2 

e

3 

e
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 Continuous 

Latent Variable 

Categorical 

Latent Variable 

Continuous Indicators 

Categorical Indicators 

 Factor analysis 

Latent trait analysis 

Latent profile analysis 

Latent class analysis 

Table 1.1  Classification of Latent Variable Models 

 

For latent class and latent trait models, the indicators are dichotomous, ordinal or 

nominal, and the conditional distributions of the models are assumed to be binomial or 

multinomial distributions (Bartholomew, 1987; Heinen, 1996).Table 1.1clearly depicts the 

fundamental difference between latent class and latent trait models; the latent trait models have a 

continuous latent variable but the latent class model contains "classes" which are discrete in 

nature and aid in categorizing people into homogenous groups (Heinen, 1993). For categorical 

latent variables, "qualitative differences exist between groups of people or objects"(Ruscio & 

Ruscio, 2008), and under continuous variables, "people or objects differ quantitatively along one 

or more continua" (p. 203). 

Researchers have paid considerable attention to continuous latent variables over the 

years, and as a result, a lot of work has been done in this area (Bollen, 1989; Klein, 2004). 

Categorical latent variable models on the other hand have not been enjoying the same exposure. 

Recently however, there seems to be a growing interest in this area. Various aspects of the latent 

class analysis; including ordered latent class analysis model (Croon, 1990), and others, are 

gradually gaining traction. Croon's (1990) idea is based on classifying individuals into ordinal 

categories by placing order constraints on the response probabilities. The practical implications 

of this model make it more attractive for measuring educational data. 

Croon's (1990) ordered latent class analysis (OLCA) model has provided inspiration for 

this project. At the core of this study is the idea that if individuals are ordered on the latent 
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continuum because of their ability or responses to behavioral issues, we expect changes in their 

ability to occur over time. For instance, individuals who belong to a lower class, because of their 

lower abilities, may acquire skills overtime and transition to higher classes. These kinds of 

changes are most apparent under longitudinal studies and the latent transition analysis (LTA) 

model is particularly suited to model transitions between class memberships while highlighting 

the complexities of such progressions overtime. 

 

1.3 Ordering latent classes 

 

Students in general do not have the same abilities, some have high abilities on certain 

concepts (i.e. a particular topic in mathematics) and others do not. Educational testing provides a 

platform for measuring students’ abilities, and to also distinguish the levels of these abilities. 

Educational testing could also help to order students on the ability continuum. 

 For this reason, taking interest in accounting for stochastic ordering of latent classes in 

educational data analysis enriches interpretation. Two approaches are considered for imposing 

order to latent classes on a unidimensional scale:  a parametric and a less or non-parametric 

approaches. The Item Response Theory (IRT) is a typical parametric functional form for 

describing the relationship between the item response probability and the latent classes. Though 

the IRT approach may well help provide order among classes, the nature of the model is such 

that the classes are measured in interval-level scale; which of course implies equal distance 

between ordered classes. The assumptions under this approach are stronger, and the constraints 

impose on the classes can be too restrictive which may reduce the attractiveness of this approach. 

Croon (1990) proposed a less or non-parametric approach for ordering latent classes by 

imposing inequality restrictions on item response and cumulative item response probabilities. 
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Unlike the IRT approach, the non-parametric model proposed by Croon is considered ‘weak’ 

mainly because of its less-restrictive assumptions. However, the nature of the assumptions makes 

this model more attractive and quite frankly advantageous. Under this approach, the parametric 

assumptions on item response probability, or the normality assumptions on ability distribution 

are relaxed. Croon created an algorithm for the maximum likelihood estimation of the 

parameters. But the maximum likelihood estimation under the proposed order constraints has had 

a history of resulting to a local maxima (Van Onna, 2002).  

In order to avoid the issue of local maxima, and to achieve global maximum, researchers 

have proposed using many different starting values for the algorithm (Vermunt, 1997), also there 

are other estimation procedures such as the Bayesian estimation approach which have been 

proven to be efficient for parameter estimation (Hoijtink & Molenaar, 1997; Hoijtink, 1998; Van 

Onna, 2002). This project has adopted Croon's non-parametric approach towards ordering latent 

classes.  

 

Assumptions of ordered Latent Class Analysis (OLCA) 

 

Croon's work on ordered latent classes "is a more broadly applicable way to investigate 

whether a unidimensional item response model provides a reasonable description and 

explanation of the subject's response to the different items, without making strong assumptions 

about the functional relationship between latent and manifest variables" (Croon, 1990, p. 188). 

The main assumptions of the OLCA model are homogeneity, local or conditional independence, 

unidimensionality, and monotonicity. 
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Homogeneity 

 

The assumption of Homogeneity is essential to the success of the OLCA concept. In 

OLCA, individuals are grouped into homogeneous sub-groups referred to as classes. The 

fundamental principle of latent classes is that no one belongs to more than one latent class, and 

the probability for a particular response to a particular item j, solely depends on the class to 

which the individual belongs.  

 

Local Independence (LI) 

For a latent variable model, observed variables, X = (X1 , . .  . , Xj), and latent variable, U, are 

assumed to be jointly distributed over a population (Holland & Rosenbaum, 1986). The 

conditional distribution function of X given U is represented as 

                F( 𝑥1, . . . , 𝑥𝑗 |u) = P( X1 ≤ 𝑥1, . . . , Xj ≤ 𝑥𝑗 |U = u),                                           (1.1)  

and the assumption of local independence posits that X1, . . . ,Xj are conditionally independent 

given U, otherwise expressed as 

                        F( 𝑥1, . . . , 𝑥𝑗 |u) =  ∏ 𝐹𝑗(𝑥𝑗|𝑢)𝐽
𝑗=1                                                           (1.2) 

for all 𝑥1, … , 𝑥𝑗  and u. 

              then,   𝐹𝑗( 𝑥𝑗|𝑢 ) = 𝑃( 𝑋𝑗 ≤ 𝑥𝑗|𝑈 = 𝑢)                                                           (1.3) 

The local independence assumption stipulates that conditional on the latent variable, the 

observed or indicator variables are independent. This posits that the relations that exist among 

observed variables are explained by the latent classes, and it is local because the assumption is 

held within each latent class. 
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Unidimensionality (U) 

The Unidimensionality assumption is fundamental in latent variable models; it states that 

the observed or indicator variables are assumed to be measuring only one trait, attribute, or 

ability.  

 

Monotonicity (M) 

Croon (1990, 1991) introduced a model to ensure the stochastic ordering of latent classes 

by imposing inequality constraint directly on the item step response functions (ISRFs). Croon's 

proposal forms a core assumption of OLCA which makes the ISRFs nondecreasing function of 

the latent trait. Van Onna (2002) depicted this assumption very well:  

          Let 𝜌𝑗𝑟𝑐 = 𝑃 (𝑋𝑗 = 𝑟 | 𝑐 ) represent the probabilities of individuals choosing category r on 

item j, given latent class q. Imposing constraints on the cumulative probabilities yield 𝜌𝑗𝑟𝑐
∗   = 𝑃 ( 

𝑋𝑗  ≥ 𝑟 | 𝑐 ) = 𝑃(𝑌𝑗𝑟 = 1 |𝑐 ). All persons responding to item j with response category 𝑟, 𝑟 +

1, … , 𝑟𝑗 have passed item step j 𝑟, for those individuals 𝑌𝑗𝑟 = 1. 

                      Now, 𝜌𝑗𝑟𝑐
∗ = ∑ 𝜌𝑗𝑘𝑐

𝑅𝑗

𝑘=𝑟  

In accordance with the monotonicity assumption, the ISRFs should be nondecreasing with the 

latent classes to ensure that higher scores are associated with higher latent classes, 

                         𝜌𝑗𝑟𝑐
∗  ≤  𝜌𝑗𝑟,𝑐+1

∗                                                                                       (1.4) 

Equation (1.4) represents the monotonicity assumption. The NIRT model that satisfies the 

assumption of monotonicity (M), together with the assumptions of local independence (LI), and 
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Unidimensionality (U) is referred to as monotone homogeneity (MH) model (Holland & 

Rosenbaum, 1986; Meredith, 1965; Mokken, 1971; Mokken & Lewis, 1982). 

1.4 Markov Chain Models 

In recent years, several statistical methodologies have been developed to measure 

possible change over time, closely as possible. The advancement of these statistical models is 

essential to testing theories and stage-sequential developments. The growth curve modeling 

(Rogosa, Brandt, & Zimowski, 1982; Willett, 1988; Meredith & Tisak, 1990; Willett & Sayer, 

1994; Singer & Willett,  2003) for instance has enjoyed a lot of success over the years with 

respect to measuring growth in continuous variables. However, there are instances in the study of 

human development where the primary interest is the change in qualitative status of individuals 

over time. The primary statistical model for the measurement of change in qualitative status over 

time is the manifest Markov chain model (Kaplan, 2008).   

Markov chain models are suitable for items with responses categorized as Yes/No; 

Pass/Fail; Agree/Disagree; Democrat/Republican/independent; Employed/Unemployed; etc., 

which are repeatedly measured overtime with the same respondents in the sample, and that the 

dynamics of change are modeled over time; in order to determine change, stability, or both 

(Langeheine & Van de Pol, 2002).  Markov chain models have been applied in many areas 

including learning; cognitive development; epidemiology; attitudinal change; voting 

behavior/pattern; and consumer behavior (Langeheine & Van de Pol, 2002). In recent years, 

several extensions have been added to the manifest Markov chain model, which have 

undoubtedly enhanced developmental research. These extensions are built to improve on the 

drawbacks of the manifest Markov chain model, such as accounting for measurement error, and 

allowing each chain to follow its own dynamics. 
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Figure 1.2. A modified hierarchy of Markov models (adapted from Kaplan, 2008). Arrows 

represent special cases. 

 

 

The Simple Markov Chain 

For the Simple Markov chain model and the remaining of Markov chain models in this 

section, the data of interest are observed categorical responses. The Simple Markov model 

consists of a single chain, the model assumes that the probability for a subject to be in a specific 

state at time point t solely depends on the state the subject was in at time point t – 1. The model 

ignores the influence of the state in earlier time points, for example t -2. Also, the model assumes 

Population homogeneity: this implies that the dynamics across time derived by the model hold 

for all subjects. Furthermore, the model assumes that the data are measured without error. 

Researchers including (Anderson, 1954; Goodman, 1962; Wiggins, 1973; Bartholomew, 

1981; Van de Pol & de Leeuw, 1986; Langeheine, 1988) have all noted the restrictive nature of 

these assumptions, and that perhaps explains the difficulty in fitting Simple Markov chain in any 

given set of data (Langeheine & Van de Pol, 2002). 

The Markov chain model with T = 3 points in time, is given by 

Mixture Latent Markov Model 

Latent Transition Model Latent Markov Model 

Latent Class Model Simple Markov Model 
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                         𝑃𝑖𝑗𝑘 = 𝛿𝑖
1𝜏𝑗/𝑖

2  1𝜏𝑘/𝑗
3  2,                                                                                   (1.5)   

  

where all parameters are manifest quantities: 𝛿1 represents the observed initial marginal 

distribution at time1, 𝜏𝑗/𝑖
2  1 and 𝜏𝑘/𝑗

3  2 are observed transition probabilities for a transition from time 

1 to time 2 and from time 2 to time 3 respectively. Of course, the Simple Markov can be 

specified in such a way that allows transition probabilities to be constant across time or differ 

across time (Kaplan, 2008). 

 

The Latent Markov Model 

One of the drawbacks of the Simple Markov model described earlier is the assumption 

that the data are measured without error. This of course implies that the observed responses 

flawlessly measure an individual's true latent state. Langeheine & Van de Pol (2002) described 

the error-free assumption as unrealistic for social science researchers. The latent Markov model, 

developed by Wiggins (1973) addressed the error-free assumption by allowing for correction of 

errors, thereby obtaining transition probabilities at the latent level. 

For T = 3 points in time, the latent Markov model can be written as 

 

   𝑃𝑖𝑗𝑘 =  ∑ ∑ ∑ 𝛿𝑎 
1𝐶

𝑐=1
𝐵
𝑏=1

𝐴
𝑎=1 𝜌𝑖/𝑎

1 𝜏𝑏/𝑎
2  1  𝜌𝑗/𝑏

2  𝜏𝑐/𝑏
3  2 𝜌𝑘/𝑐

3 .                             (1.6)  
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Where 𝜌𝑖/𝑎
1  represents the response probability associated with category i given membership in 

latent status a.  𝜌𝑗/𝑏
2  represents the response probability associated with category j given 

membership in latent status b. Remaining response probability is interpreted similarly. Transition 

from time 1 to time 2 in latent status membership is represented by 𝜏𝑏/𝑎
2  1 , and the transition from 

time 2 to time 3 in latent status membership is captured by 𝜏𝑐/𝑏
3  2 . 

It is clear from our discussion of the LTA model and the latent Markov model that there 

is no fundamental difference between the two models. The difference may be the practicality of 

the model, since the LTA model is conceivably viewed as being an ideal for studying 

developmental changes (Kaplan, 2008).  

 

Mixture Latent Markov Model (the Mover-Stayer Model) 

Thus far, the Markov Chain models described assume that the sample of observations 

comes from a single population described by a single Markov chain and one set of parameters. In 

some cases however, the population comprises a finite mixture of subpopulation, and using the 

same Markov model approach may lead to biased estimates and misleading conclusions of the 

developmental processes under consideration. 

A better approach for addressing this issue involves the combination of Markov-chain-

based models under the assumption of a mixture distribution. This approach is known as the 

mixture latent Markov model. The Mover-Stayer model (Blumen, Kogan, & McCarthy, 1955) is 

a special case of the mixture latent Markov model. The Mover-Stayer model primary consists of 

two Markov chains: Movers follow the usual Markov chain, which is individuals transitioning 
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across latent statuses over time while Stayers remain in their initial status and do not transition 

across statuses. 

The mixture latent Markov model can be written as  

 

               𝑃𝑖𝑗𝑘 = ∑ ∑ ∑ ∑ 𝜋𝑠
𝐶
𝑐=1 𝛿𝑎 /𝑠

1𝐵
𝑏=1

𝐴
𝑎=1

𝑆
𝑠=1 𝜌𝑖/𝑎𝑠

1 𝜏𝑏/𝑎𝑠
2  1  𝜌𝑗/𝑏𝑠

2  𝜏𝑐/𝑏𝑠
3  2  𝜌𝑘/𝑐𝑠

3 .                 (1.7)                 

 

where  𝜋𝑠 represents the proportion of S latent chains and the remaining parameters are 

interpreted as in Equation 1.6, except that they are conditioned on membership in Markov chain 

s. Special cases can be derived from equation 1.7, for example, with s = 1, equation 1.7 reduces 

to the latent Markov model in Equation 1.6. Also, with s = 1 and without transition probabilities, 

the model in Equation 1.7 reduces to the latent class model. 

 

1.5 Latent Transition Analysis (LTA) 

 "Latent transition analysis (LTA) is a variation of latent class model that is designed to 

model not only the prevalence of latent class membership, but the incidence of transitions over 

time in latent class membership" (Collins & Lanza, 2010, p.181). The model was introduced by 

Graham, Collins, Wugalter, Chung, & Hansen (1991), and is considered to be an extension of the 

latent Markov model by permitting the use of multiple indicator variables to test complex 

models.  

Markov model is a well-known model which has been in existence for relatively longer 

period; with a long standing contribution to psychology (Anderson, 1954). However, Wiggins 

(1973) and Lazersfeld & Henry (1968) introduced latent Markov model in the setting of latent 
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class theory. Until researchers such as Bye & Schechter (1986), Van de Pol & de Leeuw (1986), 

and Van de Pol & Langeheine (1989) introduced feasible methods for estimating model 

parameters, there was no meaningful application of the model presented by Wiggins, Lazersfeld 

and Henry.  

The "state" of the latent variable presents a fundamental difference between the latent 

class theory and LTA. Under latent class theory, the latent variable is primarily static but latent 

variable under LTA is dynamic (Graham, Collins, Wugalter, Chung, & Hansen, 1991). Dynamic 

latent variables keep changing over time in a methodical manner. Collins & Cliff (1990) created 

the contrast between static and dynamic variables, according to the authors (Collins, 1991b, 

1991a; Collins, Cliff, & Dent, 1988) the contrast between static and dynamic variables is vital in 

the sense that the regular measurement theories were not developed for dynamic variables, and 

that new methods are required to reasonably measure dynamic variables. 

LTA has been employed to especially test varying psychological constructs that are based 

on stage/sequential development, for example, children's drawing development (Humphreys  & 

Janson, 2000), smoking cessation (Velicer, Martin, & Collins, 1996),the progression of health-

risk behavior (Reboussin, Reboussin, Liang, & Anthony, 1998), and modeling substance use 

prevention (Graham, Collins, Wugalter, Chung, & Hansen, 1991). In LTA, individual's class 

membership at a particular time of measurement is often referred to as the individual's latent 

status. Three different parameters are of interest when considering LTA: latent status 

prevalences, item-response probabilities, and transition probabilities. 

Latent status prevalences 

 Latent status prevalences in LTA perform essentially the same functions as their 

counterparts (latent class prevalences) in LCA. The fundamental difference between the two is 
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that the latent status prevalences produce vector of latent status prevalences at each occasion. 

Researchers are able to inspect the latent statuses at each time to determine the most prevalent 

latent status as well as, the least prevalent one. The latent status prevalences provide useful 

information, but nothing relating to the extent to which respondents transition from one latent 

status to the other. The transition probabilities carry such information. 

 

Item- response probabilities 

The item-response probabilities in LTA perform the same function as the item-response 

probabilities in LCA. Just like in LCA, researchers are able to assign labels to latent statuses 

based on the item-response probabilities in LTA. Just like the latent status prevalences, 

differences exist between item-response probabilities in LCA and LTA. The difference is that in 

LTA, each time has its own matching item-response probabilities.  Suppose measurements are 

taken between two times t and t + 1, there will be two sets of item-response probabilities 

corresponding to time t and t+ 1 respectively. 

 

Transition Probabilities 

Unlike the latent status prevalence and the item-response probabilities, the transition 

probabilities are unique to LTA, and they are of paramount interest in LTA. In many respects, 

the transition probabilities are considered to be the bed rock of LTA analysis; they show how 

transitions occur between latent statuses from one time to the next (Graham, Collins, Wugalter, 

Chung, & Hansen, 1991; Collins & Lanza, 2010, p. 195). The transition probabilities are usually 
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arranged in a matrix form with the rows corresponding to time 1, and the columns corresponding 

to time 2. Let us consider the general representation of the transition probability matrix below: 

 

                                                Time 2 status 

                    Time 1 status [

𝜏1|1 𝜏2|1 𝜏3|1  …
𝜏1|2 𝜏2|2 𝜏3|2 . . .
𝜏1|3

⋮

𝜏2|3

⋮
 
𝜏3|3. . .

⋮    ⋱ 

] 

The tau (𝜏) parameters within the matrix represent the transitioning across latent statuses from 

one time to the next. From the matrix we can safely say that 𝜏𝑦|𝑥 represents the probability of 

membership in latent status y at time t+1, conditional on membership of latent status x at time t. 

The values on the diagonal matrix represent the probability of being in a particular latent status at 

time t+ 1, conditional on being in that same latent status at time t. The tau parameters above the 

diagonal elements of the probability transition matrix represent the probability of transitioning to 

an "advanced" status, and the parameters below the diagonal elements represent the probability 

of transitioning back to a former status (Velicer, Martin, & Collins, 1996). 
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Chapter 2 

 

Literature Review 

 

2.1 Introduction 

This chapter begins with the benefits of learning progression, and also focuses 

particularly on the Assessment aspect of learning progression; which is primarily concerned with 

modeling students' learning. Students' learning can be modeled in two forms: modeling item 

responses, and modeling growth. Models such as the Item Response Theory (IRT) Model, Latent 

Class Models, and Ordered Latent Class Models are specially designed to modeling item 

responses at a single time point. In terms of modeling students' growth, specific models to be 

considered are the Latent Transition Analysis (LTA) model, which is a special case of latent 

Markov model, a special case of Hidden Markov Model in Bayesian knowledge tracing, and the 

longitudinal IRT models. The concept of learning progression and the selected models 

mentioned are reviewed in this chapter. 

2.2 Background of the learning progression framework 

2.2.1 Learning Progression and its Benefits 

The National Research Council (NRC) defines Learning progressions as" descriptions of 

the successively more sophisticated ways of thinking about a topic that can follow one another as 

children learn about and investigate a topic" (NRC, 2007, p.214). Learning Progression and 

learning trajectories have been used interchangeably, but the intended use of the concepts reveal 

some subtle differences. For instance, learning trajectory is likely to be developed if the sole aim 

is designing and testing a curriculum. However, if one is interested in formative assessment 
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system relevant to many curricula, learning progressions are more likely to be developed 

(Battista,  2011). In spite of the seeming differences, this study uses learning progression and 

learning trajectory interchangeably, and also describes students' learning in numerical fashion as 

a way of measuring their progress. 

Generally, students do not develop at the same pace and therefore are not expected to 

start from, or end at, the same position on any given progression at any given stage (Corcoran, 

Mosher & Rogat, 2009). The concept of learning progression is vital in the sense that it has the 

potential to provide instructors with the requisite framework necessary to appropriately respond 

to the differences in students' progress at any stage, and to adapt instructions that are relevant to 

the needs of each student in order to help them achieve their learning goals. Progressions in this 

manner help to improve standards and curriculum. 

Curricula improvement is one of the main benefits of learning progressions. Successful 

progressions are able to focus on students' progress vis-a-vis the instructions they have 

experienced to create a reliable curriculum framework needed to determine the order and manner 

in which a particular skill(s) is/are to be taught (Corcoran, Mosher, & Rogat, 2009). In the 

nutshell, successful learning progressions help provide and also specify what students are 

expected to know at a particular stage of their academic lives , as well as, what they are expected 

to do (Pellegrino, 2009). This is huge because it motivates the creation of curricula that are 

closely linked to students' progress (Duschl, Maeng, & Sezen, 2011).  

Also, students' assessments are improved under the learning progression concept. The 

bedrock of learning progression is the description of how students' performances, reasoning or 

sophistication develop from Time t to Time t + 1 (Corcoran, Mosher, & Rogat, 2009). This 

means information gathered from assessing the students are insightful, and the instructors are 
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likely to have a good understanding on that information and use them to effectively address the 

needs of the students. 

Lastly, learning progressions improve instruction (Clements, & Sarama, 2009; Corcoran, 

Mosher & Rogat, 2009; Battista,  2011; Duschl, Maeng, & Sezen, 2011). Since learning 

progressions provide instructors with the tools that aid their understanding on students' progress 

and their likely levels, they are essentially being guided on their instructional choices. These 

instructional choices and goals influenced by learning progressions help teachers address 

difficulties students may be facing in their quest to achieve their academic goals. According to 

Sztajn,et. al., (2012), teachers previously constructed models on students learning based on their 

own understanding on how students learn. Learning progressions however, present a paradigm 

shift in the sense that teachers are making sense of students learning and progression based on 

scientific research (Sztajn, et.al, 2012; Confrey & Maloney, 2010).  

 Several studies point to the positive impact learning trajectories have on instruction. For 

instance, on her attempt to study how teachers learn and use learning trajectories, Mojica (2010) 

conducted a study on fifty-six teachers for 8 weeks, where the participants were introduced to the 

concept of learning trajectories. The author claimed that the participating teachers gained insight 

on the trajectory framework, and subsequently applied the concept in the classroom by making 

students thinking an integral part of instructional decisions. Also Clements, et al., (2011) 

conducted a randomized trial study with 42 schools to assess the effectiveness of trajectories as 

an intervention. The researchers found that students in the experimental group experienced 

growth in their knowledge of mathematics above and beyond the students in the control group. 

