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Executive Summary 3

Veracity and reproducibility are vital qualities for any data journalism
project. As computational investigations become more complex and time
consuming, the effort required to maintain correctness of code and con-
clusions increases dramatically. This report presents Muck, a new tool for
organizing and reliably reproducing data computations. Muck is a com-
mand line program that plays the role of the build system in traditional
software development, except that instead of being used to compile code
into executable applications, it runs data processing scripts to produce
output documents (e.g., data visualizations or tables of statistical results).
In essence, it automates the task of executing a series of computational
steps to produce an updated product. The system supports a variety of lan-
guages, formats, and tools, and draws upon well-established Unix software
conventions.

A great deal of data journalism work can be characterized as a process
of deriving data from original sources. Muck models such work as a graph
of computational steps and uses this model to update results efficiently
whenever the inputs or code change. This algorithmic approach relieves
programmers from having to constantly worry about the dependency re-
lationships between various parts of a project. At the same time, Muck
encourages programmers to organize their code into modular scripts, which
can make the code more readable for a collaborating group. The system
relies on a naming convention to connect scripts to their outputs, and au-
tomatically infers the dependency graph from these implied relationships.
Thus, unlike more traditional build systems, Muck requires no configuration
files, which makes altering the structure of a project less onerous.

Muck’s development was motivated by conversations with working data
journalists and students. This report describes the rationale for building
a new tool, its compelling features, and preliminary experience testing
it with several demonstration projects. Muck has proven successful for
a variety of use cases, but work remains to be done on documentation,
compatibility, and testing. The long-term goal of the project is to provide a
simple, language-agnostic tool that allows journalists to better develop and
maintain ambitious data projects.
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4 Muck: A Build Tool for Journalists

Key findings
• Building completely reproducible data journalism projects from scratch

is difficult, primarily because of messy input data. Practitioners often
have to take many steps to clean data, and may use a variety of compu-
tational tools in a single project.

• Muck effectively solves this problem by formalizing the step-by-step ap-
proach in a way that aids, rather than hinders, the programmer. The
system is language-agnostic and encourages the programmer to break
down their complex data processing problems into well-named con-
stituent parts, which can then be solved piece by piece. The resulting
code structure clearly describes the relationships between parts, which
improves the clarity of the solution.

• Not all data cleaning tasks can be clearly expressed as code. In partic-
ular, there is a class of “one-off” corrections like missing commas and
correcting obvious outliers for which programmatic solutions appear very
cryptic upon review. Muck provides a mechanism for capturing and re-
producing manual edits to data files as “patches,” which is crucial for
cases where automated approaches are ineffective. Patching techniques
are particularly compelling for journalism because so many original data
sources are very messy. Furthermore, the approach may offer a means
by which non-programmers can efficiently contribute to a substantial
data cleaning job, while maintaining the automated reproducibility of
the overall project.

• A new system for professionals needs to be compatible with the wide
range of existing tools that practitioners know and trust. In practice, no
program can be all things to all people. Unlike data tools that present
non-programmers with graphical interfaces, Muck is a command line tool
developed specifically for programmers who are already familiar with one
or more languages, as well as Unix operating system fundamentals. This
makes Muck unsuitable for complete beginners, but also means that it is
much more easily integrated into professional environments.

Columbia Journalism School
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Introduction 7

Journalism increasingly relies on programming tools for the acquisition,
analysis, and presentation of data. Most of this technology originates from
other industries, but perhaps the specialization of data journalism as a field
warrants specialized software. What kinds of new tools could help data
journalists write their code more effectively?

Journalists work on tight deadlines, where veracity is of the utmost
importance. They must repeatedly verify their conclusions from messy
data as they work toward publication. Editors often do not possess the
technical expertise to understand internal complexities, but nevertheless
need to review the work in progress. Requirements and input data can
change substantially during the course of a project. From the software
engineer’s perspective, these challenges are familiar but exaggerated by
journalism’s short timeframes, the relative lack of technical expertise across
the newsroom, and the wide variety of subject matter.

The precise nature of programming makes it very error-prone. Because
mistakes abound, the ability to reproduce a computation swiftly and ac-
curately is crucial. One way the software industry mitigates this type of
challenge is to use a “build system”: a program that automatically rebuilds
the complete product from its various sources whenever changes are made,
so that the latest version is always available. Build systems benefit the
development process by:

• ensuring that all participants can reproduce the product from original
sources reliably and quickly

• automating potentially tedious build steps
• allowing programmers to take a more modular, disciplined approach to

the work, where they might otherwise be tempted to take shortcuts for
the sake of expediency

Muck is a build tool that helps data journalists make their data projects
reproducible. Using it can improve the correctness and clarity of program
logic, as well as the overall speed of project development. Data cleaning,
manipulation, and formatting tasks are treated as computational steps,
each of which produces one or more files as output. Muck’s main role is to
run these steps in the correct order, on demand. While Muck is not a tool
for data cleaning or visualization specifically, it can be used to facilitate
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8 Muck: A Build Tool for Journalists

such jobs. This kind of workflow only makes sense for projects that can be
broken down into multiple steps, but the approach is nevertheless useful for
small jobs.

A typical data journalism project consists of inputs (e.g., datasets and
collections of files, either stored locally or downloaded from the network);
outputs (e.g., graphics, html, or text files); and transformations from inputs
to outputs (e.g., programs, scripts, and shell commands), possibly involving
intermediate outputs. Unlike a web application that is constantly serv-
ing user requests, a data project tends to have relatively fixed inputs and
outputs. Unlike traditional build systems, Muck is designed specifically to
accommodate the structure of data-oriented projects.

Projects built with Muck require no special configuration files; the rela-
tionships between files are inferred automatically from file names and the
references within files. To build a specified product Muck works backwards,
finding the necessary dependencies and running each script individually.
This approach facilitates a tight, iterative process that avoids recomput-
ing steps for which the inputs have not changed, while guaranteeing that
steps whose inputs have changed will be recomputed. Muck also reduces
programming errors by encouraging the programmer to break code down
into more modular scripts. In essence, the tool is a solution for develop-
ing and consistently reproducing or “compiling” documents. With a single
command, anyone possessing a project’s code can reconstruct the final
products, whether they are single files or whole collections of web pages
containing embedded charts, individual graphics, and calculated statistics.

This report describes the motivations for building Muck, the basic fea-
tures of the tool, and preliminary experiences building demonstration
projects. Muck is currently useful for general-purpose data work, so long
as datasets and intermediate results fit on the local disk. However, there
is still much work to be done, particularly on documentation and improv-
ing ease of use. The core program is quite small and is designed to remain
simple as it grows to support various programming languages and data for-
mats. The system should also be useful for a wide variety of work beyond
data journalism, including static website generation, technical documen-
tation and blogging, data science, computational humanities projects, and

Columbia Journalism School



Introduction 9

more—anywhere that the inputs and outputs can be framed as discrete sets
of items.
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Background and Motivation 13

Muck was born from a research question posed by Mark Hansen, a pro-
fessor at the Columbia University Graduate School of Journalism: What
would a language for data journalism look like? To explore this question,
we hosted a conversation with working data journalists in the fall of 2015.1

The discussion revealed several priorities for us to focus on:

• storydriven process
• strong support for iterative (and often messy) data transformation
• reproducibility

Additionally, there was strong demand for a system that would be com-
prehensible not just by professional programmers but by less technical
journalists as well.