After examining the classroom practices of the teachers, the researchers found that teachers in 
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the experimental conditions were more attentive to the needs of students and taught mathematics 

better than their counterparts in the control group. 

 

2.2.2 Measurement and Assessment 

"Assessment includes the processes of gathering evidence about students' knowledge and 

abilities as related to the tasks to which they respond as well as making inferences from that 

evidence about what students know or can do more generally" (Gotwals & Songer, 2013). 

Pellegrino (2009) posited that assessment is useful only when it is linked with curriculum and 

instruction. According to the Pellegrino, as curriculum provides the general outlines of how 

certain academic goals could be achieved, and also determining the depth of content in a 

particular subject area, instruction must also be effective such that students can attain any form 

of mastery in any subject area based on the goals set forth by curriculum. 

 Instructions are carried out in a variety of ways, and students engage in diverse activities 

as part of instruction. Students' activities must be evaluated by educators and instructors at some 

point to determine how effective the instruction is, and how well the students are progressing and 

developing mentally. This is one of the reasons why assessment is very critical in our educational 

system; it plays a distinctive role by providing the means to effectively measure the educational 

outcome, the capabilities and competencies of students. Assessment takes many forms, there are 

informal ones that involve instructors organizing class tests, administering pop quizzes, or 

providing home works to students, and so on. The formal assessments, such as the state 

assessment are large-scale in nature. 

  Students' responses to assessment items help reveal how knowledgeable they are and how 

well they understand a concept, it also helps educators and researchers determine students' 
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performances and progress (Duschl, Maeng, & Sezen, 2011). Teachers receive item responses 

from students in the classroom, and they have to interpret the data, and make sense of it. This 

unique responsibility of teachers have prompted some researchers lately to adapt the learning 

progression framework to help train teachers to effectively interpret classroom data in order to 

track students' academic progress (Plummer & Slagle, 2009). Instruction and Assessment are 

improved (Heritage, 2008), when the outcome of assessment help teachers adapt or adjust 

instructional style to meet the needs of students.  

Statistical models are integral in assessment. Model techniques such as the Rasch model 

have commonly been used to assess the validity and consistency of students' score. The Rasch 

model describes the relationship between students' ability level and item difficulty (Embretson & 

Riese, 2000). Briggs and Alonzo (2009) considered the Rasch model technique ineffective for 

determining all the attributes of the item. The authors then used the Attributed Hierarchy Method 

(AHM) instead. Briggs and Alonzo concluded that the AHM provides better understanding of the 

construct especially for educators or researchers creating Ordered Multiple Choice items. Several 

models such as the item response theory (IRT) model, Latent class model, etc., described in 

subsequent sections are suitable for modeling student's outcome. 

2.2.3 The Concept of Levels 

The Levels Concept plays a critical role in learning progressions. At the heart of learning 

progressions is how students' understanding or knowledge of a topic becomes more sophisticated 

over time with appropriate instructions. Students do not all of a sudden gain knowledge or 

develop full understanding of a topic or concept; they go through a process (levels of 

understanding) before attaining sophistication on the topic or concept.  
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Researchers use of the term level is different from stage; a stage is age dependent and is 

considerable period of time in which a specific cognition occurs in various domains (i.e. Piaget's 

stages of cognitive development), but a level is independent of age; it is a period of time in 

which students get prominent cognition for a specific concept (Clement & Battista, 1992). This 

means that an older person or student can be categorized as belonging to say level 1 on a 

particular concept due to his/her experiences and interaction to the concept. However, a 

relatively younger person or student who has a lot of experience and interaction with those same 

concepts may be categorized as belonging to a higher level; say level 3.  

Some of the ingredients that determine the "Level" of the student are the experiences of 

the students and their interactions with the concept in question, and instructions they may have 

received. Two types of levels are described in research: A "weak" and a "strong" level. A level is 

described as "weak" when they are arranged in sequence of sophistication, one above the other, 

without class inclusion relationship among them, when a set of levels are arranged in sequence of 

sophistication, one above the other, with the presence of class inclusion relationships among 

them, it is referred to as a "strong" level (Battista, 2011). This means that for a "strong" level, 

students who are categorized as reasoning at level k are believed to have progressed through 

reasoning at the lower levels 1, 2,3,...(k -1). Battista (2007) suggested that being "at" a level 

means that the student is cognitively developed in a manner that put him in a position to think 

about a topic or a concept in a particular way. 

2.3 Statistical Models of abilities measured at a single time point 

2.3.1 Item Response Theory Models 

The item response theory (IRT) models have been used widely in educational testing and 

research. The purpose of these models is to assess item characteristics, and to make inferences on 
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examinee's abilities in a specific content area. The classic assumptions of IRT models include 

unidimensionality (UN), local independence (LI), and monotonicity (M). Various models have 

been proposed for IRT models, and depending on the method of estimation, these models 

basically fall into two categories: parametric and nonparametric methods. Parametric item 

response theory (PIRT) models are grouped into two on the basis of how items are scored. For 

binary or dichotomous IRT models, items are scored into categories, such as pass or fail, true or 

false, etc. For polytomous IRT models, items are scored in more than two categories, such as 

Likert items. Three related IRT models under binary IRT models are widely used and are popular 

in psychometric literature: The Rasch model (or one-parameter model), the two-parameter 

logistic model, and Birnbaum's three-parameter model. Also, the three related models commonly 

used under polytomous IRT models are the rating scale model, the graded response model, and 

the partial credit model. The maximum marginal likelihood estimation (MMLE) procedure is 

often used to fit the PIRT models (Bock & Aitkin, 1981). 

 

2.3.2 Parametric Item Response Theory (PIRT) Models 

Binary IRT Models 

For the analysis of binary test items, three IRT models are predominant in psychometric 

literature. The Rasch (1960) model, often referred to as the one-parameter logistic model (1PL) 

takes the form 

                        𝑃𝑖(𝜃 ) =  
𝑒𝐷𝛼𝑖( 𝜃− 𝛽𝑖)

1+ 𝑒𝐷𝛼𝑖( 𝜃− 𝛽𝑖) 
 ,                                                                          (2.1) 
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where 𝜃 is the ability level of examinees, 𝛽𝑖 is an item difficulty parameter, 𝛼𝑖 is an item 

discrimination parameter, and D is a scaling constant ( generally  D = 1.702 ). 𝑃𝑖(𝜃 ) represents 

the probability of an examinee responding correctly to an item. Under the Rasch model, the item 

discrimination parameter  𝛼𝑖 is fixed at unity (Birnbaum, 1968 ), such that the only item 

parameter to be estimated is the item difficulty. Constraining the item discrimination index to 

unity under 1PL ensures that the item response functions (IRFs) do not intersect, and this 

property is referred to as the item ordering property (Sijtsma & Hemker, 2000; Sijtsma & Junker, 

1996).  

The two-parameter logistic (2PL) model has a different appreciation for the item 

discrimination parameter 𝛼𝑖. Unlike the1PL, the 2PL puts no restrictions on the  𝛼𝑖′𝑠 , and items 

may vary in discrimination. The 2PL takes the form 

 

                             𝑃𝑖(𝜃 ) =  
𝑒𝐷𝛼𝑖( 𝜃− 𝛽𝑖)

1+ 𝑒𝐷𝛼𝑖( 𝜃− 𝛽𝑖) 
  ,                                                                    (2.2) 

 

The 2PL contains estimates of item difficulty and item discrimination. Birnbaum (1968) 

introduced a three-parameter model; which adds a guessing parameter 𝑐𝑖 to the 2PL. Birnbaum's 

three-parameter model takes the form 

 

                               𝑃𝑖(𝜃 ) = 𝑐𝑖 + (1− 𝑐𝑖 )
𝑒𝐷𝛼𝑖( 𝜃− 𝛽𝑖)

1+ 𝑒𝐷𝛼𝑖( 𝜃− 𝛽𝑖) 
,                                                 (2.3) 
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Equation (2.3) follows the assumption that the student/examinee either knows the item and 

correctly respond with the probability discussed under equation (2.2) or the examinee does not 

know the item but guesses with the probability of success equal to the value of the guessing 

parameter 𝑐𝑖. It is well noted in literature (Baker & Kim, 2004, p. 19; Van der Linden & 

Hambleton, 1997, p.13) that Birnbaum's three-parameter model does not define a logistic 

function, in spite of that, equation (2.3) is often referred to as the three-parameter logistic (3 PL) 

model.  

Polytomous Item Response Models 

Several models have been proposed for modeling polytomous response data. However, 

only three of such models are reviewed under this section: the graded response model 

(Samejima, 1969), the partial credit model (Masters, 1982), and the rating scale model.  

 The graded response model (GRM) deals with ordered response categories such as letter 

grading (A, B, C, D, and F) used to assess students' performance or such responses as exist in the 

case of likert rating scales. The model assumes that the cumulative log odds for scoring  𝑚 𝜖{1 , 

2, . . . M} or higher on item j, is a linear function of latent variable 𝜃: 

                       𝑙𝑜𝑔 (
𝑃𝑟( 𝑌𝑗 ≥  𝑚|𝜃

Pr( 𝑌𝑗 <  𝑚|𝜃
) =  𝛼𝑗  (𝜃 − 𝛽𝑗𝑚), 

where m is the response category { 1≤ 𝑚 ≤ 𝑀 }, j represents an item, 𝜃 represents latent trait 

such as ability. Under the GRM, the item -category step parameters, 𝛽𝑗𝑚 are ordered by the 

category index j such that  𝛽𝑗1  <  𝛽𝑗2  <  …  <  𝛽𝑗𝑀−1, whilst the discrimination index 𝛼𝑗 are 

fixed across item categories. 
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 The partial credit model (PCM) (Masters, 1982) is considered a straightforward model 

containing only two sets of parameters. Unlike the GRM, the PCM belongs to the Rasch family 

of models, and for that matter shares the distinguishing characteristics such as sufficient 

statistics, separable item and person parameters, and so on. Successful application of the PCM 

includes ratings of infant performance (Wright & Masters, 1982); ratings of writing samples 

(Pollitt & Hutchinson, 1987; Harris et al., 1988); measures of critical thinking (Masters & Evans, 

1986) etc.  

The model assumes that the adjacent -categories logit is a linear function of latent variable 𝜃: 

                        𝑙𝑜𝑔 (
Pr( 𝑌𝑗=  𝑚 |𝜃)

Pr( 𝑌𝑗=𝑚−1|𝜃)
) =  𝛼𝑗𝑚(𝜃 − 𝛽𝑗𝑚),  

 

This leads to the item-category response function below 

 

          𝑃𝑗𝑚(𝜃) = Pr{𝑌𝑖𝑗 = 𝑚|𝜃} 

                                = 
exp{ ∑ 𝛼𝑗 ( 𝜃− 𝛽𝑗𝑙 )}

𝑚
𝑙=0

∑ exp{ ∑ 𝛼𝑗 ( 𝜃− 𝛽𝑗𝑙 )}
𝑟
𝑙=0

𝑀𝑗
𝑟=0

 . 

 

Unlike the GRM, 𝛽𝑗𝑚 under PCM and the generalized partial credit model (GPCM) are not 

necessarily ordered, also the GPCM generalizes PCM to allow for varying discrimination index, 

𝛼  across items (Muraki, 1992). 

 The rating scale model (RSM) which was first introduced by Rasch (1961) and 

restructured by Andrich (1978) is considered to be an extension of the Rasch model. The model 
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makes an assumption that the category scores are equally spaced and the continuation logit is a 

linear function of latent variable  𝜃: 

    

                                 𝑙𝑜𝑔 (
Pr( 𝑌𝑗 ≥  𝑚|𝜃)

Pr( 𝑌𝑗=𝑚−1|𝜃 )
) = 𝛼𝑗(𝜃 − 𝛽𝑗𝑚)  

 

2.3.3 Nonparametric Item Response Theory (NIRT) Models 

According to literature, interest in nonparametric IRT has been in existence prior to the 

emergence of parametric IRT (Guttman, 1947, 1950a, 1950b). In spite of this fact, parametric 

IRT has gained enormous recognition partly due to the success of practical implementation of the 

logistic models in areas such as test equating, item banking, test bias, and also a successful 

implementation of the computerized adaptive testing. However, the underlying assumptions of 

the logistic function on parametric item response probability may be too restrictive, sometimes 

leading to model misfit. 

Researchers such as (Holland, 1981; Holland & Rosenbaum, 1986; Rosenbaum, 1984, 

1987a, 1987b) helped brought back the concept of NIRT into psychometric literature as a means 

of studying the minimal set of assumptions needed to be met by any response model; parametric 

or nonparametric. For instance, Woods & Thissen (2006) found that their proposed spline-based 

density estimation procedure provided a flexible alternative to the existing procedures that use 

normal distribution. The Spline, and Kernel regression techniques have also been used to 

estimate the non-parametric response function (Johnson, 2007; Ramsay, 1991; Ramsay & 

Abrahamowicz, 1989; Winsberg, Thissen, & Wainer, 1984).  
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2.3.4 Latent Class Model 

Lazarsfeld & Henry (1968) are credited for proposing the latent class analysis (LCA) 

model for analysis in the social and behavioral sciences. Since parameter estimation was an 

integral part of the concept, researchers were unable to expand or implement the ideas because 

there was no reliable method for estimating the parameters. Even though the proposal was 

generally accepted in the research community, lack of computational power prevented its 

implementation until Goodman's findings. 

Goodman (1974) helped changed the entire narrative by developing maximum likelihood 

procedure which was a reliable approach for obtaining estimates of latent class model 

parameters. Since then, there has been widespread application of the latent class model concept 

in many areas including medicine (Garrett & Zeger, 2000; Qu & Kutner, 1996; Rabe-Hesketh & 

Skrondal, 2008; Uebersax & Grove, 1990), and marketing (Dillon & Kumar, 1994; Jain & Chen, 

1990; Swait & Adamowicz, 2001). Goodman's procedure for obtaining parameter estimates is 

found to be related to the notable expectation-maximization (EM) algorithm (Dempster, Laird, & 

Rubin, 1977). 

Latent class model consists of item-response probabilities (𝜌′𝑠) and estimated class 

prevalence (𝛾′𝑠).The notations in this writing on LCA are consistent with ones provided by 

(Collins & Lanza, 2010, p.39). To conduct latent class analysis on empirical data, contingency 

table is needed. Since most programs needed for conducting LCA do not allow missing values, 

the contingency table must include all observed variables needed for the analysis. Suppose there 
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are j = 1,...,J observed variables, with each j having rj = 1,..., Rj response categories, the 

contingency table has W=∏ 𝑅𝑗
𝐽
𝑗=1  cells. 

For instance, in a hypothetical example of 3 observed variables (or items) with 3, 2, 2 

response categories respectively, J = 3. R1 = 3 means there are 3 response categories for question 

1, R2 = 2 means there are 2 response categories for question 2, and R3 = 2 means there are 2 

response categories for question 3. So in this hypothetical example, W = ∏ 𝑅𝑗
𝐽
𝑗=1  = 𝑅1𝑅2𝑅3 = 

3×2×2 = 12 cells. Let y = (r1,...,rj) represent a vector response to J observed variables 

corresponding to each W cells. If Y represents the array of response patterns, then each response 

pattern y is connected with probability P(Y = y), and  ∑𝑃(𝑌 = 𝑦) = 1. Since latent class model 

is associated with categorical indicator variables with categorical latent variable, let L represent 

the categorical latent variable with c = 1,...,C latent classes. 

Also let 𝛾𝑐 represent latent class prevalence. In LCA, examinees or individuals cannot 

belong to more than one class, hence the concept is considered mutually exclusive. Then, 

                                            ∑ 𝛾𝑐
𝐶
𝑐=1  = 1                                     (2.4)  

 

𝜌𝑗,𝑟𝑗|𝑐  Indicates the probability of response rj to variable j, conditional on latent class 

membership c. Since respondents supply only one response alternative each to indicator variable 

j,  

                                                  ∑ 𝜌𝑗,𝑟𝑗|𝑐
𝑅𝑗

𝑟𝑗=1 = 1                                (2.5) 

 

Assuming local independence, joint probabilities within latent class are provided as follows: 

P( Y= y, L= c) = P( L = c)P(Y = y| L =c) =  𝛾𝑐 ∏ ∏ 𝜌
𝑗,𝑟𝑗|𝑐

𝐼(𝑦𝑗=𝑟𝑗)𝑅𝑗

𝑟𝑗= 1
𝐽
𝑗=1                             (2.6) 

 

𝛾𝑐 = P( L = c), I( 𝑦𝑗 =  𝑟𝑗  ) = 1 when j = rj, and 0 otherwise. The marginal distribution of Y is 

found as: 

                                         P(Y = y ) = ∑ 𝑃 (𝑌 = 𝑦, 𝐿 = 𝑐).𝐶
𝑐=1                                       (2.7) 
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Therefore,                     P(Y = y ) = ∑ 𝛾𝑐
𝐶
𝑐=1 ∏ ∏ 𝜌

𝑗,𝑟𝑗|𝑐

𝐼(𝑦𝑗= 𝑟𝑗)𝑅𝑗

𝑟𝑗=1

𝐽
𝑗=1                                  (2.8) 

 

Finally, by using Bayes' Theorem, the posterior probability of membership in latent class c, 

conditional on response pattern y is given by: 

 

                                     P ( L =c | Y = y) = 
𝑃(𝑌=𝑦 |𝐿=𝑐)𝑃( 𝐿=𝑐)

𝑃 ( 𝑌=𝑦 )
                                         (2.9) 

 

Substituting Equations 2.6 and 2.8 into Equation 2.9 yield 

 

                                 P(L = c| Y = y) = 
(∏ ∏ 𝜌

𝑗,𝑟𝑗| 𝑐

𝐼(𝑦𝑗=𝑟𝑗)
)𝛾𝑐

𝑅𝑗
𝑟𝑗=1

𝐽
𝑗=1

∑ 𝛾𝑐
𝐶
𝑐=1 ∏ ∏ 𝜌

𝑗,𝑟𝑗|𝑐

𝐼( 𝑦𝑗=𝑟𝑗)𝑅𝑗
𝑟𝑗=1

𝐽
𝑗=1

                                  (2.10) 

 

2.3.5  Ordered Latent Class Model 

In the traditional latent class model proposed by Lazarsfeld & Henry (1968), we are 

unable to rank order the latent classes because they are measured at the nominal level, and are 

devoid of assumptions that would permit such ranking. To ensure ranking of the latent classes, 

Croon (1990) proposed a new model by imposing inequality constraints directly on item 

response and cumulative response probabilities. However, if the items are nominal with no 

ordering of the response categories, imposing order constraint on response probabilities will have 

no meaning. Croon's approach is useful for items with ordered response categories.  

The inequality constraints allow latent classes to be ordered along the latent continuum, 

and it is associated with the core assumption that individuals in a higher latent classes have a 

higher probability of responding correctly/positively to an item, it also means that the probability 

of a negative response to an item is a decreasing function of the latent class number. Suppose in 

a particular latent class analysis, C different latent classes are ordered along an ordinal latent 
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continuum such that latent class 1 represent the lowest and latent class C the highest level along 

the latent continuum, two scenarios immediately follow: 

 

Dichotomous response 

For dichotomous items with categories (𝑟 = 2), with response category 1(representing a 

'negative' or incorrect response) and 2 (representing a 'positive' response), let c represent an 

arbitrary latent class such that latent class c is lower than latent class c + 1. Again let 𝜌𝑗2𝑐 

represent the probability that an individual belonging to latent class c responds positively to item 

j, then from the core assumption of monotonicity, we achieve the following inequalities: 

                  𝜌𝑗21  ≤ ⋯ ≤ 𝜌𝑗2𝑐  ≤ 𝜌𝑗2,𝑐+1 … ≤ 𝜌𝑗2𝐶  

 

Polytomous response 

For polytomous items with  𝑟 > 2 response categories, the entire set of categories  

{1 , . . . , 𝑟 − 1, 𝑟, . . . , s} is dichotomized into two non-overlapping sets {1, . . , 𝑟 − 1} and { 𝑟 , 

. . , s} for each response category 𝑟: 2 ≤ 𝑟 ≤ 𝑠. Dichotomizing the response categories should 

also reflect the original responses to items. For instance, individuals whose original response 

belongs to category subset {1, . . , 𝑟 − 1} is viewed as a negative response, and those responses 

belonging to subset { 𝑟 , . . , s} are recoded as a 'positive' response. Just like the case of 

dichotomous items, all dichotomizations in this case should also satisfy the core assumption of 

monotonicity. 
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Let 𝜌𝑗𝑔𝑐 represent the probability that an individual belonging to latent class c chooses 

category 𝑔 on item j, then following the monotonicity condition, the system of inequalities are 

expressed as follows: for 1≤ 𝑐 ≤ 𝐶 − 1, and for 𝑟 ≤ s, 

 

                                  ∑ 𝜌𝑗𝑔,𝑐  ≤  ∑ 𝜌𝑗𝑔,𝑐+1
𝑠
𝑔=𝑟

𝑠
𝑔=𝑟  

 

It is important to note that  ∑ 𝜌𝑗𝑔𝑐 
𝑠
𝑔=1  = 1 , for each latent class c and each item j. This means 

that for 𝑟: 1≤  𝑟 ≤ 𝑠 − 1 , and c: 1≤  𝑐 ≤ 𝐶 − 1, the equivalent system of inequalities is 

provided as follows: 

                    

                               ∑ 𝜌𝑗𝑔,𝑐  ≥  ∑ 𝜌𝑗𝑔,𝑐+1
𝑟
𝑔=1

𝑟
𝑔=1   

 

 Even though this study has adopted Croon's non-parametric approach for ordering 

classes, parametric or non-parametric order constraints could be used for ordered polytomous 

categories (Vermunt, 2001). Whilst the non- parametric approach is based on imposing 

inequality constraint on response probabilities, the parametric method imposes linear equality 

constraints on the response probabilities. 

2.4 Statistical models assuming dynamic latent variables 

Selected models to be discussed under this section include the latent transition analysis 

model; which is considered as a special case of the latent Markov model, a special case of 

Hidden Markov Model in Bayesian knowledge tracing, and the longitudinal IRT models.  
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2.4.1 Latent Transition Analysis Model 

 LTA presents an alternative method to modeling longitudinal data. It is viewed as an 

extension of latent Markov model (Velicer, Martin, & Collins, 1996). Early work in this field 

include Collins & Wugalter (1992), Graham, Collins, Wugalter, Chung, & Hansen (1991), 

Langeheine (1988, 1994), Langeheine & Van de Pol (1990), Van de Pol & de Leeuw (1986), and 

Van de Pol & Langeheine (1990). 

The importance of LTA cannot be overemphasized. LTA may be used to provide answers 

to pertinent research questions including testing for treatment effect by comparing different 

groups, assessing the impact of varying measures for each latent status, and testing for different 

theoretical models pertaining to the pattern of change from one time to the next (Velicer, Martin, 

& Collins, 1996).    

The presentation of the LTA model in this study is entirely consistent with Collins & 

Lanza (2010, pp.196 - 198). For simplicity, this LTA model is assumed to have no missing data 

on the indicator variables. Suppose there are j = 1, .., J indicator variables measured at t = 1, .., T 

times, then j has 𝑟𝑗,𝑡 = 1, ..., 𝑅𝑗,𝑡 response categories. Let W = ∏ ∏ 𝑅𝑗
𝐽
𝑗 =1

𝑇
𝑡 =1  represent the 

number of cells in the contingency table obtained by cross-tabulating the j variables at times T. 

Let y = (𝑟𝑗,1, . . . 𝑟𝐽,𝑇) represent the response patterns. Each y corresponds to P( Y = y), and 

∑𝑃(𝑌 =  𝑦)  =  1 , where Y represents the array of response patterns with W rows and T x J 

columns. 

Also, let the general categorical variable be represented by L. Then L will have S latent 

statuses, so for L1 representing the categorical latent variable at Time 1, there is 𝑠1 =  1, . . . 𝑆; 

and for L2 representing the categorical variable at Time 2, there is 𝑠2 =  1, . . . 𝑆. Finally, for LT 
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representing the categorical latent variable at Time T, there is 𝑠𝑇 =  1, . . . 𝑆. Despite the technical 

possibility of obtaining an empty latent status at a particular time, we are assuming for the 

purpose of easiness that the latent statuses is the same across times; such that 𝑆1  =  𝑆2  =

 . . .  =  𝑆𝑇  =  𝑆  . 

As we discussed above, three parameters are of interest when considering LTA model: 

latent status prevalences, item-response probabilities, and transition probabilities. With respect to 

the latent status prevalences, the latent statuses are considered to be mutually exclusive and 

exhaustive at each Time t, this means that each respondent is a member of one and only one 

latent status at Time t. So at a particular Time t, the latent status prevalences add up to 1. 

                                          ∑ 𝛿𝑠𝑡
=  1𝑆

𝑠𝑡 = 1
                                                                     (2.11) 

where 𝛿𝑠𝑡
 represents the probability of membership in status s at Time t.  

For item-response probabilities, each respondent supplies one and only one response 

alternative to variable j at a certain time t, so the probabilities of each of the response alternatives 

to variable j add up to 1. 

                                         ∑ 𝜌𝑗 , 𝑟𝑗,𝑡|𝑠𝑡

𝑅𝑗

𝑟𝑗,𝑡 = 1
 = 1                                                             (2.12) 

for all j , t. Where  𝜌𝑗 , 𝑟𝑗,𝑡|𝑠𝑡
 represents the probability of response 𝑟𝑗,𝑡 to indicator variable j, 

conditional on latent status membership 𝑠𝑡 at Time t. Again, since latent status membership is 

mutually exclusive and exhaustive, each row of the transition probability matrix adds up to 1. 

                                    ∑ 𝜏𝑠𝑡 +1
|𝑠𝑡

𝑆
𝑠𝑡+ 1 = 1

= 1.                                                                 (2.13) 
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Where 𝜏𝑠𝑡 + 1
|𝑠𝑡 represents the probability of transitioning to latent status s at Time t + 1 

conditional on latent status memberships at Time t.  

Now, putting all the parameters together, 

𝑃(𝑌 = 𝑦) = ∑ . . . ∑ 𝛿𝑠1
𝜏𝑠2 |𝑠1

. . .𝑆
𝑠𝑇 = 1

 𝜏𝑠𝑇
|𝑠𝑇−1 ∏ ∏ ∏ 𝜌

𝑗,𝑟𝑗,𝑡 | 𝑠𝑡

𝐼(𝑦𝑗,𝑡 = 𝑟𝑗,𝑡 )    
𝑅𝑗

𝑟𝑗,𝑡 = 1
𝐽
𝑗 = 1

𝑇
𝑡 = 1

𝑆
𝑠1 = 1

(2.14) 

The indicator function I( 𝑦𝑗,𝑡  =  𝑟𝑗,𝑡) equals 1 when the response to variable j = 𝑟𝑗 at Time t,  and 

equals 0 otherwise.  

Considering two time measurements, equation 2.23 reduces to 

𝑃(𝑌 = 𝑦)  =  ∑ ∑ 𝛿𝑠1
𝜏𝑠2| 𝑠1

∏ ∏ ∏ 𝜌
𝑗,𝑟𝑗,𝑡 | 𝑠𝑡

𝐼 ( 𝑦𝑗,𝑡 = 𝑟𝑗,𝑡 )𝑅𝑗

𝑟𝑗,𝑡 = 1

𝐽
𝑗 = 1

2
𝑡 = 1

𝑆
𝑠2=1

𝑆
𝑠1=1  .                     (2.15) 

2.4.2  Bayesian Knowledge Tracing Model 

The Bayesian Knowledge tracing (BKT) model introduced by Corbett & Anderson 

(1995) is a special case of the Hidden Markov Model, which models students' knowledge as a 

latent variable. This latent variable is updated constantly depending on the correctness of 

information provided by students who have the opportunity to apply a specific skill. BKT has 

been used in intelligent tutoring systems for a long period specifically with reference to mastery 

acquisition /learning and problem sequencing. Several intelligent systems such as tutors for 

computer programming, mathematics, and reading skills have employed the BKT technique to 

predict the performance of students, and also to ascertain when a student has achieved mastery of 

a specific skill (Beck & Chang, 2007; Corbett & Anderson, 1995; Koedinger, 2002). 

Corbett and Anderson's Bayesian Knowledge Tracing model assumes that at any 

opportunity given to a student to showcase his/her skill, the student either knows the skill or does 

not, and may consequently provide a correct or incorrect response. Also, when a student requests 
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for help from the tutor, the model treats it as an incorrect response. The model also assumes that 

once a student knows a skill he/she does not forget. Furthermore, the model associates each skill 

with one set of parameters, and these parameters are consistent for every student. 

According to Corbett & Anderson (1995), the BKT model assumes four parameters for 

each skill, two of which are described as knowledge parameters, and the other two as 

performance parameters. The knowledge parameters are initial or prior knowledge (L0) and the 

acquisition (T) parameter. The initial knowledge parameter P( L0) is the probability that a student 

knew the skill prior to being given the opportunity to use the tutor. The acquisition parameter 

P(T) is the probability that a student will transition from an unknown to known state after being 

given the opportunity to interact with the tutor.  The performance parameters are guess (G) and 

slip (S). 

Generally, we expect students who do not know a skill to provide an incorrect response 

when given the opportunity to apply the skill. But there is a certain probability P(G) that a 

student will guess right and provide a correct response even if he /she does not know the skill 

associated with the question. Correspondingly, it is expected that students who know a skill will 

provide a correct response when given the opportunity to apply it. But there is a probability P(S) 

that a student will slip and provide an incorrect response even if he/she knows the skill.  

The intelligent tutor constantly updates its estimate that a student knows a skill every 

time the student provides a first response to a problem step. The system achieves this by first re-

calculating the probability that the student knew the skill prior to the response using equations 

2.16 and 2.17, and then using equation 2.18, the system calculates the probability that the student 

learned the particular skill during the problem step. From the parameter values, the probability 

that a student knows a skill P(𝐿𝑛) after n opportunities to apply the skill is calculated below. 
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Except for some few modifications, the equations below are entirely consistent with the ones 

provided by Baker, Corbett, & Aleven (2008). If we let y represent scores such that P(y =1), and 

P(y = 0) indicate the respective probabilities of correct and incorrect responses, then 

P(𝐿𝑛−1 | 𝑦 = 1) = 
𝑃(𝐿𝑛−1)∗ (1−𝑃(𝑆))

𝑃(𝐿𝑛−1)∗( 1−𝑃(𝑆))+ (1−𝑃(𝐿𝑛−1))∗( 𝑃(𝐺))
                                                 (2.16) 

P(𝐿𝑛−1 | 𝑦 = 0) = 
𝑃(𝐿𝑛−1)∗ 𝑃(𝑆)

𝑃(𝐿𝑛−1)∗𝑃(𝑆)+ (1−𝑃(𝐿𝑛−1))∗(1− 𝑃(𝐺))
                                                    (2.17) 

𝑃(𝐿𝑛 | 𝐴𝑐𝑡𝑖𝑜𝑛𝑛) = 𝑃(𝐿𝑛−1| 𝐴𝑐𝑡𝑖𝑜𝑛𝑛) +((1 − 𝑃(𝐿𝑛−1 | 𝐴𝑐𝑡𝑖𝑜𝑛𝑛)) ∗ 𝑃(𝑇))            (2.18) 

where 𝐴𝑐𝑡𝑖𝑜𝑛𝑛 represents correct (y =1) or incorrect (y=0) responses after n opportunities. 

Researchers have been working on the BKT concept to improve the predictability and 

interpretability of the intelligent tutoring system. In their original work, Corbett & Anderson 

(1995) added individualization to their model in order to improve the predictability of the 

tutoring system, but they achieved mixed results. Relative to the non-individualized model, their 

proposed individualized BKT model did not show an improvement on the overall predictive 

accuracy of the tutoring system. In fact, Beck & Chang (2007) pointed out that Corbett and 

Anderson's approach had a problem with model identifiability. The reason being, different 

combinations of the model parameters could fit the data equally well but provided different 

predictive results. 

Beck and Chang then proposed using Dirichlet approach to constrain model parameters 

but Baker, et al. (2008) showed that Beck and Chang's approach was vulnerable to what they 

described as model degeneracy, where in some cases the probability that a student knows a skill 

dropped after the student has actually answered three successive questions. Baker, Corbett, & 

Aleven (2008) proposed using machine learning to contextualize the guess and slip parameter. 
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  Whist this approach showed much improvement than the existing approaches, the model 

is yet to be validated externally (Pardos & Heffernan, 2010). Pardos & Heffernan proposed a 

new individualization approach in a Bayesian network framework that simultaneously fit 

individualized and skill specific parameters in a single step. Using the individualized prior 

parameters, the authors have shown big improvement on the predictive nature of their model 

compared to the standard knowledge tracing model. 

2.4.3  Longitudinal IRT Model 

Over the years, educational research and assessment have paid particular attention to 

measuring the performance of students in a longitudinal fashion; by considering the performance 

of students between testing time points (Fischer, 1989). Some of the researches aimed at 

measuring students' growth have been conducted on small- scale data, while others have been 

conducted on a larger -scale educational data. For instance, Davier, Xu, & Carstensen (2011) 

employed multidimensional item-response-theory (MIRT) models for longitudinal IRT on a 

larger-scale educational data. Meaningful growth or change in students' performance between 

testing time points can be measured successfully either by focusing on individuals (Andersen, 

1985; Andrade & Tavares, 2005; Embretson, 1991) or focusing on groups (Fischer, 1973, 1976, 

1989; Wilson, 1989). 

2.4.3a Measuring Growth at the Group level 

Fischer (1977a, 1977b, 1983a) developed linear logistic model with relaxed assumptions 

(LLRA) within the generalized Rasch model framework, for the purpose of determining change 

in dichotomous item score matrices between two time points. Suppose we have subject 𝑆𝑣, for 𝑣 

= 1, . . . , N subjects, i = 1, . . . , k items, and two time points 𝑇1 and 𝑇2, let 𝜃𝑣𝑖 represent latent 

parameter for 𝑆𝑣 on trait dimension 𝐷𝑖 with item 𝐼𝑖 as an indicator. Also let 𝛿𝑣 represent the 
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amount of change in 𝑆𝑣 within time points 𝑇1 and 𝑇2. Let 𝑤𝑣ℎ represent the elements of the 

matrix 𝑤 which is deemed given. Again, let 𝛽ℎ represent basic parameters for treatment effects, 

interactions, experimental conditions, and so on. Fischer then formulated the LLRA equations as 

follows: 

𝑃(𝑦 = 1|𝑆𝑣,𝐼𝑖,𝑇1) = 
𝑒𝑥𝑝(𝜃𝑣𝑖)

1+exp (𝜃𝑣𝑖)
,                                                                                     (2.19) 

𝑃(𝑦 = 1|𝑆𝑣,𝐼𝑖,𝑇2) = 
𝑒𝑥𝑝(𝜃𝑣𝑖+ 𝛿𝑣)

1+exp (𝜃𝑣𝑖+ 𝛿𝑣)
,                                                                               (2.20) 

where 𝛿𝑣 = ∑ 𝑤𝑣ℎ𝛽ℎ
𝑢
ℎ=1 .                                                                                              (2.21) 

Among the assumptions of LLRA model were (a) using the same test items at the two 

time points 𝑇1 and  𝑇2, and (b) local independence for responses. The very idea that the model 

was based on using same items at the two time points presented a measurement challenge: 

Unless the well-known issues of Testing, practice, or memory effects were somehow accounted 

for in the model, it run the risk of yielding misleading results. Another issue was that if it was 

determined that the amount of change between 𝑇1 and 𝑇2  was large as one would reasonably 

expect in developmental studies of children, the appropriateness of item difficulty level at 𝑇2 

could be questioned especially if those same items were used at an appropriate difficulty level at 

𝑇1.  

Fischer (1977b) proposed a "hybrid model" to overcome the problems posed by the 

LLRA model. The hybrid model is based on having pairs of items 𝐼𝑖 and 𝐼𝑙 , both items have 

different difficulty levels but are measuring the same latent dimension. The hybrid model is 

hybrid in the sense that it merged the assumption of multidimensionality of LLRA model (a 

latent trait per pair of items) with the assumption of unidimensionality of the Rasch model 

(within pairs of items). 
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Fischer (1989) extended the hybrid model to designs with multiple time points with 

different sets of items per time point, so long as" one unidimensional subscale is available per 

latent trait".  Unlike the LLRA model, the hybrid model considers any number of time points, 

and it is also designed to account for difficulty levels of items used at different time points. 

Suppose we have Gg treatment groups with g = 1, . . . , n groups , for subject 𝑆𝑣 ∈ Gg (𝑣 = 1, . . . , 

N subjects, i = 1, . . . , k dimensions 𝐷𝑖, t = 1, . . , s time points 𝑇𝑡, and j = 1, . . , m treatments 

𝑀𝑗). Let 𝜃𝑣𝑖 represent the parameter of subject 𝑆𝑣 ∈ Gg on latent dimension 𝐷𝑖; 𝜎𝑖𝑡 represents the 

easiness parameter. Also let 𝑞́𝑔|𝑡 represent dose of treatment 𝑀𝑗provided to subjects 𝑆𝑣 ∈ Gg up 

to time point 𝑇𝑡. 𝜂𝑗 represents treatment effect ; and the amount of change in subject  𝑆𝑣 ∈ Gg up 

to time point 𝑇𝑡  is represented by 𝛿𝑔𝑡. Fischer (1989) represented the general hybrid model as: 

𝑃(𝑦 = 1 | 𝑆𝑣, 𝐷𝑖 , 𝑇𝑡) = 
exp( 𝜃𝑣𝑖+ 𝜎𝑖𝑡+ 𝛿𝑔𝑡)

1+exp( 𝜃𝑣𝑖+ 𝜎𝑖𝑡+ 𝛿𝑔𝑡)
                                                                   (2.22) 

where 𝛿𝑔𝑡 = ∑ 𝑞́𝑔𝑗𝑡𝜂𝑗𝑗  +  ∑ 𝑞́𝑔𝑗𝑡𝑞́𝑔𝑙𝑡𝜌𝑗𝑙 + (𝑇𝑡 − 𝑇1)𝜏𝑗<𝑙                                           (2.23) 

𝜌𝑗𝑙 represents the first order treatment interactions, and 𝜏 represents trend. Another model of 

importance to the hybrid model is the linear logistic test (LLTM) model which was introduced 

by Fischer (1983a). The LLTM is deemed as a form of Rasch model which has linear constraint 

imposition on its item parameters. The difference though between the LLTM and the hybrid 

LLRA model is that the LLTM describe subjects in that model each by a scalar parameter, but in 

the hybrid model, each subject is described by a vector parameter (Fischer, 1989). 

Fischer (1989) successfully interpreted equations (2.22) and (2.23) as LLTM seen in 

equations (2.24) and (2.25) because of the linear nature of the exponents in the hybrid model. 

Fischer posited that the advantage of interpreting the hybrid model as LLTM lies in the easiness 

of deriving estimation equations for the "basic" parameters 𝛽ℎ in the LLTM framework.  
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 𝑃(𝑦 = 1 | 𝑆𝑣 ∈ 𝐺𝑔, 𝐷𝑖 , 𝑇𝑡) = 
exp( 𝜃𝑣𝑖+  𝛼𝑔𝑖𝑡)

1+exp( 𝜃𝑣𝑖+  𝛼𝑔𝑖𝑡)
,                                                             (2.24) 

 

  with    𝛼𝑔𝑖𝑡 = ∑ 𝑤𝑔𝑖𝑡;ℎ𝛽ℎℎ  ,                                                                                         (2.25) 

 

where g = 1, . . , n groups 𝐺𝑔, 𝑖 = 1, . . . , k dimensions 𝐷𝑖 , and t  = 1, . . , s time points 𝑇𝑡.  

Wilson (1989) also developed the Saltus model in the dichotomous form which is based 

on the progression of students through developmental stages. One of the fundamental 

assumptions of the Saltus model is that developmental stages or levels are represented by class 

C, and all students or persons belonging to a particular class c respond to all items in the way that 

are consistent with the class membership. The Saltus model differs from the LLTM in the sense 

that the Saltus model treats student's current stage as latent, but item difficulties are split into 

known components under LLTM (Von Davier, Xu, & Carstensen, 2011). The Saltus model is 

also applied to polytomous items (Draney, 1996; Draney & Wilson, 2007; Wilson & Draney, 

1997).  

2.4.3b Measuring Growth at the individual level 

Anderson (1985) proposed a model to assess individual growth through repeated 

administration of same items in different time points. Embretson (1991) noted that the abilities of 

the Anderson's model are specific to the time point; they do not reflect change but rather the 

ability level at each time point. Based on the Anderson's model, changes across time points are 
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derived by calculating the differences between time point -specific abilities (Von Davier, Xu, & 

Carstensen, 2011). 

Von Davier, Xu, & Carstensen (2011) expressed Anderson's model as follows: 

                     𝑃(𝑌𝑖𝑗𝑘 = 1| 𝜃𝑗𝑘 , 𝛽𝑖) = 
𝑒𝑥𝑝(𝜃𝑗𝑘− 𝛽𝑖)

1  +  𝑒𝑥𝑝(𝜃𝑗𝑘− 𝛽𝑖)
 ,                                                  (2.26) 

where 𝜃𝑗𝑘 represents the ability of an individual j at time point k, and 𝛽𝑖 represent the difficulty 

of item i. The item difficulty remains constant at different time points (since same items are 

being used), but the abilities corresponding to each time points may of course differ. Once items 

are repeated on several time points, item responses may be affected by testing or memory effect 

or both. Embretson (1991) proposed a multidimensional Rasch model for learning and change 

(MRMLC) to assess individual differences in change. 

For MRMLC model, test items do not have to repeat as in the case of Anderson's model.  

However, the MRMLC assumes that at each time point, the numbers of abilities go up. Von 

Davier, Xu, & Carstensen (2011) represented the MRMLC as 

 

        P(𝑌𝑖𝑗𝑘 = 1|( 𝜃𝑗1, . . , 𝜃𝑗𝑘), 𝛽𝑖) =  
𝑒𝑥𝑝(∑ 𝜃𝑗𝑚− 𝛽𝑖

𝑘
𝑚=1 )

1+ 𝑒𝑥𝑝(∑ 𝜃𝑗𝑚− 𝛽𝑖
𝑘
𝑚=1 )

 ,                                         (2.27)  

 

𝜃𝑗𝑚 and 𝛽𝑖 are defined as in (2.18). The MRMLC can also be applied to polytomous items 

(Fischer, 2001). 
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Chapter 3 

 

Introduction 

Several statistical models have been developed to model the performance or growth of 

students over time. As discussed in section 2.4.1, the LTA model proposed by Graham and 

colleagues is a type of autoregressive model specifically designed to model transitions between 

class memberships from one time point to the next. However, based on literature found on LTA, 

the latent statuses are unordered. This study focuses on an extension of the LTA model to a 

concept referred to as ordered latent transition analysis (OLTA) model. The OLTA model 

espouses the idea that it is reasonable (in educational measurement) to order students on the 

ability continuum whilst tracking their development overtime. The OLTA principle is in 

agreement with the tenet of learning progression framework; which is that students are of 

different levels on the progression path. Under the OLTA model, the latent statuses are referred 

to as learning levels.  

 

3.1 Objectives of this study 

This study extends the LTA model by imposing inequality restrictions on the item response 

probabilities using Croon's technique (Croon, 1990). In order to ensure ordered learning levels, 

the inequality restrictions are placed on item-response probabilities at time point 1, whilst 

tracking the progression of the students at the second time point. The goals of this study are as 

follows: 
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  Develop and evaluate an EM algorithm to estimate the OLTA model, and to determine 

the statistical properties of the estimated model 

 Selection Techniques 

 Three simulations are involved, the first simulation is to determine how well the 

AIC, and BIC select the optimal (learning) levels 

 The second simulation is aimed at determining how good the AIC and BIC are 

in selecting correct transition model that best fits the data.  

 The third simulation is used to determine  

o Learning level prevalences 

o Item response probabilities 

o Transition Probabilities 

o Bias, Mean Square Error (MSE), and Root Mean Squared Error 

(RMSE) of parameter estimation  

 The final objective is to demonstrate the use of OLTA model in a real data set.  

  

3.2 The LTA Model  

For the purpose of simplicity, this model is presented using only two time points 

(occasions) of measurement. The first measurement is taken at time t, and the second is taken at 

time t + 1. Let us assume that we have only three items such that item 1, has  𝑖, 𝑖′, = 1,… 𝐼 

response categories, item 2 has 𝑗, 𝑗′, = 1,… 𝐽 response categories, and item 3 has 𝑘, 𝑘′, = 1,…𝐾 

response categories, where 𝑖, 𝑗, 𝑘 are response categories associated with time t, and the second 

time point t + 1 is associated with response categories 𝑖′, 𝑗′, 𝑘′. There is an exogenous static 

latent variable that divides the student population into levels c = 1,...C, measured by indicator 
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with m = 1, . . . M  response categories. Let us assume there are 𝑢 , 𝑣 = 1, . . . , S learning levels 

with 𝑢 representing learning level at time t, and 𝑣 representing learning level at time t + 1.  

With a very minor modification to Collins & Wugalter (1992), the estimated proportion of 

response pattern P(Y) is represented as follows:   

 

𝑃(𝑌 = 𝑦) = ∑ ∑ ∑ 𝛾𝑐𝜌𝑚|𝑐𝛿𝑢|𝑐𝜌𝑖|𝑢,𝑐𝜌𝑗|𝑢,𝑐 
𝑆
𝑣=1

𝑆
𝑢=1

𝐶
𝑐=1 𝜌𝑘|𝑢,𝑐𝜏𝑣|𝑢,𝑐𝜌𝑖′|𝑣,𝑐

𝜌𝑗′
|𝑣,𝑐

𝜌𝑘′
| 𝑣,𝑐

        (3.1) 

 

For the purpose of clarification, 𝛾𝑐 is what is known to be latent class prevalences under latent 

class models; they are henceforth referred to as level prevalences under OLTA model. With 

respect to equation 3.1, 𝛾𝑐 represents the proportion in level c; 𝛿𝑢|𝑐 represents the proportion in 

learning level 𝑢 at Time t conditional on membership in level c; that is, the proportion of level c 

members whose learning level is u at Time t. An element of latent transition probability matrix 

𝜏𝑣|𝑢,𝑐 represents the probability of membership in learning level v at Time t+1 conditional on 

membership in learning level u at Time t and membership in level c; that is, the proportion of 

those level c and learning level u at Time t who are in learning level v at Time t+1. Also, 𝜌𝑖|𝑢,𝑐 

represents the probability of response 𝑖 to item 1 at Time t, conditional on membership in 

learning level u at Time t and on membership in level c; 𝜌𝑖′|𝑣,𝑐 
represents the probability of 

response  𝑖′  to item 1 at Time t + 1, conditional on membership in learning level v at Time t + 1 

and on membership in level c, and so on. 𝜌𝑚|𝑐 also represents the probability of having a value 

of m on the indicator of level membership, conditional on membership in level c. 
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3.3   Item Response Probabilities under the OLTA model 

Currently, literature concerning LTA model have unordered levels. This project extends 

the LTA model by imposing inequality restrictions (Croon, 1990) on the item response 

probabilities. In order to ensure ordered learning levels, the inequality restrictions are placed on 

item-response probabilities at time point 1. So, at time point 1, if we let 𝜌𝑗𝑟𝑠 represent the 

probability that a subject belonging to learning level s answers with category r to item j, then the 

monotonicity condition lead to the following system of inequalities on these response 

probabilities: for 1≤ 𝑠 ≤ 𝑆 − 1  and for 1≤ 𝑘 ≤ 𝑚, they should satisfy: 

                                ∑ 𝜌𝑗𝑟,𝑠
𝑚
𝑟=𝑘  ≤ ∑ 𝜌𝑗𝑟,𝑠+1.