Input from Practitioners
Our guests agreed that their best data stories started with a question, and
often from reporters who don’t work on the data team. Several prominent
examples2 3 encouraged us to focus on helping journalists construct data
analyses to answer their questions, rather than on tools for open-ended
data exploration. For these kinds of investigative stories, we have heard
repeatedly that data cleaning and manipulation are usually the limiting
factor.4 5

Further complicating this process, data journalists often use different
tools to process and analyze data than they do to produce the published
story or interactive application. This makes the analysis less accessible to
nontechnical collaborators, because there are multiple systems involved,
each requiring expert knowledge. Complexity can also make it harder for
the data journalist to stay focused on the larger story while analyzing data.
One participant advocated for using JavaScript throughout the entire anal-
ysis and publication process, but in general data journalists use a variety of
languages and tools; Python, R, SQL, JavaScript, Shell, and Excel are all in
wide use.

This technology landscape is hardly unique to data journalism. Each
of the languages just mentioned has been inherited from the much larger
field of data science, and of those, Python, SQL, JavaScript, and Bash are

Tow Center for Digital Journalism



14 Muck: A Build Tool for Journalists

considered general-purpose languages. As statistical analysis is becoming
more and more integrated into all kinds of industries, a preference for more
general programming languages is emerging.i 6

The Benefits of Well-Structured Code
Several participants in our discussions noted that programming in a deadline-
driven environment can force data journalists into “writing spaghetti code
until it works.” But skipping the refactoring efforts necessary to untan-
gle poorly structured code often leads to practical problems later on when
checking and verifying a story. Participants mentioned strategies for verify-
ing their results: formal sanity checks on their projects to look for red flags
(but rarely comprehensive code reviews due to time constraints); journals
documenting how teams arrived at a given result; and reproducibility exer-
cises from journals, with result “checkpoints” to help with the verification
steps.

From this discussion, two major shortcomings to these approaches
emerged. The first is that editors outside of the data team rarely check
conclusions, because the rest of the newsroom usually lacks the required
analytical knowledge or the ability to read code.ii The disconnect between
data journalists and traditional journalists makes verification expensive
and time-consuming. For large, high-impact stories, WNYC performs full
code reviews, and ProPublica brings in outside experts to validate conclu-
sions. In every example raised, data journalists faced pressure to complete
projects on a deadline and their credibility (as well as that of their publica-
tions) rested on the accuracy of the results.

The second shortcoming of existing methods is that unless the record of
modifications to the data is perfect, auditing work from end to end is im-
possible. Small manual fixes to bad data are almost always necessary; such

i. The most immediate difference in discussions of technology in data journalism com-
pared to those in the data science industry is that the hype around “big data” systems is
mercifully absent.

ii. While we cannot expect the average editor to become code-literate overnight, good
project structure does make a dramatic difference for novices. The key calculations that
deserve the most review are often quite simply stated in the code—it is finding them
amid all the supporting code that is frustrating.

Columbia Journalism School



Background and Motivation 15

transformations often take place in spreadsheets or interactive program-
ming sessions and are not recorded anywhere in the versioned code. Several
participants expressed concerns with tracking and managing data. These
problems are compounded by the need for collaboration among teammates
whose technical abilities vary.

Content management systems for sharing and versioning documents have
existed for decades, but as Sarah Cohen of The New York Times put it,
“No matter what we do, at the end of a project the data is always in thirty
versions of an Excel spreadsheet that got emailed back and forth, and the
copy desk has to sort it all out . . . It’s what people know.” Cohen’s ob-
servation speaks to a common thread running through all of our discussion
topics: the deadline-driven nature of the newsroom makes it a challenging
environment in which to introduce new technology. Participants cautioned
against assuming that clever software would easily solve such multifaceted
problems, or underestimating the challenge of learning a new system when
team members have such diverse skill sets.

Pedagogy
Hansen also posed a second, more concrete question focused on education:
What would be the equivalent of “Processing” (a programming environment
for visual and multimedia programming) for data journalism? From the
project overview:

Initially created to serve as a software sketchbook and to teach program-
ming fundamentals within a visual context, Processing has also evolved into
a development tool for professionals.7

Currently, interactive notebook environments like Jupyter8 play this role
(without the novel language) in data science education. These are browser-
based systems that let the user write or edit small blocks of code and then
run them immediately, with the result of each block conveniently rendered
in an interleaved style. This workflow has an immediate appeal when ex-
ploring data, but from the perspective of language and tool design, the
notebook approach is problematic. The presentation is completely linear,
even when the actual code structure is not. Worse, beginners struggle to
manage the statefulness of the notebook, often forgetting to rerun code

Tow Center for Digital Journalism



16 Muck: A Build Tool for Journalists

blocks as they make changes. Lastly, by working inside the notebook stu-
dents gain no experience with more traditional text editor applications,
which are vital tools of the trade.

Both the Processing and Jupyter environments have been successful as
teaching tools in part because they allow the novice programmer to write
a simple program (as little as a single line of code) and get visual results
immediately. This convenience assumes a very specific modality: not only
are the outputs primarily visual, but the act of writing code is presumed
to occur inside of the unified environment. In other words, both systems
are specialized for visual, interactive programming in a way that favors the
beginner’s need for simplicity over the expert’s need for generality.

Direction
The original premise of the project was to explore a language design dedi-
cated to data journalism, and our initial conversations explored traditional
angles on programming language design: beginner-friendly syntax and se-
mantics; removal of quirky, historical baggage; robust error detection and
reporting; constraints like assertions;iii type systems;iv and immutability.v

iii. An assertion is a statement in a program that states a condition assumed by the
programmer to be true; if at runtime the condition fails, then the program terminates
rather than continue under faulty conditions.

iv. Types are essentially formal annotations on code that denote which kinds of values
(e.g., strings or integers) are valid in a given context (e.g., a variable or function parame-
ter). A “type checker” is a program (either a standalone tool or part of a compiler) that
analyzes a piece of code to verify that all of the type constraints are properly met.

v. A “mutable” value is one that can be altered in-place; an “immutable” value can-
not. Most imperative languages allow mutating operations with few constraints. They
typically also require the programmer to follow certain immutability rules without fully
enforcing them. For example, Python’s dictionary type requires that key values be im-
mutable with respect to their hash value; otherwise lookups will fail silently. It is chiefly
for this reason that the builtin string and tuple types are immutable. Nonetheless, one
can easily construct a custom class type that acts as a key, but also allows mutation of
its hash value. The problem is analogous to opening a file cabinet of employee records
sorted by name, and changing an employee’s name in their record without re-sorting it
properly. In contrast, so-called “purely functional” languages prohibit all mutation in
the imperative sense: “pure” code cannot alter a value in place, only create a copy with
alterations. The functional paradigm is gaining popularity but can be very challenging
to learn, particularly for programmers already trained in the imperative style. Many new
language designs (e.g., Rust and Swift) attempt a hybrid approach.

Columbia Journalism School



Background and Motivation 17

But improving on the state of the art requires a tremendous amount of
work. Martin Odersky, a leader in the field of type systems and language
design, estimates that designing a good typed language is a multi-person,
decade-long effort.9 Nonetheless, many groups are working on new lan-
guages. “Julia” is a recent, successful example in this vein: it is a language
designed for the modern data scientist, balancing concerns between correct-
ness, ease of use, and performance.10

There are other, wider angles that we considered as well. For example,
we spent some time looking at the history of “literate programming,” which
shifts focus to documenting intent. Donald Knuth (its inventor) describes
the paradigm eloquently: “Instead of imagining that our main task is to
instruct a computer what to do, let us concentrate rather on explaining to
human beings what we want a computer to do.”11 This is an intriguing ap-
proach, but is perhaps easier to justify for sophisticated algorithms than for
jobs on a deadline. We can aspire to document our code, but data journal-
ists (as well as most programmers in general) cannot always make it their
top priority.