𝑚
𝑟=𝑘  

 

Since for each learning level s and each item j one has 

     

                                           ∑ 𝜌𝑗𝑟𝑠
𝑚
𝑟=1  = 1, 

 

The first system of inequalities is equivalent to the following one: 

    

                                   ∑ 𝜌𝑗𝑟,𝑠 
𝑘
𝑟=1 ≥ ∑ 𝜌𝑗𝑟,𝑠+1

𝑘
𝑟=1   

For k: 1≤ 𝑘 ≤ 𝑚 − 1 and s: 1≤ 𝑠 ≤ 𝑆 − 1. For the analysis with S learning levels and items 

with m response categories we have (𝑚 − 1) × (𝑆 − 1) linearly independent inequalities of this 

kind per item. 
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The inequalities described above is the heart of the OLTA model, the idea that the 

learning levels are ordered at time 1; such that subjects belonging to a higher learning level have 

a higher probability of responding correctly to an item. Generally, some restrictions are 

considered, and imposed when dealing with LTA models. Collins & Wugalter (1992) have 

described two general restrictions that are deemed useful: restricting parameter to a specified 

value, and setting estimated parameters to be equal to each other. The OLTA model will adopt 

the same principle of parameter restrictions. 

In order to enhance the conceptual integrity of the model, the item response probabilities 

(𝜌′𝑠) will be constrained to be equal across times. The practical reason for constraining item 

response probabilities to be equal across times is to aid in stabilizing estimation and enhancing 

identification (Collins & Lanza, 2010, p. 213). Under the LTA model, a lot of item response 

probabilities are produced; especially when several time points are being considered. Similarly, 

OLTA models are bound to yield several item-response probabilities, so providing parameter 

restrictions on the model will help to greatly reduce the number of estimated parameters and 

increase the degrees of freedom. 

 

Model Identification 

The OLTA model faces identification problems similar to LTA models or any other 

latent class model. There is a necessary but insufficient condition for model identification, that is 

the number of item parameters to be estimated must not exceed one less than the number of 

response patterns. Goodman (1974) posited that we could inspect model identification by 

checking the rank of the matrix of partial derivatives of (all but one) the cell probabilities with 

respect to the individual parameters to be estimated. If it is established however that the matrices 
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are of full rank, then the model is identified. Otherwise, we must decrease the number of 

parameters being estimated.  

 

Two Time Points with Different Items per Time Point 

In educational measurement, presenting the same items to students in different time 

points T1 and T2 could create a number of measurement problems. Since students have the 

capacity to remember previous questions, the well-known practice and / or testing effect could 

render misleading results. Also, if same questions are given in different time points, the difficulty 

level of the items obviously remain constant, however, we expect students to mature, so items 

that may be of an appropriate difficulty level at time T1 may not be appropriate at time T2; since 

students will almost surely provide correct responses to those items. 

In order to prevent extreme probability responses, this paper is adopting the concept from 

Fischer (1989) by assuming pairs of items (Ii, Il), with both items measuring the same latent 

dimension but having different difficulty levels.  

 

3.4   Hypothesis Testing about Change between Times 

Several research questions concerning change over time may be of interest. For instance, 

a general question may arise as to whether or not there is a significant amount of change between 

the two time points 1 and 2. Several models may be used to address this problem, but for the 

purpose of this study, the generic models used are specified below: 
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                                                      Time 2 level 

                            Time 1 level 

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0
0
0

0
0
0

1
0
0

0
1
0

0
0
1]
 
 
 
 

   

                                   Model A. Fixed transition probabilities 

 

As a baseline, we will test for Model A. This is achieved by fixing all the diagonal transition 

probability elements to 1 for each learning level, and the rest of the elements in each row are also 

fixed to 0. In a nutshell, no transition probabilities are estimated for Model A, and the Model 

espouses the idea that learning level membership at time point 2 is the same as that of time point 

1 for all subjects. 

 

                                                          Time 2 level 

                         Time 1 level 

[
 
 
 
 
𝜏1|1 𝜏2|1

𝜏3|1 𝜏4|1 𝜏5|1

𝜏1|2 𝜏2|2
𝜏3|2 𝜏4|2 𝜏5|2

𝜏1|3

𝜏1|4

𝜏1|5

𝜏2|3

𝜏2|4

𝜏2|5

𝜏3|3

𝜏3|4

𝜏3|5

𝜏4|3

𝜏4|4

𝜏4|5

𝜏5|3

𝜏5|4

𝜏5|5]
 
 
 
 

   

 

                                  Model B. Unrestricted/Saturated transition probabilities 

 

Model B has the full transition probability matrix. This model allows for transition from a less 

advanced learning level to a more advanced one, or from a more advanced learning level to a less 
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advanced one. From a cognitive standpoint, Mosher (2011) argued that students who attain 

higher levels may fall back to a previous level when the conditions at the higher levels become a 

little unbearable (i.e. facing more difficult problems). 

 

                                                          Time 2 level 

                         Time 1 level 

[
 
 
 
 
𝜏1|1 𝜏2|1

𝜏3|1 𝜏4|1 𝜏5|1

0 𝜏2|2
𝜏3|2 𝜏4|2 𝜏5|2

0
0
0

0
0
0

𝜏3|3

0
0

𝜏4|3

𝜏4|4

0

𝜏5|3

𝜏5|4

1 ]
 
 
 
 

   

 

                                   Model C. "Growth only" Model 

 

Model C is particularly useful when investigators have reasons to believe that it is 

impossible for subjects to transition from an advanced learning level at Time 1 to a less advanced 

learning level at Time 2. The restrictions shown in Model C are consistent with the hypothesis of 

the OLTA model. The fundamental idea of the OLTA model is that students who are identified 

to be associated with a higher learning level at Time t under the learning progression framework, 

are not expected to transition to a less advanced learning level at Time t + 1. It is entirely 

possible for students belonging to an advanced learning level at Time t to transition to less 

advanced learning level at Time t +1 when conditions become hostile (Mosher, 2011). However, 

this backward transition is not expected under the OLTA model within the learning progression 

framework. 
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3.5    Assessing Model Fit  

Assessment of model fit is essential to LTA or OLTA modeling. The fit of OLTA model 

is determined in the same manner as latent class or LTA models. OLTA model treat data like a 

big contingency table, with each cell matching a response pattern. A model being tested predicts 

the response pattern frequencies. If the model fits the data well, the predicted frequencies will be 

close to the observed frequencies, and the goodness-of-fit statistic will be small. On the other 

hand, if the assumed model fits the data poorly, there will be a large disparity between the 

predicted frequencies and the observed frequencies, and the goodness-of-fit statistic will be 

large. 

For the purpose of assessing model fit, we employ the widely used likelihood-ratio 

goodness-of-fit statistic, denoted by 𝐺2(Read & Cressie, 1988). The 𝐺2 is approximately 

distributed as a chi -square with degrees of freedom K-P-1, where K represents the number of 

response patterns, and P represents the number of estimated parameters. To adequately assess the 

fit of the three models in section 3.6, the well-known Akaike's Information Criterion (AIC) and 

the Bayesian Information Criterion (BIC) (Anderson, 1982) will be employed in addition to 𝐺2. 

As a measure of goodnesss-of-fit, the AIC considers the number of model parameters (𝑝) that are 

being estimated in the model. 

 

                                      𝐴𝐼𝐶 =  −2 ∗ 𝑙𝑛𝐿 + 2 ∗ 𝑝. 

 

The individual 𝐴𝐼𝐶 values are unmeaningful and are much affected by sample size. The  𝐴𝐼𝐶 is 

rescaled to a more interpretable form as: 
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                                      ∆𝑖 = 𝐴𝐼𝐶𝑖 − 𝐴𝐼𝐶𝑚𝑖𝑛 ,  

 

where 𝐴𝐼𝐶𝑚𝑖𝑛 is the minimum of 𝐴𝐼𝐶𝑖 possible values. The ∆𝑖 have straightforward 

interpretation and "allow a quick strength-of-evidence comparison and ranking of candidate 

hypotheses or models" (Burnham & Anderson, 2004). Let us consider some rule of thumbs that 

are deemed useful in assessing the relative value of models in the set:  Models having ∆𝑖 ≤ 2 

have significant support, those in which 4 ≤ ∆𝑖 ≤ 7 have considerably less support, and models 

having ∆𝑖 ≥ 10 have no support (Anderson, 1982;  Burnham & Anderson, 2004).  

The 𝐵𝐼𝐶 on the other hand considers the number of parameters (𝑝) and the number of 

observations ( 𝑁) as a measure of goodness-of-fit. 

 

                                    𝐵𝐼𝐶 =  −2 ∗ 𝑙𝑛𝐿 + (ln𝑁) ∗ 𝑝.  

 

Of the two criterion information, the 𝐵𝐼𝐶 applies larger penalties per parameter of ln(N), and as a 

result turns to generally select simpler models. As with 𝐴𝐼𝐶, the model with the smallest value of 

𝐵𝐼𝐶 among all possible assumed models is selected. 

 

3.6 Parameter Estimation 

The parameters 𝛾, 𝛿, 𝜏, 𝑎𝑛𝑑 𝜌 can be estimated using the EM algorithm (Dempter, Laird, 

& Rubin, 1977). The EM algorithm iterates between the E-step, and M-step. In the E-step, the 
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expected values of the sufficient statistics; which are the response pattern proportions are 

calculated based on the observed complete data and parameter estimates. In the M-step, we 

obtain new parameter estimates given the current estimated sufficient statistics in order to 

maximize the likelihood function. With these new parameter estimates, another E-step can be 

executed to obtain new parameter estimates, and so on. The suggested technique for estimating 

the OLTA model parameters by EM algorithm takes advantage of the fact that model can be 

treated as a constrained latent class analysis model.  For instance, if we have a series of 

assessments that assume K = 6 learning levels assessed at T= 3, time points then there are a total 

of 𝐾𝐽 = 63 = 216 possible learning trajectories (e.g., 111, 112, . . . , 666). 

 The OLTA model then implies both equality and inequality constraints on latent class 

model parameters. Specifically, because the model is a latent transition model, the 𝐾𝐽 class 

probabilities are constrained by Markov transition model assumptions. Furthermore, the response 

probabilities are constrained according to which class an individual is in at a given time point, 

and also restricted by the ordering constraints. The E-step of the suggested technique remains 

unchanged from the standard latent class analysis model; however, the M-step is modified to 

handle the various constraints. For dichotomous items, the ordering constraint for the response 

probabilities will use the pooled-adjacent-violators-algorithm (PAVA; Ayer et al., 1955; 

Robertson, Wright & Dykstra, 1988; de Leeuw, Hornik & Mair, 2009). Ordering constraints for 

polytomous items can be handled using the methods described by El Barmi & Johnson (2006), 

which uses Lagrange multipliers. The detailed estimation of the OLTA model can be found in 

Appendix A. 
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Generation of Data 

Since there is a finite set of items with finite response categories, there is a finite set of 

possible responsible patterns.  Just like LTA models, every OLTA model yields a corresponding 

vector of predicted response pattern probabilities. In this simulation study there are such 

probability vectors corresponding to the combinations of the two proposed models, and the two 

numbers of items. The probability vectors will be used to generate random data. A random 

number between 0 and 1 will be generated by means of a uniform random number generator for 

each simulated subject. This number will then be compared to the cumulative response pattern 

probability vector in order to place the simulated subject in one of the response pattern cells. 

 

Statistical Properties 

The simulation study is designed to study the statistical properties of the proposed EM 

algorithm. Specifically we will examine the bias and root mean squared error of the model 

parameters. For example if 𝜃 is the true value of some model parameter of interest, and 𝜃𝑟 is the 

estimate obtained from replicated data set r, then we will approximate the bias of the estimator 

with the observed average 

                                                          

    Bias(𝜃) ≈  
1

𝑅
∑ 𝜃𝑟 − 𝜃𝑅

𝑟=1  

 

The root mean squared error will be approximated with 
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                                              RMSE(𝜃) ≈  
1

𝑅
∑ (𝜃𝑟 − 𝜃)

2𝑅
𝑟=1 . 

The bias and RMSE will be approximated for each of the experimental conditions and compared. 

In addition to using the simulated data sets to examine the statistical properties of the estimators, 

they will be used to study the ability of the different fit statistics (e.g., AIC, BIC, etc.) described 

in Section 3.5 to select the correct transition model. For each simulated data set i will estimate 

the OLTA model with each of the transition models described in Section 3.4, and the proportion 

of times each model was selected as the best fitting model will be reported. The hope would be 

that the fit statistics would tend to choose the correct model a large majority of time. 
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Chapter 4 

 

Simulation  

 

4.1 Introduction 

This chapter presents three detailed simulation studies. The first study is aimed at 

ascertaining the ability of the EM algorithm to recover the OLTA model parameters, and to 

ensuring the robustness of the estimation procedure under several conditions. The second study 

is aimed at establishing how well the information criteria (AIC and BIC) select the true transition 

model. The third simulation study is to establish how well the AIC and BIC select the optimal 

learning level. 

 

4.2 Study 1 

In this study we examined the effects of including four different scenarios in our model 

estimation: true saturated model estimated as saturated; true saturated model estimated as 

growth; true growth model estimated as growth, and true growth model estimated as saturated. 

By examining and contrasting these four estimation scenarios, we are able to determine when it 

is absolutely necessary to use a particular model estimation, and also determine situations that 

allow for both growth and saturated models to be used interchangeably under the OLTA model. 

Having good items are necessary for the success of any model. For this reason items were 

generated from three different discrimination indexes. The discrimination index is the log odds 

ratio for correct responses between two adjacent levels. Chen, Cohen, & Chen (2010) described 

log odds ratio of 0.2, 0.5, and 0.8 as small, medium, and large, respectively. For the purpose of 
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this simulation experiment, we selected low discrimination (alpha =0.5), medium discrimination 

(alpha = 1), and high discrimination (alpha = 2). Adding the discrimination indexes to the 

simulation design was useful in examining the behavior of the response probabilities, and the 

transition models under several conditions, and also helped to ascertain the accuracy of the order 

constraint imposed under the OLTA model.  

 

4.2.1 Method 

 Model Type. Two different models were investigated: The Saturated model (Model B) 

and the 'Growth' model (Model C). The unrestricted/saturated model involves 

noncumulative development with the possibility of developmental reversals. The 

'Growth' model on the other hand involves cumulative development with no 

developmental reversals. Each model involves two time points and two conditions of 

learning levels: three and five leaning levels. Except for some minor changes, the true 

transition matrices for the three learning levels in the simulation for both Growth and 

Saturated models were adopted from Collins & Wugalter (1992). The true transition 

matrices for Growth and Saturated models are respectively provided as follows:  

 

[
. 5 . 3 . 2
0 . 6 . 4
0 0 1

]  and  [
. 5 . 3 . 2
. 1 . 4 . 5
. 1 . 3 . 6

] .  

 

The initial learning proportions for the two models, also adopted from (Collins & Wugalter, 

1992) were the same: 0.5, 0.3, and 0.2 for learning levels 1, 2, and 3 respectively. The true tau 
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parameters for the five learning levels for the Growth and Saturated models are respectively 

provided as follows: 

             

[
 
 
 
 
. 4 . 3 . 2 . 1 . 0
. 0 . 4 . 3 . 2 . 1
. 0
. 0
. 0

. 0

. 0

. 0

. 5

. 0

. 0

. 3

. 6

. 0

. 2

. 4
1.0]

 
 
 
 

  and  

[
 
 
 
 
. 4 . 2 . 2 . 1 . 1
. 2 . 3 . 3 . 1 . 1
. 1
. 0
. 0

. 1

. 1

. 0

. 3

. 2

. 1

. 3

. 4

. 1

. 2

. 3

. 8]
 
 
 
 

          

With initial learning proportions 0.3, 0.3, 0.2, 0.1, and 0.1 for learning levels 1, 2, 3, 4, and 5 

respectively. 

 Number of items. The number of items was manipulated in order to vary the sparseness 

of the contingency table. We examined two different item sizes of 10 and 20 

dichotomous items each for the two time points, and for each learning level. Each item 

was generated for low, medium, and high discriminations for each of the two time points, 

and for each learning level. 

 Learning Levels: 3 and 5 learning levels were considered. 

 Sample Size. The sample size also affects the sparseness of the contingency table. Two 

different sample sizes: N = 1000 and N=2000 were used for each of the conditions listed 

above.  

 Model Estimation. Four different scenarios were considered: true saturated model 

estimated as saturated; true saturated model estimated as growth; true growth model 

estimated as growth, and true growth model estimated as saturated.  

 

 

 



 
 

61 
 

4.2.2 Results of Simulation Study 1 

As already indicated, ninety-six different conditions were used for this simulation study, 

but for the purpose of simplicity, few plots will be discussed in this chapter. For all the plots 

considered in this chapter and beyond, the dash lines "-------" represent the correct model 

estimation:  when true Growth model is estimated as Growth, or when true Saturated model is 

estimated as Saturated.  

The solid lines "         " on the other hand, represent model misspecification: when true 

Growth model is estimated as Saturated or when true Saturated model is estimated as Growth. 
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Figure 4.1. Biases for Transition probabilities when the true model is Growth. The dash 

lines "-------" represent Growth model estimated as Growth, and the  solid lines " " 

represent Growth model estimated as Saturated. Each line corresponds to a different 

transition in the transition matrix. 

 

Figure 4.1 summarizes the (bias) results of the simulation with two sample sizes of 1000, and 

2000, two item sizes of 10 and 20 items, with 3 learning levels. If the parameter recovery is 

good, we expect the average parameter estimate over replications to be equal to the (true) 

parameter values and the bias to be significantly small. Overall, the mean parameter estimates 
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are generally quite close to the true parameter values. The biases and the mean square errors 

(MSE) depicted in figures 4.1, and 4.2 vary, decreasing somewhat in the larger sample size 

condition. 

 

  

  

Figure 4.2. MSE for Transition probabilities when the true model is Growth. The dash 

lines "-------" represent Growth model estimated as Growth, and the  solid lines " " 

represent Growth model estimated as Saturated. Each line corresponds to a different 

transition in the transition matrix. 
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With respect to the four different scenarios considered for the simulation study, the above 

plots represent the average biases and MSE's for estimation of transition probabilities when the 

true parameter is the Growth model. The bias and the MSE seem to depend only on the sample 

size, item size, and the discrimination index. The type of model estimation seems to be a non-

factor in this case. Specifically, the bias and the MSE decreased for items with at least a medium 

discrimination level for both model specifications: correctly estimating the model as Growth, or 

"incorrectly" estimating the Growth model as saturated.  

As already stated, increasing sample size had a profound effect on the model estimation, 

as clearly shown in figures 4.1 and 4.2, the bias and the MSE further decreased for items with at 

least a medium discrimination for larger sample size (i.e., for N = 2000). Also, addition of ten 

more items dramatically improved parameter recovery. The biases and MSE reduced drastically, 

and in all cases the mean parameter estimates are substantially closer to the true parameter 

values. An interesting outcome from this estimation scenario is that even with the true model 

being a Growth model, correctly estimating the model as growth is as good as, "incorrectly" 

estimating the model as Saturated especially with items with at least a medium discrimination. 
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Figure 4.3. Biases for Transition probabilities when the true model is Saturated. The dash 

lines "-------" represent Saturated model estimated as Saturated, and the  solid lines " 

" represent Saturated model estimated as Growth. Each line corresponds to a different 

transition in the transition matrix. 
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Figure 4.4. MSE for Transition probabilities when the true model is Saturated. The dash 

lines "-------" represent Saturated model estimated as Saturated, and the  solid lines " 

" represent Saturated model estimated as Growth. Each line corresponds to a different 

transition in the transition matrix. 

 

 

Figures 4.1 and 4.2 show that having items with at least a medium discrimination, the model may 

be estimated as saturated even if the true model is a Growth model. Unlike figures 4.1 and 4.2, 

model specification is critical for figures 4.3, and 4.4. Estimating a true saturated model as 

growth model raises deeper concerns with the parameter recovery. Specifically for this 

simulation experiment, we notice the mean parameter estimates deviating farther from the true 
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parameter values resulting in larger biases and MSE's in figures 4.3, and 4.4 respectively. The 

results clearly show that increasing the sample size and /or the item size only contribute to the 

sparseness of the data, but do not in any way improve the parameter recovery when a true 

saturated model is estimated as growth.  

Figures 4.3, and 4.4 have also depicted patterns of very good parameter recovery when 

the saturated model is correctly estimated as saturated. Especially increasing the sample size 

and/or item size make the mean parameter estimates as closer to the true parameter values as 

possible, thereby causing a dramatic reductions in the biases and mean square errors. 
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Figure 4.5. Biases for Item Response probabilities when the true model is   Growth. The 

dash lines "-------" represent Growth model estimated as Growth, and the  solid lines " 

" represent Growth model estimated as Saturated. The lines are averaged over items, 

and each line corresponds to a different transition in the transition matrix. 

 

 

Apart from the Transition probabilities which are considered the bed rock of the OLTA 

model, the item response probabilities are also useful. The OLTA model imposes parameter 

restrictions on the item response probabilities in order to achieve ordering of the learning levels. 

Though students sometimes slip and respond negatively to items with low difficulty, the ordering 

of the learning levels generally ensure that students associated with higher learning levels have 

higher probability of positively responding to items than those in lower leaning levels. So in the 

practical sense, the case for having good items cannot be ignored, and Figures 4.5, and 4.6 

clearly highlight the importance of having items with at least a medium discrimination level.  

Figures 4.5, and 4.6 show a good parameter recovery for good items. The plots also show 

that increasing the item size, and /or the sample size contributes to a huge reduction of the biases 

and the MSE's. As a consequence of having items with at least a medium discrimination, the 
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parameter recovery for the item response probabilities are good whether a true Growth model is 

being estimated as Growth, or a true Growth model is being estimated as saturated. This same 

recovery pattern is observed in figures 4.9, and 4.10 for estimation of initial learning proportions. 

 

 

  

  

Figure 4.6. MSE for Item Response probabilities when the true model is Growth. The 

dash lines "-------" represent Growth model estimated as Growth, and the  solid lines " 

" represent Growth model estimated as Saturated. The lines are averaged over items, 

and each line corresponds to a different transition in the transition matrix. 
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Figure 4.7. Biases for Item Response probabilities when the true model is   Saturated.  

The dash lines "-------" represent Saturated model estimated as Saturated, and the  solid 

lines " " represent Saturated model estimated as Growth. The lines are averaged over 

items, and each line corresponds to a different transition in the transition matrix. 
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Figure 4.8. MSE for Item Response probabilities when the true model is   Saturated. The 

dash lines "-------" represent Saturated model estimated as Saturated, and the  solid lines " 

" represent Saturated model estimated as Growth. The lines are averaged over items, 

and each line corresponds to a different transition in the transition matrix. 

 

So far, we have seen a pattern of parameter recovery when a true saturated model is 

estimated as Growth. Specifically, as in the case of the transition probabilities, the bias and the 

means squared errors increase, and the mean of the parameter estimate farther deviates from the 

true parameter values. In the case of item response probabilities and estimation of initial learning 

proportions, estimating a true saturated model as Growth also increase the biases as seen in 
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figures 4.7, and 4.11 respectively. However, the MSE's tell a different story, for items with at 

least a medium discrimination level, the MSE is almost zero (figure 4.8), and this seems to be the 

case whether a true saturated model is being estimated as saturated, or a true saturated model is 

being "incorrectly" estimated as Growth. A similar pattern is also observed in figure 4.12. 

 

 

  

  

Figure 4.9. Biases for Initial learning levels when the true model is Growth. The dash 

lines "-------" represent Growth model estimated as Growth, and the  solid lines " " 

represent Growth model estimated as Saturated. Each line corresponds to a different 

transition in the transition matrix. 
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Figure 4.10. MSE for Initial learning levels when the true model is Growth. The dash 

lines "-------" represent Growth model estimated as Growth, and the  solid lines " " 

represent Growth model estimated as Saturated. Each line corresponds to a different 

transition in the transition matrix. 
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Figure 4.11. Biases for Initial learning levels when the true model is Saturated. The dash 

lines "-------" represent Saturated model estimated as Saturated, and the  solid lines " 

" represent Saturated model estimated as Growth. Each line corresponds to a different 

transition in the transition matrix. 
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Figure 4.12. MSE for Initial learning levels when the true model is Saturated. The dash 

lines "-------" represent Saturated model estimated as Saturated, and the  solid lines " 

" represent Saturated model estimated as Growth. Each line corresponds to a different 

transition in the transition matrix. 
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4.3 Study 2 

This study is aimed at establishing how well the AIC and BIC select the correct transition 

model under varying conditions. We achieved this goal by determining the proportion of time the 

fit indices selected the correct transition model; for a true Growth model, and for a true Saturated 

model. The simulation was conducted for N = 1000 and 2000, item sizes of 10 and 20, and two 

discrimination indices (𝛼 = 1, and = 2 ). A discrimination index of 0.5 was later removed from 

this particular experiment because the low discrimination items always resulted in local maxima, 

and we could not rely on the results. Also 3 and 5 levels were used as seen in tables 4.1 and 4.2 

respectively. 

 

4.3.1 Results of Simulation Study 2 

 

      A   I C  B   I C 

N J 𝛼 Growth Saturated  Growth Saturated 

        

1000 10 1 0.91 1.00  0.98 1.00 

1000 10 2 0.99 1.00  1.00 1.00 

1000 20 1 1.00 1.00  1.00 1.00 

1000 20 2 0.98 1.00  1.00 1.00 

        

2000 10 1 0.98 1.00  1.00 1.00 

2000 10 2 0.97 1.00  1.00 1.00 

2000 20 1 1.00 1.00  1.00 1.00 

2000 20 2 0.96 1.00  1.00 1.00 

Table 4.1 Proportions of 3 level model correctly identified by AIC and BIC     
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We from table 4.1 that when the true model is saturated, both the AIC and BIC correctly 

identified the saturated model 100% of the time for all the conditions. This same scenario is 

observed in table 4.2. In Table 4.2, the AIC and BIC again identified the true saturated model 

100% of the time; for the case when the true model is saturated with 5 levels.  

 

      A  I C  B  I C 

N J 𝛼 Growth Saturated  Growth Saturated 

1000 10 1 0.97 1.00  1.00 1.00 

1000 10 2 0.94 1.00  0.98 1.00 

1000 20 1 0.98 1.00  1.00 1.00 

1000 20 2 0.98 1.00  0.98 1.00 

        

2000 10 1 0.96 1.00  1.00 1.00 

2000 10 2 0.98 1.00  0.98 1.00 

2000 20 1 1.00 1.00  1.00 1.00 

2000 20 2 1.00 1.00  1.00 1.00 

Table 4.2 Proportions of 5 level model correctly identified by AIC and BIC   

 

For a true Growth model with 3 levels, table 4.1 shows that the BIC correctly identified 

the Growth model in at least 98% of the time for each condition. Again, for the true Growth 

model with 5 levels, Table 4.2 shows that the BIC correctly identified the correct model in at 

least 98% of the time for each of the conditions studied. For the same Growth model with 5 

levels, Table 4.2 indicates that the AIC selected the correct model 94% of the time, for 1000 

subjects with 10 items, and a discrimination index of 2. The 94% endorsement may not be 

considered great; compared to the overall performance of the AIC, in several other conditions 

under the same model. 
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Furthermore, Table 4.1 shows that except for one condition, the AIC selected the true 3 

level Growth model at least 96% of the time in each of the conditions studied. For a sample size 

of 1000, item size of 10, and a discrimination index of 1, the AIC selected the true 3 level 

Growth model 91% of the time. The 91% correct model identification seems to be on the low 

side considering the overall performance of the AIC in correctly identifying the true 3 level 

Growth model. In the nutshell, the AIC and the BIC did exceptionally well in identifying the true 

Saturated model for the 3 and 5 levels. Also the performance of the fit indices in selecting the 

true Growth model for the 3, and 5 levels are generally comparable. 

 

4.4 Study 3 

In an attempt to ascertain how well the AIC and BIC identify the correct/optimal number 

of levels, we conducted a simulation experiment under varying conditions for 3 and 5 levels. We 

considered the following model specifications: 3 level Growth and saturated models, and 5 level 

Growth and saturated models. We also conducted additional experiment for opposing models 

with adjacent levels. Specifically, in the case of a true 3 level growth model, we also included a 

saturated model for the purpose of comparison, and in each case simulated for 1, 2, 3, 4, and 5 

levels. We repeated same concept for a true 3 level saturated model. Furthermore, in the case of a 

5 level growth model, we added a simulation for a saturated model, and in each case simulated 

for 2, 3, 4, 5, 6, and 7 levels. We employed this same idea for the true 5 level saturated model. 

 The performance of the AIC and the BIC was determined by how often the criterion 

index opted for the true level model. We considered a satisfactory performance of the fit indices 

to be an endorsement of at least 90% for the true level model for each of the conditions studied. 

Eight different conditions were considered for the simulation study. For the subjects, we used N 
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= 1000 and 2000, item sizes of 10 and 20, and two discrimination indices (𝛼 = 1, and 𝛼 = 2). A 

discrimination index of 0.5 was later removed from this particular experiment because low 

discrimination items always resulted in local maxima; and we could not rely on the results. As 

already noted, the simulation was conducted for 3 and 5 learning levels as seen in section 4.4.1.  

 

4.4.1 Proportion of True 3 Level model selection by AIC and BIC 

 

    A I C    A I C   

         S a t u r a t e d             Growth 

      L e v e l  L e v e l  

N J 𝛼  1 2 3 4 5  1 2 3 4 5  

1000 10 1 0 1 3 0 0  0 0 92 4 0  

1000 10 2 0 0 2 0 0  0 0 97 1 0  

1000 20 1 0 0 2 0 0  0 0 96 2 0  

1000 20 2 0 0 1 0 0  0 0 97 2 0  

2000 10 1 0 0 2 0 0  0 0 93 5 0  

2000 10 2 0 0 0 0 0  0 0 99 1 0  

2000 20 1 0 0 4 0 0  0 0 96 0 0  

2000 20 2 0 0 2 0 0  0 0 98 0 0  

Table 4.3 Proportion of times AIC selected the true level for 3 level Growth model  

Correct level specification in bold to enable interpretation.  

  

From Table 4.3, the true model under consideration is a Growth model with 3 levels. The 

effectiveness of the fit indices clearly depends on the number of times the correct models with 

the correct levels are chosen out of the hundred simulations. We from Table 4.3 that for the first 

experimental condition (N = 1000, J = 10, and 𝛼 =1), the AIC correctly chose the 3 level Growth 

model 92% of the time, preferred a 4 level Growth model 4% of the time, incorrectly endorsed 

the 3 level saturated model 3% of the time, and also opted for the 2 level saturated model 1% of 
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the time. When the sample size was increased to 2000, and the discrimination index was 

increased to 2, the AIC had its highest endorsement of 99% for choosing the correct 3 level 

Growth model. In that same condition, the AIC selected the 4 level growth model 1% of the 

time. For a sample size of 2000, an item size of 20, and a discrimination index of 2, the AIC 

correctly selected the 3 level Growth model 98% of the time, but incorrectly chose the 3level 

saturated model 2% of the time. Even when the sample size was decreased to 1000 with 20 

items, and a discrimination index of 2, the AIC opted for the correct 3 level model 97% of the 

time. In general, the performance of the AIC in selecting the correct 3 level growth model for 

each of the conditions studied was satisfactory. 

 

    B I C    B I C   

         S a t u r a t  e d              Growth 

      L e v e l  L e v e l  

N J 𝛼  1 2 3 4 5  1 2 3 4 5  

1000 10 1 0 0 0 0 0  0 93 7 0 0  

1000 10 2 0 0 0 0 0  0 0 100 0 0  

1000 20 1 0 0 0 0 0  0 0 100 0 0  

1000 20 2 0 0 0 0 0  0 0 100 0 0  

2000 10 1 0 0 0 0 0  0 47 53 0 0  

2000 10 2 0 0 0 0 0  0 0 100 0 0  

2000 20 1 0 0 0 0 0  0 0 100 0 0  

2000 20 2 0 0 0 0 0  0 0 100 0 0  

Table 4.4 Proportion of times BIC selected the true level for 3 level Growth model  

Correct level specification in bold to enable interpretation.  

 

We a contrast in model identification when the AIC is compared to BIC for same conditions as 

displayed in Tables 4.3 and 4.4 respectively. It is clear from table 4.4 that for a sample size of 
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1000, with an item size of 10, and a discrimination index of 1, the BIC performed poorly by 

incorrectly endorsing the 2 level Growth model 93% of the time , whilst choosing the correct 3 

level model only 7% of the time. When the sample size was increased to 2000 for the same 

condition, the BIC again performed poorly by wrongly endorsing the 2 level Growth model 47% 

of the time, whilst weakly choosing the correct 3 level model 53% of the time. Interestingly, the 

poor performance of the BIC is associated with those conditions with item size of 10, and a 

discrimination index of 1. Apart from the two poor performances by the BIC, the fit index was 

perfect in endorsing the true 3 level growth model, in the rest of the conditions. 

Though the BIC never selected any level under the saturated model in all the conditions 

studied, its tendency for selecting the simple model, in this case the 2 level growth model, makes 

it a bit unreliable; especially for items with lower discrimination index, and small item sizes. In 

the nutshell, the AIC outperformed the BIC in selecting the true 3 level growth model for the 

conditions studied. 

    A I C    A I C   

        S a t u r a t  e d              Growth 

      L e v e l  L e v e l  

N J 𝛼  1 2 3 4 5  1 2 3 4 5  

1000 10 1 0 15 78 7 0  0 0 0 0 0  

1000 10 2 0 0 98 2 0  0 0 0 0 0  

1000 20 1 0 0 95 5 0  0 0 0 0 0  

1000 20 2 0 0 98 2 0  0 0 0 0 0  

2000 10 1 0 0 85 15 0  0 0 0 0 0  

2000 10 2 0 0 98 2 0  0 0 0 0 0  

2000 20 1 0 0 99 1 0  0 0 0 0 0  

2000 20 2 0 0 98 2 0  0 0 0 0 0  

Table 4.5 Proportion of times AIC selected the true level for 3 level Saturated model.   

Correct level specification in bold to enable interpretation.  
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    B I C    B I C   

         S a t u  r a t  e d              Growth 

      L e v e l  L e v e l  

N J 𝛼  1 2 3 4 5  1 2 3 4 5  

1000 10 1 0 100 0 0 0  0 0 0 0 0  

1000 10 2 0 0 100 0 0  0 0 0 0 0  

1000 20 1 0 29 71 0 0  0 0 0 0 0  

1000 20 2 0 0 100 0 0  0 0 0 0 0  

2000 10 1 0 100 0 0 0  0 0 0 0 0  

2000 10 2 0 0 100 0 0  0 0 0 0 0  

2000 20 1 0 0 100 0 0  0 0 0 0 0  

2000 20 2 0 0 100 0 0  0 0 0 0 0  

Table 4.6 Proportion of times BIC selected the true level for 3 level Saturated model. Correct 

level specification in bold to enable interpretation.    

 

Interestingly, the AIC and BIC never preferred the Growth model in the case of the true 3 

level saturated model; as displayed in Tables 4.5, and 4.6 respectively. However, the fit indices 

occasionally preferred different number of levels. Specifically, for N = 1000,        J = 10, and  

𝛼 = 1, the AIC correctly chose the 3 level saturated model 78% of the time, incorrectly chose 

the 4 level saturated model 7% of the time, and also chose the 2 level saturated model 15% of the 

time. In contrast, the BIC performed worse by wrongly endorsing the 2 level saturated model 

100% of the time, for those same conditions. Again, for 1000 subjects, 20 items, and a 

discrimination index of 1, the BIC weakly endorsed the correct 3 level saturated model 71% of 

the time, whilst opting for the 2 level saturated model 29% of the time. For the  same condition, 

the AIC correctly identified the 3 level saturated model 95% of the time.  
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For a sample size of 2000, item size of 10, and a discrimination index of 1, the AIC 

preferred the 4 level saturated model 15% of the time, but it correctly endorsed the 3 level 

saturated model 85% of the time. For the same condition, the BIC wholly endorsed the simpler 

model; as the fit index incorrectly chose the 2 level saturated model 100% of the time. The AIC 

clearly outperformed the BIC for selecting the true 3 level saturated model. 

 

4.4.2 Proportion of True 5 Level model selection by AIC and BIC  

 

    A I C     A I C   

           S a t u  r a t  e d                  Growth 

     L e v e l    L e v e l 

N J 𝛼  2 3 4 5 6 7  2 3 4 5 6 7 

1000 10 1 0 0 0 0 0 0  0 2 88 9 1 0 

1000 10 2 0 0 0 1 0 0  0 0 1 87 10 1 

1000 20 1 0 0 0 0 0 0  0 0 5 92 3 0 

1000 20 2 0 0 0 2 0 0  0 0 0 97 1 0 

2000 10 1 0 0 0 0 0 0  0 0 70 28 2 0 

2000 10 2 0 0 0 0 0 0  0 0 1 93 5 1 

2000 20 1 0 0 0 3 0 0  0 0 0 97 0 0 

2000 20 2 0 0 0 1 0 0  0 0 0 97 2 0 

Table 4.7 Proportion of times AIC selected the true level for 5 level Growth model  

    Correct level specification in bold to enable interpretation.  

 

We considered 5 level models to investigate the proportion of times the fit indices 

selected the true 5 level model. Tables 4.7 and 4.8 represent the proportion of times the 5 level 

growth model was selected by AIC and BIC respectively. Table 4.8 shows that the AIC preferred 

the 4 level growth model to the 5 level model; in two different conditions. Specifically, with for 

a 1000 sample size with 10 items; and a discrimination level of 1, the AIC preferred the 4 level 
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model 88% of the time. Also, Increasing the sample size by a 1000 for the same condition did 

not help improve the chances of selecting the true level since the AIC still preferred the 4 level 

model 70% of the time. For a sample size of 1000 with 10 items, and a discrimination level of 2, 

the AIC correctly endorsed the 5 level model 87% of the time. This endorsement may not 

necessarily be considered a strong one; due to the fact that the fit index has selected the right 

model in at least 93% of the time in other conditions . 

The BIC is well known for its preference for simpler models, so it is not entirely 

surprising that the fit index preferred models with lower levels in some of the conditions 

considered in Table 4.8. To be specific, the BIC wholly preferred a 3 level model to the 5 level 

model, for a sample size of 1000 with 10 items, and a discrimination level of 1. The BIC opted 

for a 3 level model 72% of the time, for a sample size of 2000 with 10 items, and a 

discrimination level of 1. Also there are other conditions that the BIC preferred the 4levelmodel 

to the 5level model: The BIC selected the 4 level model 58% of the time, for a 1000 sample size 

with 10 items, and a discrimination level of 2. Also, the fit index selected the 4 level model 98% 

of the time, for a condition with 2000 sample size, 20 items, and a discrimination index of 1. For 

situations where the BIC selected the right (5 level) model, the endorsements are at least 97% 

high, except for one condition (N=2000, J= 10, and 𝛼 =2), where the BIC weakly selected the 

correct model 81% of the time. The results in tables 4.8 and 4.9 clearly suggest that the AIC 

outperformed the BIC. 
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    B I C     B I C   

           S a t u r a t  e d                     Growth 

     L e v e l    L e v e l 

N J 𝛼  2 3 4 5 6 7  2 3 4 5 6 7 

1000 10 1 0 0 0 0 0 0  0 100 0 0 0 0 

1000 10 2 0 0 1 0 0 0  0 0 58 41 0 0 

1000 20 1 0 0 0 0 0 0  0 0 0 100 0 0 

1000 20 2 0 0 0 2 0 0  0 0 1 97 0 0 

2000 10 1 0 0 0 0 0 0  0 72 28 0 0 0 

2000 10 2 0 0 0 0 0 0  0 0 19 81 0 0 

2000 20 1 0 0 0 0 0 0  0 0 98 2 0 0 

2000 20 2 0 0 0 1 0 0  0 0 0 99 0 0 

Table 4.8 Proportion of times BIC selected the true level for  5 level Growth model                  

Correct level specification in bold to enable interpretation. 

 

 

 

 

 

    A I C     A I C   

           S a t u r a t  e d                Growth 

     L e v e l    L e v e l 

N J 𝛼  2 3 4 5 6 7  2 3 4 5 6 7 

1000 10 1 0 35 57 8 0 0  0 0 0 0 0 0 

1000 10 2 0 0 27 67 6 0  0 0 0 0 0 0 

1000 20 1 0 0 57 42 1 0  0 0 0 0 0 0 

1000 20 2 0 0 0 98 2 0  0 0 0 0 0 0 

2000 10 1 0 0 90 9 1 0  0 0 0 0 0 0 

2000 10 2 0 0 4 91 5 0  0 0 0 0 0 0 

2000 20 1 0 0 10 86 4 0  0 0 0 0 0 0 

2000 20 2 0 0 0 100 0 0  0 0 0 0 0 0 

Table 4.9 Proportion of times AIC selected the true level for 5 level Saturated model  

Correct level specification in bold to enable interpretation. 
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    B I C     B I C   

          S a t u  r a t  e d                   Growth 

     L e v e l    L e v e l 

N J 𝛼  2 3 4 5 6 7  2 3 4 5 6 7 

1000 10 1 0 100 0 0 0 0  0 0 0 0 0 0 

1000 10 2 0 25 75 0 0 0  0 0 0 0 0 0 

1000 20 1 0 82 18 0 0 0  0 0 0 0 0 0 

1000 20 2 0 0 3 97 0 0  0 0 0 0 0 0 

2000 10 1 0 100 0 0 0 0  0 0 0 0 0 0 

2000 10 2 0 0 96 4 0 0  0 0 0 0 0 0 

2000 20 1 0 0 100 0 0 0  0 0 0 0 0 0 

2000 20 2 0 0 0 100 0 0  0 0 0 0 0 0 

Table 4.10. Proportion of times BIC selected the true level for 5 level Saturated model  

Correct level specification in bold to enable interpretation. 

 

Tables 4.9 and 4.10 display the proportion of true level selected by the AIC and BIC 

respectively for the 5 level saturated model. The performances of the fit indices are not the best, 

and certainly not what we expected.  For instance, in Table 4.11, the BIC selected the correct 5 

level model in only two of the eight conditions under consideration. The fit index selected the 5 

level model 97% of the time, for a sample size of 1000 with 20 items, and a discrimination index 

of 2. Also, the BIC opted for the 5 level model 100% of the time, for a sample size of 2000 with 

20 items, and a discrimination level of 2. In each of the two conditions that the BIC correctly 

selected the 5 level model, the item size was 20, and the discrimination index was 2. The BIC 

opted for a lower level model when the condition under consideration had an item size of 10, 

and/or a discrimination index of 1. 
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 For a sample size of 10 and a discrimination level of 1, the BIC wholly endorsed the 3 

level model for a1000 subjects. Again, for those same conditions, the BIC selected the 3 level 

model 100% of the time when the subjects were increased by a 1000. Also, maintaining a sample 

size of 1000 with a discrimination index of 1, the BIC opted for the 3 level model 82% of the 

time when the item size was 20. Furthermore, for 3 of the 8 conditions, the BIC preferred the 

4level model to the 5 level model. For instance, the BIC wholly preferred the 4 level saturated 

model to the 5level model, for a condition that consisted of 2000 subjects with 20 items, and a 

discrimination index of 1. But for 2000 subjects with 10 items, and a discrimination index of 2, 

the fit index selected the 4 level model 96% of the time. However, for 1000 subjects with 10 

items, and a discrimination index of 2, the BIC preferred the 4 level model 75% of the time.  

We consider the performance of the AIC in Table 4.10 in three forms: enormous 

endorsement of the correct model, weak endorsement of the correct model, and preference for 

the wrong model. In two of the conditions the AIC weakly endorsed the correct 5 level saturated 

model in at most 86% of the time. For conditions that included an item size of 20, and a 

discrimination level of 2, the AIC enormously, and correctly selected the 5 level model in at least 

98% of the time. There are other three conditions that the AIC preferred the 4 level saturated 

model to the 5 level model. Specifically, the AIC selected the 4 level model 57% of the time, for 

1000 subjects, 10 items, and a discrimination level of 1. The AIC expressed same preference 

(57%) for the 4 level model for 1000 subjects with 20 items, and a discrimination index of 1. But 

with 2000 subjects with 10 items, and a discrimination index of 1, the AIC had a high 

endorsement of 90% for the 4 level model. Though the performances of both fit indices did not 

look good, none of the fit index opted for a growth model when the conditions under 

consideration were saturated in nature. 
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Chapter 5 

Real Data Analysis 

5.1 Introduction 

In this chapter, the ordered latent transition analysis model is applied to real data, 

administered at two time points from the National Center for Early Development and Learning's 

(NCEDL's) pre-kindergarten study in eleven states. The goal is to investigate the number of 

learning levels, and also to determine the type of transition matrix that characterizes the 

progression of student's learning. One of the advantages of using the OLTA model to measure 

students' learning is that the model recognizes that students' have different ability levels, and the 

ordered nature of the model ensures that students' are appropriately placed on the learning 

continuum based on their abilities.  

 In this analysis, three parameters are of interest: the learning level prevalences, item-

response probabilities, and the transition probabilities. The most important parameter to be 

investigated is the transition probabilities. Specifically, we wanted to know how well the 

saturated or the growth model fits the data. Model fit is determined by AIC and BIC. Optimal 

balance of model fit and parsimony are associated with a smaller criterion value. A model with 

the minimum AIC or BIC might be selected as the optimal model. However, due to the varying 

penalties associated with the AIC and the BIC, they often disagree on what the optimal model is.  

 

Data Description 

The data analyzed here are a combined study obtained by the National Center for Early 

Development and Learning (NCEDL) from two major studies aimed at understanding the 
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variations among the state-funded pre-kindergarten (pre-k) programs. The two major studies are 

the Multi-State Study of Pre-Kindergarten and the State-Wide Early Education Programs 

(SWEEP) study.  