From there we considered a “document-centric” view of data program-
ming, in which the effect of the code is to produce a document. This bears
some similarity to literate programming but does away with the latter’s
dual goals of producing working programs and formatted documentation
simultaneously. Instead, we simply narrow our scope to problems in which
we are producing some final document. This focus excludes large swathes of
conventional software (servers, interactive applications, etc.), but accurately
describes the basic goal of data journalism, as well as many other endeavors
that fall under the data science umbrella.

Tow Center for Digital Journalism
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Muck: An Overview 21

Broadly speaking, we characterize the basic programming task of data
journalism as a transformation of input data into some output document.
For clarity and reproducibility, such transformations should be decomposed
into simple, logical steps. Any instance where one step refers to another
as a prerequisite is termed a “dependency”; whenever the contents of a
dependency changes, its dependent is considered stale or out of date. A
whole project can then be described as a network of steps, where each node
is a file and the links between them are the dependencies, in the form of
references by file name. In computer science this network structure is called
a directed acyclic graph, and a graph representing dependency relationships
is a dependency graph. A dependency graph is “acyclic” because there can
be no circular relationships: it makes no sense to say that a file depends on
itself before it can be used, neither directly nor indirectly.

A simple dependency graph: note how the arrow points in the opposite direction
of information flow. We choose to draw dependencies as pointing from dependent to
dependency because that best represents the notion of a reference: the visualization
“knows the name” of the data, but the data has no intrinsic knowledge of or need for
the visualization.

The concept of the dependency graph is key to several classes of pro-
gramming tools, including compilers, reactive and asynchronous program-
ming frameworks (e.g., OCaml async12), and build systems. Muck is a
build system for data projects. As projects get more complex, the value of
taking a modular view of the work increases. This makes describing the
system with compelling yet succinct examples something of a challenge!

Tow Center for Digital Journalism



22 Muck: A Build Tool for Journalists

A Motivating Example
Suppose we want to produce an article like this recent post on The Guardian
Datablog, which shows life expectancy versus private health care spending
per individual across wealthy countries.13 (A complete walkthrough that re-
produces the article using Muck can be found here: https://github.com/gwk/muck-
demos/tree/master/oecd-health. The data is downloaded from the Organi-
zation for Economic Cooperation and Development (OECD), in the form of
two CSV (comma separated values) files, and the outputs are a table and a
chart. The basic steps needed to create the article are then:

• download the health expenditures dataset
• download the life expectancies dataset
• extract the relevant data points into a table
• render the chart using the rows in the table

Health costs example: conceptual dependencies.

We could do this work by hand in a spreadsheet, and for simple jobs
that is a perfectly reasonable approach. But in this example, the CSV files
contain a great deal of extraneous information, and we don’t know a priori
which rows to select. One good tool for examining structured data like
this is SQLite, a free database program that comes preinstalled on MacOS
and Linux. If we first load the data as tables into an SQLite database, we
can then make investigative queries until we understand which data we

Columbia Journalism School



Muck: An Overview 23

want to select for our table. Once we determine the final query, we will
use a Python script to generate the graphic in the SVG (Scalable Vector
Graphics) format.

We have now broken our job into several steps. Not including the ex-
ploratory queries, our dependency graph looks like this:

Health costs example: code and data dependencies. “Source” dependencies show
that a given product is produced by running the pointed-to source code file. Muck
determines these relationships automatically via its naming convention. Each “data”
dependency exists because the given source file opens and reads the pointed-to data file.
See “Observed and Inferred Relationships” for details on how these dependencies are
detected.

The import into the database takes some time, but the downstream steps
are instantaneous. A programmer would typically do the import in a shell
script by hand on the command line, and then write separate scripts for the
table query and the chart rendering (these steps could be combined into a
single script, but we chose to write them in different languages). Once we
decide to build the product in steps, a subtle challenge emerges: we must
remember to update products appropriately as the sources change. This

Tow Center for Digital Journalism



24 Muck: A Build Tool for Journalists

might sound easy, but as the chains of dependencies get more complex, the
opportunities for error multiply.

Let’s consider a more elaborate version, where we generate the complete
article from a Markdown file, which references the table and two charts
(“private expenditures” and “total expenditures”). We also factor out the
common code for the charts to a Python module called chart_rendering.py.

Health costs example: Muck implementation to build a complete web page. In addi-
tion to the source and data dependencies seen in the previous diagram, this implementa-
tion also features a code module that is shared by two scripts.

Columbia Journalism School



Muck: An Overview 25

At this point we can appreciate that the relationships between steps are
not always linear. For a project of this size, development never really pro-
ceeds in a straightforward fashion either—there are several possible starting
points, and as we progress we can make changes to any step at any time.
We could be working on the final styling of our charts, and then suddenly
realize we have a bug in the query. Or perhaps we have been working all
week and now that we are done we want to pull the very latest version of
the dataset. In the midst of such changes it can be difficult to tell whether
or not a given file is actually stale,vi and sometimes we just make mistakes.
The simplest solution is to rerun everything after any change, but when
some steps are slow this is not really feasible. This is exactly where build
systems like Muck can help by orchestrating updates both correctly and
efficiently.

Technical Description
Muck is invoked from the terminal command line. Given a “target” ar-
gument (a file path to be built or updated), Muck first checks to see if
the target exists in the project directory (if it does, then no build action
needs to be taken). For example, to build our chart we would type: muck

chart.svg. If the target does not exist in the project source directory, then
it is a “product,” and Muck tries to find a matching “source” file. The
rule is simple: a product’s source is any file with the target name, plus
an extra file extension. For example, if we wish to build chart.svg, a file
called chart.svg.py (a Python script) could serve as the source, as could
chart.svg.sh (a shell script). This is the core convention that ties a Muck
project together. The source file for any given product must be unambigu-
ous; if both chart.svg.py and chart.svg.sh are present then Muck will
exit with an error.

Once Muck has identified the source, it determines its “static” depen-
dencies (the files that must be present in order to execute the source code),

vi. The “staleness” property is transitive: if A depends on B, and B depends on C,
then whenever C is updated, both A and B become stale. This means that a small
change to one file can potentially affect many downstream products.
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26 Muck: A Build Tool for Journalists

Source file resolution. Either chart.svg.py or chart.svg.sh is a legitimate source
candidate, but if both are present then the source is ambiguous and results in an error.

recursively updates those, and then finally builds the target, updating and
recording any “dynamic” dependencies requested by the script as it runs.

For example, here is what the console output looks like when we build
our chart for the first time:

Informational output from Muck while building chart.svg.

muck note: chart.svg: building: ‘python3 chart.svg

.py ‘

muck note: data.sqlite3: building: ‘sh data.

sqlite3.sh‘

muck note: data.sqlite3: finished: 61.93 seconds (

via tmp).

muck note: data.sqlite3: product is new; 101.970

MB.

muck note: table.csv: building: ‘sqlite3 < table.

csv.sql ‘

muck note: table.csv: finished: 1.66 seconds (via

stdout).

muck note: table.csv: product is new; 1.169 kB.

muck note: chart.svg: finished: 0.12 seconds (via

stdout).

muck note: chart.svg: product is new; 6.066 kB.

Columbia Journalism School



Muck: An Overview 27

Ignoring the slightly convoluted order of build operations for the mo-
ment,vii we can see that the command caused three products to be built.
If we run the same command again, Muck detects that nothing has changed,
and so there is no work to be done. When we make a change to one of the
sources, Muck will update only those products that are downstream—that
is, the products that depend recursively (meaning either directly or indi-
rectly) on the changed file.

Inferred and Observed Relationships
Like most traditional build systems, Muck operates on a file-by-file basis; it
has no ability to reason about fine-grained structures like individual func-
tions or rows of data.viii However, unlike traditional build systems, Muck
determines the dependencies of a given target automatically; there is no
“makefile” or other configuration metadata that denotes the relationships
between files. While this eliminates the need to explicitly list all required
files, it also means that Muck is limited to source languages that it under-
stands, and source code must comply with a few simple requirements.

Muck uses three different techniques to determine dependencies:

• A Source dependency is determined by the naming convention (e.g.,
chart.svg chart.svg.py), and denotes a script, markup, or template
file, the execution or rendering of which results in some product file (or
files).

• An Inferred or Static dependency is a file (either data or code) refer-
enced by a source in such a way that its name can be detected by Muck
prior executing/rendering that source.

• An Observed or Dynamic dependency is a file (either data or code)
opened by a source script during execution and whose name is detected
by Muck at the moment the “open” command is issued.

vii. The order of build operations appears interleaved because table.csv is an “ob-
served” dependency of chart.svg; thus the build process for chart.svg blocked while the
upstream dependencies were updated. See “Inferred and Observed Relationships.”
viii. Dependency inference at the resolution of individual functions, variables, and

records seems desirable, but requires much tighter integration with each programming
language and thus is beyond the scope of this project. See “Limits of File-Level Depen-
dencies.”
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Conceptually, we might come up with other categories that make sense
for specific languages (e.g., data versus code dependencies as shown in the
example diagrams), but Muck’s core algorithm uses only these three.

The naming convention for sources is a straightforward formalization
of standard practice: Source names should relate to product names. Muck
makes the basic purpose of a source script explicit in its name. It specifies
the complete product name (including the type extension), plus an extra
extension indicating the source’s file type. The convention allows Muck
to automatically and unambiguously select a single source for a desired
product.

Once a source is selected, it is analyzed to extract its dependencies.
The exact process is different per source language, and depending on the
semantics of the language might not detect all dependencies perfectly.ix For
example, Python import statements are a syntactic feature of the language,
and therefore can be detected through static analysis. Conversely, one
cannot generally determine which files a Python script opens and reads,
because the script might call an external function that does the opening,
and the file name to be opened might get passed around through a series
of variables. Whenever Muck can detect dependencies ahead of time, it will
recursively build those prior to running the source.

The source is then executed, even though it may have dependencies that
went undetected. To address this discrepancy, Muck detects whenever the
running child process attempts to open a file, blocks it from executing fur-
ther, updates that dependency (possibly triggering other build processes),
and then unblocks the child so that it can open the up-to-date file. Cur-
rently, this just-in-time capability works by automatically replacing the
open system function with a special version. This wrapper function com-
municates the file name in question to the Muck parent process and then
waits for a confirmation before executing the real open system call.x While

ix. The term “static analysis” comes from the field of compilers and implies any kind of
ahead-of-runtime source code analysis that does not actually execute the code outright.
Turing-complete languages (a theoretical classification that includes general purpose
programming languages) are by definition unpredictable in this regard, so static analysis
code behavior cannot be perfectly accurate. For non-executable formats like pure HTML
(without JavaScript) though, a static analyzer can accurately extract all dependencies.

x. Muck’s version of open is injected into the child process using the dynamic linker.
On macOS, this is accomplished with the DYLD_INSERT_LIBRARIES environment variable;
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this trick works for popular tools like Python and Node.js (a version of
JavaScript that runs on the command line), it only applies to programs
that are dynamically linked to the standard system libraries, and has no ef-
fect for statically linked executables. The distinction is quite obscure to the
end user, so removing this limitation is a major priority for future work. In
the meantime, less than perfect support for languages can be accomplished
with simple static analysis.

Outputs
By default, outputting data from a script is simple. Following standard
Unix convention, all text written to the standard output stream (stdout)
is captured as the product for that step. A script can print debugging text
separate from the product by using the stderr stream. This too follows
Unix convention, but depending on the language it requires more code:

A simple python3 script that outputs some HTML and an
error message.

rom sys import stderrhttps://www.sharelatex.com/

project /5 a39449a225755184fd40964

print(’<html ><body ><p>Text in output document.</p

></body ></html >’)

print(’this debug message does not appear in the

output , file=stderr)

If a script needs to create multiple output files then it can simply use
the standard open function to obtain writable file handles. When a script

Linux uses a similar variable named LD_PRELOAD. Muck’s open looks up a pair of Unix
environment variables, MUCK_DEPS_SEND and MUCK_DEPS_RECV. These are set by the parent
muck build process, and together provide the child process with a pair of open file de-
scriptors (if they are not set then the script is running as a standalone command and the
system open is performed immediately). The child writes to the “send” channel the file
name it wishes to open. It then reads a confirmation byte back from the parent on the
“receive” channel; until Muck writes and flushes that confirmation, the child is blocked
from proceeding, per the semantics of the Unix “blocking read” operation. This gives
Muck an opportunity to build the dependency in question if it is out of date.
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uses this method, it should not write to stdout. If it does, Muck raises an
ambiguity error. This detection is achieved with the same monitoring of
open system calls. However, Muck first needs to figure out that the script in
question is in fact the source for those targets before running it.

There are a variety of situations where a single script might produce
many outputs. For example, suppose we have our CSV table of health
expenditures, and we want to split out “private,” “public,” and “total”
expenditures into three separate tables. We can easily do all in one pass:

expenditures-payer.csv.py script, which splits the data in
expenditures.csv into three separate files.

import csv

private = csv.writer(open(’expenditures -private.

csv’, ’w’, newline=’’))

public = csv.writer(open(’expenditures -public.csv

’, ’w’, newline=’’))

total = csv.writer(open(’expenditures -total.csv’

, ’w’, newline=’’))

for year , private , public , total in load(’

expenditures.csv’):

private.writerow ((year , private))

public.writerow ((year , public))

total.writerow ((year , total))

To follow the naming convention, it seems that this script needs three
names, one for each output. Instead, we can use Pythons string formatting
syntax to indicate a variable in the name, in this case expenditures-payer.

csv.py.14 This is like a Unix shell wildcard/glob (expenditures-*.csv.py)
except that the formatter must be named, and can be constrained with
the format syntax, e.g., to contain just numbers, zero-padding, etc. The
script’s parameterized name tells Muck that it produces any file matching
the expenditures-*.csv pattern. As soon as the user requests one of those
products, the source runs and produces all three CSV files. Because open
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communicates with Muck, the build process knows that all three files have
been produced after a single invocation.

In that example the various product names are hard-coded into the
script, but they could also be generated, perhaps from a range of integers or
a collection of names. In other cases we want the script’s inputs to depend
on the name of the output. For example, if we have separate data files for
each of the last five years, we might want to generate one chart for each
month, one at a time. Muck makes this easy by extracting the strings that
match each formatter and passing them as arguments to the script.