Data collection for the Multi-State Study of Pre-Kindergarten occurred in six states 

during the 2001 - 2002 school year. The participating states had contributed significant amount 

of resources to pre-k initiatives. The states were: California, Georgia, Illinois, Kentucky, New 

York, and Ohio. Forty schools were selected using stratified random sampling in each state. The 

teachers assisted data collectors in recruiting children for the study, and also helped them 

determine the eligibility of children. The participating children (a) were old enough for 

kindergarten in the fall of 2002, (b) did not have an Individualized Education Plan and (c) spoke 

English or Spanish well enough to understand simple instructions. 

Data collection for the SWEEP study occurred in five states during the 2003-2004 school 

year. The states were Massachusetts, New Jersey, Texas, Washington, and Wisconsin. Hundred 

randomly selected state-funded pre-kindergarten sites were selected for participation in each of 

the five states. Initially, 465 sites participated in the fall. Two sites withdrew participation in the 

spring, resulting in 463 sites participating in the spring. The participating teachers helped the 

data collectors to recruit children, and also help determine the eligibility of children. The 

participating children (a) were old enough for kindergarten in the fall of 2002, (b) did not have 

an Individualized Education Plan and (c) spoke English or Spanish well enough to understand 

simple instructions. 

The combined NCEDL data contains the item scores for 2892 pre- kindergarten children 

in the eleven states. The data also consist of 9 assessment items administered at two time points.  

The items assessed nine skills which are provided below:  
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1. Uses complex sentence structures. 

2. Understands and interprets a story or other text read to him/her. 

3. Easily and quickly names all upper-and lower-case letters of the alphabet. 

4. Produces rhyming words. 

5. Predicts what will happen next in stories. 

6. Reads simple books independently. 

7. Uses different strategies to read unfamiliar words. 

8. Demonstrates early writing behaviors. 

9. Demonstrates an understanding of some of the conventions of print.  

 

The items were scored on a five-point rating scale: 

1. Not yet: Child has not yet demonstrated the skill. 

2. Beginning: Child is just beginning to demonstrate the skill. 

3. In progress: Child demonstrates skill, knowledge, or behavior with some regularity but varies 

in level of competence. 

4. Intermediate: Child demonstrates skill with increasing regularity and average competence 

5. Proficient: Child demonstrates skill competently and consistently. 

 

For the purpose of our study, and to easily analyze the data, the dataset was dichotomized such 

that rating scores ranging from 1 to 3 are recoded as 0, and scores from 4 to 5 are recoded as 1.  
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5.2  Item Analysis 

 

 

 Saturated Model Growth Model 

Levels AIC BIC AIC BIC 

2 35250.52 35393.79 35368.87 35506.17 

3 32759.73 32992.55 32903.69 33118.60 

4 32204.45 32538.76 32370.45 32668.93 

5 31858.23 32305.96 32092.36 32480.39 

6 31777.57 32350.66 31967.62 32451.16 

7 31786.16 32496.56 31920.55 32505.59 

8 31790.40 32650.04 31925.34 32617.82 

9 31815.96 32836.78 31951.31 32757.22 

Table 5.1.  Using AIC and BIC for selecting the appropriate model for the dataset. 

                   Saturated model with 6 learning levels selected as the most appropriate                                    

           model for the dataset. 

 

Although the AIC and BIC are fundamentally based on different theoretical motivations, 

they are generally considered to have the same aim; which is to identify good models, even if 

there is disagreement on what constitute a "good model" (Burnham & Anderson, 2004; Kuha, 

2004). There are instances where the two criteria agree on what the "good model" is, and 

situations where both criteria clearly disagree on what the "good model" is.  

Table 5.1 re-enforces the latter. The BIC prefers a 5 level saturated model, but the AIC 

prefers a 6 level saturated model. We have decided on the saturated model with 6 learning levels 

as the most appropriate model that best fit the data. 
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 Level1 Level2 Level3 Level4 Level5 Level6 

Item1 0.07 0.22 0.82 0.88 0.88 1.00 

Item2 0.01 0.07 0.94 0.94 0.94 1.00 

Item3 0.00 0.19 0.19 0.72 0.77 1.00 

Item4 0.00 0.07 0.07 0.75 0.75 1.00 

Item5 0.00 0.20 0.59 0.94 0.94 1.00 

Item6 0.00 0.07 0.17 0.22 0.64 0.88 

 Item7 0.00 0.06 0.06 0.06 0.79 1.00 

Item8 0.00 0.05 0.05 0.08 0.66 0.85 

Item9 0.00 0.21 0.21 0.44 0.68 0.93 

Table 5.2.  Item response probabilities for saturated model with 6 learning levels 

Conditional probabilities  > .5 in bold to facilitate interpretation 

 

The item response probability is the probability that a subject correctly responds to an 

item conditional on his / her learning level. In table 5.2 we provide for each learning level the 

probability that respondents belonging to that learning level respond positively to each item. It is 

clear from the table that the six learning levels can be ordered along the learning continuum , 

with learning level 1 representing the most 'negative' and learning level 6 representing the most 

'positive' level within the entire set of learning levels. It is also clear that differences among the 

nine items have emerged with respect to the manner their response probabilities vary as a 

function of the learning levels. 
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                     Level Prevalences 

Level Time 1 Time 2 

1 0.514 0.231 

2 0.139 0.175 

3 0.216 0.191 

4 0.065 0.189 

5 0.042 0.117 

6 0.023 0.096 

Table 5.3. Learning level proportions for Time1 and Time2 

Two important factors that may have contributed to this functional relationship are item 

difficulty and its steepness. The steepness of the functional relationship is connected to the 

discriminatory power of the item. The discrimination index of an item is the log odds ratio for 

correct responses between two adjacent levels. Items with good discrimination separate skilled 

examinees from the less skilled, and the non-skilled ones. Table 5.2 clearly shows that the items 

under consideration have good discrimination. For instance, if we compare items 5 and 4 in this 

respect, we clearly that the cumulative response probabilities for item 5 are not only higher than 

those of item 4, but that they also change more dramatically as we move along the learning level 

continuum. Same dynamics are observed between items 5 and 6, the cumulative response 

probabilities for item 5 are higher than those in item 6; and also change more drastically as one 

moves along the learning continuum. 

In a sense item 5 may be considered a better indicator of level membership than items 4 

and 6. Also comparing items 8 and 9, the cumulative response probabilities for item 9 are higher 

than those in item 8 along the 6 learning levels. Item 8 also has the least cumulative response 

probabilities in almost all the six learning levels. It may be considered the most difficult item 

among all the nine items, or item with the least discriminatory power. In table 5.3 we provide 
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estimates of the population proportions of participants belonging to each learning level at time 1, 

and also the level prevalences at time 2. The graphical representation is depicted in figure 5.1. 

 Table 5.3 shows more than half of the children (a little over 51%) belonged to level 1 at 

the initial time point. However, more than half of the children who belonged to level 1 at the 

initial time, moved to higher levels at time 2, leaving just  a little over 23% of children in level 1 

at time 2. Generally this kind of movement is expected, and is within reason. Also, with the 

exception of levels 1 and 3, the rest of the levels saw an increase in membership at time 2. 

 

 

Figure 5.1  Pre-kindergarten Learning level membership probabilities for two time points 

(NCEDL data, N = 2892).   

  

In table 5.2 the larger conditional probabilities are in bold font to highlight the overall 

response pattern. These probabilities provide the basis for labeling and interpretation of the 

learning levels. Learning level 5 is associated with a high probability of individuals responding 

correctly to all the 9 items. Individuals in this level among other things were likely to have 
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demonstrated proficiency in reading simple books independently including using different 

strategies to read unfamiliar words, and also have demonstrated proficiency in early writing 

behaviors. We labeled this learning level as the "skilled" level. Interestingly, level 6 is associated 

with children correctly endorsing all the 9 items with even higher probability than those in level 

5. The level 6 children have more understanding, and are more skilled than all the other levels 

including level 5. Because of this, we labeled the level 6 as the "advanced" level. In contrast, 

individuals in learning level 1 were more likely to have consistently demonstrated to have little 

to no skill in all the nine items. Even though this level had the highest proportion of individuals 

(a little over 51%) at the initial time, they simply showed the least skill in the assessment test. 

More than half of those children gained some skill and consequently moved to upper levels at 

time 2. Nonetheless, a little over 23% remained at level 1 at time 2. We labeled learning level 1 

as the "not ready" level. 

There are three other learning levels that reflect different patterns of proficiency. 

Learning level 2, labeled "inexperienced" level had a somewhat high likelihood of using 

complex sentence structures(0.22) than understanding and interpreting a story or other text read 

to them, but the likelihood as noticed is well below 0.5. Individuals in learning level 3 displayed 

different proficiency pattern, they had high likelihood of using complex sentence structures, and 

also showed proficiency in understanding and interpreting a story or other text read to them. In 

addition, they had the ability to predict what will happen next in stories. We labeled this learning 

level a "developing" level. Apart from demonstrating same proficiency as those in level 3, 

learning level 4 individuals demonstrated additional ability by being able to easily and quickly 

naming all upper-and lower-case letters of the alphabet, and producing rhyming words. We 

labeled learning level 4 the "transitional" level. 
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   Learning Levels   

Assigned Label NotReady Inexperienced Developing Transitional Skilled Advanced 

Not Ready 0.42 0.22 0.20 0.09 0.06 0.02 

Inexperienced 0.00 0.33 0.11 0.28 0.18 0.10 

Developing 0.08 0.06 0.33 0.31 0.16 0.06 

Transitional 0.00 0.06 0.00 0.43 0.17 0.33 

Skilled 0.00 0.00 0.10 0.11 0.40 0.39 

Advanced 0.00 0.00 0.00 0.07 0.00 0.93 

Table 5.4  Six-Learning -Level Model for Pre-kindergarten assessment test (NCEDL data, N = 

2892). Diagonal transition probabilities in bold to enable interpretation. 

 

Table 5.4 depicts the transition probability matrix. This matrix indicates the probability of 

being in the column learning level at Time 2, conditional on being in the row learning level at 

Time 1. The diagonal elements of this matrix represent the probability of being in a particular 

learning level at Time 2 conditional on being in that same learning level at Time 1. Specifically, 

considering the two time points that the children were assessed, 42% of the children who were 

considered to be in the "Not Ready" learning level maintained their learning level membership at 

Time 2 (but 58% moved). Only 6% of those children did well to move to the "skilled" level, 

whilst 2% moved to the "advanced" level. This is not a surprising outcome, the data clearly 

showed that children classified to be in the "Not Ready" level initially demonstrated little to no 

ability with respect to the assessment test, and other factors may have contributed for the 2% to 

reach the "advanced" level. 

In contrast, 93% of children initially in the "advanced" learning level maintained their 

level membership, but 7% reversed to lower learning levels. The developmental reversal is 

possible especially when the conditions at Time 2 are unfavorable, or simply some of the 

children may have slipped. Also 40% of those in the "skilled" level maintained their level 
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membership, whilst 39% moved to "advanced" level, with 21% of the children reversing to lower 

levels. 

Seventeen percent of the children initially categorized as being in the "Transitional" 

learning level moved to the "skilled" learning level, and noticeably 33% moved to the 

"advanced" level, whilst 43% maintained their level membership. Interestingly, none of these 

children reversed to the "developing" level but 6% actually moved down to the "Inexperienced" 

level; which is considered lower than the "developing" level. Several factors may have 

contributed to this development. One of the factors may well be that the 6% guessed and 

correctly responded to some items at the initial assessment, and their actual ability may not have 

warranted them being placed at a higher learning level. 

Furthermore, children in the "Inexperienced" learning level experienced no 

developmental reversal. In fact, 67% of them moved to higher levels, with 33% maintaining their 

level membership. Specifically, 11% moved to the "Developing" level, 28% to the "Transitional" 

level, 18% to the "skilled" level, and 10% moved all the way to the "advanced" level. Same 

cannot be said of the children in the "Developing" levels, whilst 33% of them maintained their 

level membership, 14%  reversed to lower learning levels and only 6% transitioned to the 

"advanced" level.  

 

5.3 The  LTA  Model 

As discussed earlier, the LTA model makes no assumption of the ordering of the levels, 

and the transition matrices are also considered without order. However, the basis of the OLTA 

model is the order restriction imposed on the cumulative response probabilities, which facilitates 

ordering of the levels and the transition probabilities. To provide basis for comparison between 
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the two models, we shall apply the empirical example provided above to the LTA model. Again, 

the parameters of interest are the item response probabilities, level prevalences, and the transition 

matrices. The two competing models to be considered are the saturated and the growth models. 

 

 

 Saturated Model Growth Model 

Levels AIC BIC AIC BIC 

2 35250.52 35393.79 35368.87 35506.17 

3 32759.73 32992.55 32903.69 33118.60 

4 32204.45 32538.76 32369.63 32668.12 

5 31640.73 32088.46 31822.97 32211.01 

6 31520.61 32093.70 31619.64 32103.19 

7 31437.51 32147.90 31613.71 32198.74 

8 31381.65 32241.29 31467.35 32159.84 

9 31351.64 32372.46 31384.56 32190.47 

10 31379.08 32573.02 31418.98 32344.28 

 Table 5.5  Summary of information for selecting the appropriate model under LTA  

 Saturated model with 9 levels selected as the most appropriate model for the data. 

 

The information criteria (table 5.5) provide inconsistent messages about which model 

best balances parsimony and fit. According to the AIC, the model with nine learning levels is 

preferred, but according to the BIC, the model with five learning levels is preferred. Due to 

unordered nature of the LTA model, and also the fact that students generally develop differently, 

we ultimately chose the nine-level saturated model due to its conceptual appeal.  
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 Level1 Level2 Level3 Level4 Level5 Level6 Level7 Level8 Level9 

Item1 0.02 0.20 0.31 0.88 0.80 0.92 0.96 0.96 0.99 

Item2 0.01 0.18 0.52 0.56 0.95 0.96 1.00 0.96 1.00 

Item3 0.00 0.38 0.73 0.03 0.11 0.41 0.53 0.84 1.00 

Item4 0.00 0.13 0.46 0.00 0.10 0.36 0.34 0.97 1.00 

Item5 0.01 0.31 0.58 0.00 0.95 0.66 0.97 1.00 1.00 

Item6 0.00 0.08 0.41 0.07 0.23 0.10 0.67 0.25 0.84 

Item7 0.00 0.06 0.79 0.01 0.01 0.07 0.58 0.11 0.99 

Item8 0.00 0.06 0.66 0.00 0.02 0.07 0.49 0.11 0.83 

Item9 0.01 0.28 0.56 0.11 0.15 0.38 0.69 0.46 0.87 

Table 5.6  Item response probabilities for saturated model with 9 learning levels Conditional 

probabilities > .5 in bold to facilitate interpretation. 

 

Table 5.6 clearly shows different pathways of children reading development. For 

instance, whilst children in level9 demonstrated skill by highly endorsing each of the nine 

assessment items, those in level1 showed no skill in all the assessment items. The level2 children 

showed little skill, they had a somewhat high likelihood of naming all upper-and lower-case 

letters of the alphabet (0.38), and predicting what will happen next in stories (0.31), but the 

likelihoods as seen are below 0.5. Their counterparts in level3however showed skill in six out of 

the nine items, they demonstrated a wide range of skill including naming all upper-and lower-

case letters of the alphabet, predicting what will happen next in stories, using different strategies 

to read unfamiliar words, demonstrating early writing behavior, and understanding of some of 

the conventions of print. Interestingly, those same children could neither use complex sentence 

structures nor produce rhyming words. Despite their wide range of skill, level3 children are not 

considered to be verbal. 
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  Children in level4 are completely opposite to their counterparts in level3 in terms of 

knowledge, and verbal skills. The level4 children showed no skill in all but two of the nine 

assessment items. They could not name the letters in the alphabets nor predict what will happen 

next in stories. Also, they could not use different strategies to read unfamiliar words, and did not 

demonstrate early writing behaviors. Nonetheless, they are able to use complex sentence 

structures, and they also understand and interpret a story read to them. Unlike those in level3, 

children in level4 are considered to be only verbal. 

Even though the level4 children could perhaps speak clearly, their skills were limited to 

the extent that they could not predict what will happen next in stories. Their inability to predict 

what will happen next in stories separate them from their counterparts in level5. Just like 

children in level4, those in level5 demonstrated no skill in six of the nine assessment items. They 

however showed same skill as those in level4, except that they demonstrated an additional skill: 

they were able to predict what will happen next in stories. The level5 children are considered to 

be more verbal. Those in Level6 could also understand and interpret a story read to them, use 

complex sentence structures, and predict what will happen next in stories. However, they also 

had a somewhat high likelihood of naming all upper-and lower-case letters of the alphabet 

(0.41). Though the likelihood is below 0.5, notwithstanding, it is one of the contributing factors 

that separate level6 from level5. 

The level7 children demonstrated skill in almost all the nine assessment items. However, 

they could not produce rhyming words, but also had a high likelihood of demonstrating early 

writing behaviors (0.49).  Children in level8 showed skill in the first five of the nine assessment 

items, including using complex sentence structures, understanding and interpreting a story or 

other text read to them, naming all upper-and lower-case letters of the alphabet, etc. However, 
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they could not do anything else (apart from those five items), for instance, they could not read 

simple books independently nor use different strategies to read unfamiliar words. Also they did 

not demonstrate early writing behaviors, but showed a high likelihood of understanding some of 

the conventions of print (0.46). As already stated, children in level3 and level7 showed a lot of 

promise, but only those in level9 demonstrated skill in all the nine assessment items. 

Table 5.6 shows that children in level1 displayed no skill in all the assessment items 

whilst their counterparts in level9 showed skill in every single item, this phenomenon by no 

means reflect ordering of the levels. The item response probabilities reveal some important 

characteristics of several items which have contributed to the unordered nature of the LTA 

model. These items were endorsed highly by children in the lower levels than those in the upper 

level. Specifically, children in level3 displayed higher skill for item3 than their counterparts in 

level4, level5, and level6. In other words, children in level3 could easily and quickly name all the 

upper-and lower-case letters of the alphabet, whilst those who are in the upper levels, such as 

level4, level5, and level6 could not do same. Also, children in level3 could predict what will 

happen next in stories, but those in level4 could not predict what will happen next in stories. 

Furthermore, children in level7 demonstrated higher skill in items 6, 7, 8, and 9 than 

those in level8. Put differently, the level7 children were able to read simple books independently, 

used different strategies to read unfamiliar words, demonstrated an understanding of some of the 

conventions of print, and to some extent demonstrated early writing behaviors, but their 

counterparts in the upper level (level8) could not do any of these. Interestingly, these same 

mentioned items were highly endorsed by children in level3 than those in level4, level5, and 

level6. 
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One of the parameters of interest in the LTA model is the level prevalences. Table 5.7 

show estimates of the population proportions of children belonging to each learning level at time 

1, and time 2. The graphical representation is depicted in figure 5.2. 

 

                        Level Prevalences 

Level Time 1 Time 2 

1 0.520 0.252 

2 0.094 0.135 

3 0.012 0.037 

4 0.118 0.065 

5 0.112 0.098 

6 0.037 0.090 

7 0.030 0.063 

8 0.041 0.129 

9 0.033 0.131 

Table 5.7 Learning level proportions for Time 1 and Time 2 for LTA model 

 

Table 5.7 shows that at the initial time point, 52% of the children belonged to level1, and 

a little over 3% belonged to level9. However, more than 50% of the children who initially 

belonged to level1, moved to upper learning levels at time 2, leaving a little over 25% of the 

children at level 1 at time 2. In other words, just over 25% of the children were still without skill 

at the final time point. 

 

 



 
 

103 
 

 

            Figure 5.2  Learning level membership probabilities for LTA model. 

 

Although level3 membership saw an increase from 1.2% to 3.7%, it is still the level with 

the fewest memberships at both time points. This is interesting because the peculiar nature of the 

level3 membership perhaps contribute to its size. These are the children who displayed skill in 

almost all the nine items, except that they could not use complex sentence structures. Children in 

general may not follow that kind of developmental pattern, and that perhaps explain the 

uniqueness of this level. On the other hand, it is not uncommon at all, to find children who can 

speak clearly but have no knowledge on the alphabetic system or are unable to read or write. 

Such children fall within levels 4 and 5, and from table 5.7, level4 and level5 had membership of 

11.8% and 11.2% respectively at time1, and 6.5% and 9.8% at time2. 
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Level1 0.44 0.18 0.02 0.06 0.09 0.05 0.06 0.06 0.03 

Level2 0.00 0.35 0.16 0.00 0.00 0.17 0.00 0.14 0.18 
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Level3 0.00 0.00 0.53 0.00 0.00 0.00 0.05 0.00 0.41 

Level4 0.09 0.03 0.01 0.20 0.10 0.35 0.02 0.12 0.09 

Level5 0.08 0.03 0.01 0.08 0.35 0.00 0.13 0.19 0.14 

Level6 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.90 0.00 

Level7 0.02 0.02 0.00 0.00 0.00 0.11 0.34 0.02 0.48 

Level8 0.03 0.03 0.06 0.00 0.00 0.00 0.00 0.36 0.52 

Level9 0.00 0.00 0.03 0.00 0.00 0.08 0.00 0.07 0.83 

Table 5.8 Transition probabilities for the 9-level saturated model. Diagonal transition 

probabilities in bold to enable interpretation.  

 

Table 5.8 depicts the transition probability matrix between time1 and time 2. The 

diagonal elements of the matrix indicate the probability of being in a particular learning level at 

Time 2 conditional on being in that same learning level at Time 1. From table 5.8, 44% of the 

children who were considered to be in level1 maintained their level membership at Time 2 (but 

56% moved). Only 3% of those children did well to move to level9, which is considered to be 

the most skilled level. Eighty three percent of children who were originally associated with the 

most skilled level (level9) maintained their level membership at Time 2. However, 17% reversed 

to lower levels. 

Thirty five percent of the children who showed very little skill in level2 maintained their 

level membership (65% moved). Though they displayed little to no skill at Time 1,18% of them 

moved to level9 at Time 2. For level3, 53% of the members maintained their level membership 

at Time 2, whilst 47% moved. Forty one percent of the proportion that moved ended up with the 

most skilled level. This is not a surprising outcome considering how skilled the level3 children 

were; at the initial time point. It is equally not surprising that only 9% of children considered to 

be in level4 moved to level 9 at Time 2. We have already established that the level4 children 

could speak, but could not do anything else, and their lack of skill in other areas was a clear 
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indication that few would end up in a highly skilled level at Time 2. Also, 20% maintained their 

level membership but majority of the children (35%) moved to level6, which is considered to be 

a more verbal level. 

Perhaps the most interesting transition happened in level6. Whilst none (0%) of those 

who were associated with level6 maintained their level membership at Time 2, 10% moved to a 

skilled level in level7, and 90% moved to level8. One of the factors that could explain this 

movement is that although the children in level6 were more verbal, they were also characterized 

with having a high likelihood (0.41) for alphabetic knowledge. Having the skill for alphabetic 

knowledge may have contributed to the massive movement. 
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Chapter 6 

Discussion 

In this project we have discussed and extended the LTA model to OLTA by imposing  

inequality constraints on the cumulative response probabilities of the LTA model. By employing 

Croon's idea, we have demonstrated that imposing inequality restriction on the item response and 

cumulative response probabilities establish an order relation on the set of the learning levels 

along the level continuum. Most importantly, the OLTA model ensures that we are able to track 

the upward and downward movements of subjects along the level continuum at several time 

points. 