Imagine the products are named chart-2012.svg, chart-2013.svg, etc.,
and our script is named chart-year.svg.py. Here is what happens when
the user builds the first chart:

Informational output from Muck while building chart-
2012.svg.py. Unlike previous examples, the script’s name
specifies a named parameter year in braces. Muck iden-
tified this script as the source for the requested product
using a matching algorithm, and then passes the matching
string “2012” as an argument to the script.

muck chart -2012. svg.py

muck note: chart -2012. svg: building: ‘python3

chart -{year}.svg.py 2012

Looking at the note in the console output, we see that Muck has ex-
tracted the matching year “2012” and passed it as an argument to the
script. It extracts exactly one argument for each formatter in the source
name. This was true in our previous example as well, but that script simply
ignored it. For this one, we use the year argument to choose which data file
to open:
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chart-{year}.svg.py script that renders a chart for the given
yearly data file. The year parameter is provided as a com-
mand line argument and used to choose the appropriate
input file at runtime, creating a dynamic dependency. Be-
cause the filename is computed, it would be impossible for
Muck to infer it ahead of time.

from muck import load

from some_chart_library import render_chart

from sys import argv \# contains the command used

to invoke this script as an array.

_, year = argv \# unpack the array , ignoring the

command name at position 0.

with load(year + ’.csv’) as data: \# use ‘year ‘ to

construct the dependency name.

render_chart(data) \# this hypothetical function

would write to stdout.

In this script, we use the standard Unix argv variable to access the
argument and then use it to choose our data file (e.g., 2012.csv).

Using formatters in file names might seem unconventional, but they
communicate concisely what the script intends to produce. Fortunately,
Python’s format syntax does not conflict with filename restrictions on Mac
and Linux, nor do they conflict with the syntax of the popular Bash shell.
In summary, command line arguments are specified through the naming
convention. This gives the programmer a great deal of flexibility in how
they structure their scripts, while maintaining strong dependency relation-
ships that Muck can infer automatically.

Columbia Journalism School



Muck: An Overview 33

Python Client Library: Load, Fetch,
and Load_url
As a convenience, Muck provides Python scripts with several utilities.
The load function calls open, and then based on the file’s extension dis-
patches to an appropriate handler (e.g., the standard library csv.reader or
json.load). Compare this traditional implementation to one using Muck’s
load:

Python script using only the Python standard library.

import csv

import json

csv_rows = csv.reader(open(’a.csv’))

json_object = json.load(open(’b.json’))

Python script using muck.load convenience function.

from muck import load

csv_rows = load(’a.csv’)

json_object = load(’b.json’)

load does away with several lines of code in each script. The effect is
most noticeable when moving code between scripts or splitting a large
script into smaller steps, when the import statements can easily get left
out of the refactoring. It also handles several compression formats (gzip,
bzip2, xz, and zip) transparently. The result is that loading data into a
Python script is very straightforward, requiring only that the Muck library
be imported. Muck comes with loaders registered for a variety of common
formats, and additional custom loaders can be registered by scripts or li-
brary modules at runtime.

Since most data projects involve acquiring data from the internet in
some fashion, Muck provides similar conveniences for remote files. To be
clear, many data journalism projects involve proprietary or otherwise pri-
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vate datasets, but even private data is often accessed via a network. For a
project to be reproducible, the first step is for the data to be obtainable in
a consistent way. The Muck library provides fetch and load_url functions
analogous to open and load described above. These functions fetch files at
a given URL once and save them locally until the cache is cleared. For data
scraping jobs this is especially important, because if a server has usage lim-
its or other anti-scraping measures in place, once these are triggered then
work becomes much more difficult. Another benefit of the caching model
is that inputs become completely consistent between builds, mitigating the
pitfalls of debugging a script when its inputs keep changing. The tradeoff is
that the programmer must manually invalidate the cache (by deleting the
files in the project’s _fetch folder) in order to get up-to-date results from
an API query.

Another issue that complicates reproducible network fetches is that
many servers attempt to block what they perceive as any sort of program-
matic access. The simplest implementations simply reject all requests with
“user agent” headers that do not match well-known browsers. Muck ad-
dresses this by providing a load_url function with the option to send a
user agent header imitating that of a modern browser; alternatively the
programmer can specify any combination of custom headers.

Project Inventory
Muck provides an option for viewing a project’s dependency graph in a
hierarchical format, which gives the user a quick overview of the project
structure that is guaranteed to be correct and up to date.
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Output of the muck deps command shows a hierarchical list-
ing of dependencies.

\$ muck deps chart.svg

chart.svg

chart.svg.py

table.csv

table.csv.sql

data.sqlite3

data.sqlite3.sh

health -expenditures.csv

life -expectancies.csv

Dependencies can also be printed as a simple list. This provides an ac-
curate means with which to build custom scripts on top of Muck, perhaps
to integrate into a larger production pipeline. Dependency listings can also
serve as a powerful complement to written documentation.xi

Tracking Manual Edits with Patch
Files
Reproducible data cleaning does not simply mean doing everything pro-
grammatically. Cleaning data effectively often requires a range of manual
fixes, which most tools cannot effectively track.

One solution is to use a “patch” or “diff” tool.15 The idea behind patch-
ing is to create a small file containing lines of text, each marked as either
“context,” “remove,” or “add.” The context lines are used to unambiguously
locate the text to change in the original document; the “remove” lines are
present in the original and to be removed; the “add” lines are not present
and to be added. This is the basic premise of Git’s diff tools, and conceptu-

xi. One obvious addition would be a graphical rendering of the dependency graph, but
graph layout is a famously tricky problem, so this would most likely require an external
tool like Graphviz.Graphviz - Graph Visualization Software, http://graphviz.org
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ally similar to Microsoft Word’s “Track Changes” feature. (The distinction
between patch and diff is merely colloquial: typically patches are applied to
achieve some change, whereas diffs are read to see what has been changed.)

Muck currently uses its own experimental patching format called Pat,16

because traditional diffs are not designed to be edited. Muck treats patch
files as a kind of source file whose sole dependency is the original to be
modified. For example, imagine that we have a CSV file names.csv, and
one of the fields contains an unquoted comma.

The names.csv file contains an unquoted comma in the sec-
ond row: the first name is intended to be “Bobby, Jr” but
since the cell contains a comma, CSV readers will interpret
that line as having three columns instead of two. Such a
cell must be surrounded by quotes in order for the comma
to be ignored by the CSV parser.

First Name ,Last Name

Alice ,Anteater

Bobby , Jr,Baboon

Carole ,Caterpillar

The first name “Bobby, Jr” confuses Python’s csv.reader and thus
breaks the script. Rather than modify the original, we would like to create
a new version called names-fixed.csv. Detecting and fixing this sort of
error programmatically is tricky though, and typically not worth the gym-
nastics (a real dataset would likely be much longer). Instead, we can ask
Muck to create a patch with this command: muck create-patch names.csv

names-fixed.csv. This creates a new, empty source file names-fixed.csv.pat,
and a product file names-fixed.csv that is identical to the original. We
then have two choices.

Our first option is to write the patch by hand that properly quotes the
problematic cell, like so:
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names-fixed.csv.pat is a patch file that specifies names.csv as
its input, followed by “context” lines and then an alteration
to the problematic line.

pat v0

names.csv

|^

| First Name ,Last Name

| Alice ,Anteater

- Bobby , Jr,Baboon

+ "Bobby , Jr",Baboon

The patch file states the file that it is patching, and then for each al-
teration shows several lines of context (as many as necessary in order to
be unambiguous), followed by removal of the problematic line and in-
sertion of a suitable replacement. Whenever Muck is asked to produce
names-fixed.csv, it will discover the patch file as the source, which in
turn specifies names.csv as its sole dependency. names-fixed.csv is then
produced with the bad line replaced:

The resulting names-fixed.csv product.

First Name ,Last Name

Alice ,Anteater

"Bobby , Jr",Baboon

Carole ,Caterpillar

The second, recommended option is to simply modify the product file as
we see fit, and then have Muck update the patch with the command muck

update-patch names.csv.pat. Normally, Muck disallows editing of product
files via file permissions, but it makes an exception for patch products in
order to facilitate this process. As a result, once a patch step has been set
up, making fixes is as easy as editing the file, saving it, and asking Muck to
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update. Such changes can be accumulated over time into a single patch, or
as several patches applied in series.

The advantage of using patches for data cleaning is that they are con-
venient and self-explanatory: When reviewing a patch, it clearly shows the
removed and added lines with context. When a fix is unique, it is much eas-
ier to simply change the text than it is to write code that makes the change
for you. This becomes even more apparent when returning to code months
after it was written; while code often looks more cryptic than we remember
it, the intent of a patch is relatively easy to interpret.

Per-Record Transformations
Patching only addresses part of the data cleaning challenge though. While
some flaws occur once or a handful of times, others occur thousands of
times. Time-efficient strategies for correcting rare versus common flaws
tend to be quite different. In early experiments, the diff format proved
so convenient when reviewing changes for correctness that it made sense
to add similar informational outputs for programmatic cleaning steps as
well. The Muck Python library offers a transform function which takes
in a collection of records (arbitrary text or structured data) and applies a
series of transformations to each record in turn. The transformations come
in various flavors. Examples include flag (apply a predicate function to
the record and if it returns True, report the record), drop (apply a predi-
cate and if it returns True, drop the record and report), and edit (apply a
transformation to the record, and if it makes an alteration report it). For
readers familiar with SQL, these operations can be thought of as analogous
to SELECT, DELETE, and UPDATE queries, respectively. When a transforma-
tion runs, it outputs both the result text and also a diff showing where each
transformation was applied.

Document Rendering
Newsrooms typically have their own content management systems (CMS)
and processes for getting a graphic properly formatted into a digital ar-
ticle. Nevertheless, it may be useful at times to write a draft (or just an
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outline) and then view the computed products composed together with
the text. Muck supports HTML, interpreting any relative URLs in a docu-
ment (links, images, stylesheets, scripts, etc.) as dependencies. But because
writing correct HTML by hand is tedious, Muck also supports the pop-
ular Markdown format, which translates to simple HTML pages. Here is
an example Markdown file that displays a table and two charts along with
text:

A markdown file named index.html.md, which references the
formatted table and charts.

# Article Title

This is the introductory text describing our

health care expenditures investigation.

## The Data

Here is the data used to generate the charts.

<object type="text/html" data="formatted -table.

html" />

## Private Expenditures

Here is the chart showing life expectancies vs

private expenditures.

<img src="chart -private.svg" />

## Total Expenditures

Here is a second chart showing life expectancies

vs total expenditures.

<img src="chart -total.svg" />

This Markdown file has three dependencies (the table and two charts).
When we build it, Muck updates the charts and renders the Markdown to
HTML that can be viewed in a web browser. Since dependency trees can be
arbitrarily deep, in principle one could use this approach to build a whole
website. While users have no obligation to use Muck in this capacity, it
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provides a simple and effective way to publish any sort of computational
result as a web page.

Development Web Server
For web pages (including those that execute JavaScript), Muck can run a
simple web server during development which treats every request as an up-
date command. In this way, all dependencies are guaranteed to be updated
when the page is refreshed.

Prerequisites and System
Requirements
Muck is still in development, and most experiments have revolved around
the Python language, though it has recently gained some support for
SQLite, JavaScript, and Unix shell scripts. For a data journalist to use
Muck effectively requires competency in at least one of these languages, as
well as familiarity with the terminal, a basic understanding of the Unix file
system and the ability to use a separate code editor.

Muck itself is implemented in Python 3.6 and will not run on older ver-
sions. It is freely available via Github17 and the Python Package Index (pip
install muck). It depends only on a utility library which is developed in
tandem with the main tool.
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Due to the design of Muck’s dependency inference system, I am not
aware of any equivalent tools. However, there are meaningful comparisons
to be drawn with other systems.

Build Systems
Muck is intended to play a role similar to that of Make,18 the traditional
Unix build tool. Some data journalists have embraced Make as an imper-
fect means of adding structure to their projects.19 Much has been written
about the limitations of Make,2021 and a variety of alternatives have been
built over the decades that improve upon the concept and implementation
(Cmake,22 Tup,2324 Redo,2526 and Ninja27). Additionally, many languages
provide their own dedicated build systems (Rake,28 Jake,29 Shake,30 Ant,31

Maven32 SBT,33 Leiningen,34 Boot,35 and Ocamlbuild,36 and a few have
been designed for data programming specifically (e.g., Drake37). However,
to my knowledge, all of them operate by executing the build steps specified
in some dedicated build script or recipe file. In contrast, Muck requires no
“makefile”;38 it figures out the relationships between steps and their sources
without additional help from the programmer.

Variants of the original Make offer pattern matching features to reduce
the burden of writing makefiles, but these do not address the root of the
issue: As long as dependencies are written and not inferred, they will be a
source of both tedious work and errors. Some compilers have the ability to
generate Make-compatible dependency listings,3940 but using such a feature
can be confusingly circular. Omitting a single dependency can result in a
build process that seems to work for a while and then at some point fails
mysteriously—or worse, produces a target incorporating stale data. This is
an insidious sort of error because it easily goes unnoticed and can be hard
to diagnose. Ironically, Make was created in 1976 in response to these sorts
of “disasters.”41

Another family of tools uses operating system functionality to trace file
accesses.42 43 44 Like Muck, these tools create the dependency graph auto-
matically by monitoring script execution, and they provided the inspiration
for Muck’s “observed dependencies” model. However, they use Linux’s
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strace tool,45 which is not available on macOS,xii and they lack Muck’s
just-in-time capabilities, as well as the naming convention that connects
products to sources automatically.

In any case, while Muck is best described as a build system, for the most
part it is meant for a different audience. Data journalists have adopted a
variety of languages and tools for doing their work, but there are not yet
industry-standard, project-level systems of the sort that Muck seeks to
provide.

Interactive Notebooks
Muck is most easily positioned as an alternative to the Jupyter Notebook,
a browser-based, interactive programming environment that is popular in
data journalism curricula. The interactive notebook model was pioneered
by Mathematica in 198846 and embodies ideas from the older literate pro-
gramming paradigm. The Jupyter Project page describes the notebook as
used to “create and share documents that contain live code, equations, vi-
sualizations and explanatory text.” The key distinction compared to Muck
is that in the notebook, code forms part of the readable document with the
output of each block immediately following. In Muck, the code generates
output documents but is distinct from those products.

This distinction is not absolute though. It is possible to turn a Jupyter
notebook into a presentable document that omits code,47 but the core
metaphor is the scientist’s lab book: it is meant to be read by practition-
ers who are interested in seeing the implementation and results interwoven
together. Conversely, with Markdown the output document does not neces-
sarily contain code, although an author can choose to emulate the notebook
style.

Another key difference is that the notebook relies on a fundamentally
linear metaphor, which becomes increasingly unwieldy as projects grow
in size. Muck embraces the file system tree as a more robust means of
organizing large projects, relying on file naming rather than order to dictate
the overall structure. This requires more upfront understanding on the

xii. macOS has analogous but different tools called dtrace and ktrace, but these require
root privileges to run, which is inappropriate for general use in a build system.
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part of the user; while complete beginners can easily press the run button
in a notebook and see results, they are unlikely to guess how Muck works
without reading the instructions.