 

6.1 Simulation 

The simulation study provided interesting results. There is strong evidence that the EM 

algorithm can recover the OLTA model parameters well under several conditions. The 

simulation suggests that large sample size improve parameter recovery. We used two sample 

sizes: N = 1000, and 2000 for the simulation study. Although N = 1000 would not be considered 

a small sample size, the results showed a decrease in bias and the mean squared error, and a 

much more improved parameter recovery when the sample size was increased from 1000 to 2000 

for the same experimental condition. Collins & Wugalter (1992) found no evidence of bias for N 

= 300 for LTA parameter recovery, but in this project, we did not establish boundaries on the 

sample sizes for OLTA parameter recovery. A sample size of 300 may not be considered small 

but we do not know how that would affect the parameter recovery of the OLTA model, and we 
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are unsure of how low a sample size should be before the OLTA parameter recovery is 

negatively affected. 

The simulation results also suggest that increasing number of items dramatically improve 

parameter recovery for conditions with the same sample size. Item sizes of 10 and 20 were used 

for this study. The results have shown that increasing the item size to 20 even for N = 1000 

conditions improved parameter estimation by reducing bias and mean squared errors. Similar to 

the LTA model, adding more items have the potential to create an impossibly sparse contingency 

table that could adversely affect parameter estimation (Collins & Wugalter, 1992). But in this 

study we did not test the limits of the item sizes to ascertain the number of items that can be 

added before the OLTA model parameter recovery encounter complications. Having said that, 

the results strongly suggests that adding items with at least a medium discrimination level (i.e. 

good items) are enormously beneficial to the model. These benefits seem to supersede the risk of 

increased sparseness. This conclusion on the OLTA model is consistent with the findings of 

Collins & Wugalter (1992) on LTA parameter estimation.  

In order to establish the effectiveness of the OLTA model, and to test the robustness of 

the parameter recovery, four estimation procedures were employed for each condition in this 

study: true Growth model estimated as Growth, true Growth model estimated as Saturated, true 

Saturated model estimated as Saturated, and true Saturated model estimated as Growth. The 

results showed that even when a true Growth model is estimated as Growth, the bias and mean 

squared error increase with items of low discrimination. In contrast, correctly estimating a 

Growth model as Growth for sufficiently large samples sizes, and items with at least a medium 

discrimination show an excellent parameter recovery; resulting in a drastic decrease of bias and 

mean squared error. Interestingly, we achieved similar results when a true Growth model was 
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estimated as Saturated for sufficiently large sample with items of at least a medium index. Thus, 

with at least a medium discrimination items and large enough sample, estimating a true Growth 

model as Growth seem to be as good as estimating same model as Saturated. 

However, when a true Saturated model is estimated as Growth, the parameter recovery is 

very poor resulting in a substantial increase of bias and the mean squared error even for 

sufficiently large sample sizes with items of at least a medium index. But the parameter recovery 

is excellent for large sample sizes, and items with good discrimination, when a true Saturated 

model is appropriately estimated as Saturated. The result is evident with a dramatic decrease of 

bias and mean squared error associated with such estimation procedure. In a nutshell, it is 

inappropriate to estimate true Saturated model as Growth.  

 

6.1.1 Selection Technique 

Through the simulation studies, the performance of the AIC and BIC in selecting the 

appropriate transition model and also choosing the optimal levels were examined. With respect 

to the transition model, 3 and 5- level Growth and Saturated models were examined under 

several conditions. Displayed in tables 4.2 and 4.3, the AIC and BIC correctly identified the true 

saturated model 100% of the time in all conditions studied  for the 3 and 5 level models. The 

performance of the criterion index in selecting the true Growth model for the 3 and 5 levels were 

equally impressive. In a nutshell, the AIC and BIC showed comparable abilities in selecting the 

true transition models.   
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In addition to determining the performance of the fit indices in selecting the true 

transition model, we conducted another simulation to ascertain the effectiveness of the AIC and 

BIC in selecting the optimal levels in a model. For each of the 3 and 5 level models, an opposing 

model was conducted for the purpose of comparison. Also several levels were included in each 

study to ensure the credibility of the fit indices in selecting the optimal levels. In the case of the 3 

level Growth model, it is clear from tables 4.4 and 4.5 that the AIC did a very good job in 

identifying and selecting the correct optimal levels in high proportion in a consistent manner. 

However, the BIC underperformed; it occasionally opted for a different level and sometimes 

endorsed the correct level in a relatively low proportion. For the 3 level saturated model, the AIC 

again did well and was consistent in selecting the correct level in a high proportion. Again, the 

BIC underperformed. 

As seen in tables 4.8 and 4.9, the 5 level Growth model presented something different: 

whilst the AIC was somewhat inconsistent in identifying and selecting the correct level, the BIC 

performed poorly by displaying consistency in its preference for the 3 and  4 level Growth 

models to the 5 level Growth model. The AIC displayed same inconsistency in the case of the 5 

level saturated model, as the fit index occasionally preferred the 4 level saturated model to the 5 

level model, and in some cases weakly endorsing the correct level. The BIC meanwhile; almost 

wholly endorsed the 3 and the 4 level saturated models instead of the 5 level model. It worth 

mentioning that despite the seemingly inconsistencies and apparent disagreement and/or 

agreement of the fit indices, neither the AIC nor the BIC preferred the Growth model in the case 

where the model under consideration was saturated. However, the fit indices disagreed 

(occasionally) on the appropriate level.    
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6.2 Real Data Analysis for the OLTA model 

The ability to read in early stages of a child's life is considered as the basis for learning 

and academic work. It is therefore not surprising that Paris (2005) describes the process of 

achieving such skill, the greatest childhood achievement. Table 5.4 represents the summary of 

the data analysis regarding the reading levels of the pre-kindergarteners, and how they 

transitioned from one level to another with respect to time. The fundamental principle of the 

OLTA model is that the levels are ordered, and consistent with this principle, table 5.4 shows 

that children in the "advanced" level demonstrated the highest proficiency on all nine assessment 

items. The "advanced" level children have the highest ability, followed by those in the "skilled" 

level, and children associated with the "Not Ready" level are considered the least proficient. 

Again, table 5.4 shows an interesting dynamics between the "Developing" and 

"Transitional" levels. The fundamental difference between children in the "transitional" level and 

those at the "Developing" level is that the "transitional" level children demonstrated additional 

proficiency by naming all the upper-and lower case letters of the alphabet easily and quickly, and 

also were able to produce rhyming words. It is reasonable to suggest that the additional abilities 

displayed at the "transitional" level were critical in moving 33% of those children to the 

"advanced" level. 

Children's ability to easily and quickly naming all the upper-and lower case letters of the 

alphabet is important, and played a major role in helping move quite a number of children from 

the "transitional" level to the "advanced" level. For the purpose of this study, and to fully 

appreciate children's reading development, we shall attempt to make connections between the 

results of the OLTA model, and some research findings. For instance, research shows that 
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children's ability to learn new words improve when they have alphabetic knowledge (Ehri, 

2005). It is no secret however that the alphabetic knowledge is recognized as the basis upon 

which all other words are made. In fact, studies show that letter recognition at kindergarten is 

usually a powerful predictor of reading a year later (DeHirsch, Jansky & Langford, 1966; 

Stevenson, Parker, Wilkinson, Hegion, & Fish, 1976; Bruininks & Mayer, 1979).This is an 

indication that children at the "advanced" level, and to some extent the "skilled" level are on 

track for a successful academic work at the kindergarten and beyond. 

It has been understood that once children become proficient in the alphabetic system, 

they are able to build their vocabulary easily with sight words (Ehri, 2005). But some children 

after acquiring the alphabetic knowledge still struggle with printed words, and need a lot 

attention in order to be comfortable, and become proficient in sight word learning (Ehri & 

Saltmarsh, 1995; Reitsma, 1983). In particular, Table 5.4 shows that children in the "transitional" 

level were proficient in the alphabetic system, but those same children could not really 

demonstrate an understanding of some conventions of print. These children need time, and 

obviously a lot of practice with sight words in order for them to achieve mastery in printed 

words. Also, children reading development has been classified into four phases: Pre-alphabetic, 

Partial alphabetic, Full alphabetic, and consolidated alphabetic phases (Ehri, 1999; Ehri & 

McCormic, 1998).  

According to the authors, children at the Pre-alphabetic phase have little knowledge of 

the alphabetic system, and are unable to form letter-sound connections in order to read words. 

These children may be able to guess words from pictures, and pretend to read words they have 

heard several times, but they are basically nonreaders. Based on the analysis from table 5.4, an 

argument could be made for the children at the "Developing" level as being on the Pre-alphabetic 
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phase even as pre- kindergarteners. The reason being, these children have little to no knowledge 

on the alphabetic system. However, they use complex sentence structures, understand and 

interpret a story or other texts read to them, and also able to predict what will happen next in 

stories. 

Ehri (2005) also posited that children transition to the partial alphabetic phase after 

learning the names or sounds of the alphabets that facilitate recollection of how words are read. 

Children at partial alphabetic phase do not have complete knowledge of the alphabetic system, 

and as a result; they find difficulty in reading unfamiliar words. It is clear from the cumulative 

response probabilities in table 5.2 that the "Transitional" level children have some knowledge of 

the alphabetic system.  However, they can neither read independently nor have the ability to 

decode unfamiliar words. It is therefore reasonable to suggest that the "Transitional" level 

children are at the partial alphabetic phase with respect to reading as pre-kindergarteners.   

"Children become full alphabetic phase readers when they can learn sight words by 

forming complete connections between letters in spellings and phonemes in pronunciations" 

(Ehri, 2005). Children at this phase are clearly better readers and spellers than those at the partial 

alphabetic phase. This is due to the fact that the full alphabetic phase children have an 

understanding of the grapheme-phoneme connections (Venezky, 1970, 1999). Similar to the 

"Skilled" level children, those at the full alphabetic phase are able to devise ways to read 

unfamiliar words. It may be within reason to consider the "Skilled" level children as reaching the 

full alphabetic phase as pre-kindergarteners. As children are able to commit more sight words 

into memory, and easily recognize letter patterns that reappear in different words, they are able 

to rely on letter chunks to read "big" words. Children at this level are classified as being on the 

consolidated phase (Ehri, 2005). Again, Table 5.2 shows that the "advanced" level children 
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performed exceedingly well in all the nine assessment items. It may not be a stretch to liken the 

"advanced" level children to those at the consolidated phase. 

6.3 Brief comparison of LTA and OLTA perspectives 

In order to provide a context for the OLTA results, we also analyzed the data using the 

LTA procedure. The LTA procedure selected a 9 level saturated model as the most appropriate to 

fit the data set. The 9 levels showed several pathways to children reading development. The 

levels included children without skills to those that are highly skilled. Since the LTA models are 

considered without ordering of the levels, and the transition probabilities, children that are 

associated with (say) level 5 are not necessarily considered to possess higher skills than their 

counterparts in the "lower" levels. For instance, Table 5.6 shows that children at level3 are 

highly skilled than their counterparts in level4, level5, and level6. Also, children at level7 

possess more skills than those in level8. 

 The characteristics of each of the nine levels portray what one would consider as a 

natural developmental process. In this case the levels seem to adequately capture children 

reading development. Certainly, there are children who could neither speak clearly, nor possess 

alphabetic knowledge. Also, some children could use complex sentence structures, and speak 

clearly but have no alphabetic or reading skills. Of course, there are others who demonstrate 

alphabetic, reading, and writing skills but cannot use complex sentence structures. The bottom 

line is; the LTA procedure seems to have a room for the various combinations of scenarios that 

may be considered a pathway for children reading development.  

Despite the unordered nature of the LTA model, Table 5.6 show what we describe as a 

natural ordering of levels 4, 5, 6, and 7. Clearly, children at level5 possess more skill than those 
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at level4, children at level 6 also possess more skill than their counterparts in levels 5, and 4.  

Furthermore, level7 children have more skills than those in levels 6, 5, and 4. Since the overall 

levels of the LTA procedure are unordered, we describe the ordering from level 4 to level 7 as 

partial ordering. 

In contrast, the OLTA analyses place restrictions on the cumulative response probabilities 

to ensure ordering of the levels, and the transition probabilities. Unlike the LTA, children 

associated with level 5 under OLTA means that those children possess skills that are higher than 

their counterparts in the lower levels. The OLTA procedure is an effective data reduction tool in 

the sense that; the ordering nature of the model "cleans up" the data in such a way that clearly 

depicts the progression of children development. In this case, the progression a child's reading 

development is clearly specified by the six levels in Table 5.2. For instance, children in level1 

showed no skill so we labeled them as "Not Ready", the level2 children showed very little skill 

so we labeled them as "Inexperienced", those in level3 could speak but had no alphabetic 

knowledge; neither could they read or write. We labeled the level3 children as "Developing". 

Children in level4 could speak just like their counterparts in level3, but they had 

alphabetical knowledge in addition, so we labeled them "Transitional" and so on. One of the 

benefits of the OLTA approach is that each of the levels is unambiguously defined, and that 

could potentially help researchers to easily target the problem level for intervention. Also the 

clarity of the levels could help researchers to quickly and easily track children who reverse 

developmentally. With respect to children's reading development, any child/children 

transitioning from level 5 to level 4 under OLTA approach means that the child has reversed 

developmentally. But we cannot necessarily draw the same conclusion for the same movement 

under LTA model.  
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6.4 Strengths and Limitations of the Ordered Latent Transition Analysis 

The discussion above clearly shows important strengths of the OLTA. First, the OLTA 

technique enables researchers to test several stage-sequential models concerning human 

development. Second, the procedure can be used to assess the efficacy of an intervention 

program, and also estimate the differential effectiveness of such interventions for subjects in 

different levels. Another important feature of the OLTA model is that the ordering natures of the 

levels help reveal unique characteristics of data. The OLTA model is suitable for educational 

measurement, modeling alcohol cessation or adolescent delinquent behavior, etc.  

However, OLTA also has some limitations. First, the simulation showed that parameter 

recovery improved dramatically with increasing sample size. As Collins and Wugalter (1992), 

and Graham et al., (1991) have already established for LTA model, the OLTA model also require 

relatively large sample size. Second, the over reliance of the AIC and BIC for selecting the 

appropriate model may not be the best. As the simulation showed, although the criterion index 

performed very well in selecting the correct transition models, and also selecting the correct 3 

level models, the fit indices performed poorly for the selection of the 5 level models. A more 

reliable and consistent fit indices are badly needed to supplement the AIC and the BIC. 

Furthermore, future studies are needed to ensure that while ordering is maintained, different 

learning trajectories are allowed. Also, the LTA procedure showed some partial ordering of the 

levels. The partial ordering levels could be investigated further in future studies. 

 

 

 

 



 
 

116 
 

References 

 

Andersen, E. B. (1985). Estimating latent correlations between repeated testing. Psychometrika, 50(1), 3-

16. 

Anderson, E. (1982). Latent structure analysis: A survey. Scandinavian Journal of Statistics, 9:1-12. 

Anderson, T. W. (1954). Probability models for analyzing time changes in attitudes. Mathematical 

thinking in the Social Sciences, The Free Press, Glencoe, pp. 17-66. 

Andrade, D. F., & Tavares, H. R. (2005). Item response theory for longitudinal data: population 

parameter estimation. Journal of Multivariate Analysis, 95(1), 1-22. 

Andrich, D. (1978). A rating formulation for ordered response categories.  Psychometrika, 43(4), 561-

573. 

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., & Silverman, E. (1955). An empirical distribution 

function for sampling with incomplete information. The  annals of mathematical statistics, 26(4), 

641-647. 

Baker, R. S., Corbett, A. T., & Aleven, V. (2008). Improving contextual models of  guessing and slipping 

with a truncated training set. Human-Computer Interaction Institute, 17. 

Baker, F. B., & Kim, S. H. (Eds.). (2004). Item response theory: Parameter estimation techniques. CRC 

Press.  

Bartholomew, D. J. (1987). Latent Variable Models and Factor Analysis. New York, NY: Griffin. 

Bartholomew, D. J. (1983). Latent variable models for ordered categorical data. Journal of 

Econometrics, 22(1-2), 229-243. 

Bartholomew, D. J. (1981). Mathematical methods in social science (Vol. 1). John Wiley & Sons. 

Battista, M. T. (2011). Conceptualizations and issues related to learning progressions, learning 

trajectories, and levels of sophistication. The Mathematics Enthusiast, 8(3), 507-570. 



 
 

117 
 

Battista, M. T. (2007). The development of geometric and spatial thinking. Second handbook of research 

on mathematics teaching and learning, 2, 843-908. 

Beck, J. E., & Chang, K. M. (2007, July). Identifiability: A fundamental problem of  student modeling. 

In International Conference on User Modeling (pp. 137-146). Springer Berlin Heidelberg. 

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In Lord, F. 

and Novick, M., editors, Statistical theories of mental test scores. 

Blumen, I. M., Kogan, M & McCarthy, P.J.(1955). The Industrial Mobility of labor as a probability process. 

Ithaca: Cornell University Press. 

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: 

Application of an EM algorithm. Psychometrika, 46(4), 443-459. 

Bollen, K.A.(1989). Structural Equations with Latent Variables, Wiley & Sons, New York, NY. 

Briggs, D. C., & Alonzo, A. C. (2012). The psychometric modeling of ordered multiple-choice item 

responses for diagnostic assessment with a learning progression. In Learning progressions in 

science (pp. 293-316). Sense Publishers. 

Bruininks, A. L. & Mayer, J. H. (1979). Longitudinal study of cognitive abilities and academic 

achievement. Perceptual and Motor Skills, 48,1011-1021.  

Bulik, C. M., Sullivan, P. F., & Kendler, K. S. (2000). An empirical study of the classification of eating 

disorders. American Journal of Psychiatry, 157(6), 886-895. 

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference understanding AIC and BIC in model 

selection. Sociological methods & research, 33(2), 261-304. 

Bye, B. V., & Schechter, E. S. (1986). A latent Markov model approach to the estimation  of response 

errors in multiwave panel data. Journal of the American Statistical Association, 81(394), 375-

380. 



 
 

118 
 

Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes of odds 

ratios in epidemiological studies. Communications in Statistics—Simulation and 

Computation, 39(4), 860-864.  

Chung, H., Lanza, S. T., & Loken, E. (2008). Latent transition analysis: Inference and estimation. Statistics 

in medicine, 27(11), 1834-1854.  

Clements, D., Sarama, J., Spitler, M., Lange, A., and Wolfe, C. B.(2011). Mathematics learned by young 

children in an intervention based on learning trajectories: A large-scale cluster randomized trial. 

Journal for Research in Mathematics Education, 42, 127–166. 

Clements, D. H., & Sarama, J. (2009). Learning trajectories in early mathematics– sequences of 

acquisition and teaching. Encyclopedia of language and Literacy  Development, 1-7. 

Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D Grous, Handbook of 

research on mathematics teaching and learning, 420- 464. Reston, VA: National Council of 

Teachers of Mathematics. 

Coffman, D. L., Patrick, M. E., Palen, L. A., Rhoades, B. L., & Ventura, A. K. (2007). Why do high school 

seniors drink? Implications for a targeted approach to intervention. Prevention Science, 8(4), 

241-248. 

Collins, L. M., & Lanza, S. T. (2010). Latent class analysis with covariates. Latent class and latent 

transition analysis: With applications in the social, behavioral, and health sciences, 149-177. 

Wiley; Hoboken, NJ. 

Collins, L. M., & Wugalter, S. E. (1992). Latent class models for stage-sequential  dynamic latent 

variables. Multivariate Behavioral Research, 27(1), 131-157. 

Collins, L. M. (1991a). The measurement of dynamic latent variables constructs in longitudinal aging 

research: Quantifying adult development. Experimental Aging Research, 17, 13-20. 



 
 

119 
 

Collins, L. M. (1991b). Measurement in longitudinal research. In L. M. Collins and J.L. Horn(Eds.), Best 

methods for analysis of change: Recent advances, unanswered questions, future directions. 

Washington, DC, US: American Psychological Association. 

Collins, L. M., & Cliff, N. (1990). Using the longitudinal Guttman simplex as a basis for measuring 

growth. Psychological Bulletin, 108(1), 128. 

Collins, L. M., Cliff, N., & Dent, C. W. (1988). The longitudinal Guttman simplex: A new methodology for 

measurement of dynamic constructs in longitudinal panel studies. Applied Psychological 

Measurement, 12(3), 217-230. 

Confrey, J., & Maloney, A. P. (2010). A next generation of mathematics assessments based on learning 

trajectories. East Lansing, MI. 

Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of  procedural 

knowledge. User modeling and user-adapted interaction, 4(4), 253-278. 

Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning Progressions in Science: An Evidence-Based 

Approach to Reform. CPRE Research Report# RR-63. Consortium for Policy Research in 

Education. 

Croon, M. A. (1991). Investigating Mokken scalability of dichotomous items by means of  ordinal latent 

class analysis. British Journal of Mathematical and Statistical Psychology, 44(2), 315-331. 

Croon, M. (1990). Latent class analysis with ordered latent classes. British Journal of Mathematical and 

Statistical Psychology, 43(2), 171-192. 

Daro, P., Mosher, F.A., & Corcoran, T. (2011). Learning trajectories in mathematics: A foundation for 

standards, curriculum, assessment, and instruction (Consortium for Policy Research in Education 

Report #RR-68). Philadelphia, PA: Consortium for Policy Research in Education. 

DeHirsch, K., Jansky, J. J. & Langford, W. S. (1966). Predicting reading failure. New York: Harper & Row. 



 
 

120 
 

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the 

EM algorithm. Journal of the royal statistical society. Series B (methodological), 1-38. 

Dillon, W. R., & Kumar, A. (1994). Latent structure and other mixture models in  marketing: an 

integrative survey and overview. Advanced methods of marketing research, 295-351. 

Draney, K. L. (1996). The polytomous Saltus model: A mixture model approach to the diagnosis of 

developmental differences (Doctoral dissertation, University of  California, Berkeley). 

Draney, K., & Wilson, M. (2007). Application of the Saltus model to stagelike data: Some applications 

and current developments. In Multivariate and mixture  distribution Rasch models (pp. 119-

130). Springer New York. 

Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and 

analysis. Studies in Science Education, 47(2), 123-182. 

Ehri, L. C. (2005). Learning to read words: Theory, findings, and issues. Scientific  Studies of reading, 9(2), 

167-188. 

Ehri, L. C. (1999). Phases of development in learning to read words. In J. Oakhill & R. Beard (Eds.), 

Reading development and the teaching of reading: A psychological perspective (pp. 79–108). 

Oxford, UK: Blackwell Publishers. 

Ehri, L. C., & McCormick, S. (1998). Phases of word learning: Implications for instruction with delayed 

and disabled readers. Reading & Writing Quarterly: Overcoming Learning Difficulties, 14(2), 135-

163.  

Ehri, L. C., & Saltmarsh, J. (1995). Beginning readers outperform older disabled readers  in learning to 

read words by sight. Reading and Writing, 7(3), 295-326.  

El Barmi, H.,& Johnson, M. (2006). A unified approach to testing for and against a set of linear inequality 

constraints in the product multinomial setting. Journal of Multivariate Analysis, 97:1894-1912. 



 
 

121 
 

Embretson, S. E., & Steven, P. Reise.(2000). Item response theory for psychologists. Lawrence Erlbaum 

Associates, Publishers. 

Embretson, S. E. (1991). A multidimensional latent trait model for measuring learning and 

change. Psychometrika, 56(3), 495-515. 

Fischer, G. H. (2001). Gain scores revisited under an IRT perspective. In Essays on item response 

theory (pp. 43-68). Springer New York. 