A more technical criticism involves the semantics of how code is run
in the notebook. Although the blocks are visually separate, they execute
in what amounts to a single namespace, and the user interface executes a
single block at a time. This leaves the user responsible for managing the
runtime state of the entire notebook in an ad-hoc manner, and when an
early block is rerun, it leaves later dependent blocks showing stale output.
Mutable state is well recognized as a major source of programming errors
for beginners and experts alike48 and the notebook environment makes
the actual semantics of the Python language less clear in this regard. In
comparison, Muck runs each named step in a separate process, thereby
isolating language-level side effects. The Unix process model is quite simple
conceptually, and the environment in which steps run is nearly identical to
invoking each script manually on the command line.

Finally, on a more pedagogical note, the convenience of the integrated
notebook environment has a downside: It isolates beginners from the com-
plexities and rigor of the command line environment. Jupyter has proven
very popular with educators, in no small part because it is easy to set up
and affords the user many conveniences, with a built-in editor and graphical
support. But narrowing the scope of instruction to this convenient inter-
face means that students are deprived of exposure to the command line, file
management tasks, and code editors, all crucial skills for working on larger
systems.

To be fair, most of the blame lies with the larger programming ecosys-
tem. Educators reach for friendlier tools because more traditional setups
assume too much prerequisite knowledge and are very unforgiving. To make
matters worse, the landscape is perpetually changing, so advice on how to
resolve issues quickly gets out of date. Muck requires the user to be reason-
ably competent in a command line environment and does not yet provide
any integration into code editors. While a good deal of effort has been ex-
pended to add meaningful error messages to the tool, the user must have a
good mental model of what dependency graphs are in order to understand
how the system works, which is more abstract than the notebook metaphor.
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Declarative Languages
Muck can also be compared to the declarative programming paradigm,
in which programs are specified without explicitly dictating control flow
(this broad category covers relational languages like SQL, purely functional
programming languages like Haskell, logic programming languages such as
Prolog, and more.49 Although the individual steps in Muck are typically
written in imperative languages like Python, the dependency inference
via names is essentially a declarative system. The programmer specifies
the relationships between nodes in the graph, and then the dependency
algorithm determines the order in which to run the steps. This is analogous
to the way in which a relational database like SQLite uses a query planner
to reduce the high-level query into low-level instructions to the database
engine.
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So far Muck has been tested with several substantial demonstration
projects. These were not chosen as journalism pieces per se, which would
have involved non-technical concerns like timeliness, story, and confidential-
ity (early collaborative attempts were stymied in part by the need to keep
datasets private), but rather as data experiments that had similar technical
requirements to exemplary data journalism pieces.

Webster’s English Dictionary
The first significant experiment with Muck used the Project Gutenberg text
of Webster’s English Dictionary, 1917 edition. This edition is the last to
enter into the public domain, and of some cultural interest.50 The text was
transcribed in 199551 and contains many errors, as well as irregularities in
the formatting. It contains approximately 4.5 million words of text.

The purpose of the project is to convert the raw text into structured
data, and then analyze the relationships between English words in terms
of how they are used to define each other by constructing a directed graph
of words and their definitions. From the perspective of validating Muck,
the goal was to parse the text into a list of structured objects (each rep-
resenting a word definition), in a completely reproducible way. The basic
workflow was to write parsing code with error detection, observe the parser
fail on some portion of the text, and then add a fix (to the code, not the
original text) to enable the parser to continue. Because the text was so
messy I broke the cleanup into stages, where each stage of output was more
structured than the previous one (lines of text, then blocks of text per
definition, then fully parsed definitions). It quickly became apparent that
a purely programmatic approach was not tenable, so I implemented the
patching and transformation features described above.

The data-cleaning effort ended up being quite elaborate, but for the pur-
pose of validating Muck’s usability, it was quite successful. The structural
analysis of the content itself proved to be more challenging and is not yet
complete.
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Wikipedia Scraping
A second experiment collected sentences from Wikipedia’s “Did You
Know?” archives. “Did You Know?” is a feature of the Wikipedia main
page that “showcases new or expanded articles that are selected through
an informal review process.”52 The purpose of the project is to collect fac-
tual sentences containing historical content to use for a (not yet imple-
mented) chatbot trivia game. The archive is a series of pages containing
sentences starting with the phrase “Did you know . . . ” The project uses
Textblob,53 a natural language processing tool, to filter the sentenced based
on verb tense. The main lesson learned from this experiment was that
Muck needs to accommodate scripts that open arbitrary files, rather than
just dependencies that can be statically inferred.

Originally, Muck used only static (syntactic) analysis to determine which
files a Python script will open. It did so by walking over the program’s
abstract syntax tree (AST) and finding all of the function calls to the
standard open function. This imposed a strict limitations on scripts: In
order for Muck to properly detect dependencies, not only was open the
only safe way of reading in data, but the argument to open was required
to be a string literal (a file path written in quotes). Passing a variable
or other expression to open was disallowed by the analyzer because such
expressions cannot be interpreted statically. When this approach proved
insufficient, I added a open_many function that could iterate over a list of
strings or a range of integers, but even that was not enough. Up to this
point, working with Muck felt like an exercise in puzzle solving. When I
discovered that the “Did You Know” pages switched naming conventions
from “Year_Month” to numerical indices partway through the archive, it
became clear that the static approach could never fully accommodate the
messy reality of scraping jobs in the real world. Dynamic dependency com-
munication is the solution. Early versions were implemented in the Muck
Python library; more recently the system was made language-agnostic by
monitoring system calls.
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Census Data
The third experiment revolved around the U.S. Census Bureau’s “American
Community Survey” (ACS).54 The code downloads the dataset, selects
requested columns, joins the rows with their geographic locations, and
then renders the data to an interactive map in an HTML page. For the
demonstration it simply selects the total population column, but it could
easily show various other columns of interest. This project tested Muck’s
ability to fetch large datasets, deal with compressed data automatically,
and provide a useful workflow when the product is an interactive web page
using client-side JavaScript.

Large datasets
Muck’s fetching capabilities were originally built using the popular Python
“Requests” library.55 For very large downloads this approach presented
problems because the fetched data is held in memory within the Python
process. Since the goal of Muck’s fetch API is to cache the results locally
to the disk, it made more sense to use the Curl program, which runs as an
external process and fetches straight to disk. From there, the downloaded
file is opened just like any other.

A second problem quickly emerged with large files: A compressed archive
might fit easily on disk, but takes up far too much space when expanded.
To address this problem, I added additional loader functions to Muck that
can handle decompression transparently, letting a script conveniently walk
through archives without unpacking them to disk. These operations are
computationally intensive, since decompression is performed on the fly as
data is read, but for projects facing size limitations this feature makes it
possible to work with large files locally.

Interactive pages
Interactive data journalism usually involves JavaScript code running in the
browser. The development cycle for an interactive page typically revolves
around making changes to the code and then reloading the page. In order
for the programmer to realize the benefits of Muck’s dependency-driven
paradigm in this context, Muck needs to participate in this cycle. As a
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proof of concept, I added a mode that runs a local web server. Whenever
the browser makes a request, either because a page itself is visited or be-
cause a page needs a resource (CSS, image file, etc.), then Muck updates
that product prior to serving it. Web developers typically use a different
style of automation system,xiii so this feature might need some configura-
tion options to appeal to professionals, but as an experiment it shows that
Muck is an effective tool for interactive projects.

xiii. Two popular systems are Grunt (Grunt: The JavaScript Task Runner, https:
//gruntjs.com ) and Gulp (gulp.js, https://gulpjs.com ). Both operate by watching a
project’s source files and running tasks whenever changes are detected. Conceptually, the
direction of the arrows in the network diagrams are reversed. While Muck works back-
wards from the desired product to the original sources in order to do as little work as
possible, task-runner systems monitor inputs and trigger fixed pipelines of operations.
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Preliminary workshops have suggested that Muck is not a great choice
for complete beginners in data journalism. Learning to program is challeng-
ing, and Muck introduces a second layer of tools to worry about. This is
not surprising: Beginners are better served by small, clean examples in a
single modality. Muck requires a fair amount of context switching between
files, data formats, and even languages. But for individuals with a bit of
background knowledge, Muck appears to be quite manageable, especially if
they have an existing project to work from.

Muck’s primary strength is that it enforces a certain correctness in how
steps interact. It also improves the clarity of project structure, but this
only becomes valuable once projects reach a certain complexity. Still, some
of the smaller conveniences like the load functions and Markdown support
can make Muck a great choice for small projects.

Another advantage to using a build system is that as programmers make
changes to various pieces of the code, they can choose to rebuild any down-
stream product and observe or test results as they see fit. This ability to
hop around and observe the various effects of changes is powerful. It allows
programmers to maintain focus on the desired final product, but also in-
spect intermediate results to gain a better understanding of what the code
is doing. In the context of data journalism, this has a special appeal. We
can work on the production of a fundamentally non-technical document,
consisting of prose, graphical layout, and styling, together with our compu-
tational results. Changes to any of these aspects propagate through to the
final product immediately.

Not having to write a makefile, build script or other configuration files is
an immediate convenience, but the greater benefit in my experience is that
the absence of the makefile lowers the cognitive barrier to refactoring the
project. This is an entirely subjective observation, but I have repeatedly
noticed that moving files and code around in Muck projects seems to incur
fewer mistakes than in projects built with makefiles, simply because there
is one less file to update. The simplicity of the naming convention makes
it easy to refine names to be more descriptive as a project evolves. (One
detail that would make this even easier would be if the standard find-and-
replace feature of code editors would operate on file names as well as their
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contents; depending on the editor, this might be achievable with a simple
plugin.)

Muck currently handles compression formats in a fairly transparent man-
ner, but this awareness is limited to the input side only, because while the
load function can choose an appropriate decompression handler based on
file extension, the output of a script goes straight to standard output and
is entirely controlled by the programmer. It might be possible to add auto-
matic compression of the output stream based on the target file extension,
but when introducing features like this care must be taken not to create
new problems.xiv

Limits of File-Level Dependencies
One major limitation of Muck is that it operates at a per-file granular-
ity. The division of code into one module per file is standard across most
programming languages, but this convention is fundamentally an artificial
distinction compared to more formal semantic notions of scope and names-
paces. Muck’s view of the dependency graph is file-oriented because that is
the level at which the tool can be language agnostic. A finer granularity of
names is available at the language-specific level, which could make update
operations more efficient. However, leveraging this would require elaborate
static analysis for each supported language, as well as an execution engine
that could rerun individual subsections of code. This is the essence of re-
active programming; projects such as Eve56 and D3.Express57 are good
examples of new projects pursuing this approach.

Dynamic Dependency Inference
As described earlier, Muck uses a hybrid strategy to infer dependencies,
which cannot guarantee a perfectly accurate graph in all cases. Currently,
certain tools bypass Muck’s attempts to monitor their file access, which
presents a major problem. How to best deal with this challenge is an ongo-
ing inquiry.

xiv. In this case, it is not clear how the script would indicate that it is doing compres-
sion itself. This could lead to accidentally compressing the output data twice.
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In all likelihood this problem will never be completely solved, and Muck
should do a better job of protecting against error when these situations oc-
cur. Currently, if a dependency is not detected, then it will not exist when
building from a clean state, and Muck will immediately fail with an error.
However, build systems by nature can encounter a huge number of possi-
ble project states, so there may be tricky cases where further protection is
warranted.

The other downside of Muck’s just-in-time approach is that it can make
the runtime state of the build rather complicated. The Muck process will
have many subprocesses suspended at the same time as it builds a long
chain of dependencies. Only one subprocess is ever active at one time (no
parallelism), but there is a minor risk of concurrent writes to the same file
by two different misbehaved child processes.

Compatibility with Databases
Another major area that Muck has yet to address is databases. Currently,
Muck conceives of data as being written by one step and then consumed by
one or more subsequent steps. The more the programmer breaks their data
down into logical pieces, the better Muck is able to perform incremental
updates. In contrast, databases are monolithic stores that perform both
read and write operations. Muck does support SQLite natively, but only
when all of the write operations happen in an initial import step.

In practice, databases are often remote and therefore outside of Muck’s
control. This is fine so long as the programmer is willing to fetch the data
and then work with it locally. But even a local database like SQLite or a
simple key-value store is incompatible with Muck’s model if it is constantly
mutating, because Muck cannot detect database changes as it does with
text files (by inspecting the file timestamp and content hash). Database
storage is both mutable and opaque, so for Muck to do any sort of depen-
dency analysis on the database, strict update semantics would need to be
defined. In the meantime, programmers can interact with remote databases
as they do with any other web API, either utilizing Muck’s fetch caching
or not. For local databases, Muck users must be careful to manage state
themselves in a way that is compatible with Muck’s update model.
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Muck on the Server
In contrast to the limitations regarding remote databases, there are no
obvious technical reasons why Muck could not run as a server that updates
pages dynamically. Indeed, this capability is already implemented as a
convenience feature for local development. But using Muck as a public
server would entail all the usual security considerations for the modern web,
and while the particulars have not been explored in any great detail, there
are obvious and serious concerns. For one, the idea of running a web server
that executes a long chain of subprocesses is quite antithetical to basic
security practices.

More realistic would be to use a continuous integration server like Jenk-
ins58 to trigger Muck rebuilds whenever a project’s git repository is up-
dated, and then serve the built products appropriately using a separate web
server. In this arrangement, Muck plays the role of the build system in a
traditional continuous integration setup; the only difference is that instead
of serving out a compiled application, the final product is a document.

Future Steps
Muck is currently useful, but much work remains to be done. First and
foremost, tutorials and technical documentation are required for it to be a
compelling choice. Secondly, better testing and support for various formats
and languages would greatly improve the utility of the system. Above all,
the tool needs users in order to justify continued development. Like any
new developer tool, this is is a bit of a chicken-or-egg problem. At this
point I am seeking data journalists who would be willing to try out the
system in exchange for my support fixing bugs and adding features to make
Muck truly valuable.
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In summary, Muck provides a framework for data programmers that im-
proves correctness, organization, and efficiency during development. The
tool aims to be simple and practical, and requires minimal setup so that
potential users can easily try it out. It stands apart from most tools in the
data journalism space in that the design is based on the merits of build
tools, which have proven indispensable in the systems software industry
over the past forty years. Muck is simple enough that it should be useful
to programmers with only basic command line skills. At the same time, by
modeling work as a dependency graph it enables programmers to construct
arbitrarily complex jobs in an intuitive, maintainable style. Lastly, by im-
posing minimal requirements on how individual steps are programmed,
projects that outgrow Muck’s build model can transition into full-fledged,
modular applications without drastic changes.

At present, Muck is an ongoing experiment and I would be grateful
for feedback from practitioners of all kinds. Professional data journalists,
students, teachers, data scientists, and programmers of all persuasions
might find it useful or at least thought-provoking to browse through the
demos, reproduce the demo pages from their original sources, and perhaps
even make improvements to the code, which is open source. Please get
in touch through https://github.com/gwk/muck with any questions or
feedback.
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