Fischer, G. H. (1989). An IRT-based model for dichotomous longitudinal data. Psychometrika, 54, 599–

624.  

Fischer, G. H. (1983a). Logistic latent trait models with linear constraints.  Psychometrika, 48(1), 3-26. 

Fischer, G. H. (1977a). Some probabilistic models for the description of attitudinal and behavioral 

changes under the influence of mass communication. Mathematical models for social 

psychology, 102-151. 

Fischer, G. H. (1977b). Linear logistic trait models: Theory and application. Structural models of thinking 

and learning, 203-225. 

Fischer, G. H. (1976). Some probabilistic models for measuring change. Advances in psychological and 

educational measurement, 97-110. 

Fischer, G. H. (1973). The linear logistic test model as an instrument in educational 

research. Actapsychologica, 37(6), 359-374. 

Garrett, E. S., & Zeger, S. L. (2000). Latent class model diagnosis. Biometrics, 56(4), 1055-1067.  

Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and  unidentifiable 

models. Biometrika, 61(2), 215-231. 

Goodman, L. A. (1962). Statistical methods for analyzing processes of change. American Journal of 

Sociology, 68(1), 57-78. 



 
 

122 
 

Gotwals, A. W., &Songer, N. B. (2013). Validity Evidence for Learning Progression‐Based Assessment 

Items That Fuse Core Disciplinary Ideas and Science Practices. Journal of Research in Science 

Teaching, 50(5), 597-626. 

Graham, J. W., Collins, L. M., Wugalter, S. E., Chung, N. K., & Hansen, W. B. (1991). Modeling transitions 

in latent stage-sequential processes: a substance use prevention example. Journal of consulting 

and clinical psychology, 59(1), 48. 

Guttman, L. (1950a). The basis for scalogram analysis. InS. A. Stauffer et al.(eds.), Measurement and 

Prediction. Princeton, NJ: Princeton University Press.  

Guttman, L. (1950b). Relation of scalogram analysis to other techniques. Measurement and Prediction. 

Studies in Social Psychology in World War II, 4, 172-212. 

Guttman, L. (1947). The Cornell technique for scale and intensity analysis. Educational and Psychological 

Measurement, 7(2), 247-279. 

Harris, J., Laan, S., & Mossenson, L. (1988). Applying partial credit analysis to the construction of 

narrative writing tests. Applied Measurement in Education, 1(4), 335-346. 

Heinen, T. (1996). Latent class and discrete latent trait models: Similarities and differences. Thousands 

Oaks, CA: Sage. 

Heinen, T. (1993). Discrete Latent Variable Models. Tilburg University Press. 

Heritage, M. (2008). Learning progressions: Supporting instruction and formative assessment. Paper 

prepared for the Formative Assessment for Teachers and Students, State Collaborative on 

Assessment and Student Standards of the Council of Chief State School Officers. 

Hoijtink, H. (1998). Constrained latent class analysis using the Gibbs sampler and posterior predictive p-

values: Applications to educational testing. Statistica Sinica, 691-711. 

Hoijtink, H. and Molenaar, I. (1997). A multidimensional item response model: Constrained latent class 

analysis using gibbs sampler and posterior predictive check. Psychometrika, 62:171-189. 



 
 

123 
 

Holland, P. and Rosenbaum, P. (1986). Conditional association and unidimensionality in monotone latent 

variable models. The Annals of Statistics, 14:1523-1543.  

Holland, P. W. (1981). When are item response models consistent with observed 

data?  Psychometrika, 46(1), 79-92. 

House, P. A., & Coxford, A. F. (1995). Connecting Mathematics across the Curriculum. 1995 Yearbook. 

National Council of Teachers of Mathematics, 1906 Association  Drive, Reston, VA 22091-1593. 

Humphreys, K., & Janson, H. (2000). Latent transition analysis with covariates, nonresponse, summary 

statistics and diagnostics: Modelling children's drawing  development. Multivariate Behavioral 

Research, 35(1), 89-118. 

Jain, D., Bass, F. M., & Chen, Y. M. (1990). Estimation of latent class models with  heterogeneous choice 

probabilities: An application to market structuring. Journal of Marketing Research, 94-101.  

Johnson, M. (2007). Modeling dichotomous item responses with free-knot splines. Computational 

Statistics and Data Analysis, 61:4178-4192. 

Kaplan, D. (2008). An overview of Markov chain methods for the study of stage-sequential 

developmental processes. Developmental psychology, 44(2), 457. 

Koedinger, K. R. (2002). Toward Evidence for Instructional Design Principles: Examples from Cognitive 

Tutor Math 6. Proceedings of PME-NA XXXIII (the North  American Chapter of the International 

Group for the Psychology of Mathematics Education). 

Kuha, J. (2004). AIC and BIC: Comparisons of Assumptions and Performance: Sociological methods & 

Research, 33(2), 188- 229.  

Langeheine, R. (1994). Latent variables Markov models. In Latent Variables Analysis: Applications for 

Developmental Research, ed. A von Eye, CC Clogg, pp. 373–95.  Thousand Oaks, CA: Sage. 

Langeheine, R., & Van de Pol, F. (2002). Latent markov chains. Applied latent class analysis, 304-341. 



 
 

124 
 

Langeheine, R., & Van de Pol, F. (1990). A unifying framework for Markov modeling in discrete space and 

discrete time. Sociological Methods & Research, 18(4), 416-441. 

Langeheine, R. (1988). New developments in latent class theory. In Latent trait and latent class 

models (pp.77-108). Springer US. 

Lazarsfeld, P. and Henry, N. (1968). Latent Structure Analysis. Boston, MA: Houghton Mifflin. 

Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: 

Erlbaum. 

Mair, P., Hornik, K., & de Leeuw, J. (2009). Isotone optimization in R: pool-adjacent-violators algorithm 

(PAVA) and active set methods. Journal of statistical software, 32(5), 1-24.  

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174. 

Masters, G. N., & Evans, J. (1986). Banking non-dichotomously scored items. Applied psychological 

measurement, 10(4), 355-367. 

Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55(1), 107-122.  

Meredith, W. (1965). Some results based on a general stochastic model for mental 

tests. Psychometrika, 30(4), 419-440. 

Mojica, G. F. (2010). Preparing Pre-Service Elementary Teachers to Teach Mathematics with Learning 

Trajectories. ProQuest LLC. Ann Arbor, MI 48106. 

Mokken, R.J. (1971). A Theory and Procedure of Scale Analysis with Applications in Political Research. 

New York, Berlin: Walter de Gruyter, Mouton. 

Mokken, R.J. and Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item 

responses. Applied Psychological Measurement 6, 417–430. 

Mosher, F. (2011). The role of learning progressions in standards-based education reform. Consortium 

for Policy Research in Education: Policy Briefs (September), 1-16. 



 
 

125 
 

Moustaki, I. (1996). A latent trait and a latent class model for mixed observed variables. British journal of 

mathematical and statistical psychology, 49(2), 313-334. 

Muraki, E. (1992). A generalized partial credit model: Application of an em algrithm.  Applied 

Psychological Measurement, 16:159-176. 

National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. 

Reston, VA: Author. 

Pardos, Z. A., & Heffernan, N. T. (2010). Modeling individualization in a bayesian  networks 

implementation of knowledge tracing. In International Conference on User Modeling, 

Adaptation, and Personalization (pp. 255-266). Springer Berlin Heidelberg. 

Paris, S. G. (2005). Reinterpreting the development of reading skills. Reading research quarterly, 40(2), 

184-202.  

Pedhazur, E. J., & Schmelkin, L. P. (1991). Measurement, design, and analysis: An integrated analysis. 

Journal of Econometrics, 22:229-243. 

Pellegrino, J. W. (2009). The design of an assessment system for the Race to the Top: A learning sciences 

perspective on issues of growth and measurement. Center for K–12 Assessment & Performance 

Management, Educational Testing Service. http://www. 

k12center.org/rsc/pdf/PellegrinoPresenter-Session1. pdf. 

Plummer, J. D., & Slagle, C. (2009). A learning progression approach to teacher professional 

development in astronomy. In Learning Progressions in Science  (LeaPS) Conference, Iowa City, 

IA. 

Pollitt, A., & Hutchinson, C. (1987). Calibrating graded assessments: Rasch partial credit analysis of 

performance in writing. Language Testing, 4(1), 72-92.  

Qu, Y., Tan, M., & Kutner, M. H. (1996). Random effects models in latent class analysis for evaluating 

accuracy of diagnostic tests. Biometrics, 797-810 



 
 

126 
 

Rabe-Hesketh, S., & Skrondal, A. (2008). Classical latent variable models for medical research. Statistical 

methods in medical research, 17(1), 5-32.   

Ramsay, J. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. 

Psychometrika, 56:611-630. 

Ramsay, J.,& Abrahamowicz, M. (1989). Binominal regression with monotone splines: A psychometric 

application. Journal of the American Statistical Association, 84:906-915. 

Rasch, G. (1961). On general laws and the meaning of measurement in psychology. In Proceedings of the 

fourth Berkeley symposium on mathematical statistics and probability (Vol. 4, pp. 321-333). 

Berkeley: University of California Press. 

Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests. Copenhagen: Danish 

Institute for Educational Research. 

Read, T., & Cressie, N. (1988). Goodness-Of-Fit Statistics for Discrete Multivariate Analysis. Springer-

Verlag, New York. 

Reboussin, B. A., Reboussin, D. M., Liang, K. Y., & Anthony, J. C. (1998). Latent  transition modeling of 

progression of health-risk behavior. Multivariate Behavioral Research, 33(4), 457-478. 

Reitsma, P. (1983). Printed word learning in beginning readers. Journal of experimental child 

psychology, 36(2), 321-339.  

Robertson, T., Wright, F. T., & Dykstra, R. L.(1988). Order Restricted Statistical Inference. Wiley, New 

York. 

Rogosa, D., Brandt, D., & Zimowski, M. (1982). A growth curve approach to the measurement of 

change. Psychological bulletin, 92(3), 726.  

Rosenbaum, P. R. (1987a). Probability inequalities for latent scales. British Journal of Mathematical and 

Statistical Psychology, 40(2), 157-168. 

Rosenbaum, P. R. (1987b). Comparing item characteristic curves. Psychometrika, 52(2), 217-233. 



 
 

127 
 

Rosenbaum, P. R. (1984). Testing the conditional independence and monotonicity assumptions of item 

response theory. Psychometrika, 49(3), 425-435. 

Ruscio, J., & Ruscio, A. M. (2008). Categories and dimensions advancing psychological science through 

the study of latent structure. Current Directions in Psychological  Science, 17(3), 203-207.  

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded 

scores. Psychometrika monograph supplement. 

Shouse, A. W., Schweingruber, H. A., & Duschl, R. A. (Eds.). (2007). Taking science to school: Learning 

and teaching science in grades K-8. National Academies Press. 

Sijtsma, K. & Hemker, B. (2000). A taxonomy of irt models for ordening persons and items using simple 

sum scores. Journal of Educational and Behavioral Statistics, 49:391- 415. 

Sijtsma, K. and Junker, B. (1996). A survey of theory and methods of invariant item ordering. British 

Journal of Mathematical and Statistical Psychology, 49:79-105. 

Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling  change and event 

occurrence. Oxford university press. 

Stevenson, H. W., Parker, T., Wilkinson, A., Hegion, A.  &Fish, E. (1976).Longitudinal study of individual 

differences in cognitive development and scholastic achievement. Journal of Experimental 

Psychology, 68, 377-400. 

Swait, J., & Adamowicz, W. (2001). The influence of task complexity on consumer choice: a latent class 

model of decision strategy switching. Journal of Consumer Research, 28(1), 135-148. 

Sztajn, P., Confrey, J., Wilson, P. H., &Edgington, C. (2012). Learning Trajectory Based Instruction Toward 

a Theory of Teaching. Educational Researcher, 41(5), 147-156. 

Uebersax, J. S., & Grove, W. M. (1990). Latent class analysis of diagnostic agreement. Statistics in 

medicine, 9(5), 559-572.  



 
 

128 
 

Van Der Linden, W. J., & Hambleton, R. K. (1997). Item response theory: Brief history, common models, 

and extensions. In Handbook of modern item response  theory (pp. 1-28). Springer New York. 

Van de Pol, F., & Langeheine, R. (1990). Mixed Markov latent class models. Sociological methodology, 

213-247. 

Van de Pol, F., & Langeheine, R. (1989). Mixed Markov models, mover-stayer models and the EM 

algorithm. In Multiway data analysis (pp. 485-495). North-Holland Publishing Co. 

Van de Pol, F., & De Leeuw, J. A. N. (1986). A latent Markov model to correct for  measurement 

error. Sociological Methods & Research, 15(1-2), 118-141. 

Van Onna, M. J. H. (2002). Bayesian estimation and model selection in ordered latent class models for 

polytomous items. Psychometrika, 67(4), 519-538.  

Velicer, W. F., Martin, R. A., & Collins, L. M. (1996). Latent transition analysis for  longitudinal 

data. Addiction, 91(12s1), 197-210.  

Venezky, R. L. (1999). The American way of spelling: The structure and origins of  American English 

orthography. Guilford Press.  

Venezky, R. L. (1970). The structure of English orthography (Vol. 82). Walter de Gruyter.  

Vermunt, J. K., & Magidson, J. (2002). Latent class cluster analysis. Applied latent class analysis, 11, 89-

106. 

Vermunt, J. K. (2001). The use of restricted latent class models for defining and testing nonparametric 

and parametric item response theory models. Applied Psychological Measurement, 25(3), 283-

294.  

Vermunt, J. K. (1997). LEM: A general program for the analysis of categorical data. Department of 

Methodology and Statistics, Tilburg University. 

Von Davier, M., Xu, X., & Carstensen, C. H. (2011). Measuring growth in a longitudinal large-scale 

assessment with a general latent variable model. Psychometrika, 76(2),  318-336.  



 
 

129 
 

Wiggins, L. M. (1973). Panel analysis: Latent probability models for attitude and  behavior processes. 

Amsterdam: Elsevier.  

Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect  correlates and 

predictors of individual change over time. Psychological  bulletin, 116(2), 363.  

Willett, J. B. (1988). Chapter 9: Questions and answers in the measurement of change. Review of 

research in education, 15(1), 345-422. 

Wilson, M., & Draney, K. (1997). Partial credit in a developmental context: The case for adopting a 

mixture model approach. Objective measurement: Theory into practice, 4, 333-350.  

Wilson, M. (1989). Saltus: A psychometric model of discontinuity in cognitive 

development. Psychological Bulletin, 105(2), 276. 

Winsberg, S., Thissen, D., & Wainer, H. (1984). Fitting item characteristic curves with spline 

functions. ETS Research Report Series, 1984(2). 

Woods, C. M., & Thissen, D. (2006). Item response theory with estimation of the latent population 

distribution using spline-based densities. Psychometrika, 71:281-301. 

Wright, B. D., & Masters, G. N. (1982). Rating Scale Analysis. Rasch Measurement. MESA Press, 5835 S. 

Kimbark Avenue, Chicago, IL 60637.  

 

  



 
 

130 
 

Appendix A 

 

Estimation of the Ordered Latent Transition Analysis Model 

Except for some restrictions, parameters of the OLTA model is estimated the same manner as the 

LTA model. Parameters in the OLTA model include level membership probability at time 1, 

transition probabilities from time 1 to time 2, time 2 to time 3, time 3 to time 4, and so on, and 

item response probabilities conditional on levels. As shown by Chung, Lanza & Loken (2008), if 

we let S = (𝑆1, … , 𝑆𝑇) be the level membership from initial time t = 1 to time T, where 𝑆𝑡 = 1, . . 

. , S. Correspondingly, let 𝒀𝑡 = (𝑌1𝑡, … , 𝑌𝐽𝑡) be a vector of J items measuring the level variable 

𝑆𝑡, where each variable 𝑌𝑗𝑡 takes values 1, . . . , 𝑟𝑚 for t = 1, . . , T. The joint probability that the 

ith individual belongs to I = (𝑠1, . . . , 𝑠𝑇) and provide item responses 𝑦𝑖𝑠, … , 𝑦𝑖𝑇 would be  

𝑃[𝒀𝟏 = 𝒚𝒊𝟏, … , 𝒀𝑻 =  𝒚𝒊𝑻, 𝑺 = 𝒔] = [𝛿𝑠1
∏ 𝜏𝑠𝑡|𝑠𝑡−1

(𝑡)𝑇
𝑡=2 ]  × [∏ ∏ ∏ 𝜌

𝑗𝑘𝑡|𝑠𝑡

𝐼(𝑦𝑖𝑗𝑡=𝑘)𝑟𝑗

𝑘=1
𝐽
𝑗=1

𝑇
𝑡=1 ](1) 

where 𝛿𝑠1
 = 𝑃[𝑆1 = 𝑠1],  𝜏𝑠𝑡|𝑠𝑡−1

(𝑡)
= 𝑃[𝑆𝑡 = 𝑠𝑡 | 𝑆𝑡−1 = 𝑠𝑡−1], within each level of 𝑠𝑡 for t = 1, . . . 

, T, we assumed conditionally independence for 𝑌1𝑡 , … , 𝑌𝑗𝑡. This assumption, referred to as local 

independence, enable us to make inference about the level variable (Lazarsfeld & 

Henry,1968).We also assume that the sequence 𝑆𝑡 forms a first-order Markov chain for t = 2, . . . 

, T (Chung, Lanza & Loken, 2008). 

The marginal prevalence of each level at time t (≥ 2) can be calculated as  

   𝛿𝑠𝑡

(𝑡)
= 𝑃[𝑆𝑡 = 𝑠𝑡] =  ∑ … ∑ 𝛿𝑠1

𝑆
𝑠𝑡−1=1

𝑆
𝑠1=1

∏ 𝜏𝑠𝑚|𝑠𝑚−1

(𝑚)𝑡
𝑚=2  

From (1), the contribution of the ith individual to the likelihood function of 𝑌1, . . . , 𝑌𝑇 is given 

by 

𝑃[𝒀𝟏 = 𝒚𝒊𝟏 , … , 𝒀𝑻 = 𝒚𝒊𝑻] =  ∑ … ∑ 𝑃[𝒀𝟏 = 𝒚𝒊𝟏, … , 𝒀𝑻 = 𝒚𝒊𝑻, 𝑺 = 𝒔]𝑆
𝑠𝑇=1

𝑆
𝑠1=1 .          (2) 

For the purpose of simplicity, if we consider a sample of n individuals who responded to J binary 

items measured at two time points, we represent the likelihood function of the constrained LTA 

model as  

𝑃[𝒀𝟏 = 𝒀𝒊𝟏, 𝒀𝟐 = 𝒚𝒊𝟐] =  ∑ ∑ [𝛿𝑠1
𝜏𝑠2|𝑠1

∏ ∏ ∏ 𝜌
𝑗𝑘|𝑠𝑡

𝐼(𝑦𝑖𝑗𝑡=𝑘)2
𝑘=1

𝐽
𝐽=1

2
𝑡=1 ]𝑆

𝑠2=2
𝑆
𝑠1=1 ,               (3) 

 

where 𝜏𝑠2|𝑠1
= 𝑃[𝑆2 =  𝑠2 | 𝑆1 = 𝑠1]. In (3), the free parameters are 𝜃 = (𝛿, 𝜏1, … , 𝜏𝑆, 𝜌1, … , 𝜌𝐿 ), 

where 𝛿 = (𝛿1, … , 𝛿𝑆−1), 𝜏𝑠= (𝜏1|𝑠  , . . . , 𝜏𝑆−1| 𝑠) and 𝜌𝑠 = (𝜌11|𝑠 , . . . , 𝜌𝐽1|𝑠) for s = 1, . . . , S. 

Maximum Likelihood estimates for OLTA can be estimated using an EM algorithm.  

For the E-Step, we compute the conditional probability that each individual is a member of level 

𝑠1 at t = 1 and level 𝑠2 at t = 2 given their responses 𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2) and current estimates 𝜃 for 

the parameters, 
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𝜂̂𝑖(𝑠1 , 𝑠2) = 𝑃[𝑆1 = 𝑠2, 𝑆2 = 𝑠2 |𝒚𝒊𝟏 , 𝒚𝒊𝟐] =  
𝛿𝑠1𝜏𝑠2|𝑠1

∏ ∏ ∏ 𝜌
𝑗𝑘|𝑠𝑡

𝐼(𝑦𝑖𝑗𝑡=𝑘)

𝑘𝑗𝑡

∑ ∑ 𝛿𝑠1𝜏𝑠2|𝑠1
∏ ∏ ∏ 𝜌

𝑗𝑘|𝑠𝑡

𝐼(𝑦𝑖𝑗𝑡=𝑘)

𝑘𝑗𝑡𝑠2𝑠1

.             (4) 

In the M-step, we update the parameter estimates by 

𝛿𝑠1
=

𝑛̂𝑠1

(1)

𝑛
 , 𝜏̂𝑠2|𝑠1

=
𝑛̂(𝑠1,𝑠2)

𝑛̂𝑠1

(1) , 𝜌̂𝑗𝑘|𝑠 = 
𝑛̂𝑗𝑘|𝑠

(1)
+ 𝑛̂𝑗𝑘|𝑠

(2)

𝑛̂𝑠
(1)

+ 𝑛̂𝑠
(2) ,                                                                 (5) 

where 

𝑛̂(𝑠1,𝑠2) = ∑ 𝜂̂𝑖(𝑠1,𝑠2),   
𝑖

;  𝑛̂𝑠1

(1)
= ∑ 𝑛̂(𝑠1,𝑠2)

𝑠2

, 𝑛̂𝑠2

(2)
=  ∑ 𝑛̂(𝑠1,𝑠2)

𝑠1

, 

 

𝑛̂𝑗𝑘|𝑠
(1)

= ∑ ∑ 𝐼(𝑦𝑖𝑗1𝑖𝑠2 = 𝑘)𝜂̂𝑖(𝑠1, 𝑠2), and 𝑛̂𝑗𝑘|𝑠
(2)

= ∑ ∑ 𝐼(𝑦𝑖𝑗2𝑖𝑠1 = 𝑘)𝜂̂𝑖(𝑠1,𝑠2).  However, the  𝜌̂(𝑗𝑘|𝑠) 

are the unconstrained response probabilities. To enforce the ordering, the constrained estimates 

are obtained by inputing the unconstrained probabilities, 𝜌̂ into the pooled adjacent violators 

algorithm (PAVA; Ayer et al.,1955; Robertson, Wright & Dykstra,1988; de Leeuw,Hornik & 

Mair,2009), which produces the constrained probabilities 𝜌̃. Iteration occurs between the E-step 

and the M-step to produce sequence of parameter estimates that converges either to a local or 

global maximum of the likelihood function (Chung, Lanza & Loken, 2008).  
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Appendix B 

 

 

  

  

Figure B.1: RMSE for transition probabilities of a 3-level Growth model 
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Figure B.2: RMSE for transition probabilities of a 3-level Saturated model 
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Figure B.3: Biases for learning level prevalences of a 3-level Growth model 
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Figure B.4: MSE for learning level prevalences of a 3-level Growth model 
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Figure B.5: RMSE for learning level prevalences of a 3-level Growth model 
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Figure B.6: Biases for learning level prevalences of a 3-level Saturated model 
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Figure B.7: MSE for learning level prevalences of a 3-level Saturated model 
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Figure B.8: RMSE for learning level prevalences of a 3-level Saturated model 
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Figure B.9: Item response probabilities for 6 level saturated  OLTA model 
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Figure B.10: Item response probabilities for 9 level saturated LTA model 

 

 

 


